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MAXIMUM ENTROPY SPECTRAL ANALYSIS AND RADAR SIGNAL PROCESSING 

by 

R.W. Herring 

ABSTRACT 

The theory and derivation of the maximum-entropy 
method of spectral analysis and the Burg algorithm, and 
the potential applicability of these techniques to radar 
signal processing, are reviewed. This material is 
presented in a readily comprehensible form for assessment 
by the practicing radar engineer. Topics such as compu-
tational complexity, statistical properties, adaptive 
clutter suppression and angular spectrum estimation are 
discussed. It is concluded that, at least at present, 
maximum-entropy spectral analysis is not a panacea for 
radar signal processing, due to its substantial compu-
tational requirements, and the relatively unknown and 
potentially unfavorable statistical properties of data 
analyzed using the Burg algorithm. A promising area of 
applicability appears to be that of adaptive Doppler 
filtering. 

1. INTRODUCTION 

1.1 DOPPLER AND ANGULAR SPECTRA OF RADAR ECHOES 

Radar echoes received from reflectors having a radial component of 
velocity with respect to the radar have their frequency spectra shifted because 
of the Doppler effect. Such Doppler shifts can in principle be used to 
distinguish between wanted targets and unwanted "clutter" echoes, if the 
characteristics of the motions of the targets and clutter are sufficiently 
different to render their Doppler spectra distinguishable by the radar signal 
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processor. Examples of clutter are echoes from mountains, raindrops, the 
ground, trees, birds, the surface of the ocean, insects, etc.. Sometimes 
although such clutter targets are not of principal concern, it is desirable to 
be aware of their presence, such as when flocks of birds suddenly appear near 
aircraft flight and approach paths. 

Radars are restricted in range and angular resolution due to their finite 
signal bandwidths and non-zero antenna beamwidths. This means that radars have 
only finite range and angular resolution, so that targets within a "resolution 
cell" are not resolved but are seen as a single echo. Targets of different 
types contained in the same resolution cell, however, can have their own 
characteristic Doppler spectra. Therefore, if it is possible to examine the 
Doppler spectrum of echoes from within a given cell, knowledge of the targets 
in that cell can be inferred. 

A spectral estimation problem also arises in the case of sampled-aperture 
radar systems. Radar echoes are received by an array of antennas as a super-
position of electromagnetic waves. Each wave varies sinusoidally across the 
array with a spatial frequency that is proportional to the sine of its angle-
of-arrival with respect to the boresight of the array. The angles-of-arrival 
of the various echoes can be inferred if the spatial frequency spectrum of 
such data can be estimated. 

1.2 THE REQUIREMENT TO ESTIMATE SPECTRA USING AS FEW DATA AS POSSIBLE 

For the case of either Doppler or angular spectrum estimation, the 
number of contiguous data is limited. For the case of angular spectrum 
estimation, this number is equal to the number of receivers. For the case of 
Doppler spectrum estimation, the number of contiguous data is limited by the 
number of pulses used to illuminate a given resolution cell, or "the number 
of hits on target". For a surveillance radar, the number of hits on target 
is usually determined by design factors such as how often it is required to 
search the total surveillance volume, the antenna beamwidth, and the pulse-
repetition frequency. For a tracking radar, it might well be possible to 
increase the number of hits on target in volumes of particular interest, 
where a wanted target is suspected to exist. 

In any of these cases, the spectral characteristics of the data may be 
changing with time, so that the data are not "stationary". Thus for several 
reasons it is desirable to be able to estimate spectra using as few data as 
possible. 

1.3 A SUMMARY OF CLASSICAL FOURIER SPECTRAL ANALYSIS AND ITS LIMITATIONS 

The classical methods for estimating spectra are based on the Fourier 
transform. These Fourier techniques are equivalent to least-squares fitting 
a predetermined set of sine waves to any given set of data. Such data can 
consist either of samples of amplitude as a function of time, such as are 
obtained from a coherent radar when a set of successive echoes from a given 
range are considered, or, of samples of an estimate of the autocorrelation 
function derived by averaging lagged cross-products of the sampled amplitude 
data. 
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In the Fourier analysis of either amplitude or autocorrelation data, 
the amplitudes and phases of the predetermined set of sine waves are adjusted 
to minimize the mean-square difference between the data and the fitted sine 
waves. In practice this fitting operation is simply the discrete Fourier 
transform. 

The resolution and statistical properties of the Fourier transform 
methods are well known (e.g., [1]). For example, if it is known that a signal 
to be analyzed consists of two sine waves of different frequencies, then it 
becomes difficult to estimate the difference between these frequencies when 
this difference is less than the reciprocal of the length of the data record. 
That is, if the length of a data record is T seconds, then spectral details 
having extent in the frequency domain of less than 1/T Hz are obscured. It 
Is also well known that the discontinuities at the ends of the data record 
cause sidelobes in the Fourier spectrum, an effect known as "spectra] leakage", 
and that spectral leakage can be controlled by multiplying the data with a 
windowing function before performing the Fourier transform. The penalty 
exacted by such windowing is a further loss in spectral resolution, so that 
spectral details of width greater than 1/T are obscured. 

Statistically, it is known that if sampled amplitude data comprised of 
noise with Gaussian statistics are to be analyzed, then estimates of the power 
spectrum separated in frequency by 1/T are statistically independent and have 
standard deviations equal to their means. Statistical reliability can be 
improved either by averaging power spectra derived from non-overlapping sets 
of data, or by using windowing functions to reduce the spectral resolution. 

In summary, then, it can be seen that the spectral resolution capability 
of the classical Fourier transform method is inherently limited to being 
approximately the reciprocal of the length of the data record or worse, so that 
even if it is known on a physical basis that there is information in the 
spectrum of bandwidth less than this limit, the technique will cause such detail 
to be obscured. Such is the case for example when target echo classification 
on the basis of Doppler spectral estimates is attempted by using classical 
Fourier spectral analysis on data sets that are "too short". 

1.4 ALTERNATIVE METHODS FOR SPECTRAL ANALYSIS 

Within the past decade, some alternative methods for spectral analysis 
have found considerable success in the fields of seismic and oil-exploration 
geophysics, and in speech analysis and transmission. These alternative methods 
have also aroused interest in the sonar and radar communities. 

The alternative methods differ fundamentally from the Fourier methods. 
The Fourier methods tacitly assume that the data have been generated by a set 
of independent harmonic generators having frequencies (0/T), (±1/T), (12/T), 
etc., where T is the length of the set of data being analyzed. The alternative 
methods to be discussed here are based on a different tacit assumption. That 
assumption is: given a set of data,  it is possible to design a filter which 
has as its output random "white" noise when the data is applied to its input. 
Such a filter is known as a "whitening" filter. An estimate of the spectrum 
of the data can then be taken to be proportional to the inverse of the power 
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transfer function of the whitening filter (see Figure 1). The spectral 
estimation techniques thus consist of techniques for designing whitening filters 
using only the available data. This approach arises naturally in the course of 
the formulation of maximum-entropy method. 

INPUT 
INPUT DATA 
SEQUENCE 
WITH POWER 
SPECTRUM  P(f) 

WHITENING 
FILTER 

WHITE NOISE 
WITH POWER 

OUTPUT 	.SPECTRUMP 
(CONSTANT)  

TRANSFER 
FUNCTION W(f) 

I P(f) = PIIW (f )1 2  I 
Figure 1. Whitening-Filter Method of Power Spectrum Estimation 

For speech analysis, a model for the whitening filter can be based on 
the known physical characteristics of the human voice. Similarly, for geo-
physical signal processing, knowledge of the physical processes generating the 
signals to be analyzed is of aid. For the case of radar signals, it is not 
yet clear whether or what physical models can be used to provide a priori 
information regarding the generation of the whitening filters. 

1.5 THE MAXIMUM-ENTROPY METHOD 

A technique which leads to the generation of a whitening filter and 
which has helped stimulate current research in the area of radar applications 
is known as the maximum-entropy method. The details of this method and its 
theoretical formulation are outlined in Section 2. 

It must be noted that the "true" maximum-entropy method is based on the 
assumption that not time-series amplitude data, such as would be obtained from 
a sequence of radar echoes from a given range, azimuth and (perhaps) elevation 
cell are available, but rather that a set of autocorrelation data is available. 
Such autocorrelation data are not available from present-day radars. 

1.6 THE BURG ALGORITHM 

To obviate the need for estimating autocorrelation data, the Burg algo-
rithm was developed. The details of this algorithm and its theoretical 
foundations are reviewed in Section 3. The Burg algorithm generates whitening 
filters directly from time-series amplitude data, in a relatively efficient 
manner which reflects the gist of the maximum-entropy technique. 
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1.7 STATISTICAL BEHAVIOR OF THE MAXIMUM-ENTROPY AND BURG TECHNIQUES 

Radar detection is closely related to statistical decision theory. 
Therefore it is necessary to understand the statistical effects of any procedure 
applied to the data prior to where any detection decision is made. To date, the 
statistical behavior of spectra derived using the maximum-entropy method have 
been studied only asymptotically [2], and the statistical behavior of Burg 
spectra have been studied only by means of computerized Monte Carlo simulations 
using simulated data [3,4] or very limited quantities of real data [3,5]. It 
is on the basis of its statistical behavior that the applicability of the Burg 
method to radar signal processing will be confirmed or rejected. This topic, 
which is presently unresolved, is discussed in Section 3.2 and Section 5. 

2. THE BASIS AND DERIVATION OF THE MAXIMUM-ENTROPY METHOD 
OF SPECTRAL ANALYSIS* 

The maximum-entropy method of spectral analysis is based on a line of 
reasoning proposed by J.P. Burg in the 1960s [6,7] and finally published in 
detail by him in 1975 [8]. He began by supposing that we have available M+1 
error-free autocorrelation data R(mit) for a set of M+1 lags: 
R(0),R(At),R(2At),...,R(MAt). He proceeded to show that, instead of simply 
Fourier transforming this autocorrelation data to obtain a power spectrum, it 
is possible to devise an alternative procedure based on finding a power 
spectrum which is both consistent with the given autocorrelation data and also 
has maximum-entropy in the sense defined by Shannon's Information Theory. The 
advantage of this technique is supposed to be that it is not subject to the 
smoothing effects introduced when a truncated series of autocorrelation data 
are Fourier transformed. This Section outlines the details of the derivation 
of the maximum-entropy method of spectral analysis and shows how it differs 
from conventional Fourier techniques. It also lays the foundation for Section 3, 
where the Burg algorithm for the spectral analysis of amplitude time-series 
data is described and derived. 

2.1 DEFINITION OF THE AUTOCORRELATION FUNCTION 

The autocorrelation function of a time-dependent signal x(t) can be 
defined as 

R(mAt) = <x*(t)x(t+mAt)> 	 (2.1) 

where the brackets < > denote the expected value of the quantity they contain. 
The asteriàk * denotes that if the data corresponding to x(t) are complex 
(that is, if in-phase and quadrature components are available), then the complex 
conjugate is to be taken. The time variable t can be either discrete or 
continuous, but it is assumed that the autocorrelation data are available at 

* Sections 2 and 3 are based closely on the derivation contained in Chapter 
II.A of Burg's Ph.D. Thesis [8]. 
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lei l/2At 
R(mAt) = 	P(f)exp(j2nfmAt)df 

-1/2At 
(2.3) 
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the discrete time-lag intervals mAt, where m is a positive or negative integer, 
or zero. 

