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TRACKING-FILTER STRUCTURES FOR AUTOMATIC TRACK-WHILE-SCAN 

SURVEILLANCE SYSTEMS 

by 

A.W. Bridgewater 

ABSTRACT 

In an automatic track-while-scan air-surveillance radar system, 
the role of the target-tracking filter is to support the plot-to-track 
association process by providing reliable estimates of the current 
track state, on which to base predictions of subsequent track 
states. The Kalman filter is the most general solution of the 
recursive linear mean-square estimation problem, its drawback 
being its computational cost An analysis of various 
one-dimensional forms of filter, derived from the Kalman, results 
in the complete specification of the a-f3(--y) and reduced-Kalman 
classes of tracking filter, which often form the basis for the design 
of the practical two- and three-dimensional trackers required in 
air-surveillance systems and which combine good track-following 
ability, ease  of adaptation to changes in tracking conditions and 
low computational cost. Both recursive and steady-state adaptive 
versions of these one-dimensional structures are described. A 
functional relationship between the set of gain coefficients and a 
parameter which quantifies the current tracking conditions in 
terms of target manoeuvre uncertainty, radar measurement error 
and track update interval makes possible rapid and effective filter 
adaptation. 

1. INTRODUCTION 

In an automatic track-while-scan (TWS) air-surveillance system, the 
radar sensor reports measurements of target positions at regular intervals 
of time to a computer, which then assembles these reports, or "plots", from 
successive scans into tracks. The computer program must correctly associate 
new plots with existing tracks and initiate new tracks from reports received 
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on air targets within the range of the radar. The association task is aided 
by tracking filters which combine noisy measurements with track predictions 
to obtain smoothed updated track estimates. The predicted position of the 
target for the next radar scan, based on the smoothed estimate of the current 
position of the target, is used together with the estimated standard deviation 
of the prediction to determine the location and size of the region of accepta-
bility of new observations on that target. The tracking filter thus plays an 
essential role in the function of plot-to-track association, in addition to 
its role of providing accurate estimates of the position and motion of the 
target. 

The literature on the techniques of track filtering (smoothing and 
prediction) is very large and diverse. This report attempts to construct a 
framework in which the majority of techniques could be placed and thereby 
more easily analyzed and compared. 

An operational air-surveillance system must be capable of tracking 
many targets simultaneously, in an environment that may provide large numbers 
of false target indications due to fixed and moving clutter, man-made inter-
ference and system noise. The primary task of the tracking computer in such 
a system is that of track initiation and association, and these functions 
should be allotted most of the computational time available. In a system 
involving a network of sensors, the related task of track registration between 
different sensors should also be included in this preferred allotment. The 
measurement accuracy obtained and the tracking precision required by such 
systems do not demand the most computationally complex filtering operations. 
It is essential that the filtering operations give sufficient support to the 
association procedures; any complexity beyond that necessary for this task 
is of diminishing value. It is important however that the filter be suffici-
ently flexible to adjust quickly to changes in the tracking environment. 

The general Kalman filter provides the starting point for the analyses 
which follow. The discrete form of the filter is presented, without deriva-
tion, and from it are derived the general forms of recursive and fixed-para-
meter (steady-state) filters which are various sub-optimal solutions to the 
estimation problem. The use of fixed-parameter filters eliminates the 
necessity of iteratively calculating new coefficients at every scan and thus 
greatly reduces the computational load of the filter portion of the automatic 
tracking system. The adaptation of the filter to changes in the tracking 
conditions (viz., manoeuvres, measurement error, update interval) is discussed, 
and the means by which the steady-state filter may adjust to such changes 
are described. 

2. TRACK ESTIMATION 

The role of an automatic tracking system is to provide a sequence of 
best estimates of the target's position and velocity, based on the available 
measurements and an assumed model of the target's behavior, without operator 
intervention. Powerful mathematical procedures exist with which to carry out 
the track-estimation operations. The Kalman filter' is the most general 
solution of the recursive, linear, mean-square estimation problem. It is 
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conveniently expressed in matrix notation, as described in the following 
section. 

2.1 KALMAN FILTER 

The discrete form of the filter is described by the following equations: 

Target Model 

Xk =k_lXk_l+  rk_iUk_i 

Measurement Model 

Yk = MkXk Vk 

Forecast 

i(k = (1)k-A-1 	 (3) 

= 	O t 	+ r 	Q 	r t 	 (4) 
k 	k-1 k-1 k-1 	k-1 k-1 k-1 

Estimation 

Kk(opt)  = PkM(Mk13kMi  t(  + Rk) -1 	 (5) 

kk = ïk K
k(opt) (MA - Yk) 	 (6) 

K.  
ilk 	_ ic(opt)Mkilk 	 (7) 

The sampling instants at which measurements are taken and to which computed 
quantities apply are indicated by the k-subscripts. Forecasts and estimates 
are denoted by (-) and (") respectively. The superscript (0 denotes matrix 
transposition and the superscript (-1) denotes matrix inversion. 

Xk  is the state vector of the target in track, at the k
th instant; 

Pk  is its covariance matrix. 

Uk is a noise vector representing zero-mean random activity (model 
uncertainty); covariance Qk . 

Vk is a noise vector representing zero-mean random activity (measure-
ment uncertainty); covariance Rk . 

rk is the excitation or manoeuvre matrix which specifies the effect 
of Uk on Xk . 
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0
k 

is the state transition matrix derived from the assumed model 
of the dynamical behavior of the target. 

Y
k 

is the observation vector of the target in track. 

Mk  is the measurement or selection matrix which relates Yk  to Xk . 

is theA optimum gain matrix for the determination of the esti-Kk(opt)  
mates Xk  and Pk . 

The Kalman-filter algorithm combines a track forecast, which is derived from 
the previous best estimate in accordance with the equations of motion, with 
the most recent physical measurement to produce a weighted mean, the weighting 
factor K being chosen to minimize the variance. For strick optimality, the 
noise statistics must be Gaussian, and the noise terms must be uncorrelated 
from one sampling instant to the next. Because it provides for the inclusion 
of all possible couplings of covariance terms in its matrix formulation, the 
Kalman filter is independent of the coordinate system in which the state 
variables and measurement variables are expressed. 

The drawback of the Kalman filter is its computational cost. The 
recursive procedures require, at each sampling instant and for each target, 
the multiplication of matrices or order nxn and the inversion of a matrix of 
order mxm (see eqns. (4) and (5); n is the length of the state vector X and 
m is the length of the observation vector Y). For a track-while-scan surveil-
lance radar system, which may be required to track many targets simultaneously, 
this computational load could become prohibitive, particularly when one must 
take into account the additional load of the automatic track-association 
procedures. By dispensing with various components of the full apparatus of 
the Kalman filter, one can produce simpler approximations to the solution of 
the estimation problem, with corresponding reductions in computer loading. 
This must be accomplished, of course, without degrading the overall tracking 
performance of the system to an unacceptable degree. 

2.2 SIMPLIFICATION 

There are two approaches to the simplification of the filtering 
procedures. The first is to reduce the general matrix formulation to such 
an extent that it may be replaced by a small number of algebraic recursion 
relations. The necessary simplifying assumptions include the elimination of 
coordinate interaction terms in the covariance expressions, the reduction in 
the size of the state and measurement vectors with a corresponding reduction 
in the dimensions of the associated matrices, and the adoption of simple 
linear equations of motion derived from the transition matrix 0 (assumed 
invariant with k) and based on a constant sampling interval T. This results 
in a sub-optimal form of solution of the recursive estimation problem. 
Because of the coordinate decoupling, the choice of coordinate system in 
which to express the state and measurement variables can affect the filter 
performance. The filter does not propagate all possible covariance terms, 
as does the Kalman filter. 
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The second approach is to adopt a constant gain K.  in place of the 
recursively computed Kk (opt)  in the Kalman filter, using invariant forms for 
(1), P, and M., This eliminates the need for iteratively computing the covari-
ance matrix Pk, during track updating. K.  is the steady-state gain or limi-
ting value of K,K(opt),  with known or assumed values for the noise covariances 
Q and R. It is preconuted by iteration of eqns. (4), (5) and (7) starting 
with an initial value Po  and is subsequently applied to the sequence of target 
observations using only eqns. (3) and (6). This form of solution to the 
estimation problem is sometimes called the Wiener filter. 

