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NOMENCLATURE 

A 	Matrix, Eq. (9) or (39). Positive definite and symmetric. 

Order (m x m) and rank m. 

Sum of symmetric and skew symmetric D and G, respectively. 

Order and rank m. 

Damping matrix (n x n) associated with one appendage. 
Symmetric, positive definite. 

D Damping matrix (m x m). Eq. (6) or (39). Symmetric. 

E
2 	

[0,1,0,0] T , 	x 1). 

G
K 	

Gain Matrix, (m x m), Eq. (41). 

G Matrix (m x m) associated with stiffness, Eq. (6) or (39). 
Skew-symmetric. 

gk 	
Modal gain, real scalar, Eq. (35b and c), associated with 
pitch modes. 

g2k 	
Modal gain, real scalar, associated with GK 

and Figure 4. 
Equals EpKA. 

HR 	Gain Matrix (m x m), Eq. (41). 

h
o 	

Angular momentum stored in the momentum wheel. 

h Modal gain, real scalar, Eq. (35d). Associated with pitch 

modes. 

h
2k 	

Modal gain, real scalar, associated with Hk 
and Figure 4. 

Equals ENA. 

I
1'2'3'

I
13 

Moments and products of inertia of the undeformed spacecraft 

about the center of mass. 

Stiffness matrix (n x n) of one appendage. Symmetric, positive 

definite. 

Torque components about the center of mass of the spacecraft. 

Magnitude of the torque component in the roll-yaw plane. 

Magnitude of the torque component in the roll-yaw plane. 

C T  
Mass matrix (11 x n), J00 dm, from one appendage. Symmetric, 

positive definite. 



Order of the eigenvalue problem. m = 2n or 2n + 2, respec-
tively, in the two examples. 

Màtrix 	x m) defined in Eq. (6). Positive definite 
symmetric. 

P
K 	

Real part of II
K9 

column matrix (m x 1). 

iQK 	Imaginary part of Ilk , column matrix (m x 1). 

S
1 	

Coefficient column matrix (n x 1), !)TOO
T
dm for one appendage. 

S
2 	Coefficient column matrix (n x 1), jrx

T
dm for one appendage. 

U
K 	

Real part of XK , column matrix (m x 1). 

iV
K 	

Imaginary part of XK, column matrix (m x 1). 

W(t) 	Deflection function, column matrix (n x 1). 

W
K 	

The part of XK  which corresponds to deflection. 

w(x,t) 	Scalar deflection depicted in Figure 1 0  

XK 	Eigencolumn (m x 1), solution of Eq. (9) 0  

Y
k 	

Eigenrow (1 x m), solution of Eq. (13). 

Z(t) 	Variable, column matrix (m x 1). Eq. (4) or (38). 

z(t) 	Modal variable, scalars, complex in general. 

a 	Angle between the roll axis and the roll-yaw component of 
torque. 

iS
k 	

Imaginary part of X
k 

k 	
Modal damping factor. 

A 	[cosa, sina, 0, 0]
T 

(m x 1). 

0(t) 	Attitude angle about pitch relative to a fixed line. 

k 	
Part of eigenvector, Eq. (22). 

X
k 	

Eigenvalue, complex scalar, Eq. (11). 

a
k 	

Real part (scalar) of 
 k9 

Eq. (11). 

Column matrix (m x 1), Eq. (6). 

vi 



Column matrix (n x 1) of coordinate functions (assumed modes) 

of deflection. A complete set satisfying natural boundary 

conditions of the appendage. Depicted in Figure (la) and (lb). 

	

k 	
Column matrix (m x 1), defined in Eq. (20). 

	

w
k 	

Modal natural frequency. 

Angular velocity about roll, pitch, and yaw axes. 
wl' w2' w3 

Indicates complex conjugate. 

Indicates Laplace transform. 

