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A UNIFIED FORMULATION OF SYNTHETIC-APERTURE RADAR THEORY 

by 

E.B. Felstead 

ABSTRACT 

A theory of synthetic-aperture radar (SAR) is 
formulated for the case where the radar antenna 
is pointed along or close to the normal to the 
track of the satellite or aircraft carrying the 
radar. All the common signal defects are 
presented and incorporated into a unified 
mathematical description of the recorded input 
signal. From this description, the two-dimensional 
Fourier transform and the output image function 
are derived. Signal defects arising from range 
curvature, rotation of the earth, earth curvature, 
and antenna pointing error are included in the 
formulation. A method of correcting for the effects 
of range curvature by use of a frequency-plane 
filter is recommended. The direct effects of 
cross-track motion caused by the earth's rotation 
are eliminated by proper choice of the coordinate 
system. Simple methods of handling other aberra-
tions are presented. Further topics covered are 
ambiguities, the spread of range and latitude over 
which a single reference function may be used, 
incoherent integration for reduction of radar 
speckle, object motion, and antenna motion errors. 

1. INTRODUCTION 

Synthetic-aperture radar (SAR) has been extensively studied [l]-[4] 
and much excellent imagery produced. Under certain conditions the return 
signal contains aberrations.that cause problems in the production of high 
quality imagery. These conditions arise especially on satellite-borne SAR. 
There has been a tendency to consider each problem individually, in isolation 
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from other factors. Although such an approach is handy for quick approxima-
tions, it can lead to inaccuracies and misinterpretations. In this paper all 
the common signal defects are presented and incorporated into a unified 
mathematical description of the recorded input signal. From this input signal, 
the Fourier transform and the image plane function are derived. These three 
functions form the mathematical basis for devising signal processing concepts. 

Although the discussion in this paper concentrates on satellite-borne 
SAR, the results can be easily simplified to apply to airborne SAR. The 
formulation is presented in a form appropriate for optical processing. 
However, it would be relatively simple to reformulate into a form appropriate 
for digital processing. Also, the theory deals only with the SAR antenna 
pointing normal or near normal to the direction of travel (sidelooking). A 
theory for antennas pointed at large angles from the normal (squinted) 
has been developed elsewhere [5]. 

There are four aberrations of the received signal considered here. The 
first [6], sometimes called "range curvature" [7], arises from the fact that 
the distance between the SAR and a point object varies quadratically with 
time. A second class of aberrations arises from motion of the object or 
motion errors of the SAR. The earth's rotation [8] is one example of such 
motion. The third aberration is caused by the combined effect of pitch of 
the antenna about a horizontal axis and yaw about a vertical axis. These 
motions point the antenna either ahead of or behind the perpendicular to the 
flight path. Although pitch and yaw alone do not cause much problem, their 
effect becomes more serious in the presence of range curvature and motion 
errors. The fourth aberration arises from the curvature of the flight path 
and of the earth's surface. Leith [6] has formulated a theory of SAR opera-
tion taking range curvature into account. Here, the formulation is extended 
to include the other aberrations. 

In Section 2, a coordinate system is introduced that eliminates 
problems caused both by the earth's rotation and by curvature of the earth 
and of the flight path. In Section 3, the form of the received SAR signal 
is given and the equations describing the recorded signal in its two-dimen-
sional format derived. The three forms of modulation of the recorded signal 
and their implementations are discussed. The two-dimensional Fourier trans- 
form of this signal is derived in Section 4. A discussion on image formation 
in Section 5 includes a description of the basic correlation process required 
to produce the image, a description of image characteristics, and a discussion 
of methods of correction for the aberrations. In Section 6, the problem of 
ambiguities arising from the pulsed (sampled) nature of the radar is treated. 
The intervals of range or latitude over which a single reference function 
adequately matches the signal are specified in Section 7. Incoherent 
averaging to reduce radar speckle is discussed in Section 8. The effects of 
both object motion and SAR antenna motion errors are considered in Section 9. 
Neither the effects of the ionosphere [8],[9] nor the problem of imaging 
ocean waves [10] are examined here. These problems are as yet unsolved and 
required further work. 
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2. SAR GEOMETRY 

The instantaneous distance r between the SAR antenna and the object 
being imaged is important in deriving the equation for the SAR signal. In 
this section, a coordinate system suitable for satellite-borne SAR is 
presented. The value of r is then derived in terms of these coordinates. 

A spacecraft carries the radar along some orbit such as shown in Figure 

1(a). If its altitude hs  is approximately constant for at least a synthetic-
aperture length, then the centre of the orbit and the centre of the surface 
curvature approximately coincide at O. (For non-coincident centres, the 

following theory needs only minor modifications.) The radius of the earth's 

surface is re  and that of the orbit is re+hs . The nadir of the satellite 
moves along the curved azimuth coordinate x which is fixed to the earth's 
surface. The satellite-1as a coordinate position cax along the orbit where 
the constant 

ca 
= (r+h)/r = 1 + h/r 

e s 	e 	 s e
. 

At some instant of time t=t o  the satellite is at Co  and its nadir is at Bo . 

Consider a single point reflector on the earth's surface located at Ao , such 

that the plane A0B0C0 is perpendicular to the x coordinate at Bo . The 

azimuthal position of Ao  is the same as that of Bo , i.e., x=x0 . The second 

coordinate of Ao  is the slant range ro , the distance between Ao  and Co . The 
ground range do , the distance along the curved surface between Ao  and Bo , is 
given by do  = re el., where O r  = /A0000 . If the small-angle approximation 
coser  = 1 - OP2 is made in 

r 2  = (re+hs
) 2  + r2  - 2(re+hs)re 

cose r , 	 (2) 

then the ground range may be expressed in terms of slant range as 

do 	
c Vrz-h z 	 (3) r o s 

which is simply a right-angled triangle relation scaled by a magnification 
factor 

cr 
= 1b/1 + hs/re = 1/VF. 	

(4) 
a 

The spacecraft's orbital velocity usually is given as the velocity 
vector V measured with respect to inertial space. As shown in Figure 2, V 
makes an angle cP s  to the local meridian. Because of earth rotation, the 
surface has a velocity vector y„ relative to inertial space. The spacecraft's 
velocity,vector V along the x axis (see Figure 1(a)) is the velocity relative 
to the earth's surface. This velocity is calculated from V and V 

As illustrated in Figure 1(b), the velocity V/ca  of the nadir point Bo 
 along the surface is the vector sum of -V and the velocity V /ca . Velocity 

has components V 10  parallel and 2.T...en  normal to the vector Es /ca . From 
Appendix A, the magnitudes of the components are 

(1) 
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Figure 1. Coordinates, dimensions and velocities used in the formulation of the problem where (a) is a 
perspective drawing, and (b) shows the plane of the surface at point Be  

Figure 2. Angles for defining orbit 
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(5a) 

(5b) 

(7)  

(8) 

Vep 
= w

e
r
e 

cose 

and 

V
en 

= wr sine  cos 
ee 	i 

cP
o 

where ei is the angle of inclination of the orbit, we  is the angular velocity 
of the earth about the N-S axis in radians per unit time, and 4) 0  is the angle 
of the spacecraft measured from the equator in the orbital plane (see Figure 
2). The sign of Vep  in (5) is valid for the satellite ascending or descend-
ing. The magnitude of V/ca  is 

V/ca = [V 2n  + (v
sp

/c
a

) 2 ] 15 	 (6) 
e 

and the angle Oye  between Is /ca  and V/ca  is 

-1 
V
en 

6
ye 

= tan 7-7F sp a 

where 

V =V -cV -sp -s 	a-ep 

is the component of V parallel to V . The sign of Vep , as determined by 
(5b), must be maintained in (8). Since Ven  is independent of latitude, and 
if ca  and Vs  are constant, the magnitude ot the component 2.." is constant. 
The velocity Ven  of the surface normal to the orbit, is latitude dependent. 
It is this component of earth rotation that gives rise to certain processing 
problems. It will be assumed that Ven  is constant over a single synthetic-
aperture length. 

The SAR moves along the orbit with velocity V to another position Ci 
at time t=ti. Correspondingly, the nadir moves  with  a velocity V/ca  along 
the surface to position Bi on the x coordinate. The distance r between the 
new position C i  of the antenna and the object at Ao  on the surface must now 
be determined. For the triangle A00C1  

r2  = r 2  + (re
+hs

) 2  - 2re (re+hs
)cos6. 

From the rules of spherical trigonometry for the right spherical triangle 
BoAoB i shown in Figure 1(a), 

cose = cosecose a 	r 

where 6 = /A00Bi  and e a  = /C00C i . If we solve for cose r  in (2) and note that 
6a = (x-x0)f-re fhen r becomes 

+ (r +h '2. + 	2 r r  _ 
e 	' e s' 	.. 0 	

x—x 	Il 

r = r2  (r e+hs ) 2  - r2 ) cos -22- 	 . 
e 	re 	

(11) 

(9) 

(10) 
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An expansion in a Taylor series about x=x0  gives 

) (x-x).2 	r2_h2 
0 	El r = ro +  	2r2 2ro  

Terms in (x-xn) 4  and higher are, in all practical cases, negligible and are 
omitted in (12). Usually ca  >>  (rg-hâ)/2r so that the term  (rg-h)/2r may 
also be omitted. For straight flight over a flat earth, r e  = 0. and c = 1, 
so that the expression in (12) reduces to that often given for airborfle SAR 
[1]-[3]. Range r may also be expressed as a function of time since azimuthal 
distance is related to time by 

x-x
o 
= (V/ca)(t-t)  . 