Notice that the definition of R(mAt) implies that R(mAt) is independent 
of the actual times at which the signal is observed. This means that the 
data x(t) are assumed to have statistics that are stationary and do not vary 
with the passage of time. The supposition that such autocorrelation data are 
available is usually unrealistic in the radar situation, but in some sonar 
and geophysical situations, good estimates of the autocorrelation function can 
be made. 

2.2 THE FOURIER-TRANSFORM RELATION BETWEEN THE AUTOCORRELATION FUNCTION AND 
THE POWER SPECTRUM 

In general, a sampled autocorrelation function R(mAt) and its associated 
power spectrum P(f), where f is frequency, are related by the Fourier transform 
pair 

OD 

P(f) = At E 	R(mAt)exp(-j2nfmAt) 	 (2.2) m=-00 

We note that, since power is always real, eqns. (2.2) and (2.3) each imply 
that 

R(-mAt) = R*(mAt) 	 (2.4) 

This result is also consistent with the definition of R(mAt) as given by 
eqn. (2.1). We also note that the range of integration is over ± 1/2At rather 
than ±co, since the data are sampled. 

If we have available only (M+1) autocorrelation data, we could obtain 
an estimate of the power spectrum by simply truncating the infinite sum of 
eqn. (2.2) at m = ±M and arbitrarily setting R(mAt) to zero for m = ±(M+1) and 
beyond. But this procedure introduces a step discontinuity into the auto-
correlation data, which can lead to problems in the form of physically 
unrealistic estimates of negative power at some frequencies. The step discon-
tinuities can be thought of as causing a "ringing" in the spectral domain. 

Another way to look at this is to consider that the autocorrelation 
data have been modulated (or multiplied) by a square-wave gate function. This 
means that the true power spectrum corresponding to the untruncated autocor-
relation data has been convolved with the spectrum of the square-wave gating 
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function, and it is this latter spectrum, which has both positive and 

negative amplitudes, that introduces the apparent negative powers into the 

estimated power spectrum. 

This problem of negative power estimates can be sidestepped by choosing 

to multiply the autocorrelation data by some weighting function which decays 

to zero at m = ±M and has no negative amplitude components in its frequency 

spectrum. A typical example is the triangular weighting function, which has 

its maximum value at m=0 and decays linearly to zero at m = ±(1.1+1). Such 
non-uniform weighting eliminates spurious negative power estimates, but at 

the expense of smoothing the estimated power spectrum more than does the 

simple uniform square-wave weighting. There is no way of avoiding this 
tradeoff between stability and smoothing when using classical Fourier-trans-
form processing. 

2.3 THE MAXIMUM-ENTROPY CRITERION 

Burg's approach was to try to estimate the spectrum of the process 

generating the given autocorrelation data without making any a priori assump-

tions about the unknown data for lags ±(M+1)At and beyond. He began by noting 

that there are an infinite number of power spectra which can be Fourier trans-
formed using eqn. (2.3) to yield autocorrelation functions identical to the 

given set of sampled data over the range of lags for which the data are 
available. Beyond that range, of course, all these autocorrelation functions 
will differ. 

The problem then becomes: which one of this infinite set of power 

spectra to choose? To answer this question, Burg used the criterion of 

"information entropy" as defined for power spectra by Shannon's Information 

Theory [9]. A good discussion of the motivation for this choice can be 

found in Ref. [10]. This entropy H is defined to within a scale factor by 

the formula 

1/2At 

H = At 	 loge [P(Mdf 

-l/2t 

(2.5) 

Let it be assumed that all the power spectra under consideration are 

constrained to have the same total power Po , where 

1/2t 

Po 	
P(f)df 

-1/2At 

Then for 

P(f) = PoAt 	 (2.7) 

that is, P(f) is a flat or a white power spectrum, the entropy H has its 

maximum value Ho , where 

(2.6) 
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H
o 

= log
e
(P

o
At) (2.8) 

1/2t 

H = H
o 
+ At  J 	loge [l + p 1 (f)]df 

-1/2At 
(2.11) 

We also note by comparing eqn. (2.6) with eqn. (2.3) when m=0 that 

P
o 

= R(0) (2.9) 

It is relatively straightforward to convince ourselves that any non-
white spectrum will have smaller entropy than a white spectrum having the 
same total power. We can start by noting that any power spectrum P(f) must 
have a mean value of Po t , from eqn. (2.6). Then P(f) can be expressed in 
the form 

P(f) = PoAt [1 +  p
1 
 (f)] 	 (2.10) 

so that 

For the sake of simplicity we will assume that the magnitude of pl (f) is much 
less than one, so that 

lp1 (f)1 << 1 

and we can write 

(2.12) 

loge [l + pl (f)] = pi (f ) --1 p(f) + 	 (2.13) 

Then from eqn. (2.10) we can write 

1/2t 
2 

H-Ho 	
At 	[p 1 (f) - "

1 
 P1 (f) 	...idf 

-1/2At 

1/2t 

= - 	At  J 	p2 (f)df < 0 
1 

-l/2t 

(2.14a) 

(2.14b) 

where we have noted from eqn. (2.10) that the average value of p l (f) must be 
zero. Thus we see that H<H0 , so that for a given signal power level, a white 
noise signal indeed has maximum entropy. Although we have only proven this 
result for a special case, it is true in general. 

This, then, is the criterion that Burg used to select one of the 
infinite sets of possible power spectra: in the absence of any further 
information about the process generating the data, a reasonable choice for 
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the power spectrum would be one which both satisfied the constraints imposed 
by the given autocorrelation data and also had the maximum entropy, as 
defined by eqn. (2.5). 

We have already seen that, where there are no constraints due to the 
autocorrelation function, a white noise spectrum is chosen, since white noise 
has the greatest possible entropy. White noise is characterized by its random 
and unpredictable nature. Thus, by inference, choosing a power spectrum which 
is constrained by the autocorrelation data and yet has maximum entropy in the 
face of these constraints, suggests that this power spectrum corresponds to 
the most random possible process consistent with the observed data. Our next 
task is to find out how to estimate this spectrum. 

2.4 THE CONSTRAINED ENTROPY-MAXIMIZATION PROBLEM AND THE FUNCTIONAL FORM OF 
THE SPECTRAL ESTIMATE 

We can estimate the maximum-entropy spectrum by setting up and then 
solving a constrained maximization problem. This can be done by using 
Lagrange's undetermined multipliers. We begin by defining the function 

1/2t 

0[P(f)] = At .f 	logeP(f)df 

-l/2t 

1/2At 

E 	X
m 

R(mAt) - 1- 

	

P(f)exp(j2rfmAt)df 
m=-M 1/2At 

(2.15) 

where the Xms are the undetermined multipliers, and the terms in the square 
bracket are the constraint conditions derived from eqn. (2.3), which speci-
fies that the Fourier transform of the power spectrum must match the M+1 
given values of the autocorrelation function. 

If we now take the derivative of (D[P(f)] with respect to P(f) and set 
the result equal to zero, we get 

1/2At 	 1/2t _ 

L/2At  

1 df - 	

XJ 
At 

	

	 E 	 exp(j2nfmAt)df = 0 
P(f) m=-M 	-l/2t 

Solving eqn. (2.16) for P(f) yields 

//I 

M 
P(f) = At 	E 	X exp(j2nfmAt) 

(2.16) 

(2.17) 



- =X*  m  (2.18) 

2 
1 - E a(m,M)exp(-j2rfmAt) 

m=1 

P
M
At 

(2.20) 

P(f) 

z-1dz df j2rAt (2.22) 
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and we now have the functional form of the maximum entropy estimate of P(f). 
But we have yet to determine the Xms in terms of the autocorrelation data. 

We already know that if P(f) is a power spectral density, then P(f) 
must be real and positive. This means that we must have 

so that the imaginary terms in the denominator of eqn. (2.17) cancel. Then 
we can write 

2 

-1 E 	X
m 

exp(j2rfmAt) = P 
m=-M  

1 - E a(m,M)exp(-j2rfmAt) 
m=1 

(2.19) 

where the M+1 independent unknown Xms have been replaced by the real unknown 
Pm and the M complex unknown a(m,M)s. It will turn out that an explicit 
solution for the Xms is not required; it is only important that we can write 
P(f) as 

2.5 DETERMINATION OF THE COEFFICIENTS IN THE SPECTRAL ESTIMATE FROM THE 
AUTOCORRELAT  ION DATA 

Now we are faced with the problem of how to determine the a(m,M)s from 
the R(mAt)s. We can do this by going back to eqn. (2.3) and evaluating the 
integral using P(f) as given by eqn. (2.20). We can do this most easily by 
changing variables as follows. We let 

z = exp(j2rfAt) 	 (2.21) 

so that 

We note that for f = ±1/2At, the corresponding values for z is z=-1 in both 
cases. Thus the integral of eqn. (2.3) has been transformed into a contour 
integral around the unit circle in the complex z-plane, and can be written as 

P
m 	 m-1 

z 	dz  R(mAt) = 2ir 	m 
k E0  a(k,M)z-k 	kE0  a*(k,M)z

k 

where we have defined 

(2.23) 



- E a(n,M)R[(r-n)At] 
n=o 

= j2n 
(2.25a) 

' E-!- E  

r-1  
[ 

M  
z 	- E a(n,M)z 

n=0  

a*(k,M)z il [.7 E a(k,M)z 
k=0 

n=0 
dz 

(2.26) 

since f(0) = -04(0,M) 

1 1 

Œ(0,M) = -1 	 (2.24) 

to simplify the notation. Next, using eqn. (2.23), we form the summation 

P
m jr 

 z r-1 dz  
= j2n 

[- E a*(k,M)z il 
k=0 

(2.25h) 

We note without proof that it is always possible to formulate the polynomial 
In the denominator of eqn. (2.25b) so that it does not have any zeroes inside 
the unit circle. Then for r > 1, the integral of eqn. (2.25h) is zero, by 
Cauchy's integral theorem. For the case r=0, we observe that there is a 
single pole at z=0. For the case of a single pole, Cauchy's integral theorem 
can be stated as 

1 ff_3/ 
j2 	

dz = f(0) 
n 	z 

so that the right-hand side of eqn. (25h) is equal to Pm , 
= - ( -1) = 1. 

Finally we have the system of M+1 complex equations in M+1 unknowns 
required to be solved to determine the M complex a(m,M)s and the real unknown 
P • M• 

R(r) - E a(m,M)R(r-m) = P
m 

(r=0) 
m=1 

R(r) - E a(m,M)R(r-m) = 0 (r=1,2,3...,M) 
m=1 

(From now on we, will often set At=1 to simplify the notation.) 

