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THE DISTORTION OF AM BROADCAST 
ANTENNA PATTERNS AS CAUSED BY 

NEARBY TOWERS AND  HIGHRISE BUILDINGS 

by 

G.M. ROYER 

ABSTRACT 

AM broadcast antennas are designed to have patterns which provide 
an adequate broadcasting service, while at the same time satisfying 
domestic and international regulations with respect to permissible levels 
of interference with signals from other stations operating in the same 
frequency band. The erection of a tower or highrise building near a 
broadcast antenna could possibly distort the antenna's pattern such that 
the above objectives are not met. It is the purpose of this report to: 
1) provide the engineer with sufficient information to enable him to 
compute whether or not a given structure will cause serious pattern 
distortion, and 2) investigate methods for reducing the strength of a 
tower's scattered field; thereby reducing the tower's pattern distorting 
effects. 

1. INTRODUCTION 

Functions are derived in Section 2 which give upper and lower 
bounds for the directive gain pattern of an AM broadcast antenna in the 
presence of a scatterer. Note that functions which give bounds for the 
directive gain (as distinguished from a function which gives the antenna's 
actual gain) are provided because the former: 1) are less complex, 
2) require a simpler characterization of the scatterer's properties 
(because, as will be shown, we need not concern ourselves with relative 
phases of the scattered and antenna signals), and 3) should provide 
sufficient information to enable the engineer to decide whether or not a 
scatterer will significantly distort an antenna's directive gain pattern. 
In the above functions the scattering structure's scattering properties are 
contained in a parameter called scattering cross-section. Scattering 
cross-section values are not readily available and therefore figures 
showing this parameter are provided in Section 3. Use of the information 
contained in Section 3 should make it possible to estimate the scattering 
cross-section for most towers and buildings which are likely to cause a 
pattern distortion problem. Section 4 investigates methods for reducing a 
tower's scattering cross-section (hence reducing the towers effect on the 
antennas directive gain pattern). Section 2's functions for computing the 
upper and lower bounds for the directive gain of an array-scatterer 
combination, become inaccurate if the array-to-scatterer range is too 
small. This problem is investigated in Section 5 through the application 
of the above functions to specific situations. 
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Unless otherwise indicated, all calculations were done using a 
computer program called Numerical Electromagnetic Code (NEC). NEC employs 
the Method of Moments i  and was written by G.J. Burke 2  and A.J. Poggio at 
the Lawrence Livermore National Laboratory. Appendix B contains an 
experimental test of the ability of NEC to solve the types of problems on 
which it was employed in the research reported here. 

This document forms the final report for the author's contribution 
to a project (see references 4 to 11), whose purpose was to determine the 
magnitude of, and find remedial measures for, the pattern distorting 
effects of towers, buildings (the structures considered here) and power 
transmission lines near AM broadcast antennas. 
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2. UPPER AND LOWER BOUNDS ON THE DIRECTIVE GAIN FOR AN AM BROADCAST ANTENNA 
IN THE PRESENCE OF A SCATTERER 

In this section, two pairs of functions (called near-field limit 
functions and far-field limit functions) are derived. Either pair can be 
used to compute upper and lower bounds on the directive gain for an AM 
broadcast array in the presence of a scatterer. The near-field limit 
functions are more complex than the far-field limit functions, they are 
however accurate down to smaller array-to-scatterer ranges. 

The near-field functions are derived first. Figure 1 shows the 
geometry which will be used. Throughout this document, the ground plane 
and all structures are considered to be perfectly conducting. The array 
elements are numbered 1,2,...n where k is used to represent a general array 
element number. Let (r,0,) locate a far-field point and 

Sa0(r,0,) = the power density (e.g. watts/m 2 ) at (r,0,4)) of the 
0 polarized component for the signal from the antennas when there is 
no scatterer present 

S0(r,0,) = the power density at (r,0,4)) of the 0 polarized component 
for the signal from the antenna-scatterer combination. 

S 5 0(r,0,) = the power density at (r,0,4)) of the 0 polarized component 
for the signal scattered by the scatterer. 

At (r,0,4)) the 0 polarized electric field intensity of the signal from the 
array-scatterer combination (E0(r,0,)) is equal to the sum of the 0 
polarized electric field intensity when there is no scatterer present 
(E ao(r,0,)) and the 0 polarized scattered field (E 5 0(r,0.)), i.e. 

Eo( r ,0,)=E a 0(r,0, 4) )+E s o(r,0,1)) 

The above is true by definition of the scattered field. Note that in this 

document complex quantities (where exp(jwt) is understood) are used to 

represent electric field intensities, voltages and currents. For example 
the time varying, 0 polarized, total electric field intensity at (r,0, )  is 
given by the real part of E0(r,0,0exp(jwt). Equation (1) shows that, 
for the purpose of computing the magnitude of E0 (i.e. Eel) we need to 
know both the magnitude and relative phase for E a o and E 5 0. In the 
derivation which follows the scattering properties of the scatterer will be 
charactized by its scattering cross-section. This parameter will enable us 
to compute S s o or lE s o(using S s olE s 01 2/n where n =376.73Q, the 
wave impedance for free space (air ). In other words the scatterer's 
scattering cross-section lacks sufficient information to enable us to 
compute the relative phase between E a o and E s o (see eqn. 1). However, 
as is shown in (2) below, it is possible to compute upper and lower bounds 
on So where the above bounds correspond to the cases where E a o and 

( 
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E s o are respectively in phase and 180 0  out of phase. 
, 

[s a0 (r '' ()2 - sse (r '
0

,(1)
)2

]
L 	(r 	(1))[s 	(r 0 (1)) 2 +S 	(r 8 As) 2 ] L  ...(2) 

6 0 " 	aO " 	se ' 

By definition of directive gain, S s o and So are given by 

P t S a6 (r,OW = 
	Da6(0,4 )  
4nr 

P t 
S 6  (r,6,4)) = 	D

6 
(6, )  

4nr2  

P t= the power transmitted by the array. 

D s0(6,) = the 6 polarized directive gain, in the direction (6,4)), 
for the array when there is no scatterer present. 

D 0 (6,0 = the 6 polarized directive gain, in the direction (0,1)), 
for the array-scatterer combination. 

...(3) 

...(4) 

Consider next the case shown in Fig. 2 where only array element k 
is present (i.e. the scatterer and other array elements are absent). By 
definition of directive gain the 6 polarized power density of the signal 
radiated is given by 

P
tk

D
6k

(6
k

)  
S Ok (r k' 0 k ) = 	 

2 4nr
k  

where (rk,Ok,cht ) locates a far-field point in array element k's 
coordinate system and 

Ptk = the power transmitted by array element k 

Dok(Ok) = the Ok polarized directive gain for array element k 
when the scatterer and other array elements are absent. 

...(5) 

Note that broadcast array elements are usually monopoles which radiate 
omni-directionally as a function of (I) (neglecting the effect of the guy 
wires, which should be small if they are broken by a sufficient number of 
insulators). Therefore no (Pk dependence has been shown above for Sok 
and Dok. The ground plane and array element are perfectly conducting 
(hence the system is lossless) and therefore 

Ptk = IIki 2 Rk/2 	 ...(6) 

Ik = likiexp(jœk) 

I k  = the complex peak current at the input of array element k 

...(7) 



S Ok (rk' 0 k 
 ) = 	 ...(8) 

2(4nrk 2 ) 

For the case shown in Fig. 1 where the scatterer and all array elements are 
present and excited, we will (in accordance with eqn.(8)) let the power 
density of the signal which is from array element k and incident on the 
scatterer be given by 

II 1< 2RkD 6k (90 ° ) 
S Ok(r sk' 90°) = 	 ...(9) 

2(4nr
sk 2) 

Equation (5) can now be written as follows 

lI 1, l 2 R1, D ok (Ok ) 
- 	- 

Rk = the radiation resistance of array element k when the scatterer 
and other array elements are absent. 
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rsk 	the range between array element k and the scatterer. 

Equation (9) gives Sok(r s k,90 ° ) accurately if r s k is sufficiently 
large (i.e. large enough such that the scatterer is in array element k's 
far-field) and the current distribution on array element k is not 
significantly changed by the presence of the scatterer and other array 
elements. The above constant current distribution assumption would result 
in significant error if the length of the array elements were too large. 
AM broadcast band monopoles are only about one quarter wavelength (or less) 
long. This length is small enough such the error, introduced by the above 
constant current distribution assumption, will be small. Note that two 
spatially distributed currents are considered here to have the same current 
distribution if a constant can be found such that the constant times one of 
the current distributions can be made equal to the other current 
distribution. The following equation is true by definition of scattering 
cross-section. 

S Ok (rsk' 90°)a (6,4)) 6 S
sek (r,0,4)) = --------- -------- 

4nr 2 
...(10) 

S s ok(r,0,) = the power density at (r,6,4)) of the 6 polarized 
component for the signal scattered by the scatterer when the incident 
signal is from array element k. 

= the 6 polarized scattering cross-section for the scatterer in 
the direction (6,4)). 