.1)(x) 

vii 



NATURAL MODES AND REAL MODAL VARIABLES FOR FLEXIBLE SPACECRAFT 

by 

F.R. Vigneron 

ABSTRACT 

This report develops and illustrates a natural 
modal transformation theory which is applicable to 
flexible spacecraft with damping and gyroscopic 
forces. The theory is arranged into a form which 
is a generalization of the classical normal modes 
transformation theory. Modal differential equations 

are given in terms of real-valued scalars. Block 
diagrams in the time and Laplace transform domains 
demonstrate the feed-forward and second-order 
filter characteristics of the structure of the 
equations. Results for a single-axis flexible 
dynamics example are compared with earlier published 
results to show the correlation with the classical 
normal modes transformation theory. 

I. INTRODUCTION 

Flexible spacecraft which can be modelled with linear differential 

equations with time-invariant coefficients can be transformed to natural 

modal variables that correspond to natural modes of deformation. Natural 

modes in this context are eigenvectors of the homogeneous part of the linear 

differential equations, and the natural modal variables are ones for which 

the modal differential equations are uncoupled. 

If the time derivatives of the linear equations are of second order 

only, or if certain proportionalities are present amongst the coefficients, 

then the applicable transformation theory is the 'classical normal modes' 

transformation, where the differential equations in terms of the natural 

modal variables (also called principal or normal coordinates) are uncoupled 

second-order real-valued linear oscillators, and the modal eigenvectors are 

real-valued column matrices [1,2]. The normal modes formulation is useful 
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and popular because of the following features: (a) the variables and para-
meters of the modal differential equations are real-valued scalars, and the 
mode shapes are real-valued and physically-comprehensible; (h) the theory and 
computational procedures are well established for the mode shapes; (c) the 
modal equations are uncoupled second order linear differential equations 
which are easily integrated or analysed; (d) if the equations are arranged 
in a signal flow transfer function diagram (in the time or Laplace transform 
domains) they are found to have a feed-forward structure composed of a number 
of parallel 'second order bandpass filters' and this permits application of 
approximate techniques such as mode separation, modal truncation, and frequency 
domain analysis; (e) the modal frequencies and modal mass coefficients 
(which are the parameters which define the structural flexibility) are often 
related more or less proportionally to quantities which specify control, 
stabilization and structural integrity. These features enable an analyst to 
obtain a physical feeling for the flexible body dynamics directly from the 
formulation. The formulation has been found to be particularly useful for 
synthesizing or analyzing controllers via output feed-back techniques, and 
for helping to decipher complicated simulation or flight data. It also seems 
to be suited for synthesizing controllers by optimal and suboptimal methods, 
and for developing parameter identification methods. These observations are 
illustrated in, for example, the applications published in [3-7]. 

For situations where the linear model is not transformable using the 
classical normal modes theory, the analyst can use a more general, but more 
complicated, transformation mathematics. Ref. 8 gives an appropriate trans-
formation theory in terms of complex-valued matrices and variables, and Refs. 
2, 9, and 10 give relevant partial formulations which use modal vectors and 
complex variables. However in these works many of the above-noted attractive 
features associated with the normal modes transformation theory are absent or 
not evident. 

This report demonstrates, by way of examples, that the general natural 
modes theory can be derived and arranged in a form which retains the attri-
butes of the classical normal modes theory. Two well-known representative 
examples are worked, namely the attitude dynamics about pitch of a vehicle 
with a flexible appendage and linear damping, and the roll-yaw dynamics of 
the same vehicle with roll and yaw coupled by gyroscopic stiffness from a 
momentum wheel. The transformation theory is developed in such a way as to 
parallel the normal modes development insofar as possible. The modal 
equations are given in real-valued scalar form. Block diagrams are illustra-
ted in both the time domain and the Laplace transform domain. For the pitch 
axis example, the results are compared with Ref. 4 to show the correlation 
with the classical normal modes transformation theory. 