These two approaches may be combined to form a constant-gain, reduced 
filter. 

2.3 ADAPTIVE FILTERING 

Whatever method is adopted for track filtering, it is usually necessary 
to combine it with some form of adaptation. An adaptive system is one which 
continually adjusts its own parameters in the course of time to meet a certain 
performance criterion. By this definition neither the recursive nor the 
steady-state filters outlined above can be termed adaptive. For the former, 
the sequence of values for the gain Kk could be computed off-line and stored 
prior to being applied to a sequence of target observations, given a set of 
initial values for the covariance terms. 

On-line adaptation is required when significant changes occur in the 
target motion (manoeuvres), measurement accuracy or frequency of detection. 
The excitation noise covariance Q is a statistical quantity intended to cover 
uncertainties in the model of target motion described by sl) and F.  Measurement 
accuracy is described statistically by the noise covariance R, and the inter-
val between filter updates is given by the time T (which appears in (15 and r). 
Changes in the track environment must be reflected in the appropriate adjust-
ment of these three filter parameters during the track-estimation process. 
Adaptive tracking requires the on-line computation of a figure-of-merit term, 
or track-performance indicator, which typically involves a weighted combina-
tion of the terms in the residual MX I -Y in eqn. (6). It also requires a 
practical procedure for determining what quantitative adjustment should be 
made in the filter parameters. 

3. ONE-DIMENSIONAL FILTER STRUCTURES 

In this section, we analyze various forms of one-dimensional tracking 
filters, as derived from the general Kalman filter, demonstrating their 
recursive and adaptive features by means of algebraic equations, and where 
possible we derive closed-form functional relationships which describe 
completely their steady-state characteristics. These forms are important 
for the construction of the'two- and three-dimensional tracking filters 
required for a practical air-surveillance system. 

First, we analyze the class of so-called a- $ (-y) filters, in which 
measurements are reported on target positions only. Various filters in this 
class have long been used in target-tracking applications. We show how all 
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the types of filters in this class are related through a common derivation 
from the general Kalman form. We demonstrate their recursive behavior, 
verify certain optimal steady-state relationships between parameters in 
various filters reported in the literature and present new results for others. 
Second, we analyze the class of reduced Kalman filters, in which doppler 
measurements of velocity are available in addition to target position 
measurements. We develop a single structural framework, similar to that 
developed for the Œ-(-y)  filters, in which these filters may be conveniently 
described and demonstrate their recursive and steady-state behavior. 

In the one-dimensional form of tracking filter, each coordinate x in 
the target's state vector is decoupled from the others and is treated 
separately. 

3.1 a-e FILTER 

The standard equations for the a-e filter are obtained by substituting 

,k 	 ok 0  . [ 1 T1 ;  
k 	 LO 

1 , Kk (opt) = k/ 1; Yk  = [yk ]; Mk = M = [1 0 1  
a 

in eqns. (3) and (6). This is a second-order, constant-velocity model for 
target motion, with only position measurements available and with a constant 
update interval T. For each coordinate, the tracking filter then reduces to 
the following algebraic equations: 

Forecast 

Xk =4\tk-1 4k-1 ; 	n  t-1 

Estimation 

t(Yk—sric )  -k  = œYk-41k1; -k k 1%.k(  

where xk  is the target position at the kth instant, xk  is the target velocity, 
yk is the measured target position, T is the sampling interval and Œk,  ek  are 
the gain coefficients. 

It is not necessary to propagate explicity the state covariance terms 
in order to calculate the filter gain at each iteration. The decoupling of 
the state coordinates and the use of only position measurements simplify the 
Kalman recursion relations to the extent that the gain coefficients at the 
kth instant may be calculated directly. This is shown by expessing the 
elements of the system gain Kk(opt) and the state covariace Pk at the kth  
instant in terms of the elements of the state covariance Pk..../  at the (k-1) th 
instant, from eqns. (4), (5) and (7). 



p = 1 	[R(a+2bT+dT2) R(b+dT) 
k (R+a+2bT+dT2) R(b+dT) 	(a+R)d-b 2  R(b+dT) 	(a+R)d-b 2  

(10b) 
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Set 

a  . [P11 P12] 	. 
1 

p 	. 
k-1 

P21 P22 	[b di (k-1) 

where a is the position covariance, d is the velocity covariance and b is the 
cross-covariance. 

Then 

r2bT+dT2] 
1  

Kk(opt) 	(R+a+.2bT+dT2 ) 	b+dT (10a) 

The measurement covariance R is a scalar quantity. The excitation noise Q is 
assumed to be zero in this initial development. (The inclusion of non-zero Q 
is considered in subsequent sections). 

From the above definition of Kk(opt ) in terms of Œk,  $k and from the 
added definition P22(k) = Rdk/T 2 , the state covariance (eqn. (10b)) may be 
rewritten 

[Rak  Rek/T [P11 P 12] 

P21 P22 k/T Rdk/T1 
(10b') 

where p11(k) = E{w 2 } '  (wk  = Xk  - E{Xk }, and E{•} denotes statistical expecta- k tion) 

(w
k
-w

k-1
)  

= E{wk1:7k } = ET,/
k 

• P 12(k) = P21(k) 
1 	2 

E{W )9 T 	k 

P22 (i)  = E{W 2 } = 	q( 	 - 1  ( { 2 ) 	 { 2  }) 22(k) 	k 	'wk-wk-1 	- T 2  'E wk 	E wk-1 

2 	, 9 , 
= 	Etwy, assuming that wk , wk_i  are statistically uncorrelated. 

Finally, we obtain by inspection of eqns. (10b) and (10b 1 ) a set of three 
algebraic recursion relations, for ak , ek  and dk , defining an additional 
parameter Dk  for ease of notation: 
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D
k  = 

l+Œ 
 k -1 

+ 2e
k-1 

+
k-1 

(11a) 

8k 

ek-1 	
+ d

k-1 
D 

(11c) 

(11d) 6 = 6 	_ /3 2D  
k 	k-1 	k k 

Dk
-1 

ot  = 
k 	Dk 

(11b) 

From eqns. (11) the coefficients Œk,  ek both approach zero asymptoti-
cally with increasing k, as the filter relies more and more on its own fore-
cast and subsequent measurements receive progressively less weight in the 
éstimation. An explicit value for R for each target coordinate is not 
recered. Since R is the variance in a measurement of target position (R = 
E{Vk} = r, a scalar quantity) we may also define it to be the a priori 
uncertainty of the target position at the initiation of the tracking filter 

(1- e 'e P11(0) = r). This assignment leads to a set of initial values for 
the filter gain coefficients, a0=1, eel, and do=2. With ao , eo  and 60  
taking on these numerical values it is possible to obtain the following 
explicit expressions for ak'  k'  6k 

 as functions of the iteration number k. 

2(2k+3) 	 6  
ak = (k+2)(k+3)' 	k  = (k+2)(k+3)' 

and 

12  
k 	(k+1)(k+2)(k+3) 

Figure 1 shows how  Œk,  ek, dk vary as a function of k, in accordance 
with eqns. (11) or (12), using this initial assignment. 

3.1.1 Random-velocity Models 

In radar target tracking one would not permit a and $ to decrease to 
zero, recognizing the need to provide for some uncertainty in the target 
model. This can be done by truncating the (a, e, (S)k values at some designed 
non-zero minimum. An alternative form of a-e filter includes this model 
uncertainty directly by providing for a non-zero Q. In eqn. (1) let Uk be a 
zero-mean random variable in velocity and Qk, its covariance, be a scalar 
quantity qv  for each coordinate. The effect of this random velocity is 
included in the track-estimation process by means of the excitation matrix 
r = (o 1)t, and serves to allow for target manoeuvres or deviations from the 
modelled dynamics of the , target. The only change in the recursion relations 
(11) is the following: 

(12) 

6 = 6 	_ 8 21, 
k 	k-1 	1 	k k 

(11d') 
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Figure 2. Transient behavior of a-I3 filter (random-velocity model) 
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where 41.  = qvT 2 /r is a system parameter. 