3. FORM OF SAR SIGNAL 

As the SAR moves along its orbit, a series of pulses are transmitted. 
The nth pulse has the form f(t-n/fp )exp(j2rf ct) + c.c. where the pulse wave-
form f(t) = a(t)exp[ja(t)] is a complex modulation of the coherent carrier 
wave of frequency f c , c.c. denotes the complex conjugate of the previous 
expression, and fp  is the PRF. This signal is coherent from pulse-to-pulse. 
The signal returned from a point object at Ao  is 

u(t) = af(t - 2r/c - n/f )exp[j2rf c
(t - 2r/c)] + c.c. 	 (14) 

where c is the velocity of the radar wave and a is a complex amplitude propor-
tional to the object's reflectivity. Recall that r can be expressed as a 
function of time. Signal (14) is synchronously demodulated to become 

ud (t) = af(t - 2r/c - n/f )exp(-j4nr/X r
)exp(j2rfo t) + c.c. 	(15) 

where fo  is an offset frequency and ir  = c/fc  is the radar wavelength. The 
demodulation is discussed further in Appendix B. 

The signal ud(t) is a one-dimensional function of time. The purpose of 
the factor exp(j2rf 0t) will be seen later. The factor f(t - 2r/c - n/f p ) 
will be seen to lead to an image in the range dimension and the factor 
exp(-j4rr/X r) to an image in the azimuth dimension. In order to produce the 
required two-dimensional image, it is necessary to separate these two factors 
in some manner. The separation is based on the fact that the range function 
is very rapidly varying in time compared to the azimuth function. This 
difference arises because the range signal is associated with the velocity c 
whereas the azimuth function is associated with the velocity V. To set up 
the separation, the signal arising from successive transmitted pulses are 
usually recorded along corresponding successive lines. The range function 
is recorded along the lines. The azimuth function varies negligibly along 
one line; its variation appears as a modulation across the lines. 

(13) 
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(18) 
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For this discussion it is assumed that the signal is to be recorded on 
photographic film [1] where the distance xf along the film represents the 
azimuth dimension and distance rf  across the film represents the range dimen-
sion. For each transmitted pulse a recording beam sweeps out a line across 
the film at a velocity vc  in the rf direction. The film is moving at a 
velocity vf in the xf direction. Therefore, distance on the film is related 
to time by 

t = xf /vf + r f /vc . 

Because of the sampling in azimuth at the PRF, the signal will be recorded 
only along the lines xf /vf = n/fp . Thus, the range function in (15) becomes 

f(rf/vc - 2r/e) = f 	(r - rig] c 	f 

where the scaling constant, 

q  = 2vc  

is the range demagnification factor. If the azimuth function is adequately 
sampled, it is valid, for the purposes of the following discussion, to replace 
the sampled azimuth variable n/fm  by the continuous variable xf/vf. (The 
effects of sampling are consideréd later.) Since x = (V/ca)t and xf  = vft, 
range (12) may be written in terms of xf as 

ap 
-r 

2 
. 
2ro 	

\ r = r 	(xf - x
/

o ip,
2 	 (19) 

o  

(16) 

where the scaling constant 

V/ca  

P="77 (20) 

is the azimuth demagnification factor. 

The signal in (15) is limited by the region of ground illuminated by 
the antenna. The region illuminated depends on the antenna beamwidth and 
pointing direction. In azimuth, let the two-way antenna pattern in amplitude 
be h[(x-x0  + x5 )/L]. It is given here as a function of distance along the 
ground where xs  is the shift of the beam centre from the perpendicular to 
track. The effective synthetic-aperture length is 

and B  is the effective angular beamwidth, in azimuth, of the two-way amplitude 
antenna pattern. An angular pointing error O s  measured in the slant plane 
from the line C0A0  may be associated with xs , where O s  = tan-1 (xs /r0 ). In 
this paper it is assumed that the antenna shift xs  is sufficiently small that, 



co x 
SPACECRAFT 	 SPACECRAFT 
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when inserted into (11), it causes little error in the Taylor series expans-
ion. An angular pointing error O s  of about 10 0  to 20 °  is probably tolerable. 
For larger pointing errors the antenna is said to be squinted. An expansion 
about the offset angle O s  is then necessary for an accurate representation [5]. 

The shift xs  is composed of several components. First, pitch  O, and 
yaw 0y9 of the antenna causes angular pointing-errors of O ss  and 6 , ys 
respectively, in the slant plane as illustrated in Figure 3. If pitch and 
yaw are relatively small then 

h 

ps 	ro p' 

)/r 2-h2 o s  
0 
ys 	

. r
o 	Y 

and 

(22a) 

(22b) 

The corresponding components of shift xs  are 

x = r tane 	= hsp' 	
(23a) 

o ps 	 ps 

and 

x (r ) = - r tan() 	= - v77-7-7 0 . ys 0 	 0 	ys 	0 s y 
(23b) 

The signs of O p  and 6 in Figure 3 are considered positive. If the antenna Y were looking to the left, then xys  = + rotan0 . ys 

Figure 3. Diagrams defining (a) pitch and (b) yaw angle of the centre of the beam 



(24) 

(25 
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Another component of xs  arises if the antenna is pointed perpendicular 
to the inertial-space orbital-velocity vector ye  rather than to the velocity 
vector V which is measured relative to the surface. Then the antenna would 
have an—equivalent yaw angle eye , which is the angle centred on the satellite 
between V and V shown in Figure 1(a) and is also the angle centred on Bo 

 between ya/cs  and V/ca  shown in Figure 1(b). The eve  shown in Figure 1(b) is 
positive. The aloTig-track offset due to the equivalent yaw is 

o s  xyes (ro) = ro 
tan 	 6 

ro 	Ye] • 

For 6
ye 

small, the substitution of (7) into (24) leads to 

Ven 	
- d

o
V
en 

yes o 
x(r) = - 17.7:7F7 s 	777-77 sp a 	r sp a 

which is range and latitude dependent. If the antenna points to the left of 
track, a left-handed coordinate system may be used. Then the sign of xyes  
in (24) and (25) is reversed. Note that through the use of a coordinate 
frame fixed to the surface, the only effect of earth rotation is an equiva-
lent yaw of the antenna resulting in an offset of the antenna pattern. As 
will be discussed in Subsection 5.4, even this effect may be eliminated by 
steering the antenna to be perpendicular to V (i.e., to point along zero-
doppler frequency). 

The SAR antenna can have a vertical velocity-component 1.v . If Vv  is 
relatively small'and slowly varying, its effect is approximately equivalent 
to that of pitch. Since the antenna velocity is V + Vv  whereas the antenna 
is nominally perpendicular to V, the equivalent pItch angle is ev  = tan-1 (Vv/V). 
Thus, the component of xs  caused by vertical velocity is 

x = hs tan
-1 (Vv/V). 	 (26) 

vs 

An exact analysis of the effects of vertical velocity is given in Section 9. 
The total azimuth shift of the beam centre is 

x (r ) = x +x  (r ) + x(r) + x 
ps 	 yes o s o 	 ys o 	 vs 

In the range dimension, the beamwidth and the pointing direction of the 
antenna limit the width and position of the ground swath illuminated. The 
effect carÉ be described as a weighting of the signal (15) by the weighting 
function hr (t - 2rc /c - n/fP  ) 9  related to the antenna pattern in range, where re  is the slant range of the beam centre. Antenna roll causes ro  to vary. 
The effect of roll is to shift the ground swath that can be imaged. Roll has 
no other effect on the image. For simplicity the weighting function hr  is 
omitted in the following. 

The complete recorded signal is thus, 

(27) 



2 

-3 — r 	‘x - xo/p) 2 	j2nf 
x 	r 4n 	, aP  , 	 f 	f 

r o 2ro 	f o vf vc r 	o 	zro • r 	o f vc 

+ 	C.C. (28) 

(Ef  

x o  -x  s  (r o ) 

x f  la 
 Ef q 

_ ro 	cap 2 

c 	.." .-1(7-Fo: (Xf ''' X o
/p) 

10  

L/p
P  g(xf ,rf) = ah L/p 

The exponential factor containing fo  is a spatial carrier wave. Its 
purpose is to aid in the separation of the spectrum of the c.c term in (28) 
from that of the rest of the expression. If fo  is small then, because 
vo  >> vf , the carrier is approximately exp[j2n(f o/vf )xf], which corresponds 
to an offset in azimuthal frequency. The spatial-frequency offset in azimuth, 

fox = fo/vf, is selected to be larger than half the bandwidth-in-azimuth of 
g(xf,rf). To obtain a frequency offset in range, the offset f fl  must be an 
exact integer-multiple of the PRF or else a serious error modulation will 
occur. Thus, if fo  = Nfp , the carrier is exp[j2nNn]exp[j2n(f o/vc)rf] = 
exp[j2n(fo/vc)rf], the desired offset-in-range carrier. The spatial-frequency 
offset in range, for " foil/  9 is selected to be larger than half the bandwidth-
in-range of f(xf,rf ). For digital  processing it is usually preferred to work 
at baseband where ro  =  O. Then it is necessary to have both an in-phase and 
a quadrature form of (28) available. An outline of how the three forms are 
obtained electronically is given in Appendix B. The form of offset does not 
affect the general theory. Therefore the offset term in (28) will henceforth 
be omitted. Furthermore, it will be assumed that, with the aid of offsets or 
In-phase and quadrature processing, the c.c. term can be separated out and it 
will also be omitted. 

