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A NATURAL MODES FORMULATION AND MODAL 
IDENTITIES FOR STRUCTURES WITH LINEAR VISCOUS DAMPING 

by 

F.R. Vigneron 

ABSTRACT 

A modal model is developed for an elastic structure with linear vis-
cous damping. The transfer functions and normalizations that are of use 
in experimental modal parameter estimation are given special attention. 
Procedures for extraction of damped natural modes from experiment-
derived residues are outlined. Mass-properties-related modal identities 
are obtained for the damped modes. 

1.0 INTRODUCTION 

There are several modal models that are in use or relevant to current R&D in modal 
parameter estimation by regression (curve fitting) and in substructure coupling. The 
following three are of specific interest. 

A first modal model corresponds to an undamped linear elastic structure. In this 
case, the modal equations in the time domain are uncoupled linear second order 
undamped vibratory equations. The modal parameters include natural frequencies 
and mode shape amplitude coefficients. The modal displacements of a particular 
mode are in phase with each other. The basic transformation is between physical 
displacements and modal displacements (a point transformation)'. 

(ii) A second modal model corresponds to a linear elastic structure with linear viscous 
damping proportional to a combination of the stiffness and mass properties. The 
modal equations in the time domain are uncoupled linear second order damped vi-
bratory equations and the modal parameters include modal natural frequencies, 
mode shape amplitude coefficients and modal damping factors. As in (i), the basic 
transformation from physical to modal variables is a point transformation, and the 
modal displacements of a particular mode shape are in phase with each other." 

(iii) A third modal model corresponds to a linear elastic structure with general linear vis-
cous damping.s.' In this case, the modal differential equations in the time domain are 
paired first order differential equations. The modal parameters include modal natural 
frequencies

' 
 mode shape amplitude and phase coefficients, and modal damping fac-

tors. The basic transformation links physical displacements and velocities with modal 
displacements and velocities (contact transformation). The modal displacements of a particular mode shape are not in phase with each other. 

The first and second models are subcases of the third. 

(i) 

1 
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There are additional modal models that apply in special and or limited situations. 
For example, the single-degree-of-freedom model with viscous or hysteretic damping 5 ' 6 , 

a model based on appropriated input forces 7,8 , and models with centrifugal stiffening 
and gyroscopic stiffness  9,b0

. 

In the direct modal parameter methods of parameter estimation, an analytical model 
of the output/input response is defined in terms of modal parameters (modal frequencies, 
damping factors, mode shape coefficients); the identified parameters are the numerical 
values of the modal parameters of the analytical modal model that yield the best curve 
fit of the analytical model of the response to a corresponding measured function. In this 
context, various techniques use the second, third, or single-degree-of-freedom viscous on 
hysteretic modal models. Associated modal orthogonality checks and adjustment of the-
oretical models to match measured results are currently done on underlying assumption 
of the first or second model. 

Initial substructure coupling techniques were based on the first model. Recent sub-
structure coupling work proposes use of the second or third models in order to extend 
earlier methods to include damping synthesis. 

Until recently, the distinction between the models was not particularly important in 
most practical situations, because the accuracy of measurement-derived modal data was 
limited. However, with recent interactive computer processing of measurements and with 
parameter estimation techniques such as the complex exponentials methods, the phases of 
the modes are now being accurately resolved. For most real structures, the displacements 
are observed to be out of phase with each other. Thus the generality offered by the third 
model seems needed, relative to the first or second, for modal parameter estimation, 
modal completeness and or orthogonality checks and for substructure coupling. 

Due to wide use over many years, the characteristics of the first model are well under-
stood from both physical and mathematical viewpoints. Recently, new mass-properties-
related modal identities have been developed that have significance to analytical and 
experimental verification of mode set completeness and modal truncation procedures". 
The characteristics of the third modal model are not nearly as well developed and un-
derstood. 

The intent of this report is twofold: first, to present a development of the trans-
formation from physical variables to 'damped natural modal variables' for structures 
with linear viscous damping, in a manner that gives visibility into the structure of the 
equations and into aspects relevant to parameter determination applications; second, to 
derive modal identities similar to those of Ref. 11, for the damped natural modal model. 

2.0 STRUCTURE IN TERMS OF PHYSICAL VARIABLES 

Consider a flexible structure as is depicted schematically in Fig. 1. The structure 
is defined by N points, relative to a coordinate system (oxyz). In the context of modal 
parameter identification, where a finite number of points are excited and or instrumented, 
it is convenient to regard the number, N, as finite. The development to follow applies 
for the finite situation, and as well in the limit as N tends to infinity in which case it 
becomes a continuum representation. A mass, mt, is associated with each point. The 
stiffness and damping forces of the structure are assumed to be linear functions of the 
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deformation variables, (te, vt, tut). The structure is further considered to be restrained so 
that rigid body translations and rotations relative to (oxyz) are not possible. 

Define the deformation matrices, u, v and Tv, of order N x 1, as 

3 

	

U1 	 V 1 

U2 w 2 

	

U=  US 	V = V3 	iV = Wu'

1  

s 

• . j 
U N  V 

and the corresponding position matrices of order N x 1 as 

(2 — 1) 

(2 — 2) 

The motion equations follow. 

M N  Û + C„Ù + C zy l% + C„W + K„U + K zy V + K„W = f x  

M N  Ér.  C zyû 	+ Cy Zr;i7  KXyrr Kyyl l  KyzW = fy 

M N 	C „Ù C yzft  C „Fit  K „U + K yz ir K izi3 7  = fz. 

