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ABSTRACT 

This study presents a graphical method for the design 
and analysis of a flexible spacecraft controller. It can handle 
as many modes as desired, in constrained or unconstrained form; 
modal separability is not assumed and the method is exact when 
the spacecraft axes are uncoupled. The definition of a 'system 
function', independent of the controller parameters, simplifies 
the determination of the system stability boundaries. 	It also 
allows the investigation of the modal separability assumption, 
resulting in a criterion for its validity. 	Stabilization 
through structural damping and flexible modes filtering is 
illustrated using graphs of the system function. Closed-form 
approximations are derived in order to complement the exact, 
numerical method. Extensions to systems with loop delay and 
nonlinear elements are also included along with applications to 
the LSAT-1 Roll axis. 



I. Introduction 

This study presents a method for determining the 
stability of a PID-controlled flexible spacecraft in, terms 
of stability diagrams in the controller parameter space. 
It is an extension to the work by Hughes and Abdel-
Rahman[1] and was used by the present author in the 
investigation of the LSAT/MSAT Normal Mode performance 
[2]. As this reference concentrated on practical results, 
it was felt that it should be complemented by the 
mathematical background at its origin. This will allow 
possible usage or extension of the method to cope with 
other control system problems. 

Extensions to Reference [2] were carried out by the 
author and are reported here. In particular, the 
definition of a 'system function', typical to a given 
spacecraft, makes the method general enough to accommodate 
dynamics models with any number of constrained or 
unconstrained modes. 

The assumptions and the basic system model are first 
defined. Then, the development of the theory is carried 
out with numerical examples based on LSAT-1 parameters. 
Approximate analytical results are also introduced to help 
interpret the numerical approach. An extension of the 
method to systems with loop delay and torque limiters will 
complete this presentation. 

1 





2. Assumptions and System Model 

The uncoupling of all three spacecraft axes is 
assumed throughout this work. In theory, this assumption 
is not valid for most spacecraft but in practice, the 
coupling can be so weak that this simplification is 

acceptable for design purposes. Each axis can thus be 
controlled independently as shown in Fig. 1. The 
saturation element allows for torque input limitation 
while the term e-Ts considers controller processing and 
sensor qmpling delays. The first-order filter 
(1+T f s) -  accounts for noise filtering or flexible 
modes filtering, according to the choice of Tf. 
Although the basic approach to be described is valid for 
various types of controllers, it is implemented here with 
a PID compensator. It is completely characterized by 3 
parameters: 	the derivative KD , proportional  K 

integral K1 gains. The method will define stability 
regions in the space generated by these parameters. In 
general,  K 	the variable gain while the ratios 
KDiKp  and KI/Kp are kept at some predetermined 
value. 

This form of control is chosen not only because it 
represents a simplified version of all three axes of LSAT 
(see [2] for the correspondence) but also because it is 
considered general enough to represent most satellite of 
this class, including lead-lag controllers [1,3]. In the 
case of LSAT, higher-order flexibility filters are added 
to the design. This would increase the stability margins 
derived in the present work. 

In the following sections, some additional 
assumptions are resorted to. Loop delay and torque 
limiters are avoided until the last section. Mode 
separability is also invoked when analytical results are 
sought. These simplifying steps will allow a better 
understanding and an easier interpretation of the more 
complex, original model. 

3 
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3. Development of the Stability Boundary Equations 

The theoretical background for reference [2] is now 
presented. It is an exact method, given that axis decoupl-
ing applies. 

a. Method 

The open-loop transfer function of a controlled dynamical 
system can be written as 

K P(s) D(s) 	 (1) 

with P(s) containing all the control parameters, D(s) 
representing the dynamics of the plant to be controlled and 
K is the controller gain. The characteristic equation (CE) 
becomes 1 + K P(s) D(s) 	O. 	The choice of control 
parameters that will locate roots of the CE on the imaginary 
axis of the s-plane will define the locus of the stability 
boundary in the parameter space. When this happens, the CE 
takes the form 

1 + K P(jw) D(jw) = 0. 	 (2) 

This equation can be separated into its real and imaginary 
parts by defining: 

P(iw)  4 P r 	j P i ) 

Kiw) 	d
r 

- j d., 

j = 

Equation (2) splits into: 

1 + K (p r d r  + p i d i ) = 0, 

p i d r  = p r d i  . 

So far, this derivation follows that in [1]. However, it is 
not easy to solve for Eqs. (4) in the present form. We wish 
to separate the fixed physical and modal quantities from the 
adjustable controller quantities. This will be done in order 
to simplify the solution of (4) while providing a better 
understanding of the problem. There exist many ways of 
performing this separation. For instance, one could rewrite 
Eqs. (4) as: 

f DYN = -1 / (4 r )  (5a) 



KD's 2  + Kp 's + K1 ' 

s
2 + as + p 

K P(s) - (7a) 

A a 

6 

d./d 	= p./p 	 (5b) 
r 	1 r 

with the 'dynamics function' defined as 

f
DYN 

4 (d 2 	d 2 )/d  
r 	r 

This function depends on the spacecraft modal parameters 
alone. 	Hence f Dy N(w) is specific to a given spacecraft and 
can be plotted versus frequency. Everytime this plot crosses 
the -1/(Kp r ) curve, the corresponding frequency wx  can be 
substituted into di(w)/d r (w) of Eq. (5h) to yield a 
relationship between the controller parameters pi/p r . 
These, in turn, define the stability boundary. Note that wx  
is also the frequency at which the root locus crosses the 
imaginary axis. 

