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ESTIMATION OF THE IMPULSE RESPONSE OF 

TELEVISION CHANNELS FROM DIGITIZED WAVEFORMS 

by 

A. Vincent, M. Bruneau 

ABSTRACT 

This report presents a technique to 

characterize television channels without dis-

rupting the normal video program. TELETEXT 

data lines transmitted during the vertical 

blanking interval are digitized. The least-

squares analysis is applied on the sampled 

data to estimate the channel impulse response, 

from which the amplitude and phase character-

istics are computed. 

The report begins by a short review of 

the television and teletext signals. Then, 

the theory and implementation of least-

squares analysis techniques are presented. 

Also, the signal processing leading to TV 

channel transfer function evaluation is 

described. Finally, experimental results 

are presented. 
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ESTIMATION OF THE IMPULSE RESPONSE OF 

TELEVISION CHANNELS FROM DIGITIZED WAVEFORMS 

1. 	Introduction 

Teletext is a digital communication system, whereby 

alphanumeric and graphic information is encoded in a digital 

format, and transmitted during unused lines of a television 

signal. Television channels introduce impairments such as 

amplitude and phase distortions, as well as echoes, all of which 

produce intersymbol interference and decrease the noise margin. 

In order to characterize data transmission over TV 

channels, it is important to have a good knowledge of the 

characteristics of the transmitting and receiving equipment, as 

well as of the propagation medium. To do this, the standard 

television test signals (1T, 12.5T, multiburst, etc.) are often 

used. However, they provide insufficient information to fully 

characterize the channel, and they do not always originate from 

the same source as the teletext signal. The amplitude and group 

delay could be measured with specialized test equipment, such as 

a network analyzer. This requires that measurements be made 

during off-hours, in order to have the entire TV channel 

available, which is not too practical, especially if a large 

number of measurements are to be made. 

This report describes a system which allows estimation 

of the impulse response of TV channels, based on least-squares 

analysis (LSA), using digitized teletext waveforms. The 

transfer function of the channel, through which the teletext 

signal is transmitted, can therefore be measured without 

disrupting the normal video program and without using special 

equipments at the transmit end. 
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In section 2, the television and teletext signals are 

briefly reviewed. Section 3 introduces the theory of impulse 

response estimation, based on least-squares analysis. In 

section 4, the implementation of the least-squares techniques 

for the estimation of the impulse response of TV channels is 

described, as well as the transmitting and receiving systems. 

A description of the signal processing leading to the 

system transfer function is described in section 5, whereas 

section 6 presents results. The conclusion is given in section 

7. 



h(t) = h (t) + fh (t) (2.1) 

h i (t) ++ H i (f) 

h
Q
(t) ++ H(f) 

(2.2) 

SECTION 2. TELEVISION AND TELETEXT SIGNALS 

2.1 	Television Channel 

A block diagram of a broadcast television system is shown 

in figure 1 (the audio signal is not shown). Vestigal Sideband 

(VSB) modulation is used to conserve spectrum; i.e., the lower 

sideband is only partially removed. The transmitted signal is 

double sideband (DSB) over the region of 0-0.75 MHz from the 

visual carrier, and single sideband (SSB) in the region 1.25 MHz. 

and above. The band 0.75 to 1.25 MHz is a transition band from 

DSB to SSB. The transmitted signal is therefore not vestigial 

sideband; it is filtering at the receiver, which creates the VSB 

signal (fig. 1(d)). The audio sub-carrier is at 4.5 MHz above the 

visual carrier. The video signal is limited to approximately 4.2 

MHz in order to avoid interference with the audio signal. 

Broadcast television channels may be represented by an 

equivalent baseband complex impulse response (see Appendix A): 
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where  h1 (t) and hQ
(t) are respectively the in-phase (I) and 

quadrature (Q) baseband components of the impulse response. Their 

Fourier transforms: 

represent the transfer function of the baseband in-phase and 

quadrature channels, depicted in Figures 2 (a) and (b), 

respectively. 
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(b) cos 2 (fc+flOt 

Figure 1: Simplified Block Diagram of Television Broadcast 
System: 
(a) VSB modulator 
(b) VSB demodulator 
(c) magnitude response of transmit filter 
(d) magnitude response of receiving filter. 



H 1 (f) 

(a) 

Figure 2 (a): Equivalent baseband in-phase TV channel 

j HQ(f) 

-(b) 
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Figure 2 (b): Equivalent baséband in-quadrature TV channel 
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Television channels can be dharacterized by their 

complex baseband impulse response. This complex response may be 

obtained from the in-phase and the quadrature outputs of a 

synchronous quadrature demodulator. 

Most present day television demodulators are either of 

the quasi-synchronous or envelope detector types. 

Quasi-synchronous detectors employ a carrier recovery bandwidth 

which is wider than that of synchronous detectors. The 

recovered carrier may therefore exibit relatively large phase 

jitters, which would produce quadrature distortion. Envelope 

detectors, react entirely to both the in-phase and the 

quadrature signals. 

Thus, the output of modern television receivers can only 

be accurately modelled and analyzed when the complex baseband 

impulse response is known £13]. 

The impulse response estimation scheme presented in this 

report, processes the in-phase and the quadrature components 

separately, to produce an in-phase and quadrature baseband 

impulse response. The latter can be combined to yield the 

complex impulse response. 