Scattering cross-section has the dimensions of area (e.g. m2 ) 
where, for example, a0(0,4)) can be thought of as the area which when 
multiplied by the power density  for an incident plane wave 
(Sok(r s k,90 ° ) in eqn. (10)) would give a signal power (e.g. watts) 
which, if scattered omni-directionally, would result in a 6 polarized 
scattered signal with a power density (S s 0k(r,0,) in eqn. (10)) equal to 
that which actually exists at (r,6,4)). In the above definition for 
scattering cross-section we specified the polarization (6) and direction 



S sOk (r ' 6 ' 	= 
2(47r skr) 2  

II k I 2RkD ek (90 ° )G (6,0 6 

xexp {.j (OE
k 

- 	r s X 2  

...(12) 

EDa0 ( 0 ,0 2  - N o ( 0 ,01 2 1D 0  (0,(j))[Da0  (0,0 2  + N o (0,01 2  

N 0 (0,4)) = 	
c o (0, 0 11 	f I k t [RkD ok (90 ° )] 2  

1 

8nP 	Ik=1 	 r ck 8nP t 	Ik=1 	 r sk 

6 

( 0 ,0 for the scattered far-electric-field intensity. A complete 
definition for scattering cross-section would include the polarization and 
direction of incidence for the field incident on the scatterer. 
The incident field can be considered to be composed of components; one for 
each element of the array. It is assumed that: 1) over the dimensions of 
the scatterer, the incident fields are vertically polarized plane waves, 
and 2) in a given far-field direction, the scatterer's scattering 
cross-section is nearly constant over the range of angles of incidence for 
the component incident signals. The last assumption will result in 
negligible error when the scatterer is a tower because at AM broadcast 
frequencies a tower's horizontal dimensions, in wavelengths, are very 
small. This assumption will not be as good when the scatter is a 
building. However, note that the range of angles of incidence should be 
small, and at 1MHz the horizontal dimensions in wavelengths for a 60mx60m 
building are only about .2Xx.2X. 

When eqns (9) and (10) are combined we get 

...(11) 

The total 0 polarized scattered field intensity is obtained by adding 
together its components, where eqn. (11) gives the power density for the 
component of the scattered field due to array element k. When this is done 
it is found that the power density for the total 0 polarized scattered 
field is given by 

	

S sO
(r,0,0 = I 	1  	

2(4 k=1 	 ur skr)2 

X = the wavelength of the transmitted signal. 

We get the following upper and lower bounds (near-field limit 
functions) on the directive gain for an AM broadcast array in the presence 
of a scatterer when (2) and eqns. (3), (4) and (12) are combined. 

...(13) 

xexp [j k - 	r sk)11 
2u 

X sk 
X 



N
0
(0

'
4)) = 

8nP
t 

 8nP 

[ R
k
D
Olt

(90° )a e ( 0, (I)) * 

If all of the array elements are identical then N0(0,4)) can be expressed 
as follows. 
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n  I  lIkl 	
exp 	

2n 
[j( ( œk- 	rSk 

	

k=1  t r
sk 	 X 

Note that III,' in the N0(0,4)) functions is a peak (as distinguished 
from an nms) current. 

When the array-to-scatterer range is large enough such that the 
scatterer is in the array's far-field then (as shown below and refer to 
Fig. 3) the directive gain for the array can be used to accurately compute 
the power density for the signal incident on the scatterer. 

P t D a0 (90 ° ,180 0 ) 

r s  = the range between the array and scatterer. 

Note that the geometry shown in Fig. 3 is such that the direction of the 
scatterer with respect to the array is (0, ) =(90 ° ,180 ° ) and therefore 
D a0(90 ° ,180 ° ) is Da 0(0,4)) in the direction of the scatterer. By 
definition of scattering cross-section, it follows from eqn. (14) that the 
power density for the 0 polarized scattered field is given by 

P t Da0 (90 ° ,180 ° )a
0  (0,4)) S

sO
(r,0,4)) =  	 ...(15) 

(4nrr) 2  s  

When (2) and eqn (3), (4) and (15) are combined the following upper and 
lower bounds on  D0(0,) (called far-field limit functions) are obtained 

S
a0 (r s' 90° ' 180°) = 2 4nr

s  

—(14) 

1 < [Da0 (0,0 	
2 

	

2 - F 0 (0,0] 	(e, (p) 	[Da0(0,0 2 + F
0 (0,0] 

2 
0 —(16) 

* [ Da0 (90 ° ,180 ° )a 0 (0,4)) 1 
F 0 (0 ' 4)) = 2 4nr

s  

Far-field limit functions for the 4) polarized directive gain of an AM 
broadcast array in the presence of a scatterer can similarly be derived. 
The result is 
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1 	 1 [D
acp

(0
'
02_ F  (0 ' 01 2<i p  (0 ' 0 	[E1  ( 0  '02+ F

(1)
(19

'
012 

(I) 	— (1) 	— 	acp  

1  

[ 

D
a0

(90°
'
180°)G

(I)
(0

'
)1 

 

D scp(0,) = the (1) polarized directive gain, in the direction (OW, 
for the array when there is no scatterer present 

1214,(0,0 = the (I) polarized directive gain, in the direction (0,0, 
for the array-scatterer combination 

cy0,0 = the (1) polarized scattering cross-section for the 
scatterer, in the direction (0, ) . 

4m. r 2  
F (0 	= 

(i) 	 2 
4.ffr s 

...(1 7 ) 

When deriving the near-field and far-field limit functions a 
simplifying assumption was made which was not mentioned. In particular, 
second and higher order scattering were ignored. For example, we ignored 
the signal which was scattered from the scatterer, to the array, and then 
rescattered by the array. The error introduced by the above assumption 
will be small if: 1) the interaction between the scatterer and array does 
not significantly change the current distributions on the array elements 
(see discussions following eqn. (9)), and 2) the excitations for the array 
elements when the scatterer is present are changed to make the feed 
currents the same as they were when the scatterer was absent. 

When the near-field (see (13)) and far-field (see (16) and (17) 
limit functions are compared it is seen that the former are more complex. 
However the minimum usable array-to-scatterer range when the near-field 
functions are used is less than that for the far-field functions. In 
particular r s  should be such that the scatterer is in the far-field of, 
1) each individual array element, or 2) the whole array, when respectively 
the near-field and far-field limit functions are employed. 
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Fig. 1, Geometry used when deriving the near-field limit function on the 
directive gain for an AM braodcast array in the presence of a scatterer. 

zk  

Fig. 2, Geometry used when considering array element k in the absence of 
the scatterer and other array elements. 
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3. THE SCATTERING CROSS—SECTION FOR TOWERS AND BUILDINGS  

Before section 2's limit functions can be used, the scattering 
structure's scattering cross—section characteristics must be known. This 
section contains figures showing scattering cross—section for a 
sufficiently wide range of structures such that this parameter can at least 
be estimated for most towers and buildings which are likely to cause a 
pattern distortion problem. In particular we consider scattering 
cross—section characteristics for structures ranging from towers with radii 
equal to .0005X up to buildings whose dimensions in horizontal 
cross—section are .2Xx.2X. In the figures, structure dimensions and 
scattering cross—section values are normalized and made to be dimensionless 
1) dividing the dimensins by X and the scattering cross—section values by 
X . This makes the information in the figures easily usable at any 
frequency. 

The computer program NEC was used to compute all scattering 
cross—section values. Towers whose normalized radii (a/X) were less than 
or equal to .008 were modelled using a single (circular in cross—section) 
wire. A wire grid was employed to model structures whose dimensions in 
cross—section were larger than that above. The ground plane and wires were 
considered to be perfectly conducting. 

Figures 4 and 5 plot the normalized 6 polarized scattering 
cross—section along the ground plane (00(90 ° ,)/À2 ), as a function of 
normalized tower height (h/À). Each curve in the above figures is 
for a particular value of a/À and a/À ranges between .0005 and .008. 
Figures 6 through 9 contain vertical 00(6,0/X 2  patterns for the case 
where a/X is .004 and each pattern is for the value h/À indicated. 
Sufficient vertical patterns are shown such that (when a/X=.004) an 
accurate estimate can be made of 00(6,0/X2  for any tower where 
.11h/X21. Note, it has been found that towers where a/À is less than 
about .008, scatter almost omni—directionally as a function of cp and 
therefore the values of 00(0,0/X2  given in Figs. 4 through 9 are 
applicable for any value of (P. The vertical patterns in Figs. 6 to 9 (for 
which a/À =.004) and the information contained in Figs. 4 and 5, can be 
used to estimate 0- 0(6,)/X 2  values for .00055,a/À.008 provided h/À is 
less than about .5. This is so because it has been found that when a/À and 
h/X satisfy the above conditions, the shape of a tower's vertical 
G0(6,)/À 2  pattern, on log—linear graph parr, is nearly independent of 
a/À. For example let us compute 00(0, ) /A for the case where h/X=.5, 
a/X=.0005 and 6=40 ° . When h/À=.5 and a/À=.004, Fig. 7 gives a0(0,)/X2  
as  ].77x10' 	3.42x10-2  when 6 is respectively 90 °  and 40 ° . Figure 4 
shows 00(90 ° ,)/X2  to be 8.20x10-2 for the case where h/X=.5 and 
a/À=.0005. It follows that c0(40 ° ,)/X2 , when h/X=.5 and a/À=.0005, is 
given by 

0 0(40 ° ,1))/X 2=8.20x10 —2 
 3.42x102  1.53x10 2  ---IT 
1.77x10 

A direct calculation, using NEC, gives 1.56x10-2  for the above. 