In Eq. (2-3), M N  is a diagonal matrix of dimension N x N, 

m N = (0 

(2 — 3) 

(2 — 4) 

K„, K zy , etc. are N xN stiffness matrices, c„, cxy , are damping matrices, and h,  fi,,  and 
are N x 1 column matrices of external force components at the points of the structure. 

Define the 3N x 1 column matrix, q, as 

q=  [ 1wV . 

Then Eqs. (2-3) may be written as 

(2 — 5) 

1114+ C4+ Kci= f, 	 (2 — 6a) 
where 

M N  0 	0 
M=O  M N  0 1. 

0 	0 M N  
C 
 =[

Cz. Cz y  C.z 
esti CYY CYzi; 
Czz Cyz Czz 

K =[lC zy  Ki,,, K yzi; 	f =[fy l. 
K zz  Ki, z  K zz  

Kzx Kzy Kzz 	 r Kzz  K K zz  
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The order, n, of Eq. (2-6a) is 3N. M,C and K are each of order n x n, and are 
positive definite and symmetric. For this c,hoice of deformation coordinates M is also 
diagonal; there are other choices (such as finite element coordinates) where M turns out 
non-diagonal. The initial conditions associated with Eq. (2-6a) are 

q( 10) = go; 	4(4) = 40. 	 (2 — 6b) 

Equations (2-6a) and (2-6b) model the structure in terms of physical variables. 

POINT i, DEFORMED 

Figure 1. Coordinates of Structure 



3.0 TRANSFORMATION TO DAMPED NATURAL MODAL VARIABLES 

It is necessary at the outset to arrange the system's equations in a state variable 
form. The most familiar such form is due to Foss3 . However, Foss's arrangement leads 
to parameter matrices that are not positive definite; as a consequence the desired modal 
identities (the 'damped mode' equivalents of Ref. 11) cannot be established directly and 
easily. An alternate arrangement introduced in Refs. 9 and 10 turns out to have the 
needed positive definite parameter matrix; as a consequence, the modal vectors constitute 
a basis in a vector space that has a Euclidean inner product and for which Bessel's 
and Parseval's equations can be established. Then the modal identities follow directly. 
Accordingly, this report develops the damped modes theory following the state variable 
arrangement of Refs. 9-10. 

5 

3.1 Structural Model in State Variable Form 

The following equation is self evident: 

Kei Kei = 

Equation (3-1) may be combined with Eq. (2-6a), to obtain 

{ MO KO 	II 1 [ _CK  Ko  rt  = [ 01 

(3 — 1) 

(3  —2)  

Equation (3-2) may be written in the first order state variable form, 

itej + BQ = F, 	 (3 — 3a) 

where 

= 
A=  riti 01 

F = 
toi 

is= fc Ki 
[ —K 0 j • 

(3 — 4a) 

(3 — 4b) 

Q  and F are of order 2n x 1. A is of order 2n x 2n and rank 2n, and is positive definite 
and symmetric. B is order 2n x 2n, and is the sum of a symmetric part involving C and 
a skew symmetric part involving K. The initial condition, Eq. (2-6b), becomes 

Q(to) =  Q. 	 (3—  3h) 

Equations (3-3) model the system in state variable form. 

3.2 Eigenproblem Analysis 

Substitution of 
Q = Tkèk t 	 (3 — 5) 

into the homogeneous part of Eq. (3-3a) results in the eigenproblem 

(4A + B ) isk  = 0. 	 (3 — 6) 



(3 — Ob) 

= 1 for critical damping. 

to within a complex scalar 
a matrix row, TT, can be 

11. (.1,A+ B) =O. (3 — 10) 
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The eigenvalues, 4, are solutions of 

det(ÀkA + B)= 0. 	 (3 — 7) 

Since A and B are of dimension 2n, Eq. (3-7) is a polynomial of degree 2n. From the 
theory of polynomial equations it can be shown that the equation yields 2n eigenvalues 
which are real or complex. Since the rank of A is also 2n, the eigenvalues are non-zero. 
(The methods of this section can also be extended to the case where A has rank less than 
2n. Rank less than 2n implies the existence of À's which are zero, and this physically 
represents 'rigid body' modes.) The complex eigenvalues occur in complex conjugate 
pairs 

(3 — 8a) 

(3 — 86) 

The eigenvalues can be assumed distinct since non-distinct roots can be rendered dis-
tinct by a small change in physical parameters. x's which are complex correspond to 
'less than critically damped' modes, and real à's correspond to `greater than critically 
damped' modes. A change in physical parameters in Eq. (3-7) (particularly an increase 
in damping) can cause vk  to change from a real quantity to an imaginary one, and thus 
change two complex roots to two real ones; thus real À's are also in pairs. The A's of Eq. 
(3-8) that are complex can be converted to the conventional natural modal frequencies 
and modal damping ratios, and ç, by the formula 

Ak = - Crk 

n= -0k - 

Çk  

The converse is 

2 	2 	2 = Pk + ek• (3 — 9a) 

= Skwic; 	11  = 4(1- 
Then, I Ak 1= wk • s'ic <1  for less than critical damping, and çk  

A matrix column, Tk, is calculated (and determinable 
constant) by solving Eq. (3-6) for a particular Ak. Also 
calculated for a particular A, from 

If .1 1, is complex, the corresponding column (Tk ) and row (ro can be expected to be 
complex. If A, is real, then the Tk  and rk  would be real. Taking the transpose of Eq. 
(3-10) and recognizing that A = AT yields 

(x rit+BT)r,. = o. 	 (3 — 11) 

Since B is not equal to BT Eqs. (3-6) and (3-11) are different, and thus Irk and rk  are 
not equal. 