An even better separation would consider the particular 
structure of p i  and p r  so that all the adjustable gains are 
in Eq. (5h) while Eq. (5a) retains only the overall gain K. 
In this case, the solution of Eq. (5a) would provide the 
crossing frequency w x  as a function of the overall gain K. 
Once w x  is substituted into Eq. (5b), the stability boundary 
can be derived. This is accomplished for a PID controller in 
the next sub-section. 

b) Application to PID Controller 

Without delay and nonlinear terms, Eq. (1), as applied 
to the system of Fig. 1, gives the following controller and 
spacecraft transfer functions: 

(6) 

1 	kn  
D(s) = — + 	 (7h) 

s 2 	n=1  s 2 
-I-  2 n cen5 + wn 2 

where we have defined: 

A v Wf 	A - -f  = 	T f  

co 	+
f 	

to
m 



W  w 
f m 

KP(jw) = (Y 	i6)/À (9a) 

A w
m 

= g + 1/T w 

7 

(8) 

K.' A = K.K
f 
 /I , 	i = p,D,I . 

The flexible modes are written in terms of their unconstrain-
ed frequencies w n , damping ratios ço.  and gains kn •  Note 

that the inertia is found in the control gains rather than in 
the dynamics transfer function because of its scaling effect 
on the gains. 	Following the notation of reference [1] (with 
one exception), we have, similarly to Eqs. (3): 

p(ito) 	= (a - j13) 	 (9h) 

with 

à y = (p-W
2 ) (K I ' - KD ' w 2 ) + K  

A â = A
PD w3 + API w, 

A A
PD 

= uK
D
' - K 

A A
PI 

= pK' -aKI ', 

2 A (p-W 2 
 )

2
w 2

, 

A 
a = - 	+ 	k

n
(w

n
2- w 2 )/A

n' 
w 2 n=1 

CO 

A 
= 2w 	k  t w 

nnn
/A

n 
, 

n=1 

A 	(w  2 _ w 2 ) 2 	/, 	2 	2 	2 
wn w  

1 

(10) 



6* - 
(13/aw) Kp "Â 

Note that the control gain K of Eq. (9a) can be taken as Kp ' 
and, consequently, y/Kp ' and  6/K r ' would be functions of 
the ratios KD/Kp  and  Ki /K. The CE that corresponds 
to Eq. (4) is easily obtained as 

1 + (ay + 136)/À = 0 	 (11a) 

a6 = BY 	 (11b) 

as shown in Eqs. (27) - (28) of [1]. 	These equations are 
modified here following the criteria expressed previously. 
Equations (5) - (6), as applied to the present problem give: 

fDYN = 	X/Y ) 

B/a 	= 6/Y , 

with 

à 

fDYN = ( a 2 	52" ° 

Unfortunately, À/y depends on KI/K and KD /K in 
P 

addition to K /I. The separation is not complete so that 
we must look into the particular structure of y and 6. 

First, note that y can be rewritten in terms of 6 as 
follows: 

Y = [K I x + (6/w) (w 2- P)Po 

By substitution, Eq. (11b) can be solved for 6 in terms of 
flexibility parameters: 

(R/a) 	K I À 
6=  

a - (B/aw) (w 2 -p) 

It is useful to define 

6* = 6/w 

K"  = K 

= 1  - (B/aw) (w 2 - p), cy 

so that Eq. (13) can be rewritten as a function ofw 2 : 

/ a 

c 	2. citten as a function olw . 

8 

(12) 

(13) 

(14) 

(15) 
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It is clear that the right-hand side of Eq. (15) depends on 
the proportional gain while the left-hand side becomes (from 

Eqs. (10)); 

= A PD w
2 
 + API . 

After substitution of Apt), Api and the ratios: 

A KD * = KD
'/K

p
" = K

D
a/K

p' 
(16) 

KI * 	K1  '1K"  = KI
a/K

p' 

we obtain 

= aK "[(K D - 1)w 2 + (p - KC)]  • 	(17) 

Finally, by inserting 6 and y (Eqs. 12-13) into Eq. (11a) 
one obtains the equation: 

1 + a(1 + 13
2
/a

2
) K "/A = 0 . 	 (18) 

At this point, it is useful to define a 'system function' 
f sys  that is completely independent of the controller gains: 

A = 	a(1 + f32 /a
2
)/b SYS 

Given the wheel dynamics (wm ), filtering characteristics 
(w f ) and the spacecraft dynamics model, f us  is completely 
defined and can be plotted versus w (or w ). More will be 
said later on the interesting properties of fsys. At this 
point, we concentrate on the derivation of the stability 
boundaries from the transformed Eqs. (11): 

f SYS (w)  = 	1/Kp" 	 (20a) 

6 * (w) = (Piaw)K p "X/A 	 (20b) 

where 6* is defined in Eq. (17). We have achieved the 
separation of the controller and system parameters. 

The procedure to obtain the stability boundaries should 
now be obvious. Once the system function f s ys is plotted 
versus frequency, a horizontal line is drawn at -1/Kp " for 

the desired controller gain Kp ". As Kp  goes from zero 

to infinity, this horizontal line scans the negative half 
plane from - 00 to zero. At each intersection of f sys  and 

the graph gives the crossing frequency wx  at which 
P ' 

the system goes unstable for that particular gain KID ". Then 

wx is substituted into the right-hand side of Eq. (20b). 

(19) 



1 0 

to obtain 6 x* - 6*(wx ). Finally, from Eq. (17), the 
relationship between KD* and KI* that will allow sucp a 
condition is obtained as a straight line of slope wx and 
intercept proportional to S x *: 

= KD*  w  + (p-w) - (S x*/(aK p ") 	(21) 

A typical example of this boundary is shown in Figure 2. 
Analytical results using the Routh Criterion will help 
interpret these boundaries. 

