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HF DIRECTION FINDING BY WAVEFRONT TESTING 

by 

D.W. Rice 

ABSTRACT 

Calculations are reported of the probability of observation of various 
degrees of phase-front non-linearity, for two and three signals incident from 
different directions upon a phase-measuring array. It is assumed that the 
signals fade independently, and that their amplitude probability densities 
are described by a Rayleigh law. It is shown that, under the worst-case 
conditions of equal powers in the signals, the probability of observing an 
rms phase deviation of 25 degrees or less from the best-fit straight line to 
the phase along an array, is about 0.5 when 2 rays are present and about 
0.2 when 3 rays are present. 

Experimental measurements over a 911-km mid-latitude path and 
a 2100-km trans-auroral-zone path, confirm the general behavior 
predicted by the theory. It is well known that amplitude fading can be 
attributed to various ionospheric effects; however the measurements 
show that modulation imposed on the signal at the transmitter can also 
play an important part in decorrelating the amplitudes of signals received 
(after different time delays) via different ionospheric modes. In the 
latter case, the modulation can markedly reduce both the waiting time 
between phase-linear events, and their duration. 

The experimental program included concurrent measurements over 
the same path using FMCW, CW and SSB signals from a co-operative 
transmitter. The FMCW signals were processed to provide direction-of-
arrival statistics on a mode-separated basis. The standard deviation of 
the direction-of-arrival varied from 0.3 degrees for E-mode signals, to 
1.4 degrees for F2 high-angle signals. The CW and SSB signals were 
processed by selecting only those phase fronts with rms phase deviations 
of 10 degrees or less. For these, direction-of-arrival standard deviations 
were in the range 0.6 to 0.9 degrees, with slightly smaller deviations 
being observed for the CW signals. 

1 
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I. INTRODUCTION 

Wave interference arising from multiple propagation modes constitutes 
a significant source of error in HF  direction-finding, particularly for those 
systems with apertures of a few wavelengths or less. One possible way to 
mitigate this effect is to take bearing measurements only at times when 
propagation appears to be nearly unimodal (i.e. dominated by one ionospheric 
mode). Probably the earliest attempt to do this was the "Dot-Lock" technique', 
in which bearings were taken on the leading edge of an amplitude-keyed signal. 
This technique was later extended to other types of modulation 2 . Workers have 
also noted that it may be possible to take advantage of mode amplitude fading 
or scintillation, which provides periods of a basically plane-wave condition 
at the receiving array 2 ' e . 

The time domain behavior of wave-front non-linearities observed at 
the Communications Research Centre with a 6-element linear interferometer of 
663 metres total aperture has been reported earlier k . It was found that the 
rms deviation from a linear fit of the radio-wave phase across the receiving 
array varied slowly when an unmodulated CW signal was being received, and the 
time scale of the observed variations was commensurate with that reported for 
ionospheric channel fading rates 5 . On the other hand, when the transmitted 
signal was SSB-modulated, the time scale of changes in wave-front nonlinearity 
was commensurate with that of the modulation. 

The foregoing work suggests that a simple phase linearity test is 
sufficient to select those bearing measurements which are relatively free of 
wave-interference error. While a scheme involving both phase and amplitude 
measurements might be more reliable 5 , good results were achieved without the 
additional complication of amplitude measurements. Further, it was found 
that, while the fading characteristics of the ionospheric channel provide 
periods in which one mode dominates, - any amplitude modulation which may have 
been imposed on the signal at the transmitter also plays a part and, in 
particular, can markedly shorten the waiting time between phase-linear events. 

In this paper we report an analysis of the three-ray Rayleigh-fading 
problem, of which the two-ray problem is a special case. Results are 
presented in terms of the probability of observation, across an antenna 
aperture, of an rms phase deviation less than some threshold value, as a 
function of that threshold. The theoretical results are compared with a more 
extensive set of measurements taken during the course of the experiment 
reported earlier'', and with some measurements made on another path which 
traversed the auroral zone. 

In the main body of this report, the more mathematical results are 
given in outline form only. More detailed derivations may be found in 
Appendix A. 

2. THE THREE-RAY RAYLEIGH-FADING PROBLEM 

Let there be three rays with statistically-independeht, Rayleigh-
distributed amplitudes xi, and with rms amplitudes liai , i1,2,3. Then the 
probability density functions are 
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(1) 

(5) 

X
2 

X i  
I 	i 	n exp 1- 	, 	x. < cc; i = 1,2,3 

— 
a 2 	2a2 

We may reduce the dimensionality of the problem by normalizing the amplitudes 
with respect to xl, and then computing a two-dimensional probability density 
function ,  by means of the theory of functions of random vectors 8 . 

Define a 3-dimensional random vector 

X = (X1' X2' 
X3 ) 

where the Xi , i = 1, 2, 3 are Rayleigh-distributed as given by equation (1). 

