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A THEORY OF 'SQUINTED' SYNTHETIC-APERTURE RADAR 

by 

M.R. Vant and G.E. Haslam 

ABSTRACT 

A theory is developed that describes the processing 
of data collected with a satellite-borne or airborne 
synthetic-aperture radar (SAR). A description of the 
target-radar geometry, and the form of the received, 
demodulated radar signal is given. It is shown that 
the solution for the case in which the antenna is 
directed perpendicular to track (sidelooking), is 
obtained by a simplification of the general case in 
which the antenna is squinted with respect to the 
perpendicular to track. 

A mathematical description of the signal proces-
sing operations required to produce a SAR image from 
the received radar signal is presented and the form 
of the processed signal is described. In particular, 
a technique which employs two-dimensional matched 
filtering to produce the radar image is discussed and 
the ability of this approach to accommodate the 
coupling of the range (across-track) and azimuth 
(along-track) signals is investigated. In addition, 
the extensions to the theory required for non-coherent 
averaging are included. 

1. INTRODUCTION 

In this report a description of the mathematical operations required 
to produce geometrically correct images from airborne or satellite-borne 
synthetic-aperture radars (SARs) by means of convolution with the impulse 
response of a two-dimensional matched filter, is given. In contrast to 
other theories [l-14], this report describes a two-dimensional technique 
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that applies to data acquired in either a 'squinted' or 'sidelooking' 
configuration. In the Isidelooking' configuration the radar antenna is 
pointed so that the direction of the centre of the beam is perpendicular to 
ground track [3]. In the 'squinted' configuration the antenna points in a 
direction other than the perpendicular [14]. 

In order to convert the raw radar data to an image, it is generally 
required that a two-dimensional signal processing operation be performed. 
Conventionally, this operation is segmented into two, one-dimensional 
operations where the radar return signals that are associated with the range 
(across-track) and azimuth (along-track) coordinates are independently cross-
correlated with their respective reference functions. Provided the range 
and azimuth signals are orthogonal, and provided the azimuth signal extent 
is small, this approach works well. 

The signal processing is more complicated if the SAR antenna is 
'squinted', or if the azimuth extent of the signal is large. In these 
instances the range and azimuth signals are coupled, i.e., they are not 
independent of each other, and the operations required to produce a high 
quality distortion-free image are more complicated. 

In the following sections the form of the coupled signal is examined, 
and the mathematical operations required to produce a high quality image are 
described. In particular a novel technique that employs two-dimensional 
cross-correlation of the received SAR signal with a two-dimensional reference 
function is described. An approximate closed formed solution is given for 
the two-dimensional correlation integral and its form is examined. It is 
shown that a single cross-correlation function can be used to produce high 
quality images from radar signals obtained over a swath in range, but that 
these images must be geometrically corrected to remove positional errors 
introduced by the processing. Equations are derived to describe the positional 
errors and the operations required to remove them. Finally, the modifications 
required to extend the theory to 'multilook' processing, or noncoherent 
averaging, are developed. 

2. RANGE AS A FUNCTION OF AZIMUTH POSITION 

In order to characterize the SAR signal that results when the trans-
mitted signal, reflected from a point target that is fixed to the planet, 
is returned to the radar, it is necessary to describe the range to the 
target as a function of the radar's position in its orbit. To do this, the 
flight direction of the radar relative to the surface of the planet is 
derived. From this result, an equation describing the range to the point 
target as a function of the satellite's orbital position is obtained. The 
satellite's orbital position is measured relative to the position in the 
orbit at which the point target is in the centre of the antenna's horizontal 
pattern. 

The velocities of the vehicle and the planet are calculated in the 
following manner: The planet is assumed to be a sphere of radius re  rotating 
with angular velocity we , and the satellite is assumed to be travelling along 
a circular orbit at angular velocity w e  (see Figure 1). The tangential 
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velocity ye , of the radar, with respect to the inertial frame is w s (ra+hs ), 

where hs  is the altitude of the satellite above the surface of the planet. 
The subsatellite point SI (see Figure 2), is the point of intersection of the 
surface of the planet and the line joining the radar and the centre of the 
planet (see Figure 3). The point S1 has a tangential velocity V /Ca , with 
respect to the inertial frame, where the constant Ca  is defined as 

h 
Ca 

= 1 + ---s- . 	 (1) 
re 

The surface of the planet is moving beneath Sl at a tangential velocity V , 
defined with respect to the inertial frame 

MERIDIAN 
SUB-SATELLITE POINT 

PARALLEL OF 
LATITUDE 

EQUATORIAL 
PLANE 

ORBITAL PLANE 

Figure 1. Angles that define orbit  V5/c8  and  V 	tangential to the planet surface. 
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Figure 2. Vehicle Equivalent Velocity 
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Figure 3. Radar Geometry 

The point S1 has a velocity V with respect to the rotating surface. 
The magnitude of Vea is 

[ 	

V 
IV 1 = V2  + (----- - 	 V 

) 	. 
«eg 	en 	Ca 	

eP11/2 
and its direction relative to V /C a  is (see Figure 2) —8  

(2) 

0  =tan-1 
Ye 

V
en  

V s - V ep 
a 

(3) 

The velocities Ven and Vep are the components of Ve  normal to, and parallel to Vs /Ca , respectively. 	In Appendix A, Ven  and rei, are shown to be 

Vep = were  cose 

and 

= ware  sine .cos cp, 0 , 
1 

where (3. is the angle of inclination of the orbit, and (Po  is the position of 
the spacecraft in the orbital plane measured from the equator (see Figure 1). 
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Equations (2) and (3) are valid for the vehicle in an ascending or descending 

orbit. 

It is assumed that the radar antenna is pointed at an angle a with 

respect to ground track as shown in Figure 3. In this report the angle 63, 

will be called the squint angle. The angle 

a = 	- 0
y 	

(6) 
2 

is then the complement of the squint angle. This angle is composed of two 

components, i.e., 

6
y 
 = 0

ye 
+0 

 

where 0 ye  is caused by planet rotation and Oya  is the antenna pointing angle 
relative to the perpendicular to  V. The angles Oye  and a are defined with 
respect to the equivalent velocity vector vea, as shown in Figure 2, for the 
case 0 =0. 