2 
In the first exponential factor of (28), the component in xf is the 

azimuth-focussing function, and 4nro/Àr  is a constant phase. The focussing 
term is modified by c a . In the function f(xf,rf), the component in 4 is a 
quadratic displacement in the rf direction. This displacement is known as 
range curvature. It is often negligible for low altitude SAR's [1]. The 
quadratic shape of the envelope of function f is illustrated in Figure 4. 
The quadratic curve is centred on  (x0/p, ro/q). The range width R2/2q will 
be discussed in Subsection 5.2. As indicated by the cross-hatched area of 
Figure 4, the antenna pattern h and the function f select the section of the 
complex function that is used. 



ro a 

ro 
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X0—X8 	 X0 
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--1■ Xf 

Figure 4. Outline of the envelope of the function f(xerf) limited by  h(x1) as given in (28). 

4. THE FOURIER TRANSFORM OF THE INPUT SIGNAL 

In many processing methods, frequency plane operations are used. The 

two-dimensional Fourier transform of g(xf ,rf) in (28) is shown in Appendix C 
to be 

cf r) 	 h  -j2nfrro/q (fx  - 2capxs (r0)/(Xrro )) 
G(f ,f ) = c2

a F 	e 
x r 	 Zq 	 - 2c

a
p8/X

r  

jnr qf 2  
o x  

ca
p 2 (fr

+2q/X
r 	

-j2nf x /p 
x o 

x e 

where fx  is the azimuth spatial frequency and fr  the range spatial  frequency, 
F(fr ) is the Fourier transform of f(rf), and c2 = c[ir0 Xr/(2cap2)/(2q)] 

exp(jn/4) exp(-j4nrchr ), a complex constant. If suitably processed, the 
F exp(-j2nfrr0/q) factors in (29) result in a compressed range signal 
located at r2 = ro/q, the desired result, where r2  is the range dimension in 
the output plane. The second exponential in (29) contains the desired 
azimuth focussing function but is aberrated owing to range curvature 
represented by fr  in the denominator and is scaled by  1/Ca  because of earth 
and orbit curvature. The focussing may be separated from the aberration by, 

first, noting that the maximum value of (frXr)/(2q) is 1/2 Af/fc  where àf is 
the bandwidth of f(t) and fc  = c/Xr  is the rf carrier frequency. Usually 1/2 

àf/fc  « 1  80  that 

(29) 



(34) 

(35) 
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TrA r f 2 	 TrA r f 2 	1.1. A 2r f f 2  

	

r o X 	4  rox 	rorx 
.1   
e 2ca

p2 (1+f X / 	
e 

2q) 	J 2c
a 	e 
p2 -i 	4c

a
p2q 

r r =  

where the first complex exponential is the desired azimuth focussing-function 
free of range-curvature effects and the second represents an aberration due 
to range curvature and is a function of frf. If suitable processing is used, 
the exp(-j2nfxx0/p) term results in the azimuth signal being centred on 
x2  = xo/p at the output plane. The form of the azimuth antenna pattern 
remains h but it is now a function of fx , and is shifted by the amount 
fx = 2pcaxs (r0 )/(Arro) because of antenna pointing error. The spatial 
bandwidth in the fx  dimension of the function h, and therefore of G, is 

Bix = 2cap8/Ar A
r  vf  

and the spatial bandwidth in the fr  dimension is Bfr , which is the width of 
the function F(cfr/2q). 

In converting the demodulated signal of (15) into the recorded signal 
of (28), the time variable t was separated into two components and converted 
to the two space variables xf and rf according to (16). There is a similar 
conversion between temporal and spatial frequencies. A temporal frequency vr  
may be associated with the range function f(t) in (15) so that the transform 
of f(t) is F(vr). The frequency conversion 

v
r 

= v f 
c r 

follows from the temporal-to-spatial conversion of (16). Similarly, a 
temporal frequency vx  may be associated with the azimuth phase function in 
(15) so that 

vx 
= v

f
f
x

. 

It is noted in Appendix C that, for a large time-bandwidth product, 
there is a one-to-one correspondence between time and frequency for the 
azimuth phase function. Thus an instantaneous frequency has some physical 
significance. For the azimuth function in (15), the instantaneous azimuth 
(doppler) frequency is defined as 

v
xi 

= -(2/A r)dr/dt. 

The substitution of (12) and (13) into (34) results in 

2V2 (t-t
o

) 	2V(x-x
o

) 
n  Vxi 	crAr 	

r 
ao 

 
or  

The instantaneous spatial frequency in azimuth is found, by differentiating 
the azimuth focussing function in (28), to be 

(30) 

(31) 

(32) 

(33 ) 
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(36) 

(37) 

c
a
p 2  d(x

f
-x

o
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xi _ 
• f

xi 	X r 	dxf 	
v
f ro  

The temporal azimuth bandwidth Bvx  is found by letting x-x0  = L in (35) to 

give 

2Ve = 
V X X 

In the description of the frequency function G, the effects of the 

azimuth sampling at the PRF fp , the frequency offsets mentioned in conjunction 

with (28), and the c.c. term were neglected. If these three factors are 
included, then the output spectra have the following forms: 

Azimuth offset - 

[G(f -f -nf ,f ) + G*(-f -f -nf ,-f )] 
n=-= 	 r 

Range offset - 

[G(f -nf ,f -f ) + G*(-f -nf ,-f -f )] 
n=-= 	 r or 

Baseband - 

I channel 

Q Channel 

É 	[G(f -nf ;f ) - G*(-f -nf ,-f )] 
n=-= 	x px r 	x px r 

r 	[G(f -nf ,f ) + G*(-f -nf ,-f )] 
n=-= 	x px r 	x px r 

where f = fP/vf is the spatial PRF and * denotes complex conjugate. Repre-px 
sentations of the envelope hhr  of these spectra are shown in Figure 5. The 
boundaries obviously will not be as sharp as shown. The same PRF is used in 
all cases. To avoid overlap of spectra, the PRF must be 

(38a) f 	>2B 
px 	fx 

for azimuth offset but need only be 

f
px 

> Bfx (38b) 

for range offset and for baseband. Thus, azimuth offset has a disadvantage 
in requiring a PRF twice as large as that for the other two techniques. The 
effect of antenna pointing error is to shift the repeated envelope Eh of the 
repeated spectra EG by a distance 2pc xs /Xrro  in the fx  direction. The 
envelopes of the conjugate spectra EG# are shifted by the same amount but in 
the opposite direction. These shifts were not included in Figure 5. It is 
very important to note that the phase functions in EG and EG* do not shift - 
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the same  PAF,  fpx •  Right-to-left cross hatching represents the spectrum G and the other represents 

G" (after Harger [3, p. 68]) . 

only the envelopes shift. These shifts are discussed further in Subsection 
5.2. 

In the above, a weighting in the fx  direction over the infinitely 
repeated spectra has been omitted. The weighting arises because of limited 
frequency response of the input device. 

Sometimes it is useful to do certain operations in a mixed domain, 
i.e., a domain where space is one dimension and spatial frequency is the 
other. From Appendix C it can immediately be seen that the one-dimensional 
transform of g(xf ,rf) with respect to rf  is 

-j2nfrro/q 
h 
 [xf  - (x0-xs )/p] 

Gr (xf ,fr) = acti 	e 
32  

c p 2 C
a P

2 
- f

r
(x

f
-x

o
/p) 2  -j2n 	(x

f
-x0/p) 2  qr 	 r e 	 ro  

14 

(39) 

where c
3 
= exp[-j4nr 

o 
 /X 

r
] is a complex constant. The undesired exponential 
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2 
in frxf is caused by range curvature. The last exponential is the desired 
azimuth focussing-term. From the techniques used in Appendix C it may be 
shown that the one-dimensional transform with respect to xf  is 

r 	x2r  f2] 
2.g. 	0 	r o x  Gx (fx ,rf ) = ac4  f c  [rf 	q  Scap2q 

(f 	
2ca

p 	nX r
u  
_ r 	,2 , 	- Ar 	 L x 	s 	zop a 2x-j2nfx /p 

	

r o 	 x o x h

( 

-2c
ap e/x r e  

2 
where c4 is a complex constant. The exponential in fx  is the desired focus- 
sing term free of range-curvature aberrations. Range curvature appears as 
an offset in range of the function f. 

5. IMAGE FORMATION 

5.1 GENERALIZED PROCESSING 

The object of signal processing is to take an input signal and produce 
an output image. For a point object at (x0 ,r0 ) it is required to produce a 
point image at (x2 ,r2) = (Mxxo /p,Mrro/q) where (x2,r2) are the azimuth and 
range dimensions in the output plane, Mx  is the azimuth magnification and Ivir 
is the range magnification. For unity aspect ratio we require that Mx/p = 
M, /q. In this section it is assumed that aberrations are fully corrected so 
that only ideal images are discussed. A discussion of image degradations 
will be included in Section 7. 

The image R(x2 ,r2 ) is produced by performing the two-dimensional 
correlation 

00 

R(x2 ,r2 ) = .)fg(xf ,r f)g ef (xf  -x2 , r f-r 2)dxfdr f . 	 , (41) 

The reference function is given by 

Xf  x ip 	 C p 

gref(xerd wx 	
f 	(r, 	a 2  2) 

x 
C 	f 	2 flr 	f  , 0  

2nc
a
p 2  

X  X r r 

(40) 

(42) 

e 
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where w is a window function and Dx is its width. The correlation (41) may 
be done

x
directly as indicated or by matched filtering, wherein the spectrum 

G(f ,f r ) of (29) is multiplied by a reference spectrum 
x  

cf r) 	[fx  - (2cap/Xrro )xs] 
G* (f ,f ) c F*(-- W 	  
ref x r 	2 	2q 	x 	pDfx  

	

-J71-À r f 2 	i n x2r  f r 2 

	

r o x 	rorx 

The first exponential is a focussing function and the second corrects for 
range curvature. The product GGeef  is inverse transformed to produce the 
image R(x2 ,r 2). 