1 1 
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Figures 10 to 33 present scattering cross-section characteristics 
for structures with horizontal dimensions which are larger than those 
considered above. The structures were modelled using a wire grid (as 
distinguished from a single wire). This was done because NEC places 
computed wire currents along the center of the wire and hence single wire 
vertical towers are computed to have 4) omni-directional co(0,4))/X` 
patterns. It has been found however that vertical towers where a/X is 
greater than about .008, have a0(0,4))/A2 patterns which depart 
significantly from being 4) omni-directional. Those figures, in Figures 10 
to 33, which plot cse(90 ° ,4))/X2  as a function of h/X show two curves for a 
structure with a given size in horizontal cross-section. They correspond 
to the maximum and minimum values for c0(90 ° ,4))/X2  as a function of 4). 
We concentrate on presenting 0 polarized scattering cross-section 
characteristics along the ground plane (a0(90 ° ,)/X2 ). The exceptions to 
this occurs for .1x.1X buildings where, in additon to ao(90 ° ,0/X2 

characteristics, we consider horizontal patterns (where  0< 90 ° ), and 
vertical patterns for both a0/X2 and a (1)/X2 . 

Figures 10 and 11 plot a0(90 ° ,)/X2  versus h/X for wire grid 
structures whose dimensions in horizontal cross-section are .016Xx.016X, 
.032Xx.032X and .064Xx.064X. Note that, as a function of 4), 
a0(90 ° ,0/A2 : 1) is nearly 4) omni-directional for the .016Xx.016X wire 
grid structures, and 2) departs significantly from being 4) omni-directional 
for the .032Xx.032X, and larger, wire grid structures. The single wire 
towers considered in Figs. 4 and 5,where "a" is .008A, are about the same 
size in horizontal cross-section as the .016Xx.016X wire grid structures. 
The above therefore supports the previously made statement that, when using 
NEC, a/X, for single wire towers, should not be larger than about .008. 

Figures 12 to 33 show scattering cross-section characteristics for 
wire grid buildings whose horizontal dimensions are .1Xx.1X, .2Xx.2X and 
.1Xx.2X. It is shown that rotation (where the direction of propagation for 
the incident signal remains unchanged) of the above square in horizontal 
cross-section buildings (i.e. the .1Xx.1X and .2Xx.2X buildings) has little 
effect on the structures' scattering properties. This statement is no 
doubt true for all simple (i.e. no stubs) structures whose horizontal 
dimensions are square and less than .2Xx.2X. Inspection of Figs. 25 to 33 
shows that the above statement is not true for the building whose 
horizontal dimensions are .1Xx.2X. 
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Fig. 6, Vertical ae(0,4))/À 2  patterns for the structure shown in Fig. 4 
where a/À = .004 and .100 15-- h/À .230. 
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4. METHODS  FOR REDUCING  A TOWER'S SCATTERING CROSS-SECTION  

Inspection of the limit functions contained in (13), (16), and (17) 
shows that reducing a structure's scattering cross-section reduces in turn 
the structure's distortion of a nearby antenna's directive gain pattern. 
In this section methods for reducing the scattering cross-section of towers 
are investigated. It is shown in subsection 4.1 that, provided the height 
of the tower is not too large, a tower's scattering cross-section can be 
significantly reduced by electrically isolating the base of the tower from 
the ground plane. The use of stubs as a means for reducing the scattering 
cross- section for towers is investigated in Subsections 4.2 and 4.3 where 
the normalized height for the towers satisfy respectively h/X.25 and 
.25h/X=.50. 

4.1 Electrical  Isolation of thç_Base of Towers from the Ground Plane  

It may be possible in some cases to electrically isolate the base 
of a tower from the ground plane. Figure 34 shows cre(90 0 ,4))1X 2  as a 
function of h/X for idential a/X=.001 towers except that one of the towers 
is electrically connected, whereas the other is not electrically connected, 
to the ground plane. It is shown that disconnecting the base of the tower 
from the ground plane, shifts the peak for the lowest h/X resonance from 
h/X=.235 to h/X=.460. The two curves cross over at about h/X=.350. It has 
been found that, for towers where a/X ranges between .0005 and .008, the 
above h/X cross-over points range between .360 and .305. It can be said in 
general that electrically disconnecting the base of a tower from the ground 
plane will serve as an effective means for reducing the tower's scattering 
cross -section provided it's normalized height is near to or less than .25. 
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4.2 Stubs on Towers where h/X is Equal To or Less Than .25 

Figure 35 shows the type of stubs which will be employed on towers 
where normalized heights satisfy h/X.25. They will be referred to as 
full-length loaded stubs because they: 1) extend from the top of the tower 
(where they are electrically connected to the tower) downward to a point 
near the tower's base, and 2) are loaded (connected to the tower) at the 
bottom end by a reactance (XL). 

We first investigate the characteristics of the following 
full-length loaded stub systems on Fig. 35's tower where h/X=.15. 
a) A one stub system where only the stub numbered 1 in Fig. 35 is present 

and the normalized distance between the stub wire and adjacent tower 
wire (d/X) is .001 . 

b) The four stub system shown in Fig. 35 where d/X=.0015. 
c) The four stub system defined in b) above except that d/X=.0030. 

Figures 36, 37 and the appropriate columns in Table I provide a 
comparison for the characteristics of the one and four-stub systems defined 
above in a) and b). The figures plot normalized scattering cross-section 
along the ground plane (a0(90 ° ,4))/X 2 ) for the above tower-stub systems, 
as a function of load reactance (XL). Both the one stub and four stub 
systems show the same general cre(90 ° ,)/À2 versus XL characteristics in 
that, as XL is decreased from zero, a deep null followed by a peak in 
0- 6(90 ° ,0/À2 are encountered. In the figures and Table 1 	values of 
XL which produce the null and peak values for cre(90 ° ,4))/À are 
symbolized by respectively XL-(optimum) and XL-(worst) because, for our 
purposes, they are the optimum and worst load reactances. The tables and 
figures also contain the following characteristic parameters. 

a0( 90 ',4))/X 2  - (tower alone) = a0(90 ° ,)/X 2 for the tower without 
stubs 

(5 0( 90° ,$)/X2-  (XL=00) = a0(90 ° ,1))/X 2  for the case where XL=. 00 
(i.e. the stubs are not loaded) 

Ge(90 ° ,)/X2- (worst) = the peak value for 00(90 ° , ) /A 2  as a 
function of XL 

Zi = Ri+jXi = the impedance seen at the load end of a stub when all 
stub loads are absent. 

Note that the characteristic parameter "A" in Table I will be defined when 
we consider the frequency bandwidth properties of the four stub systems. 
The values for 00(90 ° ,4))/À 2-(tower alone) is important because a stub 
system has a benificial effect only if it reduces the tower-stub system's 

GO( 90* ,(P)/X 2  below this value. A comparison of Figs. 36 and 37 show the 
width of the four stub system's null to be significantly broader than that 
for the one stub system. Two stub systems were found to have a null width 
which is intermediate to those above. It appears therefore that the 
bandwidth for stub systems increases as the number of stubs is increased 
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from one to four. It will be shown further on that the frequency bandwidth 
for four stub systems is marginal, hence we will consider only four stub 
systems in the remainder of this section. 

It can be seen (refer to Fig. 37) that when XL  is made to be 
XL-(optimum) then the tower-stub system's normalized scattering 
cross-section along the ground plane a0(90 ° ,)/X2 ) is much reduced below 
that for the tower alone. Figure 37 however, gives no information about 
the tower-stub systems scattering characteristics at angles above the 
ground plane (i.e. 0 < 90 ° ) and therefore in this region the system could 
have unsatisfactorily high values for o0(0,)/X2 . Figure 38 contains 
vertical a0(0,4)/X2  patterns for the tower with no stubs and the tower 
stub system where XL is XL-(worst) and XL-(optimum). The 
XL-(optimum) vertical ao(0,4))/X 2 ) pattern increases as 0 is decreased 
from 90 °  and peaks at about 0=35 ° ; however despite this the pattern is 
always much less than that for the tower with no stubs. 