The region of unconditional stability (for all flexi-
bility parameters) that was pointed out in reference [1] can 
also be recovered from Eqs. (19)-(20). When a)'0, 	fSYS is 

 always positive and can never intersect the -1/Kp " line 
(K " )>0): 	the system is always stable. 	Since p, and x  are 
positive, ae>0 implies 6*)1, 0 from Eq. (20b). Consequently, 
the combination of KD* and Ki * in Eq. (17) that will make 
(S*;>0 for all frequencies will prohibit any solutions of Eqs. 
(20) for w x  and 6 x *. This region of unconditional 
stability is easily obtained from Eq. (17) as: 

K*>1 D 	' 

Kt<p. 

The region is shown on Figure 2. These conditions ensure 
that all roots depart towards the left-hand s-plane and that 
all asymptotes are also in the LH s-plane. Note that on the 
stability boundary, 6 x * = 0 for =0 and 6x *<:0 when pÉO. 

One may think that all flexible spacecraft stability 
problems are solved once Eqs. (22) are satisfied by the 
controller design. In practice, the presence of loop delay 
and torque limiters drastically alter this 'safe' region. 
It will be shown that loop delay can easily make a lightly 
damped flexible mode unstable while saturation elements may 
shrink this stable region to impractical limits for the rigid 
mode. The importance of discussing the trivial case (no 
delay, no limiters) comes from these considerations. 

e) Computation and Pro parties of fsys(w) 

From its definition, Eq. (19), fSYS depends on wm  and 
w f  through A and on the unconstrained modal parameters 
through a and S. The numerical evaluation of fsys is thus 
straightforward, given the system model in unconstrained 
form. However, these data are often given in constrained 
form (e.g. by BAe for LSAT in [5]) and a conversion is 
necessary. 	From modal identities [4], one can show that: 

(22) 
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UNSTABLE 
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Figure 2 The Stability Diagram For Given tex  2  and 	( çn > 0). 



1 	kn 
- 	+ 

w 2 n (w 2 - w 2 ) 
a(=0) = 

a = -

c

Ma2 + p, 2 ) 

= 	ilic /( a 2c, 	f32c ) 

where a c  and p c  are the constrained equivalents of a  and p: 

	

1 	œ 	K (Q
2 
- w 2 ) 

4r 	n n 

	

a c =w  1-- + / 	1 2 

	

w 	n .„.1 (Q 2 - w2)2 + 4 z2 Q 2 w 2 
n 	n 

(24) 
Kn Zn Qn A 	4( 

c 
= w 12w 

n=1 (0
2  2
n -w )

2 
 + 4Z

2
Q
2
w
21 

n n 

with Kn , Zn  and Q n  the constrained modal gains, damping 

factors and frequencies. 

For the undamped case, we have 

12 

(23) 

1 	Kn 
a
c
(Z n =0) = w4  1-- + 1 	 

n  (,2_2) 
w
2 

(25) 

= 	= 

so that the system function becomes: 

fSYS =  a  = -1 /ac , ( Ç-0).  
(26) 

The above equations present an interesting property of the 
undamped fsys: 

fSYS (w =0/1) = °) 
(0) 

fSYS ( w'wn )  ". 

This is not surprising if one considers that fsys, Eq. (19), 
is identical to the dynamics transfer function, Eq. (9b), 
when there is no damping (13 =0). Given the constrained modal 
parameters, fSYS provides a graphical means of obtaining the 

unconstrained frequencies wn . This is much more accurate 
than the usual one-mode appuximation of unconstrained 
frequencies, w n  = Qn  (1-K 11 ) 7 (as in [5] for instance). 
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In addition to the evaluation of stability boundaries and 

unconstrained modal frequencies from constrained modes, fSYS 
may lead us to another interesting interpretation: the 
validity of the mode separability assumption. 

In the undamped case, the system function is the transfer 
function between angular acceleration (torque/inertia) and 
angular displacement; Eqs. (9h) and (19) give 

0(j w) 

f SYS = D( j w)  = a  = 	(=0). 
T(jw)/I 

A mode n is said to be separable from the other modes when 
excitations T(jw), with frequencies in a given bandwith Bn  
around w n , produce an output 0(jw) that is mainly character-
ized by mode n alone. The contribution of this mode to the 
transfer function must dominate that of all the other ones. 
Hence, separability implies: 

, 
SYS - 	 for w 2 

 E D , 
( w  2_ 03 2 ) 	n  

n 

where w 2  c Bn means wn  2 -B n  /2 5;w25:w n 2  + Bn  /2. Here, 

we prefer to express the 'bandwidth Bn  in terms of frequen-

cies squared. It is the smallest range of w 2  within which 
the magnitude of the one-mode transfer function is larger 
than some finite and positive value E. Hence, for 

I kn i(w 2 
 n  - W

2 
 )< E and w 2 E B n , the solution for B n  is 

B n = 2k/c. 

Sihce Ikn/( 	2 	21 w - w 
) 

tends to infinity as w ±wn , it is 

sufficient to restrict the contribution of the other modes 

to E within Bn • The separability criterion takes the form: 

k n e/E max 11 f 	(=.0) -  	

• 
SYS 

w 2 6  Bn 	( wn
2
- w

2
) 

This is equivalent to the following inequality: 

k
m  

Î 	<E 
w 2 c Bn {Len 	

( w  2__ w 2 ) 	' 	 (29) max  
m  

k n  
(27) 

(28) 
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In this form, the requirements of small modal gains and 
large frequency separations are now evident. Note that if 
w k 2 

E Bn , modes k and n are not separable. 

It is clear from Eqs. (28)-(29) that the smaller c, the 
more strigent is the condition on separability. For undamp-
ed and lightly damped modes, the above criterion is 
satisfactory with c=1. In practice, only a look at the 
graph of f sy s vs w gives a relatively accurate assessment 
of the separability of a given mode, as we shall soon see. 

