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MOVING RANDOM SURFACES AND CORRELATION ANALYSIS

by

M.J. BURKE

ABSTRACT

Five models of moving random surfaces with known velocity and known
correlation function are described. The random surfaces are formed from an
infinite set of plane waves with decorrelation arising from random temporal
and spatial changes. It is shown that, if there arc random spatial changes in
the direction of motion, then specds derived by the full correlation method
of Briggs ct.al.(1950) will be less than the true speed of the surface. Random
spatial changes at right angles to the direction of motion are necessary if
the axial ratio of the correlation cllipse is to be finite. From modeling of a
multi-antenna array, it Is shown that the correlation ellipse is the average
of the various shapes within the surface as argued by Burke(1975). If
temporal-series based on the various models are subjected to a high-pass
filter before correlation analysis, the correlation speeds increase in value.

Temporal correlation functions from three of the models fail the require-
ments for full correlation analysis because the half-widths of the cross-
correlation functions are, in general, greater than the half-widths of the
auto-correlation function. IHowever, from a survey of experimental iono-
spheric drift measurements, it Is argued that radio interference patterns
appear to have the form of onc of these three models, viz., Model 2. For
this model, correlation speeds increase with increasing antenna spacing and
the correlation cllipse tends to line up with that antenna pair with the great-
est spacing(Golley and Rossiter,1970), the straight linc of the straight-line
method of Briggs ct.al., will not be straight(Sales and Bowhill, 1962) and,
as stated above, the speeds will be low(Wright and Fedor,1967;Sprenger
and Schiminder,1969).

It is shown that the similar-fades method(Variant 2 of Sprenger and Sclr-
minder, 1969) gives a better estimate of the surface speed than does the

correlation method.






1. INTRODUCTION

In this report five different models are developed for two-dimensional moving random surfaces
with known velocity and known correlation function. Although this work was developed specifically to
investigate the methods of ionospheric drift analysis, the models themselves are completely general and
can be used wherever the case of a moving random surface arises.

Briggs and Page(1951) developed a method for forming pairs of random series with known corre-
lation function, but their method cannot be extended to two-dimensional space nor do the time-series
have a known velocity. Longuet-Higgins(1957a, b), from a consideration of random surfaces, has devel-
oped relationships for the statistical properties of these surfaces in terms of their correlation functions.
The work in this report, in effect, complements his work in producing random surfaces with known
correlation functions.

With respect to ionospheric drifts, radio waves diffracted or reflected from the ionosphere form an
interference pattern at the ground. If the amplitude of this pattern is recorded as a function of time
at 3 or more non-collinear points it is found that the time-series fades or varies with time. In addition,
it is noted that, in general, a series is displaced in time relative to another. This time displacement or
delay is assumed due to the movement or drift of the interference pattern over the ground. It is assumed
that this movement arises from the movement of the ionosphere causing the diffraction or reflection
of the radio waves. Ionospheric drift analysis is concerned with the measuring of the velocity of the
interference pattern over the ground and, via the point source effect , the movement of the ionosphere
producing the pattern. The point source eflect postulates that the the ground pattern will move with
twice the velocity of the ionosphere.

One well known method of ionospheric drift analysis is that of Briggs.et.al.(1950), referred to as full
correlation analysis(FCA). This method of analysis is based on the auto- and cross-correlation functions
of the time series and is described in detail in the next section.

The method of FCA is based on the assumption that the ionosphere behaves as a random diffracting
screen, as proposed by Booker et.al.(1950). For this model it is assumed that the reflecting region of
the lonosphere is more or less flat and, at or near this reflecting region, there exists a random screen
of irregularities which impose random phase and/or amplitude changes on radio waves passing through
the screen. This results in a random amplitude pattern being formed at the ground. A more detailed
discussion of this work is given by Ratcliffe(1955) who also showed that, provided the screen is not too
thick, the correlation function over the ground pattern is of the same form as that over the random
screen.