Due to the unavailability of a quadrature demodulator, 

during the system development phase, results are shown for the 

real impulse response only. However, the concept is also 

applicable to the imaginary part. 

2.2 	Teletext Signal  

The teletext signal format is described in [11]. The 

data is transmitted at a bit rate of 5.727272 MB/s, using 

non-return to zero (NRZ) coding, and pulse amplitude modulation 

(PAM). The data amplitudes are 0 and 70 IRE for levels 0 and 1 

respectively. Pulse shaping is raised cosine spectrum, with 

roll-off between 55% and 100%. 



The data packets consist of: 

- 2 bytes of alternating 1 and 0 for 

bit-synchronization 

- a byte-synchronization byte 

- a 28-byte data field which may include up to 3 bytes 

for error correction. 

The packets are inserted during unused lines of the 

vertical blanking interval (VBI) of a TV signal. Figure 3 (a) 

shows a portion of a video signal, with teletext on line 18, 

and figure 3 (h) shows an expanded view of line 18, showing a 

typical teletext packet. 

7 



Figure 3 (a): Portion of a television signal 
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(b) 

Figure 3 (b): Portion of a teletext line 
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SECTION 3. THEORY OF IMPULSE RESPONSE ESTIMATION 

3.1 	Impulse Response 

The television Channel can be assumed to be linear and 

time-invariant. It can, therefore, be modeled as the equivalent 

baseband model shown in figure 3.1. The input x(t) and output 

y(t) are then related by the following expression: 

y(t) = x(t) * h(t) + n(t) 	 (3.1) 

where * denotes the convolution integral. Note that h(t) and 

y(t) are in general complex. The equivalent baseband complex 

impulse response h(t) represents the response of the overall 

channel, consisting of the transmit and receive filters, as well 

as the propagation channel. 

h(t) x(t) 	 

n(t) 

xo- y(t) 

Figure 3.1: Baseband model. 



1 0 

The simplest method of computing the impulse response is 

by spectral division. If we take the Fourier transform on both 

sides of Eq. (3.1): 

Y(f) = X(f) 	H(f) + N(f) 

then 

H(f) = Y(f) - N(f) 

X(f) 	X(f) 

Aside from the practical issue of windowing, the above 

estimate is slow to converge, and is subject to large errors 

(noise enhancement) when X(f) is small (e.g., when the input 

signal is band-limited [6]. Methods such as Modified Periodigrams 

[5], Short-Time Spectral Analysis [6] and other spectral analysis 

techniques have been derived to provide more robust estimates in 

the presence of noise. 

3.2 	Least-Squares Estimation  

The problem of determining the impulse response of a 

system, may be resolved with the estimation theory to produce an 

optimum estimate of the impulse response. One of the most widely 

used estimators in system identification is the Least-Squares (LS) 

Estimate [3, 4, 7], which under certain conditions corresponds to 

the Maximum Likelihood Estimate (MLE). In this section, the 

theory leading to the least-squares estimate is reviewed. 

It has been assumed that the television channel is linear 

time-invariant. Furthermore, the system impulse response h(t) is 

of finite duration and is causal: 

h(t) = 0 for t<0 and for t>T; T>0. (3.2) 
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Refering to Figure 3.1, the input and output signals can 

be sampled at a rate 1/T samples/second, equal to the Nyquist 

rate, or higher. 

Due to the linearity assumptions and Eq. (3.2) we can 

model the channel as a finite impulse response (FIR) filter. The 

input/output relationship is assumed to be given by the linear 

regression model: 

Y(i) = E h(k)x(i-k)+n(i) i=0,1,...N 

k=0 

(3.3) 

where x(i) and y(i) represent the set of observations of the input 

and output sampled signals respectively; h(k) represents the 

sampled impulse response of duration of M samples; and h(k)=0, for 

k=0 and k>M; n(i) represents the measurement noise, and N is the 

number of samples of x, y and n. 

Equation (3.4) represents a set of N linear algebraic 

equations which may be written in a maxtrix form: 

r I F 	1 	1 
Yo 	! 

x
o
(0) 	x

o
(m) 	h

o 	
no 

y
l 	

I xi (o) 	x
1 
 (M) 
 h1 

I 	n1  
• 

= 	• 	h 	I 	. 	I 

L 
I y 	x (o) 	x .N (M) 	mj 	I nN  
L NJ L N 	J 	 J 

• • 	• 	 • 

or 	Y = XH + N 	 (3.4) 



M 

w(i) = E b(k)x(i-k) 

k=0 

(3.5) 

U 

M 
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The objective is to determine a coefficient vector 

B={b
o
,b

1 000bM} which estimates H, the system impulse response. 

This is done by using the theoretical response (W) of a model of 

the system. Since we have assumed the channel to be linear, we 

can model it as a 	transversal filter, as shown in Figure 3.2. 

The input/output relation of this model is then: 

or, in  vector-matrix form: 

W = XB 	 (3.6) 

Y )(-ç> 

XO 

DELAY 
UNE 

bl 

xm b 

Figure 3,2:  3.2: System Identification Model 



The coefficients (b
o
, b 	b ) are then chosen to 

minimize some function of the measurement error (residuals): 

e = Y-XB 	 (3.7) 

e' = [e(1), e(2), 	e(N)1 

where the prime denotes the transpose of a matrix. 