Define a new random vector 

Y = (Y1 ,  Y 2' Y3 ) 

(2) 

(3) 

where Y1 = X1 

X2 Y2  . 
 X

1  

X3 
Y3  . — 
 X

1  

(4) 

The inverse of the transformation in equation (4) is 

Hence, using the assumption that the Xi  are statistically independent, the 
Joint probability density for the Yi  is 

f
1 2 3 

y Y Y (Y1 , Y2 , Y3 ) = Jf 1x (Y1 ) fX2 (Y1
Y2 ) fX3

(Y1y3 ) (6) 
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where J Is the Jacobian of the inverse transformation in equation (5), 

ax1 ax1 ax1 

37 ]_ aY2 573 

ax2 Dx2 ax2 

3r1 a Y2 9Y3 

ax3 Dx3 ax3 

37 1_ 	3T2 

Combining equations (7), (6) and (1) yields 

5 	 2 	2 2 	2 2 } Y1 Y2 Y3 	 Y1 Y2  Y1 Y3  { Y1 f
Y1Y 2Y3 (Y  Y2' Y3 ) 	

exp 

a 2 a 2 a 2 	
(8) 

2a 2 	2a 2 	2a 2  

The joint probability density for variables y2 and y3  is obtained by inte-
grating equation (8) over yl , 

fY2Y3 (Y2' Y3 )  = / fY Y Y (Yr Y2 , Y3 ) dY1 o 	12  3 

which after some algebra yields 

J = 

fY2Y3 (Y2' Y3 )  = 
8(Y2 /q)(y3/q) 	 , 0<y2  < co; 0 < y3  < oo 	(9) 

+ (Y2 /1, 2 ) 2  + (Y3 /13 3 ) 2 i 3  

where g = aPaî and g = a 2 /a2  are the mean powers in rays 2 and 3 respectively, 3 1 
normalized to ray 1. It is readily shown from equation (9) that the probability 
density function f 	(y 2 , y3 )  has a maximum at (1/2b 2 , 1/21)3 ), where its value is 

Y1  16/(27b 2b3 ). 	2 13 

As an illustrative example, the two-dimensional probability density 
function of equation (9) is shown in contour form in Figure 1, for arbitrary 
parameter values b 2 = 1.5 and b3 = 2.0. 
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3. THE TWO-RAY PROBLEM 

We digress here to consider the two-ray problem, since it serves as a 
useful introduction to the continuation of the three-ray problem which will 
follow. 

3.1 PROBABILITY DENSITY AND DISTRIBUTION FUNCTIONS 

The marginal probability density of variable y2 may be obtained by 
integration of equation (9) over y3, which yields 

2 
fY (Y2 ) 	 '0<y < co 

- 13 2 (1+  _2/ 1,2 \ 2 

which is just the probability density function for the two-ray case 7 . 

The probability that the variable Y2 is less than or equal to the 
value y2, that is, the cumulative probability distribution function for y2, 
is 

Y2 	 b2 

	

2 	, 
F
Y2

(y2 ) = 	f, (y2 ) dy2  = 1 
b 2 

+ y
2 ° < Y2 œ  o 2 	2 

It is more convenient, since either ray may dominate, to define a new 
variable r on the range {0,1}, such that 

Y2' 	O  < Y2 < 1  

1/y2 , 1 < y 2  < co 

The variable r is the ratio of the amplitude of the weaker ray to that of the 
stronger ray, regardless of which one dominates. The cumulative probability/ 
distribution for r is then 	

) 
 

1 
FR

(r) = P[R < r] = F
Y2

(r) + 1 -  F(-) Y2 r 

( 10 ) 

(11)  

r (12) 

2 y2  

— 2 

2  r. b2 
2 	b 2  

FR
(r) = 1 + 	 2  ' 0 <r< 1 	 (13) 

	

ii.r  21)  2 	b2i_r  2 	- 

	

2 	2 
This result will be required in the next sub-section. , 
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3.2 WAVE-FRONT NON-LINEARITIES 

Two-ray interference is most easily visualized as the weaker ray 
producing corrugations in the otherwise plane equi-phase surface associated 
with the stronger ray 9 . It can be readily shown l°  that the deviation ch from 
the phase of the stronger wave is given by 

r sin (I)  tan ch 1 + rcosch 

where r is the ratio of ray amplitudes as defined in equation (12), and 6 is 
given by 

8 = kx(cos 11) 1  - cos 11) 2 ) - wdt 	 (15) 

Here k is the wave number (2r/wavelength), x is the distance along the array, 
thi and 4)2 are the angles between the ray directions and the array axis, wd 
is the radian frequency difference between the two signals (due, for example, 
to Doppler shifts), and t is the time. 

The mean-square phase deviation across a large antenna aperture is 
given by 

1 2n  
C 2 (r) = 	So  ch 2 (r,8) de 2Tr  

where ch is given by equation (14). The result of a numerical evaluation of 
equation (16) has been reported earlier'', where it was shown that aer) is an 
approximately linear function of r. This relationship is also shown here in 
Figure 2. The integration over 2r in 8 is equivalent to spatial integration 
over one period of the interference pattern, and hence is the result 
applicable when the antenna aperture is large compared to one period of the 
interference pattern. If the aperture is smaller than the period of an 
interference pattern, then the observed mean square phase deviation will be 
smaller. 

The numerical result shown in Figure 2 may be combined with the 
cumulative distribution function of equation (13) to yield the cumulative 
distribution function for the rms phase deviation. This result is shown in 
Figure 3. Note that for the worst case, when the mean powers in the two 
rays are equal, the probability that an nus phase deviation of less than 25 °  
will be observed is approximately 0.5. 

Figure 2 shows that the nus phase deviation 0'4)  is an approximately 
linear function of the ray amplitude ratio r. Thus acp should exhibit the 
same statistics as r. If a CW signal is transmitted, the time-domain 
behavior of the nus phase deviation (14)  should then correspond to that of the 
ionospheric channel. On the othet hand, if there are rapid amplitude 
variations because of signal modulation, then r may be thought of as the 
ratio of the magnitudes of the modulation envelopes as transmitted via the 

(14) 

(16) 



7 

two ionospheric modes, with the weaker signal a time-shifted and amplitude-
scaled version of the other. In this case, provided the time delay is at 
least of the order of the reciprocal of the modulation bandwidth, the time-
domain behavior of the ratio r, and therefore the rms phase deviation al) , 
depends primarily on the modulation, with a slow-varying ionospheric component 
superimposed. 