Somewhat allied with the proposals of Booker et.al., Wright and Pitteway(1978) developed a method
for generating random radio patterns by assuming a number of scatterers to be located in the ionosphere.
Radio waves are reflected from these scatterers and their interference pattern at the ground determined.
Motion of this pattern is achieved by moving the scatterers randomly but with a mean motion. However,
as yet, the correlation function of this ground pattern as a function of the scatterers has not been derived
nor is there any evidence that the real ionosphere behaves as proposed in their model.

While it is highly desirable that a mechanism be determined between the behaviour of the irradiated
ionosphere and the observed ground pattern, it is considered that such work could delay the publication



of this report, perhaps indefinitely, and hence, is not considered here.

Another method for deriving the velocity of the ground pattern is that of similar fades analysis(SFA).
This method is an intuitive method and has no theoretical support. However, it has been used by
some workers in the field, e.g. Burke and Jenkinson (1957) and Sprenger and Schminder(1969), and the
lonospheric velocities obtained have been found to be in good agreement with other (non-drift) methods.
There are two variants of this method and it is the second approach that is recommended.The method

originated in the 1950’s because, without the availability of computers, it was a much simpler method
than FCA. SFA is discussed in Section 3.

The random surfaces developed in this report are assumed derived from an infinite set of plane
waves. Decorrelation is introduced by varying the frequency and wave-number of these waves or their
amplitudes. The way in which decorrelation is introduced for each model is described in Section 4.

The analytic solution for the correlation functions and the properties of each of the five models are
presented in Sections 5 to 9, respectively. Because the analytic solutions for some of the models are rather
intractable, the properties of these particular models are derived from the modeling of time-series. The
effect of filtering the time-series before FCA is included in the properties because of some disagreement
over this feature with respect to ionospheric drift analysis. Sprenger and Schminder(1969) reported that
high-pass filtering before FCA resulted in higher values of drift speed and that these values were in better
agreement with speeds derived from meteor trails. On the other hand, Chandra and Briggs(1978) argued
that the increase in speed after filtering was to be expected and did not imply that the speed was too
low before filtering. Plots of contours of constant amplitude over a 41X 41 antenna array are presented
for each model for isotropic conditions. Correlation ellipses for these contours are also included. This
work was included because Burke(1975) argued that the correlation ellipse represented the average of
all the various shapes in the amplitude pattern. This proposal was contrary to the generally accepted
belief that all the shapes in the pattern were approximately similar to that of the correlation ellipse.
In reply, Briggs(1976), while agreeing with Burke’s conclusion concerning amplitude patterns formed
by the interference of a few radio waves specularly reflected from the ionosphere, disagreed with the
conclusion if the pattern was random, e.g. as might be formed from the Booker et. al. model. In fact,
it was this disagreement that prompted the need for the work presented here.

A summary of the properties of each model is given in Section 10 and, in Section 11, these properties
are compared with those found from experimental data.

It will be shown in this report that, except for a particular case , velocities derived by FCA will be
less than the true velocity of the random surface. On the other hand, SFA(Variant 2) is shown to give
better estimates of the velocity. It should be noted that there is no dispute over the direction of motion
derived by either of these methods, only the magnitude of the velocity derived by FCA.

It will also be shown that the conclusions about the effects of filtering before FCA depend on the

parameters of the random pattern and that the significance of the correlation ellipse is more in keeping
with Burke’s proposal.



2. TF'ULL CORRELATION ANALYSIS

The full correlation analysis of Briggs et.al.(1950) is based on the fact that, at least close to the
maximum, the correlation function has the form of the function{in 1 direction)

F(Ar* —2Hrr + Br?), (2.1)

where r is tlie spatial separation between the two observing points and 7 is the time delay or lag.
Because, in practice, it has been found that the correlation functions approximate to a Gaussian form
and because the Gaussian form permits analytic solutions, this form will be used throughout this report.
In this form the correlation function is

_ Azg—ﬂ.ﬂrrirg
Prr =€ 202 f (2.2)

where o is the half-width of the correlation function for 0.6065 tlie maximum value of correlation(py).

Briggs et.al. assuined that, if two spatial-series were taken a time 7' apart, the velocity of the
pattern, Vy is
Va=rm/7, (2.3)

where r,, is the displacement for maximum spatial cross-correlation.