We digress at this point to discuss about some 

characteristics of the noise in Equation (3.3). The noise may be 

given by its mean and covariance matrices: 

in l ] = 	[n(1), n(2) 	n(N)] 

r [n(l)n(1)] 	[n(N)n(1)11 

R= 	[n.n l ] = I 
• 

• 

I 	. 

L [n(1)n(N)] 	[n(N)n(N)11 

If the noise is Gaussian, no information is lost, since 

Gaussian density functions are completely characterized by their 

first and second moments. Note,however, that Gaussian probability 

density is not a necessary prerequisite for the evaluation of the 

least-squares procedure, but it actually helps to explain some 

basic relations. 

We shall make the following assumptions: 

a) the measurement errors n(k) are independant of each 

other, and they are randomly distributed, with a normal 

density f(nk); 

13 



b) the error n(k) and the input signal x(k) are 

uncorrelated. 

These properties can be expressed by: 

[n(k)dx(k-T)] = 0 

[n(k)-n(k-T)] = 0; Te 

1 	1 	- (nk-c[nk i)  
f n (nk )  = 

k 	
exP[ u 2n 	2 

2u
k  

where a
k 

is the standard deviation, and EM denotes the 

expectation of a variable. 

As we shall see later, unbiasedness of the estimates 

requires that 

[ nk 

where the bias is defined as: 

bias = c [B] - H 

Due to the above assumptions, we can express the joint 

probability density function of all measurement errors nk  as [3, 

7]: 

1 	
1 'R1 f(n) = 	9 	4, 	exp[-în R n] 

(2u) k/- 1R1' 

where R = c[nn']„ the covariance matrix of the noise is: 

[ l2 	
0 	... 	0 

2 
0 	u

2 	
... 	0 

0 	0
N

2 
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dE 
= -X'[Y-XB] = 0 

dB (3.9) 

B = [X'X] 1X'Y (3.10) 
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Not having any prior knowledge of the noise statistics, 

we assume that 	R = a
2
I, 

2  where I is the identity matrix, and a is the noise variance. 

This implies that the measurements performed at times 

k = 1, 2 ... N are corrupted by noise having the same statistical 

properties, i.e., that all measurements are made with the same 

precision. 

Returning to the least-squares problem, the least-squares 

method determines the most probable value of B, which minimizes 

the sum of the square of the errors [3,4,7 ].: 

n E = [Y-XB] ' R-1 [Y-XB] = e'R-l e = 	
2 	

(3.8) 

for R = a
2
I, we have: 

and the least-squares estimates are given by (the so-called normal 

equation) [3,4,7]: 

It can be shown [3] that for Gaussian noise, the LS estimates 

coincide with the Maximum Likelihood estimates having the minimum 

variance of all unbiased estimates. 

The bias of the estimate is given by: 

e[B] = E[[XIX] -1
X'Y] 

From Equation (3.4), 



2 	
N . 

E 	x,(1) •.. 	E 	x
° 
 (i)x

M 
 (i) 

1=1 "." 	i=1  

-1 

i 	i 	N 	 I 
E 

i=1 

r — 
, bo  

r"  N 

= 

1 	. 	1 
I 	I 
1 bm  1 

L]  

c[B] = s[[X'X]
-1

X I (XH+n)] 

-1 
= EUXIX] X'XH + [X'X]

-1
X'n] 

-1 
= H + EUX 1 X1 X'n]. 

As the input and noise signals are statistically 

independent: 

E [B] = H + E UX I X] -1 X1 1.6 [n] 

Consequently, if E[n] = 0, the estimate is unbiased, and 

s[B] = H. 

Another characteristic of the estimate B is its covariance 
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cov[B] =  
-1 	 -1 

= [X'X] 	X'RX[X'X] 

If the noise is white, R = a 2 I and 

cov[B] =  

Equation (3.10) may be written in terms of x: 

(3.11) 

' 	N 	 N -  

2.  1 	E 	x
m

(i)x (i)-E 	x
m
(1) 

o 	
1 

L 1=1 	
=1 

 

' 	' 	N 	 1 
1 	1 	E 	xm (i)y(i) 1 

I  L' 
 

I 



We can define the empirical correlation functions: 

1  
11) xx(r) = 

 N+1 E x(n)x(n+r) 
n=0 

1  
1Pxy(r) 	

N+1 E x(n)y(n+r) 
n=0 

These quantities are not correlation functions in the 

usual sense, but they are calculated directly from the observed 

finite sequences x(n) and y(n). Therefore, 

17 

N+1-Ir!  
c[11) xx(r)' = N+1 	"xx(r) 

(3.12) 

where IPxx(r) is the autocorrelation function of x(n). Therefore: 

1.1) 	1j)
11)xx(r) 

as N 	co 

Equation (3.10) then becomes: 

- 
E b(k)ipxx (k-i) = 	(i) 

xy 
k=0 

(3.13) 

This represents the sampled-data analog of the Weiner-Holpf 

equation [3,4]. This is the set of equation obtained with the 

method of "deconvolution". 

