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THEORY OF CONICAL-SCAN RADARS FOR LOW-ANGLE TRACKING 

by 

J. Litva 

ABSTRACT 

In this report, a description of the tracking 
behavior of conical-scan radars with low-angle 
targets is presented. To begin, an equivalence 
is established between monopulse and conical-scan 
radars. Transformations are then developed from 
this equivalence, which permit one to treat a 
conical-scan radar as an equivalent monopulse 
radar. An example is given of the use of these 
transformations for simulating the low-angle 
tracking behavior of conical-scan radars. The 
simulated result is compared with a low-angle 
conical-scan radar measurement. Since approxi-
mations are made in developing the theory 
presented in this report, a discussion is given 
on the range of tracking parameters for which 
the theory is valid. 

1. INTRODUCTION 

In the first part of Section 1, the scope and purpose of this report 
are presented. A brief introduction is then given, in the remainder of 
Section 1, to the low-angle tracking problem and to monopulse and conical-
scan radars. 

1.1 SCOPE AND PURPOSE 

Theoretical results for describing the behavior of conical-scan radars 
with low-angle targets are presented in this report. The theoretical 
development takes advantage of the similarity in behavior of monopulse and 
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conical-scan radars. An equivalence will be demonstrated, which will allow 
us to formulate the problem of modelling conical-scan radars in terms of an 
equivalent monopulse radar. This approach is adopted simply because of the 
difficulty of developing a theoretical model of a conical-scan radar starting 
from basic principles. 

In pursuing the equivalence approach, one effectively divides the main 
problem into two smaller problems. First, equivalent monopulse patterns are 
derived for the conical-scan radar. Secondly, one solves for the low-angle 
target signature of the conical-scan system using the existing monopulse 
radar theory (see Appendix A). 

Simplifying assumptions are made in developing the monopulse equivalence 
relations. It will be shown that any errors resulting from these approxima-
tions will be small, or in other words, of second order. 

A typical example of the use of the theoretical results developed in 
this report is presented in Section 6. The signature of a low-angle target 
tracked by a particular conical-scan radar is derived. The computed result 
is compared with a low-angle conical-scan radar measurement. Reasonable 
agreement will be seen to exist between these two results. 

The primary purpose of this report is to demonstrate the equivalence 
between conical-scan and monopulse radars. Since conical-scan data are more 
readily available than monopulse data, the motivation for this work arises 
from a need for making results obtained by an analysis of these data accessi-
ble to furthering our understanding of the behavior of monopulse radars. A 
secondary purpose is to provide a better understanding of the behavior of 
conical-scan radars. The latter is an essential first step if the multipath 
performance of conical-scan radars is to be improved. 

It is intended that in future work the material contained in this 
report be used to develop a theoretical model for conical-scan radars so that 
a parametric study can be made of their low-angle tracking performance. The 
model will permit use of existing experimental data for validating the conical-
scan theory and ultimately help our gaining insights into monopulse radar 
theory. It is expected that the results given here will be used for improv-
ing the low-angle tracking behavior of monopulse radars. In fact, because 
of the equivalence established here, data and results obtained for and by 
either type of radar can in the future be used for improving the tracking 
performance of both. 

1.2 THE LOW-ANGLE TRACKING PROBLEM 

The accuracy of conventional tracking radars has been demonstrated to 
fall off quite markedly for targets over land and sea if the target's 
elevation angles are less than one or two beamwidths 1 ' 2 ' 3 ' 4 . At these low 
elevation angles a portion of the electromagnetic (E-M) energy reflected 
from the surface of the sea or land is received by the radar. The interfer-
ence of the direct and indirect E-M waves modifies both the amplitude and 
phase of the radar signals used for aligning the aperture of the radar with 
the incoming E-M waves (see Figure 1). This interference phenomenon, known 
as multipath interference, produces large errors in the measured target 
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Figure 1. Low-angle Tracking Geometry for a Conical-scan Radar 

elevation angle, whose magnitude usually approaches one beamwidth. Multipath 
interference can also cause a loss of track in the nulls of the radar's 
amplitude interference pattern. Although the problem has been known from the 
beginning of radar a solution has only been sought recently because of the 
growing threat to naval ships from very low flying anti-ship missiles - so 
called sea-skimmers. 

1.3 TRACKING RADARS 

Microwave tracking radars are used to measure coordinates of radar 
targets; usually, range, elevation and azimuth. Tracking radars used in 
association with weapons systems are normally called fire control radars. 
They are designed primarily to protect the vehicle in which they are located 
from air targets. Their measurements of target coordinates are used for fire 
control, or in other words, to predict future target positions, so that the 
carrier's weapons may be effectively deployed against targets. Shipborne and 
tank-based tracking radars usually operate at X-band. They are normally 
constrained to the higher end of the radar band of frequencies because of 
space and weight constraints imposed by the vehicles in which they are 
located. Long range ground-based systems, on the other hand, normally 
operate at S- or C-band to take advantage of lower radar wave propagation 
losses. In addition to tracking aircraft and missiles, ground-based systems 
are used for more exotic functions, such as tracking satellites. 

The elevation and azimuth of a target are derived from measurements of 
the radar signal on two or more radar beams. These beams may be present at 
all times or may exist sequentially in time. It follows that the antenna 
terminal voltages will be different for the two beams, and if subtracted to 
form an error voltage, the result will be a function of the angle between 
the antenna boresight and the target's line-of-sight. The polarity of the 
error voltage specifies the polarity of the error angle. When the error 
voltage is zero, the antenna boresight coincides with the target's line-of- 
sight. 

The method by which the squinted radar beams are formed defines the 
three generic types of tracking radars: Sequential lobing, conical-scan and 
monopulse (simultaneous lobing). Of the three types of tracking radars, the 
monopulse is the most recent in terms of technology and development. Conical 
scanned radars are the most common type found in active service. Sequential 
lobing radars represent a very old form of radar technology and are not 
likely to be encountered in practice. They were used primarily as target 
height finding radars. 



1.4 MONOPULSE RADARS 

Monopulse radars, as their name suggests, can measure the target's 
coordinates from a single radar pulse. They accomplish this by measuring the 
amplitude of the incoming signal on squinted overlapping beams that coexist 
continuously. The angle-of-arrival of the target can be derived from the 
ratio of the amplitudes of the signals received on the two beams. 

In practice, the radar generates two new radar signals from the ones 
received by the squinted antenna beams. One is derived by summing the two 
signals and the other by subtracting the two signals. The resulting signals 
are called sum and difference signals. One can think of the sum and differ-
ence signals originating from sum and difference beams rather than from the 
elemental monopulse beams. The error signal is defined as the real part of 
the ratio of the difference signal and the sum signal (see Appendix A). 
Essentially, the error signal is the difference signal normalized by the sum 
signal so as to be independent of target cross-section and range. The sum 
signal is also used for target ranging and as a phase reference for defining 
the real part of the error voltage. 

Since angle measurements are required in two dimensions, two error 
functions are required, one for azimuth tracking and the other for elevation 
tracking. Normally, monopulse radars have four beams which are divided into 
two pairs; one pair giving beams squinted along the vertical axis to measure 
elevation angle and the other pair giving beams squinted along the horizontal 
axis to measure azimuth angle. 