From 2.2, the condition for maximum spatial correlation can be derived from the partial derivative
with respect to r, for a delay 7'. Thus, for the first stationary condition

Ty = HT'/A

and

Vy = H/A. (2.4)

Because, in practice, only temporal-series are available, Briggs et. al. showed how A and 1] could
be derived from the temporal correlation functions, as shown by typical auto- and cross-correlograms
in Figure 2.1. From the partial derivative of the cross-correlation function(2.2) with respect to 7, for a
separation ', it can be shown that thie maximum value of cross-correlation occurs for r = 17,,,, where

T = r'H. (2.5)
From this relationship Briggs ct.al. defined a velocity called the apparent velocity(V,), where

Vo =1"/Tmm
= 1/H. (2.6)
The word apparent arose because at first sight this velocity appeared to be the true velocity of the

pattern but, as argued by Briggs et.al,, if there are temporal changes within the pattern, then this
velocity will be too high.
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Figure 2.1. Auto-and cross-correlograms for Model 1. Var(k)'/2 = 0.16%/m, Var(w)"? =

20°/s, 0 = 2.8s and r==150m. The parameters pm, T and 1o are defined in the text. Var(k)
and Var(w) are defined in Section 4.

To derive the coeflicient A, Briggs et.al. defined another quantity called the fading velocity(V})
which is based on the time-delay 7y for which the temporal auto-correlation function is equal to the
cross-correlation function at zero delay, i.e

Po,rg == Pr,0

or

r2 2

= >

i.e.,

Vf == T/T(),

= 14/(A). (2.7)

Hence,

Vy=V} N, (2.8)

Briggs et.al. also argued that the temporal random changes in the pattern could be defined in terms
of a velocity parameter V,, where

Vi=Vi+V2 (2.9)

In extending thie method to a two-dimensional case it is considered that a polar coordinate system
(r = r, 0)is tobe preferred because the correlation function across a random surface, by definition,



is invariant with translation but not with rotation. In an (r, ) system the correlation function is:

_ r2(Acos? §+Csin? 94N sin 20)—2rr(H cos §+M sin #)+72
Pras =€ 20° , (2.10)

where H and M are the reciprocals of the apparent velocity in the x and y directions respectively. The
coeflicients A, C and N define an ellipse, the correlation ellipse, usually measured for the contour

p,]g]o = 0.5.

In the (r, 0) system the above velocity parameters can be defined as a function of 4. Thus,

Tmg = r(H cosf + M sin9), (2.11)

Vo = 1/[H cos § + M sin9), (2.12)

16y = r*(Acos® 0 + C'sin® 0 + Nsin26), (2.13)
and

V7 = 1/(Acos®0 + C'sin® 0 + Nsin 20). (2.14)

The direction of the apparent velocity is given by
tan(¢,) = M/H. (2.15)

The direction of V4 can be derived from the partial derivatives with respect to r and 4 of equation 2.10
and can be shown to be

tan(¢) = (AM — HN)/HC — MN). (2.16)

Then V44 can be derived from
Ve = V2 /NVas. (2.17)

In the application of FCA to the models discussed in this report, a three-antenna system is assumed
and a value of 7, and 7y is derived from the correlation functions for each antenna pair. Iroin the three
values of 7, IT and M are derived from a least squares fit to equation 2.11. Froin the three values of 7,
A, C and N.are derived from 2.13 and the direction of motion ¢ from 2.16. Values of V, 4 and V;4 are
derived from 2.12 and 2.14 respectively and hence, Vg4 from 2.17

The straight line method of Briggs et.al. is based on the timne delay 7, and 7, for which, for the 1
dimensional case,
Po,ra = Prrr-

From 2.2 )

g _Argiry e}
e ﬁ =g 2o% R (‘) 18)

For reasons that will be explained below, it is assumed here that o,(half-width of the cross-correlation
function) does not necessarily equal og(half-width of the auto-corclation function). Rearranging the

terms of 2.18,
12/02 — 12 /0% = Ar® Jol — 2Hrr, fo2. (2.19)

Il 0, = o, then (72 — 72), plotted as a function of 7,, is a straight line. From the intercept A can be
determined and, from the slope, lI. Hlowever, if o, 5% o, then the straight line will be curved.