(d) An Example Based on LSAT 

Figure 3 shows an undamped, low-frequency sample of f s ys 
derived from the constrained LSAT roll parameters listed in 
Appendix 1. The graphical determination of wx  for a given 
gain Kp " is also illustrated. Note that when 	wx  
increases as K " increases. Due to the sharpness of some of 
the low-gain modes, the curve does not seem to cross the 
horizontal axis at O n  and go to T co at wn . This aliasing 
effect is naturally overcome by a smaller plotting interval 
as shown in Figures 4 and 5 for modes 1 and 3 respectively. 
A quick glance at Figure 3 reveals a poor separability 
condition for modes 4 and 5. The same is true, although to 
a lesser degree, for modes 2 and 3 shown in Figure 6. 

Another interesting feature of fs y s is the possibility 
to analyze the gain stabilization of unstable flexible modes 
by structural damping or, if insufficient, by flexibility 
filters. Figures 7-10 illustrate the effect of damping on 
mode 1 (S21=0.999 rad/s). 	These peculiar transformations of 
the undamped version already given in Figure 4, come from the 
fact that the denominator of fsys, 

A = 1 - (P./aw) (w
2 -
P)/a 	 (30) 

can go through zero since 	0  implies BM. For small 
damping, the term (5/aw) (w 2

-p)/a has a magnitude greater 
than unity around wn  and consequently, Eq. (30) vanishes 
at two different frequencies as shown in Figures 7-8. Since 
the  -1/Kr ' line can always intersect f sys , it is 
always possible to find a combination of KD * and Ki * 
that will define a stability boundary. No matter what Kp " 
is, the system can always be destabilized. As the damping 
increases towards a critical value given by the solution of 
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(31) 

(32) 

(33) 

lim (-1/Kp ") = 
w +0 

- co . 

(34) 

max 1 1 (8/Œw) (w 2-P)/all = 1 w 

decreases and eventually brings a unique zero solution for 
Equation (30). Only one peak appears, as illustrated in 
Figure 9. Above this damping factor, the denominator A is 
always nonzero and Figure 10 typically results. In this 
case, there always exists a maximum controller gain below 
which the _1/K"  line can never intersect f sys • When no 
intersection is possible the mode is always stable, no 
matter what the values of the positive ratios KD* and KC 
are; the system can be gain-stabilized by the proper choice 
for K • 

On the other hand, given the gains Kp , K1 and KD , an 
unstable system can also be stabilized by filtering. The 
filter break frequency wf becomes the variable parameter. 
From the definition of Kp ", Equations (8) and (14), we have 

K 	P 

	

I 	w
m
+w

f 

and, consequently 

lim ( - 1/ K p " ) = - ( I/Kp ), 
w +00 

w f 

Equation (33) corresponds to no filtering at all while Eq. 
(34) represents a filter with the smallest possible break 
frequency (in practice, w f  is greater than the controller 
bandwidth). The filtering effectively lowers the  
line and, given a system like Figure 10, an unstable system 
may be made stable by a simple decrease in wf . These 
considerations form the basis of gain stabilization of 
flexible modes when there exists a loop delay. 

(e) A Comment on the Mode Separability Assumption 

In the preceding subsection, it was stated that whenever 
the denominator of fsys, A, goes to zero, the -1/Kp " line 
will always intersect fsys and instability can always be 
induced by a certain combination of KD* and K1 *. This 
behaviour could always be avoided by sufficient damping, 
making Aeo all the time. 



Under the assumption of mode separability, the ratio of 

the modal functions a and 13  takes the form: 
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2 n  wn  

(w121.  _ w 2 )  
13/aw -  (35) 

This ratio goes to + m and -  00  at w=wn . Substitution of Eq. 
(35) into Eq. (30) always results in a zero value for à at a 
proper frequency. Hence, mode separability inevitably implies 
a solution for f sy s + 1/K0 "=0 no matter how large 	is; 
an adequate choice for KC and KI * can always make the 
system unstable, contrary to the above conclusion. This 
proves that 'an unstable mode under the separability assump-
tion may in fact be stable when the system as a whole is 
considered'. 	This analysis suggests a conservative character 
for the mode separability assumption. Figures 10 and 11 
illustrate the same mode with the same parameters. However, 
the former includes the first 12 flexible modes (and the 
rigid mode) while the latter considers one flexible mode only 
(LSAT roll, n=1). Another observation is the fact that for 
K" large enough, the complete system may be solved for 2 
roots w x while the one-mode system can only yield one 
solution at all times. This points out the fundamental 
difference between each system root locus. 

f) Numerical Solution Algorithms 

A software package was developed to compute fsys from 
constrained or unconstrained modal parameters. A PLOT10 
subprogram provides the graphical means for determining wx , 
given K ". For improved accuracy in the results, a 
subroutine searches a user-defined range of frequency and 
monitors fsys and df sys /dw for sign changes to detect 
odd-multiple or even-multiple zeros of 

+ 1/K" = O. SYS 

After detection, a Newton-Raphson algorithm is automatically 
initiated for convergence to the desired zero, in this case 
w x . Analytical approximations, derived in the next section, 
are also computed to provide the user with initial estimates 
useful in the numerical solution algorithm. However, as 
these closed-form results are based on the separability 
assumption, the graphical output of fsys must also be 
consulted in case a solution for (36) disappears as a result 
of modes interaction. 

(36) 
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s 2 +
n
w
n
s + w

n
2 

D(s) - n=0,1,2... 	(37) 

4. Analytic Derivation of the Boundary Equations 

This section will first repeat the final results of 
reference [2] as a background to the presentation of a more 
complete analysis. These observations will support the 
interpretation of the numerical approach discussed in 
Section 3. 