(2.27a) 

(2.27b) 

2.6 THE MAXIMUM-ENTROPY SPECTRAL ESTIMATE AND PREDICTION-ERROR FILTERS 

The set of coefficients {1,-a(1,M),-a(2,M),...,-a(M,M)1 in eqns. (2.27a) 
and (2.27b) define what is called a prediction-error filter (or PEF) of order 
M and length (M+1). This prediction-error filter, as the name suggests, uses 
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the M values of the autocorrelation function, R(-M) to R(-1), to predict an 
estimated value for R(0); then it subtracts this estimate from the actual 
value of R(0) and outputs the difference, Pm. In this manner the PEF attempts 
to account for all the predictable behavior of the autocorrelation function 
that can be expressed in terms of a weighted sum of M of its terms. Pm  is 
the power that cannot be accounted for on the basis of this model. 

The eqns. (2.27b) can be used to extrapolate the autocorrelation 
function beyond the limit r=M. This extrapolated autocorrelation function is 
the Fourier transform of the maximum-entropy power spectrum, as required by 
Fourier transform relation of eqn. (2.3). This extrapolation of the auto-
correlation function is optimum only in the sense that it satisfies the 
constrained entropy maximization criterion. The usual radar signal processing 
approach of matched filtering has nothing whatever in common with this result. 

Examination of eqn. (2.20) shows that the maximum-entropy power spectrum 
is inversely proportional to the squared magnitude of the Fourier transform 
of the prediction-error filter coefficients; that is, if we write 

F(z,M) = 1 - E a(m,M)z
-1 

m=1 

where 

(2.28) 

z = exp(j2unt) 	 (2.21) 

then we can rewrite eqn. (2.20) for the maximum-entropy power spectrum as 

P(f) = PmAt/IF(z,M)I 2 	 (2.29) 

This means that the PEF can be thought of as a whitening filter, for if we 
apply a signal which has a power spectrum P(f) to the input terminals of such 
a PEF, then the power spectrum of the output signal would be PmAt, which is a 
constant, independent of frequency. Constant power spectra correspond to 
white noise; hence the name whitening filter. 

2.7 SOLVING FOR THE COEFFICIENTS OF THE MAXIMUM-ENTROPY PREDICTION-ERROR 
FILTER 

The set of eqns. (2.27a) and (2.27b) can be written in matrix form: 



P — 
M 

0 

0 
(2.30) 

0 

0 

• 
• 

R(K) É(0) 

-PK 

0 

(242) 
• 
0 
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—R(0) 	R(-1) 	R(-2) 	 R(-M5i 

R(1) R(0) 	R(-1) 

R(2) R(1) 	R(0) 

• 
• 

R(0) 	e-1) 

R(M) 	 ••• 	R(1) 	R(0)  

1 

-a(1,M) 

-a(2,M) 

-a(M-1,M) 

-a(M,M) 

It can be seen that the matrix of autocorrelation data has a highly ordered 
structure. This structure, in which the elements of each diagonal are 
identical is called Toeplitz by mathematicians. In such an (M+1)x(M+1) 
Toeplitz matrix there are (M+1) 2  entries, only 2M+1 of which are distinct. 
For the matrix of eqn. (2.30), because of the conjugate-symmetry relation of 
eqn. (2.4), there are only M+1 independent elements (i.e., the matrix is also 
Hermitian). 

Usually it is necessary to solve a matrix equation such as eqn. (2.30) 
by inverting the matrix. When the matrix is Toeplitz, however, such equations 
can be solved by a relatively simple procedure called the Levinson recursion 
algorithm. 

We begin by using only the term R(0). Then the PEF has only one term, 
and eqn. (2.30) becomes 

R(0)xl = Po 	 (2.31) 

Next we shall see how, as we take each value R(1),R(2),...,R(M) in turn, we 
can uniquely extend the length of the PEF by one coefficient each time, in 
a highly efficient manner. We start the derivation of the recursion 
algorithm by assuming that we have already solved the matrix equation 

R(-1) 	R(-K)-  

R(1) 	R(0)  -Œ(1,K)  

for some value of  K, K=0,1,2,...,M-1, and that we have obtained the solution 
for the PEF of order K and length K+1. We observe that we can rewrite eqns. 
(2.27a) and (2.27b), by taking their complex conjugate and using eqn. (2.4), 
as 

• 

-a(K,K) 
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R(-r) - E a*(m,M)R(m-r) = P
m 

(r=0) 
m=1 

(2.33a) 

0 

0 

0 

0 
(2.34) 

P
m 

0 

-a(1,K) 

-a(K+1,K+1) 

-a(K,K) 

0 

-a*(1,K) 

1 

-a(K+1,K+1) 

0 

• 
• • 

0 

L_QK 

(2.35a) 

R(-r) - E a*(m,M)R(m-r) = 0 (r=1,2,...,M) 
m=1 

Equations (2.33a) and (2.33b) can also be written in matrix form: 

(2.33h) 

R(0) 	R(-1) 	R(-2) 	 R(-M) 

R(1) 	R(0) 	R(-1) 
• • 

R(2) 	R(1) 	R(0) 	• 	• • 

	

. 	 . 
• •• 	• . 	' . 
• . 	. 	. 

• • 	R(0) 	R( -1) . 
• 

R(M) 	.... 	•••• 	R(1) 	R(0) 

-a* (M, M) 

-a* (M-1 ,M) 

-a* (M-2 ,M) 

-a*(1,M) 

1 

If we compare eqns. (2.34) and (2.30), we can see that the same results are 
obtained when the sequence of PEF coefficients is reversed and the coefficients 
are conjugated. This observation is the key to the Levinson recursion. 

We want the output of each successively higher order PEF to have the 
same functional form; that is, an output sequence with one non-zero term and 
with all other terms being zeroes. Therefore, using eqns. (2.32) and (2.34), 
we write 

R(0) 	R(-1) 	 R(-K) 	R(-K-1Y 

R(1) 	R(0) 	 R(-K+1) 	R(-K) 

• 
• 

R(K) 	R(K -1) 	... 	1t (0) 	R(-1) 

LR(K+1) 	R(K) 	... 	R(1) 	R(0) 



Q
K = R(K+1) - E a(k,K)R(K+1-k) k=1 

(2.36) 

rP  K+1 

0 
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(2.35h) 

0 

0 

Comparing eqns. (2.35a) and (2.35b) with eqn. (2.32), we see that we have 
introduced one new piece of data, R(K+1), and three new parameters: 

and QK . From eqn. (2.35a) we can write 

Comparison of eqn. (2.36) and eqn. (2.27h) for M=K and r=k+1 shows that QK is 
the difference between the extrapolated estimate of R(K+1) produced by the 
PEF of order K and the actual value of R(K+1). 

If QK  is zero, then we can see from the right-hand sides of eqns. (2.35a) 
and (2.35b )  that a(K+1,K+1) must also be zero, and the value of R(K+1) and all 
subsequent values of the autocorrelation function are perfectly predictable 
from the PEF we already have. Also, we can see from eqn. (2.40) below that 
PT, 
&N- PK+1 = PK+2 = •.. becomes constant. This special case arises when the 
Process generating the signal whose autocorrelation function data are being 
analyzed can be modelled as the output of a feedback network containing 
exactly K feedback loops and being excited by an input signal consisting of 
uncorrelated white noise with power density PK •  Such a process is often 
referred to as being "autoregressive" or "all-pole", and therefore maximum-
entropy spectral analysis turns out to be based on an autoregressive model 
of the signal-generating process. Of course, if the signal-generating 
Process cannot be so modelled, then QK vanishes only in the limit K->co. There 
is  further discussion of this topic in Sections 3.7 and 5.2.1. 

If QK  is non-zero, then by equating the right-hand sides of eqns. 
(2 .35a) and (2.35b) we can write 

(2.37) P
K 

- a(K+1,K+1)Q* = P K 	K+1 

and 

Q
K 

- a(K+1,K+1)PK 
= 0 

Prom eqn. (2.38) we can write 

a(K+1,K+1) = QK/PK  

(2.38) 

(2.39) 
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and by eliminating QK  between eqns. (2.37) and (2.38) we can write 

PK
+1 

= (1- la(K+1,K+1)1 2 )P
K 

(2.40) 

Equation (2.40) has the interesting implication that either 

la(K+1,K+1)1 < 1 	 (2.41) 

or else we could have negative power at the output of the PEF. This possi-
bility does not arise if we have proper autocorrelation data, for as we 
stated following eqn. (2.25b), it is always possible to choose a PEF which 
has all its roots inside the unit circle on the complex z-plane. There is a 
theorem in algebra which states that the coefficient of the last term of the 
z-transform of the PEF as we have formulated it (i.e., a(K+1,K+1)) is equal 
to (±1) times the product of its K+1 roots. If all the roots have magnitude 
less than one, then it follows that inequality (2.41) will be obeyed. 

As an aside, we note there is one special case where equality can be 
achieved for eqn. (2.41), and that is when all K roots of the PEF lie on the 
unit circle. This special case corresponds to having a signal comprised of 
K complex sinusoidal terms and no additive noise. Such a signal is not 
truly autoregressive in nature, for, although it can be modelled by the out-
put of a feedback network which has K feedback loops, no input signal is 
required. The output signal is determined strictly by the initial conditions 
when the network was activated. 

Also, we can see from eqn. (2.40) that if la(K+1,K+1)1 =1, then PK4.1 = 
0. Going back to eqn. (2.38), we see that then we must also have Qmq = 0, 
so that the Levinson recursion terminates for a PEF of order K+1 when 
la(K+1,K+1)1 = 1. 

Returning now to the main argument of the derivation, it remains to be 
shown how to derive the remaining coefficients a(1,K+1),a(2,K+1),...,a(K,K+1) 
of the K+1th order PEF from the Kth order PEF. We do this by noting that 
from the left-hand side of eqn. (2.35a) we can write 

-a(1,K) 

-a(2,K) 

-a(K,K) 

0 

or, in general 

0 

- (K, K)  

- (K-1, K)  

-a*(1,K) 

1 

-a(1,K+1) 

-a(2,K+1) 

-a(K,K+1) 

-a(K+1,K+1) 

(2.42) -a(K+1,K+1) 

a(k,K+1) = a(k,K) - a(K+1,K+1)a*(K+1-k,K) 	 (2.43) 

k =  



P
o 

(2.44) 

Thus we can see that the sequence of PEFs from order zero to order M 
are completely specified if the set of coefficients 
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are known. For historic reasons, these u(K,K)s are known as reflection 
coefficients, because of their mathematical analogy to the reflection 
coefficients which arise in the theory of wave propagation through a layered 
medium. It is interesting to note that this set of coefficients is comprised 
of one real-valued term and M complex-valued terms, the same as the original 
set of M+1 autocorrelation values. 

Finally, we recapitualte the Levinson recursion scheme. We begin at 
K=0 and by letting P0=R(0). Then we apply eqns. (2.36), (2.39), (2.43), and 
(2.40) for K=0,1,2,...,M to obtain a sequence of PEFs. We end by applying 
eqh. (2.29) to obtain the Mth-order maximum entropy power spectral estimate. 
(Note that for K=0, the summation in eqn. (2.36) is ignored, since the upper 
limit of the summation index is less than the lower limit.) 