Premultiply Eq. (3-6) by 1',T: 

AkrT Ar k  + FBT,, = 0. 

Post-multiply Eq. (3-10) by Tk: 

(3 — 12) 

Àr rTA-rk  + rTB-r k  =0. (3 — 13) 
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Subtract Eq. (3-13) from Eq. (3-12) to obtain, 

— Xr)T,TArk = 0. 	 (3 - 14) 

Hence, for two non-equal eigenvalues  A,. and 4, 
rr, AT, = 0; T erk = 0 	r k. 	 (3 - 15) 

It follows from Eq. (3-12), and from Eq. (3-11) after multiplication Tr, that 

TTBT k 	TT nT rk  
Ak = 	k (3 - 16) 

ATk 	TrArk • 

Ak and A are two distinct eigenvalues and consequently IITATk  and rr sT, are equal 
to zero (i.e., A,. = Ask  in Eqs. (3-12) to (3-13)). 

Tk and r, are thus right and left eigenvectors that are orthogonal relative to A. 

Each Tk obtained by solving Eq. (3-6) is determinable only to within an arbitrary 
complex scalar constant (scale factor) and also may be viewed as having arbitary physical 
units. 

The most convenient choice for the arbritary scale factor and units depends on the 
application; options will be discussed in Chapter 4. In this chapter (Chapter 3) all 
expressions are valid for any scalar factor and type of normalization. 

To further demonstrate the structure of Tk, consider the upper and lower internal 
columns, T ikt  and Ti, each of order n x 1: 

r 7' 1 
Tk  = [ 	

(3 - 17) 
T, 

Substitute Eq. (3-17) and the parameter values for A and B of Eq. (3-4b) into Eq. (3-6): 

( ÀkM 0 	( ) ( C K ( Te  ) _ o  
0 	AkK) 	) 	-K 0 ) (Ti k  

Eq. (3-18) reduces to 
AkMTZ + CT; +KT =0  

AkKT ik - Kr, = 0.  

(3 - 18) 

(3 - 19a) 

(3 - 196) 

From the latter equation, 
= Àk T ik • 	 (3  - 20 ) 

Denote the n x 1 column matrix,  T 	4, k  (Ok is, in general, complex). Then from Eqs. 
(3-20) and (3-17), 

(3 - 21) Tk = I 

Eqs. (3-19) are further easily arranged to obtain 

[Akek 
L 4gbk L Wk 

- kek] .  

(AM  + AkC + K)Ok = 0. 	 (3 - 22) 



rk = r-Akek l  

L ek 
(3 — 24) 
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A similar parallel development where r„ is partitioned into upper and lower parts and 
Eq. (3-11) is decomposed in a similar manner yields 

= -À k rik 	 (3 - 23a) 

(4M + Xic e + ion = 0. 	 (3 — 23b) 

Thus rik  equals ek , and 

3.3 Vector Space Corresponding to Damped Natural Modes 

The quantities (T k  + '11) and i(T k  — 	k = 1 to n, are 2n real-valued linearly- 
independent column matrices (each of order 2n), and are thus a vector basis of a real 
vector space, having dimension 2n. For any vector, G (i.e., real-valued column matrix) 
contained in the space, GTAG > 0 since A is positive definite. Thus GrAG2 defines a real 
inner product for two arbitrary vectors, G 1  and G2, contained in the space. Thus the 
vector space is a real inner product space (a Euclidean Space,  En).  The corresponding 
dual basis consists of (rk  + r.k.) and i(r k  — r ) , k = 1 to n. In accordance with the Rep-
resentation Theorem, a real-valued vector, G, contained in Ean , may be represented in 
terms of the T - basis by 

G = EaktIrk +1V+bkork - Ira 
k=i 

(3 — 25) 

where ak  and bk are real-valued scalars. The above expression rearranges to the form 

G = DakT k 	) 	 (3 — 26) 
k=1 

where ak =ak +ibk. Thus one may regard the basis vectors as Tk  and T, if at the same 
time appropriate pairing of complex and complex conjugate quantities is maintained to 
ensure that the total expression is real-valued. Similarly G may be represented in terms 
of the dual basis as 

G = Eok rk 	 (3-27) 
k=1 

It proves convenient to work directly with the complex I's and r's and the representation 
in the form of Eq. (3-26) as opposed to the real-valued basis vectors and the form of Eq. 
(3-25). 

3.4 System Model In Terms of Complex Modal Variables 

The real-valued column matrix, q(1), of Eq. (3-3), can be represented as 

Q(1) = E prkpat)-E T;cp(t)i • (3 — 28) 
k=1 



rzs(t)  
Pk AlePk rrArk •  

(3 — 30) 

(3 - 336) 

of complex modal 
by substitution of 
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In Eq. (3-28), pk (t) is a complex-valued scalar variable 

Pk (I) = ek(t) + igk(1). 	 (3 — 29) 

Eq. (3-28) defines a one-to-one transformation from the 2n real scalar physical variables 
contained in Q (i.e. te(t), te(t), wis(t), etc. of Eq. (2-1)) to n complex scalar modal variables, 
pk (t) (or equivalently, a transformation to the 2n real modal variables, ek(t) and q k (t)). To 
transform the state variable differential equation, Eq. (3-3a), to the equivalent modal 
variable differential equation substitute Eq. (3-28) into Eq. (3-3a), premultiply by r,T, 
and use the orthogonality properties of Eqs. (3-15) and (3-16), to obtain 

The denominator, TIATk , is 

1-À k 4q. ' «q:1 mo K0  )) 

when combined with Eqs. (3-4b), (3-21), and (3-24). The above reduces to 

.»[Mek  + 

Multiplication of Eq. (3-22) by tpli and combination with the above gives the final result, 

FrATk = -Xkor(nkm+c)ek. 	 (3 - 31) 

Likewise, for the numerator of Eq. (3-30) 

FF  = -À k er. 	 (3- 32) 

Substitution of Eqs. (3-31) and (3-32) into Eq. (3-30) results in 

•rf ( t )  
ék (i) — Àkyk(i) = 	

(2x
—
kM + C)4,k • 

A similar procedure with rrr  as the premultiplier leads to 

(3 - 33a) 

elcr r(i) 
ed.') — Ak 14 ( 1 ) = 	( 2À; M CM .  