Monopulse radars are capable of tracking single targets with an 
accuracy of 1-2 percent of the antenna beamwidth (BW). When tracking multiple 
targets separated by less than one BW, the radars' accuracy is degraded 
because of interference effects which produce erroneous error signals. A 
case in point is the low-angle tracking problem, where the target and its 
image are separated by less than one BW. For low-angle targets the accuracy 
of monopulse radars is reduced to 0.25-1.0 BW, depending on sea state. The 
greatest target tracking errors occur for perfectly smooth seas. 

The behavior of monopulse radars tracking low-angle targets is quite 
well documented in the literature. White 5 , for example, gives a low-angle 
target signature or plot of measured target height versus range for an 
experimental monopulse radar operating at S-band over smooth water. The 
S-band radar result shows a well-defined interference pattern. Whenever 
the change in range of the target resulted in the difference in path lengths 
for the direct and indirect signals to vary by one wavelength a cycle was 
added to the interference pattern. The peak-to-peak magnitude of the inter-
ference pattern is a function of the radar antenna BW and the angular 
separation of the target and its image. As the surface of the sea becomes 
perturbed a portion of the reflected or indirect signal, which previously 
was totally coherent, becomes random or diffuse and a noise-like component 
appears on the target signature. The ratio of the coherent to the incoherent 
components of the reflected signal decreases with increasing sea state. At 
about sea state 2-3, the target signature changes from being quasi-sinusoidal 
to becoming predominantly random or noise-like. 
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The theory for describing the behavior of monopulse radars with low-
angle targets is also well documented in the literature 5 ' 5 ' 7 ". White 5  
derived a theory which agreed with experimental results. Equations for 
describing the low-angle behavior of monopulse radars are derived in Appendix 
A. Their development is very straightforward, which demonstrates the relative 
ease of modelling monopulse radars. 

1.5 CONICAL-SCAN RADARS 

Conical-scan radars 9  perform sequentially, by means of a rotating beam, 
what monopulse radars accomplish on a single pulse basis. The beam is offset 
with respect to the rotation axis by an angle called the squint angle. 
Typically, it is rotated about this axis at a rate of about 30 Hz. The 
rotating beam causes both the energy on target and the effective gain of the 
radar antenna to target echoes to be modulated (see Figure 2). These two 
effects impose a modulation on the radar signal. The amplitude of this 
modulation is a function of the magnitude of the target's error angle and its 
phase is a function of the elevation-azimuth components of the target's error 
angle. To remove the effects of changing radar cross-section and target 
range, the radar signal is normalized by the AGC of the radar receiver. The 
radar signal is then detected in an amplitude detector and low pass filter 
giving the radar error signal. Sine and cosine signals are generated by a 
two-phase generator which is driven by the mechanism that rotates the antenna 
beam. These signals are multiplied with the radar error voltage in product 
detectors and used for positioning the radar in azimuth and elevation (see 
Figure 3). 

POINT TARGET 

Figure 2. Time Displaced Eleam Pattern and Error Signal for a Conical Scan Radar (After: Damonti l  2 , et. al) 
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Figure 3. Block Diagram of Conical-scan Radar (After: Skolnik 9  

Very little work has been carried out to date on defining the behavior 
of conical-scan radars tracking low-angle targets. It is suspected that the 
reason for the absence of results is the expectation within the radar commu-
nity of the eventual replacement of conical-scan radars by monopulse radars. 
Therefore workers have tended to concentrate on monopulse radars because they 
have the greatest probability of being chosen for any modifications which 
improve the performance of tracking radars. Even though it may be true that 
newly acquired tracking radars tend to be of the monopulse variety, it is 
also true that existing conical-scan radars are being refurbished so as to 
extend their operational life. This suggests a need for fully understanding 
the behavior of conical-scan radars; in particular, their behavior with low-
angle targets. 

Dax 8  stated that monopulse and conical-scan radars have similar low-
angle tracking behaviors. An example of a low-angle result for a conical- 
scan radar operating at a frequency of 2.797 GHz is given by Dunn and Howard 18 . 
There is a close similarity between this result and that given by White 5  for 
a monopulse radar operating at a frequency of 2.857 GHz. An early conical-
scan result is given by Fishback ll  which is consistent with those given by 
White and Dunn and Howard. 

Barton and Ware describe a procedure for constructing an equivalent 
difference pattern for a conical-scan radar. They suggest that a difference 
signal can be derived by subtracting the beam voltage patterns at the 
extreme positions of the radar's scan. The resulting pattern is found to 
consist of a split main lobe and sidelobes which are almost identical to the 
difference pattern of a monopulse system. They do not suggest a procedure 
for deriving an equivalent sum signal for a conical-scan radar. 

A brief discussion of the equivalence of monopulse and conical-scan 
radars in given in Ref. 13. Some theoretical results are also presented. 
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Although the presentation is both hurried and sketchy, it was used initially 
as a guide in developing the theory presented in this report. 

2. CONICAL-SCAN RADAR PARAMETERS 

Conical-scan radar parameters are defined in the first part of Section 
2. This is followed by a derivation for the error-voltage of a conical-scan 
radar tracking a low-angle target. 

2.1 THE LOW-ANGLE GEOMETRY 

The geometry for low-angle tracking with a conical-scan radar is given 
in Figure 1. There are two paths by which energy propagates from the radar 
to the target or from the target to the radar. These are the direct and 
indirect paths. The radar signals that propagate along these paths are called 
respectively the direct and indirect signals. At times it will be convenient 
to think of the indirect ray as originating from an image target. Although 
not shown in Figure 1, it is located directly below the target on the 
extension of the indirect ray from the radar to its point of reflection on the 
surface of the water. Whenever signals propagate along the indirect path, 
both their phase and amplitude are modified upon reflection from the surface 
of the water. The parameters defined* in Figure 1 are: 

6 = radar squint angle (angle between the beam and rotation axes) 

0
d 

= angle of arrival of the direct ray with respect to the beam axis 

= angle of arrival of the indirect ray with respect to the beam axis 

R = complex reflection coefficient (p = magnitude of reflection 
coefficient; cl) = phase of reflection coefficient). 

2.2 CONICAL-SCAN RADAR RF VOLTAGE 

By referring to Figure 1, one can write the magnitude of the direct 
signal at the target as 

C 1 (6 d )E0ei wt  (1) 

where w = angular frequency of transmitter, radians/sec 

G 1 (0 = antenna voltage gain. 

* These are shown here at a particular instant when the beam axis, rotation axis, direct path and indirect path 
happen to lie in the same plane. A more general situation is given in Figure 4. 
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The parameter Eo  in eqn. (1) is given by 

E = 1  (e) o 	r 4u 

and gives the amplitude of the electric field at the target for a radar 
antenna which radiates isotropically in free space, 

where 	r = range to the target 

P = peak power 

n  = impedance of free space ( n  = E/H) 

Similarly, the magnitude of the indirect signal at the target is given by 

G 1 (0i )p E e
j(wt-0) 

o 

where 	= the total phase difference with respect to the direct path, due 
to both reflection and path length difference. 

p = the magnitude of the reflection coefficient. 

The total RF electric field, ETT at the target is 

ETT 
= GI(0d

)E
o 

ejwt + G 1 (0.)E p ej(wt-(1)) 
o 

Let us now trace the radar signals back to the radar by both the direct 
and the indirect paths. 

The radar RF voltage, due to the direct signal, is proportional to 

G'(° d )ETT' 

and that due to the indirect signal is proportional to 

Gi(e i)P 	Err' 

The total radar RF voltage VT is proportional to 

p-j'D 
Gi(ed )ETT 	Gl(e i)P ETT 

and can be written in the form 

VT = K Eo
{G(0d )e

jwt + 2G'(0 )G'(0 d
)p ej(wt-4) 	- 

G
,6 

i) 
sp2 ej(wt-21))} (8) (  

(4) 
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(9) 

where 	G(0) = antenna power gain = [G I (0)] 2  

K = parameter, which is a function of target range*, target 
cross-section and radar wavelength. 