3. SIMILAR FADES ANALYSIS

In similar fades analysis, short sections of pairs of fading records are compared and adjusted in time
for best agreement. For the Variant 1 method these delays are averaged and, from the average values,
a velocity V) is determined in the same manner as for V; of FCA. This method is also referred to as the
average time-delay method.

This particular variant of SFA was originally developed by Mitra(1949) and, over the years, it has
been found that the the velocity derived by this method is in very good agreement with the apparent
velocity(V4) of FCA. In the early literature it was frequently referred to as the Mitra method.

For the Variant 2 method a velocity is derived from eacli set of time-delays per short section using
the same method as for V, and then these velocities are averaged vectorially to produce the Variant 2
velocity Vo. This method is also referred to as the average velocity method.

To clarify possible ambiguity in some of the literature, it should be noted that the results presented
by Thomas and Burke(1956), and by Bowman(1968) and referred to as Mitra velocitics were actually
determined by Variant 2. Those by Burke and Jenkinson(1957) are also from Variant 2.

When the comparison of records is done visually it is customary to select those sections of a
record containing only 1 fade and centered around the maximuin of this fade. If the pairs of fades are
too dissimilar the section is usually rejected. To adapt this process to computer analysis, the auto-
correlation coefficients of one record are derived and a value of o obtained. The records are then divided
mto lengths of 2\/(ﬁ)a. This number was derived by Awe(1964) as the statistical distance between
maxima in a record. For 4 of the models considered, it was found that the factor of 2 was not too
critical. Values of 1.75 to 2.25 could be used without significantly changing the value of the vclocities
obtained. lowever, for one model it was found that, if the factor 2 was increased to 4, better agreement
between the derived velocity and the true velocity was obtained. This is discussed in the appropriate
section. The time-delays between pairs of short scctions are derived from cross-correlation analysis
analogous to 7, of FCA. For cach set of short sections, if the maximum value of cross-corrclation(py,)
of any one pair is less than a preset value, that set is rejected. Values of p,, between 0.7 and 0.95 are
considered and it is found that the best value can vary from wmodel to model. Exaniples are given with
cach model.

A further refinement, not used here, is that, for a 3-aerial system, 3 values of time-delays are
available but only 2 are needed to find the velocity. Heuce, there is 1 degree of freedom and the error
in deriving the velocity could be used as a measure to accept or reject thiat scction.

Shown in Figure 3.1 is a sample of fading records derived from Model 1 for a 3-aerial system. The
vertical dashed lines indicate the section-breaks dictated by 2\/(n)aa. As can be seen from this figure,
better sectioning of the record could be done visually and, from the author’s experience, only that fade
between 10 and 18 seconds would have been chosen from this sample for finding the time-delays. While
better algorithms could be developed for selecting sections, it is considered that such work is outside
the scope of this report and only the simple method described above is used here.
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AMPLITUDE

SECONDS

Figure 3.1. Fading records over 80 seconds for Model 1. Design parameters are given by 5.22. The
vertical dashed lines define the sections used for SFA and are at 2\/(_77)0',, = 7s intervals.
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4. GENERAL FORM OF RANDOM SURFACES

1.0 INTRODUCTION

In deriving a random surface it is assumed initially that the surface is composed of an infinite set of
plane waves all moving with the same speed V' and direction ¢. The amplitude, as a function of space
(R, 0) and time t, of a representative wave from this set is given by

YRt = Auk cos(wt — kR cos(¢ — ) + ¢€), (4.1)

where w is the angular frequency, k is the wave-number (= 27/X, the wavelength), and € is a random
phase in the range (—, 7). There is a particular value of € associated with each wave amplitude A, k.
R is the distance from the origin. To achieve a Gaussian form for the correlation function it is assumed
that

Aw,k = ehﬁL) (42)
or
_ (4.3)

where s is the half-width of the spatial auto-correlation function. From the above two expressions it
follows that

w/k =s/0, (4.4)

and the velocity

V =w/k. (4.5)

The correlation between 2 points, say R and R+r, in the surface is a function of differences, in
particular, phase differences. Hence,

- (yR,ﬂ,t YR+ r,ﬂ,Hr}

Prr = )
! (yIQ?,ﬂ,t>
(A2 pcos(wr — kr cos(¢ — 0)) )

where it is assumed that the mean is zero. It will be noticed that the random phase ¢ disappears.