The filter achieves a steady state with non-zero values for a, e and d which 
are independent of the initial state of the filter (a0 , 130 ,60 ) and depend only 
on 41. The transient behavior of the filter does depend on the initial state. 
Figure 2 gives an example of the dependence of the recursive filter coeffici-
ents  Œk  and ek' as functions of k, on the parameter 4/. 
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Figure 1. Asymptotic dependence of ideal ci-e filter on iteration number 
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As a modification to this form of filter, a different excitation matrix 
r = (T 1)t allows the random velocity variable to influence target position 
as well. The recursion relations must be rewritten as follows: 

k 
= 1 +

k-1 + 2e  k-1 + k-1 + 1 	
(13a) 

 

Dk-1 
Œk  k Dk 
- 	 (13b) 

e
k-1 

+ d
k-1 

+
1  8k =  D

k 	
(13c) 

d = 	+ 	- 8 2D 	 (13d) 
k 	k-1 	1 	k k 

The transient behavior differs very slightly from that of the preceding 
filter, but the final values for the coefficients again depend only on (P i . 

3.1.2 Adaptation 

The sets of equations (11') and (13), in conjunction with eqns. (8) and 
(9), retain all the features of the original matrix formulation of the Kalman 
filter with the restrictions that (i) only target position is measured, (ii) 
only position and velocity are estimated and (iii) target coordinates can be 
decoupled and treated separately. When changes in Q, R or T occur, the Kalman 
filter incorporates them directly, from one iteration to the next, in its 
recursion equations. Normal operation of an a-e filter assumes constant 
values for the corresponding parameters qv , r and T, but on-line adaptation 
to changes in these terms can be accommodated nevertheless. If filter 
adaptation is required between iterations (k-1) and (k), the coefficients 
ak-1, sk-1 ,  6k...1 in eqns. (11'), or (13), are first replaced by the coeffici-
ents 

2 

(111( -1 = (f-r) ak -1 ;  qc —1 ' ("1:77)( ' )k —1; '11(-1 = (fT)( TT i )  6k-1,  

and the system parameter is recomputed: (PI = q(T 1 ) 2 /r'. The coefficients 
ak, 8k and dic  are then obtained from the equations as usual. The superscript 
( 1 ) denotes the new or adapted values of the terms in question. 

3.1.3 Steady-state Analysis 

To simplify this a-e filter still further, one can eliminate the itera-
tive computation of the filter coefficients by using the steady-state (S.S.) 
values appropriate to the current value of the system parameter (P i . Only 
when (11 changes during the course of the tracking operation are tee filter 
coefficients recalculated, and then once only, for all subsequent sampling 
intervals, or until (p i  changes again. The analysis leading to the closed- 
form solution for (a e) ss  as functions of cib 1 is outlined below. .. 

For the recursive filter, it has been shown 2  that the number n(n+1)/2 
of simultaneous equations that must generally be solved to obtain the steady- 

(14) 
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state gain matrix (where n is the size of the state vector) can be reduced to 
(np) simultaneous equations (where p is the size of the measurement vector), 
when p < (n+1)/2. For the a-e filter described by the set of equations (13), 
with a state vector of length 2 (position and velocity), we expect initially 
to have to solve three simultaneous, quadratically nonlinear equations. 
These equations are obtained by imposing the steady-state conditions Œk  = 
a
k-1 

= a, etc. and substituting in eqns. (13): 

a(a + 28 + 6 + 4) 1) = 28 + 6 + 1 	
(15a) 

e(a + 2e + 6 + 4)1) = 6 + 1 	
(15b) 

4) 1 (1 + a + 2e + 6 + (p i ) = (e + 6 + 	 (15c) 

These reduce to two simultaneous equations, since only position measurements 
are available in this case (p=1). Recalling eqn. (13b) and noting that 
Dk=D=l+a+2e+6+4) 1 , divide (15c) by (15b), and add (15a) to (15b) to obtain 
the following results: 

	

a(a+e) = 2e 	 (17) 

Equations (16) and (17) form the reduced set of simultaneous quadrati-
cally nonlinear equations. Equation (17), first obtained by Benedict and 
Bordner 3  and usually appearing in its alternative form as e =  a 2/(2-a), has 
often been quoted as an optimal design criterion for steady-state a-e filters. 
It specifies how the "optimal damping factor" e depends on the "system band-
width" a, for all values of a. The original analysis left open the specifica-
tion of a, a free parameter to be selected depending on the application. 
Equation (16) completes the analysis to provide the optimal specification of 
a as well, in terms of the global parameter 41. • The same two equations would 
result from an analysis commencing with eqns. (11'). 

Combining eqns. (16) and (17) we obtain a linear quartic equation 

(3 4  _ (1, 
1" 
A3 _ 

'1 
8 2 _ d,2e 	,h2 	0 

' 	 '1 	'1 

which may be solved by standard algebraic techniques. With the constraints 
that a and e must always be > 0, and that a < 1, the following unique solution 
is obtained: 

(16) 

(18) 

4) 1 	 4) 1 

(19) 

e = 8 	
+ li177-11)W2(1 + 1/1 	 + ) - 

The limiting values are as follows: (i) as 4) 1  ± 0, a and a ± 0 jointly; (ii) as 
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(21b) 

(21c) 
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411 	03, a and e 	1. Figure 3 shows how  (a,) 5 
	vary with 4) 1 . .s. 

These expressions determine the optimal filtering coefficients of a 
steady-state a-e tracking filter for a system specified by the dimensionless 
parameter * 1  = qvT 2 /r, where target manoeuvres are described statistically by 
an additive zero-mean random velocity with covariance qv. These expressions 
enable the steady-state filter to adapt immediately to any change in qv , the 
measurement parameter r, or the update interval T. Values of a and e are 
computed using eqn. (19) only at track initiation, or when 41 changes during 
track life. Otherwise, only eqns. (8) and (9) are needed for track updating 
at each observation interval. 

3.1.4 Random-acceleration Model 

An alternative to the velocity model is one which assumes Uk in eqn. 
(1) to be a zero-mean random acceleration with covariance Q = qa  (a scalar 
quantity), which is coupled into the filter equations by means of the excita-
tion matrix r = (T 2 /2, T)t. The following recursion relations for this a-e 
filter are obtained, for each coordinate of the target: 

Dk = 1 + ak-1 
+ 2e  k-1 + 6k-1 + *2 (20a) 

(20b) 

(20c) 

(20d) 

Dk-1 

œk = Dk 

ek-1 + 6k-1  + 2*2 
 ek 	Dk 

6
k 

= 6k-1 + 4*2  - e 2D k k 

where4'2 = q T  4 /4r is the system parameter, and T and r are as defined a 
previously. Figure 4 gives an example of the dependence on *2 of the recursive 
filter coefficients ak  and ek, as functions of k. The closed-form solution 
to the corresponding steady-state filter is obtained in similar fashion as 
before. First we write the three simultaneous nonlinear equations: 

a(a + 2e +  6+ 	= 2e + 6 + * 2  

e(a + 2e + 6 + *2 ) = 6 + 2*2  

4*2 (1 + a + 2e + 6 + *2 ) = (e + 6 + 2*2 ) 2  

Then we reduce these to a set of two simultaneous nonlinear equations in the 
same way as was outlined for the random-velocity model (Section 3.1.3): 

e = 44,2(1...a) 	 (22) 

(ci + e/2)2 -  2 e 	 (23) 
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Figure 4. Transient behavior of a-13 filter (random-acceleration model) 
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Equation (23) has appeared in the literature 4  in the form a = 	- S/2, 
defining the optimal a-S relationship for this filter model. Again the 
specification of one of the coefficients was left open. With the addition 
of eqn. (22) the optimal specification of both coefficients is obtainable 
in terms of the system parameter cP2 •  Solving eqns. (22) and (23) we obtain 
the quartic equation: 

- 44) 2 3 3  "i" (4 4) - 8$2 )13 2  - 16qS + 16q = 0 

which may be solved by standard procedures. With the same system constraints 
as before (ad > 0, a < 1) the following unique solution is obtained: 

a = 	N4)2 +41(7.-  + 2 - 2  + 4Ç • 2 	2 	 2 

(25) 

= 	
2 

	

4/7 	+ 2  

	

2 	 2 

The limiting values are: 

(i) as (1) 2 	0, a and S 	0 jointly: 

(ii) as (1) 2 	=, a 	1 and 13 	2. 

Figure 5 shows how (04 ) 	vary with cp . 

This result (eqn. (25)) is equivalent to one obtained previously by 
Friedland 5 , which was cast in a different form. 