If we define the real part of [VT ] to be VT
, then 

VT = K Eo
{1, coswt + M cos(wt-4)) + N cos (wt-24))} 

where 

L = G(0d ), 	 (10) 

M = 2pG1(61.)G1(0d), 	 (11) 

and 

N = p 2G(8 ). 

Expression (9) gives the RF radar voltage for a conical scan radar tracking a 
low-angle target over a perfectly smooth sea surface. The first term 
describes the signal that propagates out to the target and back again, totally 
by the direct path. The second describes two signals; one that propagates 
out to the target via the direct path and back again via the indirect path 
and another that propagates along these same two paths but in the reverse 
direction. The last term accounts for the effect of the signal that propagates 
out and back again via the indirect path. 

A deeper appreciation for the basic principle underlying conical-scan 
radars can be obtained from Figure 2. This figure shows the antenna beam 
intercepting a target at two different instances separated by one-half of an 
antenna scan period. Taken together these two beam patterns are defined to 

be the time-displaced conical-scan beam pattern. As the antenna beam 
rotates, its point of intersection with the target axis moves from point (1) 
to point (2) and back again. This motion causes the radar signal [eqn. (9)] 
to become modulated by signals having frequency f s  and harmonics of fs , where 
fs is the antenna rotation rate. 

For a single target the amplitude of the modulation Al  is proportional 

to the offset of the target line-of-sight with the antenna rotation axis. 
The radar error signal is normalized by the dc component of the radar signal. 
An  is used as an AGC signal for controlling the gain of the radar receiver's 
IP amplifiers. 

2.3 DEFINITION OF ANTENNA BEAMS 

The antenna voltage gain G' in eqn. 2 (8) can be represented by a number 
of functions, such as, sinx/x, cos 2 x, e-x , etc.. Skolnik 9  [p. 171, eqn. 

* It has been implicitly assumed that for purposes of deriving the magnitude of the target echo the direct and 
indirect path lengths can be taken to be equal. 

(12) 
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5.2], for example, uses a Gaussian function, which when expressed as a 
voltage gain can be written as 

a 2  2  

G'(0) = G1/2  e - 2 ° 
o 

where 	6 = angle in degrees between the antenna-beam axis and the target 
axis 

G
o 

= maximum antenna power gain 

a2  = constant = 2.776/6 2  where 6
B 

is the 3 dB beamwidth measured in 
degrees. 

Two functional representations will be used in this report for defining 
radar antenna beam patterns. One is based on the Gaussian function and the 
other on a composite of sinx/x functions. They both give patterns which are 
representative of typical fire control radar beam patterns, but with varying 
degrees of accuracy. The first tends to be less accurate than the second, 
mainly because it underestimates the magnitude of the antenna sidelobes. On 
the other hand the computational complexities inherent in its implementation 
are less than with the second. In terms of meeting the main objective of 
this report, to demonstrate the equivalence of monopulse and radars, they 
will be seen to give similar results. 

3. ANTENNA SCANNING FUNCTION 

We will find that to treat conical scan radars theoretically one needs 
to define an antenna scanning function. 

3.1 DEFINITION 

As a result of its rotation, the gain of a conical-scan beam along a 
target axis is a function of time, if the rotation and target axes are not 
coincident. The antenna gain along the target axis can be expressed in terms 
of a series similar to a Fourier series. This series has been called the 
antenna scanning function in the NATO Sub Group 4 Report". We will follow 
this nomenclature here. 

The form of the antenna scanning function is rather important because 
it is used for deriving the radar error signal. With the radar error signal 
one is able to deduce the characteristics of conical-scan radars with low-
angle targets. 

In Figure 3 are illustrated the processes that take place within a 
conical-scan radar in deriving an error signal. These are described in 
greater detail in Section 4.2. Basically, the antenna scanning function is 
used to describe the first step in this derivation, that is, reception of 
the direct and indirect rays with a rotating beam. 

(13) 
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3.2 ANTENNA SCANNING FUNCTION FOR GAUSSIAN ANTENNA BEAMS 

Skolnik9  derived an antenna scanning function for the Gaussian antenna 
beam given by eqn. (13). His notation differs from that used here. Skolnik 
called his function the "antenna scan-modulation factor". Because of its 
importance, Skolnik's derivation is repeated here. 

Consider Figure 4, which gives a head-on view of a conical-scan antenna 
beam. Angles 0 0 , 0 and OT  are defined in this diagram by lengths of arc 03, 
peg , p0T  on a sehere of radius u. A somewhat restricted definition of the 
first two was given earlier in the discussion of Figure 1. Here we see that 
6 represents either ed or 0i, depending on whether the target or its image is 
under consideration, %, defines the angle between the antenna beam and 
rotation axes and 0T te angle 

between the antenna rotation and target axes. 
The angle 	defines the rotational phase of the antenna beam with respect to 
a reference axis; 0  is the angle defined by the target and the reference 
axis. Since the distance pet, p00 , and p0T  are small, they may be related by 
the law of cosines to the angle es- 0  

(110 ) 2  = (PO  q) 2 	(110T ) 2  - 21120 q 8T cos( s o ). 	 (14) 

The substitution of O  into eqn. (13) from eqn. (14), with Go=1 gives the 
antenna scanning function 

G'(0) = exp[-a 2 (0 2  + 0 2 )/2] exp[a20 q 0_ cos( so)]. 	 (15) 

In this report we call eqn. (15) the Skolnik antenna scanning function. The 
following realtionship may be derived from expressions for Bessel functions 

CO 

exp(x cos*) = 10 (x) + 2 E I (x)cosn*, 
= 	n 	

(16) 
n 1  

where In (x) is the nth-order Bessel function of imaginary coefficient. 
[Skolnik erroneously used exp(-x cos*).] In Whittaker and Watson14 , In (x) is 
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defined by In (x) = i-nJn (ix), where Jn (x) is called the Bessel coefficient of 
order n, and i is the complex integer. Using eqn. (16), one can write (15) 
as 

G i (t) = exp[-a2 (02+ 02V2 ] 	(a20 	) + 2 E I (a 2 6
q
0
T
)cos(nw t-nZ 1, (17) 

q 	T' 	o' 	q T 	 n 	 s 	o n=1 

with ws t being substituted for s , where ws  = 2rf5 . To simplify the algebra, 
let 

K" = (exp[ -a 2 (0 + 6 2
T )/2]} I o (a2 0eT)  

and 

2I
n
(a20

qT  
K

) 
- n(a20qT) 

o 
 

With these simplifications, the scanning function (17) becomes 

G l (t) = 141 + E K cos(nw 	. s 	o n=1 n  

Expression (20) is somewhat complex but it does show that the antenna scanning 
function consists of a series which is similar to a Fourier series. There are 
terms which can be identified as dc, first-harmonic, second-harmonic and so on. 