3.3 	Least-Squares Algorithm  

The solution of the least squares problem for system 

identification (Eq. 3.10) requires matrix inversions and 

multiplications, which are computationally unatractive if the 

order of the matrices is large. Also, it is not known beforehand 

how many parameters are significant, (i.e., the length of the 
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impulse response is unknown). It is therefore of interest to have 

an estimation procedure that is recursive in the number of 

parameters. This means that the estimate of the parameters 

b i (m) = [b
o'  b 
	b

m
] may be obtained from the estimation of 

bi(m-1) = [b
oi  b 
	b

m-1 
 ] without doing all of the 

calculations again. 

Such methods and related algorithms have been extensively 

reported in the literature. The algorithm used here is due to 

Marple [9]. This algorithm exploits certain structures of the 

matrix normal equation, to yield a computationaly efficient 

algorithm. It starts at order m=0, and recursively computes all 

order solutions up to m=M, the maximum length of the impulse 

response. 

It should be remembered that least square estimation 

require that N, the number of observations, be larger than 2M ie: 

N > 2M+1. 

Further details on the algorithm are given in [9]. 

3.4 	Optimum Inputs  

It can be seen from Equations (3.11) that the variance of 

the estimates becomes smaller as the amplitude of the input 

sequence x(n) increases. In practical situations, x(n) is 

limited. Given the constraint that the mean square value of x(n) 

remains fixed, 

1  
E 	

2 
X 

xx (o) 	N+1 	(n) 
n=0 

(3.14) 



xx (0 ) 	0 

i(r) = 0<r<M. 
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what is the optimum x(n) which minimizes the variance? Assuming 

white noise, the covariance is given by: 

cov[B] = 0-2[XX ]-1 

It can be shown [4] that the variance of all b(k) will be 

minimized if and only if: 

XX' = (N+1)iJixx(0)I 	 (3.15) 

or 

This implies that the sequence x(n) must be white over a 

range of M sampling intervals. For practical purposes, it is 

advantageous to use deterministic signals that have the desired 

autocorrelation function. One such signal, is the maximum length 

sequence generated by feedback shift registers. 

An n tap shift register operating at a clock of period T, 

generates a sequence of N = (2 n-1) bits, which is periodic, with 

a period of (2 n-1)T. 

The autocorrelation function of a maximum length sequence 

with amplitudes of +a and -a, is shown in figure 3.3. 

xx(r) 

a2 

2 

71_10.1 

Figure 3.3: Autorocrelation Function of PRBS. 



M 
a
n 

N 
a
x
2 

(3.16) 

a
n a 	= 

hj 
ox 

(3.17) 
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3.5 	Noise Error 

The received signal, y(n), may contain additive noise, 

which will inevitably reduce the estimation accuracy. 

Let h(m) and h(m) be the real and estimated impulse 

responses, and the coefficient error, 

Ah(m) = h(m)-h(m) 	m = 0, 1, ... M-1 

The norm of the coefficient error is given by: 

M-1 
E = E All

2
(m) 

m=0 

It can be shown, [6], that for a white input signal x(n) 

and uncorrelated noise: 

2 

where N: number of samples of x(n) and y(n) 

M: length of impulse response 

a
n
2

: variance of the noise 

n
2 : variance of signal x(n) = 	(o). 

xx 

Thus, the error is a function of the ratio M/N, and of the input 

signal-to-noise power ratio. 

For eacl. parameter 11 ., the standard deviation is given 

by: 

which is independent of the number of parameters to be estimated. 
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The above expression represent a lower bound because, in 

general, the input signal and noise may not be white and 

uncorrelated. However, it will be true, in general that ahj 	0 

when N is large, and/or the noise variance tends to zero. 



SECTION 4. APPLICATIONS TO TV CHANNELS MEASUREMENTS 

4.1 	Modelling  

We have seen that the LS method provides unbiased 

estimation, provided certain conditions, are satisfied and that 

the variance of the estimates may be made small when the number 

of observations of x(n) and y(n) is made large. There are 

evident advantages to using a teletext signal to make in-band 

measurements of the impulse response without disrupting the 

normal video program. There are, however, severe constraints 

associatied with this scheme: 

a) teletext packets are of rather short duration: 240 

bits in the present system, of which the first 3 

bytes (bit and byte synchronization) are 

deterministic; 

b) the duty cycle is low: 60 lines/second; 

c) the transmitter and receiver are not co-located, so 

that the input and output signals cannot be sampled 

simultaneously, and there is not an absolute time 

reference between them; 

d) the teletext signal has a DC bias; 

e) the signal is band-limited and is not white within 

the pass-band. 

The packet length prevents the use of long observation 

intervals to reduce the variance of the estimates. Fortunately, 

the signal-to-noise ratios encountered in practice are generally 

high (typically better than 30 dB of peak video to rms noise 

ratio). Because the test signal is not white, the estimates are 

22 
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less accurate at the high end of the spectrum, where there is less 

signal energy [6]. 

The input sequence x(n) may be locally 

regenerated from y(n), since the transmitted sequence is known. 

This may be done by simply slicing y(n). This produces a sampled 

square wave representing the input signal. The pulse shaping 

filter is considered to be part of the overall dhannel. However, 

this square wave, not being band-limited, cannot be sampled at the 

Nyquist rate without aliasing. The input sequence is therefore 

modelled as an impulse train: 

x(n) = E a
n
6(t+nT) 

n=o 

where the {an}  are estimated from the amplitude values 

of y(n). Since the transmitted sequence is known, possible errors 

in the estimated {a
n

}  may be corrected. 