4. THREE -RAY INTERFERENCE 

When 3 rays are present, it is possible that the sum of the ampli-
tudes of any two rays may exceed that of the third. There is then no ray 
which dominates, and the associated wave-fronts become highly irregular in 
shape, with large deviations from linearity. This condition we refer to as 
"strong" wave interference. The probability of occurrence of this strong 
interference, may be obtained by integrating the density function of 
equation (9) over the appropriate region in (y2,y3) space. The boundaries 
for the integration are illustrated in Figure 4. The regions labelled 1, 2, 
and 3 are those in which rays 1, 2, and 3 respectively may be considered to 
dominate, a condition we refer to as "weak" wave interference. It is shown 
In Appendix A that the integral of equation (9) over the region of strong 
wave interference of Figure 4 yields 

2 	2 3  (l+b -+b ) / 2 2 3 

where P[S] denotes probability of strong interference, and b and b are the 
ratios of the mean powers in rays 2 and 3 respectively, normalized to ray 1, 
as previously defined following equation (9). Figure 5 shows contours of 
P[S] in (b2,b3 ) co-ordinates. The maximum probability of strong interference 
is 0.605, occurring when the mean powers in all three rays are equal. Thus 
In the worst case there is still an approximately 40% probability that one 
of the three rays will dominate, that is, its amplitude will be greater than 
the sum of the other two. 

As in the 2-ray case, in order to compute cumulative probability 
distributions for the rms phase deviation across an antenna aperture, it is 
necessary to resort to numerical methods. This computation involves 
integration of the probability density function of equation (9) over regions 
of (Y2,y3) space defined by contours of constant rms phase deviation. Such 
contours can be fairly readily calculated in the regions of weak wave inter-i/ 
ference, where the result is not greatly affected by the arbitrary relative 
starting phases of the signals representing the 3 rays. Some contours of 
constant nus phase deviation bd)  are shown plotted in Figure 6. The 
probabilitiy density function (equation (9)) which is integrated over regions 
defined by these contours is a function of 1) and bî, although the contours 
themselves are not. 

In the region near the brigin in Figure 6, the contours of constant 
rms phase deviation are closely approximated by quarter-circles. This means 

b 2 b 3 
P[S] - (17) 
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that the rms deviation of the phase from that of the strongest ray is a 
function of the total power in the other two rays, regardless of how it is 
distributed between them. This relationship is shown in Figure 7. 

In order to calculate the probability that an rms phase deviation will 
be less than one of the circular contours in Figure 6, it is convenient to 
change to polar co-ordinates in equation (9). Thus, with the substitutions 
Y2  = z cos°, y3 = z sine, the integral of equation (9) out to radius z is 
given by 

u 
8 1) 4 1) 4 	3  7 	 2 3 z sine cos6 	 

P[Z < z] = î 	S 	 dedz 	(18) 
z=0 6=0 [qq+2 2 (qcos 2 6+ qsin2 6)] 3  

which can be evaluated to yield 

11 2 13 2+(b 24.1)\2 z 2 
2 3 	2 3' P[Z < z] = 1 
(b+2 2 )(b+z 2 ) 

2 	2 where z 2 
= y2  + y3 . In the region z 2<1, equation (19) gives the probability 

(x 2+x2 ) 11  
2 3  

that ray 1 dominates by the factor z - 	' where the xi are the xl  

amplitudes associated with the three rays. The probability that ray 2 or 
ray 3 dominates can in principle be computed by integrating over the relevant 
regions of the probability density function; however it is easier to permute 
suitably the ray amplitudes and make repeated use of equation (19). 

Combining the results of equation (19) and Figure 7, one may compute 
the probability that any ray dominates sufficiently to produce an ring phase 
deviation less than some threshold, as a function of that threshold. The 
range of validity encompasses thresholds between 0 0  and 32 ° , where the contours 
of constant rms phase deviation are circular, as illustrated in Figure 6. For 
rms phase deviations larger than 32 ° , a different procedure must be used 
because the rms phase deviation becomes a much stronger function of the 
relative starting phases associated with the different rays. This is 
illustrated in Figure 8, which shows the relative phase across a 16.6-wave-
length aperture, for ray amplitudes of 1.0, 0.75, and 0.27, and various 
relative starting phases. 

Appendix B outlines a method of obtaining the probability distribution 
for the rms phase deviation, without the restriction to small deviation values. 
This method was used to confirm the result above for small thresholds, as well 
as to extend the result to include all possible threshold values. Saine results 
are shown in Figure 9. Curve 1 is the result when the average powers in the 
three rays are equal, while curve 2 is for the case in which the mean powers 
in rays 2 and 3 are equal, and sum to 1/4 the power in the strongest ray. For 
comparison, curves 3 and 4 show similar results for the 2-ray case which was 
illustrated earlier in Figure 3. 

(19) 
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The rms phase deviation has an upper limit of 52 ° * when only two rays 
are present. The upper limit for 3 rays is less definite, but for practical 
purposes appears to be about 125 ° . 

It was noted earlier in connection with Figure 3, that there is an 
approximately 50% probability of observing an rms phase deviation of 25 °  or 
less, when two rays with equal average powers are present. From Figure 9, it 
may be noted that this probability drops to about 0.2 when three rays of 
equal average powers are present. 