The incident field induces the currents on the scattering structure 
which in turn induce the scattered field. Therefore an investigation of 
the tower-stub system's induced currents would probably be instructive. 
For Fig. 37's structure, this is done in Figs. 39 and 40 where XL  is 
respectively XL-(optimum) and XL-(worst). The figures plot current 
amplitude and phase along (as a function of z, see Fig. 35) stub wire #1 
and the adjacent tower wire. Also shown, for purposes of comparison is 
current  amplitude  along the above tower wire when there are no stubs on the 
tower. It might be thought that the optimum stub load would be that which 
produces an open circuit as seen at the stub's load end. This would 
supposedly reduce the tower-stub system's scattering cross-section by 
reducing the induced currents at the tower's base, and hence along its 
length. The information contained in Fig. 39 shows the above mode of 
operation to be incorrect. With the exception of the portion of the tower 
wire below the bottom end of the stub, the optimumly loaded stubs do not 
decrease, but instead increase the current amplitude on the tower wire. 
The system's true mode of operation becomes apparent when it is observed 
that when XL=XL-(optimum): 1) the amplitudes of the currents on the 
stub and adjacent tower wire are almost equal, and 2) the phases for these 
currents differ by about 180 ° . Therefore, since the separation between the 
stub and adjacent tower wire is small with respect to the wavelength, the 
currents on the two wires induce far-field intensities which nearly cancel 
each other. Note that the current amplitude and phase values shown in 
Fig. 39 (and the other current plots in this section) correspond to the 
following incident electric field intensity. 

Ei =u( -1)exp(jkx),v/X 

u = the z directed unit vector 

k =21T/X 

When XL  is made to be XL-(worst) the above current distributions become 
as shown in Fig. 40. A comparison of Figs. 39 and 40 shows that the 



tower-stub system where XL=XL-(worst) has a comparatively high 
scattering cross-section because changing X L  to XL-(worst): 1) 
increases the currents on the structure's wires, and 2) produces stub and 
adjacent tower wire current amplitudes which are not as close to being 
equal. 

It is not sufficient that the tower-stub system have a 
significantly lower scattering cross-section than the tower alone; it is 
necessary in addition that the system have the above characteristic across 
the frequency band occupied by the transmitted signal. The scattering 
cross-section as a function of XL behavior does not completely specify a 
tower-stub systems frequency characteristics because changing frequency, in 
addition to changing XL, also changes the system's dimensions in 
wavelengths. In this section plots like that contained in Fig. 41 are used 
to show how tower-stub srtems perform as a function of frequency. These 
figures plot G0(90 ° ,)/À as a function of f/fo  where f is the 
frequency variable and at f=f0 : 
1) The dimensions of the system in wavelengths are those specified. For 
Fig. 41 these are the dimensions previously specified in b). 
2) The stub load reactances (or in the following subsection, the 
normalized stub lengths) are made to be optimum. For Fig. 41's 
structure, XL=XL-(optimum ) -522 0. 

On some of the plots showing G0(90 0 ,))/X2 as a function of f/fo  and in 
Tables 1 to 5, values for the parameter A(Af/f0 ) are listed where Af is a 
bandwidth (hence Af/fo  is a normalized bandwidth) for the transmitted 
signal and 

A(Af/f0 )= the minimum amount, in the normalized bandwidth Af/fo , that 
the optimumly loaded tower-stub system attenuates G0(90 ° ,)/X 2  below 
that for the tower alone when f=f 0 . 

Values for A(Af/f0 ) are considered for Af/fo  equal to .0374, .0200 and 
.0125. When Af is 20 kHz, the above Af/fo  values correspond respectively 
to the fo  frequencies 535 kHz, 1000 kHz and 1605 kHz (the bottom, 
approximate middle and top frequencies for the AM broadcast band). For the 
tower-stub system specified previously in b), Fig. 41 and Table 1 show 
A(Af/f0 ) to be 13.9 db, 19.2 db and 23.2 db when Af/fo  is respectively 
.0374, .0200 and .0125. 

The tower stub system, for which Figs. 42 and 43 plot 
G0(90 ° ,0/À 2 as functions of respectively XL and f/fo , is that 
specified previously in c). This system is the same as was investigated 
above except that the normalized distance between the centers of a stub 
wire and adjacent tower wire (d/À) has been increased from .0015 to .0030. 
When the appropriate columns in Table 1 and Figs. 37, 41, 42 and 43 are 
compared, it is seen that doubling d/X from .0015 to .0030: 
1) Increased the reactances XL-(optimum), XL-(worst) and Xi. This is 

to be expected because increasing d/X increases the characteristic 
impedance of the transmission line formed by the stub and tower. 

2) Increased Ri because (in addition to the reason mentioned in 1) 
increasing d / X makes the structure a better radiator when the feed point 
is at the load end for a stub. 
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3) Had little effect on a0(90 ° ,)/X2-(worst). 
4) Slightly increased A(Af/f0 ). 

From an electrical performance point of view the d/À=.0030 system's larger 
values for A(Af/f0 ) make it superior to the d/X=.0015 system. This 
increase in A(Af/f0 ) was however small (about 1.5db) and therefore 
(because they would be easier to contruct) we will in the remainder of this 
section consider only stub systems where d/X=.0015. 

To this point in the subsection we have considerd tower-stub 
systems where h/X=.15. Table 2 lists values for Zi, XL-(optimum) and 
A(.02) for Fig. 36's tower-stub system where d/X=.0015 and h/X ranges 
between .050 and .250. The A(.02) values of Table 2 show that, for h.250 
towers, the full length loaded stub systems perform best when h/X is in the 
vicinity of .250. When Table 2's values for Zi and XL-(optimum) are 
compared it is seen that (except when h/X=.250) -Xi is approximately 
equal to XL-(optimum). However, note that as indicated in Figs. 36, 37 
and 42, XL  should not in general be set equal to -Xi. The above, and 
the narrowness of the nulls in the 0.0(90°,0, , 2 )/X as a function of XL 
curves, indicate the following procedure for setting up full length loaded 
stub systems. 
1) Install at least four stubs 
2) Measure the input reactances (Xi) for a stub. 
3) Load the stubs with variable reactances for which the center reactance 

is approximately -Xi. 
4) Place a field strength meter in the far-field of the array-scatterer 

combination and adjust the stub load reactances to reduce to a minimum 
the tower-stub system's perturbation of the measured field. 

Although it has not been tried, it would probably suffice in step 3) to 
connect the load ends of all stubs together and place a variable reactance, 
whose center reactance was about  -X/n5  (where ns  is the number of 
stubs), between the connected stubs and ground. If the antenna's directive 
gain pattern has a null in some directon along the ground plane, it would 
be best to place step 4)'s field strength meter in the direction of the 
null. 



00(90 ° ,07X2  - (tow 
00(90 ° ,0/X2  - (XL= 
ao ( 90 0 ,0/x2 _ (wor 
XL -(optimum) in ohl 
XL -(worst) in ohms 
Ri - in ohms 
Xi - in ohms 
Ri - in ohms 
Xi - in ohms 
A(f/f0 )=A(.0374)  ii 
A(.0200) in db 
A(.0125) in db 

Table 1 Characteristic values for three different full-length loaded stub 
systems on the tower shown in Fig. 35 where h/À=.150. 
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--- 	 , 	_ _----- 
One stub 	Four stubs 	Four stubs 
d/À=.0015 	d/À=.0015 	d/À=.0030 

- 
alone) 	.00912 	.00912 	.00912 

q 	 .0119 	.0228 	.0387 
;t) 	 .760 	.774 	.769 
Is 	 -437 	-522 	-684 

-488 	-760 	-1220 
6.2 	10.1 	28.9 
487.1 	498.4 	655.6 
6.2 	10.1 	28.9 
487.1 	498.4 	655.6 

db 	 - 	 13.9 	15.5 
- 	 19.2 	20.7 
- 	 23.2 	24.5 

Table 2,  Zi, XL-(optimum) and A(Af/f0=.02) for Fig. 35's tower with 
full-length loaded stubs, as a function of h/À(.050ih/X.250), where 
d/À=.0015. 

	

h/À 	 Z. 	X
L 
 -(optimum) 	A(.02) i  

	

() 	 (Q) 	(db) 
	- 	----, 

	

.050 	.013+j(102.5) 	-114.7 	12.4 

	

.100 	.33+j(238.8) 	-267.2 	17.3 

	

.150 	10.1+j(498.4) 	-522.0 	19.2 

	

.200 	438.8+j(1328) 	-1135.5 	30.0 

	

.250 	1940+j(1634) 	 . * 	26.0 

--- 	 - 

* When searching for BL-(optimum), where BL-(optimum ) 
 -1/[XL-(optimum)], it was found that, for the case where h/À=.250, 

BL-(optimum) was very close to zero. Therefore, for the purpose of 
computing A, XL  (at f/f0=1) was set equal to 00. That co was not 
quite the Foper value for XL-(optimum) was shown in a plot of 
00(90 ° ,0X versus f/fo  where the minimum in 00(90 ° ,)/X2  occured 
at f/f0=1.003. If XL-optimum was 00 then the above minimum would 
have occured at f/f0=1. 
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4.3 Stubs  on Towers where h/X  is between .25 and .50 

In this subsection we investigate and compare the characteristics 
of the following types of stub systems on towers whose normalized heights 
(h/X) range between .25 and .50. 
a) Last subsection's four full-length loaded stub sytem (see Fig. 35). 
h) The four short stub system shown in Fig. 44 

The short stubs are about .25X long where their bottom ends (which 
are near the tower's base) and top ends are respectively electrically, not 
connected, and connected, to the tower. They can only be used on towers 
which are higher than about .25X and are called short stubs because they 
are usually shorter than the tower is high. 