Ya 

The slant range from the radar located at S2 , to a point target A on 

the planet's surface (see Figure 3), is 

r 2 
= [r2  + (re+hs

) 2  - 2re (res
)cos6 2 ] , 

where 0 2  is the angle subtended by the arc AS2 on the surface of the planet 
when S2  is the sub-satellite point. 

Equation (8) can be rewritten to show how r2  varies with both the 
satellite's orbital position and the complementary squint angle a. From 

spherical trigonometry and Figure 3 it can be shown that 

cos6 2 
= cos0 rcos(0a

+6
b

)
' 

and 

cosasin6  
sinea 

- 
cose r 

The angles Or,  °'  01, and 0 are defined as follows: Or  is the angle àubtended 
at the planeE's gent're by the arc AS0 , where So  is the sub-satellite point 
when the satellite is located at its point of closest approach to A; Oa  is 

the angle which defines the satellite's position in the orbit where the 

radar antenna is pointing directly at the target at A; Ob is the angle 
measured relative to Oa  which defines the present position of the satellite; 
and 0 is the angle subtended by the arc ASI on the surface of the planet, 
when S 1  is the sub-satellite point. If one expands cos(0a+6b) in (9) and 
substitutes for sin0 a , by using (10), the equation for r2  can be rewritten 
as a function of Ob . 

1/2 
r2 	) = {1. 2 	(r

e
+h

s
) 2  - 2re

(r
e
+h

s
) [cosecose

b - sinecosasin6 ] 	(11) 
2 b 	e 	 b 	• 

(7) 

(8) 
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It is more convenient to work with r2 (6b ) expressed as a polynomial, 
than with the form given by (11). The polynomial form is obtained by 
expanding r 2 (6h ) in a Mclaurin series about 6 a . Previous treatments [1] have 
expanded r2613 Y about 6 a=0. An expansion about O a=0 is adequate when there 
is no squint, i.e., a = r/2 rad; however for a a 	r12 rad, an expansion 
about 6 a  as given by (10), yields a series which requires fewer terms to 
represent r2(6b) accurately. 

A Mclaurin series expansion for r 2 (0b ), about angle 6a  is 

r2 
 (P) (0) 

r 2 (6b ) =
E 	 6

b
P. 

P! P=0  

The first three derivatives of the series evaluated at 0b
=0 are: 

r2
(0) =  r1 

 

r
e
(r

e
+h

s
) sin()

r 
r2 (0)  r 1 	tana 

r 2  + (r+h) 2  
r2

(2)
(0) - 	e s  	5 	

[r
2
(1)(0)]2 

2r 1 	2 	r
1 

and 

r 2  + (r +h ) 2  3[r (1)
(0)] 2 

(1) 	1 	3  e 	es_ 	2  
r2

(3) (0) = -r 2 	(0) - 	+ 2 	 (16) 
r 2 	 r 
1 

where r 1  is the slant range to point A at angle 6a•  It can be shown that in 
most cases the terms in 6 3  and above in (12) can be neglected. Thus r2 (6b ) 
can be written 

r 2
(s) = a

0 
 + a

l
s + a

2s2 ' (17) 

where s is the arc length along the ground track and is given by 

s = 0
b
r 

and, 

a
0 
 = r

1, 

r
e 	sin e r = — C 	 al 	

r 1 a tana 

(18)  

(19)  

(20)  

and, 
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(21) 

(22) 

1[ 1 1 
a 	 ) _ - 	. 

	

a 	2r 2 	r 2 2 2r1  = 
	(14e 
	 e 	1 

Equation (17) is the general expression for the slant range to a point 
reflector. 

For a=1112 (17) simplifies to 

r2 (s) = a0 
 + a

2
s 2  

where 

(23) a()  =r o  

a
1

0 (24) =  

1 1 
a = — 	(l+c 2 ) [ 	

' 2 	2 2ro 	
a 	2re  

and ro  is the slant range to point A when the radar is at its point of 
closest approach to A. 

A general expression for range as a function  of,  time (or orbital 
Position ab ), is given by (17). Equation (17) is an approximation that is 
valid for a small angular extent about As . The error introduced by approxi-
mating (11) by (17) can be evaluated by calculating the difference between 
these two equations for the Ai)  values of interest. 

In the derivation of (17) a circular orbit and a spherical planet, 
i.e., constant hs  were assumed. This constraint can be relaxed so that an 
elliptical orbit and ellipsoidal planet can be accommodated. Appendix B 
gives the derivation of an extended version of (11) which includes a constant 
vertical velocity  Vs,.  Obviously, for the more general case of an elliptical 
orbit, neither Veil  nor Vv  is truly constant. However for realistic orbits, 
accelerations .(Teq and v are small. 

3. THE FORM OF THE TWO-DIMENSIONAL SIGNAL FOR A POINT TARGET 

In this treatment of SAR it is assumed that the surface causing the 
radar backscatter can be modelled by a collection of point scatterers. The 
SAR illuminates and receives the signal scattered from these scatterers. In 
this section this signal is described. Subsequent sections will discuss the 
signal processing that operates upon the received signal from each point 
scatterer and produces an image of each point. 

The term two-dimensional is used to describe the signal because the 
received signal is formed by gathering information from each pulse trans-
mitted (the range dimension), and from changes that occur in the received 

(25) 
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signal from pulse to pulse (the along track or azimuth dimension), as a 
result of the relative motion between the radar and the scatterer. The 
derivation of the form of the two-dimensional signal consists of the follow-
ing steps: 

1. the determination of the form of the transmitted signal; 

2. the derivation of the form of the signal received by the radar when 
this transmitted signal is reflected back to the radar by a point 
target; and 

3. the derivation of the form of the signal obtained by mixing in a 
quadrature detector, the received signal with the carrier of the 
transmitted signal. 

It will be described in later sections how this two-dimensional signal 
is processed to form the two-dimensional radar image of the point target. 

3.1 FORM OF THE TRANSMITTED SIGNAL 

As the vehicle upon which the radar is mounted proceeds along its 
flight path, the radar transmits a series of pulses (see Figure 4) of the 
form 

fT 	=
e 	

W(t)tgt-mT)exp[j(w t-11) )] 
C  o m.-. 

where I(t-mT) is a complex modulation function, W(t) is a weighting function 
which will be defined later, t is time, T is the interpulse period, m is the 
pulse number, cp o  is the phase of the carrier at t=0, and wc  is the carrier 
frequency. The argument (t-mT) ot the modulation function represents time 
measured from the start of the mt" pulse. It is assumed for convenience 
that m=0 when the satellite is located at SI (see Figure 3), i.e., at an 
angle e a  from the position occupied by the satellite when it is at the point 
of closest approach  S.  