4. RADAR ERROR VOLTAGE AND SETTLING FUNCTION 

In order to derive the radar error signal IVT I, one must find the 
amplitude of eqn. (9). The amplitude can be obtained by quadrature demodula-
tion and low-pass filtering. The results of detection of VT , or more conven-
iently VT/KE0 , is most easily found by writing VT /KE0  in terms of its in-
phase I and quadrature - phase Q components 

VT = [L + M  cos  e + N cos2O]coswt + [M sine + N sin2e]sinwt. 	(21) 
KE0  

It follows from eqn. (21) that 

I = L + M  cos  e + N cos2O 

Q = M sine + N sin2O 

The amplitude of eqn. (21) is given by 

pl1 
	 = [1 2  + Q2 ] 1/2 . KEo 

03 

(22) 



[1,2 	m2 + N 2  + 2LM  cos  e + 2LN cos2e + 2MN cose] 1/2  (23) 
Iv,r 1 
KEo 

- X2  + Z 2  + 2XZ + 2Y(X+Z)cose + Y2  cos.  { 1\14 (25) 

M2  -4LN = 0 (26) 

If the expressions for I and Q are substituted into eqn. (22) and 
double angle trigometric relations are used, one obtains 

13 

4.1 GENERAL SOLUTION 

One would wish to express eqn. (22) as a function of terms which are 
separable rather than being lumped together in an argument of a square root 
function. Let us try an expression of the form 

IVT  - X + Y cose + Z, 
KE 

o  

where X, Y and Z are unknowns. 

Upon squaring eqn. (24) one obtains 

2 

(24) 

The identity cos2e = 2cos 2e4 is substituted into eqn. (23) so that eqn. (23) 
is expressed in terms of cos e and cos 2e. If the constant term and coeffici-
ents of the terms in cos l) and cos 2e in eqns. (23) [modified] and (25) are 
equated, the following are obtained: 

(X+Z) 2  = (L+N) 2  + M2  - 4LN 

Y(X+Z) = M(L+N) 

Y 2  = 4LN 

The similarity between the two sides of the second equation might lead one to 
guess that the values of the unknowns X, Y and Z are: X=L, Y=M and Z=N. If 
this choice of values is valid it then follows from the first equation that 
the identity 

must also be valid. By direct substitution in eqn. (26) of eqns. (10), (11) 
and (12) one can easily demonstrate that eqn. (26) is always valid. As a 
final test of our choice for the values of X, Y and Z, the last equation must 
also be a valid identity. By_comparing eqn. (26) and the last equation one 
can see that it is indeed valid. Therefore, eqn. (24) is a valid expression 
for eqn. (23) with X=L, Y=M and Z=N. Substitution of these values into eqn. 
(24) gives the sought after solution 
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I VT 1 

KEo 
L + M cowl) + N. 	 (27) 

As a final check, it can be shown that the square of eqn. (27) can be written, 
with the use of eqn. (26), in a form identical to the square of eqn. (23). 

4.2 GAUSSIAN-BEAM SCANNING FUNCTION SOLUTION 

If one uses eqn. (20) as the antenna scanning function in eqns. (10), 
(11) and (12) and subscripts or superscripts, d(direct) and i(indirect), the 
constants in eqn. (27) are defined as being 

2 

L = (K") 2  i l  + E Kd  cos(nws t-r1 d ) 	' d n=1 n  

00 OD 11  

M = 2pK"K" 1 1 + E Kd cos(nwst-nZd )111 + E Ki  cos(nw 
d i 	 s n=1 n 	 n=1 n  

and 
00 

N = p 2 (Ç) 11 + E Ki  cos(nw s
t-nZ i ) 1 . 

n=1 n  

By substituting these constants into eqn. (27) and making use of the identity 
cosAcosB = 1/2[cos(A+B)+cos(A-B)] we obtain 

d d  K Ko  
.LLT - (K") 2  1 + 2EKd cos(nwsd

) +EE 
KEo 	d 	 2 n=1 	 n=1 £=1 

[cos{(n+)wst-%(n+£)} + cos{ (n-£)w st-td (n-£)}] 

CO 

+ 2p1(cliKï cos 1 + 11.1.  Kcill  cos(nwst-n d) 

co 	 K
i
K
i  

n + E K cos(nw st-n)  + E E --7- 'n=1 £=1 = n  n1  

[cos{(n+) ws t-(n%+£y} + cos{(n-t) w s t-(n d-£y 1 

i 
co 	 K K o  

p 2(e)2 1 4. 2 , (-1)n  Ki  cos(nw s
t-r1 i

) + E 	E 	n
2
' 

n=1 	 n=1 £=1 
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(28) 

lv 

[zos{ (n+2.)ws t- (n+O 1 } + cos{ (n-2.)ws t- (n- ,eX i l . 

In the demodulation process IVT I/KE0  is low-pass filtered with a filter 
whose cut-off frequency fs  = us /2'T. Taking the filtering into account and 
retaining only first-order terms in eqn. (28) we obtain 

IVT I
d 2 

) 

L I 	(C) 2  1 + 	2 	+ (K") 2  ft2Kd  + KdKdi COS (W
s
t- Z

d
) 

KE
o 	

d 	 d 	1 	2 1 

KdK, i 

i2  
+ 2pK"K" cos0 11 + -==1 + 2 K"K" cos 0 K1 

d 
cos(w

sd
) 

d i 	 d i  

	

d
K 
i 	 d i K1K2 

	

K2 1 	r t_i2r 	 cos[w
s t-(Zd )] + Ki cos(w

s ) + 	costi.0s 	'd i
)] + 	

2 1 	 2 

p2(e)2 	
(K ) 2] 

 + p 2 (K) 2  12Ki  + KiKi] cos(w t-Z ). 
2 	 i 	1. 	2 1 	s 

The normalized radar error signal 1VT I N  is derived from eqn. (29) by multi-
plying through by KE0  and separating the ac and dc terms. The signal 1VT I N  
consists of a ratio whose numerator is comprised of the ac terms and denomina-
tor is comprised of the dc terms, thus 

d 
(K")2[2Kd+KdKd jcos(wsd

) + 2pK 	cos(1) K cos(ws
t-) 

d 	1 1 2 	 d i 

KdKi 	
d i 

2 1 + K cos(w 	i) + 
	cask

s
t-(2 c71-y] + K1

K2  ---2— cos[w
s t-( d-2)] 1 	s 	2 

p 2(e.2r 
j 1. 2K.1,-+KKfiCoS(Wt- 4 ) 

KdKi  (Kd ) 2] 1 1  
(K") 2  1 + --1-- + 2pK"K" cos(1) [1+ 	+ p 2 (K") 	1 + 	I  

d 	 2 	d i 	 2 	i 	2 

Note that the parameter K%, which contains factors describing the 
strength of the radar echo, has disappeared. Its disappearance is due to its 
being a common factor in both the numerator and denominator of eqn. (30). 
Equation ( 30) is therefore independent of the amplitudes of the direct and 
indirect signals and is a function only of their angles-of-arrival and phase 
difference. For only one target, eqn. (30) would solely be a function of the 
signal's angle-of-arrival. 

The radar signal represented by eqn. (30) is fed into two error angle 
detectors. These detectors are phase sensitive detectors and yield elevation 
and azimuth antenna pointing-angle information. The outputs of the detectors 
are used to drive servo-motors which control the elevation and azimuth of 

(29) 

(30) 
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would be achieved only if the antenna rotation axis was pointed directly at 
the target. In the elevation error angle detector, eqn. (30) is multiplied 
by cosws t* and in the azimuth error detector it is multiplied by sinws t. 