Equations (3-33) are the differential equations of the system in terms 
variables. The corresponding initial conditions, p(t o ), can be obtained 
Eq (3-28) into Eq (3-3b), and inversion. 

3.5 Transfer Matrix and Residues 

For parameter identification, the transfer matrix, H, between f and q is needed in 
terrns of modal parameters. Appropriate forms of H are derived in this section. 
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The transformation between q and p may be deduced from Eqs. (3-28), (3-4a), and 
(3-21) to be 

q(t) = E{O k pk (t) + ek e(t)). 	 (3 - 34) 
k=1 

Equations (3-33) and (3-34) are next transformed by the Laplace Transform. In this 
context the two-side transform of a complex variable is implied with g(t) taken to be 
zero at t o  = —00. Then p(-oo) and p*(-oo) are zero. The transformed modal equations, 
are then, from Eq. (3-34); 

• rf(a) 	1  
14(8) = 01(24M + C)Ok (a - Àk) •  

cerf(8) 	1  
lek(8) = ek T  (2.11M C) 4'*k  (8 - eic ) •  

(3 - 35a) 

(3 - 3519) 

Substitution of Eqs. (3-35) into a transformed version of Eq. (3-34) yields 
n 

	

. 	k •I8  1: 	1 	 dre ds*T 
4( 8 ) = E 	 - ' " k I 

 11.1; ( 2À k M + C) 11 1  k • (a - Àk) + 8117.  (2ekM
k 
 ± C)tn • (a -1  An ) 1(8)

. 	
(3 - 36) 

Define the residue matrices, Rk and R•k, as 

	

Rk = 	ek or  
•

.7, inT 

• r(2ÀkM + C) k' 
	= 

414 1 	 07,T(2nM + C)01 ' 	
(3 - 37) 

and the `transfer matrix', R*(8), as 

Rk 	irk  1 
1-1(s) = 	

[

ts — 4 	- All • k=1 

Then Eq. (3-36) may be written as 

4(a) = 11 (8) 1(s) 

(3 - 38) 

(3 - 39) 

Equation (3-28) can be inverted to the time domain, to yield the unit impulse response 
function, H(t): 

H(t) = E(Rk e Àkt irk eX7,t) . 

 k=1 

Rk , H(a), and H(t) are symmetric and of dimension n x n. 

(3 - 40) 

3.6 Invariance of Residues to Mode Shape Scale Factor 

As noted in Section 3.2, the mode shapes,  •IC , are determinable only to within a 
multiplicative scalar complex constant. Suppose that a mode shape has been calculated, 
and has a value, *I. Suppose that is then rescaled to a new value, .k , (by dividing each 
element of the n x 1 column matrix by dk ) so that 

esk  = dke k • 	 (3 - 41) 



q(t) = 2 EIRe.k.ek(1)- 
k=1 

(3 - 42) 

ijk + 2çkwkiek + wbk = rrf. (3 - 44) 

ek( 1 ) , 
Vk 

(lc  

Pk(i) (3 - 45b) 

Then, with reference to Eq. (3-37), 

eikr 	 dileker 	= ,,k. 
07(2Akm clek  dz{ iT(2xkm G ) ek )  

Thus the residue expressions, and also expressions for R(8) and H(t) given above are 
demonstrated to be invariant to the scale factor dk • 

3.7 System Model in Terms of Real Modal Variables 

The system model can be expressed in terms of real-valued modal variables, ek(t) 
and rik(t), as an alternate to p(t)and "(I) of Chapter 3.4. Substitution of Eq. (3-29) into 
(3-34) results in 

1 1 

Substitution of Eqs. (3-29) and (3-8) into Eqs. (3-33a) and (3-33b), and successive 
addition and subtraction of the two equations leads to 

Ék Crkek + vk qk = sp. 	 (3 — 43a) 

tik + CrIcrlk Vkek = 	 (3 _ 43b) 

where 8,7: and  TT  are the real and imaginary parts, respectively, of  
Equations (3-43) are two first-order modal differential equations that are the damped- 
natural-modes counterpart of the familiar single uncoupled second order modal equation 

of the proportional-damping theory. Of significance, however, is the fact that Eqs. (3-43) 
cannot be put into the form of Eq. (3-44), except for the special cases of proportional 
and zero damping. Because of this, the physical concepts of "modal mass", "modal 
damping", and "modal stiffness" are of limited use in the damped natural modes theory. 
The transformation of Eqs. (3-43) from variables (4,11k ) to (rk,Pk) by 

rk (t)= - -- ek)t)+ q at) 	 (3-  45a) 
vk 

together with appropriate substitutions and use of Eqs. (3-9) lead to: 

( 
.13k + 2çkWkÉk + (tIbk = ‘,„9, 	çksr  

Tk) f + Sri. (3 - 46) 

The above equation is different in structure from Eq. (3-44) because of the term in t.  