2. ATTITUDE DYNAMICS ABOUT PITCH 

The satellite, depicted in Figure 1, consists of a central rigid body, 
two similar symmetric flexible appendages which deform in bending, and a 
momentum wheel aligned along the pitch axis. Because of symmetry, the pitch 
axis dynamics are independent of the roll and yaw dynamics, and are not 
influenced by the stored momentum. The model is* 

* - Symbols are defined in the Nomenclature and the figures. 
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(la) 

(lb) 

(3) 

(4) 

(5a) 

(5b) 

(6) 

(7) 

(8a) 

(8b) 

12 0  - 2STinT = L2 2 

le + CW 4- KW - S 2
0  = 0 

The variable W(t) arises from a discretization of the deformation in the form 

w(x,t) = é(x) W(t) 	 (2) 

The 	(x) are shape functions depicted in Figure 1(a). M, C, and K are of 
order nxn, and are non-diagonal, symmetric, and positive definite. The 

variable V is defined as V = W. One may then form the equation 

KW - KV = 0 

Introduce the variable 

z =[.] 

Z is of order mxl where m = 2n. 

Equations (1), may be rewritten in terms of the variable Z: 

I
2 0  - 2TT 'i = L

2 

+ (D + G)Z - TU = 0 

where 

M 	

S 9 	C 0 	0 11 
R = 	

IC 	
0-  T =[] D = 	G= 

[0 	0 0 	[7.K 0 

2.1 MODAL EIGENVALUES, MODAL EIGENCOLUMNS, AND MODAL EIGENROWS 

The coordinate functions for the modal transformation are the eigen-
values of the homogeneous part of Eq. 5. Substitution of 

5 - keXkt 	Z = XkeXIct  

into the homogeneous part yields the eigenvalue problem in the form 

I2 8k  - 2TTXk  - o  

(X lcR 	B)Xk 	)'1.(7 5k = 
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(A) 

PITCH y 

(B) 

Figure 1. Configuration of Spacecraft: (a) Deformations Coupled to Pitch; (b) Deformations Coupled to 

Roll and Yaw. 
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(9) 

À = - a + iO 

= a - 

(11a) 

(11b) 

A solution of the eigenvalue problem directly from Eqs. (8) would 
entail solving for rigid body modes. To avoid them, Ok is next eliminated 
from Eqs. (8), to result in the eigenvalue problem in a more conventional 
form, 

(ÀkA + B)Xk  = 0 

where B = D + G, and A = R -2TTT/12 . A is symmetric, positive-definite, and 

has rank and dimension equal to m = 2n. D and G are also of dimension m, and 
are respectively symmetric and skew-symmetric. B is thus composed of a 
symmetric plus a skew-symmetric matrix, and is of rank m. Equation (9) can 
be regarded as the standard (desired) form for the eigenvalue problem, and 
the arrangement of the equations into this form is a worthwhile step in the 
process of transformation to natural modes. 

The eigenvalues, Àk , are solutions of 

det(XkA + B) = 0 	. 	 (10) 

Since A and B are of dimension m, Eq. (10) is a polynomial of degree m. From 
the theory of polynomial equations it can be shown that the equation yields 
m eigenvalues which are real or complex. Since the rank of A and B is also 
m, the eigenvalues are non-zero. (The methods of this section can also be 
extended to the case where A or B have rank less than m. Rank less than m 
implies the existence of Xis which are zero, and this physically represents 
'rigid body' modes.) The complex eigenvalues occur in complex conjugate 
pairs 

The eigenvalues can be assumed distinct since non-distinct roots can be 
assumed to be rendered distinct by a small change in physical parameters. 
From Eq. (7) it is evident that the components a and related to damping 
and frequency, respectively. X's which are complex correspond to 'less 
than critically damped' modes, and real X's correspond to 'greater than 
critically damped' modes. A change in physical parameters in Eq. (la) 
(particularly an increase in damping) can cause 4 in Eq. (11) to change from 
a real quantity to an imaginary one, and thus change two complex roots to 
two real ones; thus some of the real À's may also be in pairs. 