Figures 45 to 49 and 50 to 54 plot characteristics for respectively 
the tower-stub systems defined in a) and b). Table 3 lists characteristic 
values for both of the above systems. The types of plots presented are the 
same as appeared in the previous subsection except that for the short 
stubs, s/X (where s is the length of the stub) replaces XL as the 
parameter which is varied to optimize the system. 

The curves showing ao(90°,4), , 2 )/X as a function of XL or s/X in 
Figs. 45 and 50 are similar to those present in the previous subsection in 
that their is an optimum XL or s/X and, not far removed, a worst XL or 
s/X. A difference between the full-length loaded stub systems investigated 
in this and the previous subsection is that XL-(optimum) is respectively 
positive (inductive) and negative (capacitive). 

The vertical patterns in Figs. 46 and 51, for the cases where 
respectively XL and s/X are optimum, are much alike. The amplitude of 
the above-the-ground-plane lobes for the above vertical patterns can be 
seen to be much greater than that shown in Fig. 38 for the optimum 
full-length loaded stubs on the h/X=.150 tower. 

The current amplitude and phase versus z/X plots in Figs. 47, 48, 
52, and 53 show that the mode of operation for the h/X=.400 tower-stub 
systems is essentially the same as that previously described for the 
h/X =.150 tower-stub system. However, for the h/X=.400 systems, the stub 
and adjacent tower wire current amplitudes are not as close to being equal 
as they were for the h/X=.150 system. Therefore, for the purpose of 
reducing cre/A 2  along the ground plane, the optimum h/X=.400 systems must 
rely more on the cancellation of far-fields induced by non-adjacent 
currents. This explains the h/X=.400 systems' larger vertical (10/X 2  
pattern lobes above the ground plane because non-adjacent, as  compared to 
adjacent, wire currents cannot (due to their larger separation) as 
successfully induce far-fields which cancel over a range of 0 angles. A 
comparison of A(M/f0 ) for the full-length and short h/X=.400 tower-stub 
systems in Table 3 and respectively Figs. 49 and 54, shows that the short 
stub system has superior frequency bandwidth characteristics. 

To this point in the subsection we have considered the properties 
of short and full-length loaded stub systems on an h/X=.400 tower. Tables 



.145 	 .145 

.195 
1.04 1.28 
291.1 
324 

3.3 
-251.8 
3.1 
5.7 
8.5 

.2356 

.256 

11.4 
16.4 
20.3 

z. 
(0 

1940+J(1634) 
119.1+j(-1199.4) 
10.5+j(-479.4) 
3.26+j(-251.8) 
.39+j(-111.2) 

X -(optimum) 

* 
1196.6 
542.6 
291.1 
135.6 

A(.02) 
(db) 

26.0 
19.5 
17.4 
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4 and 5 list characteristics for the above types of stubs on towers where 
h/X ranges between .250 and .500. A comparison of the full-length loaded 
stub system's Xi and XL-(optimum) values contained in Table 4 shows 
that (as was the case where h/À< .250) XL-(optimum) is approximately 
equal to -Xi (except where h/À is near .250). The short stub system's 
optimum lengths in Table 5 are slightly less than À/4 and note that they 
become shorter as h/X is increased. When the A(.02) values in Tables 4 and 
5 are compared it is seen that the short stub systems perform 	better than 
do the full-length loaded stub systems. This is particularly true when h/X 
is larger than about .350. Note that for some value of h/À near .250 the 
short and full-length loaded stub systems become one and the same system. 

Table 3, Characteristic values for the full-length and short stub systems 
shown in Figs. 35 and 44 where h/X=.400 and d/À=.0015 

------------------------- 	 - 
Four full- 	Four short 
length stubs 	stubs 
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ao(90 ° ,0/X2  - (tower alone) 
ae(90 ° ,4))/À2  - (XL=c0) 
ae( 90° ,0/X2  - (worst) 
XL-(optimum) in ohms 
XL-(worst) in ohms 
s/X-(optimum) 
s/X-(worst) 
Ri in ohms 
Xi in ohms 
A(Af/f0 )=A(.0374) in db 
A(.0200) in db 
A(.0125) in db 

Table 4, Zi, XL-(optimum)and A(Af/f 0=.02) for Fig. 35's tower and 
fulllf-e-ngÉh loaded stubs, as a function of h/X(.250h/X.450), where 
d/X=.0015. 

* See Table 2 
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.2450* 

.2413 

.2386 

.2356 

.2320 

.2274 
6.1•Me. 
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Table 5, s/X-(optimum) and A(Af/f0=.02) for Fig. 44's tower and short 
stubs, as a function of h/X( .250 < h/X <.500). 

* This is the same tower stub structure as is shown in Table 2 where 
h/X=.250. Hence s/X = h/X-g/X = .2450 is not quite the optimum stub 
length. 
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Fig. 45, a0(90 0 ,)/X2  as a function of XL  for the tower shown in 
Fig. 35 where h/X=.4, d/X=.0015 and 4 full-length stubs are used. 
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Fig. 46, Vertical  y0/X2  patterns for Fig. 45's structure where 
there are: a) 4 stubs with worst reactances, h) no stubs and c) 4 
stubs with optimum reactances. 

Fig. 48, The same as Fig. 47 except 
that the load reactances are worst 
(XL=324n). 

Fig. 47, The amplitude and 
phase of current on stub 1 
and adjacent tower wire for 
Fig. 45's structure where the 
load reactances are optimum 
(XL=291.10. 
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and adjacent tower wire for 
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5. THE MINIMUM ANTENNA TO SCATTERER RANGE FOR WHICH THE NEAR-FIELD AND 
FAR-FIELD LIMIT FUNCTIONS ARE ACCURATE  

It was pointed out in Section 2 that: 1) both the far-field and 
near-field limit functions will become inaccurate if the range (r s ) 
between the antenna and the scatterer is too small, and 2) the near-field, 
when compared to the far-field, limit functions will however be accurate 
down to smaller values of r s . In this section directive gain and limit 
function patterns, for an antenna in the presence of a scatterer, are 
compared for the purpose of determining rules of thumb which can be used to 
approximate the minimum values of rs  for which the limit functions will be 
accurate. 

The computer program NEC was used to compute: 1) this section's dir-
ective gain patterns for an antenna in the presence of a scatterer 
(D0(0,)), and 2) the limit function variables (see (13) and (16) in 
Section 2), D a0(0,), o0(0,0, Dek(Ok), Rk and P t . The AM 
broadcast antennas which we will employ for the purposes of our calculations 
will be either CHFA (Edmonton)'s array or an element from CHFA's array. 
Figure A-1 in the appendix contains the above array's dimensions and elect-
rical specifications. Refer to Figs. 55 and 56 for respectively the array 
element's vertical directive gain pattern (Dek(Ok)) and the array's dir-
ective gain pattern along the ground plane (D a 0(90 ° ,0) where, for both 
patterns, there is no scatterer present. An isolated element from CHFA's 
array was computed to have a radiation resistance equal to 20.2146 ohms. 
The scatterer will be either an h/X(h)=.150(66.13m) or h/X(h)=.230(101.40m) 
tower, with a/X=.004(1.764m), where h and "a" are respectively the tower's 
height and radius. Figure 57 contains normalized vertical cross-section 
patterns (a0(0,01X 2  as a function of 0) for the above towers. 

For the cases where the source is a single monopole or an element of 
an array, we will be comparing the monopole to scatterer range (r s ) with 
the range rn , where 

2(2h+2h a ) 2 

r = 
À 

h = the height of the scatterer 

h a  = the height of the monopole or array element 

Note that those who measure antenna patterns commonly use the function 2D 2a 
(where D is the maximum dimension of the antenna) to compute the minimum 
allowable distance between the antenna and the measurement point. The range 
rn  as given by eqn. (18) is closely related to that given by the above 
function except that in eqn. (18) we have included the effects of: 1) the 
height (maximum dimension) of the scatterer, and 2) the ground plane through 
the use of 2h and 2h a (as distinguished from the use of h and h a ). The 
height of one of CHFA's monopole elements (h a/X(h a )) is 
.20049(88.392m). Therefore, for the cases where the tower height (h/X(h)) 
is .150(66.13m) and .230(101.4m), eqn. (18) gives rn/X(rn ) as 
respectively .9827(433.3m) and 1.483(653.6m). 

...( 1 8) 
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5.1 The Minimum r s  for which the Limit Functions are Accurate when the 
Antenna is a Single Monopole  

In this subsection the antenna will be a single monopole. For this 
case the far-field and near-field limit functions in (16) and (13) are 
identical; hence there is no need to distinguish between them and they will 
be simply referred to as limit functions. 