The correlation may also be performed as a combination of direct 
correlation in one of the two dimensions and by matched filtering in the 
other. Different operations such as focussing and range-curvature correction 
may be performed independently and at different stages. 

In the object domain, the x axis was chosen such that it is parallel to the 
velocity V/ca  over the surface. This velocity makes an angle (cp a  - eye) with 
the local—Meridian as shown in Figure 1(b). The output image axis x2 is also 
oriented parallel to V/ca , i.e., at an angle ( 8-0ye) to the local meridian. 
Since both (p m  and 0

Ye 
 vary with latitude, the orientation of the x2  axis 

varies with latitude. It is assumed that this variation is sufficiently slow 
that (c> e  - eye) can be considered constant over at least a synthetic-aperture 
length. 

5.2 OUTPUT WAVEFORM AND RESOLUTION 

Even in the absence of aberrations a point object cannot be imaged to a 
perfect point image. In this section the waveform of the ideal image of a 
point object and the resulting resolution are discussed for both the range 
and azimuth dimension. It is assumed that the image is formed by the 
correlation operations described in Section 5.1 and therefore implied that 
all aberrations have been corrected. 

5.2.1 Range 

In a pulsed ranging system the slant-range resolution is 

p  rs = cTe/2 	 (44) 

where Te  is the effective pulsewidth of the received pulse. For a simple 
pulse, Te  is just the pulsewidth, and for a coded pulse, Te  is the width of 
the compressed pulse. 

For a narrow pulse of width T 1 , the transmitted range signal is 
represented by 

(43) 
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(45) 

(46) 

(47) 

(48) 

f(t) = ao  rect(t/T1 ) 

where 

1, -T/2 < t < T/2 
rect(t/T) = 

0, elsewhere 

and at)  is a constant. The recorded range signal is 

(r - r/)] = a rectp 
c 	f O 	R1

/(2q) 

where R1  = cTi is the pulse length in space. For practical reasons a long 
coded pulse is usually used. In SAR the most commonly used coded pulse is 
the chirp waveform. The transmitted range signal is 

, prst 2 
 f(t) = a

o 
rect(t/T

2
)e 

where T2 is the pulsewidth and s is the sweep rate in Hz/s. The recorded 
range signal is 

r f-r/q 	Prs(2q/c) 2 (r f-r/q) 2  

f 	(r -r/q).] = a rect 
c f 	o 	[U-777 2 

where R2  = cT
2 

is the pulse length in space. 

If the range correlation in (41) is performed for f as given in (48) 
and if the width Dx  of the window function wx  is large compared to L, then 
the envelope of the resulting compressed signal is 

[R9 	9 	r, 

ceo  sinc 	s(e..) 2( - r i )
\c 	

) 

where sinc x = sin Trx ./(rx) and c ç  is a complex constant. For Dx  = L a more 
comp lex form results although (45) remains a good approximation, especially  •/ 
near the main peak at r2  = Mrr/q. The dependence of r on xf in (49) must be 
removed in the processing so that the sinc function is centred on r2 = Mrro / q 
as required. The range compression can be performed separately before 

recording the input signal, in which case the input range signal has the form 
of (49) where r2 /Mr  is replaced by rf . 

By omitting the magnification factors, we obtain the resolution in 
terms of unscaled dimensions. From (49), the Rayleigh slant-range 

resolution is 

c ( 1 ) c 
= 	 = — T 

PRrs 	2 ErF2TF. 	
2 e 

(49) 

(50) 



18 

where Te  = 1/Bvr  and Bvr  = sT2 is the bandwidth of the chirp signal. If a 
weighting is used the output is no longer a sinc function. The -3 dB width 
of the compressed pulse is defined as the resolution 

u c 
P 	" 3rs 2B2 

where ur  is a weighting constant (which, for example, is 0.886 for uniform 
weighting and 1.33 for Hamming weighting). Because of the one-to-one 
correspondence between time and frequency pointed out in Appendix C, a 
weighting of wr (rf) in the input plane or a weighting wr [cqr/(4q 2s)] in the 
frequency plane results in approximately the same output. 

The ground-range resolution prg  is found from the slant range by 
differentiating (2) or (3) so that 

p  = p c r / 177:171  rg 	rs  ro 	o s ' 

a function of range ro . 

5.2.2 Azimuth 

The azimuth image is obtained by performing the azimuth correlation in 
(41). For g given by (28) and gref  given by (42) the azimuth correlation 
reduces to 

f (: 
x  _ x07xs (f +x s /P - 1 

R(x2 ) = ji h 	'JP 
1.----12— wx 	Dx4  

(2cap 2 (x2-xo )) 

X r 	xf 	 X r 

j2rc a 
p2(x2_x2) 

2o  

ro ro  
dxf e 

2 
 The phase factor in x2-x
2
o  has no effect on the image intensity and is here- 

after omitted. It was assumed that the range-curvature effects appearing in 
the range function f have been taken care of appropriately (see Section 5.3). 
The azimuth point-spread function (impulse response) is then the Fourier 
transform of the product hwx . If, for example, both h and wx  are rect 
functions and Dx >> L, then the envelope of the azimuth point-spread function 
is proportional to 

[ 2c P x9 	
ip) a 	- _ in)] • sincL77 ( 7, 	0 or  x 

The unscaled azimuth Rayleigh resolution is PRa = Xr/(2cs6) and the -3 dB 
resolution p 3a  = 0.886 À r/(2ca8)• Often, a uniform antenna of width D is 

(51) 

(52) 

03 

(53) 

(54) 
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considered and the Rayleigh beamwidth of e Xr /D is taken as the beamwidth 
over which the beam pattern is uniform. Then, pRa  = D/2. In general, the 
-3 dB resolution is 

u
a
X
r 

P3a - 2ca8 

where ua  is a weighting constant that depends on the form of h and wx . 
Similar results are obtained by utilizing a window Wx (fx/Dfx) in the frequency 
Plane. 

If wx  and h are rect functions and Dx  = L, then the envelope of the 
azimuth point image is proportional to 

(55) 

1 (1-plx"I/L) sinc --r--- e (1-plxi/L)x 
2 	

r cap 

r 

ti 
and is 0 elsewhere. Here, x2 = x2/ 

- ------2—  4c
a
p q 4c

a
laci 

I 	II I X < 9 
2 — (56) 

- x0 /p. Around the central peak at 

x2 ' x0/p, (54) and (56) are nearly -identical and therefore the resolutions 
are nearly identical. Although form (56) has the slight advantage of having 
no sidelobes for 3c t  > L, most successful correlators to date [1] generate 
outputs with the form (54). 

5 .3 RANGE -CURVATURE CORRECTION 

In the input signal of (28), range curvature appears in the function f 
as a quadratically varying offset in rf  equal to cap z (xf-xo /p) 2/(2qr0 ). If 
direct correlation of the input were to be performed as in (41) then the 
reference function (42) would have to contain a function f with the same 
quadratic warp. Note that the quadratic is a function of ro  and therefore 
the reference should be changed with each new value of ro . However ,  if the 
input signal is slowly varying with ro , a single reference may be adequate 
over a certain spread of ranges (see Section 7). 

In the two-dimensional frequency plane it is seen from expansion (30) 
that the effect of range curvature appears as the separate phase term 

[j 70
n rofrf]2 

exp

(  

If this term is multiplied by a filter function whose argument is its 

complex conjugate then the product is unity and the effects of range curva-
ture are cancelled. The filter function can be part of Gee given by (43) 
or it can be used separately. T4s rather complicated filter is a two-

dimensional phase function of fr fx _and is range dependent. Again, as 

discussed in Section 7, a single reference may be adequate over a certain 
spread of ranges. 

Range-curvature correction may also be performed in either the (xf,fr ) 
domain or the (fxe rf ) domain. 

Leith [6] demonstrates a method of multiplying 
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the function Gr(xf,fr)  of (39) by a correction factor expUncep2fr (xf_x0/p) 2 / 
2 (qr0 )] which is a phase function in both f r  and xf. The range curvature is 

thereby eliminated. Unfortunately, not only is the correction dependent on 
range ro , but the correction is good for only one value of xo . In the 
function Gx (fx ,rf) of (40) it is seen that 2range curvature may be corrected 
by shifting the function f by an amount -Xrrof/(8cap 2q) in the rf direction. 
The shift is dependent on both range ro  and azimuth frequency squared. 
However, by reasoning similar to that used in Section 7, there may be a 
substantial spread of ranges over which a single shift may be adequate. Note 
that the shifting in rf  is the equivalent to applying the linear phase shift 
fr in the two-dimensional transform domain. If precompression in range is 
utilized, the function f in (40) becomes its compressed form and signals from 
different ranges are separated in the (fx,rf) domain. This separation means 
that it is possible to correct for range curvature for all ranges at once. 
However, the shifting required is complicated, in that every point in the 
(fx ,rf) domain must be shifted by amounts that vary with both ro  and fx . 

5.4 ACCOUNTING FOR ANTENNA POINTING ERROR 

Antenna pointing error refers here to the deviation of the beam centre 
from pointing perpendicular to ground track. This error arises from pitch, 
yaw, equivalent yaw, and vertical velocity. Its only effect on the input 
function g(xf ,rf ) was noted in (28) to be a shift in azimuth xf  of the 
antenna pattern h by the amount  -x5 /p. Both this offset and te  width of the 
antenna pattern are range dependent. Despite this offset, an aberration-free 
image is obtained when the direct correlation (41) is performed using the 
reference functiongiven by (42). Only the window function wx  of gref 	 gref 
is affected by the pointing error. The only problem then is the matching of 
position between wx  and h. Alteration of any component of g or gref other 
than the windows h and wx  will usually lead to image degradation as discussed 
later. 