It was noted in Chapter 3.2 that 

rik.TArk = o. 	 (3 - 47) 



irTKek  
À'ekIk = szekTmek  ' (3 — 48) 

Ink = 4,,I Tmcsk 

kk = sitekT K  •k , 
then, 

deTnagI T 
Àk A  dr,* T Aii> k * 

(3 — 49a) 

(3 — 496) 

(3 — 50) 

(3 — 51) 

(3 — 52) 

2 	kk  
(4/k = 	• 

ink 

IIT BTk = 0 
Likewize, the relation 

can be used to show that 

ai.Te 
wk à  

E.k + AEk = 
2derM.k •  

(3 — 54) 
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Subsitution of Eqs. (3-4b), (3-21) and (3-24) into this expression and reduction leads to 

ek 4 equals  o + vZ, which in turn equals 4 If a "modal mass" and a "modal stiffness" 
are defined by 

From this expression follows a definition of "modal damping" as 

ck = eplI TC«,k, 

Since >tk + A; equals —2w k sk , Eq. (3-52) yields 

ck 
214k çk = 	• 

Ink 

(3 — 49c) 

(3 — 53) 

Equations (3-50) and (3-53) can be used to convert Equation (3-46) into a second order 
differential equation involving m k ,ck , and kk • 

For the special case of zero damping, C = 0,  u = 0, Ilk = lAlk, and the .k are real. Then 

Sk = 0; —44  
Tk = 

21A1  k «sr 	k • 

Substitution of this specialization into Eqs. (3-43), and elimination of qk in favour of ek 
leads to the familiar second order form 

Additional information on the real modal variables formulation is available in Ref 9. 



1 
Qk = Or (2AkA1 C)«.k •  

(4 - 1) 
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4.0 EXTRACTION OF MODAL PARAMETERS FROM EXPERIMENTAL DATA 

To obtain experimental estimates of the modal parameters (4, elek, R k , and others), 
a modal survey test is first done in which vibratory forces are input to the structure at 
one or more locations, and structural responses are measured at the same and additional 
locations. The basic experimental data, namely measurements of the input forces and the 
responses with time, are preprocessed with frequency or time domain methods to obtain 
an experiment-derived estimate of part of the transfer matrix, H, in the frequency or time 
domain. Estimates of the complex frequencies, 4, and the residues, R k  are next deduced 
from the experiment-derived H by a curve fit type of parameter estimation method. In 
this type of method, the experiment-derived à k  and Rk are the numerical values of these 
parameters that result in a best curve fit of the analytical expression for H of Eq. (3-38) 
or (3-40), to the corresponding measurement-derived H. 

Estimates of the modal frequencies, cek , and damping factors, çk , are directly calcu-
lated from the estimates of 4 (using Eqs. (3-9) for example). It is not as straightforward 
to deduce the mode shapes, ek , and appropriate normalization factors from the estimates 
of Rk and 4. Ways of achieving this are given in Ref. 13 for the proportionally-damped 
(0 real-valued) theory. This chapter extends the methods of Ref. 13 to apply for the 
damped natural modes theory given herein. 

4.1 Normalisation Constant 

The normalization constant, Qk, is consistent with Ref. 13 when defined as 

is a complex scalar, and its conjugate is further given by 

1  
Qic = 	 (4 - 2) 

«IT (2n M + C)41:1 

The numerical value and units of Qk thus depend on numerical value and units of the 
mode shape, or vice-versa. With this definition of normalization constant, the residues 
assume the form, 

(4 - 3) 

(4 - 4) 

Three of several possible ways of assigning the arbitrary constant associated with each 
mode shape, and hence Qk, follow. 

(a) Choose the numerical scaling for each mode so that the scalar element of the mode 
shape at the main exciter's driving point is 1+10. As will be seen, this implies that Qk 
equals the scalar value of the residue associated with the driving point. This choice of 
normalization is compatible with current experimental modal analysis conventions. 

Qk 

R k = Qkoleker; 
and ii(e) of Eq. (3-38) takes the form 

e(e) = En  { 

k=1 

Qk elbk OZ.  Q,:irke`k r  

* - 	- A* 

Rks = 4Q;«,;‘, 0 11,c 7. ,  
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If the 4k is further considered dimensionless, then the units of p(t) and Qk are m and 
sec 1 k g, respectively. 

(b) Choose the scaling for each mode so that tiir (24M+C)eti k  equals 24. This degenerates 
to OPtii» k  = 1 when damping is zero, and is thus consistent with the unity modal 
mass convention of finite element and experimental modal engineering practice. For 
this choice, Qk = 1/24. In this case the units of ek  are kg- l12 , and of Q  are sec. 

(c) Choose the numerical scaling of each mode so that rIAT k  equals 1 + io. This then 
implies that Qk = — Ak. This choice is the most convenient one for theoretical work 
because it simplifies algebra a great deal. Unfortunately, this normalization has 
no counterpart in the classical undamped or porportionally-damped modal theories, 
and consequently would not be compatible with current engineering practice and 
developed software. 

4.2 Normalisation Procedure For Experiment-Derived Modes 

We assume that experiment-derived estimates of the residue matrices,  î, are avail-
able from modal test procedures described in the foregoing (the symbol A denotes a 
numerical estimate (a complex number)). 