(26) 

rr --1 
Ui  

I 	11  

O (t-rnT):T 

' u  

Figure 4. Transmitted Signal 
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3.2 FORM OF THE RECEIVED SIGNAL 

The signal transmitted at time t from position S; (Figure 11), and 
received at time t+At at position S;1 , after reflection from the point target 
at A, is given by 

f
R
(t) = Re{1.142 (04)(t-mT-At) 

exp{j[wc (t-At) + (1)0]}} 	 (27) 

where, At is the time taken by the signal to travel the path  SAS ; (Figure 
11), and r is the reflection coefficient of the point scatterer at A. It is 
assumed that the point target at A is aspect insensitive so that r does not 
change during the time the radar views the target. 

The range to the target changes during the time taken to travel the 
path S+AS; (Figure 11). It is shown in Appendix C that a very good approxi-
mation for At is 

2r2  (s)
At - 	 

3.3 FORM OF THE SIGNAL OUTPUT BY THE QUADRATURE DETECTOR 

The received signal fR(t) is demodulated in a quadrature detector by 
mixing fR(t) with the carrier of fT (t+At). The transit time At can be 
replaced by 2(a0+a1s+a9 s 2 )/c using (17) and (28), and then the complex signal 
output by the quadrature  detector can be expressed as the two-dimensional 
function 

2 
fp(t t ,$) = 	142 (t',$)4t - 	(aeals+a2 s 2 ).] exp[-j2k(a0+a1

s+a2
s 2 )], 	(29) 

where, 

t' = t-mT, 

is time measured from the start of the mth  pulse, 

s = mVeq
T, 	 (31) 

is the arc length travelled by the sub-satellite point along the sub-satellite 
track during m interpulse periods, and 

(30) 

w
c 

k = — 

is the wave number. The variable t' is a measure of slant range. The 
specific value of t' given by At (28) refers to the transmit time for a 
target at a specific slant range r2 . 

(32) 
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In eqn. (29) W2 (t) has been rewritten as the two-dimensional function 
W(t',$) by segmenting W(t) into consecutive sections, of length T, and using 
the variable 's' to index the sections. 

The weighting function W2 (t',$) does two things: it limits the range 
extent of the strip of terrain from which signals are received; and it limits 
the number of pulses which can be coherently integrated to form the SAR image 
of the target at A. In limiting the number of pulses that can be coherently 
integrated, W2 (t,$) also limits the maximum azimuth resolution attainable. 

It is assumed that the position and width of W2 (t',$) in the t' 
dimension are chosen so that the radar illuminates only a narrow strip of 
the planet's surface, containing targets at slant ranges in the interval 

— nT < r r < — (n+1)T, 
2 	— 2  2 

where n is an integer. There is a range ambiguity, therefore the value of n 
must be known to convert Lt correctly into r2 via (28). 

When W2 (t',$) is chosen to satisfy (33), signals at ranges 

r2  = r2  ±  p 7  T, 	p = 1,2,..., 

which would otherwise arrive at the radar during the time interval 
[nT < t' < (n+1)T] and produce ambiguous signals superimposed on the desired 
signal, j7 not have to be considered. It is also assumed that the interval 
of r 2  which satisfies (33) is large cempared to the range extent in t' of the 
modulation function 1P in (29), and that W2 (t',$) varies slowly with t'. With 
these assumptions W 2 (t i ,$) can be written as 

w2 (t',$) = WoWl (s) , 	 (35) 

where W is a constant. 
0 

The shape of W1(s) in the s-dimension is assumed for ease of analysis 
to be rectangular. The actual shape of W1 (s) is determined by the antenna 
pattern. The follawing analysis will differ in the details but not the 
general concept if a different W1 (s) is used. Equation (34) for W2 (t',$), 
can be written 

W2 (t',$) = W
0 
 rect(9 , 
 Ls  

where Ls  is the synthetic-aperture length. The size of Ls  determines the 
number of pulses, returned from the point target at A, which can be coherently 
processed to form the SAR image of A. 

The general two-dimensional signal for a unity gain point target is 
obtained by setting F to unity in (29), i.e., 

2 h
1
(t',$) = W

0 
 rect(--)111t 1  - — (a

01 
 +a_s+a 2 s 2 1 exp[-j2k(a

0
+a

1
s+a

2
s 2 )]. 	(37) L

s 	c  

(33) 

(34) 

(36) 
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Figure 5 shows the form of hi(t v ,$). The responses from three point 
targets are shown. At some particular instant in time targets (1) and (2) 
both lie in the same direction a but are at different ri's. Target (3) lies 
at the same range ro , as target (1), but is situated at a different a. 

The thick solid lines in Figure 5 represent the envelope of hi (t',$). 
The lines limiting the s extent are the edges of the rect(s/L s ) function. 
This function increases in length as the radar's antenna pattern broadens 
with range. In other words the arc length Ls  over which the radar views the 

target increases with range. 

The curved lines limiting the t' extent of the signal are the edges of 

41 in (37). The curvature of these lines is determined by the manner in 
which r2  varies with s (shown by the dashed lines in Figure 5). 

The thin solid lines inside the tp-envelope represent constant phase 
contours of 	The phase of lp is composed of two factors: the phase 
exp[-j 2k(ao+als+a2 s 2 )] along the 's' coordinate (see Figure 5), and the 
phase of 1p along the t' coordinate. 

4. SIGNAL COMPRESSION 

The signal (29) returned from the point target at A (Figure 3) must be 
processed to produce a two-dimensional image of the target. The goal of this 
section is to show the form of the solution resulting from the two-dimensional 

convolution of the signal received from a point target (r=1) with the two-
dimensional impulse response of a filter that is matched to the signal at a 

particular reference range. A mathematical analysis, that results in an 
approximate closed-form solution for the equation describing the image, is 
presented. 