2.8 EXTRAPOLATING THE AUTOCORRELATION FUNCTION 

Sometimes it is desired to extrapolate the autocorrelation function 
data beyond the M+1 values assumed available. We can see by recalling the 
discussion of Section 2.3 and by examining eqn. (2.27b) that such an extra-
Polation arises naturally in the maximum-entropy formulation. By removing 
the restriction r < M on eqn. (2.27b) we obtain the formula for the maximum- 

-r entropy extrapolation  R(r) of the autocorrelation data: 

11(r) = 	a(m,M)R(r-m) (r = M+1,M+2,...,00) 	 (2.45) 
m=1 

â (r-m) is replaced by R(r-m) in the right-hand side of eqn. (2.44) for r-m < m; 
i.e • , the given data are used wherever available. 

2 .9 INVERTING THE AUTOCORRELATION MATRIX 

Sometimes it is necessary to compute the inverse of the autocorrelation 
matrix. The Levinson recursion can be used to do this efficiently, and we 
shall show how the inverse of either the matrix of given autocorrelation data 
or the inverse of the maximum-entropy extrapolation of the autocorrelation 
matrix can be calculated. 

Equations' (2.30) and (2.45) can be combined to give 



- • • . 
. 	. 	•. 

• • 

R(M) 

(N+1) 	R(M) 

• 

â(m+L) 

0 -a(1,M) 

• 
• 
• 
• 

-a(M,M) 

0 

0 0 

• • 1 

o 

•1 
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R(0) 	R(-1) 	 R(-M) 	k(-M-1)  

• 

	

R(1) 	R(0.) 	• • 	 R(-M) . . 
• • . 	 • 	 . 	 . . 	 . 	 . 	 . • . 	 • 	 . 

R( -N )  • 

. 	 . 
• . 	 . 

. 	• 	 • 

	

. 	 . . 	 . . 	R(0) 	R( -1) . 	. 

	

••• 	(N+1) 	i(M) 	... 	... 	R.(1) 	R(0) 

â(-1,1-1) 

(2.46) 

where we have assumed that L values of the extrapolated autocorrelation 
function have been included and therefore that L zeroes have been appended to 
augment the length of the PEF. Of course, if L=0, then eqn. (2.46) reduces 
to eqn. (2.30). 

In order to simplify the notation, we shall now denote the (M+1+L) x 
(M+1+L) autocorrelation matrix by [R(M+L)]. We want now to determine its 
inverse, [R(M+L)] --1 . This we can do by noting that 

0 	• • • 	• • • 	• • • 	• • • 	• •• 	• • • 	• • • 	0 

-Œ(1,M) 	1•  
• 

-Œ(2,M) 	-a(1,M) 
• • 

• • 
• 

[R (M-11)] -a(M,M) 	-Œ(M-1,M) 	-a(1,M) 
• . 

• 0 	-a(M,M) 	 -a(1,M-1) .  • 

0 

-Œ(M-1,M) 

0 	-a(M,M) 	-a(M-1,M-1) 	-a(1,1) 	1 

(M+1+L)x(M+1+L) 

0 

1 
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(2.47) 

[P(m+0] (2.49) 

(M+1+L) x (M+1+L) 

The (M+1+L) x (M+1+L) matrix of PEFs and augmented PEFs on the left-hand 
side of eqn. (2.47) we shall denote by [a(M+L)]. The explicit contents 
above the diagonal of the matrix with the Ps along its main diagonal, denoted 
bY the large asterisk, are not required in what follows below. 

If we now let [a(M+L)]
+ 

denote the conjugate transpose of [a(M+L)] we 
can write 

[a(M+I)][R(M+L)][a(M+1,)] = [P(M+L)] 	 (2.48) 

where 

The reason that [P(M+L)] is diagonal is that both [a(M+L)]
+ 

and the right-
band side of eqn. (2.47) are upper-triangular matrices, and therefore their 
Product must also be upper-triangular. However, the left-hand side of eqn. 
(2.48) is Hermitian, so that the upper-triangular product matrix must also 
bs Hermitian, which can only be true if the off-diagonal elements are 
zeroes. 



0 

+ 	-1 + 
[a][a][R][a][11 [a ]  = [a][ce (2.52) 

The inverse of the diagonal matrix [P(M+L)] we can write by inspection: 

-1 
PM 

0 

-1 Pm  
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• -1 
P
m 

•-1 
P
o 

(2.50) [ P(M+L) ] -1  = 

We now find that a few simple manipulations of 
to the desired result. For brevity we will drop the 
the argument (M+L). Post-multiplying eqn. (2.48) by 

-1 
[a]

+
[R][a][P] 	= [I]  

eqn. (2.48) will lead us 
explicit dependence on 

[P] -1  yields 

(2.51) 

where [I] denotes [I(M+L)], the (M+1+L) x (14+1+1,) identity matrix. Pre-
multiplying both sides of eqn. (2.51) by [a] and post-multiplying by [a] 4" 
yields 

-1 
Finally, pre-multiplying both sides of eqn. (2.52), first by [a] 	and then 
by [a r-1  (since [a] is clearly non-singular) yields the desired result: 

-1 + 
[R][a][ 11 	[a] = [ 1 ] 

Or 

[R(M+LA -1  = [a(M+L)][P(M+L)] -1 [a(M+L)]+ 	 (2.54) 

Thus we see that, given a set of M reflection coefficients and Po , the zero-
lag value of the autocorrelation function, the inverse of the maximum-entropy 
extrapolation of the autocorrelation matrix can be computed. Further examina-
tion of the inverse of the Toeplitz autocorrelation matrix would show that 
this inverse matrix is both persymmetric (i.e., symmetric about the diagonal 
from its lower-left to upper-right corner) and Hermitian, which means that 
the (M+1+L) x (4+1+L) matrix has at most (M+1+L)(M+3+L)/4 independent elements 
if (M+1+L) is even, and (M+2+L) 2 /4 independent elements if (M+1+L) is odd. 
This observation is useful in simplifying the implementation of eqn. (2.54) 
to derive the actual elements of the inverse autocorrelation matrix. 

For the particular case L=0 (i.e., the autocorrelation matrix is not 
extrapolated before inversion), it is straightforward to derive the equations 
for the elements of the inverse autocorrelation matrix [7]. If we let ii(i,j) 
denote an element of this matrix, then 

(2.53) 



= E a(M-k,i-k)a*(M-k,j-k)/Pm_k 
 k=0 

(2.55) 

R(K) = E a(k,K)R(K-k) 
k=1 

(2.57) 
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= 	 = 	 = i*(m-J ,m-i) 

i,j = 0,1,...,M 

where n is the smaller of the indices i,j and we let a(M-k,O) = -1 as in 
eqn. (2.24). 

2.10 DERIVING THE AUTOCORRELATION MATRIX FROM A GIVEN SET OF REFLECTION 
COEFFICIENTS 

In Section 3 et seq. we shall derive the Burg algorithm, which allows 
us to compute a set of reflection coefficients and an estimate of Po  directly 
from a set of amplitude time-series data. We might then want to estimate the 
autocorrelation function from the estimated reflection coefficients. There-
fore it is useful to derive the equations for computing the autocorrelation 
function from a given set of reflection coefficients. 

We can easily obtain the required relations from eqns. (2.27a) and 
(2.27b). From eqn. (2.27a) we have 

R(0) = Po 	 (2.56) 

and from eqn. (2.27b) we have 

K = 1,2,...,M 

where the a(k,K)s are derived from the set of reflection coefficients by 
using eqn. (2.43). 

2.11 SUMMARY 

We have shown how, given a set of perfect autocorrelation data, a 
Power spectrum which has maximum entropy in the sense of Shannon's Informa-
tion Theory can be estimated. We have shown that this power spectrum is 
closely related to a unique set of prediction-error filters which can be 
computed from the data, and we have derived the algorithm for computing 
these prediction-error filters. We have also shown how to extrapolate the 
autocorrelation data using the maximum-entropy criterion, how to invert the 
extrapolated or unextrapolated autocorrelation matrix, and how to reconstitute 
the autocorrelation data if a set of Yeflection coefficients and the value 
of the zero-log autocorrelation is given instead. 

We have not considered the effects of statistical fluctuations in the 
autocorrelation data, which will exist in any set of measured autocorrelation 
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data. This rather complicated problem has been considered by Baggeroer [2] 
who found that, in general, a maximum-entropy spectral estimate based on a 
given data set will have both a more "spikey" spectrum and a greater varia-
bility than a Fourier-transform spectral estimate based on the same data. 

3. THE BURG ALGORITHM FOR DETERMINING AUTOREGRESSIVE SPECTRAL ESTIMATES 
FROM THE TIME-SERIES DATA 

We saw in Section 2 how, given a set of autocorrelation data, we could 
find an estimation of the power spectrum which had maximum entropy. It turned 
out that the maximum-entropy spectral estimate was inversely proportional to 
the frequency response of a prediction-error filter (PEF) which was derivable 
from the autocorrelation data. 

In the radar situation, we are often faced with having available only 
relatively short sets of amplitude time-series data. Sometimes we want to 
extract the maximum amount of spectral information from these data, and do 
not want to be subject to the effects of spectral broadening introduced when 
conventional Fourier-transform techniques are used. 

The Burg algorithm for spectral analysis is based on the concept of 
deriving a set of reflection coefficients and hence a set of PEFs directly 
from the amplitude time-series data. The logic behind the various steps of 
the algorithm is prinicpally their analogy with the steps taken when the 
autocorrelation of the data is given. 

We being by assuming that we are given a set of N data x(n): n=0,1, 
2 90.09 N-1. We want to compute a set of PEFs from these data, and by analogy 
we want this set of PEFs to have the same properties as if they had been 
derived from autocorrelation data. In fact, having computed such a set of 
PEFs, we can then obtain from them a set of autocorrelation estimates by 
inverting the Levinson recursion scheme as shown in Section 2.9. 

These autocorrelation estimates â13 (m) would not be the same as those 
derived by taking the conventional lagged cross-product average 

N-m 
ke(m) = S(m) E x*(n)x(n+m) 

n=0 
(3.1) 

where S(m) is a scaling factor. (Compare eqns. (3.1) and (2.1).) For refer-
ence in what follows, we note that if the scaling factor 

S(m) = 1/N 	 (3.2) 

is chosen, that 1-1c (m) is biased, since then 

<Rc
(m)> (N-I) R(m) 

and the expected value of Re (m) is linearly tapered to zero at m=N lags. If 
the scaling factor 

(3.3) 



a(M) (3.6) 

a
+(M)[R(M)] = [Pm,0,...,0] 

[R(M)] a (M) = 

(3.8a) 

(3.8h) / 

and a
+
(M)[R(M)]a(M) = Pm (3.9) 
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S(m) = 1/(N-m) 
- 

is chosen, then Rc(m)  is unbiased, since then 

N-m 
<1-(c (m)>  = 	R(m)  

but the expected variance of Rc (m) for successively greater values of m 
becomes greater, due to the smaller nimber of terms in each successive 
summation. 

(3.4) 

(3.5) 

3.1 THE RELATION BETWEEN MAXIMUM-ENTROPY AND A MINIMUM POWER OR MINIMUM-MEAN-
SQUARE CRITERION 

In order to determine a criterion which can be used to estimate a PEF 
from the time-series data, it is useful to examine the properties of the 
maximum-entropy PEFs derived from known autocorrelation data. For compactness 
of notation we let the Mth-order PEF be denoted by the column vector a(M) where 

1 

-Œ(1,M) 

-a(M,M) 

and the conjugate transpose of a(M) by a
+
(M) where 

a (M) =  (3. 7) 

We also let the (M+1) x (M+1) autocorrelation matrix be denoted by [R(M)] and 
note that it is equal to its own conjugate transpose. 