In matching the window function wx  to the antenna pattern h, several 
approaches may be taken. One approach is to make the width Dx  of wx  so large 
that h falls within the width Dx  no matter how large the shift xs  of h may 
be. Then the window wx  need not be offset by the amount xs  indicated in (42). 
If w 	h are rect functions, the azimuth output has the form (54). Notice 
that the image is properly focussed and at the correct location independent 
of the offset xs . Therefore it is unnecessary to determine pitch and yaw! 
Use of such a wide window has the disadvantage of reduced signal-to-noise 
ratio. 

Another approach is to make Dx  L. Then, if wx  and h are rect 
functions, the azimuth output has the form (56). However, the window wx  must 
be shifted by exactly the distance -xs  indicated in (41) so that it will be 
superimposed on h. Otherwise, the image will be degraded or may not even 
exist. Unfortunately, exact superposition is difficult to achieve. Not 
only do the shift xs  and width Dx  have to be precisely determined, but both 
vary continuously with range. A practical compromise is to choose the width 
Dx  sufficiently wide that xs  need be known only approximately but is 
sufficiently narrow to reduce the noise and the number of computations. 
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The effect of antenna pointing error in the frequency plane is seen in 
(29) to be a shift of only the pattern h. This shift in fx , 

f 
s 
 (r 

 o  ) 
	2ca

px
s
(r

o
)/(X r ) 

x 	 r o 

is a function of ro  as illustrated in Figure 6(a). The range function F and 
the phase functions are not affected. To obtain an image by matched filter-
ing, the product OGesf is formed. Several approaches to matching the window 
Wx  in (43) to the pattern h in (29) may be taken. Once more, the most 
practical approach appears to be to make Dfx  sufficiently wide that xs  need 
only be known approximately but is kept as small as possible to reduce both 
noise and the number of computations. 
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Figure 6. Outline of spectra offset by pitch and yaw for (a) two-dimensional transform and 

(b) one-dimensional transform 
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Sometimes there may be certain computational advantages in dealing with 
pointing error by other than the simple window shifting discussed above. One 
method is to "de-skew" the input (28), by tilting the lines of constant 
azimuth during recording so that a shift in azimuth of x5 (r0 ) occurs. The 
azimuth envelope is simplified to h[(xf-x0 )/(L/p)] but all other functions of 
Cf are made more complicated and the entire spectrum is offset by  f 	the 
fx  direction. To prevent the output from being distorted, appropriate range-
dependent frequency shifts could be applied or a second de-skewing used, this 
time on the output. Although initially attractive, this technique appears to 
introduce unnecessary complications. 

Another method of correcting for pointing error is to do a range-depen-
dent frequency shift of the input signal by the amount  -f(r0)  so that the 
spectrum becomes G(fx  + fxs ,fr ). This operation would certainly centre the 
azimuth envelope h in (29Y on fx  = 0 but the phase functions of fx  would also 
be shifted by  -f.  If the image were then produced by correlating against 
the original reference Gref (fx ,fr ) given by (43), the output image would be 
located at x2 = xo  - f -xs Xrro/2cap 2) = xo  - x (r o ). This image would be s 
distorted because of the range dependent offset. Image processing would be 
necessary to correct the image. Thus, frequency shifting of the input should 
only be used when the computational advantage gained outweighs the disadvan-
tage of first having to perform the range-dependent shift and then having to 
correct for distortion (although sometimes the distortion can be tolerated). 

Steering of the antenna to point perpendicular to V is highly recommen-
ded since antenna pointing error is eliminated at all ranges simultaneously. 
Since the signal received from an object at the instant it is abeam of the 
antenna has zero-doppler frequency, this steering is also called steering to 
the zero-doppler direction. Most airborne SAR's built to date have employed 
such steering with either doppler- or inertial navigation techniques to 
measure the pointing-angle error. 

5.5 DETERMINATION OF POINTING ERROR 

In Subsection 5.4 it was assumed that the shift xs  or f 	by 
antenna pointing error was available to aid in image production. In this 
subsection, it is indicated how a value of the shift may be obtained. The 
accuracy required will depend on requirements for matching the window function 
to the antenna pattern. 

The value of xs  or f 	be determined through use of separate 
instrumentation. The component xyes  can be calculated directly from orbital 
data. In principle the angles Op  and Oy  could be measured by on-board 
detection devices such as star trackers or horizon sensors and the shifts 
x and xYs  calculated by (23). These techniques can be very expensive and Ps  
inaccurate. 

A somewhat better method of determining x is by using the radar signal 
itself to find the mean frequency fxs  of the azÎmuthal spectrum (i.e., the 
doppler centroid). It can be seen in the spectrum G(fx ,fr ) given by (29) 
that the amplitude variation in the f x  dimension is dependent only on h. The 
other terms containing f x  are phase functions only. Therefore, the mean 
frequency of h is also the mean frequency of G(fx,fr ) in the fx  dimension. For 
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simplicity we assume that the mean frequency of h(fx/Bfx) is 0 so that the 
mean frequency of h[(fx- fxs)/Bfx] is just the offset fxs . If the spectrum 
from objects at a single range can be isolated, then determination of the 
mean frequency automatically gives the spatial-frequency offset from which 
the input offset xs  can be easily determined from (57). It is only necessary 
to determine the total xs  and not the individual terms. 

Since xs  (ro  ) and fxs  (ro  ) are dependent on range, it may be necessary, 
depending on the accuracy required, to determine their value at more than one 
range. Measurement could be made for each value of ro  required. Alterna-
tively, measurement could be made at at least two values of ro  and then the 
remaining values interpolated. 

In the estimation of fxs  it was assumed that the spectra for different 
values of ro  were separated. However, in the two-dimensional spectrum the 
spectra are overlapped such as illustrated in Figure 6(a). In some cases 
the average position of such a broadened spectrum gives a sufficiently 
accurate estimate of fxs . If the accuracy desired requires separation in 
range of the spectra, a one-dimensional spectrum Gx (fx,rf) such as illustra- 
ted in Figure 6(h) is useful. This distribution is obtained by first applying 
range compression to the input signal, then performing a one-dimensional 
transform in xf for each constant-range line. For very accurate determination 
of xs, it is necessary to correct for range curvature before this stage. 

In the above, the determination of fxs  involved calculation of the 
entire spectrum G. It may also be determined electronically, without the 
necessity of calculating the entire spectrum, by well-known techniques [11] 
developed for doppler navigation. For example, a simple digital version of 
[11] which was built in our laboratory is capable of determining fxs 
simultaneously for 1024 different ranges, obviating the need for interpola-
tion. Another method, which uses two narrow-band filters, has also been 
considered for SAR [12]. 

6. AMBIGUITIES 

To avoid range ambiguities, the PRF, fp , is constrained by [13] 

f 
p — 2Ar

s  

where Ars is the slant range 
swath width. To avoid overlap of the azimuthal' 

spectra shown in Figure 5, the PRF is constrained by (38a) or 38b). Overlap 
Of  spectra (or "aliasing") results in azimuthal ambiguities. Restriction 
(38) merely states that the PRF rate must be chosen according to the sampling 
theorem. The'effect on the output image of this overlap as f  
and goes below the lower bound (38) has been studied experimentally [13] for 
azimuth offset signals. The effect of range ambiguities was also studied. In 
addition, the relationship of fp  and signal-to-noise ratio has been investi-
gated for baseband digital processing [14]. 

(58) 
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Pitch and yaw aggravate the azimuth ambiguity problem by causing the 
envelope Eh of the repeated spectra EG in Figure 5 to be shifted by fxs . If 
f 	large enough, selection of the n=0 spectrum becomes ambiguous. If the 
nth  repeated spectrum G(fx-nfxp ,fr ) were mistakenly chosen as the n=o spectrum 
and correlated against the corresponding zero-order reference, Gre(fx ,fr ), 
the output for range ro  would be located in azimuth at 

x2 = xo 
+ nfxpr  r o /(2cap 2 ). 	 (59) 

This equation is obtained by noting that the frequency shift nfxp  results in 
the insertion of the factor exp(j2unfxpxf ) in the correlation (n). The 
ambiguity has resulted in a range-dependent offset (distortion) of the image. 
There appears to be no direct method of determining from the image that a 
mistake in the selection of n has been made. Note that selection of the 
wrong spectral order could lead to incorrect correction of range curvature. 

Another problem caused by the shift f 	when the PRF approaches 
the lower bound. The spectral window Wx  must be accurately shifted by fxs 
and not be wider than the bandwidth of h. Otherwise, sections of adjacent 
spectra will be processed along with the desired spectrum. The result is 
that a shifted and degraded image will be added to the desired image. 
Unfortunately these restrictions on window size and position preclude the 
techniques, described in Subsection 5.4, of using moderately wide windows to 
simplify the processing in the presence of antenna pointing error. 

The determination of pointing error by doppler-centroid estimation 
techniques is made difficult as the lower bound on fpx  given by (38) is 
approached. First, such things as noise, antenna siaelobes, and quantization 
may obscure the dip between spectra such that it is impossible to distinguish 
one repetition of the spectrum from the others. If pointing errors are slowly 
varying, time averaging of spectra may alleviate the problem. Second, the 
estimator could lock on to the wrong repetition of the spectrum. Third, the 
techniques of centroid estimation that do not require calculation of the 
spectrum [11], [12], may not work in the presence of high ambiguity levels. 
The analyses of these techniques have considered only a single spectrum to 
be present. Further work is required to determine if these techniques are 
useful as the PRF approaches the lower bound. 