The structure of Rk = Qopop eT at the scalar level is, 

Rdi • Rlft k 41 

Rd2 • R2n 	 [4w2 

Rdd ' Rdn 

	

= Qk jr, d 
	

I *14.2 • ■Dd • •n  lk 	(4 — 5) 

Rd  n • Rnn 	 ilen k 

= re..14.1 Q.9 01 • 	 • Qen..  
Qii 42 Q.202 • Q•I'd .2 •  

Q.24'd • Q.d.d •  

	

(2.1.n Q.2.n • Q.ein • Q.. 	k 

In the above, the subscript d refers to the driving point of the test. That is, the main 
or reference exciter in the modal survey test is alig-ned parallel to the physical coordinate 
corresponding to the d'th location in the column matrix, q. Because the structure is 
directly excited at the driving location and both input force and response are directly 
measured, the data associated with this location would have good signal to noise ratio. 

In Eq. (4-5), it is seen that the modal column (mode shape) of the k'th mode is 
proportional to any column of the residue matrix of k'th mode. Thus given the numerical 
estimate of one column of the residue, one knows the mode shape to within an arbitrary 
scale factor. 

[R11 R 

 Rld 

Rln 



Assign dk = 1 + io. Then the estimate for Q k 13 

A 	1k  
k = 

The properly scaled estimate for the mode shape is then 
iz‘ di  k 

Êd2 

k = 	 
d  it Id 

Êdn 

k • dk 

{ 

w

:lk 	 k  

dk = Ê dd 
 • 

0.k Onk J 	Litn 

(4 — 6) 

(4 — 7b) 

(4  7a) 

G = 	kT k Cr *krk) • 
k=1 

(5 — 1) 
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To normalize such that the scalar element of the mode shape at the driving point is 
unity (Method (a) of Sec. 4.2), first choose the column of Rk that contains the driving 
point. Then 

To normalize such that Q k = 1/24 (Method (b) of Section 4.1), assign Q k = 1/2,ik  in 
Eq. (4-6). Then 

•dk = ( 2Âk.eckt4) 1  
and the properly scaled mode shape is: 

(4 — 8a) 

k 
Itd 1 

f Êtai 

Êdd 
êk = (k 

ALdd 

(4 — 8h) 

5.0 MODAL IDENTITIES 

5.1 Bessel's and Parseval's Equations 

Bessel's and Parseval's equations offer a convenient means of establishing certain 
modal identities that are useful for validating completeness of mode sets and modal 
truncation. The form of the equations that appear in standard references is not general 
enough for the situation at hand. The desired forms are derived from first principles, in 
this section. 

Consider the real-valued arbitrary vector G of the inner product space as defined in 
Chapter 3.3. It may be represented in the form given in Eq. (3-26) (repeated below for 
convenience): 



C T  = Diekr17: er17:) ,  (5 — 8) 
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The Fourier coefficients, ak , are obtained by multiplying Eq. (5-1) by rrTA and use of 
the orthogonality relationships, Eqs. (3-15). Likewise an expression for a  obtained 
by multiplication by r;TA. The following are obtained. 

rTAc 	 T* T AG = T ATk' 	
a *

k 
 = 

r*TAT 
k 	 (5 — 2) 

rk 	 * • 

Similarly, G may be represented in terms of rk  as 

G T  = E(9kr 7k.  + necT). 	 (5 — 3) 
k=i 

The corresponding Fourier coefficients, derived by post-multiplication by AT k and  AT  

as above, are 

	

cTAT k 	CT Ark 
k = 	AT 	= r 	 (5 — 4) 

TT k 	k 	 .TAT * 

Interrelationships between the ak 's and Pk 's may be derived, but are not needed 
herein. 

Consider the inner product, 

{GT - E($krT + nr;T )}AIG — E(orkTk + cd;T;)) 0. 	 (5 — 5) 
k=i 

The above inner product is real, and greater than or equal to zero because A is positive - 
definite and the right and left multiplying vectors are equal. The expression equals zero 
provided the basis and dual, T k and rk , are complete. If they are incomplete, due to 
modal truncation for example, then the inner product is greater than zero. (If truncation 
is done, the dependence between the bases T k and rk  must be taken account of.) 

The following result is achieved by multiplying Eq. (5-5) out, and simplifying with 
the orthogonality relations and the relationship r,TA-rk = TrArk: 

G TAG > E{( 11Ark)aki9k + (IIT AT;)4,8;} 
k=1 

(5 — 6) 

The above is the equivalent of Bessel's inequality. If the bases are complete, the equal-
ity holds and the relation is referred to as Parseval's Equation. The relations can be 
established to be valid for n equal to infinityl 4 a 5 . 

Consider now a second different arbitrary function C, contained in E2 n: 

C = En  (eNkTk OskTic), 	 (5 — 7) 
k=1  

where k and a; are as per Eq. (5-2) with G replaced by C. Also 

k=1 



(5 — 13a) 

(5 — 1319) 

(5 — 13c) 

(5 — 14) 
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where ilk  and 	are as per Eq. (5-4) with G replaced by C. As per Eq. (5-6), 

cTAG > E{(rrAT)akek +(rTAT"k)(i7cie). 	 (5-9) 
k=1 

The vector (G + G) may also be represented in terms of Tk and rk  basis vectors. The 
corresponding coefficients are (ak  + àk) and (ek + ek). Bessels Inequality for (G + C) is 

(G +G)TA(G +C) E{(rrATk)(ak +0k)(i3k + ek) + 	Arucl, + an(n+ en). 
k=1 

Multiplying Eq. (5-10) out and reduction using Eqs. (5-6) and (5-9) leads to 

C TAG > 'ÉtriAirk(aPk+akek)+11TATI(4/37, + co )} . 2 k= , 

Eq. (5-11) is the equivalent of the general form of Bessel's Equation. 