Figure 5. Dependence of steady-state a-f3 coefficients on random-acceleration parameter 02  
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3.1.5 Random-jerk Model 

It is possible to extend these analyses to a filter model in which 
target manoeuvres are covered statistically by an additive zero-mean random 
"jerk" (rate of change of acceleration), with a covariance Q=g •  coupled into 
the filter equations by means of the excitation matrix r = (1-16, T 2 12)t. 
The following recursion relations are obtained: 

(26a)  Dk = 1 + ak-1 
+

k-1 
+

k-1 
+ 4)

3 

Dk
-1 

a - - 
k 	Dk 

k-1 + k-1 + 34) 3 
 f3k 	 Dk 

k 
= d

k-1 
+ 94) 3 

 - (3 2D  k k 

(26b)  

(26c) 

(26d) 

where 4) 3 = qj T 6 /36r is the system parameter. Figure 6 gives an example of 
the transient behavior under this model. 

For the steady-state version of the filter, we proceed analogously as 
before. The set of three simultaneous nonlinear equations for the steady-
state condition is: 

Figure 6. Transient behavior of a-6 filter (random-jerk model) 
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(27b) 

(27c) 

(3 1) 

a(a +  28+ 6 + (1) 3) =  28+  â + 4) 3  

94)3 (1 + a + 26 + 6 +  4) 3) = ( 8  + 6 + 43 ) 2  
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These may be reduced to the following two simultaneous nonlinear equations: 

82 = 943 
 

) (1..a) 	 (28) 

(a + 28/3)(a + 8/3) = 28 	 (29) 

These equations specify completely the steady-state characteristics of the 
filter as a function of the parameter 4)3. Combining eqns. (28) and (29) 
gives the quartic equation 

134  - 9 (1) 30 	184 3
) (4)

3 
 -1)8 2  - 84 28 + 84 2  = 0 3 	3 

Which may be solved, under the same system constraints as before, to give the 
following unique solution: 

- 1710 + 6 	. 163 + 	 .‘t u 	8 	 71 -) - 	1 + 	 + 6 	+ 

	

3 	 3 	 3 

3 ,1) 
4 3  3 + 	+11 - 	+ 6 1 + 

(I) 3 	 (P 3 

The limiting values are: 

(i) as 14) 3  + 0, a 	and 8 + 0 jointly; 

(ii) as (1) 3 	œ, a 	1 and 8 4- 1.5. 

	

Figure 7 shows how (ad) 	vary with  s.s. 

This form of a-43 filter has not previously appeared in the literature. 

3.1.6 Summary 

This completes the theoretical treatment of the a-8 filter. The 
relationship to the general Kalman filter has been shown and the recursive 
and adaptive behaviors have been described. Three different models for 
incorporating the uncertainty in the target dynamics were treated (the 
question of the actual choice of a particular model for a given application 
was beyond the scope of this report). The recursion relationships led to 

(30) 
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Figure 7. Dependence of steady-state a-fi filter coefficients on random-jerk parameter 03  

analyses of the steady-state filter and closed-form solutions for the optimal 
filtering coefficients were obtained for each model. The well-known Benedict-
Bordner 3  relationship for steady-state cx—f3 values was shown to arise out of a 
random-velocity model, and a complete specification of (a,6) s.s.  in terms of 
a single system parameter was given. An alternative relationship for ( 04 9 )5 . 9 . 
mentioned elsewhere"' in the literature was shown to arise out of a random-
acceleration model; the complete specification of the filter corresponded to 
one described earlier by  Friedland. A new specification was also given in 
terms of a random-jerk model. These studies in steady-state tracking filters 
have therefore brought together earlier results hitherto unconnected and have 
indicated new forms which may be applied to practical problems. They have 
also suggested the possibility of using a steady-state adaptive filter for 
which optimal a-6 filter coefficients can be computed as functions of the 
system parameters, thereby avoiding the necessity of recursively computing 
updated coefficients at every observation interval. 

The question of the choice of a particular model to satisfy a given 
application will be examined in a subsequent report. 

3.2 u - (3 - y FILTER 

The natural extension of the ce—s filter is one which includes target 
acceleration as an explicit - term in the state vector in addition to position 
and velocity. The resulting a- 6-y filter models a constant-acceleration 
target, with measurements made only on target position. Again it is assumed 
that each coordinate can be treated separately. We substitute in eqns. (3) 
and (6) the following expressions: 
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xk 11:k 	
{0 0 1 
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• (I) 	0 ' k 	

a
k 

= = 	1 T ; Kk(opt) " 	; 

	

Rk 	
yk/T2 

yk  = [yk ]; Mk  = M = [1 0 0] 

to reduce the general Kalman formulation to the third-order algebraic 
equations: 

Forecast 

- 	4. 4 	T 2 	 4;\ 
-k -k -1 ' 	k-1 2 xk-1 ;  k xk-1 	-k " -1-1 

Estimation 

•2k, 	el( 
 .•• 	) • IN — t 	••••• 	 + Yk  f 	1 

xk 	k ' k xk T ‘37k-xk/ ' k -k T2 NYk-  -le 	(33) 

where kk  is the target acceleration, yk is the acceleration coefficient of 
the tracking filter, and all other terms are as defined in Section 3.1. 

Under the assumption of an accurate model for target motion (Q=0), the 
filter coefficients are obtained at each observation instant, for constant T, 
by means of the set of recursion relations (34) given in Table 1. These are 
developed by a procedure exactly analogous to that outlined in Section 3.1 
for the a-S filter. The coefficients 

ak'k' etc. approach zero asymptotically 
with increasing k. 

The terms yk, ek  and nk  are derived from the additional independent 
elements required in the state covariance matrix Pk  for a third-order filter: 

a
kk

/T 	'k ,'T 
P
k 

= r Sk/T k/T 2  ek/T 3  

yk
/T2 k/T 3 n  /T 4 

Refer to Eqn. (10b') for comparison. 

3.2.1 Random-acceleration Model 

In the case of the second-order a-e filter, uncertainties in the 
modelled behavior of the target were covered by the excitation noise 
covariance Q. This was represented by a scalar term qv , qa  or q i , being 
the variance of a postulated zero-mean random activity in velocily, accelera-
tion or jerk respectively, and was intended to accommodate estimation errors 
in the modelled position and velocity of the target. For the third-order 
a-S-y filter, we use a similar scalar variance term qa  or qj  for zero-mean 

(32) 
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TABLE 1 

Recursive Equations for a-0-1 Filter With No Excitation Noise 
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D
k = 1 + ak _ i  + 

 2k1  + yk-1 
+

k-1 
+

k-1 
+ k- 1 "4 

Dkl 
ci. . 

	

k 	Dk 

â 	f k-1 + 
 '

+ 	+3 k- 1 	k-1 	■ ck 	n 	)/2 - 	n-1  
D
k 

yk-1 + ck-1  + nk-1 /2 
D
k 

6k = 6 k-1 	2e k-1 	n k-1 	13 k Dk 

ek = ek-1 	n k-1 	(3 k 6 k Dk 

nk = nk-1  - y2 k
D
k  

(34a) 

(34b) 

(34c) 

(34d) 

(34e) 

(34f) 

(34g) 

Yk 

random activity in acceleration or jerk to cover errors in the modelled 
position, velocity and acceleration of the target. Note that the term qa  
in the third-order filter represents the variance about an estimated 
(possible non-zero) acceleration of the target, whereas in the second-order 
filter it represents the variance about an unestimated (assumed zero) target 
acceleration. 

Analogously to the development of the a-r3 filter, the simplest way 
of introducing a target manoeuvre compensation would be by means of a zero-
mean random acceleration term Uk, with a covariance Qk  coupled into the 
general filter eqn. (4) via the excitation matrix r = (0 0 1)t• This would 
result in a set of equations (34') identical to the set (34) in Table 1 
except for 

where the system parameter is 11) 1  = qaT 4 /r, and r is the (scalar) position 
measurement variance and T is the update interval of the filter. Alter-
natively, the excitation matrix r = (T 2 /2,T,1)t may be used, which allows 
the random acceleration variable to influence the position and velocity 
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terms directly. This yields a similar set of equations (35) differing 
slightly in detail (see Table 2). These two versions of the random-accelera-
tion model produce very similar  Œ-$-y  filters which display slightly different 
transient behavior but which reach identical steady-state values. Figure 8 
gives an example of the transient behavior of the principal coefficients of 
this filter model, for two different values of tp 1 . 