Now we note that 

'ihere Pm  is the output power as before. We want to know what the output 
Power would be if any other PEF, say e(m), where — 
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(Iv )  = 

(3.11b) 

(3.11c) 

or 

Or 

R(k- 2 ) =  

R(k- 9 ) =  

R(k-£) = <x*(t+Ox(t+k)> 

(3.15a) 

(3.15b) 

(3.15c) 

1 

-13(1,M) 

(3.10) 

-P.(M,M) 

were to be used instead. Therefore we consider the expression 

e(M) -a-1- (M))[R(M)]((3 (M) -a(m)) = e(M)ER(M)13(M) - a 4- (14)[R(M)](3 (M) 	(3.11a) 

- (C(M)[R(M)]a(M) + a
+
(M)[R(M)]u(M) 

= 	(M)ER(M)1(3 (M) 	Pm-Pem  

= e(M)ER(M)13(M) - P 

Therefore we find that 

+
(M)[R(M)]e(M) = Pm 	(3

+
(M) -a,+ (M))ER(M)10(M) -a(M)) 	(3.12) 

We note that we can write, for any column vector X(M) of length M+1, 

M M 
(3.13) y+ (M)[R(M)]y(M) = E 	E 1*(k)R(k,£)y(2,) 

k=0 R=0 

where, by comparison with, say, eqn. (2.32) 

R(k,R) = R(k-9.) 

Also, from eqn. (2.1) we can write 

(3.14) 

if the process generating x(t) is stationary. Then we can write, using eqn. 
(3.15b), 

M M 
2- (M)(12.(M)11(M) = E 	E y*(k)<x*(t-k)x(t-R)>y(t) 

9.,=0 
(3.16a) 

= < E y*(k)x*(t-k) E y(2)x(t-)> (3.16b) 



= < 

>0  

2 

E y(Q)x(t- 2 ) > 
9-=0 

(3.16c) 

(3.16d) 
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Applying this general result to eqn. (3.12) we can see that any PEF other 
than the one generated from the autocorrelation data by the Levinson recursion 
will have an output power greater than Pm . From this Burg inferred that a 
minimum mean-square-error criterion is appropriate for use in estimating the 
Burg PEF. 

3.2 JUSTIFICATION FOR SIMULTANEOUSLY MINIMIZING THE FORWARD AND BACKWARD 
OUTPUT POWER FROM PEF 

Going back to eqn. (3.16c), we note that we can write 
2 

+ (M)(R(M)]a(M) = < x(t) - E a(m,M)x(t-m) 
m=1 

(3.17) 

=1)
m 

However, in eqn. (3.1 a) we could just as easily have used eqn. (3.15c) for 
R(M), to have gotten instead the result 

2 

+
(M)[R(M)]o(M) = x(t) — E a* (m,M)x (t+m) 

m=1 
(3.18) 

=p
m 

Comparing eqns. (3.17) and (3.18), we see that in the former the PEF is 
aPplied to the time series data in the usual forward direction, and that the 
expected mean-square output is equal to Pm ; in the latter equation, the 
complex conjugate of the PEF is applied to the data in the reverse direction, 
and again the expected mean-square output is equal to Pm . From this observa-
tion Burg inferred that one ought to apply the Burg PEF to the data in both 
directions simultaneously, and then minimize the mean of the forward and 
backward output powers. 

3.3 COMPUTATION OF THE BURG PEFs 

The zero-order PEF is, by definition, the constant "one". Thus the 
output energy of the zero-order PEF - is estimated by 

N-1 - 
Eo 

= E Ix(n)1 2 
 n=0 

ao that Eo /N is an unbiased estimate of Po . 

(3.19) 



N-2 
E x*(n)x(n+1)> 

n=0 (N-1)R(1) 
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If the first-order Burg PEF is applied to the data in the forward 
direction, without going beyond the ends of the data-set, we get a sequence 
of N-1 outputs, denoted by f l (n), where 

f
1
(n) = x(n+1) - 6(1,1)x(n) n=0,1,...,N-2 

Here 6(1,1) is the Burg estimate of the first-order reflection coefficient. 
Similarly, if we apply the conjugate first-order PEF to the data in the 
backward direction, we get the output sequence 

(3.20) 

(3.21) b
1
(n) = x(n) - 6*(1,1)x(n+1) n=0,1,...,N-2 

Then the output energy of the first order PEF is estimated by 

N-2 1 
E
1  = 
	

1 
— E 	(If (n)1 2  + 111 1 (n)1 2 ) 
2  
n=0 

(3.22) 

Following the line of reasoning given above, that the maximum-entropy 
PEF has minimum output energy, we want to estimate 6(1,1) by minimizing El 
with respect to 6(1,1). We do this by expanding eqn. (3.22), taking the 
first derivative with respect to 8(1,1), and equating the result to zero. 
The result is 

6(1,1) 

N-2 
E x*(n)x(n+1) 

n=0 
N-2 1 E (1x(n)1 2  + lx(n+1 )1 2 ) 
n=0 

(3.23) 

We notice that the numerator of eqn. (3.23) looks very much like the lagged 
cross-product average of eqn. (3.1) for a lag of one unit (M=1) and S(m)=1, 
and the denominator looks something like the zero-lag cross-produce of eqn. 
(3.1), except that the terms  x(0)1 2  and lx(N-1)1 2  appear only once; the 
other N-2 terms appear twice. We also notice that in general 

16(1,1)1 < 1 

which is a consequence of the well-known Schwartz Inequality. 

If we take separately the expected values of the denominator and 
numerator of eqn. (3.23), we note that 

(3.24) 

N-2 1 < 	E (lx(n)1 2  + lx(n+1)12)> 	7  (N-1)2R(0) 	 (3.25a) 

n=0 
= R(1)/R(0) 	 (3.25h) 

= ct(1,1) 	 (3.25c) 



27 

In deriving eqn. (3.25a) we have used eqn. (2.1), and we have used eqns. 
(2.36) and (2.38) with K=0 in going from eqn. (3.25h) to eqn. (3.25c). Thus 
we can see that the first-order Burg reflection coefficient approximates the 
true maximum-entropy reflection coefficient if the expected values are taken 
in the manner shown. In general, however, this procedure is unjustifiable, 
and .13(1,1 )> 	a(1,1). 

We progress now to the estimation of the second-order Burg reflection 
coefficient. Again we apply the Burg PEF to the data in both the forward and 
backward directions, without going beyond the ends of the data-set. Then we 
estimate the mean of the forward and backward output energies, and minimize 
this energy by adjusting oniy the second-order reflection coefficient. 

Applying the second-order Burg PEF in the forward direction, we obtain 
a sequence of N-2 outputs, denoted by f2 (n), where 

f 2
(n) = x(n+2) - e(1,2)x(n+1) - e(2,2)x(n) 

n=0,1,...,N-3 	 (3.26) 

Similarly, applying the conjugate second-order Burg PEF in the backward 
direction, we obtain a sequence of N-2 outputs, denoted by b 2 (n), where 

b2
(n) = x(n) - e*(1,2)x(n+1) - e*(2,2)x(n+2) 

n=0,1,...,N-3 	 (3.27) 

We notice (for example) that the first (n=0) term of each of the sequences 
f2(n) and b2 (n) is dependent on the first (n=0), second (n=1) and third (n=2) 
terms of the original data sequence, and that there are two PEF parameters, 
8 (1,2) and 8 (2,2), to be determined. 

We recall now that we want to make the Burg PEF as analogous as possible 
to the maximum entropy PEF. If this is to be the case, then we can use eqn. 
(2.43) to express e(1,2) in terms of 8 (1,1) and 8(2,2): 

8(1,2) =  8 (1,1) — 8(2,2)8*(1,1) 	 (3.28) 

On a physical basis, it can be considered that e(1,1) contains all the 
information possible concerning how much of the signal can be predicted on 
the basis by considering the data two at a time. Therefore any additional 
Predictability of the signal which can be discovered on the basis of 
examining the data three at a time, must be expressable as a function of 
8 (2,2) only. However, we also note that this restriction can mean that the 
absolute minimum output energy achievable if both 8(1,2) and 8 (2,2) were 
simultaneously,adjusted may not be realized. This is the price paid for 
forcing a Toeplitz structure on the estimated autocorrelation matrix. In 
general, sample autocorrelation matrices derived from equi-spaced sampled 
data are Hermitian, but are not Toeplitz [11]. 

By substituting eqn. (3.28) into eqn. (3.26) and using eqns. (3.20) 
and (3.21), we find that f2 (n) is expressable in terms of f i (n) and b 1 (n): 
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f 2 (n) = x(n+2) - [ 13 (1,1) - 8(2,2)8*(1,1)]x(n+1) - 8(2,2)x(n) (3.29a) 

= f1  (n+1) - 8(2,2)b1 
 (n) (3.29c) 

= [x(n+2) - 8(1,1)x(n+1)] - 8(2,2)(x(n) - 8*(1,1)x(n+1)] (3.29h) 

n=0,1,...,N-3 

Similarly, we find 

b2 (n) = x(n) - [8*(1,1) - 8*(2,2)8(1,1)]x(n+1) - 8*(2,2)x(n+2) (3.30a) 

= [x(n) - 8*(1,1)x(n+1)] - 8*(2,2)[x(n+2) - 8(1,1)x(n+1)] (3.30b) 

(3.30c) = b1  (n) - 8*(2 2)f (n+1) 1 

n=0,1,...,N-3 

For the second-order Burg PEF, the output energy E2  is given by 

N-3 

E2 	
1 = — E  (l 2 (n)1 2 + lb 2 (n)1 2 ) 2 n=0 

(3.31) 

Following the same procedure that led to eqn. (3.23), we find that 8(2,2) is 
given by 

8(2,2) 

N-3 
E b*(n)f (n+1) 
n=0 1 	1 

N-3 
Z 	(1b 1 (n)1 2 	If 1  (n+1)1 2 ) 

n=0  

(3.32) 

Comparing eqns. (3.32) and (3.23) we note the structural similarity. In fact, 
if we let 

b o (n) = x(n) = f o (n) 	n=0,1,...,N-1 	 (3.33) 

we can rewrite eqn. (3.23) as 

8(1,1) - 

N-2 
E b*(n)f (n+1) 

n=0  o 	o 

N-2 1 E (lb (n) 1 2  + Ifo (n+1)1 2 ) 
n=0 	° 

(3.34) 

In general, we find that 



PK (f) - 
1 - E e(k,K)exp(-j2nkf) 

k=1 

(3.39) i2 

2 9 

N-1-K 
E 	b* 1  (n)fK1  (n+1) K-- n=0  

e(K,K) N-1-K 1 E 	(Ibic_1 (n)1 2  + IfK-1 (n+1)1 2 ) 
n=0 

(3.35) 

K=1,2,...,N-1 

and 

- e(K,K)bK-1 (n) 

bK (n) = bK-1
(n) - e*(K,K)fK-1 (n+1) 

(3.36) 

(3.37) 

n=0,1,...,N-1-K 

Equation (3.35) tells us that successively higher orders of the Burg PEF 
reflection coefficients can be calculated by successively computing the 
single-lag cross-correlation between the forward and backward output signals 
from the immediately lower order PEF and normalizing by the mean energy of 
those two output signals, excepting that, in calculating this mean, the last 
backward output and the first forward output are omitted. Applying Schwartz's 
inequality to eqn. (3.35) again tells us that, in general, 

16(K,K)I < 1 	 (3.38) 

'ebich conforms with the restriction (2.41) on la(K,K)1 for the MEM estimate. 