PULSE SHAPING CHANNEL 

-   2 
x(n) =Z a n 	 p(t) 	g(t) 	h(t) 	y(n) 

0 

h* (t) 

Figure 4.1: Total Channel Model. 
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The total channel model is shown in Figure 4.1 where: 

- p(t) shapes the input signal x(n), which is modelled as 

an impulse train, into of a NRZ pulse train; thus 

	

p(t) = 1 	Itl<T/2 

	

= 0 	I ti >T/2 

P(w) = FLp(t)] = Sin (W T/2)  

W T/2 

- g(t) is the impulse response of the pulse shaping filter 

i.e., the Raised Cosine filter currently being used in teletext. 

- h(t) is the dhannel impulse response. 

The total channel impulse response, h*(t), is therefore given by 

h*(t) = F-1 [P(w).G(w).H(w)] 	 (4.1) 

The channel impulse response h(t) may be obtained from h*(t) by 

spectral division: 

h(t) = F-1 EP(w).g(w).H(w)] 	 (4.2) 

F -1 [P(w).G(w)] 

In other words, the dhannel impulse response h(t) is 

estimated in two steps: 

a) estimate the impulse response at the output of the 

pulse shaping filters i.e., at (1). 

h) estimate the impulse response of the total dhannel at 

and 

2). 

c) calculate h(t) from Eq. (4.2). 



Y.-  1  E y
m 1 M 

m=1 
i=1, 2 ... N 
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The impulse response of the pulse shaping filters at (1) 

needs to be measured once only, since it is fixed during all the 

dhannel measurements. 

The above model requires a sampling rate which is a 

multiple of the bit rate. A sampling rate of twice the bit rate 

or 11.4545 MHz, is chosen. Recalling that TV channels are 

band-limited to approximatively 4.2 MHz, this sampling rate is 

effectively above the Nyquist rate. A phase equalized 5 MHz 

low-pass filter is used at the receive end as a safety measure, 

and to remove excess noise. 

To improve the accuracy of the estimates in noisy signals 

would require an increase in the length of the observation 

interval, which is not possible due to the signal format, which 

limits the length of teletext packets to approximatly 50 p secs. 

Improvements may, however, be obtained by averaging several 

digitized waveform, since the signal is deterministic. Each 

output signal sample, y(i) is averaged over M samples where M is 

the number of successive digitizations of y(t): 

This scheme is valid only if the sampling clock is phase-

synchronized with the sampled signal. 

Under such conditions the standard deviation of the noise 

n decreases as the square root of M: 

a 

a  = m  



= Yi Y 
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This shows a rather slow convergence. However, with noise 

levels encountered in practice, there is no need to go beyond 

M=10, which provides an improvement of 10dB, and consequently will 

improve the standard deviation of the estimates by the same amount 

(with white noise) (see Eq. 3.17). 

Only the variations of the output signal with respect to 

variations of the input signal must be used for the estimation 

algorithm. Therefore, the DC values of the signals must be 

removed. These DC values are estimated by averaging, and 

substracted from the signal. 

iN 

7  ' 177" ilyi  

Simulations have shown that the estimation is not 

sensitive to relatively small DC offsets. 

4.2 	Transmitting System  

An ordinary teletext generator is used to transmit the 

signals used for impulse response measurements. A block diagram 

of a CRC-developed teletext generator is shown in Figure 4.2. It 

consists of a 6809-based microcomputer which generates the 

appropriate data, and transfers it to an encoder. The encoder 

appends a prefix consisting of two bytes of bit-synchronization 

(C) and a byte-synchronization byte(F), and sends the data at 

5.727272 MB/s, on the selected VBI lines. The data is then passed 

through a raised cosine shaping filter. A Tektronix 149 video 

inserter (or similar device) inserts the data onto selected lines 

of the video program. 



4.3 	Receiving System  

The system used to measure the real impulse response is 

shown in Figure 4.3. 

The composite video signal (demodulator output) is fed 

through a waveform monitor, which provides a Line Strobe output 

which is used to trigger the analog to digital (A/D) converter. 

The video signal is passed through an anti-alaising filter, which 

is a phase equalized 5 MHz low-pass filter. It is digitized with 

an 8-bit A/D converter, operating at twice the bit rate, 11.4545 

MHz. The sampling clock is derived from a Norpak MK-4 teletext 

decoder. It is, in effect, 8/5 th of the colour sub-carrier 

signal, which is regenerated by the decoder, from the video 

signal. It is then externally (from the decoder) multiplied by 2, 

to provide the proper sampling rate. This technique ensures that 

the sampling clock remains phase-synchronized packet to packet, 

which makes the averaging of successive packets possible. 

Once triggered the A/D converter takes 2048 samples and 

stores them in its internal memory. These samples may then be 

transfered to an LSI-11 micro-computer, through a special 

interface, and stored on floppy disks, for later analysis. In 

fact, only the first 600 samples are transfered. The rest, being 

samples of the video signal, are discarded. 