When eqn. (30) is multiplied by cos(wt), low pass filtered so that 
only d-c and near a-c terms remain the result is described by 

(K") 2  
d 	d 	d d _71__ [2K1  + KiK2 ] cos d  + pqg cosclKd  cos d  C + Ki  cos E 

1 	 1 

d

) 2  [1 + 	1  

K
d

K
i  K 

+ 7-- 	
dKi 

cos(2 d  -C ) + - cos(
d
-2C 1 2 

- 	
i 	2 

where, c is called the radar 
elevation error signal. 

d ) 

Similarly, if eqn. (29) is multiplied by sinws t and low-pass filtered 
the azimuth radar error signal et is 

the radar antenna. The conical-scan radar achieves pointing-angle 

Li 

 when the detector outputs are reduced to zero, which for a single target 

(K") 2  
d 	d 	d d 

[21( 1  + KiK2 )sinC d  + pl(!ciel! cos(1) 	sin
d 	1 E + K

i  sinE 
- i 

2 1 	 1 2 + 
KdKi 

 sin(2 d-C i) + 
KdKi 

2 
d i 

(K
d

)
2 

1  
(K") 2  [1 + 	] + 2pK"

d
K" cos l) [1 + 

K
1

K
1 ] + p 2 (K) 2 

 [1 + (Ki)2] 

2 	 i 	 2 	 i 	 2 

d d 
If a further omission of higher order terms, such as K1K2,  is made in 

eqns. (31) and (32) they become 

+ 	

1 

d i 
1  

d 	 2 	 d i 	 2 	 i 	 2 

E 	\ d / -1 	''di 	 ' -1 	"-i'  -1  --- 'i 

KdK 	 i) 2] (Kd ) 2] 
1 	 1 1 	 1  

d 	 2 	d i 	 2 	 2 

and 

d 2 

	

(K,) 	
d i 

4. 	
p

) 

(K") 2  [1 	j- 	] + 2pK 	
KK, 

re "K" co!, 	[1 + 	1 i 	... 	,.. 2”%2 	1  4. 	
(Ki

1 

d 	 2 	 d 1 	 2 	 1.) 	 2

1 

(K") 2  
+ p 2  	i 

2 	[2K1  + K2Ki ]cos i  

K 4]  2 
i K, 

1  
(K") 2  1 + 	1 	 [ 

	

+ 2pKK" 	re " 	co1 + 
K 

 i  1 + p2(Ç)2 	
(Ki)2] 

d 	 2 	d i 	 2 	i 	2 

c c = 	

[ 	
(K 

A 
c 

- 
2 

(Ki )2 	i 	i i sin(Cd -2C i) 	p 2 	[2K1  + K2lysinC i  

A 
c 

(31)  

(32)  

(33)  

(K 	K ")- 	sin d 	dC + pK"K" cowl) {K
1

tg si
d 

+ K
1 
 sin}  + p 2 (K 	K 	tg ") 2 	si 

d 	1 	 i 	 i 	1 	i . 
d 	 d 

(34)  

1=.7T-"lcolnik p. 173, eqn. (5.12) and (5.13)1 has mistakenly identified the coscest term with the azimuth error 
and the sinwst term with the elevation error. 
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All of the approximations made in deriving eqns. (33) and (34) have 
involved omitting terms in the amplitudes of the cosine functions in eqn. (20) 
with n>1. In Section 7 we will see that for small target error angles the 
omitted terms are considerably smaller than those that are retained. There-
fore it will be seen that the approximations made in arriving at eqns. (33) 
and (34) are justified. 

4.2.1 Radar Settling Function 

The numerator of eqn. (33) is called the conical-scan elevation settling 
function ,  F.  It has importance to this work because it defines the equilib-
rium elevation pointing angle for the radar antenna. The radar's elevation 
servo-system is designed such that it achieves a state of equilibrium only 
when the error angle voltage eg becomes zero, which is defined by the condi-
tion Fe=0. The radar elevation settling function is given by 

F
c 	K

d 
(K") 2  cos d + pK"K" 

cos l) ( 1(d cos d + 
Ki cos)  + P 2 (Ç) 2  Ki  cosi. (35) 1 d 	 d i 	1 	 1 	 1 

5. COMPARISON OF CONICAL-SCAN AND MONOPULSE RADARS 

In Section 5 analytical results derived in Section 4.2 are compared 
with equations describing the low-angle behavior of monopulse radars. For 
convenience a derivation of the monopulse equations is given in Appendix A. 

5.1 EQUIVALENCE BETWEEN MONOPULSE AND CONICAL-SCAN RADARS 

The settling function for a monopulse radar 15  (numerator of eqn (A6)) is  

FM = gAdgEd 	P(gàdgEi gAigEd) cos° 	P2gAigE1 

gAd = gain of the difference beam 
for the direct signal 

gEd = gain of the sum beam 
for the direct signal 

gAi = gain of the 
difference beam for the indirect signal 

g = gain of the sum beam for the indirect signal 

The form of the settling function of the conical-scan radar (eqn. (35)) 
is very similar to that for a monopulse radar (eqn. (36)). This agreement 
suggests a similarity in their low-angle tracking behavior. 

If one is interested only in describing the normal elevation angle 
tracking behavior for conical-scan and monopulse radars, absolute antenna 
gains need not be specified when using eqns. (35) and (36). In either case, 
the equilibrium or settling angle is defined by setting the scanning function 
equal to zero. Therefore, only relative antenna gain need be measured for 
determining their low-angle target tracking behavior. 

(36) 

where 
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5.2 MONOPULSE TRANSFORMATIONS 

It follows from a term-by-term comparison of eqns. (35) and (36) that a 
conical-scan radar can be treated as a monopulse radar provided one makes the 
following transformations. 

K" g 
d 	Ed 

K
d
"Kd

1  cos d gAd 

K" g 

K"K cos 	g
Ai i 1 

These transformations assume that the radar target is well behaved with 
a cross-section that is constant or varies only slowly with time. Rapidly 
varying targets may have a component of their fluctuations which causes a 
modulation of frequency fs  to appear on the radar signal and to be erroneously 
interpreted as target tracking information. 

For defining the low-angle tracking behavior of conical-scan radars, 
the parameters in eqns. (37)-(40) can be derived in two ways. First, they 
can be evaluated directly from the expressions given in Section 3.2, which 
were derived for a Gaussian approximation to the antenna pattern. Secondly, 
as will be shown in Section 5.2, they can be derived directly from the 
measured antenna pattern. 

5.3 MONOPULSE EQUIVALENT ERROR SIGNAL 

When the transformations given by eqns. (37) to (40) are substituted 
into eqn. (33) it takes the form 

E 	gAdgEd + pcos0 {gAdgEl 
+ gEdgAi 

+ p2g
Ei

g
Ai  

c 
- 	 (41) 

02 	
d 2 (Ki )  (Ki) 

e'E [1 + 	 + 2pgEdgEi cos l) [1 + 
KdK

i] 
1 1 	, 2 ,„ 	1 	

2] 
1  

2 	 2 	" 	 2 

where e
E 

= error signal. 