Finally, then, we have derived the K
th order Burg spectral estimate 

Where, by analogy with eqn. (2.40), the output powers  11K  are defined as 

0 
= E

0 
 /N 	K=0 	 (3.40) 

and 

II 
K 

= 11K-1 
(1 - re(K,K)1 2 ) 	 (3.41) 

K=1,2,3,...,N-1 

and by analogy with eqns. (2.43) and' (3.28) 

e(k,K) = e(k,K-1) - e(K,K) e*(K-k,K-1) 

k=1,2,...,K-1 
K=1,2,3,...,N-1 

(3.42) 
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3.4 BIAS OF THE BURG ESTIMATE OF THE AUTOCORRELATION FUNCTION 

We saw from eqns. (3.25a-c) that the Burg estimate of the first-order 
reflection coefficient is roughly equivalent to the true maximum-entropy 
estimate. Unfortunately, however, the Burg estimate is not in general 
unliased. 

The existence of bias in the Burg algorithm can be demonstrated by 
considering the following special case [11]. From eqn. (2.57), for K=1 we 
can write 

(3.43) R(1) =  Œ(1,1)P0  

where 

P
o 

= R(0) 

By analogy, we can also write 

B
(1) = 8(1,1)11

o 

(3.44) 

(3.45) 

where P.B (1) can be taken as the Burg estimate of the first lag of the auto-
correlation function. If we substitute eqns. (3.23) and (3.19) for N=3 into 
eqn. (3.45) then we get 

x*(0)x(1) + x*(1)x(2) 	lx(0)1 2  + lx( 1 )1 2  + lx(2)1 2  
B
(1) 1 (lx(0)1 2  + 21x(1)1 2  + lx(2)1 2 ] 	 3 

(3.46) 

We can see that <RB (1)> depends on more than just <x*(0)x(1)> = <x*(1)x(2)> 
R(1); it depends on the joint probability distribution of (x(0),x(1)). 

Following the example [11], we let the data be real, and we let 

x(0)= u 	 (3.47a) 

x(1) = 	(u+v) 	 (3.47b) 
I/ 

and 	 x(2) = v 	 (3.47c) 

where u and v are independent, zero-mean, unit-variance random variables with 
Gaussian distribution. Then we have 

<x(0)x(1)> = <x(1)x(2)> = 	 (3.48a) 
I/ 

and 

<x(0)x(2)> = 0 	 (3.48h) 



<11B (1)›  
. 1 1 1 

6 2n 

( u 24.v2) Jof dudv exp 
(u+v) 2 (3u 2+2uv+3v2 )  (3.50a) 

2 2 / 	u2+uv+v2  
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By substituting eqns. (3.47a-c) into eqn. (3.46), we obtain 

11  (u+v) 2 (3u2+2uv+3v2 )  
RB (1) 

I/ 6 	u 2  + uv + v2  

so that 

(3.49) 

2n 

1 1 1 

6 2n 
dr r 3  exp(-r 2 /2) 	de 

(C-S)2(3C2+2CS+3S2)  — 
C 2+CS+S2  172-   

(3.50b) 

where we have changed to polar coordinates and let C = cos6 and S = sine. 
The integral over r in eqn. (3.50b) is equal to 2 and the integral over 6 is 
equal to 4n(2-1/1j) from [11]. Therefore 

<k(1)B> _ 1 12-2Ig 1 vI 9 	2  x 0.9484 

which is not equal to 

R(1) = <x(0)x(1)> = <x(1)x(2)> = 
I./ 

1 

(3.51) 

(3.52) 

Thus we see that the Burg estimate of the first lag of the autocorrela-
tion is biased; but, more important, we see that the bias is inherently 
dependent on both the specific statistical distribution describing the data 
and the spectral characteristics of the data as described by the true auto-
correlation function. It is this phenomenon that makes theoretical studies 
of the statistical behavior of the Burg algorithm extremely difficult. 

3 .5 ESTIMATING THE APPROPRIATE ORDER OF THE BURG SPECTRAL ESTIMATOR 

We saw in Section 2.7, in the discussion following eqn. (2.36), that 
the parameter QK  is the arithmetic difference between successive maximum-
entropy estimates of the autocorrelation functions and the given autocorrela-
tion data when such autocorrelation data are known and available. In parti-
cular ,  we saw that QK , the difference between the extrapolated value of the 
ei-l th ' autocorrelation sample and the actual value of the K+1 th  autocorrela-
tion sample, gOes to zero if the process generating the data can be perfectly 
modelled by a feedback network containing exactly K feedback loops, being 
excited by an input signal consisting of white noise. Thus, for this very 
special case, we have a perfect indicator for determining the correct order 
Of  PEF required to model the process. 

We also noted in Section 2.7 that a consequence of having QK=0 was that 
the K+1th reflection coefficient became zero, so that PK+1 = PK and the out- 



N+M 
FPE (M) = H — M{ i}  

(3.53) 
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put power of the PEF decreased no further as attempts to derive higher-order 
PEFs were made. This observation might lead us to attempt to use some similar 
criterion to determine the most appropriate order of PEF with which to model 
the signal-generating process. However, it is clear that, even if the signal-
generating process were truly autoregressive and of order M, in general the 

statistical fluctuations which normally occur in finite-length data records 
would be sufficient to prevent $(M+1,M+1), the (14+1)th Burg reflection 
coefficient, from vanishing. 

There have been three criteria proposed for estimating the appropriate 
order M of the Burg PEF used to make a spectral estimate from a given set of 
amplitude time-series data. We will not attempt a detailed derivation of any 

of them here, but simply reference their sources. 

The first, and most commonly used criterion, is known as Akaike's 
"final prediction error" (FPE) criterion [12], and is defined as 

where Hm  is defined by eqns. (3.41) and (3.42), N is the number of time-series 
data, and M is the order of PEF currently under consideration. The term M 
is replaced by (M+1) in both the numerator and the denominator if the mean 
has been estimated and subtracted from the data. Heuristically, we can note 
that Hm is a monotonically decreasing function of M, reflecting the fact that, 
in general, the more parameters we fit to the data, the better the fit 
achieved. Conversely, the factor in the braces is a monotonically increasing 
function of M, reflecting the fact that the more parameters fitted to the 
data, the less certain is the statistical reliability of each successively 
higher-order PEF. Statistical fluctuations can arise causing local minima 
in the FPE estimates from a given set of data; it is usual to choose that 
value for M which gives the global minimum for the FPE. The FPE was derived 
as a measure of the mean-square error to be expected when a PEF derived from 
one set of time-series data is applied to an independent set of time-series 
data obtained from the same (assumed stationary) source. 

A second criterion, also due to Akaike, is called "an informatioll-
theoretic criterion" (AIC) [13] and is given in Ref. [14] as 

AIC(M) = loge  Hm  + 2M/N 	 (3.54) 

Again the value of M corresponding to the global minimum of AIC(M) is to be 
chosen. The AIC is a measure of the negative of the log-likelihood ratio of 
the estimate Hm of the power of the white-noise excitation of the assumed-
autoregressive signal-generating process, expressed as a function of the 
order of the fitted PEF. The minimum AIC occurs on the average for the most 
likely to be appropriate value for M, the order of the assumed-autoregressive 
generating process. 

Parzen [15] has defined what he calls a "criterion autoregressive 
transfer function" (CAT) as a measure of the mean-square error between the 

"true" PEF of unknown, possible infinite length, and the estimated PEF. This 
can be done without explicit knowledge of the "true" PEF, and the CAT(M) is 

defined as 
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1 	N-m N-M 
CAT(M) ' Nil

m m=1 m 
(3.55) 

Again, the value of M corresponding to the global minimum of CAT(M) is to be 
chosen. 

These criteria are discussed more fully in Ref. [14]; in particular, 
simulation results are presented which indicate that for many applications, 
the simplest criterion, the FPE, is the most satisfactory. 

4. A BRIEF SUMMARY FOR OTHER TECHNIQUES FOR DETERMINING AUTOREGRESSIVE 
SPECTRAL ESTIMATES FROM TIME-SERIES DATA 

There are several other techniques for making autoregressive spectral 
estimates from time-series data, but none of them are equivalent to the 
maximum-entropy method in the same sense as the Burg algorithm. These other 
methods can be divided into two classes. One class is typified by the Yule-
Walker technique, wherein biased or unbiased estimates of the autocorrelation 
function are first made from the time-series data by means of eqn. (3.1), and 
then a PEF is estimated by solving the same form of matrix equation as is 
solved for the maximum-entropy PEF when the autocorrelation data are known 
exactly. The other class is typified as an unconstrained minimization 
procedure [16] wherein for each order of PEF, the output power is minimized 
with respect to all of the PEF coefficients simultaneously (except for the 
leading term). 

4.1 THE YULE-WALKER TECHNIQUE 

The Yule-Walker technique exacts one of two penalties in its use, 
depending on whether biased or unbiased estimates of the autocorrelation are 
used. If unbiased estimates are used, then loss of spectral resolution can 
be expected because of the windowing effect described in Section 1.3. If 
biased estimates are used, then it is possible that a PEF that does not have 
all its zeroes inside the unit circle (see Section 2.7) can be designed. In 
this case the extrapolated autocorrelation function derived using eqn. (2.45) 
would diverge rather than converge to zero as the lag tended to infinity. In 
terms of effects on the estimated spectrum, it is not clear if there are any 
that are significant. 

An apparent disadvantage of the Yule-Walker techniques is that they 
require prior computation of autocorrelation estimates before they are 
executed. Of course if there is an excess of data, it may be possible to 
compact the data by computing the autocorrelation cross-product sums of eqn. 
(3.1) as the data are being collected, so that the apparent disadvantage 
becomes in fact an advantage. It seems unlikely that this would ever be the 
situation in a radar application. - 
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4.2 THE UNCONSTRAINED MINIMIZATION TECHNIQUE 

As mentioned previously, the unconstrained minimization technique 
requires that for each order of PEF desired, the minimization procedure must 

be reapplied to the amplitude time-series data. This means that the 
recursive efficiency of the Burg algorithm is lost. The output power which is 
minimized can be either the forward-output power, where the filter is applied 

to the data in the forward direction, or the reverse output power, where the 
conjugate filter is applied in the reverse direction; or some combination of 
these powers, such as the average. It has been reported on the basis of 
simulation studies [16] that minimizing the average power appears to give more 

accurate spectral estimates, as opposed to minimizing either the forward or 
reverse power only. 