(a) Method and General Form 

As observed earlier, the analytical results are made 
possible with the introduction of an additional assumption, 
that of mode separability. Under this condition, the 
spacecraft dynamics are simplified as follows: 
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with n=0 representing the rigid mode (k 0 =1, w0=0). The 
linear controller of Figure 1 without delay has the form 

K
D
's 2 + K 's + K 

P(s) = 	 
s 2 + as + p 

and the characteristic equation is thus completely described. 
The application of the Routh Stability Criterion to this 
system gives the following condition for stability (Eq. 8 of 
[2] rewritten in a different form): 

2 K 1 * 	KD  * w
2 
+ (p- w)  -   x 

where 

2 	2 
wx = (wn + knKp"  + pz n /a)/(1 + zn /a), 	(40) 

zn = 2 nw n 	 (41), 

6 *  = _ n [ ( w2_,)2 	a 2 w21 x  
xi 

Note that the above results are consistent with the boundary 
given by Eq. (21) once ci. and 	are modified according to the 
separability assumption and substituted into Eqs. (20). This 
time however, we have approximate closed-form relations for 
w x and x*. 

(38) 

(39)  

(42) 
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For every mode, inequality (39) defines a stable region 

in the KD* - K1* plane with Kr " as a parameter. The 

boundary is a straight line ot slope wx 2 . Note that Eq. (42) 
is in accordance with an earlier comment (Section 3): x * is 

negative or zero on the stability boundary depending on 
whether there is structural damping or not. By rewriting Eq. 
(39) as 

2 (K p* - 1) wx  + (p - K I *)7.> 	/(K" a)  

and noting that (S x *< 0, the system is unconditionally stable 

whenever KD*> 1 and K1* < p, as we showed in Eq. (22). 

The implications of Eq. (39) and Eq. (21) are best under-
stood by consideration of simple cases. 

(h) Analysis of Particular Cases 

For the rigid mode, we have 

K *< K * K " + (p - K ") I 	D 	p 
(43) 

because w x 2 = K" and x* =0. The boundary is a 

horizontal line through KI* = p for K"  = 0 and becomes a 
vertical line at KD * = 1 for Kr "  ± w. The counter-clock- 
wise rotation of the boundary occurs around the point (1,p) 
as shown in Fig. 12. In this figure, the regions of 
unconditional and conditional stability have been identified 
for future reference. 

For an undamped flexible mode, Eq. (39) reduces to: 

K*<KD* (
2  wn + k nK p ") + (p-w

2 - k nK p ") 

This time, the slope starts at wn 2 but the rotation is still 
about the same point. When the flexible mode frequencies 
are outside the controller bandwidth (wn 2 >Kr "), the 
stability diagram takes the form of Figure 1 3 . Note that 
the region of unconditional stability for mode n contains 
that for the rigid mode. 	Hence, for all the spacecraft 
modes, the intersection of these regions is that for the 
rigid mode, i.e. Eq. (22). 

(44) 
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(46) 

(47) 
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(c) Analysis of the General Case 

For a damped flexible mode, the slope of the boundary 
increases with  Kr ".  However, it does not touch the region 
of unconditional stability anymore: damping moves the 
boundary up (Fig. 2). While it is straightforward to obtain 
the boundary for a given Kn ", it is not easy to visualize 
how it moves with varying kp ". This is due to the fact 
that no fixed point - like the (1,p) rotation point of the 
undamped cases - can be defined. The results of [2] are 
here extended in order to shed some light on this general 
case. 

Inserting Eqs. (40)- (42) into (39), we obtain a condition 
in term of a parabolic dependence on Kp ", symbolized here 
by the function  

F(K ") = aK
p
.2  + b K " + c 

e
0 	 (45) n n p 	n  

where 

a
n 

A k
n
2 [(a + z

n
) (K

D 
- 1) + z

n
], 

b n A k f(a + z n ) (w 2  + z nP/a)( 1y- 1) + (a+z n ) 2 (P -K I * )/a ni 

+ z
n [a(a+z

n
) + 2(w 2- p)]1, 

A 	2 	.2 c n - z n [(wn- P) + (a + z n ) (aw
2 

+ pz n )] 

Because of Eq. (45) and since Kn ")., 0, a graph of F(Kn ") 
versus Kr "  will determine a stable system whenever the 
locus is in the first quadrant. 

In particular, the undamped system would have 

F'(Kp ") = an ' Kp " + b n 	0, 

with 

a
n
' = k (K* - 1) , 

n D 

bn ' = w
2
n (lq - 1) + (p-Kr). 



Equation (46) is plotted in Figure 14 for various combina-

tions of KD* and K1*. The system is always stable when 

a n t > 0, b u '),  0 (Region 1) and always unstable when a u KO, 
b u '‹ZO (Region 3). 	Conditional stability, (depending on 

K r "),  exists when  a' >0,  bu <0 (Region 2) or a n '< 0, 
b e '>0 (Region 4). These different curves are associated to 

Figures 12-13 by their region number. The system uncondi-
tional stability region, Eq. (22), (Region 1 for the rigid 
mode) is easily recovered from Eq. (47) by setting a u '> 0, 
b u t > 0. 

In the damped case, Eq. (45) applies and parabolas are 
obtained as shown in Fig. 15. The correspondence with the 
previous case is the same as far as Region numbers are 
concerned. The difference is that, since c u>0, the system 
always starts stable at Kp " = 0. Therefore, Region 3, in 

addition to 2 and 4, becomes conditionally stable. For a 
large enough damping ratio, we may have 

b2
11.
<

4a
n
c
n  

and part of Region 2 may become unconditionally stable. For 
Region 1, where a u >0, b u )b0, we have the following 

relationship for unconditional stability: 
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(48) 

K
D
* > 1 - 

z n 

(a+z
n

) 
(49) 

2 (aw2 + 	pz ) 	z n 	[ 0.2 + 2e ( wn - P) K I 	p + 	
n 

0( 1) * -1) +  	j° 
(a + z

n
) 	( a+z

n
) 	( a+z

n
) 

It is obvious that these limits, plotted in Figure 16, 
contain those for the undamped case. It can now be 
concluded that, as Kp " increases from zero, the boundary 
moves down from + co on the K 1 * axis. The slope of the 
boundary increases with Kp " while the intercept decreases. 
As K" 	co, the slope and the intercept go to infinity at 
K D * = 1 - z u/(a+z n ). 	In this process, some points in 

Region 2 become unstable and stable again while some others 
are always on the stable side. The curve (arc of an eclipse) 
separating these points is found by solving b u 2  = 4au c n . 
Region 1 of Figure 16 is thus a conservative region of 
unconditional stability. 