By means of eqns. (37)-(40), the numerator of eqn. (33) has been 
rewritten so as to have the same form as the numerator of the comparable 
monopulse expression given in eqn. (A6). The denominators of the expressions 
for conical-scan and monopulse error-signals differ by the factors given by 
the square brackets in eqn. (33) or eqn. (41). To achieve agreement between 
the denominators of eqns. (41) and (A6), transformations (37) and (39) must 
be modified to take respectively the forms: 

(37) 

(38) 

(39) 

(40) 
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(42) 

(43) 

For 
antenna rotation-axis) 

small error angles (deviations of the target line-of-sight with the 
the transformations can be written as: 

From eqn. (19), we find that 

21 1 
 (a 26 6T  ) q   

K1 	Io(a26q
6
T

) 

(44) 

d (K
1

) 2  

	

g' = K" 	+ 
Ed 	d 	2 

(K)2.] 
- 

[1 +  	• 2 

( lel/ 
g' a,  K" 1 + 
Ed 	d 	4 

K 1 + (K
) 2] 

g' 	"  
Ei 	i 	4 

A representative value for the second term in the square brackets of 
eqns. (42) and (43) can be derived using parameters and experimental data for 
a typical conical-scan radar. Such a result is given by Figure 7(b). It 
shows a low-angle target signature measured with a Prelort radar. The nominal 
height of the target was 100 yards. 

From Figure 7(b) one can find a maximum value for the target error 
angles. Taking a range of 25 Kyds, for example, the maximum indicated target 

height error is approximately 100 yards. This corresponds to an error angle 
of 0.23 ° . 

A representative value for the arguments of the modified Bessel functions I 
and I

0 
 is 	

1 
a 20 0 _ 

2.776 x 0.45 x 0.23  0.32. 
q T 	 0.9 

From Wylie 16  [p. 359] we find the value of K1  corresponding to the 	, 

above argument is 0.3. It follows that the bracketed terms in eqns. (42) and 
(43) are approximately equal to 1.023. Therefore, for small target error 

angles, the transformations given by eqns. (42) and (43) are equivalent to 

those given respectively by eqns. (37) and (39), and eqn. (41) is identical 

to eqn. (A6). 

If one takes advantage of the approximate equality of g d  with  g 
g' with g 	eqn. (41) can be written as 
Ei 

g  E 	g  d 
+ pcoeD {gAdgEi gEdg61.} + p2gEig Ai Ad E  

cc  — 
gÉd 

+ 2pg Ed
gEi 

cosO + p2gEi 
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5.4 DIFFERENCES BETWEEN MONOPULSE AND CONICAL-SCAN RADARS 

One of the main differences between a monopulse radar and a conical-scan 
radar is the time taken by each to obtain sensing information. A monopulse 
radar is capable of tracking a target on a pulse-by-pulse basis, which suggests 
a maximum sampling rate equal to the prf of the radar. On the other hand, a 
conical-scan radar needs to process somewhat more than four pulses 9  to track 
a target. Therefore, for radars with equal prfs, the maximum data rate is 
greater for monopulse than for conical-scan radars. 

The inherently lower data rates of conical-scan radars, do not usually 
cause their performance to be degraded, per se, compared to that of monopulse 
radars. Normally, bandwidths of radar servo-systems are much lower than 
typical prfs. Therefore, the response times for both monopulse and conical-
scan radars are usually limited by the response times of their antenna 
systems. Typically, these are approximately equal. 

For low-angle and multiple target tracking, monopulse radars are 
capable of providing more target information than conical-scan radars. This 
difference arises from a single fact: the phase of the radar signal is 
preserved in monopulse radars and discarded in conical-scan radars. Multiple 
targets affect, not only the amplitude of the radar signal, whether it be a 
monopulse or conical-scan system, but also its phase. In a monopulse system 
both the amplitude and phase of the radar signal can be measured because the 
sum signal is available as a phase reference. Usually, in an operational 
system, only the in-phase component is measured, but it is possible, by the 
addition of another IF channel to the radar receiver to also measure the 
quadrature-phase component. Resolution of radar error signals into in-phase 
and quadrature-phase components is not possible in a conical-scan system 
because there is no signal equivalent to a monopulse sum-signal to serve as 
a reference. 

The essential difference between monopulse and conical-scan radars 
results from the manner in which these two systems receive tracking informa-
tion. Monopulse radars receive information continuously from two independent 
beams, whereas conical-scan radars receive information from only one beam 
whose pointing direction is changing continuously. It follows that conical-
scan systems receive information at a lower rate than monopulse radar systems. 
They can only be considered to be equivalent if the final data rate is slowed 
sufficiently by integration effects, such as those provided by the inertia of 
antenna systems, so that their differences do not become apparent. It is 
only for these lower data rates that a conical-scan radar can be considered 
to be receiving information from an equivalent split beam and treated as a 
monopulse radar. 

6. MONOPULSE EQUIVALENT TO THE PRELORT RADAR 

This section gives an example of the application of the conical-scan 
radar theory developed in Sections 4 and 5. The example consists of simula-
ting the low-angle tracking behavior of a Prelort radar. 
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6.1 PRELORT RADAR PARAMETERS 

Low-angle data have been obtained, with two conical-scan Prelort 
tracking radars situated at Primrose Lake, Alberta. These and additional 
data that were collected in 1979 will be used to test and develop low-angle 
tracking algorithms. The radars operate in the C-band, are collocated but 
separated in height by 30 feet. Table 1 lists some pertinent parameters. 

6.2 EQUIVALENT MONOPULSE ANTENNA PATTERNS 

Before the Primrose Lake data can be used for testing tracking algori-
thms, mathematical models of the Prelort radars must first be developed. 
This requires that one measures the radar antenna pattern and then derives 
the equivalent monopulse antenna patterns. Modelling of the signature or 
tracking behavior of a monopulse radar with low-angle targets is rather 
straightforward once the sum and difference antenna patterns are known. It 
is simply a matter of applying vector arithmetic to vectors whose magnitude 
and phase are determined by antenna gains, coefficients of reflection and 
curved earth geometry. 

TABLE 1 

Prelort Radar Parameters 

(i) Antenna height (above surface of water) — 293 feet (Radar 2) 

323 Feet (Radar 1) 

(ii) Frequency — variable, C-band, 5450-5825 MHz 

(iii) Antenna scan rate — 30 Hz 

(iv) Antenna — 14 ft. disc reflector 

sidelobe level 20 dB 

beamwidth — 0.90  
polarization, left and right hand 	 selectable by the operator 
circular, vertical and horizontal linear 

squint angle — 0.45°  

(v) PRF — variable, 160, 320, and 640 pulses per second 

(vi) Pulsewidth  —0.25,  0.5 and 1.0 lisec 

(vii) Output power — 250 kw peak 

(viii) ' Range resolution — better than one yard *  

(ix) Tracking range (beacon target),— 500 yards to 2000 nmi 

(x) Tracking range (aircraft target) — 100 nmi 

* Using Split-gate Time Discrimination Techniques (see Barton and Ward' 4 , pp. 72-78) 
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When deriving equivalent monopulse antenna patterns for a conical-scan 
radar, one should treat the numerator and denominator of eqn. (41) independently. 
The numerators of eqns. (41) and (A6) are obviously equal. The equivalence of 
their denominators is not as straightforward and has required special consid-
eration. We are primarily interested in deriving equivalent patterns for the 
numerator of eqn. (41) because it is the expression from which the settling 
function is derived and which defines the equilibrium pointing angle for the 
radar. For small error-angles it was found that the square bracketed factors 
in the denominator of eqn. (41) are approximately equal to one. As concluded 
earlier, when dealing with small error angles, eqns. (41) and (A6) can there-
fore be considered to be mathematical equivalents. It follows that the 
equivalent patterns expressly derived here for the numerator of eqn. (41) are 
also applicable to the whole of eqn. (41). 