When the monopole antenna is one of CHFA's array elements, Figs. 58 
and 59 compare directive gain and limit function patterns for respectively 
the cases where: 
1) the scatterer is Fig. 57's h/X(h)=.230(101.4m) tower and r s  is 

rn/2, rn  and 2r n . 
2) the scatterer is Fig. 57's h/X(h)=.150(66.13m) tower and r s  is 

rn /2 and rn . 

As would be expected, the limit functions give better approximations to 
true limits as rs  is increased. In addition it appears that, for the 
case where the antenna is a monopole, the limit functions give good 
approximations to true limit functions provided rs  satisfies r s >rn . 
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5.2 The Minimum r s  for which the Far—Field Limit Functions are Accurate 
when the Antenna is an Array 

Figures 60 to 62 compare directive gain and far—field limit 
function patterns for CHFA's array in the presence of Fig. 57's 

h/X(h)=.230(101.4m) tower. In Figs. 60 to 62 the scattering tower is 
located respectively: 1) in the array's main beam, 2) broadside to the 
array, and 3) in the array's null direction. The sub—figures in the above 
figures correspond to different values for r s . Note that when computing 
the directive gain patterns for the array—scatterer combination, the 
array's feed current ratios were made to be those specified, in the 
appendix's Fig. A-1, for the array alone. Therefore electrical interaction 
between the scatterer and the array made it necessary to compute new feed 
voltages (in the manner shown in the appendix) for each new position of the 
scatterer. 

The figures show that when the scatterer is located, in the 
direction of the array's main beam (off the end of array element #3), or 
broadside to the array, then the far—field limit functions give good 
approximations to true limits for  r 9 /X(r 5 ) as email as .6804(300m). 

When however, the scatterer is located in the direction of the null for the 
array's pattern, then the limit functions are significantly in error, 
particularly when r s X(r) is .6804(300m) and 1.134(500m). For these 
cases, it appears that the F0(8,0 function is (16)'s limit functions are 
too small. 

The above are the results which would be expected when Figs. A-2 
and A-3 in the appendix are examined. The figures show that: 1) when (!) is 
0 °  and 90 ° , the field patterns for the cases where r300m are close to the 
r=co pattern, however 2) when  4 =180 °  (the direction for the patterns null) r 
must be several thousand meters before the field patterns approach the r=0,  
pattern. In addition, in the vicinity of e-180 ° , the r=o0 pattern is less 
than those where r<00. The r=03 pattern is that which would be computed 
using 1)&3(90 ° ,1)) and therefore Ds e(90 ° ,180 ° ) in eqn. (16)'s F0(0,) 
functions, and hence the F0(9,0 functions themselves, will be (as noted 
above) too small. 

In general, when the antenna is an array, the far—field limit 
functions should only be used when, at the range and in the direction of 
the scatterer, the array's field pattern (of the type shown in Figs. A-2 
and A-3) is sufficiently close to the r=c0 pattern. 
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Fig. 60, Directive gain and far-field limit function patterns, along 
the ground plane, for CHFA's array in the presence of Fig. 57I s 

 h/À(h)=.230(101.4m) tower where the tower is in the array's main beam 
and r s  ranges from 300m to 2000m. 
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Fig. 61, Directive gain and far-field limit function patterns, along 
the ground plane, for CHFA's array in the presence of Fig. 57's 
h/X(h)=.230(101.4m) tower where the tower is located broadside to the 
array and r s  is (a) 300m, (b) 500m and (c) 1000m. 
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Fig. 62, Directive gain and far-field limit function patterns, along 
the ground plane, for CHFA's array in the presence of Fig. 57's 
h/À(h)=.230(101.4m) tower where the tower is located in the array's 
null direction and r s  ranges between 300m and 1000m. 
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5.3 The Minimum r s  for which the Near-Field Limit Functions are Accurate 
when the Antenna is an Array - 

Figures 63 and 64 compare directive gain and near-field limit 
function patterns for CHFA's array in the presence of Fig. 57's 
h/X(h)=.230(101.4m) tower where the scattering tower is located in the 
direction of respectively the main beam and null for the array's pattern. 
The sub-figure corresponds to different values for r s . 

Let us first consider the case where the scattering tower is located 
in the direction of the main beam for the array's pattern. When 
r 5 /A(r 5 ) is .6804(300m), Fig. 63(a) shows that the near-field limit 
functions are a little too widely separated. This is not surprising 
because, as was stated in their derivation, the near-field limit functions 
should only be used when the scatterer is in the far-fields of the elements 
of the array and when r s  is 300m the range between the scatterer and the 
nearest array element is 300m-110.2m or 189.8m; a range which is much less 
than the previously given value of 653.6m for rn . The near-field limit 
function patterns in Fig. 63(b), where  r 5 /X(r 5 ) is 1.134(500m), are very 
close to true limits dispite the fact that the distance between the 
scatterer and nearest array element (500m-110.2=389.8m) is still signifi-
cantly less than the above value for rn . When the scatterer is in the 
direction of the main beam of the array's pattern, a comparison of Figs. 
60(a) and 60(b) with respectively 63(a) and 63(b)shows that the far-field 
limit functions perform a little better than do the near-field limit 
functions. This probably occurs as the result of an approximation made 
during the derivation of the near-field functions wherein Dok(90 ° ) was 
used to compute the strength of the field from array element k and incident 
on the scatterer. Dek(90 ° ) is array element k's 0 polarized directive 
gain along the ground plane when the scatterer and other array elements are 
absent. Its use in the near-field limit functions is approbriate only if 
the other excited arrray elements do not significantly change array element 
k's current distribution. In contrast, the far-field limit functions employ 
D ae(90 ° ,180 ° ) to compute the strength of the field incident on the 
scatterer. Da0(90 ° ,180 ° ) is the arrays directive gain in the direction of 
the scatterer when the scatterer is absent and hence any effects on an array 
element current distributions, due to interactions between array element 
currents, are included when D a 0(90 ° ,180 ° ) is computed. 

Figure 64 contains directive gain and near-field limit function 
patterns for the same array-scatterer combination considered above except 
that the scatterer is located in the null for the array's pattern. When 
r s  is 300m, the distance between the scatterer and the nearest array 
element (189.8m) is significantly less than r0 (653.6m) and, as Fig. 64(a) 
shows, the directive gain pattern falls outside the near-field limit 
patterns near the pattern's null direction. However when r s  is 500m and 
1000m (see (h) and (c) in Fig. 64) the near-field limit functions give 
satisfactory upper and lower bounds for the directive gain pattern. When 
Figs. 62 and 64 are compared it is seen that for the case where the 
scatterer is in the direction of the null for the array's pattern, the 
near-field limit functions are accurate down to smaller values of r s  than 
are the far-field limit functions. 
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6. SUMMARY  AND CONCLUSIONS 

Two sets of limit functions (called far—field limit functions and 
near—field limit functions) were derived where both give approximate upper 
and lower bounds on the directive gain for an AM broadcast antenna in the 
presence of a tower, building or similar structure. When the antenna is a 
single monopole, the far—field and near—field limit functions are identical 
and give accurate bounds when the monopole to scatterer range (r s ) is 
about rn  (see eqn. (18)) or greater. For the case where the antenna is a 
multi—element array, the two types of limit functions differ as regards the 
minimum r s  for which they are accurate. The far—field limit functions 
are simpler than the near—field functions and are accurate provided r s  is 
large enough such that the array's directive gain can be employed to 
accurately compute the power density of the field incident on the 
scatterer. Accurate bounds are provided by the near—field limit functions 
provided the distance from the scatterer to the nearest array element is 
approximately rn  or larger. The near—field limit function's minimum 
range can be significantly less than that for the far—field functions when 
the direction to the scatterer is near that for a null in the array's 
pattern. 

The scatterer's scattering cross—section must be known before the 
above limit functions can be used. This parameter is both difficult to 
accurately compute and not readily available and therefore included here 
(see Section 3) are scattering cross—section characteristics for structures 
ranging from towers whose radii are .0005X, up to buildings whose 

dimensions in horizontal cross—section are .2Xx.2X. 

The limit functions show that a structure would distort an 
antenna's directive gain pattern less if the structure's scattering 
cross—section were reduced. The following two methods for reducing a 
tower's scattering cross—section were investigated. 
1) Electrical isolation of the base of the tower from the ground plane. 
2) Placement of vertical stubs on the tower. 

Method 1) was found to be effective provided the tower's height (h) is 
about X/4 or less. Method 2) was tested on towers whose heights (h) were 
X/2 or less. The characteristics for full—length loaded stubs on a tower 
(see Fig. 35) were computed. It was found that: 1) the frequency bandwidth 
for this system increased significantly as the number of stubs was 
increased from one to four, and 2) changing the stub wire to adjacent ',_ower 
wire spacing (d) from .0015X to .0030X, increased the system's bandwidth: 
however this increase was not considered to be significant. Note that by 
the statement under 2) above, the author does not wish to imply that the 
diX spacing is not important. Further research is required to determine 
the effect of d/X's magnitude on the system's properties. Both full — length 
loaded and short stubs (see Fig. 44) were tried on towers where h ranged 
between .25X and .50X. The short stubs were found to perform best. This 
was particularly true when - h was greater than about .35. The calculations 
showed that care should be taken when adjusting the: 1) load reactance for 
full—length loaded stubs, and 2) length for short stubs. This is true 
because improper adjustments of the above could easily produce a scattering 
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cross-section for the tower-stub system which is much larger than that for 
the tower alone. 