The À's of Eq. (11) that are complex can be converted to the conven-
tional natural modal frequencies and modal damping ratios, w and by the 
formula 

, 2 	2 1/2 	2 	2 	2 
k 

= a
k

/(12.
k 
+ a

k
) 	; w

k 
=

k 
+ a

k 

The converse is 

2 	2 
a = k wkk 

; 	= w
k
- (1 -

2
) • 

 k  

(12a) 

(12b) 



(15) 

(16) 

(17) 
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Then, lAk 1 = wk . 	< 1 for less than critical damping, and ck  = 1 for 
critical damping. 

Xk is referred to as a modal eigencolumn, and can be calculated by 
solving Eq. (9), given a particular A. Also a matrix row corresponding to 
the particular A can be calculated by solving 

Y
T
(A A + B) = 0 r r 

T  The matrix row, Y i r , s referred to as a modal eigenrow. If Ar  is complex, 
the corresponding Xr  and Yr  can be expected to be complex. If Ar  is real, 
then Xr  and Yr  will be real. Taking the transpose of Eq. (13), and 
recognizing that A = AT, leads to 

(X
r
A + B

T
)Y

r 
= 0 

Comparing Eqs. (9) and (10) shows that Xr  and Yr  are different since B is not 
equal to BT. Premultiply Eq. (9) by YT: 

Y
T
(A A + B)Xk  = 0 
r k 

Postmultiply Eq. (13) by Xk : 

Y
T
(A A + B)X

k 
 = 0 

r r  

Substract Eq. (16) from Eq. (15): 

(X lc X r)ilrAXk = 	° 

Hence for distinct eigenvalues, 

Y
T
AX  r k =0, Y

T
BX, =0, r 	k 	(18) 

r K 

(13) 

(14) 

Eqs. (18) are orthogonality properties. Also from Eqs. (9) and (14): 

A r = Y
T
BX /(Y

T
AX ) = -X

T
B
T
Y r  /(X

T
AY 

r
) rr rr 	r 	r 

(19a) 

If Xr  and Yr  correspond to Ar , then the eigencolumn and eigenrow corresponding 
to A* are X* and Y*. It then follows that 

*T * *T * 
A
r 

= - Y BX /(Y AX ) = - X
*T

B
T * 
Y/(X

*T * 
AY ) 

rrrr 	rrr rr 

If the quantity Ilk  is defined as 

Ilk  =  

(19b) 

(20) 
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(21) 

.* * 
15(0 = ()(t) + E {5kzk (t) + Okzk (t)} 

k=1 
(24b) 

then the complex conjugate of Ilk can be shown to be 

* 	* *T * 
ilk  = ik/(Yk  AXk) 

The part of the eigenvector corresponding to pitch motion is obtained 
from Eq. (8a): 

5k  = 2TTXk/I2 

The structure of the eigencolumn may be noted to be 

= 

Wk W
k 	

. 

(22a) 

(22b) 

Xk  may be written in terms of its real parts as 

	

-Xk  = Uk  + iV 	 (23a) 

	

X
k 

= U
k 

- iV 	 (23h) 

2.2 TRANSFORMATION TO MODAL COORDINATES 

The following transformation is defined 

* 
Z(t) = 	{X

k
z
k
(t) +

k  z k 
 (t)} 

k=1 
(24a) 

zk
(t) is a scalar, and 

zk (t) = 	+ ink 

z (t) = 	 ink (t) 

(25a) 

(25b) 

where
k 

and nk  are real-valued. 

Equation (24) transforms the m + 1 real scalar variables containe in 
the set C(t), Z(01, to m + 1 new real scalar variables contained in {0(t), 
z(t)1. The right-hand side is real-valued due to the pairing of complex and 

complex conjugate quantities. 