In terms of a root-locus diagram, it can also be 
concluded that when b u < 0, the locus departs toward the 
right-half s-plane: 	instability occurs at Ku " = 0 (c•=0) or 
near it (0, 0). For a u fICO, an asymptote of the locus is in 
the right-hand s-plane, and the system becomes and remains 
unstable as K"  increases toward infinity. 
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d) Comments 

The above approximate results help to interpret the 
stability diagram of Figure 2 which was obtained from a 
numerical solution for the fundamental parameters wx  and 
S x * . It should be remembered however that mode separability 
is assumed in the analytics. Section 3(e) has warned us 
that for a given K ", a solution for wx  may not exist for a 
given mode due to interaction from other modes. Equation 
(40), limited by the assumption, can yield a solution wx  for 
all Ko ". A more detailed analysis of this effect would 
probably conclude that the boundary of Figure 16 is, in 
fact, more conservative than the actual case. 
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5. Delay and Nonlinear Effects 

The tools that have just been implemented were tried on 
a simple system for illustration purposes. The extension to 
more complex systems is  usually2  straight-forward; the basic 
principles implied by fSYS ,  wx and (sx * still apply. 
The addition of loop delay does not preclude the definition 
of f sys  while nonlinear elements can be accommodated by the 
describing function approach. The only complication is in 
the increased number of parameters (delay T, equivalent 
gain kL); the interprtation of the results is not a 
trivial exercise. 

It is not the purpose of this study td present a detailed 
analysis of delay and nonlinear effects. This was carried 
out in [2] and [6] respectively. We will rather complement 
these analyses in the context of system function and 
stability diagrams. 

(a) Loop Delay 

In reference [2], the delay factor was approximated by: 

e
-Ts 

= To + T l s, 

with 

T o  = cosw nT ' 

T 1  = -sinw nT/wn , 

T = delay. 

In the context of mode separability, this form allowed the 
'tuning' of the delay term to any modal frequency wn 

 n=0,1,2,... so that accurate gain and phase result at wn . 
In the same reference, the integral term was chosen so that 
it cancelled the wheel dynamics. One must set KI=wm=0  in 
the present model for correspondance with that in [2]. 
Combining Eq. (50), mode separability and Routh Criterion, 
it was then possible to derive the so-called critical 
frequencies w c : 

km.  (l+w
f
T) 	k2 u 2 wf 

U) ] 2  -   + [ 	 
ck 
  12 (51) , 

T (1+4w
f
T) 	T 2 (1+1 wf  T) 2 	T(1+4w

f
T) 2  

k=0,1,2... 
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(53a) 

(53b)  

The 0 th  order critical frequency: 

w f 
[  CO 
T(1+4w f T)

2  

is in accordance with Eq. (33) of [3]. A mode n with its 
frequency in the range w ck< wn <(k271- + u/2)/T is shown to 
be unstable unless there exists damping to allow gain 
stabilization. 

The complexity of this approach required Ki=wm=0 and 
mode separability. The present method can thus complement 
it with more general results. Using the identity e - ite = 
coswT - jsinwT, the equations defining the stability 
boundaries become 
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(52) 

") coswT (-1/K SYS = 

(sic 	= (M/w)ÀK"/A p 	T  

with the system function defined as: 

A = a(1 + 
 SYS 

and 

A 
A
T 

= 	1 - (M/w) (w 2 
- p)/a, 

asinwT + coswT 
M(w) 4 	 

acoswT - I3sinwT 

(54) 

(55) 

(56) 

When T=0, M(w) and A T  reduce to 13/a and A respectively; Eqs. 
(20) are recovered. 	Note that from Eq. (53a), the inter- 
section of f sys  is not with a straight line anymore but a 
cosine function of amplitude -( K ") -I . 

As usual, the stability diagram inferred by Eqs. (53)- 
(56) is best understood by consideration of the undamped 
modes. 	With 	1.1 =0, n=1,2,..., we get 

= 0, 

M(w)= tanwT, 

AT = 1-(tanwT/w) ( w 2 -p)/ a , 

f SYS n  = °) = c4 / à T° 

(57) 



6* = (tanwT/w)À Kp "/A.T . (59b) 
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Note that fsys is the same as in the undelayed case, Eq. 
(25), except that it is now divided by A T . The properties of 

this denominator will be shown to be of great importance 
below. 

Figures 17 and 18 show the graphs of f sys  with exactly 
the same parameters used in Figure 3 except that delays of 
T=0.1s and T=0.2s have been included. In the undamped case, 
we have proved that fsys goes to T co at every unconstrained 
frequency w n . This is still verified in Figures 17 - 18. 
However, comparison with Figure 3 reveals that an additional 
infinite peak has been introduced by the nonzero delay. This 
new pole, located at the critical frequency wco, is evidently 
accounted for by AT. On Figures 17-18, the reader may verify 
that AT (dashed line) goes through zero at precisely wco. 
Consequently, for w<wco ) f sys  is not substantially altered 
by a delay (A T > 0) but it is inverted for w >wen  as it is 
multiplied by a negative number (A T .<0). 