Ambiguity arising from pointing error may be eliminated by steering the 
antenna to point perpendicular to track. However, if the feedback required 
for pointing the antenna is obtained from a doppler-centroid estimator, then 
the problems discussed in the previous paragraph also arise. They will not 
normally be as severe because the feedback keep s  f 	Therefore, there 
is less chance of ambiguity, if the correct spectrum can be locked onto 
initially. Also, the methods not requiring spectrum analysis [11], [12] 
operate better when the offset is small. 

7. MATCHING LIMITS 

In the discussion in Section 5 on image formation it is assumed that 
the reference function gref was perfectly matched to the signal g or, alter- 
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natively, that Gref was perfectly matched to G. In practice, various forms 
of mismatch can arise. In this section, the effects of mismatch arising 
from three different causes are considered. Limits to the mismatches are 
given. 

The image degradation caused by mismatching the reference to the signal 
may be assessed by comparing the processor's actual point-spread function 
(impulse response) to the ideal correctly matched point-spread function. 
The degradation of the point-spread function can be a simple shift of the 
entire function or a dimension-dependent shift which is then called distor-
tion. If the shape of the function is degraded it will be called here a 
blurring. For blurring, the quality comparison could be made on criteria 
such as resolution and integrated sidelobe ratio. Other image quality 
parameters are discussed elsewhere [15]. Such comparisons can be laborious. 
A simpler approach, that of using the Rayleigh quarter-wavelength rule, is 
utilized here. 

Rayleigh took as a reference a quadratic wave converging to an ideal 
image of a point. It was found that, for certain aberrations, the intensity 
of the point image falls by less than 20% with little loss in resolution if 
the departure (aberration) of the actual wave from the reference wave is less 
than 1/4 of a wavelength. Other related criteria have been found but will 
not be employed here. In the present application of the Rayleigh rule, the 
maximum phase difference between the signal, g or G, and the reference 9 gref 
or Gref , will be limited to be less than e/2 in order to maintain acceptable 
image quality. 

The form of the phase error cp e  governs the type of image degradation. 
A phase error linear in the spatial variable merely causes a constant shift 

of the image. A quadratic variation corresponds to a focussing error and 

results in a defocussing of the image. Defocussing is one case of blurring. 
When cp e  is a function of a cross product between the two spatial variables 
or any of their powers, various forms of blurring of the point-spread 

function arise. 

7.1 RANGE SPREAD 

The signal g and its spectrum G are seen to be functions of target 
range ro . For perfect matching it would be necessary to have a different 

gref or Gref for every value of ro . Sometimes continuous variation with r 
is impractical to achieve. Instead, the reference function is matched forc)a 
single range rr . The tolerable range spread, AR, over which the reference / 
and signal are adequately matched, is 

AR = romax
-r

omin 

= 2(r 	-r ), omax r 

where romax  and romin  are the maximum and minimum values of ro  for which 
there is acceptable match. Often AR is referred to as "depth of focus". 

This usage is avoided here because of the possible confusion with the depth 
of focus that arises in optical processors for SAR signals. 

(60) 



(62) 

(63) 
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The two phase factors whose matching is affected by range ro  are the 
azimuth-focussing factor found in either the input (28) or the transform (30), 
and the range-curvature factor found in the transform (30). 

7.1.1 Azimuth Focussing 

For azimuth focussing the phase error may be calculated for the direct 
correlation (41) or for the transform correlation. The range spread obtained 
is the same in either case. For direct correlation, a phase factor exp j6el 
is inserted in the azimuth correlation (53) so that the phase error is 

2rcp2 
a 

 

el 
2 (1, 	1  x 	- 

r 	f rr ro 

For notational simplicity the reference xo  is set at 0. Since 6 el is quad- 
ratic in xf , it represents a defocussing. 

In the absence of pointing errors (x5=0), the maximum value of xf is 
(L/2)/p where L is the synthetic-aperture length. By the Rayleigh rule it is 
required that 6 el< n/2, so that the range spread is 

2A r 2  
àR < 
1 — caL 2  

where rO = rr ro . The substitution ro/L = 2ca PRaiXr  from Subsection 5.2.2 
results in 

8c p 2  a Ra  AR < 1 — A 

Thus, the range spread decreases with the square of the resolution. A 
decrease of the wavelength increases the range spread. 

In the presence of antenna pointing error, the section of the phase 
function utilized is centred on xf  = -xs . It is now useful to substitute a 
new azimuth coordinate x = xf + x s  into the correlation (53). Then the 
phase difference may be expressed as 

2ncp 2 	 r -r 
a   —2--£ 4' e2 	Ar

bc e2  - br vfx /p + (xs
/p) 2 ]  s 	 r2 

2 
The component in xs  is a phase constant and has no effect on the output image. 
Direct application of the Rayleigh rule to the first two terms of (64) 
results in a range spread of 

AR < 2 — ca (L2+4Lxs ) 

(61) 

ro  

(64) 

(65) 
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which suggests that range spread can decrease considerable as xn  becomes the 
same order as L. However, note that the first two terms of (64Y represent 
different aberrations. The second term inserted into the azimuth correlation 
integral (53) represents a linear phase shift which leads to a shift of the 
output point image so that it is located at 

= o -x /p 2 x 	
'r -r  

x  rr 

Often the image distortion (66) can be tolerated. Then the phase error cp 2  
reduces to 6el  given by (61) and the range spread AR2 reduces to AR1  giveg 
by (62) or (63). 

7.1.2 Range Curvature 

Range curvature is manifested solely as a phase function in the trans-
form plane so that range spread is easily determined there. In the product 
GGttsf , the phase error resulting from mismatch is obtained from the second 
phase factor in (30) as 

itA 2
f  

( 	2 
7)(-X) (r -r ). — (P a3 " 4ca  q P 	r 

In terms of temporal frequencies given in (32) and (33), 

c nx2 	xv ) 2 
a r r _2E 

= 	2 	c V 	
(ro-rr ) 

From (35), the maximum value of vx  is 2Vxmaxi(ro Xr ) where xmax  = L/2 + xs  is 
the maximum value of x experienced during the recording of one aperture 
length. The maximum value of vr  relative to the centre of the range spectrum 
is Bvr /2 where, from (50), Bvr 	c/(2PRrs)» n' 	 By the Rayleigh rule, the range 
spread is 

AR < 3 — ca (Li2+x5 ) 2  

which means that range spread deteriorates rapidly as the offset xs approachés 
the beamwidth L. 

It is sometimes possible to relax the limitation (69) by examining the 
nature of thé aberration. First note that the section of the spectrum 
utilized is centred on fx  = fxa , where fxa  is given by (57). It is then 
useful to replace the variable fx  in the matched filtering process by f; 
fx-fxs. The phase difference becomes 

TrÀ 2 (r -r ) 

	

r o r (r ft2 .4. 2f f ft 	f2 f ) L 
cl)e4 	4ea 

qp2 	r X 	XS r x 	xs r 

(66) 

4'e3 

2pRrsr  
(69) 

(70) 
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2 
where the maximum value of fx  is L/2. The term in fxs fr , being a linear 
phase shift, results in a shifted output image. This image distortion may 
often be acceptable. The term in f s fr f.:, is sometimes inappropriately called 
the range walk aberration. Here it will be called the linear cross-coupling 
aberration. Its effect is an image blurring. A range spread may be derived 
for this term alone. Also it may be corrected separately. The term in fr42  
is the basic range-curvature aberration alone. Its range spread is 

8pRrs r
2 32c p

Rrs  p 2  o 	a 	Ra  
AR < 

4 —  ca
L2 	 A2 	• 

which is also the range spread in the absence of pointing error (xs=0). It 
is very sensitive to azimuth resolution and radar wavelength. 

7.2 DEPENDENCE OF RESOLUTION ON RANGE -CURVATURE CORRECTION 

Many SAR's to date have not used any range-curvature correction. Here, 
the limitations placed on the resolution by not performing correction are 
discussed, together with those arising from partial correction. 

The phase error arising when no correction is used is given by (70) 
with rr=0• Once again the image shift and distortion caused by the third 
term is not considered a serious degradation and is neglected. Only the 
range curvature and the linear cross-coupling blurring terns are considered. 
The Rayleigh rules leads to the limit 

x2r 	 x 
ro  	r s  

16c p 	p2 
a Rrs Ra 2p

Rrs
p
Ra 

The first term expresses the limit of resolution on the basic range curvature 
and the second expresses the limit of the linear cross coupling. If the 
linear cross coupling is corrected separately or in the absence of pointing 
error (x5=0) ' the limit becomes 

x2r  

P P 2 > — r o--- Rrs Ra — 16ca • 

This result was also obtained in [6] from analysis of the input plane. (There 
is an arithmetic error in [6] by a factor of 4.) It shows that resolution in 
one dimension may be traded against resolution in the other. Reducing the 
wavelength greatly improves the resolution capability. 

7.3 LATITUDE SPREAD 

The latitude spread is the range of latitude over which the reference 
does not need to be altered and still give an adequate match to the signal. 
The altitude hs , the earth velocity normal to track Ven  and film recording 
velocity vf  can be latitude dependent. 

(71) 

(73) 



2 9 

The altitude affects the constant ca  and the slant-range-to-ground-
range conversion. Normally the orbit would be chosen to hold the altitude 
reasonably constant over many synthetic-aperture lengths. As ca  changes, 
the azimuth focussing function is altered and refocussing is required as 
latitude changes. A latitude spread is easily derived using Rayleigh's rule. 
Usually the change in focus should be slight and slowly varying. The range 
convean4on varies only slowly with latitude and should be easy to alter as 
neceésibl,  

SN, 
azimuth offset xye  and the ground speed V are dependent on Ven  

which in turn is dependent on latitude. The azimuth-spectrum window should 
be shifted appropriately as xye  varies. Orbital data is all that is needed 
to calculate the shift. Antenna steering, as suggested previously, could be 
used to eliminate the shift entirely. 