Equation (20) shows that the dc and first ac components of the radar 
scanning function are respectively K" and K"Ki. The equivalent sum patterns 
are, according to eqns. (37) and (39), given by the dc component of the 
antenna scanning function. Equations (38) and (40) imply that the equivalent 
difference pattern would be given by the first ac component of the antenna 
scanning function if lco4 = 1. Measurements of the low-angle tracking 
behavior of conical-scan radars show that the azimuth error angles are less 
than 0.18 times the elevation error angles. The ratio of elevation to azimuth 
deviations suggests that  E  departs by no more than 10 °  from 0 0  or 180 ° . 
Therefore, to a good approximation Icos0 = 1 and the equivalent difference 
pattern is equal to the first ac component of the antenna scanning function. 

The Prelort radar's antenna pattern has not yet been measured. In the 
interim it is assumed that its pattern can be represented by a typical radar 
antenna pattern. In Figure 5 is shown a typical instantaneous conical-scan 
beam pattern, comprised of the beam at the extremes of its vertical motion 
during one cycle of its rotation. Each pattern in Figure 5 is synthesized 
from a weighted sum of five sin x/x functions. The sin x/x functions are 
separated in angle by u radians, so that, peaks and first nulls of neighboring 
functions are coincident. The patterns in Figure 5 have beamwidths of 0.9 ° 

 and are separated by 0.9 ° . The level of the first sidelobes is -26 dB, which 
is lower than specified in Table 1, but otherwise it is expected that these 
patterns will serve as a good approximation to the Prelort radar patterns. 

In Figure 6 we are given equivalent monopulse patterns derived from the 
patterns in Figure 5. They were calculated from antenna scanning functions 
derived for a series of target error angles. The scanning functions were 
calculated directly from the patterns in Figure 5 by means of a graphical 
technique described in Section 7. 

Harmonic analysis techniques were used to derive the dc components of 
the antenna scanning functions. The dc components define the equivalent sum 
pattern. Rather than continue with harmonic analysis, for deriving the 
equivalent difference pattern, it was found to be simpler to use the instan-
taneous patterns in Figure 5 and by subtraction derive the patterns directly. 
It was seen in Figure 2 that the amplitude of the time varying portion of the 
antenna scanning function is nearly equal to one-half the difference in gains 
of the instantaneous patterns. If the scanning function is sinusoidal, or in 
other words its harmonic content low, the parameter Al in Figure 2 is nearly 
equal to the amplitude of the first ac component of the antenna scanning 
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6.3 MEASURED CONICAL-SCAN RADAR SIGNATURE 

Figure 7(a) gives a simulation of the low-angle tracking behavior of a 
conical-scan radar tracking a target whose nominal height is 100 yards. It 
was derived from a software model of a monopulse radar using the equivalent 
patterns given in Figure 6. The measured behavior (signature) of the Prelort 
radar for the same target profile is shown in Figure 7(b). 
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The agreement between the two results in Figure 7 is reasonable. 
Discrepancies can be explained as being due to factors other than the use of 
the equivalent monopulse patterns in modelling the Prelort radar. The 
dominant source of error in the simulated result is attributed to the 
measurement of target height. The simulated data were derived for a target 
profile measured independently of the radar. Measurements were made by both 
a sensitive barameter located in the target aircraft and a system of ground-
based phototheodolites. The maximum discrepancy between target heights 
measured by these two systems of instruments was about 3.3 yards. 

Small deviations in target height can have a large effect on the radar's 
tracking behavior. For example, a change in target height of 3.3 yards for a 
target at a height of 100 yards and a range of 20 Kyds produces a change of 
360° in (1). In other words, the target height measured by the radar can vary 
through a complete cycle, consisting of a null and a peak, with as small a 
change in target height as that quoted above. The radar output is therefore 
a very sensitive function of target height and range. Since the target 
height was only known to an accuracy of ±1.5 yards it follows that the 
discrepancies between Figures 7(a) and 7(b) can be accounted for, soley by 
inaccuracies in target height. 

7. EXAMPLES OF ANTENNA SCANNING FUNCTIONS 

Typical antenna scanning functions are presented in Section 7 which are 
derived for a Prelort radar. It will be shown that for target error angles 
that are likely to be encountered in practice, the first-harmonic of the 
Fourier series representation for these functions is dominant. This result 
will permit us to conclude that the linear conical-scan theory developed in 
this report accurately describes the low-angle tracking behavior of conical-
scan radars. 

7.1 TYPICAL ANTENNA SCANNING FUNCTION 

Let us now calculate a typical antenna scanning function for the 
antenna pattern given in Figure 5 and for 

= 0.45 °  

T = 0.25 °  

First, one calculates the angle of offset of the target axis with 
respect to the centre of the beam. The pertinent parameters and geometry 
required for this calculation are defined in Figure 8, where we are given a 
head-on vieW of the antenna, which is shown as a contour map of relative 
amplitude. The dashed circle represents the path of the target around the 
antenna rotation axis. Actually it is the antenna beam that rotates and the 
target that is stationary, but it is more convenient to formulate the 
problem in terms of a stationary antenna and rotating target. From a 
mathematical point of view the two are equivalent. 
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Applying the same reasoning used in deriving eqn. (14) to the geometry 
shown in Figure 8 and the law of cosines one can write the expression for the 
off-beam-centre angle 0 as 

6 =  [(B , ) 2  12 	fe 1 2  - 20
q T 
0 cosw

s "  

Using eqn. (45) to solve for 0 with the parameters listed above, we can 
derive a typical antenna scanning function for the pattern given in Figure 5. 
The result is given in Figure 9. The scanning function's general form can be 
verified by comparing it with the contour lines intercepted by the target 
path in Figure 8. As would be expected from the uniform spacing of the 
contour lines in Figure 8 the scanning function is quite a good sinusoid. 

1-1.5 

(.j 

tzt 

Figure 8. Head-on View of the Antenna Beam Shown as a Contour Plot of Constant Relative Amplitude. 
A Target Path has been Sketched in to Derive a Typical Scanning Function. 

(45) 
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Figure 9. Comparison of an Antenna Scanning Function for Or  = 0.25 Degrees (Dashed Curve) and a Function 
(Solid Curve) Comprised of Harmonics of the Radar Scanning Frequency cos 

7.2 HARMONIC ANALYSIS 

We now carry out a harmonic analysis of the antenna scanning function 
given in Figure 9. Consider an even function g(t) whose period is 2p. Its 
Fourier coefficient an  is given by 

2 	 nrt 
a = 	Jr g(t) cos ---- dt. n p 

The integration may be performed numerically using the trapezoidal rule. If 
for convenience we take At = p/8, eqn. (46) can be written as 

n gn 
a = Er- (—= cos (na • 0) + gl 

cos 	 P (ELI 2) + 

	

	 22) + g cos(nn  + g7  cos n p 8 2 	 p 8 	 P 8 	8 

or 

a  . 11'0 , 	nit 7nn 	'8 
n 4 2 	I 	8 

g cos 	+ 	+ g
7 	8 cos --- + 2

cos nni 	 (47) 

where g
0
,g

I
,g

2'
...,g8' 

are the values of g at t=0, t,  2t,... ,8t.  

I 	I 	 1 	1 	1 	I 	_ 1 

(46) 
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The function g(t) can be written as 
a 0 

g(t) = - + a1 
coswt + a

2 
cos 2wt + a

3 
cos 3wt + a4 

cos 4wt + a
5 

cos 5wt + 
2 

(48) 

The coefficients of an  are tabulated in Table 2 for the antenna scanning 
function in Figure 9. Using these coefficients the scanning function is 
calculated to be 

G l (wst) = 0.65 + 0.27 cosw st + 0.03 cos 2wst + 0.03 cos 3w s t + 0.0025 cos 4w s
t 

- 0.0019 cos 5ws
t + 	. 