(28)  

(29)  
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The 0(t) can be interpreted as the mean (or equivalent rigid body) 
motion, and zk(t) can be thought of as a superimposed modal vibration. zk(t) 

is a scalar modal coordinate variable which is understood to be complex if 

paired with a complex X and to be real (i.e. n = 0) if paired with a real-
valued X (i.e. V = 0). For the real-valued modes, X = X*  = U and z(t) = 
z* (t) = (t). There are p real-valued z's and (m-p)/2 complex z's. There 
are (m-p)/2 n's and (m+p)/2 Vs. In this example m is even (equals 2n) and 

this implies that p is also even. (In an example with a discrete damper, m 
would turn out odd, and p would also be odd.) The transformation may be 
expressed directly in terms of real-valued scalars by combining Eqs. (24) with 
Eqs. (22 - 23) and (25): 

(26a) Z(t) = 2 E {u
kk 	

- v
k 

n
k
(01 

k=1 

Tm  m 
5(0 = (Ds(t) +7-- E  {U

kk 	
- V

k
n
k
(01 

k=1 

(26h) 

In Eq. (26) the summation applies to both real and complex X's; for the X's 
which are real, the Vk and nk  are understood to be equal to zero. 

Substitution of Eqs. (24) into Eq. (5a), and use of Eqs. (22) results 
in 

(27) 12 0  = L2 

Substitution of Eqs. (24) into Eq. (5h) and use of Eqs. (22) results in 

2TT
T  

E(R -) X
k.  zk 

 + E DX. z
k 
 = TO 

I
2 

 

Multiplication of this expression by Yi and use of the Eqs. (18) and (20) 
results in, for both real and complex 'Ps: 

T - 

	

z. 	À.z. = H. TO 

	

J 	JJJ 

Eqs. (27) and (29) are the transformed differential equations, where Eq. (27) 
describes the mean (or equivalent rigid) angular motion and Eqs. (29) are 
uncoupled complex-valued modal equations. 

If Eq. (28) is multiplied by Y
*T

, the same procedures lead to 

* * 	*T - 
z. 	X.z. = H. TO 

J 
(30) 

Eqs. (29) and (30) can be converted to the real variables ( t) and n(t) by 
substituting Eqs. (25) into them and then successively adding and subtracting 



w(x,y,z,t) 

2scuk ek -vk 

jv 
 Lw 

2TT 

 12 

the equations; for complex Vs one obtains 

T 
k 
+ a

kk 
+

k
n
k 

= P
k 
 TO 

T - ;1
k 

- e
kk 

+ a
k
n
k 

= Q
k 

TO 

and for real Vs, 

T - 
k 
+ cy

kk 
= P

k 
TO 

9 

(31a) 

(31b) 

(31c) 

Eqs. (31) are the modal differential equations in terms of real variables. 
Thus for each complex eigenvalue there are two intercoupled first order modal 
differential equations, which are uncoupled from other modes. For real eigen-
values there is one first-order modal differential equation per mode. There 
are m(= 2n) Vs. p are real, and m-p are complex. Thus there are p modes 
corresponding to real À's and (m-p)/2 modes corresponding to complex Vs, for 
a total of (m+p)/2 modes. 

2.3 BLOCK DIAGRAM FORM FOR DEFLECTION 

Eqs. (31), (27), (26) and (2) are readily arranged into the block 
diagram form shown in Figure 2. The figure illustrates the modal and feed-
forward features. 

DAMPING  < CRITICAL.(m-p)/2  MODES-1  
en, + 	e,„ + 	= Priri  T 

- m 	+ crinnm = Q 

Ég eqeq+ q I7q  =  P  

- 	eq  + crq 17q dcri  T 

n DAMPING > CRITICAL. p MODES I 	 I e  
ép + crp ep = PIT T 

I 	I CI  

. Cm 

1 7m 

I 741  

L2 (1),  
1 2  

Figure 2. Transfer Function Between Input (L2) and Output (0 and co) 
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2.4 LAPLACE-TRANSFORMED EQUATIONS AND COMPARISON WITH CLASSICAL NORMAL MODES 
TRANSFORMATION 

Taking Laplace transforms of Eqs. (31a and h) with zero initial states 
results in 

(s + ak)7k (s) + SIA(s) = PTJs 275(s) 	(32a) 

T — 
- e(s) + (s -- a

k
k(s) = QkTs

2 
 0(s) 	. 