The velocity vf is assumed to track ground speed V according to (20). 
However, it may not always be convenient to do this tracking. If vf is 
constant then p = V/(cavf) varies with V. The most significant effect of p 
in the input (28) is on the azimuth focussing function. The latitude spread 
over which a constant focus gives acceptable imagery may be derived, again 
by the Rayleigh rule. Usually the spread is very large compared to a 
synthetic-aperture length. 

8. MIXED INTEGRATION 

SAR images of diffuse extended targets can have a granular appearance, 
sometimes called speckle, arising from the fact that the microwave illumina-
tion is coherent. Image quality may be improved either by improving resolu-
tion by means of increased coherent integration or by improving the signal- 
to-noise ratio by incoherent averaging of images. Resolution p is inversely 
proportional to coherent-integration length. Signal-to-noise ratio, defined 
as the ratio of the mean of the image intensity to it's standard deviation, 
is increased by a factor e where N is the number of independent images 
incoherently averaged. In SAR, the practical forms of incoherent averaging, 
sometimes called mixed integration [16] or multiple-look processing, are 
implemented at the sacrifice of resolution. It is not yet clear what 
combination of coherent and incoherent integration leads to the best image 
interpretability [17], [18]. For some processing techniques, mixed integra-
tion can have the advantage that it is easier to perform than the processing 
required for an improvement in resolution. In this section, we look at ways i 
of implementing mixed-integration processing. The separate images to be 
smoothed by incoherent averaging may be obtained from different frequency 
regions of the range signal (frequency diversity) or from different target 
aspects in the azimuth dimension (variously named time, angular, or doppler- 
frequency diversity [17], [18]). 

As the SAR moves in the azimuth direction, a different target "look" 
is obtained as each aperture length is traversed. The full synthetic apera-
ture L with resolution pa  ... roXr/(2L), is divided into N sub-apertures of 
width Dxs  and resolution P sub = ro X r/2Dxa . Then the N separate images are 
incoherently averaged to produce a smoothed image with degraded resolution 
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is the relative rlocity between the SAR and the object in the direction of 
V. The factor V1  is just the sum of the squares of all velocity components 
perpemlicular to the radial line. Usually the first term dominates so that 

V1 
2 = Vp • Raney [7] derived a similar result and included object acceleration. 
If the squares are completed, r may be also written as 

ca (1
)2 

r = r + 	 [x - x + x (r M 2  - r (r ) 	 (77) 
o 2ro V 	 o 	m o 	m o 

(76) 

where 

V Vr 
or  x (r ) = 	o  

m o 	V2  
1 
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are, respectively, azimuth and range offsets caused by object motion and are 
both functions of ro . A similar form describing the effect of object motion 
in terms of offsets has been given by Elachi and Brown [10, p. 90]. For 
V0=0, both (74) and (77) reduce to (12). 

In the recorded signal, the range r affects the range function 
f[(2/c)(qr f-r)] and the azimuth focussing function exp(-j4nr/X r ). For both 
forms of r, one manifestation of the object motion in the focussing function 
is the weighting (V1/V) 2  which results in a defocussing. Since V1 = Vp , the 
along-track velocity component is the main cause of this defocussing. 

For form (74), the range function has a displacement linear in x-x0  
caused by the radial velocity Von . Such displacement in range is sometimes 
referred to as "range walk". This linear term in the focussing function 
represents an azimuth-frequency offset. If form (77) is used, the range 
function and the focussing function may be described as being offset in 
azimuth by xm  and in range by rm . 

Image production for a moving object is made difficult because the 
velocity V0  is usually not known. Consider first the defocussing weighting 
(V1/V) 2 . It becomes unity as V becomes large compared to Vo . Therefore, 
defocussing can often be negligible. If it is not, then the processor may 
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be "refocussed" by trial and error until a satisfactory image has been 
obtained. This technique has been used to try to image ocean waves. Objects 
not moving at velocity V will be defocussed. 

Consider now the offsets xm  and rm . If the recorded signal with r 
given by (77) were correlated against a non-shifted reference and the focus-
sing were suitably adjusted, then the output point image would be located at 
(x2 ,r 2) = [xo-xm (r0 ), ro-rm (ro )] where magnification factors have been 
omitted. Furthermore these offsets are valid for only one value of azimuth 
xo . An object, also with a velocity V but located at (x0  + Ax,r0 ) where Ax 
is some azimuthal increment, will be imaged at 

(x
2'
r) = [x

o 
+  ix  - x (r ),r + ( / /V)Ax - r (r )]. 

2 r o o 	or 	r o 

The extra shift in range results from the fact that the object at (x0+Ax,r0 ) 
moves a distance (Vor/V)Ax in slant range in the time it takes the SAR to 
move from xo  to xo  + Ax. 

If the SAR antenna has a spurious velocity (-c V ) in addition to the 
desired velocity V, then the equation for range r will again be given by (74) 
or (77). Thus,  the  effects of spurious motion of the antenna are the same as 
those of object motion. The trial and error methods used for dealing with 
object motion may be used for antenna-motion errors. However, advantage is 
usually taken of the fact that the value of the antenna-velocity error can be 
obtained. It may be obtained from orbital data for satellite-borne SAR and 
from inertial- or doppler-navigation systems for airborne SAR. Two classes 
of antenna motion are considered here. 

In the first class of spurious motion, the velocity error is considered 
to be very slowly varying (constant over many aperture lengths). Such errors 
are commonly associated with satellite-borne SAR but can arise on airborne 
SAR because of such things as the constant error of the velocity measurement. 
The effects of such simple velocity errors are easily corrected by techniques 
already encountered. The along-track error can be corrected either by alter-
ing the recording film velocity vf so that scale factor p is constant or by 
equivalently altering the scale factor during image processing. The vertical 
velocity component can be dealt with as an additional pitch of the antenna. 
The horizontal cross-track component may be dealt with in the same way as was 
earth rotation. 

In the second class of spurious motion, the velocity error may vary 

even during one synthetic-aperture length but the error itself is relatively 
small. Such spurious motion is commonly associated with airborne SAR and 
arises from air turbulence. The effects of these velocity variations are 
best described'through detailed analysis using range r given by (74) and are 
usually corrected by applying motion compensation directly to the received 
signal itself. The along-track velqcity variation is compensated by varying 
the recorder velocity vf and therefore the azimuth scale factor p. If 
frequency offset in azimuth is used, the offset frequency must also be varied 
so as to hold the spatial offset fox  constant. Similarly, the PRF must be 
varied so as to hold the sample spacing constant on the recording. (If the 
spacing varies during an aperture length, the azimuth spectrum is broadened.) 
The radial-velocity error Vor  may be seen from (74) to give rise to a 

(79) 
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p sub . The division and averaging may be done in one of three equivalent 
ways described below. 

The first method is to window the input signal given in (28) with N 
windows where the nth window has the form wxs i[xf-(x0-xs+nX)/p]/Dxs l, X is 
the window spacing, and wxs  is often a rect function but can have tapering 
if desired. This window slides inside the aperture function h which is  the  
full antenna aperture displaced by the antenna pointing error. The N 	- 
apertures may be processed in series or parallel and the resulting imi 
incoherently summed. The disadvantage of input-plane windowing is th. , ,he 
signals for each xo  should be processed separately although the signai from 
a limited number of values might be processed in parallel with little 
degradation of image quality. 

In the second method, the frequency-plane distribution given by (29) is 
divided into sections in the fx  dimension by windows of the form 
Wxs [(fx-nFx)/Df s ] where Fx  is the window spacing and Df s  is the window width. 
If Dfs Dxs2cal)/(Xrro)9 then the frequency-plane and input-plane operations «  
result in the same resolution. Again, the sub-apertures may be processed 
either in series or parallel and the resulting N images incoherently summed. 
Obtaining multiple looks by frequency-plane division has a significant 
advantage in that placement of the windows is independent of azimuth position 
xo . Unfortunately, it is seen from (29) that the envelope h of the spectrum 
shifts along fx  because of antenna pointing errors. It will usually be 
desirable to make the multiple-look windows track this displacement. 

The third method makes use of the equivalence of convolution in the 
output plane and the bandpass filtering used in the frequency plane. The 
convolution is performed by first forming an image with the full resolution 
Mx  pa/p and then incoherently averaging the intensity over a width NMxps/p, 
which becomes the resolution of the smoothed image. The advantage of this 
third method is that the summation process is relatively simple. In fact, 
merely observing the output from a greater distance performs a similar 
smoothing. The method has a disadvantage in that a full resolution image 
must be produced. 

The offsets nX in the first method and nFx  in the second have the same 
effect as the offsets due to pitch and yaw. Therefore the range spreads (65) 
and (69) are decreased by the addition of nX to xs  and increased by the 
replacement of the full aperture length L by the sub-aperture length Dxs . In 
the third method, the range spread is that for the full aperture L as given 
in (65) and (69). It is particularly important to obey the range-spread 
rules for multiple-look processing. If they are not followed, each look can 
have a different distortion making it very difficult to overlay the "looks". 

Incoherent averaging may also be performed in the range dimension if 
the waveform bandwidth permits. Again it may be performed in 3 ways: 
windowing at the input, frequency-plane division with incoherent summing of 
images, or convolving the output image with a window. The first method is 
impractical and the third requires a full resolution output. The second 
method appears to be quite simple to implement. 