For tlie ideal surface thus far considered the cross-correlation function will have a maximum value
of unity, i.e., perfect correlation. To introduce decorrelation across the surface it follows from 4.6 that
there should be random fluctuations in space and/or time of either A, s, w or k or of any combination of
these parameters. From the consideration of variations in these parameters 5 models of moving random
surfaces are developed. For each surface an analytic solution for the correlation function is derived.



4.2 MODEL 1

This model could be considered as that produced by random phase changes. These phase changes

are produced by random changes in velocity from 4.5. Thus the representative wave of 4.1 could be
written as

YRt = Awk cos(wt — R(k, cos§ — kysin0) + €), (4.7)

and decorrelation introduced by
YR ot = Awk cos((w + §w)t — R((k; + 6k;) cos 0 + (ky + 6k,)sinf) +¢€) , (4.8)

where k, = kcos¢ and k, = ksin ¢ and where §k, and k, are random variables, normally distributed
with zero mean, variances Var(k,), Var(k,) and covariance Cov(k,, k,). Also, 6w is normally distributed
with zero mean and variance Var(w). It is assumed in this report that 6w is independent of ék, and
§ky. It is also assumed, for Model 1, that their variances are independent of w and k.

It is considered that 4.8 could be better expressed as

YR = Ay cos(w(t — R(H cos 0 + M sin 0)) — R(6k; cos 0 + 8k sin 0) + §wt + ¢), (4.9)
where
H =1k, /w
and
M = ky/w,

and both have the same significance as that for FCA. However it must be stressed that H and M used
here are those values for the true velocity (V;) of the random surface,

ie, V=V = 1A/(H? + M?),
and are rclated to the direction of thie motion(¢) by
tan¢ = M/H.

In fact, for the remainder of this report II and M will always have these properties.

It should be noted that, because §w is assumed independent of 8k, and &k,, the random surface
of 4.8 could be considered as the sumn of two surfaces. In one surface, random changes in velocity,
magnitude only, are produced by

5V = 6w k. (4.10)

In the second surface, random changes in reciprocal velocity , both in magnitude and direction, are

produced by
(1 V) = bk fw. (4.11)

This subject is discussed further in the next section dealing with Model 1.

4.3 MODEL 2

In Model 1 the variances are independent of w and k, in Model 2 the reverse is true. This effect is
achieved through equation 4.9 by defining

YRg,e = Ay cos(w(t(l + dw/w)— R((I{ + §[)cos 0 + (M + 6 M)sin 0)) +€) , (4.12)
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where 6w, 6H and 6 M have the the same properties as that for Model 1 but their variances and
covariances are Var((2) for §w/w and Var(H), Var(M) and Cov(H, M) for 6H and 6 M.

4.4 MODEL 3

Model 3 is another approach for introducing random phase changes. For this model it is assumed
mitially that eachh wave can vary in direction in a randomn fashion about the true direction of motion,
but maintaining a constant speed V. Variations in V are then introduced by way of random frequency
changes. For clarity, the wave equation is delined in terms of k rather than w. Thus

yrat == A cos(k(R cos(¢p + ¢ — 0) — Vi) + Sw it +¢), (4.13)

where §¢ is a random variable normally distributed, with zero mean and variance Var(¢). w is as

defined for Model 1.

4.5 MODEL 4

Model 4 is similar to Model 3, except that the variance Var(w) is a function of k and éw/k = 6V.
Yot = Ag cos(k(I2cos(¢ + ¢ —0) — (V +6V)t) +¢), (4.14)
where 6V is normally distributed with zero mean and variance Var(V).
4.6 MODEL 5

This model introduces decorrelation by way of random changes in amplitude and not in phase.
These changes occur both in space and time. Let

D = éa+t68 + R(6v; cos O + v, sin 0), (1.15)

then -
Yror = Ay cos D cos(w(t — R(I cos 0 + M sin0)) + ¢), (4.16)

where 8ar, §8 and 84 are random variables normally distributed with zero mean, variance
Var(a), Var(8), Var(v:), Var(yy)

and the covariances are zero except for Cov(q,,vy). The variables are independent of w and k, and 8+,
and 6, are the random changes in amplitude in the x and y dircctions, respectively.