We have not investigated here the use of stubs on buildings as 
means of reducing their scattering cross-section because it was felt that 
an impractically large number of stubs would be required. Note that it has 
been shown here that at least four stubs are required to give the 
tower-stub system sufficient bandwidth. S.J. Kavangh l°  has investigated 
the use of rooftop umbrella type structures as a means for reducing a 
building's scattering cross-section. In full scale tests he managed to 
reduce the scattered field by 4.4 db to 6.6 db. It therefore appears that 
we do not have a practical method for significantly reducing a building's 
pattern distorting effect. The limit functions and scattering 
cross-section values in this document should enable the broadcaster to 
predict whether or not a building (or tower) will cause a problem and 
hence, if necessary, make it possible for him to take action before the 
structure has been erected. 
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APPENDIX A 

THE GROUND PLANE FIELD PATTERN FOR CHFA'S 

BROADCAST ARRAY AS A FUNCTION OF RANGE 

A-1. INTRODUCTION 

When the field due to a radiating structure is being measured for 
the purpose of determining its directive gain, it is necessary that the 
measurements be made at a sufficiently large range from the structure. 
This is true because the shape of an antenna's field pattern changes as a 
function of range (r), and is only equal to the far-field shape in the 
limit as r approaches infinity. Investigated here is how the shape of the 
pattern for CHFA (Edmonton)'s broadcast array changes as r is changed. 

In addition, it will be shown that a commonly used method for 
computing the far-field pattern shapes for broadcast arrays can give 
erroneous peak-to-null region ratios. 

Unless otherwise indicated, all calculations will be done using a 
computer program called NEC (Numerical Electromagnetic Code). 

A-2. COMPUTATION OF THE GROUND PLANE FIELD PATTERN FOR CHFA'S ARRAY AS A 
FUNCTION OF RANGE 

Many of the symbols used here are defined in Fig. A-1. The values 
listed in Fig. A-1 caption were taken from [3]. Note that CHFA's towers 
are triangular in cross-section where each side of the triangle is 2 ft. 
(.6096m) long. The calculations which appear here were done for towers 
which are circular in cross-section where the towers' radii are .8 ft 
(.24384m). This will make no appreciable difference as far as the array's 
patterns are concerned. It will, however, result in computed input 
impedance characteristics which are somewhat different from those for 
CHFA's array elements. 

Let 

Ik = li k lexp(pck ), k = 1,2,3 be the current at the 
inputs to array elements 1, 2 and 3. 

Vk = IVklexp(jek), k =1,2,3 be the voltage at the input 
to array elements 1, 2, and 3. 

Note that the magnitudes for current voltage and electric field intensity 
will be peak (as distinguished from rms) values. The caption for Fig. A-1 
shows that the input currents are related to each other as follows: 
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11/12 = . 538/97.5 °  

13/12 = . 484/-97.5 ° . 

NEC employs voltage sources and therefore our first step will be the 
computation of the voltage sources which produce the following source 
currents: 

Ii  = .538/97.5 °  amps 

12 = 1/0 °  amps 

13 = . 484/-97.5 °  amps 

When the array elements are fed by source voltages, it is most 
convenient to relate the feed currents and voltages as follows: 

r-y11, Y12, Y17 

Y21 ,  Y22 ,  Y23 

LY31, Y32) Y32j 

NEC can be used to compute the elements in the above admittance array. For 
example, to compute Y11, Y2I and Y3I, a voltage source (VI) is applied at 
the input of array element 1 while the inputs to array elements 2 and 3 are 
shorted (i.e. V2 = V3 = 0). Under these conditions, NEC is used to compute 
Ii, 12 and 13 and, as equation (A-4) shows, Y1, Y21 and Y3I are given by 
the following equations. 

Yll = II/V1 

Y21 = 12/VI 

Y31 = 13/V1 

NEC gives the following values (in mhos) for equation (A-4)'s admittance 
array: 

Y11 = 3.11282X10-3  + j(1.24366X10 -3 ) 

Y21 = 9.98481X10 -4  + j(-1.86297X10-3 ) 

Y3 1  = -1.57794X10 -3  + j(-6.83925X10-4 ) 

Y12 = 9.98472X10 -4  + j(-1.86298X10 -3 ) 

Y22 = 2.51533X10 -3  + j(1.26720X10 -2 ) 

Y32 = 9.98472X10 -4  + j(-1.86298X10-4 ) 



E vfl  

V2 

V 3j 

Ii 

12 (A-5) 

I 3j 

Y13 = -1.57794X10 -3  + j( -6.83925X10 -4 ) 

Y23 = 9.98481X10 -4  + j(-1.86297X10 -3 ) 

Y3 3  = 3.11282X10-3  + j(1.24366X1(r 2 ) 

It follows from the reciprocity theorem (where Ymn  = Ynm  or YI2 = Y21, 
Y I3  = Y 31  and Y23 = Y32) and the symmetry associated with CHFA's array 
(which necessitates that Y11 = Y33, YI2 = Y32, Y13 = Y3I and Y2I = Y23 ),  
that 

Y12 = Y21 = Y32 = Y23 

Yll = Y33 

Y13 = Y31 

In general when two values should be equal as a result of symmetry, then 
NEC computes them as being equal. It is interesting to note as well that 
NEC output satisfies the reciprocity theorem very accurately. For example, 
compare the values for YI2 and Y2I (which are equal only through 
reciprocity), in the above list. 

Inversion of the admittance array in equation (A-4) gives the 
impedance array in 
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r- Z11> Z12> Z13 -1 

Z21, Z22, Z23 

L Z31, Z32> Z33 j 
When the admittances have the values listed above, then the elements of the 
impedance array (in ohms) are: 

ZI I  = 20.0315 + j(-75.8038) 

Z21 = 10.7392 + j(-8.96876) 

Z3 I  = -4.12887 + j(-8.22499) 

ZI 2  = 10.7391 + j(-8.96876) 

Z22 = 

Z32 = 10.7391 + j( -8.96885) 

Z I3  = -4.12887 + j(-8.22499-) 

Z2 3  = 10.7392 + j(-8.96876) 

Z3 3  = 20.0315 + j(-75.8038) 

19.6484 + j(-75.9588) 
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Substitution of the currents given by (A-1) to (A-3) into equation 
(A-5) gives the voltage sources which will produce these currents. The 
results (in volts) are 

V1 = 46.0799 + j(9.53997) 

V2 = 18.6960 + j(-74.1874) 

V3 = -22.2244 + j(-15.4170) 

When the above are used as NEC's voltage sources, it computes the 
following. 

P t  (power transmitted) = 14.6754 watts 

Ii  = .537998/97.500076 °  amps 

12 = .999997/.000049 °  amps 

13 = .484000/-97.500043 °  amps 

It can be seen that the above currents are very close to those specified by 
(A-1) to (A-3). 

Finally, the voltage sources as specified above give a radiated 
power of 14.6754 watts. We want the transmitted power to be 10 4  watts. To 
obtain this power, we must use voltage sources which are C times as large 
as those shown above where 

C = [10 4
/14.6754 ] 2  

The resulting voltage sources (in volts) are 

V1 = 1202.86 + j(249.030) 

V2 = 488.038 + j(-1936.58) 

V3 = -580.143 + j(-402.444) 

We now have sufficient information to compute the array's electric 
field intensity patterns using NEC. Only patterns along the ground plane 
(0 = 90 ° ) will be considered here. The ground plane was made to be a 
perfect conductor. Therefore, at the ground plane, the electric field 
intensity vector is on necessity 0 (or z) polarized. Let 

E 0  (r ' 
 90 ° ,4)) = the electric field intensity due to the array where the 
subscript 0 refers to the polarization direction and (r,0,) = 
(r,90 ° , )  specifies the location of the field. 

In the limit as r approaches infinity, IE 0 (r,90 ° ,)1 varies as 1/r. 
Therefore, for the purpose of making the patterns for different 
values of r easy to compare, we will plot r1E 0 (r,90 ° ,01 as a function 
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of cp. The results of the computations using NEC are shown in Figs. A-2 and 
A-3. 

A-3. A COMPARISON OF THE GROUND PLANE FAR-FIELD PATTERNS FOR CHFA'S ARRAY 
AS  COMPUTED USING A SIMPLE  EQUATION .4ND  NEC 

A commonly used method for computing the far-field patterns for 
broadcast arrays makes use of the assumptions that: 
(a)The amplitude, at a given range, of the far electric field on the 

ground, due to an element of the array is proportional to the 
amplitude of the current at the element's input. 

(b)The relative phases of the contributions by the elements of the 
array to the far electric field on the ground plane, is correctly 
given by considering the phases of the currents at the inputs to 
the array elements and the differences in distance from the array 
elements to the far-field point. 