5. COMPARISON WITH EXPERIMENT 

There are two main points of difference between the idealizations 
assumed in the earlier theoretical discussion and calculations, and any 
measurements which can be made. The first is that the calculations assumed 
a very large antenna array, that is, one in which the angular separation of 
incoming rays was much greater than the array beamwidth. On the other hand 
a likely application of wave-front testing is to the situation in which the 
ray separation is of the order of a beamwidth or less. A second difference 
is that it may be desirable to use a very sparse array, rather than the 
filled (or continuous) aperture assumed for the calculations. Both of these 
factors would cause the measured rms phase deviations to be smaller than the 
calculations predict. 

A secondary consideration is that the calculations neglect the effect 
of noise. For good signal-to-noise ratios, the measurable effect is to 
reduce the occurrence of very low rms phase deviations. This can be seen in 
the experimental results which follow, for rms phase deviations of less than 
10 °  or so. 

5.1 INTERFEROMETER MEASUREMENTS, MID -LATITUDE PATH 

As reported earlier'', some measurements have been made over a 911 km 
path between Sept Iles, Quebec and Ottawa, Ontario, in which the receiving 
array at Ottawa contained 6 elements over a total aperture of 662.9 metres. 
(The array and associated instrumentation were part of the HF Direction-
Finding Research Facility at the Communications Research Centre ll .) Inter-
element spacings of 15.2, 30.5, 68.6, 167.6 and 381.0 metres were used, and 
the axis of the array was aligned in a direction perpendicular to the 
propagation path. Each of the six elements in the array was connected to a ' 
separate, phase-stable receiver with quadrature product-detector outputs. // 
Each receiver output was sampled and digitized at a rate of 1638.4 samples/ 
second for the SSB and CW signals, and at a rate of 128 samples/second for the 
FMCW signals. 

The transmitted signals consisted of a sequence of FMCW, CW, and SSB 
which was repeated every two minutes. Figure 10 shows the timing of the 

sequence, while Table 1 gives the relevant parameters. The two-minute 

repetition interval of the sequence was  interrupted every 20 minutes to make 

* The rms of a uniform density between -90 and +90 degrees is 52 °-. 



FMCW 
sweep rate 
sweep duration 
3 dB range resolution after processing 

25 KHz/sec 
4 seconds 

15 pseconds 
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an oblique sounding over the saine path. The frequency of operation was between 
7.5 and 8.0 MHz, except for a two hour period in the early morning of the 
second day, when it was 5.3 MHz. The frequency was chosen on the basis of the 
oblique ionogram information to maximize the range of mode delays present over 
the path. 

TABLE 1 

Transmitted Signal Parameters 

CW 
duration 	 5 sec 
3 dB Doppler resolution 	 0.3 Hz 

SSB 
duration 	 5 sec' 
pseudo — random modulation, repeat period 	 64 msec 
bandwidth 	 800 Hz 

All signals 
transmitted power 	 50-100 watts 

The measurements reported here were made on two consecutive days, on 
June 16, 1977 between 0900 and 2100 Eastern Standard Time, and on June 17 
between 0425 and 1700. 

Figures 11 and 12 show cumulative distributions of occurrence as a 
function of rms phase-deviation threshold for wave-front nonlinearities as 
measured by the six-element interferometer. The points denoted by the 
symbol + indicate data from the CW portion of the signal, while the points 
denoted by the symbol o indicate the results for the SSB portion of the 
signal. The solid line is a theoretical curve (as in Figure 3), based on the 
assumption of two rays 2resent, and adjusted for reasonable fit to the data 
through the parameter bz which is the ratio of mean powers in the two rays. 
The theoretical curves in Figures 11 and 12 are intended only to illustrate 
that the measured distributions have a shape similar to that which would be 
expected theoretically. It is unlikely that the ratio of mean powers in the 
two strongest rays was as small as that indicated. It is more likely that 
the distributions have been somewhat shifted to the left as a result of the 
two factors mentioned earlier: the small angular separation of the incoming 
rays, relative to the array beamwidth, and secondly the sparseness of 
elements within the array. 

It was known from the FMCW sounding data that there were four or five 
modes propagating most of the time. It would seem from the results of 
Figure 11 and 12, that only the two strongest modes were significant with 
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respect to the wave-front test. There was no evidence of strong wave inter-
ference as defined in the earlier discussion of the three-ray case. 

It may be noted from Figures 11 and 12 that the occurrence of phase 
front non-linearities was slightly higher for the SSB signal than for the 
CW signal. This may be due, at least in part, to the signal processing which 
was slightly different for the two signals. The CW data was digitally 
filtered to reduce the noise bandwidth by a factor of about 4, and to eliminate 
spurious dc offset in the receiver outputs. This additional processing could 
not be done for the SSB signal because of its wider bandwidth. 

5.2 FILLED APERTURE MEASUREMENTS, AURORAL ZONE PATH 

In another experiment using the CRC facility, measurements were made 
over a 2100 km north-south path between Frobisher Bay and Ottawa. Data were 
recorded from 42 element locations within the larger, 1181 metre aperture, 
and from 16 locations within the 236 metre orthogonal aperture. The direction 
to the transmitter was 5.4 0  from the bisector of the two arrays. Fixed-
frequency transmissions of five seconds duration were made once per minute, 
with gaps every 20 minutes when oblique ionograms were produced. 