A major computational disadvantage of the unconstrained minimization 
techniques is that they require the inversion of KxK matrix, where K is the 
order of the PEF being estimated. The matrix has some symmetry properties 
which can be used to simplify the inversion process [17], but the matrix does 
not have Toeplitz symmetry so that the relatively straightforward Levinson 
recursion technique is not applicable. 

5. APPLICABILITY OF THE BURG ALGORITHM TO RADAR SIGNAL PROCESSING 

In the time-domain processing of radar-echo data there appear to be 
three potential applications for the Burg algorithm: clutter spectral 
estimation and classification, Doppler-shifted target detection and classifi-
cation, and inverse clutter-correlation matrix estimation. In the spatial-
domain processing of radar data from antenna arrays, there appears to be 
potential application for enhancing angular resolution somewhat beyond that 
given by conventional beamforming algorithms. As well, estimation of the 
inverse of the aperture-correlation matrix is possible. This last topic, which 
is relevant to sidelobe cancellation, is not discussed further here. 

In order to assess the feasibility and performance of the algorithm 
for these applications, the questions of complexity of implementation, 
statistical properties and biases must be considered. Since the first 
question is the most tractable, it will be examined first. 

5.1 COMPUTATIONAL COMPLEXITY OF THE BURG ALGORITHM 

5.1.1 Numbers of Arithmetic Operations Required to Compute the PEF 

From eqn. (3.35) it is apparent that when the (N-K+1) fK_1 (n)s and 
bK-1 (n)s are available, then (N-K) complex multiplications are required to 
compute the numerator of S(K,K) and 3(N-K) real additions and 4(N-K) real 
multiplications are required to compute the denominator. Since a complex 
multiplication comprises 2 real additions and 4 real multiplications, then 
we can see that it requires 5(N-K) real additions, 8(N-K)+1 real multiplica-
tions and 2 real divisions to evaluate eqn. (3.35) 
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For K>l, it is also necessary to evaluate eqns. (3.36) and (3.37), 
which each require (N-K) complex additions and (N-K) complex multiplications 
or 4(N-K) real additions and 4(N-K) real multiplications. Therefore, to 
compute the sequence of reflection coefficients B(K,K), K=1,2,...,M necessary 
to compute the Mth-order Burg PEF requires {N[13M-8]-M[13(M+1)/2-8]). real 
additions, {N[16M-2 ] -M[8M-1 ]}  real multiplications and 2M real divisions. 

In order to compute spectra from the sequence of M reflection coeffici-
ents, it is necessary to compute from them the Mth-order PEF by means of 
eqn. (2.42). It is straightforward to show that it requires 2M(M-1) each of 
real additions and real multiplications to compute this PEF. 

After the PEF has been evaluated, it is possible to obtain unscaled 
spectral estimates by arbitrarily setting Hel for K■M in eqn. (3.39). 
However, if it is required that the spectral power be accurately represented 
in the sense that 

0.5 

Pm (f)df
o 

(5.1) 

then it is necessary that Hm  be computed from Ho  at the cost of 2M real 
additions and 3M real multiplications. As well, an additional (2N-1) real 
additions, (2N+1) real multiplications and one real division are required to 
evaluate H 

0 * 

In total, then it requires at most [N(13M-6)-3M(3M-1)/2-1] real 
additions, [16NM-2M(3M-1)+1] real multiplications and (2M+1) real divisions 
to evaluate all the parameters required to specify the Mth-order Burg 
Spectral estimator. Some gains in efficiency can be realized by eliminating 
redundancies in computing the denominator of eqn. (3.35) [18]; taking these 
improvements into account reduces the numbers of computations to {[N(9M-2)- 
M(5M-17)/2]-101 real additions, [4N(3M+1)-M(4M-9)-8] real multiplications, 
and (2M+1) real divisions. In practice, it would turn out that many of these 
operations could be done in parallel. The numbers of operations required 

for representative values of N and M are given in Tables 5.1 and 5.2. 

5.1.2 Dynamic Range Considerations 

After the PEF of order M and the scale constant Hm have been evaluated, 
it is necessary to evaluate eqn. (3.39), which is a function of the continuous 
variable f, the normalized frequency. Since the spectrum is a true power 
Spectral  density estimate, it is possible for there to occur very high spikes 
of very narrow spectral width, corresponding to a large fraction of the total 
Signal power, whenever there is a highly coherent (e.g., sinusoidal) component 

present with high SNR in the data. This implies that if narrow-band signals 
are being sought, then "closely-spaced" evaluations of the power density 
estimate must be made if such spectral lines are not to be missed. 

If we again examine the denominator of eqn. (3.39) we note that it has 
the form of a discrete Fourier transform, and that peaks in the spectral 
estimate correspond to minima in this Fourier transform. Since we are most 

interested in the smallest values of this denominator, it appears that we 

may well be faced with a dynamic range problem in these regions. 



	

52 	125 	 256 	 - 	 - 	 - 

	

108 	253 	 528 	 1018 	 - 

	

220 	509 	1072 	 2138 	 4030 	 - 

	

444 	1021 	2160 	 4378 	 8574 	 16006 

	

892 	2045 	4336 	 8858 	 17662 	 34310 

	

1788 	4093 	8188 	 17818 	 35838 	 70918 

	

3580 	8189 	17392 	 35738 	 72190 	 144134 

1 2 

2 1 
N&IINNN  

4 	 8 	 16 	 32 

8 
16 
32 
64 

128 
256 
512 

TABLE 5.1 

Number of Real Additions Required to Derive an Mth-order Burg PEF from N Complex Data 

4 	 8 	 16 	 32 

TABLE 5.2 

Number of Real Multiplications Required to Derive an Mth-order Burg PEF from N Complex Data 
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125 	 218 	380 	 - 	 - 

	

253 	 442 	796 	 1408 	 - 

	

509 	 890 	1628 	 3008 	 5384 	 - 

	

1021 	 1786 	3292 	 6208 	 11656 	 21016 

	

2045 	3578 	6620 	 12608 	 24200 	 45848 

	

4093 	7172 	13276 	 25408 	49288 	 95512 

	

8189 	14330 	26588 	 51008 	99464 	 194840 

Estimates of the dynamic ranges encountered in the application of the 
Burg algorithm can be made by examining plots of spectra obtained from data 
known to contain signals of narrow bandwidth (e.g., [4,10,25]). It appears 
that dynamic ranges of 40 to 60 dB are common. Although there appear to 
have been no studies on the magnitudes of the signals internal to an 
implementation of the Burg algorithm, it is possible to speculate on their 
expected magnitudes. 

Whenever the input data are highly correlated, such as when narrow-
band clutter or strong target echoes are present, it is reasonable to expect 
that the magnitudes of the reflection coefficients will be close to unity 
and consequently that the magnitudes of the IIKs, fK (n)s and bK (n)s will also 
decrease fairly rapidly as a function of K. As well, for highly correlated 
inputs with intrinsically narrow spectra, it is to be expected tha the zeroes 
of the PEF which correspond to the narrow spectral lines will be close to the 
unit circle in the complex Z-plane. Such zeroes produce very small minima in 
the denominator of eqn. (2.39). 

8 
16 
32 
64 

128 
256 
512 
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Thus it seems that there are potential dynamic range problems inherent 
in the evaluation of all of eqns. (3.35), (3.36), (3.37) and (3.39). Although 
further investigations are required in order to clarify this issue, it appears 
that, for fixed-point implementations, word lengths greater than those 
required for satisfactory operation of conventional finite-length impulse-
response (FIR) or DFT Doppler processors may be required, and that the use of 
floating-point hardware, perhaps with word-lengths comparable to those found 
in large-scale computers (e.g., 32 to 38 bits) might be necessary. 

5.2 STATISTICAL PROPERTIES OF THE BURG ALGORITHM 

5.2.1 Stability and Variability 

Because of its nonlinear formulation, direct investigation of the 
statistical properties of the Burg algorithm is extremely difficult. For 
this reason theoretical studies are usually confined to consideration of the 
effects of random errors in estimates of the sampled autocorrelation function 
when spectra are estimated using the methodology of Section 2 [2,19]. 

Authors who claim superiority of resolution for maximum-entropy methods 
over the classical Fourier methods in the analysis of time-series amplitude 
data usually do so on the basis of comparing the effective number of auto-
correlation samples (i.e., the order of the PEF plus one) required to success-
fully estimate the spectrum of the process under investigation, as compared 
with the number of autocorrelation samples required by the classical Fourier 
methods to achieve similar performance (e.g., [2,3,19,20,21]). However, with 
the exception of References [3] and [21], the number of raw data contributing 
to the spectral estimates being presented as reliable is very much larger 
than the orders of the PEFs derived from them. 

A typical example is the paper by Moorcroft [20] which considers the 
Doppler spectra of radar echoes from radio aurora. Due to its design, the 
radar system produced data in the form of three contiguous but mutually 

incoherent blocks of 27 time-series samples each. A modified version of the 
Burg algorithm, which took into account the lack of coherence between the 
three data blocks,  was used to estimate seventh-order PEFs from sets of 81 
data. It was found that, on the average, where typical averages were taken 
over 25 to 150 spectral estimates, the performance of this modified Burg 
algorithm was indeed superior to that of classical Fourier spectral estimates 
averaged in the same manner. This was due to two factors. The first was the 
systematic limitation on the length of the sets of data which could be 

processed coherently (i.e., Fourier transformed), which limited the inherent 
resolution of the Fourier spectra. The second was the fact that apparently 
the physical process generating the Doppler spectra could be adequately 

modelled by an all-pole whitening-filter model, as discussed in Section 1.4. 
However, it must be noted that the total number of raw data contributing to 
a single averaged spectrum could hardly be considered as limited, and the 
author demonstrated that valid spectral estimates could be derived only by 

averaging. 

Similar studies have also been undertaken using computer-simulated 

clutter data [3,4] and limited real data [3] which indicate that reliable 
clutter spectral estimates may perhaps be derived using record lengths as 
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short as 16 data and averaging over about 10 independent sets of data (e.g., 
successive scans of a surveillance radar) obtained from a single radar 
resolution cell. 

Doppler signature analyses of jet-engined aircraft have been made from 
the processing single blocks of real (i.e., single-channel as opposed to 
quadrature-detected) data of length N=64 [22]. These results were obtained 
using an experimental short-range highly stable scanning radar, and the data 
analyzed were from a range cell known to contain a target. 

5.2.2 Statistical Distribution of Burg Spectral Estimates [4] 

The only work currently (May 1979) known to this author concerning 
estimates of the statistical distribution of Burg spectral estimates is that 
of Chan and Haykin [4]. These investigators have performed extensive 
computer simulation studies of the response of the Burg algorithm to input 
data consisting of computer-generated white random noise of various 
statistical distributions, colored random noise (to simulate radar clutter 
data) derived by filtering white gaussian noise data, and white gaussian 
noise plus a D.C. line (corresponding to very narrow stationary clutter), in 
the presence and absence of sinusoidal signals of fixed frequencies and powers 
(corresponding to non-fluctuating Doppler-shifted targets). The salient 
observations and conclusions are summarized below; copies of the complete 
report are available from its authors. 