The test signal used for the measurement of the impulse 

response consists of the prefix (C,C,F) and 216 bits of a 

truncated maximum length pseudo-ramdom sequence. Figure 4.4 shows 

the amplitude spectrum of the pseudo-random sequence, after the 5 

MHz LPF, and Figure 4.5 shows the amplitude response of the 5 MHz 

LPF. 
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SECTION 5. SIGNAL PROCESSING 

5.1 	General 

After the digitization of TELETEXT lines with the LSI-11 

system is completed, the data contained on the floppy disk is 

transferred to another computer system for analysis. This 

analysis is divided into two main parts: the IMPULSE RESPONSE 

evaluation and the TRANSFER FUNCTION computation. The results of 

the impulse response evaluation are used to compute the transfer 

function. The software performing this analysis is written in 

Fortran 77 and runs on a Honeywell computer system under CP-6 

operating system. 

5.2 	Impulse Response  

This first program evaluates the impulse response of the 

TV dhannel from the digitized TELETEXT data. The heart of this 

program is the least squares finite impulse response algorithm. 

Following are the details of the processing. 

a) Regenerated Data 

The sampled data is considered as the output of the system 

y(n). Because the digitization is performed at two times the bit 

rate, the input to the system is a series of impulses (see Fig. 

4.1). Therefore, the input data, x(n), is regenerated from the 

sampled (output) data as a sequence of impulses representing zero 

and one levels. The "one" level is represented by the value +1 

and the "zero" level by -1. The output samples y(n) are offset to 

zero to remove the DC bias. The regeneration method avoids the 

need for sampling the input and the output of the system 

simultaneously, which is not possible with a remote broadcast 

system. 
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h) Finite Impulse Response 

Next, the least squares finite impulse response algorithm 

is used to compute an estimate of the impulse response from 

regenerated (input) data and sampled (output) data. By specifying 

the number of points (M) to describe the impulse response the 

desired precision can be reached. 

c) Time Window 

If the transfer function is to be computed from the 

evaluated impulse response, a window must be applied to the 

impulse response to avoid in the frequency domain aliasing: 

h
w (m) = h(m).w(m) 	m=0,1,...M 

where w(m) is the sine squared (Hamming) window shown in Figure 

(5.1): 

w(m) = sin2  

The spectrum of h
w
(m): 

Hw (f) = H(f)*W(f) 

where * denotes the convolution. 

Thus, the windowing causes a widening of the spectrum of 

h( m). 

31 

d) Interpolation 

An interpolation algorithm is also available allowing the 

evaluation of the impulse response at intermediate points. 
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Figure 5.1: Squared Sine (Hamming) Window, M=100. 

The interpolation of a sequence effectively increases the 

sampling rate. Therefore, from a sequence X(t) sampled at Fs , 

we want a sequence, Y(t), that approximates X(t) as if it would 

have been sampled at L*F s . 

To do so, the algorithm starts by inserting L-1 zeros 

between any two samples of X(t). This increases the sampling 

frequency of X(t) from Fs to L*F s . Then, to conform with the 

frequency domain avoiding aliasing, the process requires to pass 

X(t) through a lowpass filter. 

In this program, only impulse responses of a dhannel are 

interpolated. Instead of computing the frequency characteristics 

of the impulse response and of the lowpass filter, doing the 

multiplication, and, then transforming the result to the time 

domain, the lowpass filter is represented by its impulse response 

and the convolution of the two sequences is performed. To make 

the new sequence time finite, a raised cosine window is 

superimposed. 
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A Nyquist lowpass filter with a roll off of zero can be 

represented by a SIN(X)/X equation, in this interpolation process, 

it is: 

where L is the interpolation factor 

M is a function of the number of lobes of the 

interpolator, (M=8). 

The representation of the Nyquist filter by SIN(X)/X 

involves a infinite number of lobes. In this processing, a number 

of lobes had to be used to get an acceptable approximation. Using 

15 lobes (7 each side of the foundamental) combined with the 

raised cosine window, gives an expected error of less than 1%. 

The raised cosine window is given by: 

e) Interpretation 

By making a graphic plot of the impulse response, it is 

possible to see some interesting characteristics of the channel. 

In this way, echoes and filtering effect of the channel are easily 

seen on the curve. With some minor modifications, the complex 

impulse response evaluation could be implemented and thus 

quadrature distortion detected. 
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Figure 5.2: SIN(X)/X (15 lobes) Interpolator. 

5.3 	Transfer Function 

A second program computes the transfer function of the 

dhannel from the impulse response. A fast Fourier transform 

subroutine is used and the amplitude and phase response are 

computed. Amplitude and phase data can be drawn and saved on 

seperate files for later processing. 

a) Fast Fourier Transform 

The subroutine performs a complex floating point FFT from 

floating point real data. As input, the subroutine requires a 

number of points equal to a power of two. Considering the trade 

off between computer limitation (memory) and the precision of the 

FFT, an FFT with 4096 points was chosen. The cosine and sine 

coefficients given by the FFT are used to compute the amplitude 

values and the phase values of each harmonic. 



h) Amplitude and Group Delay 

The amplitude and phase responses are computed directly 

from the sine and cosine coefficients of the FFT. The phase is 

then "unwrapped", because of the modulo 2 process resulting from 

the phase computation. The group delay is computed as the 

derivative of the phase with respect to frequency. Graphs of both 

curves can be drawn using PLOT 10 subroutines and TEKTRONIX 

compatible terminal. 
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SECTION 6. RESULTS 

6.1 	General 

This section presents some results of impulse response 

measurements performed under laboratory conditions. The set-up 

was as shown in Figures 4.2 and 4.3. The channel was a 4 MHz 

low-pass filter. The teletext packets consisted of a 

pseudo-random sequence at a bit rate of 5.72 MB/s. The signals at 

the output of the pulse shaping filter, and at the output of the 4 

MHz filter were digitized at a rate of 11.45 MHz. The sampling 

clock was derived from the colour burst signal. 