Figure 13 shows measured cumulative probability distributions of ruts  
phase deviation for both arrays obtained over an approximately 6 hour period, 
and, for the longer array, a subset of these data for a 35 minute time period. 
The data from the longer array are similar in magnitude to the results derived 
earlier for the 3-ray case. On the other hand, the shorter aperture is not 
able to measure the full extent of phase front deviations, and the result 
appears to agree more closely with the theoretical two-ray curves. 

5 .3 TIME SCALES OF PHASE - FRONT NONLINEARITIES 

As reported earlier'', the time scale of variations in phase-front 
shape can extend over a wide range of values. This point can be demonstrated 
from the time-domain behavior of the rms phase deviation as observed in the 
interferometer experiment described in Section 5.1. An example of the 
variation of the measured  ruts phase deviation, over a 5-second period, is 
shown in Figure 14 for a CW signal. The nus  deviation changes with a time 
scale of the order of one second, a value commensurate with the rate to be 
expected for ionospheric channel fading 5 . The normalized auto-covariance 
function (correlation coefficient) for the data of Figure 14 is shown in 
Figure 15. The covariance function has the general appearance of a decaying/ 
cosine, with the first zero crossing at 1.7 seconds. This means that low 
values of ruts  deviation, corresponding to the dominance of one ray, should 

persist, once present, for a few hundred milliseconds or more. Conversely, 
if one is observing a high  ruts phase deviation, it probably will be necessary 
to wait a similar length of time for a quasi-single-omoded condition to 
reappear. 

It should be noted that in cases in which the period of the inter-
ference pattern is larger than the array aperture, another source of 

significant time variation in the observed  ruts phase deviatioh is the drift 
of the interference pattern across the array. Drift of the interference 
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pattern is a manifestation of differential Doppler shift between rays. While 
the issue is not crucial to the conclusions reached here, other observations l°  
do support the view that, for mid-latitude circuits and apertures of the size 
used here, ray amplitude fading is the dominant cause of phase front decor-
relation, although undoubtedly drifts due to differential Doppler shifts also 
contribute. 

The time variation of the rais  deviation  ath  for the modulated portion 
of the signal is shown in Figure 16. The resrlt is in sharp contrast to that 
shown in Figure 14 for a CW signal. Note in particular that low values of 
rms deviation recur much more frequently for the modulated signal, but they 
do not persist. The normalized auto-covariance function for the data of 
Figure 16 is shown in Figure 17. The correlation is small almost everywhere, 
except for impulses recurring at multiples of the basic period (64 milliseconds) 
of the pseudo-random sequence used as the modulating signal. (The impulse at 
zero delay is obscured by the y-axis.) The magnitude of the impulses dies 
away at longer times, corresponding to the decorrelation produced by the 
ionospheric channel, as shown in Figure 15. 

As a summary of the entire 12 hours of measurements on the first day 
of the 2-day trial, the normalized auto-covariance function obtained by 
averaging the corresponding power spectra for the CW data is shown in Figure 18, 
while Figure 19 shows the corresponding auto-covariance function for the data 
from the modulated signal. Again, the marked difference in time scale between 
the  two cases clearly illustrates that modulation can markedly influence such 
observations. 

5.4 ANGLE-OF-ARRIVAL COMPARISONS 

The objective in applying a wave-front test is to improve the accuracy 
of DF measurements. Applied to an interferometer array such as that used here, 
wave-front testing is an attractive way of making available the benefits of a 
rather large aperture at the expense of only a small number of antenna elements. 

A pertinent question is the DF performance of an interferometer which 
uses a wave-front test. The experimental work accomplished to date and 
reported in earlier sections of this paper was not optimum to answer this 
question because only a single linear array was used. Measurements using 
two orthogonal arrays offer the potential benefit of sorting by elevation 
angle, so that performance in that case could approach that available via 
the mode which provides the best angular accuracy. Without elevation-angle 
sorting, the variance in measured bearing should, at best, lie somewhere 
between the intrinsic accuracy provided by each of the modes considered in 
isolation. 

The FMCW data collected in the interferometer experiment were computer-
processed to provide angle-of-arrival standard deviation statistics for each 
of the modes which could be isolated by virtue of their separation in time 
delay. The bearing has been taken as equal to the incidence angle measured 
with respect to the array axis, since the transmitter was located in a 
direction broadside to the array. Table 2 shows the average standard deviatidn 
of the bearing for each mode for each of the two days, each standard deviation 
contributing to the average being based on a 1-hour measurement interval. 
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Standard deviations range from about .3 degrees for the E mode, up to 1.36 
degrees for the F2(o)H mode (F2 layer, ordinary magnetoionic component, high 
angle ray). 

TABLE 2 
Standard Deviation of Bearings, Classified by Ionospheric Mode, Range-Resolved FMCW Data 

Mode of Propagation 
Standard Deviation, Degrees 
Day 167 	 Day 168 

EL 	 .33 	 .40 
EH 	 .27 	 • 

Es 	 .67 	 " 
F1(o)L 	 1.18 	 .93 
F1(o)H 	 1.05 	 .84 
F1(x)H 	 * 	 .8e 
F2(o)L 	 1.07 	 * 

F2(o)H 	 1.36 	 * 

* insufficient Observations 

Key t,o mode designations: 

E ionospheric E layer 
E s  sporadic E 
F1 	ionospheric F1 layer 
F2 ionospheric F2 layer 
L low-angle ray 
H high-angle ray 
(o) ordinary magnetoionic component 

(x) extraordinary magnetoionic component 

Table 3 shows the result of a similar analysis performed on the CW-
and SSB-signal data. A bearing was derived from the average of all those 
phase-front measurements which passed a 100  threshold test within each 5-second 
data segment. The bearing standard deviations were then calculated from these 
values in 1-hour batches, and the hourly figures averaged, to produce the 
values shown. The bearing standard deviations for the wave-front test data 
range from .6 to .9 degrees, and thus are within the range of values found 
for the separated ionospheric modes as shown in Table 2. However, there is 
some scope for possible improvement if an orthogonal array were used to 
Permit sorting by elevation angle. 