(t-ml)  

Figure 5. The form of the signals received from three point targets. Targets (1) and (2) are illuminated by 
the antenna at the same time. Target (3) is at the same r as target (1) but is illuminated at a later time. 



12 

In performing the analysis the general point target is assumed to be at 
range r 1  and complementary squint angle a, and to have an associated synthetic-
aperture length L s . the two-dimensional impulse response of the matched filter 
is calculated for a point target with a reflection coefficient of unity, 
located at a reference range îl, and complementary squint angle â, and which 
has a synthetic aperture length  L. The values rl, a and Ls are chosen to be 
different from the reference values 	and Ls . This is done so that the 
effect of mismatch between the signal and reference function can be examined 
in the final closed form solution for the SAR image. 

4.1 THE TWO-DIMENSIONAL MATCHED FILTER 

The impulse response of the matched filter is the time-reversed conju-
gate of the two-dimensional signal returned from a point target (37). When 
the parameters used in (37) are changed to the reference values, the impulse 
response of the matched filter can be written as 

h
2 
 (t' s) = 	

'
-s) 

1  

i.e., 

-s 	 2 h
2
(t ° ,$) = rect(m-)teEt 1  - - (â

0 
 -â_s+â 2s 21 exp[j2k(à0-à1s+à2 s 2 )] ' 

(39) Ls 	 c  

where the âo , âl, and â2 refer to the reference values of ao , al , and a2 , 
which are found by substituting f l  and â in (19)-(21). 

In the actual analysis a slightly modified form of (39), in which the 
à
0 
 term has been removed, will be used 

h3
(t',$) = rect(lteEt °  - 	(-à

1 
 s+â 2  s 2 	exp[j2k(-â1efâ 2s 2 )]. 	(40) c  L s  

The use of h3 (t t ,$) instead of h2 (t°,$) causes targets to be mapped at range 
ao  instead of range a0-4 in thefinal SAR image. In other words a shift of 
the map origin is introduced. 

4.2 SOLUTION OF THE TWO-DIMENSIONAL CONVOLUTION INTEGRAL 

An equation describing the form of the output SAR image is obtained 
by solving the two-dimensional convolution integral 

w r Co 

D (S-t,OdStd = -9-- f rectMrecth 0 	
h3 

2 
-oe 	 -co 

ex4-j2k[a0+a1-â1(-s) 	a22_â2(_s)2]} 

2 	 2 Jr 	_ 	[ âi (-s) + â 2 (c-0 2 ]1 	- - (a +a ,21 dRdE. (41) 
c 	01 	2 çz=_. 

(38) 
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The solution to (41) will be obtained in three steps. The first step 
will be to solve the inside integral by integrating over S.2. The second step 
will be to place a restriction on the variation of the solution to the 
inside integral. Provided certain conditions are satisfied this restriction 
will allow a separation of the variables. The third step will be to solve 
the outside integral which is a function of 

4.2.1 Solution of the Inside Integral 

solution to the inside integral is g(y) where 

2 
y = t' -  

c011 

function g(y) is the auto-correlation of tp, and has its maximum at 

2 t' = —  
c011 

The form of the modulation function ip has not yet been specified. 
Modulation functions used for pulse-compression normally have the character-
istic that most of the energy in the output pulse is confined to a main peak 
which has a 3 dB width approximately equal to rc/Kr, where 2r/Kr is the band-
width in Hz. In this report only modulation functions of this type will be 
considered. 

The shape of the g(y) function that is obtained for a typical modulation 
code 1P(t') is examined next. If a linear FM modulation function is assumed, 
11)(t') is given by 

I) = rect (t' 
T 	 

exp[j 1  (t' - 	1 	 (44) , 
2 	2  

where T is the pulsewidth, and K is the linear FM rate in rad/s 2 . For ti,(t') 
given by (44), 

g(y) = (T-iy1) rectH 	[ 
sine  7  (T-IyI)y , 

1( 
. 	

(45) 

where sine x = sin x/x. 

The shape of 
produ 	

g(Y) is shown in Figure 6. The sinc[Ky/2 (T-IyI)] factor 
ces three peaks; the outer two of which are suppressed by the 

(T-Jy1) 
factor. Provided the time-bandwidth product of the range (t') signal is 

high,  i.e., provided y << T in the vicinity of y=0, the major portion of the 
signal energy will be contained in the central peak. The equation describing 
the form of this peak can be closely approximated by 

g(y) = T sinc( r). 2 

The r resolution is proportional to the mainlobe width (the width between the first null on each side of y=0), which is given by 

The 

The 

(46) 
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g(r): 

e-N 

T-171) r] 

(r- In') rect (j-r) 
sinc 

...44111111111116W r\  
I 	I 
I 

1 
I 

I 	I 

0 

Figure 6. Form of Signal from a Single Point Target, After the Solution of the Inside Integral. 

27rc W - --- R KT 

It can be seen in Figure 6 that the position of the central peak produced by 
the solution of the inner integral is at y=0. From (42) it is known that y 
depends on 	 j which in turn, is a function of the 
azimuth () pàsitfon. The --dependence is a manifestation of the coupling 
or interdepencimce of the range (t') and along-track (s) signals. 

4.2.2 Separation of Variables 

In order to obtain an analytical solution to the outside integral in 
(41), y in g(y) must be constrained such that the -dependence is removed. 
If one lets 

A2 = a2-â2 	 (48) 

A
1 

= a
11

+2à
2
s 	 (49) 

and 

A
0 
 = a

0  + 1
à s- 2'  à s2 	 (50) 

one can rewrite (42) as 

y = t' - -2î (A
2

2+A
1

..FA
0
). 	 (51) 

The -dependence can be removed from (46) by choosing A2  and Al  in such a way 
that the position of the main peak does not deviate from y=0, by more than a 
small fraction of its width; i.e., a small fraction of 2nc/Kr. This deviation 
is described by the following equation 

(47) 
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(52)  

(53)  

rc 
6 = IA 2 4-  A 0 << r 	2 	1 

With the restriction given by (52), the substitution 

2 
Y  =  t' - 	 (A

0 
 ± 6 ) 

c 	r 

can be made for y in g(y), and an approximate analytical solution for (41) 

obtained. 