Incoherent averaging techniques may be implemented in both dimensions 
simultaneously [16]. If MN independent images are incoherently averaged, 
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where M and N are the number of independent images obtained in the range and 
azimuth dimensions respectively, the SNR is increased by b/IF 

Continuous scanning of a window across the frequency plane is possible 
in optical_plocessors. For a rect window, the SNR of the output is increased 
by about /3/2 (0.9 dB) [16], and by almost 2 dB for a cosine (Harming) window. 
Incremental scanning of a window allowing overlap of adjacent window positions 
is possible with digital processing. An overlap of 50% or more gives almost 
as much SNR gain as does continuous scanning [19]. 

The microwave speckle discussed above is to be distinguished from the 
laser speckle that arises in optical processors because of scattering by dust 
or imperfections of the optical elements. Laser speckle is normally reduced 
by using a "tracking" processor [20] to incoherently average the output image. 
The use of the incoherent integration techniques discussed above for microwave 
speckle reduction would also result in a reduction of laser speckle. Images 
produced by digital processors will also have a degradation that in some ways 
is similar to laser speckle, but is caused by the quantization and the finite 
word length of the processor. 

9. EFFECTS OF SPURIOUS MOTION 

At least three forms of motion other than the desired along-track motion 
of the SAR antenna can be distinguished. First, there is motion caused by 
earth rotation. This velocity can be large but varies sufficiently slowly 
to be considered constant over at least one synthetic-aperture length. This 
motion was simply handled by choosing a coordinate system fixed to the 
surface. Second, there may be motion of individual objects, such as vehicles, 
relative to a fixed background. MTI techniques may be useful here [7]. 
Similarly, there can be motion of one section of the object fields such as in 
one model of ocean-wave motion [10]. Third, there are spurious motions of 
the SAR itself. The form of the input function in the presence of spurious 
motion of the object will be presented. Then the effects on the image of 
spurious motion of both the object and the SAR are discussed. Some comments 
O n correction are made. 

Let the point object located at point Ao  (see Figure 1) have, at time 
t=to , a velocity 10  along the surface. It has components Ion  parallel to the 
SAR velocity V/ca , Von  normal to V/ca , and yov  vertical to the surface. The 
range r may tlien be derived by  techniques  followed in Section 2. If terms 
in x 3  and higher are neglected, then 
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frequency shift of the azimuth focussing function. A phase shift may be 
applied to the radar frequency to compensate. Although Vor  is dependent on 
range ro , a single compensating frequency shift is usually used over a broad 
spread of ranges since the variation Vor  is usually small. 

Occasionally, there may be a radial acceleration [7] that causes a 
quadratic phase-error sufficiently large to defocus the signal. Often it is 
fairly simple to refocus by trial and error. 

In the above derivation of range r, terms in x3  and higher were neglec-
ted. Such terms arise in the Taylor expansion from spurious motions having 
acceleration or higher derivatives in the along-track direction or having 
third and higher derivatives in the radial direction. Recall that for the 
azimuth focussing function, a linear term causes a shift of the output image 
and a quadratic error causes a defocussing that often can be refocussed. 
However, higher-order terms cause an image blurring that are not so easily 
corrected. Processing is considerably simplified when these terms can be 
neglected. For the range function f, the linear and quadratic terms relate 
to range walk and range curvature respectively. The higher-order terms will 
not normally be large enough to cause image degradation. 

10. SUMMARY 

A unified description of the signal received by a SAR is presented, 
which accounts for the effects of flight-path curvature, surface curvature, 
range curvature, the earth's rotation and antenna pointing errors. Curvature 
of the flight path and of the earth's surface is handled taking the azimuth 
coordinate as lying along the curved surface. The direct effects of the 
earth's rotation are eliminated by aligning the azimuth coordinate with the 
trajectory of the orbit along the surface itself. The two-dimensional 
Fourier transform of the recorded signal is derived. It is found that 
filtering in the two-dimensional transform plane is an attractive method of 
correcting for range curvature although several other techniques are worth 
considering. The - effects of antenna pointing errors due to the pitch and 
yaw of the vehicle, and to the equivalent yaw caused by the earth's rotation, 
are found to be limited to a shift in the azimuthal frequency of the spectral 
envelope. All that is then needed to obtain an image free of aberrations is 
to centre the processing window on this shifted envelope. No other modifica-
tion to the processing is required. Steering the antenna to point to the 
zero-doppler direction eliminates this shift problem entirely. 

It is shown that azimuthal focussing can be carried out using the 
same correlation reference function over an interval of ranges without 
seriously degrading the quality of the image. A corresponding range interval 
for range-curvature correction is derived. The range interval for azimuthal 
focussing is usually much smaller than for range-curvature correction. The 
trade-offs between resolution in range and azimuth in the presence of range 
curvature are derived. The resolution obtainable with no correction at all 
is given. Some methods of implementing incoherent integration to reduce 
microwave speckle are described. 
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Motion of the object results in an image that is offset from the 
correct position but is usually still in focus. Slowly varying motion errors 
of the SAR itself can usually be corrected for by the simple techniques used 
to correct for the effects of the earth's rotation and pointing errors. The 
effects of rapidly varying velocity errors of low amplitude can be corrected 
by motion-compensation techniques. 
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APPENDIXA 

Derivation of Ven and Vep 

A brief description of (5a) and (5h) are given here. Refer to Figure 2. 
From rules of spherical trigonometry for right spherical triangles we have 
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(A.1) coscP s = 
tang)lat

cotcPo 

and 

sine = sin4)lat /sinci)o . 
i 

The velocity components are 

Ven = (we
re coscP lat )coscP s 

and 

(A.2) 

(A.3) 

y
ep 

= (w r coscp)sincl). 	 (A.4) 
e e 	lat 	s  

After some manipulation and the use of sing) s = 11 - cos 2 4p 5 , (5a) and (5h) are 
obtained. 
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APPENDIX 	B 

Block Diagrams for Generating and Demodulating SAR Signals 

A simplified block diagram is given here for each of the three methods 
of generating and demodulating the SAR signal. Many variations of these 
circuits are possible. They were chosen to illustrate the principle and not 
necessarily to be a recommended circuit. In all three forms shown in Figure 
Bi, the stable local oscillator (stalo) generates a signal of frequency fc  
that is used both as the radar carrier and for demodulating the return 
signal. As a result, the stalo frequency is accurately eliminated from the 
output signal. All the boxes marked "mixer" include an appropriate low-pass 
filter. For azimuth offset, the offset frequency fo  is much less than fc . 
Thus, fo  need not be extremely stable. For range offset, frequency dividers 
and multipliers are used to maintain the proper relationship between fo  and 
f. For baseband operation, a 90 0  phase shifter is used. In-phase (I) and 
quadrature (Q) components are produced. 



fc+ fo MIXER 
f0 

LOW 
FREQUENCY 

OSCILLATOR 

MIXER 

f0  
TO 

RECORDER 

ei MODULATOR 

fp 

GENERATOR 	RECORDER 
TRIGGER P R F STALO 

ANTENNA 

CIRCULATOR 

(a) AZIMUTH OFFSET 

CIRCULATOR 
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MODULATOR 

PRF —tfp= fc /14 

I TO TRIGGER 
le  RECORDER M 

ANTENNA 

STALO 
fC+  4.1 MIXER 

tfr, 2 N /M 

X ri  

(b) 	RANGE OFFSET 

MIXER 

f 0  = N fp 

CIRCULATOR 

ANTENNA 

MODULATOR 

fc I STALO P R F 
PHASE'  GENERATOR  
SHIFTER 

MIXER 

TO TRIGGER 
RECORDER 

el MIXER 

(c) 	BASEBAND OPERATION 

Figure 81. Simplified circuits for generating input to recorder for (a) azimuth offset, (b) range offset and 
(c) baseband operation 
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APPENDIX 	C 

Derivation of the Fourier Transform 

In this Appendix, (29) is derived. First, perform the Fourier transform 
with respect to rf  of the function g(xf ,rf) given by (28). If the function in 
fo  and the c.c. terms are omitted, the following is obtained: 

4  4n 
-j2nf r /q 	r ro 	r o G(fx ,fr

) = a F (-- q r f ) e 2  

x -x (r )-x (r  ):) 	 Ca
p2 

0 	o  je  o 	-jr[f
r+2q/X ] qro 

(xf-x
0/p)2 -j2rf x r 

h (rxf 	
JP 	 x fdx . 
L/p 

(C. 1) 

Consider a linear FM waveform h(t) exp[jnkt 2 ] where h(t) is a real envelope 
and k is the sweep rate in Hz/sec. If the time-bandwidth product is large, 
then the spectrum M(f) is given approximately by [21] 

M(f) 1 	ejr/4 h (f) e_inf 2
/1' 

irfiC 
(C.2) 

In other words, if the sweep rate is sufficiently low, there is a one-to-one 
correspondence between t and f. 

The azimuth linear FM in (C.1) usually has a reasonably large time-
bandwidth product so that rule (C.2) may be utilized. The integration over 
xf  is performed to obtain (29). The constant 

1/ 	
/// p2 

	 
/7 = 1 li2-121  [f 

	

qr 	r Xr o 	 - 

is a slowly varying function of fr  near fr  = 0 and therefore 1/17FT = 

o 
X 
r/(2cap 2 ). The antenna pattern at the transform plane is therefore 
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[ 

fx  - (f r  + 2q/X r)(pcaxa /(qr0)] h   

- pca  L(f r  + 2q/Xr)/(qr0 ) 	' 
(C.3) 

The terms in fr  represent the effect of range curvature on the antenna pattern. 
Because the function h is broad and slowly varying and because, as seen in 
Section 4, for most practical cases fr  « 2q/X, little error in the output 
image is caused by neglecting fr . Hence, the frequency plane form of h 
given in (29) is used. 
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