(5 — 10) 

(5 — 11) 

5.2 Identities Involving Modal Linear Momentum 

Consider «,k  in terms of components: 

Or = 10T ,oT , 	 (5 — 12) 

where  °k, kt  and thc are each N x 1 column matrices and correspond to the U, V,  and W 
coordinates of the displacement. Then 

rr =1.--Akor,-4017:,—AktpT,or,017:,0T1 

Tr  ii ,T  Àkral, xkol , oT, or , oT1 
rrA-rk = -Ak/Qk• 

Let the arbitrary G of Eq. (5-1) assume the value, J x , where 

= [E r ,or ,0T ,or ,or ,ori ,  

each 0 is understood to be an N x I column matrix, and E is an N x 1 column matrix, 

ET =11,1,1,....,11. 	 (5 — 15) 

The Fourier coefficients for the above J x , obtained from Eqs. (5-2), (5-4) and (5-13), are 

ak = QkETM N Ok; 

= -QkET M N Ok; 

Likewise 

az = QI.ETmN oisc  

= _cn E TAI Ner  (5 — 16) 

JIAJ,=ETm N E  = E  (5 — 17) 



(5 — 156) 

(5 — 15c) 

EptkQkp.P.k +necnk no< 0, (5 — 20e) 
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Thus JIAJ, equals the total mass, m, of the structure. Substitution of Eqs. (5-16) and 
(5-17) into Bessel's Inequality, Eq. (5-6), results in a desired identity, 

In a, E {ÀkQk(E T mN ok) 2 + ekeE TAIN 0p2 }.  
k=1 

Define the quantities, Pxk, Pyk, and Pz k by 

Pxk = ErniOik  = E T  M N  Ok 
1=1 

pyk  = 	= Erie . 

pzk  = m i ok  =Erm N ok.  
i=1 

(5 — 18) 

(5 — 19a) 

(5 — 196) 

(5 — 19c) 

Pxk Py k, and Pz k are the oz,0y and oz components (Fig. 1) of the amplitude of the total 
linear momentum of the eh vibrational mode of the structure. Then Eq. (5-18) may be 
written 

E{ÀkQknk +neknb<m. 	 (5-20.) 
k=1 

That is, the sum of the modal linear momentum components in the oz direction (multi- 
plied by scale factors À k Q k ) is bounded, and is less than the total mass of the structure. 

Similarily, defining J y  and J z  as 
T jr,  =L T O  , ET , 0T 07 • o 

j = Lor 07' ET oT 0T ,  oTi 

and, with these as the arbitrary G's in Eq. (5-6), one obtains 

Eix„Qk p:k  + 	< m 	 (5 — 200 
k=1 

E{ÀkQkilk + necP2) in. 	 (5 - 20c) 
k=1 

A similar procedure with the general form of Bessel's inequality (Eq. (5-11)) and C = 
G = J y , leads to 

E{AkQkPzkPyk À:QPIkPysk) < 	 (5 — 20d) 
k=1 

With the other combinations of .4, .1y , and .4 for G and 0 in Eq. (5-11), there results 

k=1 
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E {ÀkQkPykPzk + neillknk} < 0. 
k=1 

The above six relations can be expressed in a single matrix relation 

M 0 0 
E(4Q,PkpI + xikytk innr} 5 0 m  O , 
k=1 	 0 0 

where PT = 

(5  — 20f) 

(5 — 21) 

5.3 Identities Involving Modal Angular Momentum 

Define the 6N x 1 column matrices, 
LI = 10T e _zT e yT e oT , 07' e on 
LyT = izT , OT 	, or 	, 0T1 

LzT = Hy T e xT e oT e oT e oT e oTi 

(5 - 22a) 

(5 - 22b) 

(5 - 22c) 

where  X, Y,  and Z position matrices of the particles of the structure as defined in Eq. 
(2-2). 

Let the arbitrary vector, G of Eq. (5-1) assume the value L 3 .  LTAL, equals ZTMNZ+ 
YTMNY, which equals 	ne (y12 + z.2), the moment of inertia,  I. The corresponding 
Fourier coefficients work out to 

ak  = Qk (trAiN ok  _ emN ok ) .  

The quantity in parentheses further reduces to 

Erre(uit4 -  z1 Ø )  
i= 1 

which is the amplitude of the total angular momentum of the ki h vibrational mode about 
the 01 axis, Hx k. With this recognition, 

ak = Qk Hxk 	"ic = eorix*k 

flic  = 	 = —Q7,11;k• 

The quantity, LIALz , reduces to ZTMNZ + YTAINY, which further reduces to 

E rn i (yi2  + z i2 ) 
1=1 

(5 - 23) 

which is equal to /ix , the mass moment of inertia of the total structure about the 01 axis. 
Substitution of the above results into Eq. (5-6) yields the identity 

E{4Qa./.2k + 4Q7c1-1;z) ixi• 	 (5-  24a) 
k=1 
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Similar procedures with the G and C chosen to be various combinations 
Lz  lead to 

{AkChily2k + nek Hysi } < Ivy  

(ÀkQk fek ANk 	} 5 Izz 

k=1 

k=1 

0 
EixkchHkp,7: + nec irk.Tek'r)  <m  -c, 
k=i 	 c, 

cz  
0 

-cy  

-cz  

OY 	• 

(5 - 27) 

= E miziim (5 — 25) 

E{ÀkQkHzillyk 
k=1 

E tx.kchH.kHzk 
k=. 