4.2.3 Solution of the Outside Integral 

The remaining step in the solution of (41) is the integration over 

With y given by (53), (41) can be written as 

f
o
(t',$) = 

W  r 
g[t' - 	(A ±(5 )1  •,f  rect( 2 	 c 0 r 

2 

rect(
Ls

) exp[-J2k(A
0 
 + A

1 
+ A2  2)] d 

The solution to (54) has two major cases, A2=0 and A2e, and two sub-
cases of each of the major ones, Es > Ls  and Ls < Ls . 

The variable A2  has a special significance in tHat it determines the 
magnitude of the quadratic phase error, i.e., 

e 
= 2kA

2
2. 	 (55) 

As shown in [15] the magnitude of the quadratic phase error determines whether 
or not an image can be considered focussed. In [15] the in-focus condition is 
defined by 

r II) 
 e 
I < — rad . 
— 8 

In this section the solution for A2=0 will be obtained, and then by 
reference to [15] it will be shown that for A200 the solution gradually i 

degrades as 1A2 1 increases. With this link established, it will be assumed 
that the solution for A2=0 can be used as long as the image is in focus. 

For Es>Ls , the impulse response of the matched filter is longer than 
the signal from which the synthetic-aperture is formed. It will be shown 
later that in certain situations £s  must be greater than Ls  in order to 
obtain the full along-track resolution. 

For Es<Ls , the impulse response of the matched filter is shorter than 
the signal from which the synthetic-aperture is formed. Sometimes Es is 
ichos en to be smaller than L s  because the antenna along-track illumination is o  
roader, and thus L is longer, than required to obtain the desired resolu-

tion.  

(54) 

(56) 



â
1
-a

1 
lab (58) 2'à 2 

16 

4.2.3.1 Solution for Zero Quadratic Phase Error 

/ 	> L 
• S — S 

For this sub-case the solution to (54) is given by 

Wo F 2 f o (t',S) = 	g[t' - 	(Ao±dr )] exp( -j2kA0 ) 

f.," Q  

rect( + I(  + i +L ) 
Ls 	

S S  
2

Ecz
1 exiljkA [ s (

-L  
' 2  )  1 

[ 	

Lc+L 
sinc kAl (S + .--2--a) + rcct[ 

s  ] 2 	 (L s_Ls ) 

s - 
L sinc(kA1L5 ) + rect[   	

LS  

- Ls+L s) 
(-s + 	 expjkA1 (7s + 

S
-L 

S)  
2 	 2 

sinc[kA1 (-s + 	' 2 
')] • 	 (57) 

LQ+Lc, 

Figure 7 shows the form of (57). It can be seen that it is highly desirable 
to ensure that the position of the main peak of the azimuth response Sp , 
where 

is confined to the interval 

(L
SS 

)  
S S  <s  < 2 	—p  — 	2 

In this interval neither attenuation nor broadening of the main peak occurs, 
and the main peak width (i.e., between the nulls), is given by 

Waz L kâ S 2 

(59) 

IT  
(60) 



tt  I'  
1 	1 
1 
1 	1 
I 	1 
I 

-••■ 

Ls  rect 	s  
L S Ls 

sinc (kA1 Ls) 

jrect r-s+l-s‘ 	
2 Irect% s + 1-s + Ls ■  s + 	 L 

2 	 Ls 

s r- 
S):  

sp ts - Ls  t-ds+LS  
2 

_ ( 1:S + LS) 	LS) 
2 	2 I  

Figure 7. Form of Signal From a Single Point Target, After the Solution of the Outside Integral. 
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2 L

S 
 < L

S  

(62) 
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For (59) to hold, is  must be chosen such that 

For this sub-case the solution to (54) is given by 

W r 2 f o (t',$) = 222 - g[t ,  - 	(A0 i- d r )] 

exp(-j2kA0) rect 

• 

- 
 (
-L 

4. 	
2 

iS  + LS)  ex1 
Ji(ell 	

_, [ _ (LS 2  S)] 
s  

[1 
	

Lc+Lc)] 
sinc kA (s + -2 ' 

s  ) L + rect (17T: s  exp(-2jkA1s)  

sinc(kA1iS ) + rect — Ls 

E ;L j.1 

{. 
exp 1 	

S S  

sinc kA 
[ (

s  +  S
2 

S  L  +L )] - 

1 
When 	is chosen such that 

L > L + s 	, S — S 	p 

the main peak width, between the nulls, is 

W - az LSkà2 

Ls  
s 2 

(64) 



(66) 

4.2.3.2 Solution for Non-Zero Quadratic Phase Error 

The purpose of this section is to obtain the solution for (54), when 
A2  # O. By reference to [15] it is shown that as A2  approaches zero, the 
solution to (54) gradually assumes the form of (57) or (62). 

When A2 # 0 9 the solution to (54) is found by solving the following 
integral 
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w r 
o  

fo (t' ' s) 	g ( Y )  
[

exp -j2k (A0  
Af )1 7 

rect(=1.M) rect( 
4A2 	 1:S 	17S 

A2  )1 
+ (65) 1 

{ 	
d.. exp -j2kA2  ( 1,--I2  

The solution to (65) has two sub-cases, LeLs  and £8<L. A link with (57) 
and (62) will be established by examining the solution for Ls>Ls. The solu-
tion for Ls<Ls  is found in a similar manner. When Es>Ls, the solution to 
(65) is 

W F 

fo (t',$) 	 g(y) 
Aî 

exp[j2k 0 2A2 

1 
1 ( 7T 	 2  rect 	{[C(V) - c(V)] 	i[S(V) 2 	1 	2 

2 
— s (q)] 

+ rect s 
 s-Ls

)  [C(qe ) - C(q) + j[S(q) - s( ) q 
L 

(es, -S',) 
+ rect 	 [o(c-1 ) - o ( )] 	j[S(V) - S()]1Ls 

where 

C(U).=f cos t 2  dt, 

S(V) 
 =J  sin 2.2r- t 2  dt, 

(67) 

(68) 



(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 
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are Fresnel integrals, and 

2 (k, A2Ï ( Ls  Ai  

1 	3 	n 	2 	112 	' 

	

kA 	1/4  
= 2(--2) 	+ . 2 	n 	2 	2A2 ) ' 