CW signal .73 	 .60 

TABLE 3 

Standard Deviation of Bearings, Scan-by-Scan Wave-Front Test, Phase Threshold 100  rms 

Standard Deviation, Degrees 
Day 167 	Day 168 
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SSBsignM 	.91 	 36 

6. CONCLUDING REMARKS 

A theoretical analysis has been performed to delineate the general 
probability characteristics of the rms phase deviation across an antenna 
aperture in the presence of two and three-ray wave interference, when the 
ray amplitudes can be described by statistically-independent Rayleigh 
probability density functions. It is shown that in the- worst case of equal 
average powers, the probability of observing an rms phase deviation of 25 ° 

 or less across a large aperture is 0.2 if 3 rays are present, and 0.5 if 
only two rays are present. 

The general probabilistic description of the behavior of wave-front 
nonlinearities has been confirmed by the results of two different experiments, 
and it has been shown that the bearing accuracy achievable by selection on 
the basis of a wavefront linearity threshold is comparable to that on single 
modes. It therefore seems likely that some further improvement in bearing 
accuracy could be achieved by making measurements on orthogonal arrays and 
applying a weighting procedure on the basis of elevation angle and possibly 
other factors. 

Measurements have also shown that the time scale of changes in wave-
front non-linearity can be significantly affected by the modulation imposed 
on the signal at the transmitter. In particular, the modulation can markedly 
shorten the waiting time between phase-linear events, which would otherwise 
be controlled by ionospheric fading with a period of the order of a second. 
The effect may be expected to be largest for signals which have significant 
amplitude modulation, with a bandwidth of the order of or greater than the 
reciprocal of the time delay between ionospheric modes. Thus the effect 
could best be exploited by a DF system which takes measurements on a similarly 
short time scale. 
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RATIO OF MEAN AMPLITUDES, RAY 2/RAY I (b2) 

Figure 5. Contours of probability of strong wave interference when 3 rays are present, as a function of the mean 
powers in rays 2 and 3 normalized to ray 1. Strong wave interference is defined as the condition that the sum of 

the amplitudes of any two rays exceeds that of the third. 
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AMPLITUDE RATIO,RAY 2/RAY I (y2 ) 

Figure 6(b). As in (a), exCept that tl,e colnourà are  More detailed and restricted to a region near the origin. 
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APPENDIX A 

Mathematical Details 

In this Appendix we derive the principal results which are quoted in 
the main body of the report. 

Probability Density Function for y2 , y3  

Equation (8) for the joint probability density function of variables 
Y1 ,  y2' y3 is 

5 	 ,2 	v 2 v 2 	v 2 v2! 
Y1 Y2 Y3 	'1 	'1 '3 

) = fY
1Y2Y3 Yl , Y2' Y3 	a 2 a

2 a2 eX p - 	- - 	(Al)  
2a 2 	2a 2 	2a 2  

1 2 3 	1 	2 	3 

and the joint probability density for variables y2  and y3  is obtained by 
integrating equation (Al) over yr  

00 

fY Y (y2 , y3 ) = 	
f1 2 3 Y Y Y (Y1 372 Y3 ) dY1 

2 3  
0 
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(A2) 

Equation (A3) may be integrated bj  parts using 

fudv = uv - fvdu (A5) 
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with the substitutions 

u = y4 , dv = y 1 exp 1 

and hence 

du = 4y1 dyi , v = -b 2  exp - 
2b 2  

Then (A3) becomes 

2 
Y 2Y3 

 Y2' Y3 )  - 	
Yi 13 2,4 ex, _ 	, I fY2Y3 ( 	 '1 a 2 a 2a 2 	 2b 2  1 2 3 

The first term in the square brackets is zero at both limits, and the second 
term may again be integrated by parts, where 

2 
- Y u  = 4b2 y2 

' 	dv = y1  exp  l  2b 2 	-I- 

and hence 

y 2 

du = 8b 2  yi  dyi, v_b2exp_Lk  

Hence (A7) becomes 
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(A13) 

33 

_ 	L  8y,y3b4 	
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(A10) 

Substituting (A4) into (A10), we have 

fY Y (Y2 , Y3 ) 
2 2 2 	2 2 2 

2 3 	 (aa + aia3y2  + ala2y3 )3 

Define b 2 = a2/a2 ' 13 2 = a 2/a 2 
2 	2 l 	3 	3 1 

Then (All) can be put in the form 

8(y2/q)(y3 /b) 

fY2
Y3 

(Y2' Y3 )  - 
[1 	(y 2/b 2 ) 2  + (y3 /b3 ) 2 1 3  

which is equation (9). 

Probability Density Function for y2  

To obtain the probability density function for variable y 2  alone, it 

is necessary to integrate equation (A13) over y3 : 

(A14) 

(A9) 

8 Y2'
,  
3-1-2-3 
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or 

which is  equation (10). 

Probability of Strong Interference 

The integral of equation (9) over the interior region shown in 
Figure 4, yields the probability that the sum of the amplitudes of any two 
rays exceeds the third, a condition we define as "strong" wave interference. 