The critical frequency w c0  is the solution of AT =0. 
By assuming wT small, a cloSed-form approximate equation for 

co is: 

a+pT  1 1  2 

co 
T(1+-laT) 

Using the parameters of Appendix 1, Eq. (58) gives 

w 	(T=0.2s)= 1.318 rad/s, 
co 

w 	(T=0.1s)= 1.873 rad/s, co 

in accordance with the exact numerical result shown in 
Figures 17-18. Furthermore, if we let wm=0 in Eq. (58) 
(i.e. a=wf and p=0), the particular cases treated in [2] 
and [3] are recovered as Eq. (52). The kth  critical 
frequency w c k can also be derived from Eq. (58) by assuming 

wT-k271.  small (k=0,1,2,...) and a result similar to Eq. (51) 
is easily obtained. 

Now that the properties of fsys are known, we 

investigate the stability region it defines. Inserting Eqs. 
(57) into Eqs. (53)-(56), we get: 

-1 
SYS = 	= 	(K") 	coswT, 	 (59a) 

(c=0) 

(58) 
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For T=0, we have shown that Eq. (59a) could be solved for 
2 

with aninfinite number of solutions w
xn' 

n=0,1,2,... such 
. that w 

2 
xn 

> w 2
n

. see Figure 3. With TÉO, the presence of A
T 

brings a new solution at  w 2  near w 2 . The system stable region 
xc 	c 

in the Kei; - K* plane becomes the intersection of the stable 
I 

regions aefined by all these boundaries. 

For the present analysis, we will concentrate on the 
frequency range oe.wTeTr/20 This interval contains all the 
modes of interest for most spacecraft (for T=0 .2s,  O 	w 

7.85 rad/s) and is the only interval where the modes can be 
phase unstable, as proved in [2]. 	The discussion considers 

the mode n closest to the critical frequency we  (n=2 in 

Figures 17-18). The extension of the results to other modes 
is trivial. 

The reader is referred to Figs. (17b) and (18b) for the 
following analysis. Near w e  and wn , an approximate 

solution to Eq. (59a) is: 

2 	- 

w
xn 

= w
2 + f W 	 (60a) 

2 

2 
= w 	w

2 
- f W I 	 (60b) 

xc 	7 

with 

wx = 7(w
n 

+ w
2

) 

(61)  

A 	2 	2 

	

WI - n 	wc ) 
2 

and f is a positive fraction, which is a function of the gain: 

K
P
" k

n
a 

	

A 	r 	 1 

	

f = 	il - 	 1 2 

	

I 	° 2 
T W I  cosw

n
T 

7 

2 	2 	2 When K" =0, we have f=1 and the roots are wxn=wn  and wxc  
22 	2 	2 

=wc . As K" p  increases, both wxnand wxc tend to -Ix  until they 

both coincide when f=0 at a value of Ki; called the critical 

gain lq c : 

2 K"  m T W I  cosw
nT/(k n a) . pc 	2 

44 

(62)  

(63)  



(67) 

(68) 

(69) 
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As Ku " is further increased, no real solution exists for Eq. 

(59a). The graphical equivalent of these results is 
illustrated in Fipres (17b)-(18b). In the vicinity of wc  
and w , w 2 

and w 	are the squares of the frequencies at 
n 	xn 	xc 

which fsys intersects the curve (-Kp ") -1  cosua .--,,' (-K ") -I  P 
cosw nT. This curve moves from - co to zero as K " increases 

P 
from 0 to co. 

Now let us consider the case when w 2 <wn  (Figure 17b). 
We then have (0<:Kp "<:00): 

(i)
L0 21  < wx2 n<  71)2 < c 

 

w 2 < Loc2 	 (64) 
(ri=2) x  

(ii) à T .. 0 at w2, 	 (65) 

(iii) 13< qn .< 6Xc< c° • (66)  

The parameter d* (d* ) is Eq. (59h) evaluated at w 2 
(wxc 

2 ). xn xc 	 xn  
2 

From Figure 2, the bounqry aspciated with wxn has an 
increasing slope (from w n  to rox ) and a decreasing intercept 

(--d* ). The boundary associated with w
2 

starts from KC = 
xn 	 xc 

- co (intercept 	- d* 	- 00) at a slope of w2 and moves 
xc 

upward with a decreasing slope w 2 . The stable region is xc 
2 	 2 below the w xn line and above the wXC line. At K" = K"p  , the c 

2 	2 	2 
two lines coincide at a slope w xc = wxn = ix (7*  

and the system is unstable everywhere. Figure 19 depicts 
the stability diagram of mode 2 (LSAT Roll) with T=0.1s 
(so that w2<w n ). Stability requires Ku "<:Kpc ". 

When T=0.2s, we have w2).w c (Figure 18) and for O<K"‹ co: 

(1) 	
2 w c < w 2 

c < co
2 < w 2 < w 2 , x 	x 	xn 	n 

(n=2) 

(ii) 	T I5. 0 at w2, 

(iii) -c° < Se n d( q 	• 
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This time, the modal boundary moves up with a decreasing 
slope and the critical boundary approaches from K1* = + 

- 2 - slope with increasing slope. The two meet at w 	6* K ". x' 	x' 	Pc 
A design point providing rigid mode stability, (Ke)›.1, KI *.< 
p are necessary conditions), can never be below the modal 
line and above the critical line at the same time. 
Consequently, mode n can never be stabilized when the rigid 
mode is stable. This concurs with the results in [2] where 
we had Ki"< p and proved instability whenever wc<  0 n < 

In summary, a simple look at a graph of f sys  ( 11 =0) 
will show phase-unstable modes whenever their frequency wn  
is above the critical frequency w c  (where AT =0) and below 
u/2T. For modes with wn< wc' one must make sure that K " 
is small enough (aCKnc ") for the (-K p .. ) -1,  

coswT curve to 
cross fsys. Only then is a stable combination of KD * and 
K1* possible. 