L 	A 

2 

A ) 
= 2(1- -A1)1/2 	- 	+ 1  5 	n 	2 	2A2 

The second term in (66) represents the solution when the main peak is 
located in the region (Ls-Ls)/2 to (Ls-Ls)/2. In this region (66) becomes 

Wo r 	 A\  
fO (t' ' s)  = 	g(y) exP I -J2k 	4A2  

1 (

n 41/2  rect(r----) {[C(P) - C(Q)] + j[S(P) - S(Q)]1 , 
2 	Le-Ls 

where, using the notation of [15], 

L.. (AI. 	rt 
/77. 2n  

Q =  L - n) = i;i7 2n 	3 

and 

and 

Aims  

and 

n = L 	= 	. S 	2 	emax 

The substitution in terms of At, and n allows comparison of (73) with the 
results in [15]. In [15], it is shown that as Oemax  decreases from n/8 rad 
to 0 rad only a slight change in the shape of the main compression peak 
occurs. Similarly, the solutions (57) and (62) degrade only slightly as 



(78) 

Ls 2  
2kA2  (-e) 2 

7T 
< 
-8  

(80) 

nnn 

8L2 

(81) 

(82) 
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IA2 1 	7/8 rad. Thus,  for < n/8 rad (57) and (62) can be used as the 
general solution to (54). 	

=max - 

4.3 PROCESSING SWATH IN RANGE 

The allowable processing swath in range Arl  over which a single matched 
filter can be used, it determined by the maximum range mismatch which satis-
fies both the restriction on 0e , (56), and the equation for Sr , (52). 

R 4.3.1 oemax estriction 
 

As can be seen from (55), the maximum quadratic phase error occurs at 

max which from (54) is 

= 
max 2 

The maximum value of 

= 21r1-e1 1  ' 	
(79) 

is found by solution of the following equation: 

where Oe  has been replaced by (55), and by (78). After the substitution of 
(48) for A2 , and of (32) for k, (80) can be written as 

8L 2 
S -T- la2-J2 1 • 1 , 

After replacement of a2  and â2  in (81), the equation can be rewritten as 

	

[
1 c2 r 2 	r 2 

1 	a 	1 	e n2 
sin28r 

2E1 	2 	2r2 rî -a tan2a 

1 
c2 r2 	r 2 
a 	 e c2 

sin2ê 

2P1   L  2 	- 2r2  f2  a tan  
e 	1 

If it is assumed that (rl/rp << 1, and a-a, then (82) can be simplified to 

ARCH  CENTe 
- 	 '" - VVION 

K2H 

<1. 
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2L 2  

-c

r  

, 3 

- 2 

Ar, 

- 2  

Ar, 3  

1)

3 Ar, Ar, 

1)

3 -C h2cos 2a 
as  

< 1. 	 (83) 

1 

1 + C 2 	 3C h 2cos 2a 
a Ccos 2a + 	a a  

a 	
9 

2 	 f/ 

xr 
Ar < 

1 - 2L 2  
(84) 

(87) 

1 + C 2   

2 	

±Ar
1  a  + C

a 
cos 2 ) 

(r 
± )  1 	2 	1 

If the further assumption Ar 1/2 << el  can be made, then (83) can be 
rearranged to give Ar i  explicitly, i.e., 

Otherwise, the solution for Ar l  must be found from (82) or (83). 

For the case 	> L the value of L is found from (65) to be 
S 	S'  

X  
LS 2Waz

à2 

If the same approximations used in (83) and (84) are used in the substitution 
for à2 in (85), (84) can be rewritten as 

2 

(85) 

[  

11-c 2 	 c h2  
---. 1  Ccos2a + 	a s  cos 2a 

a 2 	 if  
1+C 2 	 3C h2  

a 	2 , a s ---- Cacos 
a -.- —7- cos 2a 

2 	 f1 

(86) 
w2 
az 

Ar < 1 - 2X 

From (86) it can be seen that for moderate squint, i.e., a = 90 0 , the range 
swath is determined by 

W2  (1 + C 2 ) 

	

az 	a  Ar < 

	

1 - 2X 	2 

A large squint angle, i.e., small a, coupled with a steep depression 
angle, i.e., h5 /r1  = 1, causes Arl  to be decreased from the value given in 
(87). This combination of small a and  h5 /r1 = 1 represents the most severe 
operating geometry with respect to the range swath Ari, that can be processed 
with a single matched filter. 



or 

L
s X  32 - - L s 

(91) « W
r 	

L < L 
S • 

dr  
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4.3.2 6r  Restriction 

In this section it is shown that a suitable dr  can be found to satisfy 

	

(52). Bounds have already been placed on 	(78), and A2  (80). Thus the only 
step remaining is the derivation of a bound on Al . The validity of the 
solution to (40) is restricted to a neighborhood of radius 2 Waz  about the 
main compresion peak. With this restriction, l Ail  is limited to the interval 

	

IA l l < la - â + 2â2 	az (s
p 

± 2 W )1. 	 (88) 
1-1 	1 

After substitution for s (59), and Waz ((60) or (64)), (88) can be written 

IA
1 

 I < IXI. 
— 

If the restriction (89) is coupled with those on A2 (80) and 	(78), then 
(52) can be rewritten as 

(89) 

<< w
r' 

£ > L 6 r  = 
À 
32 - - 

(90) 

Equations (90) and (91) give the maximum value of dr . The width Wr  is always 
much greater than X because of fundamental physical constraints. Therefore 
the solutions given by (57) and (62) are only constrained by the quadratic 
phase error restriction (56). Henceforth, the quadratic phase error restric-
tion will be considered as the only restriction. 

The restriction on dr  ensures that no additional energy is spilled 
into the two-dimensional sidelobe structure by the range-azimuth coupling. 
The solutions obtained subject to this restriction do not provide any insight 
as to the detailed form of this sidelobe structure. The sidelobes can only 
be fully described by a numerical solution of (41). 

4.4 PROCESSING INTERVAL IN AZIMUTH 

In the along-track or azimuth dimension, there are also restrictions 
on the processing swath. As the vehicle carrying the radar moves along its 
track it will, in general, traverse lines of constant latitude. The latitude 
change introduces a change in eye , and therefore  Œ. If a changes appreciably 
in value from a, the reference function (40) will no longer match the 
properties of the signal received by the antenna. The length of the refer-
ence function  L  must be choseh according to (63) so that it is long enough 
to properly match the data that is received. 