Let P[S] denote the probability of strong wave interference. Then 

f P[S] = 11 

	1r2  

Y2=0 Y3=1-Y 2 

Y Y (Y2' Y3 ) dY3 dY2 
2 3 

The inner integral in (A16) is where 
fY2Y3 

(y
2
,y

3
) is given by equation (9). 

the same as in (A14), except for the limits. 
noting that the square of the lower limits 1 
becomes 

Putting in the limits, and 
- y 2  and y 2  - 1 are equal, (A16) 

P[S] 
	 Y2 	 Y2 

dy 
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By completing the square in each case, (A18) becomes 
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With the substitutions (A18) - (A24), (A17) becomes 

ul + 1) 2 13  J 	!  b 2 

	

(b 2 	b2) 2 
c°  

P[S] - 	
+ 	 [11 2  + le]

2 	dul 
2 	3  2 b 2  b4  2 3  

	

2 	3 	 1 
b 2 
2  _ 

b 2l_b 2 
. 	2 3 

u1 
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b 2 b  
P[S] = 	2 3  

	

(132 	b)2  

	

2 	3 

1 
f.. 2 	n  2 ) 
‘ui " 

(b 2  +  b) 3  2 	3 

2 b 4  b  3 

2B 2 	+ up 
u 1 

CO 

u2 - 
b 2  3 

CO 

1 
-r + tan-1(_2) 

2B 3  
[tan-1( 1) 

CO 

b 2  2  

	

b 2 	b 2 

	

2 	3 

2 u2 U
1 

= 
2 	2 
2 + b3 

Then 

u1 

CO 

1 

 + B2 ) 

b  
2 	 2  

ul - 	 - 

	

b 2 + b 2 	 b 2 + b 2 
2 	3 	 2 	3 

CO 
u2  

2B 2  (B 2  + u22 ) 

-b 2  2  
b 2  + b 2  2 	3 

00 



or 

n b2 b3  P[S] = 
[1 	b2 	b 2 ] 3 /2 

	

2 	3 

(A26) 

Now sin6 cos6 de = 1 — d(sin2 6) 
2 

and b 2  cos 2 6 + b2 sin 2 8 	b2 	(b 2 _ 1)%  2 sin 2 e  
3 	 2 	 3 	2 	3' 

(A28) 
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Only the last pair of terms survive, thus 

(g + b;) 3  

2b 3  1)3 (1 	b 2 	b 2 
2 3 	2 	3 

-1 

	

-b2 	 -1 	
b2 

an 	
2  - tan 	

2  
X - t 

B(g + b2) 3 	 B(b 2  + b2 ) 2 	3 

which is equation (17). 

Probability Density Function in Polar Co -ordinates 

With the substitutions y2  = zcos 6, y3  = z sin 6, the integral of 
equation (9) over the first quadrant, out to radius z, is given by equation (18), 

it 
z 

P[Z 	z] = 	1 	

4 4 3 8 b 2 b3 z sine cos6 
3  adz 	(A27) 

z0 6=0 

	

rb 2 b 2 	z 2„2 
UV

3 
cos 2  6 + b 2  sin2 6] 

= 	 2 3 	 2 



rb 2 b2 + z 2 b2 4_ z 2 112 ._ bN 2 sin 2 01 3  i. 	
2 3  

0=0 ' 2 3 	3 	' 2 	3' 

41) 4  1) 4  z 3  d(sin2 0) 
2 3 41) 4  b 4  z 3  d(sinz 0) 

z=0 

or 

b2 b2 	112 4. bN 2 z 2 
2 3 	2 	3'  

P[Z < z] = 1 
/1 2  + Z 2 ‘ (1 2 	z2 ) 

2 	3 

(A29) 

Putting these in (A27) 

P[Z < z] 

21) 4  h 4  

	

b 2 - b 2 	[b 	z 2 )1 2 	[g (1); + z 2 )] 2  

2 3  

2 	3 z=0 
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dz 

dz 

which is equation (19). 





8a a a; y2  y3  

(-2 2 a
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a
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+ a 2 a 2 y 2 a 2 a 2 
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APPENDIX B 

The Cumulative Probability Distribution for the RMS 
Phase Deviation in the Presence of Three Rays 

The variation in space of the phase of a signal which is the summation 
of three rays can be calculated numerically by vector summation. For 
simplicity, we consider the three rays to be confined to a plane which also 
contains the linear antenna aperture. Additionally and without loss of 
generality, the first ray is assumed to have unit amplitude and to be incident 
from a direction perpendicular to the array. Then the net signal at distance 
d along the antenna array is 

Ae ig)  =  1+y2 	+ 	J (1) 3 
Y2 e 	Y3  e 
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(B1) 

2nd where (1)2 = a2 + --57 cos 62, 4, 3 
starting phases for rays 2 and 
are the angles of incidence of 

2nd = a3 + —X cos 63; a2 and a3 are arbitrary 
3 respectively at the array origin; 62 and 63 
rays 2 and 3, measured from the array axis. 

The rms deviation clef)  of the phase 4)  from the best-fit straight line 
is the parameter of interest. It is nearly independent of 02  and  63 provided, 
for total antenna aperture length L, L/X cos 62 >> 1, L/X cos 03  » 1, and 

1L/X(cos 0 2  - cos 03)1 >> 1, i.e., the rays are spread sufficiently in angle 
that the period of the interference patterns for the rays taken pair-wise, is 
much less than the size of the aperture. For the computations reported here, 
values of L/X cos 02 = 4 and L/À cos 03 = 7.5 were used. 