5.2.2.1 Statistical Distribution of Power Spectral Estimates for Noise 
and Clutter Data 

Experiments consisting of examining the statistical distributions of 
the estimated power spectral density at various Doppler frequencies for 
different realizations of input noise data (white or colored) were made. It 
was found in general that, for white gaussian noise, regardless of the order 
of the PEF derived or the number of data analyzed, the estimated values of 
the spectral density at any given frequency were log-normally distributed; 
i.e., the logarithms of the spectral density estimates at any given Doppler 
frequency had a gaussian or normal distribution. Such a distribution has a 
long "tail", so that if use of the Burg algorithm as a detector is comtem-
plated, then detection thresholds must be set very high in order to achieve 
low probability of false alarm (PrA ) • The fact that such a probability 
distribution function describes the processor output statistics also implies 
that large dynamic range capability within the processor digital hardware may 
be required. 

For white gaussian noise inputs, it was found that the mean power 
spectral density level increased as N, the number of data, was increased, and 
decreased as M, the order of the derived PEF, was increased. Also it was 
found that the variance of the power spectral density decreased as N was 
increased, and increased as M was increased. 

Reference to eqns. (3.23) or (3.35), and (3.41) suggests these results 
are intuitively reasonable. If successive data samples are uncorrelated, 
and have zero mean, then the expected value for S(K,K) is zero, and 
<4(K,K)1 2> and <IS(K,K)1 4 > ought to vary roughly as N-2  and N-4  respectively. 
Examination of eqns. (3.36) and (3.37) shows that the fK (n)s and the bK(n)s 
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ought also to be gaussian white noise. Then consideration of eqns. (3.39) 
and (3.41) suggests that, since the expected values of the PEF coefficients 
are zero for white noise input, the fluctuations in the mean power level and 
the variance of spectra are due principally to fluctuations in the means and 
variances of the IlKs, which in turn are related directly to the means and 
variances of the 18(K,K)I 2s. This discussion therefore implies that, as 
usual, better reliability is achieved as the number of data processed is 
increased. 

For colored noise inputs, the statistical properties of the Burg 
algorithm became more highly variable. It was found that at frequencies 
where the slope of the noise spectrum was significant, the tails of the 
observed statistical distributions of the estimated power spectral densities 
were consistently longer than those of the corresponding log-normal distribu-
tions which had the same means and variances as the observed distributions. 
This again suggests the necessity of very high threshold settings for accept-
able PFA, and the requirement for large dynamic range in the implementation 
of the reflection-coefficient estimator. Only in the case of observations 
made at a Doppler frequency where the slope of the colored noise spectrum 
was zero did a log-normal distribution adequately describe the observed 
statistics of the output power spectral densities. 

5.2.2.2 Doppler Detection Characteristics of the Burg Algorithm 

The characteristics of the Burg algorithm as a Doppler target detector 
for detecting non-fluctuating targets in the presence of interference in the 
form of low-level white noise (corresponding to receiver noise) plus low-pass 
colored noise or a DC line (corresponding to clutter) were also investigated 
by means of simulation studies in Ref. [4]. The performance of the Burg 
algorithm was compared to that of 8-point and 16-point DFTs preceded by a 
two-pulse canceller. The detection threshold was set for a PFA  of 10-b (as 
determined by extrapolation of the no-target simulation results), and a 
probability of detection PD  of 0.9 was chosen. 

It was found that, for the case of the DC line-clutter model only, the 
performance of the Burg algorithm was superior to that of the canceller-DFT 
processor operating on the same data for Doppler frequencies in the range of 
about ±0.125 of the radar PRF. 

It was suggested [4] on this basis that perhaps the Burg algorithm 
could provide some benefit for improved Doppler detection in the region of 
very narrow-bandwidth clutter, but the validity of the conjecture remains to 
be demonstrated for clutter with small but finite bandwidths. 

5.3 INVERSE CLUTTER-CORRELATION MATRIX ESTIMATION AND ADAPTIVE FILTERING 

An interesting potential application for the Burg algorithm has 
recently been proposed in Ref. [23]. It is suggested there that the Burg 
algorithm be used to estimate a set of reflection coefficients based on data 
containing clutter returns only, and that these reflection coefficients then 
be used to compute an estimate of the inverse of the extrapolated clutter 
correlation matrix. This inverse matrix is used to generate a set of adaptive 
weights w for use in a maximum-likelihood Doppler filter bank, according to 
the well=known result 



40 

w  = [â]  -1 u  (5.2) 

exp[pr(N-1)fAt]} (5 .3) 

-  where here [R] -1  is the estimated inverse clutter-correlation matrix and u is — 
a frequency-steering vector 

u+ 	1 exp[-jr(N-1)f1t],exp[-jn(N-3)fàt],..., 

As before, the superscript + denotes conjugate transposition, and N is the 
length of the data set and the dimension of the inverse extrapolated matrix. 

A technique is also described for updating the estimated inverse matrix. 
The reflection coefficient estimates are updated on a data-set by data-set 
basis, using decaying-memory digital integration, and periodically a new 
estimate of the inverse matrix is made. (This averaging technique differs 
from that described in Section 5.2.1: there the numerator and denominator 
terms of eqn. (3.35) are averaged before the quotient is computed; here it is 
the quotients that are averaged.) 

The results obtained using simulated clutter data appear encouraging. 
However, it remains to demonstrate the effectiveness of the technique using 
actual radar data. Also, schemes for avoiding the inadvertent suppression 
of wanted targets must be considered. 

5.4 ANGULAR SPECTRUM ESTIMATION 

It is well known that the angle of arrival of signals having a known 
carrier frequency and incident on a linear antenna array can be described by 
an angular spectrum analogous to the frequency spectrum describing time-domain 
signals. However, caution must be exercised in pursuing this analogy, for 
the characteristics of the time and spatially sampled signals can be quite 
different. For example, multiple "glints" from a moving radar target (e.g., 
an aircraft) as observed across an antenna aperture correspond at any instant 
in time to a set of very narrow angular spectral lines with very small angular 
separation, whereas the Doppler spectrum from such a glinting target will be 
much more complicated, due to quasi-random amplitude fading imposed on the 
echoes by the continually varying angular orientation of the moving target. 
Furthermore, there exists the potential for short-term time averaging in the 
analysis of angular spectra, the analog of which (spatial diversity) is 
often not available for the analysis of Doppler spectra. 

Unlike the case of sonar and seismic data processing, relatively little 
work has been published concerning the angular spectral analysis of radar-
like signals using maximum-entropy techniques. In fact, only three signifi-
cant and relevant papers [24,25,26] on this topic have come to the attention 
of this reviewer. 

King [24] has performed an interesting set of simulation studies which 
show both the beneficial effects of averaging angular spectra and also the 
occurrence of "line splitting", the troublesome phenomenon which can occur 
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when the Burg algorithm is applied to signals containing multiple sinusoidal 
signals at high SNR [27]. 

On the experimental side, an attempt has been made to apply the Burg 
algorithm to the measurement of the elevation angles of arrival of multi-
component H.F. (3-30 MHz) skywaves [25] observed using a vertical antenna 
array comprised of eight horizontal loop elements. HF skywave signals are 
almost invariably afflicted with ionospherically-caused multipath components, 
and are additionally complicated by reflections from a non-uniform ground-
plane in the near field of the antenna. While the Burg algorithm was success-
fully applied to simulated data modelled after a theoretical description of 
the expected data, the experimental data proved too much for it, although 
more conventional Fourier processing appeared to cope successfully. 

However, there exists one report [25] of experimentally successful 
angular spectrum estimation at 1.257 GHz using a 12-element vertical sampled-
aperture array to receive CW signals from an airborne beacon at a range of 
0.4 mi (0.6 km). Clearly the SNR of such a signal would be high. Also, the 
direct and ground-reflected signals were separated in angle by more than the 
classical beamwidth of the array. 

The fourth-order (M=4) Burg spectral estimate was compared to the 
classical Fourier transform angular spectrum and to a maximum-likelihood 
spectral estimate. The Burg spectrum was the easiest to interpret, consisting 
simply of two spikes corresponding to the direct and reflected signals. How-
ever, although it was not pointed out in the report, the peak of the Fourier 
transform spectrum corresponded more closely to the geometrically expected 
angle of arrival than did the Burg estimate. Perhaps this was another 
manifestation of the line-splitting and closely related line-pulling 
phenomenon which is sometimes encountered in high SNR situations. 

6. SUMMARY AND PROGNOISIS 

This report has had two main purposes. The first was to present the 

foundations and mathematical development of the maximum-entropy (Section 2) 
and Burg (Section 3) algorithms for autoregressive spectral analysis in a 
clear and relatively complete manner. Emphasis was on clarity of presenta-

tion, in order to remove the apparent shroud of mystery which often seems to 

surround these topics. For completeness, Fourier transform techniques were 
briefly discussed in Section 1.3 and other techniques were discussed 
Section 1.4 and Section 4. ' 

The report's second purpose was to describe and discuss areas of 

potential application of the Burg algorithm to radar signal processing. It 

appears that there are two areas of promise: clutter analysis, classifica-
tion and/or suppression; and angular spectrum (angle-of-arrival) estimation. 

Preliminary results concerning the direct application of the Burg spectral 

estimate (eqn. (3.39)) as a target detector are pessimistic: it appears that 
a white noise input signal with gaussian statistics gives rise to outputs 
with log-normal statistics in the spectral domain. 
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6.1 CLUTTER PROCESSING 

It appears for example, that if sufficient data are available from a 
scanning surveillance radar, e.g., 10 scans of a resolution cell with 8-20 
hits per scan, then the modified [20] Burg algorithm (see Section 5.2.1) can 
be used to obtain a single prediction-error filter (PEF) which out to 
reliably represent the clutter spectrum from the particular cell under 
observation. The PEF can then be used to form a spectral estimate which 
characterizes, and thus can be used to classify, the observed clutter (e.g., 
ground, weather, birds). Also, the PEF can be used in a conventional digital 
transversal or finite-duration impulse-response (FIR) MTI whitening filter 
which would be updated on a regular basis and thus be adapted to suppress the 
observed clutter spectrum, or to adaptively design a maximum-likelihood 
Doppler filter bank [23] for the optimum detection of moving targets. 

However, the computational complexity of the algorithm, as discussed in 
Section 5.1 et seq., indicates that clutter estimation could likely be done 
on selected cells only, so that some sort of area clutter mapping procedure 
would be required to decide what cells to process, and over what adjacent 
coverage areas the results could be validly extrapolated. This, the avoidance 
of suppressing wanted targets, and the selection of the appropriate order of 
the PEF are but three aspects of this area of application which require 
further, experimental study. 

6.2 ANGULAR SPECTRUM (ANGLE-OF-ARRIVAL) ANALYSIS 

Although the Burg algorithm as described here is applicable only to 
single-channel equi-spaced sampled data as would be obtained from a linear 
sampled-aperture array, it appears that the application of the algorithm to 
such data warrants further investigation. In particular, the option of 
appropriately time-averaging individual "frames" of array data may mean that 
good statistical reliability may be obtainable in relatively short time 
intervals. However, it is not clear at present whether or in what context 
sufficient benefits could be gained to warrant the complexity of processing 
required to implement the algorithm. 
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