4.5 POSITIONAL ERRORS IN COMPRESSED SIGNAL 

In this section it is shown that the two-dimensional convolution 
selects portions of the signal fp  with slope â1 . These selected portions 



(92) 

de2 
ds (93) 

of the two-dimensional refer- 
onvolution will cause a section 

It is known from (64) that 
cg the line s=0 (e.g., E in 
igure 8). For a2  = à2 the 

(94) 

M2 	 M3 0 	 • 	r01 

re (8a+8b) 

•LINE OF 
CONSTANT it, 
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are shown to be offset in r1 and s from the centre of the two-dimensional 
signal returned from the target. 

The selection process can be understood by examining Figure 8. In 
Figure 8 are shown three sets of lines: the dotted is a line of constant al; 
the solid are lines of constant S; and the daohed are lines of constant ro . 
The' slopes of the dashed lines are given by 

dr 2 717— = al  + 2a2 s 

For the particular line through D, (92) can be written as 

Equation (93) is the slope of the phase fronts 
ence function hl (t i ,o). The two-dimensional c 
of fD (tt tO be selected that has a slope â1 
the compression peak, for a target located alo 
Figure 8), will be located at s (e.g., F in F 
slope at F is 

dr
2 	

de 2 
ds = -1 = ds 

where df2/ds1 _n  is the slope at D, the point to which the reference function 
is matched. el-gince the locations of the points E and F are general, it can 
be stated that the convolution does indeed select portions of fp(t t ,$) with 
the same slope as h3 (t,$) at D. 

s= 0 

Figure 8. Form of the Isodops 



(95)  

(96)  

(98)  

(99)  
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In Figure 8 it is shown that the output signal is also shifted in range 
by the displacement from E to F. The output position, as seen in (53), is 
shifted from a to A ± d where 

0 	0 	r' 

A = a + Ar(s ), 
0 	0 

and 

Ar(s ) .às _à 8 2 
1 p 	2p  

Both the r1-shiftAr(s )' and the s-shift s p, are range dependent. P  They must be removed in order to form a geometrically correct image. 

5. IMAGE FORMATION 

In order to form a geometrically correct image, the azimuth offsets s T, 
(59), and the range offsets Ar(s) (96), must be removed. After removal of' 
these offsets, a line of points, e.g., AS1 in Figure 9, will lie along a line 
of constant s in the (ri ,$) coordinate system, i.e., will be plotted perpen-
dicular to s. When viewed from the (d0 ,s0 ) coordinate system, where (d 0 ,s0 ) 
forms an orthongonal map grid on the surface of the planet, the axes r1  and 
s are neither coplanar nor orthogonal. Therefore when an orthogonal map is 
required, images produced in the (ri ,$) coordinate system must undergo a 
coordinate transformation. This transformation involves two operations: 

1. conversion from slant range r1  to ground range d l , and 

2. conversion from processor coordinates (di,$) to map coordinates 
(d o  ,s o ). 

Ground range is obtained from slant range by using the equation 

-2C a 
d
l 

= re 
cos -2C a 

The conversion from (di,$) to (d 0 ,s0) is made by writing the constant 
s line (AS I  in Figure 9) at an angle with respect to the sub-satellite track 
(so s i ). The data must be laid down on the map along the lines described by 
the intersection of the antenna centre-beam plane and the surface of the 
earth, when the satellite is at orbital position 6a (re+hs ). The equations 
which describe the transformation are 

d1
- - 

d
o 

= re 
sin'  Isin (—e) sinal 

(tan()) 
so 

= s - re 
sin tana 

-1 	'11) 	 1.] 

/ ‘2 

(97) 

and 
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Figure 10 shows the relationship of d d s and s o 
for a target located at 

A. 

SI 
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Figure 9. Radar Geometry for MultilookProcessing 

Figure 10. Transformation From Squinted to Sidelooking Ground Coordinates 
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6. MULTI-LOOK SIGNAL PROCESSING 

This section describes multi-look signal processing, a technique that is 
employed in SAR to reduce target scintillation. 

In Section 3.3 it was shown, (see eqn. 64)) that the azimuthal resolu-
tion is proportional to the length of the signal function that is used to 
form the synthetic-aperture. Frequently, the antenna beamwidth e is suffi-
ciently broad that the resulting signal function is longer than that required 
to produce the desired azimuth resolution. Rather than truncating the signal 
and thereby wasting the energy associated with this additional signal, it is 
common practice to segment it into several pieces, each of appropriate length 
for the resolution desired. Each of these segments is matched-filtered to 
produce an image. 

The images are geometrically corrected and converted to map coordinates. 
After registering the images with respect to one another, they are noncoher-
ently summed together to form a composite image. The terms multi-looking, 
angle diversity, and mixed integration are the jargon commonly used to 
describe the noncoherent averaging operation. 

The segmenting operation described above results in using portions of 
the azimuth signal that are acquired at different a-angles, (see Figure 9). 
Each of these images are referred to as "looks"; the qth look being at angle 
an . Obviously the aq 's must be selected such that the corresponding signal 
shments are contained within the antenna horizontal beamwidth. 

In order to register the looks, it is necessary to specify the matched 
filters for each of the looks so that each filter corresponds to the same 
point A. To specify the qth filter ,  a is first selected, subject to the 
constraint mentioned above, and ao  , aiq , and a2q  are calculated using ri g  
and ag •  The parameter rig  is the slant range to A when A is at an angle-to-
track a cle In terms of the fundamental parameters a and ri, riq  is given by 

The q th filter is then specified by 

a
Oq 	

r
lq ' 

sine 
a 	 C 	, 
lq rlq 

a tan« 

(101)  

(102)  

and 



sine
r 
= 1 	

1 + C2  - 

2C ' 
a r 2  

sin«. 
a 

where 

21 (104) 

1 

[ 	

1 + 	1  (ri  f 	_ 
- a1 z  1 	' 

	

a2q = 2rlq  2 	
2 re  
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(103) 

The matched filtering and image formation operations for the multi-look 
case, are identical to those required for the single look case, except that 
in all the equations the parameters aOq , alq ,  a

2q
, cx  q and rlq are substituted 

7. EXAMPLE 

A software digital processor based on the theory described in this 
report has been programmed and used to produce imagery from data acquired 
with airborne and satellite-borne SARs. Examples of processed imagery are 
shown in Figures 12 and 13. The images were produced using data from the 
SEASAT-A satellite. The image in Figure 12 is a four-look 25m ground range x 
25m azimuth resolution image of Trois Rivieres, Quebec. The image in Figure 
13 is a single-look 25m ground range x 7m azimuth resolution image of 
Halifax, Nova Scotia. The processing parameters for these two scenes are 
given in Table 1. For the SEASAT-A satellite the antenna beam is only 
slightly squinted (3-4 0 ); however, the relatively low frequency (1.276 GHz) 
of the transmitted signal, and the large distance between the satellite and 
the planet's surface, mean that processing the data to 7 and 25m resolutions 
involves the same degree of complexity as more highly squinted airborne 
systems. 