The rms deviation oil)  is a function of random variables a2, a3, y2 and 
Y3.  The arbitrary starting phases a2 and a3 have no preferred values and 
hence have uniform probability densities over the interval (0,2r). The 

normalized amplitudes y2 and y3 have a joint probability density given by 
equation (All) of Appendix A as 

where the ai's are proportional to the mean ray amplitudes. Thus given values 

of the variables a2' a3' y2' y3' 
and the parameters al' a2' and  a3' the 



(B3)  

(B4) 

(B5)  

(B6)  

(B7)  
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phase (I) as a function of distance d along the array, and its rms deviation 
from a best-fit straight line, can be computed, along with the probability 
of the given set of variables occurring. The procedure can then be repeated 
over the range of all the parameters and the result accumulated appropriately 
to yield the cumulative probability distribution for a(1) . 

A difficulty arises because the probability density function for (y2,y3 ), 
equation (B2), is defined on the semi-infinite space (0 < y2  < co, 0 < y3 < co). 
In practice,. the Computer integration over (Y2,Y3) would-have to be i.runcated. 
An alternative solution is however available. 

It is equally valid to define the amplitude normalization in terms of 
any of the three amplitudes. Let the individual ray amplitudes be x

1, 
x2 

and 
x3' The variables y2  and y3 were defined as 

	

X 2 	x3  

	

2 x1 	3 x1 

Define 

	

x
l 	

x
3 u = —, u 

	

1 x2 	3  x2  

and 

	

x1 	x 2 w = — , w = 

	

1 x3 	2 x3 

Then in a method paralleling the derivation of equation (All), other 
density functions in (ul'  u3  ) and(wl

,w2 ) coordinates may be obtained: 

4 4 4 8a1 a 2 a3 ul u3  (u 	) - fU 1II
3 	

l'
u 

 3 	( 2 2 	2 2 2 	2 2 2 al a3 + a2 a3 ul + al a 2 u3)3 

and 

4 4 4 8a1 a2 a3 wl w2  fW1W2 
(T41'w2) - ( 2 2 

	

a
l 

a2 + a
2 a2 w2 	a 2 a2 w2

) 

	

2 3 1 	1 3 2 
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The u and w variables may also be expressed in terms of y2  and y3 , as follows: 

ul  - 1/y2  , u3  = y3 /y2 	 (B8) 

and 

wl = 1 /Y3 ' w2 = Y2/Y3 

Some consideration will show that the transformation (B8) maps the 
region in (y2 ,y3) space which is to the right of y2=1 and below the diagonal 
yry3 , to the unit square in (u1,u3) space, that is to the region 
0 < ul < 1, 0 < u3 < 1. Similarly, transformation (B9) maps the region above 
y3=-]  and  abovè-the diagonal, to the unit square in (w1,w2) space. These 
transformations are illustrated in Figure Bi.  They provide a convenient method 
of numerically integrating over all probability space. 

Based on this analysis, a computer program was written to compute the 
cumulative probability distribution for the ruts phase deviation (71) . Figure B2 
shows the main program flow. Results are plotted as curves 1 and 2 of 
Figure 9 of this report. 

(B9) 

n 
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.rtc, 

rn 

cr 

O  

MAPS TO UNIT SQUARE 
IN  (W1,  W2) CO—ORDINATES 

MAPS TO UNIT SQUARE 
IN  (U1,  u3) CO—ORDINATES 

0 
AMPLITUDE RATIO, RAY 2 / RAY I ( y2 ) 

Figure 81. Mapping of (y2,y3) space to (w1.w2) and (u 7,u3) coordinates. 
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D 	
EQTN

ESCRIPTION 	 STEP 
NO 

FOR MODE AMPLITUDE RATIOS 	y 2  = p, y 3  . q; 

	

p = 0.05 to 0.95 at intervals of 0.1; 	 1 
q . 0.05 to 0.95 at intervals of 0.1 

COMPUTE PROBABILITY DENSITIES 

f
Y2Y3

(p,q), 	f
U1U3

(p,q), 	fu  la 	(p,q) 	 B2,B6,B7 	2 

TRANSFORM 	ul  . p, u 3  = q 	TO 	(y2 ,y3 ) 
3 

	

1 	S. CO-ORDINATES: 	, 	= — 	y 	_ 	 B8 

TRANSFORM wl  = p, w2  . q 	TO 	(y2 ,y3 ) 
4 

1 
CO-ORDINATES: 	y2 	11.  , y3  . î 	 B9 

FOR ALL 	
' 

a,2 	a3 
 IN RANGE (0, 2n) 

5 
AT INTERVALS OF 1 

FOR AMPLITUDE RATIOS 
(p , q) ,  (1, I) , 

PP 	PP 	
6 

COMPUTE NET SIGNAL AS A FUNCTION OF 

DISTANCE d BY VECTOR SUMMATION 	
Bi 	7 

FIT STRAIGHT LINE TO THE COMPUTED 	 8 
PHASE VS d FUNCTION 

COMPUTE RMS DEVIATION(' FROM THE 

	

(I) 	 9 
STRAIGHT LINE 

FOR THE COMPUTED %, ADD ITS PROBABILITY 
OF OCCURRENCE (COMPUTED AT STEP 2), TO 	 10 
OCCURRENCE HISTOGRAM 

CUMULATE OCCURRENCE HISTOGRAM TO OBTAIN CUMULATIVE PROBABILITY 
DISTRIBUTION FOR 0

(I, 	
11 

Figure 82. Program flow for computation of the cumulative probability distribution of the 
rms phase deviation across an antenna aperture, in the presence of three Rayleigh-fading signal& 