3.2.2 Adaptation 

The inclusion of adaptive features in this recursive a-13-y filter, when 
q, r and T are subject to change during the life of the track, is exactly 
arialogous to the case for the a-8 filter (Section 3.1.2). If adaptation is 
required between iterations (k-1) and (k), the six coefficients in (34') or 
(35), are first replaced by the coefficients: 

2 
(1..) 	a 	) 	Q  

k-1 	r 	k 	i. -1' "k- 	T "k-1' Yk-1 = (CF) Yk-1 ;  

2 	 3 	 4 (f_12,)(Tr i ) (sk-l; 	(r )(1 e 	! ,1 	(r )(T I  
k -1 	T 	k -1' "k -1 	T ) nk -1 ;  

and the system parameter is recomputed: zpi = ql (T I ) 4 /1.1 . The coefficients 
Œk, 81., etc. are then obtained from the recursion relations as usual. 

(36) 
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Figure 8. Transient behavior of a-13-7 filter (random-acceleration model) 
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Dk 

Dk 

13k 

(39) 
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TABLE 2 
Recursive Equations for a-13-7 Filter With System Parameter 1,P i  
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Dk 

k = 6 	+ 2c 	+ n 	+ 	- C 2 D k-1 	k-1 	k-1 	1 	k k 

E
k 

=
-1 + rik

-1 + 11)1 - iik Yk Dk 

nk = nk-1 	1P1 	Yk2Dk  

(35a) 

(35h) 

(35c) 

(35d) 

(35e) 

(35f) 

(35g) 

y
k = 

Yk-1 + E
k-1 + nk-1 /2 + 1 /2 

3.2.3 Steady-state Analysis 

The steady-state values of the filter coefficients a, e, and y can be 
calculated in closed form as a function of the system parameter  p.  Since 
the length of the state vector is n=3, we expect n(n+1)/2 = 6 simultaneous 
equations to solve for the steady-state coefficients. These correspond to 
the six unknowns represented by the coefficients a, e, y, d, e, n. However 
since the length of the observation vector is p=1, it is sufficient to solve 
the reduced set of np=3 equations, which correspond to the three essential 
coefficients of the a-S-y tracking filter. Setting ak+1 = ak = ct, etc. in 
eqns. (35), the six simultaneous, quadratically nonlinear equations may be 
written as shown in Table 3 (eqn. (37)). After some algebraic manipulation 
these reduce to the following three equations: 

y 2  - 	(1-a) (38) 

(32 = 2 ory  

a(a + e + y/2) = 2f3 

Equations (38), (39), and (40) form the reduced set of simultaneous quadrati- 
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TABLE 3 

Simultaneous Equations for the Steady-state a-fi-y Filter Using tP 1  

(37a) 

= y + 6 + (3E+n)/2 + 1p 1 /2 	(37b) 

y(a + 2(3 + y + 6 + E + n/4) + 11) 1 /4) = e + n/2 + 4,1 /2 	 (37c) 

(2E + n + )(1  +  a  + 213 + y + 6 + E 	n/4 + fi/4) 

= [e. + y + 6 + (3e+n)/2 + ip i /2] 2 	(37d) 

(n + 	+  a  +  2  + y + 6 + E + n/4 + 1p1 /4) 

= 	+ 	â 	(3e)I2 	1P1 /2][y 	E 	n/2 + ip i /2] 	(37e) 

tp
1
(1 + a + 2f3 + y + 6 + E 	n/4 +

1
/4) = [y +  e  + n/2 +

1
/2] 2 	(37f) 

cally nonlinear equations which fully characterize this steady-state a--y' 
filter. Equation (40) was first obtained by Simpson 6 , a result of numerical 
analyses extending the original work of Benedict and Bordner 3  on ce-8 filters. 
Equation (39) was later presented along with eqn. (40) by Neal 7  as a result 
of an analysis of a Kalman filter model with a Gauss-Markov random-accelera-
tion model. Neal's result leaves one free parameter to be specified by the 
application. The analysis presented here derives eqn. (38) as well, and 
completes the specification of the filter as a function of a single system 
parameter 11/. 

The closed-form solution of the reduced set is less straightforward 
than in the cases described in Section 3.1. The reduced set of three simul-
taneous equations produces one sextic polynomial equation which is not 
generally solvable. Without a specific factorization to render it solvable 
a more circuitous method must be used. By combining eqns. (39) and (40) the 
relationship (04+8/2) 2  = 28 is obtained (Neal also noted this relationship in 
the equivalent form (2a+0.) 2  = 88), identical to that for the random-accelera-
tion model for the cx-P, filter (eqn. (23)). This means that, for both second-
order and third-order filters, each pair of optimal a-i3 values is related by 
the same equation (23), and is obtained from a unique value of cp 2  for the 
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Figure 9. Dependence of steady-state a-13-y filter coefficients on random-acceleration parameter  
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The solution for the steady-state filter was obtained through the happy 
occurrence of an identical functional relationship between the coefficients a 
and e for both the second-order (a-e) filter and third-order (a-e-y) filter 
when the same model for a random-acceleration perturbation on the target is 
included. This does not mean that the two filters are identical in other 
respects, in spite of the fact that their respective global parameters (1) 2  and 
4,1 have similar structures. For matching values of qa , r and T the resulting 
value for 	= qaT 4 /r in the case of the third-order filter will in turn 
produce a corresponding value of (> 9  which is not the same as that which could 
be obtained for the second-order niter from (1) 2  = q T 4 /4r. Therefore, the 
respective coefficients a and e in the two cases woald not correspond, and 
the filters would differ in behavior. This is because, as stated at the 
beginning of Section 3.2.1, the term qa  refers to two quite different acceler-
ation variances in the two types of filter. Using the same quantitative value 
for qa  in both instances would indicate an attempt to cover two different 
types of unmodelled accelerative behavior by the same noise statistics. 

The use of the third-order steady-state filter in an adaptive fashion 
follows analogously from the description given at the end of Section 3.1.3, 
and the new closed-form solution for the optimal steady-state condition can 
contribute to its implementation. However, their close interrelationship 
suggests the possibility that in a practical system the track-estimation 
operation could be switched back and forth between a second-order and a 
third-order filter depending on the current behavior of the target. The 
second-order filter is better suited to producing smoothed estimates of a 
constant-velocity (straight-line) target track while the third-order filter 
can better handle a constant-acceleration (turning) target. 

3.2.4 Random-jerk Model 

As with the second-order filters (Section 3.1.5), it is possible to 
extend the analysis to a target model which covers manoeuvres by a zero-mean 
random jerk, covariance qj, now coupled into the third-order filter equations 
by means of the excitation matrix r 	(T 3 /6, T 2 /2, T)t. The resulting 
recursion relations (43) are given in Table 4. Figure 10 gives an example 
of the transient behavior of the principal coefficients of this filter model, 
for two different values of the system parameter 4, 2  as defined in Table 4. 

For the steady-state version of the filter, we can obtain a correspon-
ding set of six simultaneous, quadratically nonlinear equations (Table 5, Eqn. 
(44)) which reduces to the following three simultaneous nonlinear equations: 

y 2  - 364'2 (1-a) 

f32 	y2/12 = 2 ay  

(a + e/2 +  y/12)(Œ  + e/2 - y/12) = 2e 	 (47) 

Equations (45), (46) and (47) fully characterize this steady-state third-order 
filter. 