For the more general case (çrl 0), the results in Sections 
3 and 4 provide an explanation to the changes in the 
stability boundaries. Damping was shown to have a stabiliz-
ing effect by moving the boundary towards the unstable 
region. When it is large enough, even a phase-unstable mode 
(Figure 20) can eventually have a (system) stable region, as 
proved in [2]. 

(b) Wheel Torque Limiters 

The effect of torque saturation at the input of the 
reaction wheel has been treated in [6]. The conclusion was 
that large pointing errors (>1 °  in roll) take longer to be 
corrected and during that time, the controller integrator 
builds up a large signal that eventually destabilizes the 
spacecraft. The remedy to this undesirable behaviour was 
the introduction of a limiter in the integrator output. We 
now discuss this phenomenon in terms of stability regions. 

Since the instability was associated with the rigid mode, 
we will study its diagram, shown on Figure 12. As pointed 
out earlier, the control designer must choose K1* and KD * 
in Region 1 for unconditional stability (i.e. for all 
gains Kr "). Note that this region is limited by KD * =1 
and K1* = p = w m w f . The effect of a torque limiter on the 
diagram is investigated by first considering the transfer 
function between the wheel torque input T c  and output Tm  
(Figure 1). 



(70) 

(71) 

Let kL represent the equivalent gain of the nonlinear 
saturation element. It can be shown that: 

TM 	skL 
T—  s + w

mL 

where we now have: 
A 

mL  = 	 , /Tw ,  

and, consequently, from Eqs. (8): 

PL 	
w 
mL w f ' 

a 	+ w L 	. 

	

=w 	+w
f  

As the pointing error increases, large torques are demanded 
and  kL goes from unity to zero. At the limit, we have: 

lim  PL  = wf/T w  

- kc0 

From Eq. (71), it is clear that the wheel speed measurement 
feedback gain g gradually looses its stabilizing effect as kL  
goes to zero. 	From Eqs. (72) - (73), the upper limit of the 
stable Region 1 moves from p=(g+1/Tw )wf to p L =wf /I-w . For 
LSAT Roll (wf0.25 rad/s), this represents a decrease by a 
factor of 23: 	from 0.0261s -2  to 0.0011s -2 . KC =0.0074s -2  
from Appendix 1. In Figure 12, Region 1 shrinks to an 
unacceptable level: the design point (KC, KD *) is now 
in Region 2. Furthermore, the overall controller gain, 
given by Kp "kL , from Eq. (70), goes to zero as well. Region 
2s of Figure 12 vanishes as the boundary (slope - Kp "kL ) 
becomes a horizontal line. The design point is now in 
Region 2u: the system is unstable. 

The obvious solution to the problem is to lower the 
design point in Region 1, i.e., decrease KC to a value 
below wf/T w . As this value for KC is unacceptable under 
normal pointing errors conditions (see [6]), the decrease 
in KC should only occur when the boundary becomes close to 
the design point. This occurs at a value kLx  defined in [6]: 
a subsequent decrease in  kL (i.e. increase in pointing 
error) would bring instability. Therefore, an integrator 
output limiter must start to decrease K1 * at this very 
point and ensure that its rate of decrease is greater than 
that of the boundary at p L • This was accomplished in [6]. 
The effects of a torque limiter and integral loop limiter 
can thus clearly be visualized in terms of a stability 
diagram. 
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(73) 



This section has shown that the method presented in this 
study allows the analysis of systems with loop delay and 
non-linear elements. 
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6. Conclusions 

A general method for design and analysis of PID 
controllers for flexible spacecraft has been presented. It 
can handle as many modes as desired, in constrained or 
unconstrained form; an exact transformation between the 
two sets is carried out by the software. The usual 
assumption of mode separability and the approximate 
relations between constrained and unconstrained model 
parameters are consequently avoided. The definition of a 
'system function' has the following advantages: 

it is dependent on the spacecraft properties and 
invariant under controller parameter changes, 

it allows the determination of the system stability 
boundaries and gives insight into its behaviour even 
before consideration of the controller gains, 

given constrained modal parameters, it provides 
accurate unconstrained modal frequencies via graphing 
vs frequency, 

it allows the definition of a 'mode separability 
assumption criterion', 

it illustrates the stabilizing effects of structural 
damping and flexibility filters and allows their 
analysis, 

it can be used in the investigation of systems with 
loop delay and nonlinear elements. 

The numerical determination of two variables, wx , 
and S x *, is sufficient to define the stability regions 
of the system. Analytic, closed-form results are also 
presented in order to clarify how these boundaries vary 
with controller gain. 

A criterion was derived for the assessment of the 
assumption of mode separability. It was shown that the 
presence of other modes can have a stabilizing effect on a 
given mode. 

The method presented in this study was applied to the 
analysis of LSAT. Because it uses an 'exact' (limited by 
computer capabilities) transformation from constrained to 
unconstrained modes, its results should improve on those 
presented by BAe[5]. 
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Although current designs are aimed at filtering the 
flexible modes out of the controller bandwidth, it would 
be interesting to extend this method to third generation 
spacecraft and other types of controllers. 
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3  K* = 7.386 x 10 	- 2 - s 

32 = 26.136 x 10 -  s - 

3  K" = 3.770 x 10 	- 2- s 

T
w 	

= 220 s 

-1 = 	0.1 s 

w
f 	

= 0.25 radis 

APPENDIX 1 

LSAT ROLL PARAMETERS 

= 9875 kg-m 2 
K* = 2.807 
D 
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g2 n (radis) 	K
n 	Z

n = 0.003 

1 	0.999 	0.000950 

2 	1.081 	0.613892 

3 	1.093 	0.012468 

4 	1.998 	0.051389 

5 	2.256 	0.000001 

6 	2.746 	0.000004 

7 	3.085 	0.008616 

8 	3.707 	- 0.0 

9 	4.229 	0.000060 

10 	4.725 	- 0.0 

11 	5.102 	0.000453 

12 	5.360 	- 0.0 
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