The harmonie terms in eqn. (49) are small compared with the fundamental. 
If eqn. (49) is truncated and only three terms retained it remains a very 
close approximation to the antenna scanning function, as demonstrated in 
Figure 9. If only two terms were retained it would still remain a good 
approximation. 

One can now define the necessary conditions for the validity of eqn. 
(33) more succinctly. Simply stated, if the radar antenna scanning function 
can be approximated by the first two terms of its Fourier series, eqn. (33) 
accurately describes the behavior of a conical-scan radar tracking a low-angle 
target. Since eqn. (33) was used as the basis for defining equivalent mono-
pulse patterns, the accuracy of this representation for a conical-scan radar 
is determined by how closely the ac term of the antenna scanning function 
resembles a sinusoid. 

TABLE 2 

Fourier Coefficients for the Antenna Scanning Function in Figure 9 

0 	 1 	 2 	 3 	 4 	 5 

2 	
0.47 	0.47 	 0.47 	 0.47 	0.47 	0.47  

nir g i  cos -8- 	0.92 	0.82 	 0.65 	 0.35 	0 	 -0.352 

g2 cos -nrr 0.82 	0.58 	 0 	 -0.58 	-0.82 	-0.579 
 4 

3rur 
93  cos -8- 	0.73 	0.28 	-0.52 	 -0.67 	0 	 0.674 

nrr 
94 

cos -
2 	

0.62 	0 	 -0.62 	 0 	 0.62 	0 

5nrr 
g

5 
 cos 	 0.51 	-0.20 	 -0.36 	 0.47 	0 	 -0.508 
 8 

3nrr g 
 6 
cos --- 	0.46 	-0.33 	 0 	 0.33 	-0.46 	0.326 

4 

7nrr 
g

7 
 cos 	 0.42 	-0.39 	 0.30 	 -0.6 	0 	 0.161 
 8 

98 
-

2

cos nrr 	020 	-020 	 020 	-020 	020 	-020 

(49) 

go 
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7.3 FURTHER EXAMPLES 

Figure 10 gives antenna scanning functions for a number of values of 
target error angle OT•  They start off being nearly sinusoidal for small 
values of OT  but become increasingly distorted as er  increases. A visual 
inspection of Figure 10 suggests that the harmonic content of the antenna 
scanning functions increase rapidly for values of (Ir  greater than about 0.4°. 

It is thought that the accuracy of the results obtained by applying the 
monopulse transformations [eqns. (37) to (40)] to conical-scan radars will 
vary inversely with the level of harmonic distortion in the antenna scanning 
function. When applied to the Prelort radar, these transformations are 
expected to give good results for AT  less than 0.4° and results that become 
increasingly inaccurate as er  becomes greater than 0.4 ° . Although the results 
given in Figure 7(h) show values for 16TI as high as 0.66 ° , there is a tendency 
for the maxima of 10 1,1 to be less than 0.42°. Therefore, it is thought that 
the Prelort radar operated almost entirely within its linear region. There-
fore, the radar's behavior is thought to have been accurately described by the 
monopulse transformations. The result in Figure 7(b) is probably typical for 
a conical-scan radar tracking a low-angle target. Therefore, it appears that 
the monopulse transformation technique for describing the behavior of conical-
scan radars with low-angle targets should have fairly widespread applicability. 

Figure 10. Family of Antenna Scanning Functions. The Value of O r  is Indicated Along Side Each Curve. 
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8. SUMMARY 

This report has dealt with the problem of describing the behavior of 
conical-scan radars tracking low-angle targets. Our approach has consisted 
of demonstrating an equivalence between conical-scan and monopulse radars and 
then using the better developed monopulse theory for describing the behavior 
of conical-scan radars. This approach greatly simplifies the problem of 
developing a theory for the low-angle behavior of conical-scan radars. The 
resulting theory, summarized by eqn. (44), is a first-order theory applicable 
only for small target error-angles. If greater accuracy is required one 
needs to solve the slightly more complex equations [eqns. (31) and (32)] 
using numerical techniques. 

Some example antenna scanning functions were derived for a simulated 
conical-scan antenna pattern. It was found that their harmonic content was 
low for target error angles less than one-half of a BW. It follows that the 
conical-scan radar theory based on monopulse transformations, is also probably 
valid for target error angles less than about 0.5 BW. Since the example 
experimental data exhibited maximum target angles that were generally less 
than 0.5 BW, it is thought that the theory presented in this report is 
probably adequate for describing the low-angle tracking behavior of conical-
scan radars. 
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APPENDIXA 

Monopulse Radar Error Voltage 

A derivation of the error voltage for a monopulse radar is presented in 
Appendix A. In Figure A.1 are given typical monopulse sum and difference 
patterns. Direct and indirect signals are shown being intercepted by the 
monopulse antenna patterns. 

Expressions for the sum and difference radar voltages for the direct 
and indirect signals can be written directly from Figure A.1. 
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E = g Ed ETT e
jwt + gEi p ETT e 

 

jwt  
A  = gAd ETT e 	gài P  ETT  e ;  

where 	E = Total sum-channel voltage 

(A.1) 

(A.2) 

A = total difference-channel voltage 

ETT = amplitude of direct signal from the target 

gàd = gain of the difference beam for the direct signal 

gEd = gain of the sum beam for the direct signal 

gAi = gain of the difference beam for the indirect signal 

g Ei = gain of the sum beam for the indirect signal. 

The radar error signal em  is defined as 

A 
c/4 = 	• (A.3) 

It is called an error signal because in a monopulse radar it is a linear 
function of the angular displacement of the target from the beam axis. By 
direct substitution of eqns. (A.1) and (A.2) into eqn. (A.3) we can write 

g
AdgEd + pcos0(gAdgE1 + gAig Ed ) + jpsin0(gAigEd-gAd

g
Ei

) + p2g
AigEi  cM  • (A.4) 

g 	+ 2pcoscl) g
Ed

g
Ei + p2g 

The radar error signal can also be written as 
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I 	. Q . 	3  E  Cm  Cm  (A.5) 

and 

CM 
Q 	psin(1)(g g 

= 	
- gmgn) 

Ai Ea  (A.7) 

5 

cp 

.7J a. 
2 a 
▪ 0 
5 17- a 

«W 

5 

6 10 

(A.8) 

(A.9)  

where 

CM  = 
gAdgEd 	Pc°s4)(g AdgEi+gAigEd ) 	P2gAigEi  

d + 2pcos(1) g Ed
g 	p2g

i 

(A.6) 

2 2 
d 	2pcos0 g EdgEi 

4. 
 

p g Ei 

The parameters em  and Em  are called respectively the in-phase and 
quadrature-phase components of the elevation radar error signal. Typically, 
only  C  is derived in a monopulse radar because for a single target and a 
phase balanced radar receiver eg E O. 

If one allows gm:4-0 and g ze0 in eqns. (A.6) and (A.7), the resulting 
expressions define the radar error signal for a single target. Single target 
error signals are defined by 

I 	gAd 
E = M gEd 

eQ  = 0 M 	' 

I 	PATTERN 

5 - PATTERN ‘1),  

	 IIle 

I 	I 	I 	I 	 1 	I 	I 	I 
-io 	-e 	-6 	-4 	-2 	0 	2 	4 

ELEVATION IN DEGREES 

Figure A.1. Typical Monopulse Sum (E) and Difference (A) Patterns 
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