A closed-form solution to this set of equations has not been found. 
The eighth-order polynomial resulting from these equations is, of course, 
not generally solvable, and this writer has been unable to discover a 
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specific factorization which could render it so. Further, there is apparently 
no corresponding functional relationship with the second-order random-jerk 
filter model (Section 3.1.5) as occurred between the second- and third-order 
random-acceleration models (Sections 3.1.4, 3.2.3). The steady-state values 
of the filter coefficients ad and y can be obtained by iterative computation 
from the recursion relationships (43), and their variation as a function of 
the system parameter tp2  is sbown in Figure 11. The limiting values are: 

ast
2  
p 4- 0, a,13, y 4- 0 jointly; 

(ii) as
2  

II) 	00, a 	1, e 	and y ± 6(2-15 ) . 
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TABLE 5 	• 

Simultaneous Equations for the Steady-state a-0-7 Filter Using 192  

. 2f3. + y + 6 + E 4-  n/4 + 4)2 	(44a) 

= y + 6 + (3c+n)/2 + 311)
2 	

(44b) 

. c + n/2 + 42 	 (44c) 

(2c + n + 914)2 )(1 + a + 28 + y + 6 + E + n/4 + 11)2 ) 

= [ 8  + Y + 6 + (3c+n)/2 + 42 1 2 	 (44d) 

(n + 1811)2 )(1 + a + 2f3. + y + 6 + e + n/4 + 1p2 ) 

= [8  + y + 6 + (3c+n)/2 + 311) 2 ][y + e + n 12 + 42 ] 	(44e) 

342 (1 + a + 2i3 + y + a + E + n/4 + ip2 ) = [y + E 4-  n/2 + 42 ] 2 	(44f) 

Figure 10. Transient behavior of a-0-7 filter (random-jerk model) 
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Figure 11. Dependence of steady-state a-13-7 filter coefficients on random-jerk parameter 11/2  

3.2.5 SUMMary 

This completes the theoretical treatment of the a-e-y tracking filter. 
Two different models for target manoeuvre were considered; the recursive and 
steady-state behaviors have been analyzed and the resulting filter structures 
have been described. Like the second-order a-$ filter, these third-order 
filters are applied to radar measurements of target position only, but in 
addition they yield estimates of target acceleration (as well as position and 
velocity) and are therefore better suited to handling manoeuvring targets. 
This analysis has extended the earlier work of Simpson 6  and Neal /  on the 
random-acceleration model for a steady-state third-order filter and has 
completed the specification of the filter coefficients by means of a closed-
form functional relationship with a single system parameter. The simultaneous 
equations characterizing an alternative, random-jerk model for the third-
order filter were also derived, but without a closed-form solution. 

A performance analysis comparing these third-order filters with the 
second-order a-e filters is planned for a subsequent report. 

3.3 REDUCED KALMAN FILTER 

A further extension of the a-e form of filter is one which includes 
measurements of target velocity as well as position. In practice, this type 
of filter would be used with radar sensors which provide measurements of the 
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target's radial velocity, or range-rate, by means of doppler processing. This 
form is often called the reduced Kalman filter, where it is again assumed that 
each coordinate can be treated independently. One-dimensional recursive 
filter structures can be developed for this form, but owing to their greater 
complexity in comparison with the c-(-y)  filters, it has not been possible 
to develop closed-form solutions for the steady-state conditions. Steady-
state values of the filter coefficients must be computed by iteration of the 
recursion relations. 

3.3.1 Second-order Structures 

For filters which model only position and velocity in their state vector 
representation, the following forms are appropriate. In the general equations 
(3) and (6) substitute 

1 	 [a. k bkl 	Yk 	 11 0] 

x _ [k - xk ; (1)1( = 1)  = 0 1 ; Kk(opt) 	13k/T dk 	; Yk = 	
mk 

 irk  ; 	= n  = 0 1 • 

Then the tracking filter is described by the equations: 

Forecast (Eqn. (8), Section 3.1) 

'5'('ic =4\k-1 le• 1k tic k"»I-9 	Ma 	 1 

Estimation 

/\ xk = xk + a k- k) bkT(/k-Ik)  
(48) 

6. 	Bk 	 'e 
lk = xk 	(Yk-2k)  dk(ek-xk) 

where bk  and dk  are the additional gain coefficients necessary to absorb the 
velocity measurement  y, and all other terms are as defined in Section 3.1. 

The covariance of the measurement noise vector Vk in eqn. (2) is 

{r. 1 Rk  = 
0 r .2.] 

where the scalars r1  and r2  are, respectively, the variances associated with 
the position measurement yk  and the velocity measurement yk. These measure-
ments are uncorrelated. In order to cover the uncertainty in the chosen 
model for the target motion, the covariance Qk  of the excitation noise 
vector Uk is used, as before. The three types of model uncertainty consid- 
ered previously are invoked once again: random velocity, random acceleration 
or random jerk, with their corresponding scalar covariance terms qv , qa , or 
qj . To develop the appropriate recursive filter equations, the same system 
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parameters are required as previously: . 1  = qvT2/r1,  •2 = qaT4/4r or 
.3 = q 1 T 6 /36r1, depending on the choice or model (refer to Section 3.1 on 
the a- lià filter). In addition, a second system parameter is required: 
.r  = r2T 2/r1 , the position-velocity measurement term, which is common to all 
three models. The following three recursion relations (49b,c,d) are then 
obtained, with the term Mk being introduced (49a) as a notational convenience: 

- .rbk 	 (49c) 

The terms A, B and D depend on the choice of model. The corresponding 
expressions for them are given in Table 6, together with the appropriate forms 
for the excitation matrix r used in deriving them. Figures 12, 13 and 14 

illustrate the transient behavior of these three second-order reduced Kalman 
filters, for selected values of the system parameters. 
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Figure 12. Transient behavior of gain coefficients: second-order reduced-Kalman filter 
(random-velocity model) 



(1)-1 	(2)1810 

a(2) 

a(  I)  

s(2) 

a(I ) 

• 
CO. 

è- 
w 0.6— 
o 
L. 

0  0.4— c.) 

(5  0. 2 — 
Cr 

o 
o 

d( I ) 

d(2) 

1 	 1 
2 	3 	4 5 

/3(2) 

d ( 2) 

13 	• 
Cn 

W  0.6— 

Li.  
8 0.4— 

z 
(.9 0.2— 

-J 

( 1) = 1 	(2) = 10 

a(2) 

a(1) 

1 
2 	3 	4 

ITERATION NUMBER k 

O 
O 5 

RANDOM-ACCELERATION PARAMETER 02 = 0.075 
POSITION-VELOCITY MEASUREMENT PARAMETER Or  % 

ITERATION NUMBER k 

Figure 13. Transient behavior of gain coefficients: second-order reduced-Kalman filter 
(random-acceleration model) 

RANDOM-JERK PARAMETER 03 z 0.035 

POSITION-VELOCITY MEASUREMENT PARAMETER Or  % 

30 

Figure 14. Transient behavior of gain coefficients: second-order reduced-Kalman filter 
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TABLE 6 

Elements of the 2nd-order Reduced Ka/man Filter 

RANDOM-VELOCITY MODEL 	RANDOM-ACCELERATION MODEL 	RANDOM-JERK MODEL 

A 	1 -Fak_1+28k_1 +1) 1 +(l)rdk-1 	
1+ak _ 1 +2e k _ 1 +4,2 +4 r d k _ 1 	1 +cik  _ i  +2p. k _ 1  +4) 3 +1) rd k _ 1  

B 
	8k-1+4144rdk-1 	 ek_14-42+(prdk_1 	 ek-1 +3  4'344rd k - 1 

D 	cycp r(l+d) 	 414)2+(pr(1+d) 	 943"r(l+dk-1) 

r 	(T,l) t 	 (T 2 /2,T) -t 	 (7 3/6,T 2 /2)
t  

3.3.2 Third-order Structures 

For filters which model position, velocity and acceleration, the follow-
ing forms apply, substituting in eqns (3) and (6): 

[ 	

b
k
T Œk 

xk = 1:1(  ' cek = (1)  = 10  I :rr2/2 ;Kk(op ) = 
:
k
/T dk  

t 

Mk 	 0 0 1 Y
k/i 

m2 e
k  /1 '  

The tracking filter is described by the equations: 

Forecast (Eqn. (32), Section 3.2) 

4;\ 	T 2  /\ 
2" = Ax_ 	+ 	+ 	IL 
k 	k-1 	k-1 2 k-1 

a'ec, = k-1' K 	k-1 	 = lek -1 

Estimation _ 	+ N (v 	) + h T($ 	) 
-k -k --k' 	- k - "k--k' 

= xke  7-k (Yk--xk) dk ('k4k. )  

(50) 
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where ek is a further gain coefficient necessary to absorb 
the velocity 

measurement into the acceleration estimate, and all other terms are as 
defined previously (Sections 3.1-3.3). 