Figure 6.1 shows the digitized signal at the output of the 

4 MHz filter. The digitization window is such that only the RPBS 

is digitized. 

36 

1.0 

0.8 

0.6 

0.4 

0.2 	',if 

0.0  

iI  

01 	02 

I r 1 -1 

03 	04 	05 	0.6 

x10 -4  

II 	f 

Figure 6.1: Digitized Pseudo-random Sequence at the Output 

of a 4 MHz LPF. 



6.2 	Autocorrelations 

The autocorrelation functions of the regenerated input 

sequence x(n) (impulse train regenerated from y(n); refer to the 

model shown in Figure 4.1) and of the sequence y(n) at the output 

of the 4 MHz filter are shown in Figures 6.2 (a) and (b), 

respectively. 

It is seen that ip
xx

(k), the autocorrelation function 

of x(n), has a few side-lobes near the main lobe (k=0), due to the 

periodic nature of the first portion of the packets, consisting of 

16 bits of alternating 1 and 0, used for bit synchronization (see 

Figure 6.2). This is an integral function of the Teletext 

encoder, and cannot be by-passed. It should be noted that Ipxx(0) 

has a value of approximatly 0.5, due to the fact that half the 

samples of x(n) have a value of zero, to simulate a sampling rate 

of 11.45 MHz. 

6.3 	Pulse Responses  

Two digitized signals, the output of the pulse shaping 

filter and the channel output, were passed separately through the 

FIR algorithm. Recalling that input sequence, x(n), is modelled 

as an impulse train, the output of the FIR algorithm is thus the 

system's response to a one bit (1T) pulse or the impulse response 

of the combination of the channel and the pulse forming filter 

P(w) (see Figure 4.1). 
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x(t) (impulse train). 

Figure 6.2 (b): Autocorrelation of the Output y(t). 



39  

120  GRAT A 

ED 

0.20 

X  10 - 5  

0.15 0.30 0.25 

CI • 1%. 5% 

DIM 

Vie% 

SO% 

	 32.1% 

ED  

'73% 

 M% 
OEM 

ff!H 

ZLICIMM 

Figure 6.3 (a): Picture of 1T pulse at output of raised cosine filter 

1.0 — 

0.8 1  

I 	1, 
0.6 

0.4 

0.2 

0.0 

—0.2  

0.10 
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Figure 6.5 (a): Picture of 1T pulse at output of 4 MHz LPF 

Figure 6.5 ( D): 32-points estimated response, interpolated by 5 
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A 32-point impulse response was computed, for each 

digitized signal, and interpolated by a factor of 5, to a 

sampling rate of 57.272 MHz. Figure 6.3 (a) shows a picture 

of a 1T pulse at the output of the raised cosine pulse shaping 

filter, and Figure 6.3 (b) shows the estimated response: they 

are identical. Dividing this response by P(w), gives the 

impulse response of the raised cosine filter only, from which 

the amplitude and group delay responses are computed. These 

are shown in Figure 6.4 (a) and (b) respectively. 

The measured and the estimated 1T pulse responses of the 

output of the 4 MHz LPF (which includes the pulse shaping 

filters) are shown in Figure 6.5. Again the results are 

identical. At this point, the raised cosine and 4 MHz filters 

transfer functions may be computed by dividing by the (sin x)/x 

function, or the response of the 4 MHz LPF only may be computed by 

dividing the Fourier transforms of 6.5 (b) with 6.3 (b) (refer to 

Eq. 4.2). The result is shown in Figure 6.6; it is quite close 

from the measured frequency response of the filter (not shown). 

The main difference is the width of the transition band, which is 

wider than in reality. This is due to the windowing of the 

impulse response, which causes the transition width to increase. 

6.4 	Noise Performance  

In order to determine the estimation accuracy in the 

presence of noise, white Gaussian noise was added to the signal 

at the input to the 4 MHz low-pass filter, as shown in Figure 6.7. 

NOISE 

Figure 6.7: Block Diagram of System Adding White Gaussian Noise 



The video signal-to-noise ratio was measured: 

0.714  
SNRV = 20 log 

(0.714)  
) 

where a
n 

is the rms noise level. 