E IXIcQkHykilzk 

+ X IIQ IIH:k Hỳ k ) < 

+ X7,Q11; k 1/;k ) < 

+ ncec liỳ k li:k ) 

of Lz , Ly , and 

(5 — 246) 

(5 - 24c) 

(5 - 24d) 

(5 - 24e) 

(5 - 24f) 
k=1 

In the above, 
(5 - 25a) 

Hy k = Z T  M N  Ok X T  M N  Ok 	 (5 - 256) 

Hz* = xT mN o k  yT mN ok. 	 (5 — 25c) 

The above six relations of Eq. (5-24) can be expressed in a vector manner similar to that 
of Eq. (5-21). 

5.4 Identities Involving Modal Linear and Angular Momentum 

With G and C chosen as J z ,J y , or J z  and paired with the appropriate Lz ,Ly  or Lz , 
the following identity can be obtained: 

Hxk = Y T  M N  1,bk Z T  AI N  Sbk 

In the above, 

C x  = E rn i z i /m; 	cy  = E m i yi /m; 

where cx ,cy , and cz  are the coordinates of the center of mass of the structure. 

6.0 DISCUSSION AND CONCLUSIONS 

The foregoing has developed the natural modes and modal model for an elastic struc-
ture with linear viscous damping, via a formulation which gives a level of visibility into 
the system that is comparable to that of the classical normal modes formulation of the 
undamped case. The transfer functions and normalizations of use for experimental modal 
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parameter estimation are given special attention. The counterparts of mass-properties-
related modal identities recently obtained for undamped modes are obtained also. 

Complex numbers and variables are used herein in order to be compatible with earlier-
obtained well-known forms of transfer functions and other expressions. However, it 
should be noted that the complete formulation could be done in terms of real-valued 
modal vectors and real-valued modal variables (or stated another way, the appropriate 
vector  space for this case is a real-valued inner product space). The use of complex 
quantities is a matter of convenience and not necessity. The term `complex modes' 
often used in this case, is somewhat of a misnomer because the modes are definable and 
physically interpretable solely with real numbers. `Damped natural modes' would appear 
to be a more suitable terminology. 

The arrangement of the physical-variable equations in state vector form employed 
herein is that introduced in Refs. 9 and 10, rather than the usual arrangement of Ref. 3. 
The arrangement offers two advantages: it leads naturally to a relatively uncomplicated 
derivation of mass-properties-related modal identities; and, it can be easily generalized 
further to include gyroscopic forces if desired. 
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9.0 NOTATION 

A 	 Parameter matrix (2n x 2n), Eq. (2-10) 

ak 	 Real number (scalar) 
Parameter matrix (2n x 2n), Eq. (2-10) 

bk 	 Real number (scalar) 
Damping matrix (n x n) 

Czz ,Czy ,etc. Damping matrices (N x N) 
Ck 	 modal damping 
dk 	 Modal scale factor (complex scalar) 

Force matrix (2n x 1) 
Force vector (n x i) 

I., 4,1. 	Force components (N x 1) 
G, C 	Arbitrary (real) vectors in E2n (2n x 1) 

Hk 	 Modal angular momentum vector 
Transfer function matrices (n x n) 

Hxk, Hyk, H zk Components of Hk (complex scalars) 
I; I„,etc. 	Moment of inertia matrix (3 x 3) and components 

%F l  
Summation matrix (2n x 1), Eq. (5-14) 
Stiffness matrix (n x n) 

etc. Stiffness matrices (N x N) 

kk 	 modal stiffness 
Lz , Ly , Lz 	Defined in Eq. (5- 14) (2n x 1) 

Mass matrix (n x n), Eq. (2-6) 
m N 	 Mass matrix (N x N), Eq. (2-4) 

Total mass of structure 
nit 	 Mass of i'th point of structure 
mk 	 modal mass 

Number of mass particles 
n = 3N.Order of Eq. (2-6) 

Oz, Oy, Oz 	Coordinate axes, Fig. 1 

Pk 	 Linear modal mômentum vector (complex, (3N x 
Pu ,,, Pi,, 	Components of Pk (complex scalars) 

Pk 	 Modal coordinate, Eq. (3-44) 
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State variable V1T, qT1(2n x 1) 

Qk 	 Modal normalisation constant (complex scalar) 
q, go, 40 	Deformation vector variable and initial conditions (n x 1) 
R k 	Residue matrix (complex (n x n)) 
8 	 Laplace variable 
Sk 	 Real part of QkOk 

Tk 	 Imaginary part of Qkftk 

time 
Deformation matrices (N x 1) 

u',  y, w 	Deformaion components of ith mass point 
.x, Y, Z 	Position matrices collection of mass points (N x i) 

ak, 	 Complex Fourier coefficients (scalars) 
rk,T k 	Left and right eigenvectors (complex, (2n x 1)) 
çk 	 Modal damping factor 
Ok, (kke 	 Eigenvector components corresponding to Ox, Oy,  Os  

coordinates (complex, (N x i)) 
Ak 	 Complex eigenvalue (scalar) 
ek (1),,,(1) 	Real modal variables (scalars) 
trk,Vk 	 Real and imaginary parts of  Ak 

Pk (I) 	Complex modal variable (scalar), ek  + 
0, 	Mode shape (complex, (n x 1)) 

Summation matrix (N x 1) (Eq. (5-15)) 
Modal frequency (scalar) 

E2 '1 	Euclidean vector space 

Subscripts and Superscripts 

denotes kth mode 
denotes number of mass particles 
3N 

x,y,z denotes components in (0x,0y,0s) coordinate system, Fig. 1 
s,i 	denotes the s'th or i'th particle 

denotes complex conjugate 
u,1 	upper and lower 
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