The use of a random-acceleration form for the zero-mean excitation noise 
Uk  is the simplest way to cover uncertainties in the model of target motion 
and to compensate for target manoeuvre (see Section 3.2.1). As before, the 
acceleration covariance is Q=qa  (a scalar quantity) and the system parameter 
is 1P1 = qaT4 /r 1 . The excitation matrix may take two different forms: 
r = (o o 1)t, or r = (T 2 /2,T,l)t. These will result in similar sets of 
recursion relations, exhibiting slightly different transient behavior but 
reaching identical steady-state values. Alternatively, a zero-mean random 
jerk, covariance qj, may be used to compensate for target model uncertainties. 
The system parameter becomes ti) 2  = qi T 6 /36r 1 , where the excitation matrix is 
r = (T 3 /6,T 2 /2,T) t . 

We can write a general set of recursion relations for these three 
versions of the third-order filter: 

AE -BC 

»lc 

1 
f = f 	+ — (z - yk  C - ekE) 
k 	k-1 	(Pr  

e
k 

(51f) 

(51g) 

where  4'r  = r2T 2 /r i  as before, fk  is an additional term required for the 
recursion, and z Is replaced in eqn. (51g) by 	in the case of a random- 
acceleration model or by 342  in the case of the random-jerk model. The 
expressions represented by terms A,B,C,D and E are found in Table 7. They 
depend on the choice of filter model. Illustrations of the transient behavior 
of these filters are given in Figures 15 and 16. 



TABLE 7 
Elements of the 3' °'-order Reduced Ka/man Filter 

RANDOM-ACCELERATION MODEL I 	 RANDOM-ACCELERATION MODEL II 	RANDOM-JERK MODEL 
A  k cy k_escpr (d k_ce k_efk _ 1 /4) 	1-Fak _ i +Uk_eyk _ 1 +41/4+ 	1+ak _ 1 4-2(3 k_ey k _ 1 +4,2+ 

cl)r (d k-1 4-e k-1 4-fk-1 /4) 	 l'r (dk-eek-efk-1 /4)  
B 	Bk_eyk_e(pr(dk_e(3ek_1"k_1)/2) 	r3 1(-1 1-Y k-1 +111 /2+ 	 i3 1(-1 +Yk-1 +311)2+  

cpr(dk_11-(3ek_efk_1)/2) 	(1)r(dk-11-(3ek-1441-1)/2) 
C 	1k_eyek_efk_1/2) 	

Y k-1 411) 1 /2"r (ek-efk-1 /2) 	Yk-1 4-42-4 r 	k-efk-1 /2)  
D 	cpr (l+d k_ 1 +2ek_efk_ 1 ) 	 4) 1 +4) 1,0+d k_ 1 4- 2e k_efk _ 1 ) 	911, 2-4r (l+d k _ 1 +2ek_efk _ 1 ) 

E 	cp r (ek_efk _ i ) 
fi+l)r(ek-efk-1) 	 1842+yek_i 4-fk-1) 

F 	(0 0 1)t 	 (T 2 /2, T, 	1) t 	 (T 3 /6, 	1 2 /2, 	T) t 
__ 
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(random-acceleration model, 1 and 11) 
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Figure 16. Transient behavior of gain coefficients: third-order reduced-Kalman filter 
(random-jerk model) 
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3.3.3 Adaptation 

The inclusion of adaptive features in these recursive reduced Kalman 
filters is similar to the cases described under the a-0(-y) class of filters. 
If adaptation is required between iterations (k-1) and (k), owing to a change 
in the value of one or more of the factors making up the system parameters 

or 11) 	then the appropriate gain coefficients (from eqn. (49), or 
(51), and Table 6 or 7) are first replaced by the coefficients 

2 
al . eja 

k-1' 
 . ckg 

-1 
 (If)p . 

k-1 	r' 	"k 	T Pk-1' Yk-1 = (r;t)( 1 ) Yk-1 ;  1 

b i 	(r2)(T ) b k . 

	

1' 
dl  1 _ ( r2 	1 	r2 T I 	. 

▪ 7 7 - 	k- 	-k-1' e 
	= -r-r T  ek_i , 

2 	 2 	 2 

fl 	(Il 
2
)(q

2 
f 

k-1 	r

• 	

' T 	k-1 

The necessary system parameters are then recomputed: (pi = q.:r (T I ) 2 /ri, 

(1) .  = q i (T 1 ) 4 /4r 1 '  (P I  = q 1 (T 1 ) 6 /36r 1
' 
 11, 1  = q l (T 1 ) 4 /4r1, or 	= ci li (T I ) 6 /36r1; 

2 	a 	l 	3 	j 	l 	1 	a 
and (1); = r(T 1 ) 2 /ri. Finally the coefficients ak , sk , etc., are computed 

from the appropriate recursion relations. 

3.3.4 Steady-state Behavior 

The steady-state values of the gain coefficients of these reduced 
Kalman filters depend on two system parameters, which together describe the 
effects of the measurement error, the choice of update interval and the 
uncertainty in the target dynamics. Figures 17, 18 and 19 illustrate, for 
several values of the parameter (P r , the steady-state dependence of the filter 
gain coefficients on the parameter (pi, (1) 2  and (1) 3  (that is, for the second-
order random-velocity, -acceleration, and -jerk models). Similar examples 
for the third-order models, as functions of the parameter 11/ or 11)2  (random-
acceleration and -jerk models), for several values of 4r , are given in 
Figures 20 and 21. These graphs were all computed by iteration, using eqns. 
(49)  ad  (51). 

For the one-dimensional second-order filters, the size of the state 
vector is n=2 and the size of the measurement vector is p=2. It is required 
that n(n+1)/2 = 3 simultaneous nonlinear equations be solved to obtain the 
steady-state gain matrix2 , since p is not less than (n+1)/2. The structure 
of such a set of equations has not yet been investigated for the possibility 
of a closed-form solution to the steady-state condition. For the third-order 
filters, we see that n=3 and p=2, and p is again not less than (n+1)/2. 
Therefore, n(n+1)/2 = 6 simultaneous nonlinear equations would have to be 
solved. In this case, the use of iterative numerical methods for obtaining 
steady-state values of the gain coefficients seems to be the only possible 
approach. 

(52) 



Figure 17. Dependence of steady-state second-order reduced-Kalman filter coefficients on random- 
velocity parameter le i, for two values of measurement parameter Or  
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Figure 18. Dependence of steady-state second-order reduced-Kalman filter coefficients on random- 
acceleration parameter q52  for two values of measurement parameter Or 
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Figure 19. Dependence of steady-state second-order reduced-Kalman filter coefficients on random- 
jerk parameter 03, for two values of measurement parameter Or  

Figure 20. Dependence of steady-state third-order reduced-Kalman filter coefficients on random- 
acceleration parameter 0 1, for tvvo values of measurement parameter Or  



Figure 21. Dependence of steady-state third-order reduced-Kalman filter coefficients on random- 
jerk parameter tP2, for two values of measurement parameter Or  

3.3.5 Summary 

This completes the treatment of the reduced Kalman tracking filter. A 
new way of specifying the one-dimensional form of tracking filter has been 
described, for the case where doppler measurements of the target's velocity 
are available in addition to the position measurements. The same models for 
target manoeuvre as in the c-(-y)  filters were used; the recursive and 
adaptive properties have been described and the steady-state behavior treated 
briefly. The algebraic equations which describe these one-dimensional filters 
are more complex than those arising in the Œ-(-y)  filters. However, they are 
less expensive in terms of computation (number of operations per iteration) 
and memory (storage of covariance terms and gain coefficients) than the 
general recursive form. As in the a-(3(-y) filters they permit all the 
adaptive features to be employed. With the aid of a suitable look-up table, 
pre-computed by means of these recursive equations, adaptive steady-state 
versions of the reduced Kalman filters can be designed. 

3.4 ONE-DIMENSIONAL FORMULATIONS 

The filter structures described in the preceding sections are the most 
efficient ways of describing the a-P, (position measurements only) class and 
reduced-Kalman (position and doppler measurements) class of tracking filters. 
Wherever decoupled filter computations may be used in practical two- and 
three-dimensional surveillance systems, these forms may be applied directly 
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for a reduced computational and memory load. This is done by using algebraic 
formulations rather than matrix structures and avoiding the computation of all 
unnecessary covariance terms. 

4. FILTER DESIGN 

We now look at various approaches to the implementation of tracking 
filters. No attempt is made at complete designs but some of the implications 
of the foregoing analyses are examined from the point of view of a designer 
of an air-surveillance radar-tracking system. 