Figure 11. Definition of Slant Ranges at Transmit and Receive Times 

for a0' a1 9  ar OE, and L 1 . 
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Figure 12. SEASAT-A SAR Image of Trois Rivieres, Quebec 
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Figure 13. SEASAT-A SAR Image of Halifax, Nova Scotia 



TABLE 1 

Processing Parameters for Imagery Examples 

Parameter 	 Halifax (7m az) 1-Look 	 Trois Rivieres (25m az) 4-Look 

h s 	 796.529 km 	 796.853 km 

re 	 6368.110 km 	 6367.623 km 

Veq 	 6775.349 P-/ 	 6774.502 —m 

a 	 86.629° 	 87.8600  

r 1 	 851.062 km 	 866.781 km 

a)c 1.276 GHZ 	 1.276 GHz 27r 

1 	 1646.7603  1646.7603 Hz 4 

Ls 	 13.52 km 	 4.13 km 

MHz -0 	 MHz  .56275 	 -0 -- 
27r 	 psec 	

.56275 psec 

r 	 33.9 psec 	 33.9 //sec 

W R 	 15.7m 	 15.7m 

Waz 	 13.2m 	 43.9m 

Ar l (approx.) 	 0.25 km 	 4.0 km 

aq - aq-1 	 -- 	 0.516°  

8. SUMMARY 

A general theory of two-dimensional SAR processing has been presented. 
The forms of the range and azimuth radar signals returned from a general 
point target have been derived, and it has been shown that these signals are 
not in general independent, i.e., they are coupled. An approximate closed 
form solution describing the image produced by performing a two-dimensional 
convolution of the SAR signal, returned from a point target, with the. two-
dimensional impulse response of the matched filter has also been given. By 
means of this solution it has been shown that a single two-dimensional 
reference function can be used to produce high quality images from radar 
signals obtained over a swath in range. However, these images must be 
geometrically corrected to remove positional errors introduced by the 
processing. Equations have been developed to describe both the positional 
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errors and the operations required to remove them. Finally, the modifications 
required to extend the theory to include the case of multi-look processing, or 
noncoherent averaging have been developed. 
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APPENDIX A 

Derivation of Ven and Vep 

A brief derivation of (4) and (5) are given here. Refer to Figure 1. 
From rules of spherical trigonometry for right spherical triangles one has 
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sin(n-6
i 
 )coscp

o  cos4)
s

, 	6 	n/2 rad. 
i [1 - sin2 (n-6 )sin2 4)

o
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1 

= 0, Oi  = n/2 rad. 

and 

sin(n- Oi )  - sin(Plat/sin 4)0. 

The velocity components are 

V
en 

= (wr coscp)coscl 
ee 	lat 

) s 

and 

Vep 
= (wr coscp)sinc 

ee 	lat 
p s , 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

where we  is  the  planet rotational frequency. After some manipulation and the 

use of sincl) s 
= /1-cos 2 cp

s
, (4) and (5) are obtained. 
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APPENDIX 	B 

Range as a Function of Orbital-Position in the Presence of an Orbital 
Vertical Velocity Component 

To include a vertical velocity component, Vv , in (17) hs  is replaced by 
hs + V s/V . The second term is the radial displacement from the circular v en  
obit  undergone by the spacecraft in sweeping through the angle 0b • The range 
r2 then becomes 

V 	 V 
r Jr + (r‘  +h + v  S, - 2re 	+h + v  s) s Veq 2eesVeq  

1 1/2  [cosecoseb - sinecosacose b ] (B. 1) 

When the first three terms of the Maclaurin series are derived from the equa-
tion for r2' as in Section 2, the a-coefficients are seen to be 

(B.2) a
0 

= r1 

r 	sine
r .v v 

a = 	C 	t 	 - 	COS° 1 r 1 a tana 	Veq a Veq 
(B.3)  

r  2 	 2 	 sine r 1 (-1) 	(Vv  ) 2F) tana 
1 	 

a2 - 2r 1  2 C  - 	re 	al 	Veq eq 
(B.4) 
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(r +r 	+ 2r -21 (r +r ) 	. 

c 	T R 	Tc 	TR rT 

V 
AB 

r 	-_, (C.5) 
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APPENDIX 	C 

Derivation of Equation Describing the Transit Time 

The distance travelled between transmission and reception of a pulse is 
(see Figure 11) 

rT + rR) V T R ( c 	eq' 
(c.1) 

where rT  and rR  are the ranges to the target at the times of pulse transmis-
sion and reception, respectively. Then, following the treatment of [12], the 
range at the time of transmission if 

AB r - -- T sin a 
(C.2) 

where AB is the distance between A and B, and 'a' is the angle between BSI, 
and ASI,  as shown in Figure 11. The angle 'b' between &pi.  and SA  is related 
to 'a' as follows 

sin a = - cos b. 	 (C.3) 

Therefore, the range at the time of reception is found from the 
solution of 

2 
V 

r 2  = r 2  + 	(r +r 	- 2r 	(r +r )cos b 	 (C.4) 
RT 	cTR 	Tc 	TR 

V 

which can also be written as 

2 

If one factors r 2-r 2  into (rR-rT)(rR+rT), and divides both sides by R 
 the following equati
T  
ons are obtained 
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2
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1 - (----%1)
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and 
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(C.7) 

Since (Veq/c) is always much smaller than unity and usually AB << rT' the equation 

2r, 
At --1  

is a very good approximation to (C.8). 

(C.9) 
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