Eqs. (32) may be solved for
k 

and n
k

: 

;(s) = {(s 	a 
 )p

k 
 T _ 0T1 	

Ts20(s) 

k 	k'k-  (s 	ak)2 	12c 

n
k
(s) = {(s + 

ak)Qk 
+ 	

Ts
2
0(s) 

S
k
P
k
1  

2 	2 
(s + a

k
) + ek 

(32b) 

(33a) 

Eqs. (33) apply for the (2n - p)/2 modes corresponding to complex X's. For 
the other p modes, Eq. (31c) yields 

T  
137 , Ts

2— 
 0(s) 

(s) - 	s + a 

Substitution of Eqs. (33) and (34) into the Laplace-transformed form of Eq. 
(26a), and conversion of a, S to w, 	by Eqs. (12) results in 

P 	gk  
= U(s) + E 	sO(s) 

s a
k k=1 +  

(34) 

2 
(2n+p)/2 g

k
(s + 

k
(i)
k

) 	h
k
w
k 	

-
k — + 
	

s(s) 2 
k = p + 1 	s

2 
+ 2w

kk
s + w

k 

where 

g = 4 TT U
k
P
k
T for k = 1 to p 

k 12 

4 
 g = 	TT {U

k
P
k 

- V
k
Q
k

}I' for k = (p+1) to (2n+p)/2 
k 1

2 

(35a) 

(35h) 

(35c) 



r--  
DAMPING > CRITICAL, p MODES  

gP  

S (s Crp) 

s 2  

g r ( s+erù'r)-hkwk41- e  
s2  2w k s ks q 

11 

h
k I 
= 4 TT 

{Uk 
 Q
T 
+ Vk P

k
T
} T 

2 	k  

Equations (35) and (27) combine into the block diagram of Figure 3. 

(35d) 

The counterpart of the above Eqs. (32 - 35) and Figure 3, for the 
classical normal modes theory with undamped modes and non-rigourously added 
modal damping is given by Eqs. (30 - 34) and Figure 5 of Ref. 4. In comparing 
the Laplace-Transform results with the normal modes transformation, one notes: 
(a) the work herein includes 'greater than critically damped' modes as well as 
the 'less than critically damped' modes of Ref. (4); (b) if there are no 
'greater than critically damped' modes, then in both cases the number of 
modes is n; if there are p 'critically damped' modes, then the number of 
modes is (n+p)/2; (c) the numerators of the modes of Figure 3 contain two 
'modal gains' gk and hk per mode, whereas the corresponding results of Ref. 
4 contain only the gk. 

DAMPING <CRITICALen - 0/2 MODES 

— 
Figure 3. Transfer Function Between L 2(s) and 0(s). All Coefficients and Variables are Real-Valued Scalars. 
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If damping is set equal to zero in the work herein, then B = B
T

, the 
eigenvalues are then purely imaginary, and Yk  = Tik. Also the structure of the 
eigenvector, Xk, is [iwkWT, Wi ]T. The modal equations (31) reduce to 

S W
k w2 

"k 	k "k 
2w
k  

3 	(36) 

and by comparing Eq. (36) with Eq. (28) of Ref. 4, it is noted that the nk  
are proportional to and the first derivative of the normal modal coordinate, 

4k° 

Eqs. (31) are the same as ones obtained in Ref. 7 by a non-rigourous 
induction. Ref. 7 also includes useful solutions for the complex differential 
equations (29 and 30). 

3. ROLL AND YAW ATTITUDE DYNAMICS 

The dynamics of roll and yaw are coupled by the stored momentum of the 
momentum wheel. The equations are 

• T- 
I
1
w
1 
+ 

I13w3 
+ h

o
w
3 
+ 2S W = L

o 
cosa 	(37a) 

1 

I
3
w
3 
+ 

I13w1• 
- h

o
w
l 	

=
o 

sina 	(37h) 

cW 4. Kw 	s1 (701 	o 	(37c) 

The deformation of the array is discretized as per Eq. (2) with shape functions 
depicted in Figure 1(b). 