4.1 FILTER CATEGORIES 

Tracking filters may be classified under a number of headings, the most 
common being: 

(a) Recursive or steady-state (fixed parameters); 

(b) Adaptive or non-adaptive; 

(c) Coupled or decoupled coordinates (a third category: "combined" 
coordinates should be included); 

(d) Third or second order (the two most often adopted, although first 
order or higher-than-third order filters are possible); 

(e) Three dimensional or two dimensional (depending on the radar 
sensors). 

The category mentioned first in each listed item is the more computationally 

complex. In heading (c), the category "combined" coordinates refers to the 

case where the same (one-dimensional) set of filter coefficients is applied 

to all coordinates. 

4.2 FILTER INITIALIZATION 

When a new target track is acquired, a smoothing and prediction filter 

is initialized for that track. An estimate of the state of the target is 

made:, position and velocity (for a second-order filter), and acceleration 

(added, for a third-order filter). From a knowledge of the characteristics 

of the radar sensor and the signal-processing and plot-detection operations, 

a suitable estimate of the measurement covariance R is determined. With the 

assumption of a particular model for target dynamics to be employed by the 

filter and an estimation of the manoeuvring abilities of the class of targets 

to be tracked, an a priori specification of the model uncertainty covariance 

Q is made. Finally, with the inclusion of the update interval T, the tracking 

filter is initialized to carry out smoothing and prediction on subsequent 

measurements of the target. 
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In the recursive, coupled (i.e., full Kalman) filter we use the full 
matrix specification for R and Q. In the decoupled (i.e., reduced Kalman, 
and œ-(-y))  filter, both recursive and steady-state, we select specific 
elements of R and Q to compute the appropriate system parameter(s) for each 
coordinate. In the combined-coordinate filter, we extract scalar values from 
R and Q (i.e., a combination of the separate elements of each) to compute 
the system parameter(s) applicable to all coordinates of the target position. 

4.3 COORDINATE TRANSFORMATIONS 

The radar sensor provides target measurements in a line-of-sight 
coordinate frame (i.e., the polar coordinates of range, azimuth, and possibly 
elevation angle). However, the filtering of track data in these coordinates 
can lead to large dynamic errors when a linear model for target motion is 
used, as in the formulations described in the preceding sections. Simple 
constant-velocity target tracks appear nonlinear in these coordinates, and 
artificial acceleration components are generated. This problem does not 
arise if track filtering is done in a fixed Cartesian reference frame. It is 
generally desirable to use fixed (earth-referenced) Cartesian coordinates for 
TWS filtering, particularly when one must consider distributed multi-sensor 
surveillance systems and the problem of track registration. The use of 
decoupled coordinates is strictly valid only in a line-of-sight coordinate 
system, for which the component measurement-errors are independent. The 
fully-coupled Kalman filter, operating in fixed Cartesian coordinates, 
absorbs the resulting cross-terms in the measurement covariance matrix R 
directly. A decoupled filter ignores them from the outset. 

The cost of the fully coupled filter is measured in computation time 
and memory space per track. One method by which this cost can be reduced is 
to carry out full Kalman filtering (which includes all cross-terms) in the 
following way: first, compute the reduced set of gain coefficients, assuming 
a decoupled line-of-sight coordinate system, using the appropriate one-
dimensional formulations as described in Section 3; second, compute the fully 
coupled set of gain coefficients by means of a coordinate rotation into a 
fixed Cartesian system; and third, carry out all filter operations (smoothing 
and prediction) in the coupled coordinates. This technique is an alternative 
to the computation of the gain matrix directly in fixed coordinates using the 
fully-coupled matrix formulation of the Kalman filter. It allows the decoup-
led form of filter to be used without loss of generality. It may be applied 
to both recursive and steady-state versions of the tracking filter. In the 
case of the combined-coordinate filter, of course, the technique does not 
apply, since the computation of gain coefficients is intentionally collapsed 
into one dimension. 

An alternative method involves computing the decoupled gain coeffici-
ents from the one-dimensional algebraic equations (as in the first method) 
but implementing the track smoothing or estimation operations in decoupled 
line-of-sight coordinates as well. Track-prediction operations would be 
done in the fixed Cartesian frame using a coordinate transformation of the 
state vector of the track. 

Both these methods will be examined in detail in a subsequent report, 
which will deal more fully with tracking-filter implementations. 
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4.4 FILTER ADAPTATION 

The adaptation of recursive tracking filters to changes in the environ-
mental parameters Q, R and T has been discussed in Section 3.1.2. For the 
class of optimal steady-state filters developed in this report, it is only 
required to recalculate the relevant global system parameter, which in turn 
determines the new gain coefficients to be applied. Changes in the measure-
ment covariance R (brought about by a significant change in the position of 
the target-in-track with respect to the origin of the tracking coordinates) 
and the update interval T (brought about by missed plots on individual scans, 
or by asynchronous combining of reports on one target from several sensors) 
will occur as a matter of course during the life of the track and are easily 
identified. To determine whether a change in the excitation noise Q is 
necessary, some form of manoeuvre detector is required. 

Referring to eqns. (5) and (6), the track residual (MX 1 -Y) has a 
covariance Z = (MPSt+R). The normalized squared residual, a scalar quantity 
NSR = ( 4jK I -Y)t(Z-1 )(MK I -Y), is often used as an on-line measure of track 
quality. When this figure is found to be consistently (that is, for two or 
three consecutive updates) greater than some upper threshold or less than some 
lower threshold, it indicates that an alteration in the size of the elements 
of Q should be made. Otherwise, the filter is well adapted to the manoeuvre 
characteristics of the target. The choice of the threshold values is a matter 
of designer's judgement. Note that if the residual may be assumed multi-
variate-normal-distributed, then NSR will be x 2-distributed. 

4.5 COMPUTATION OF COEFFICIENTS 

In the case of constant-gain filters, when the computation of the 
optimal steady-state coefficients need be done only once or a small number of 
times over the life of the track, it would be satisfactory to carry out 
explicitly, as required, the rather involved calculations implied by eqns. 
(19), (25), or (31) in the case of second-order filters, with the addition 
of eqn. (42) when a third-order filter is used. The elimination of the need 
for recursive gain calculations at each update interval over all tracks 
results in a considerable saving of computing time. 

However, with the inclusion of the adaptive feature, where filter 
gains may be recomputed a number of times during the life of the track, a 
more practical and efficient approach would be to use a table look-up proce-
dure. A list of about 100 entries of filter coefficients against the 
corresponding global system parameter(s) would be more than sufficient, 
considering the precision of the estimates of Q and R. If the entries of cp 
or 11) are uniformly distributed in the table according to the logarithm of 
their values, the largest deviation from the correct value of gain coeffici-
ent resulting from the selection of nearest match in the list to the calcu-
lated value of cp or tp would-be about 2%. The table could be contained in 
less than 1K word of computer memory. An even greater speed advantage could 
be realized with the use of a small content-addressable memory unit. The 
table look-up method would be necessary, of course, for those filters which 
do not have a closed-form solution to the steady-state condition. 
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4.6 SUMMARY 

This section has comprised only a brief look at the problem of tracking-
filter implementation as it relates to the one-dimensional filter structures 
developed in the preceding sections. The principal elements of the problem 
were: 

i) the transformations required to couple the one-dimensional filter 
structures into the appropriate coordinates of the target's 
trajectory; 

ii) the adaptive techniques required to respond to changes in tracking 
conditions; and 

iii) the computational considerations involved in choosing recursive or 
steady-state forms for the filters. 

All these elements must be examined with regard to necessary tracking perfor-
mance. A more detailed treatment will be attempted in a subsequent report. 

5. FUTURE WORK 

The analyses presented in this report represent only the starting point 
for considerable further work in automatic tracking techniques for radar 
surveillance systems. 

First, the cost and performance of the various filter structures must 
be compared in order to establish their respective domains of application. 
Second, the integration of the one-dimensional forms into the practical two-
and three-dimension tracking and surveillance systems must be accomplished. 
Third, automatic track initiation and plot-to-track association must be 
designed to exploit the features of these estimation and prediction filters 
to the full. Fourth, the performance of an automatic tracking system 
employing different categories of filters must be measured, in order to 
assess the relative effectiveness and cost of such filters. This would be 
done using simulated or recorded real data as input to the system. Finally, 
the application of these filter structures in tracking and surveillance 
systems using electronically agile sensors might be explored. 
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