A measure of the estimation accuracy is the squared sum 

error: 

P= 	le(n)1 2  
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n=0 

where e(n) = y(n) -E h(m).x(n-m) 
m=0  

n=0, 1, 	N 

P can be easily calculated within the FIR algorithm and is 

then normalized, 

1 	2 
E 	1e(n) 1 

n=0 

Figure 6.8 shows the variation of T) with the video 

signal-to-noise ratio, SNRV, for  this experiment. As expected, the 

normalized error energy increases with the noise level. At SNRV 

larger than 40 dB, P does not vanish due to the residual 

noise in the system, including quantization noise. As a 

comparison, Figure 6.9 shows 7 for a computer simulation of a 

low-pass filter. In this case, there is no residual noise and, 

indeed, -13.  asymtotically decreases to zero. 
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Figure 6.8: Normalized Error Energy, Versus Video SNR, 

for a 4 MHz LPF, 32-points Impulse Response. 
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SECTION 7 , CONCLUSIONS 

A method for computing the real part of the impulse 

response of television channels has been described. The advantage 

of this system is that TV channels may be characterized, without 

disrupting the normal TV program, simply by digitizing the 

received pseudo-random signal. 

This system has been used in teletext field measurements, 

performed by CRC. The results are quite accurate. Averaging of 

successive digitization improves the accuracy of the estimation, 

especially in a noisy environment. With the use of a quadrature 

demodulator, the system can be easily modified to compute the 

complex impulse response. 
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APPENDIX 

Low-Pass Equivalent Model of the Television Channel  

A simplified block diagram of a television broadcast 

system is shown in Figure A.1. The spectrum S(f) of the 

transmitted signal is given by: 

S(f) = 4[M(f-f c )+M(f+f c HT(f) 	 A.1 

where M(f) is the Fourier transform of the baseband signal m(t), 

and T(f) is the transmitter filter, shown in Figure A.2-(a). For 

conveniency, we shall denote  M+  (f)as the positive frequency 

content, and M (f) as the negative frequency content: 

48 

S(f) = 1[M* (f-fc )+M(f+f c )1T(f) 

At the receiver, the signal is converted 

frequency, f.. Assuming perfect carrier 

spectrum of v(t) is (we assume a gain of 

A.2 

to an intermediate 

regeneration, the 

2 in the mixer): 

V(f ) = -1[M+  (f+f i  )T(f+f c -Ff i )+M (f - f i )T(f - fc - f i )] 

= ILV (f)+Vf (f)] 

We note that the mixing process causes a change in the 

orientation of the sidebands. The signal is then filtered by the 

vestigal sideband filter R(f) shown in figure A.2(c): 

Z(f) = V(f).R(f) 

Z(f)=UM+ (f+f1 )T(fi-fc +f i ).R-(0414 (f-f i ) T(f-fc -f i )14(0] 
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Where 12_4 (f) and R_(f) are respectively the positive and negative 

portions of R(f). This expression may be simplified by denoting 

H(f), the channel transfer function, as the product of the 

transmitter and receiver filters: 

H (f) = T(f+fc +fi).R_(f)+T(f-fc -fi)R+ (f) 

H (f) = H_(f) + H+ (f) 

where H
+
(f) = H(f) for f>0 

and 	H_(f) = H(f) for f<0. 

The function H(f) is an unsymmetrical bandpass filter, which may 

be represented in terms of an in-phase and a quadrature baseband 

channels [8]. Lets define the two functions: 

H1 (f) = H -(f+fi) 

H1 (f) = H .(f-fi) 

obtained by shifting H (f) and H (f) to the left and right 

respectively by fi (figure A.4.3(a)). We also have 

H1 (-f) = H1* (f), where the sign (*) denotes the complex 

congugate. 

The in-phase and quadrature transfer functions are given by [8] 

(see Figure A.4.3(b) and (c)). 

H (f) = Hlf(f)+Hl (f)  

2 

HQ(f) = HL  (f)-Hl (f)  

2j 
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Figure A.2: Magnitude of Spectrum at the Output of the 
transmitter (a), after the mixer (b) and 
after the receiver filter (c). 
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Therefore, H i (f) and Ho (f) are Fourier transform of two real 

functions 

h i (t) ÷-> H i (f) 

h
Q
(t) ±± H(f) 

The impulse response h(t) of the system H(f) can be expressed in 

terms of the in-phase and quadrature components: 

h(t) = 2h 1 (t)cos(w c t)-1-2h0(t)sinw c t 

The equivalent channel model is shown in Figure A.5. 

2cos wnt 

2 sin wct 

Figure A.5. Equivalent Channel Model 

The system output y(t) is given by: 

y(t)=y 1 (t)cos wct+yQ (t)sin wct 

where y1 (t) = m(t)*h i (t) 

yQ (t) = m(t)*%(t) 



m(t) 
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Thus the low-pass equivalent signal is given by: 

y(t) = Y 1 (t)+j y0 (t) 

and the low-pass equivalent channel model is shown in Figure A 06 

Y(t) 

Yn(t) 

Figure A.6. Equivalent Low-Pass Model 

where H i ( w ) and Ho (w) are the low-pass in-phase and quadrature 

channels respectively (see Figure A.4). 

With a synchronous or quasi-synchronous TV demodulator, 

the received signal is multiplied by 2cos(w0 t+0 (we assume a gain 

of 2); (1) is the phase error. Under such conditions the output of 

the demodulator is: 

Z(t) = y(t)cos(w0t+) 

= Yi(t)coscp+yo (t)sin(p. 

There is therefore cross-talk between the I and Q channels, if qb 

is not equal to zero. If (1)=0, then 

Z(t) = y 1 (t) 



The output of an envelope detector is: 

Ze(t ) =/YI2(t)-1-YQ(t)2 

therefore, quadrature distortion is always present with this mode 

of detection. 
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