Application of the above method to CHFA's array gives: 

r+co 
1131 ei[e3+27r(sMcos(p] + II2Ie i cc 2 	 (A-6) 

where A is a constant. The constant A is present because the method gives 
only the shape of the array's pattern. 

In Fig. A-4, ground plane far-field patterns, as computed using NEC 
and eqn. (A-6), are compared. The constant A in equation (A-6) has been 
set so that equation (A-6) gives the same value for 1E8 (r,90 0 ,01 as 
does NEC when (i) = 0 0 . It can be seen that the two methôds give 
significantly different peak-to-null region ratios. 

Equation (A-6) gives true patterns if it is assumed that the 
current distributions for the array elements are the same. Note that two 
current distributions are said to be the same if a constant can be found 
such that the constant times one of the current distribution is equal to 
the other current distribution. Tables A-1 and A-2 show NEC's computation 
of how current phase and current amplitude vary along CHFA's array 
elements. It can be seen that the current distributions are only 
approximately equal. The conclusion is that significant errors can occur 
in the peak-to-null region ratios for array patterns when they are computed 
with equations like (A-6). 

Lim n(s/X)cositl 
riE e (r,90 0 ,)1 = A fIl1e

1-2  
ex  



•1«. 

el(z) 

(deg.) 

.0 

-.070 

-.161 

-.281 

-.455 

-.711 

-1.021 

-1.341 

-1.671 

œ2(z)  - m2 	x3(z) - m 3 

(deg.) 	(deg.) 

	

.0 	 .0 

	

-.203 	 -.405 

	

-.460 	 -.910 

	

-.792 	-1.546 

-1.238 	-2.375 

-1.832 	-3.425 

	

-2.447 	-4.441 

	

-2.987 	-5.270 

-3.471 	-5.963 

(meters) 

.762 

2.762 

6.000 

11.200 

19.500 

32.570 

48.522 

64.470 

80.418 

TABLE A-1 

THE VARIATION OF  CURRENT PHASE ALONG THE  

ELEMENTS  OF CHFA'S  ARRAY  AS COMPUTED BY NEC 
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TABLE A-2 

THE DISTRIBUTION  OF CURRENT AMPLITUDE ALONG THE 
- 

ELEMENTS  OF CHFA'S ARRAY  AS COMPUTED BY NEC 

----, 

z 	II1(z)1lI11 	1I2(Z)/I21 	II3(z)/1131 
(metres) 

	

---  	 —_—_—_ -- 

	

.762 	1.0 	 1.0 	 1.0 

	

2.762 	 .9828 	 .9852 	 .9914 

	

6.000 	 .9591 	 .9645 	 .9782 

	

11.200 	 .9232 	 .9322 	 .9551 

	

19.500 	 .8611 	 .8745 	 .9082 

	

32.570 	 .7457 	 .7631 	 .8069 

	

48.522 	 .5750 	 .5933 	 .6389 

	

64.470 	 .3746 	 .3894 	 .4260 

	

80.418 	 .1419 	 .1485 	 .1647 

— 	 _  
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• 
.F...._ 

ELEMENT No. 

Z 

• 

TO FIELD POINT 
AT (r,94) 

Fig. A-1, Geometry for CHFA's broadcast array where: 
f=680kHz(X=440.882m), h a=88.392m, s=X/4=110.221m, g(feed 
gap)=1.524m, a(radius of element)=.24384m, P t (power transmitted) = 
10kW. I l , 12, and 13 are the feed currents for respectively elements 
1, 2 and 3 where: 1 1 /1 2  = .538/97.5 ° , 13/12 = .484L797.5 ° . The XY 
plane (ground plane) and array—elements are assumed to be perfectly 
conducting. 
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Fig. A-2, NEC computed field 
patterns for CHFA's array where 
r=200m, 300m and 400m. 

Fig. A-3, NEC computed field 
patterns, in the null region, 
for CHFA's array where r=1000m, 
1500m, 2000m, 4000m and cc. 
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Fig. A-4, A comparison of far-field patterns for CHFA's array as computed using NEC and eqn. (A-6). 



APPENDIX B 

AN EXPERIMENTAL  TEST OF THE 

COMPUTER PROGRAM NEC  

The computer program NEC was extensively used to obtain the 
results previously presented in the report. This appendix contains an 
experimental test of the ability of NEC to compute these results. 

Figure B-1 shows the test set-up used when making the 
measurements. A Hewlett Packard 8505A network analyzer was employed to 
measure the insertion loss presented by: a) the two monople antennas shown 
in Fig. B-1, b) the two monopole antennas bracketing a model tower, and c) 
the two monopole antennas bracket the above tower where the tower had 
stubs. Refer to Fig. B-2 for the dimensions of the tower and stubs. The 
elevated ground plane and its skirts form a continuously conducting 
surface. The large ground plane was formed of a 2.5 cm x 2.5 cm wire mesh 
screen which was about 15.2 m in radius. 

For the NEC calculations the dimensions and relative locations of 
the antennas and scatterers were as shown in Figs B- 1 and B-2. The ground 
plane was made to be flat and infinite. All surfaces were considered to be 
perfectly conducting. In the test set-up the cable characteristic impedance 
and the network analyzer's source and load impedance were 50 0 and therefore 
the NEC model incorporated: a) a voltage source in series with a 50  Q (R) 
resistor at the base of the transmitting antennas, and b) a 50  Q (R) 
resistor at the base of the receiving antenna. The power absorbed in 
the receiving antenna's resistor is given by P r=lI r /i21 2R where I r  is 
the peak current at the base of the receiving antenna. If the transmitting 
antenna's source (voltage source and series 50  Q  resister) were connected 
directly to the receiving antenna's base resistor, the power in the latter 

resister would be given by P o  =IVt /121 2/(4R) were Vt  is the peak 

voltage for the voltage source. The insertion loss (I.L.) associated with 
the system is therefore given by 

I I 2 

I.L. = 	 4R 2 	 ...(B-1) 
Po 	iV t 1 2 

For a given V t , NEC was used to compute I r . Equation (B-1) was then 
used to determine the insertion loss. 

Refer to Fig. B-3 for both measured and calculated I.L. values over 
the frequencies from 250 MHz to 300 MHz. Several points of interest are: a) 
The greatest difference between the measured and computed I.L. values was 
1.3 dB, b) At least for f between 250 MHz and 300 MHz, the tower reduces the 
coupling between the antennas, and c) the I.L. curve for the case where the 
scatterer is the tower with stubs, crosses over that for the case where 
there is no scatterer, at about f = 274 MHz. At the above cross-over 
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frequency the tower with stubs effectively disappears. It would be expected 
that the forward scattering cross-section (o0 (90 0 ,180 0 )) for the tower 
with stubs would have a minimum at about f = 274 MHz. As Fig. B-4 shows, 
NEC indicates this to be true. 



SEE 
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L 
0.g)96 

0.3048 

TOP VIEW 

SCATTERER 
(SEE FIG. B-2) 

RECEIVING  J  TRANSMITTING 

	

ANTENNA * 	ANTENNA k 
	 4- 	  
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0.3048 m —4-41F-014.40— 0.7620 m --11114.111-- 0.7620 m 0.3048 m 

CUTAWAY VIEW 

0.1524m 	 0.1524m 

ELEVATED 
SHEET METAL 	GROUND 	 GROUND 

SKIRT CONNECTING 	PLANE PLANE 	
L 5 cm CLEARANCE TO 

ACCOMODATE ANTENNA 
ELEVATED GND. 	 CONNECTORS AND 

PLANE WITH LARGE 	 RG-213/U CABLES 	 CABLES 
GND. PLANE 	 CONNECTING ANTENNAS 

TO NETWORK ANALYZER 
IN HUT BELOW LARGE 

GROUND PLANE 

Fig. B-1, Test set-up for insertion loss measurements. See Fig. B-2 
for scatterer dimensions. The Monopole antennas were .3175 cm in 
diameter. 
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JftFt  
0.0254 m 
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0.3175 cm 

0.254 m 
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Fig. B-2, Two scatterers were used: a) the above model tower with 
stubs, and h) the above metal tower without the stubs. 



f (MHz) 
260 	 270 	 280 

CONTINUOUS CURVES WERE COMPUTED USING NEC. 
DISCRETE POINTS WERE MEASURED. 

SCATTERER IS 
TOWER WITH 

STUBS 

250 

NO SCATTERER 

SCATTERER IS 
TOWER WITHOUT 

STUBS 

300 290 

Fig. B-3, NEC computed and measured insertion loss (I.L.), as a 
function of frequency (f) and two monopole antennas bracketing: a) no 
scatterer, h) a tower with stubs, and c) a tower without stubs. 
Refer to Figs. B-1 and B-2 for the dimensions and relative locations 
of the antennas and scatterers. 
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Fig. B-4, NEC computed ae(90 0 ,180 0 )/À2  as a function of frequency 
for Fig. B-2's tower with stubs and tower without stubs. 
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