Define the variable, Z, as 

1 

[32-  
V 

W 

where W = V. Then the equations may be arranged into the form 

à + BZ = F 	 (39) 

(38) 

where 



Ii 
1
13 

2S 	
o1  

A= 1
13 	

1
3 	

0 	0 

0 	0 , 2S
1  

0 

= D + G, 

re, 	o 	o 

0 	0 	0 	0 
D=  

O 	OCO 

0 	0 	0 	0  

Eo  cos  

L
o 

sina 

0 

	

eel ° 	h
o 	

0 	0 

-h
o 	

0 	0 	0 

	

0 	0 	0 	K 

	

0 	0 	-K 	0 

13 

F= 

mat 

A is symmetric, positive definite, and has rank equal to dimension and equal 
to m = 2n + 2. D and G are symmetric and skew symmetric, respectively. B 
has rank m. 

3.1 TRANSFORMATION TO MODAL COORDINATES 

Upon substitution of Z = Xk exp (Àkt), Eq. (39) leads directly to the 
eigenvalue problem in the desired standard form, Eq. (9). The derivation of 
the modes and frequencies follows the theory given in Eqs. (9 - 21). As there 
is no equivalent of Ok  (i.e. no free rigid body motion), the transformation 
is of the form of Eq. (24a) or (26a). The modal equations are the same as 
Eqs. (31), except that on the right hand side, F replaces Te. The Laplace 
transform relation for Z may be found by substituting the equivalents of 
Eqs. (33) and (34) into Eq. (26a). One obtains 
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where G
k 

and H.  are matrices 
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Eq. (40) can be converted into scalar Laplace block diagrams. As an example 
the relationship between w3(s) and  L0 (s) is shown in Figure 4. The feed-
forward structure is evident. A similar block diagram is developed in Ref. 
12 for this example by a different approximate method. 

4. CONCLUSION AND DISCUSSION 

This work illustrates transformations, differential equations and block 
diagrams for natural modal theory in terms of real scalar modal variables and 
modal column vectors. The theory is demonstrated to be a generalization of 
the classical normal modes transformation theory. Although the examples 
chosen to illustrate the principles are specific, it is eirident that the 
theory as outlined in Eqs. (7 - 37) is applicable to a wide class of flexible 
spacecraft. Other examples, some of which involve gear drives and stepper 
motors, appear in Ref. 13. 

This work offers a procedure that is not limited to light damping for 
calculating the structural modal damping factors of a spacecraft from data 
on its components or substructures. The procedure is more satisfactory than 
current non-rigorous ones which involve adding modal damping terms to modal 
equations that are derived with damping absent, or which involve ignoring 
non-diagonal terms of transformed damping matrices. 

Figure 4. Transfer Function Betvveen 170(s) and co3(s). All Coefficients and Variables are Real-Valued Scalars. 
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The equations of the eigenvalue problem can be arranged into several 
different forms. The eloice of arrangement is a key decision. Herein, as a 

result of the use of KW - KV = 0 (Eq. 4), the arrangement has resulted in the 
eigenvalue problem appearing with D and G as symmetric and skew symmetric 
matrices, respectively; the associated eigenvalue theory, which also appears 
in Ref. 10 and other sources, is quite general and accommodates both examples 
1 and 2. A less general procedure,.which can be applied to the first example 
but not the second, entails using MW - MV = 0 in place of Eq. (4), and this 
arrangement leads to the form Eq. (9) where A and B are both symmetric. 
Although this procedure offers the advantage that the eigenvectors and 
orthogonalities are simpler [9] and that a corresponding well-developed 
technology for parameter estimation is available [14], it is less general 
relative to satellite applications because it cannot accommodate gyroscopic 

stiffness. Finally Ref. 11 presents theory for an arrangement where 1n7 - V = 

0 is used in place of Eq. (4), which is general but very complicated. 
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