As will be shown in Section(9), dw is a necessary part of the expression as is €, but plays no part
in the correlation function.
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5. MODEL 1

5.1 THE CORRELATION FUNCTION

From Section 4 it can be shown that the full correlation function for this model is

Pror == 0 »
(2_45)
w=0
where
D = cos(w(r — r(H cos 0 + M sin §)) — r(6k, cos § + 6k, sin 8) + 6w 7). (5.1)

The general form of the solution of this expression is given by Integral 1 in the Appendix. From this
solution it can be shown that

_ (r—1(H cos 8+ M sin 8)) 2
Pror =€ € 22

b

where
B r2Var(w) + r2(Var(k,) cos? 0 4+ Cov(ky, k) sin 20 + Var(k, ) sin® 0) (5.2)
— 2 F) o b

and is the same form as 2.10. Thus, it satisfies the conditions for FCA.

From 5.2, the temporal auto-correlation function

~72!l+02Var(w
2 , (5.3)

Poor = ¢€
g2
=e %, (5.4)
where
02 = o2 /1 + o*Var(w)). (5.5)

Because 5.2 is of the same form as 2.10 then g, == 0,. For the Models discussed in this report o will
refer to the input parameter and o, and o, to the derived values.

Considering the one dimensional case, then 5.2 reduces to

_ r2Var w +I‘2VM k _"—_"IQ{_LQ_
Prr =€ Z e % (5.6)



16

From section 2, the various correlation parameters are

T = rH /1 + 0*Var(w)), (6.7
V, = (1 + o*Var(w))/H, (5.8
= (1 4 o*Var(w))V, (5.9)

substituting r,,, for 7 in 5.6

2772
2. r<H“Var(w
r<Var(k) "'—_Q_—LL
- e 21+0%Var(w)) ,

Pm =€ 2 5.10)

VF = (1 +o*Var(w))(H® + o*Var(k)), (5.11)
and

Vg = H/H? + o*Var(k)), (5.12)

— V1 + V%6®Var(k)).

—_—

5.13)

As noted in Section 4, V is the true velocity V; of the surface. It was also noted in Section 4 that
the random surface of Model 1 could be considered as the sum of two random surfaces. In one of these
surfaces Var(k)=0 and hence, from 5.13, V; is equal to its true velocity V;. In the other surface Var(w)=0
and, from 5.9, V; is equal to its true velocity. For a combination of these two surfaces, V; lies somewhere
between the values of V, and Vj derived from this combination. Similar arguments also pertain to the
other four models to be considered. It will be noted also from 5.13 that, unless Var(k) = 0, then Vg

decreases in value as o increases. This leads on to the effect of filtering data from the above model
before FCA.

5.2 FILTERING

For the above model, using 4.9, series can be readily forined for a multi-antenna system. These
series can be developed either in time or space. The eflect of filtering time-series before FCA will be
considered first and, for simplicity, that for the one-dimensional case.

From 5.12 it follows that, if a time-series is subjected to a high-pass filter before FCA, then the
value of Vj obtained will be greater than that from unfiltered data. Conversely, if a low-pass filter is
used it will be less.

At first sight, it might be expected from 5.8 that V, would also be aflected by filtering, but this is
not so. From 5.1, the frequency terms enter by way of w + dw. If these terms are considered as those
from a discrete Fourier series then, for the :** harmonic, (w + 6w) can be represented as (¢ + §1), where
|67] can be greater than one. Let

J+ 65 =i+ 6, (5.14)

where 7 is an integer and |67] < 1. Then the amplitude and phase associated with the i** term is moved
to the (5 + 67" term of the series. If |67] 54 0, this information is leaked into the various harmonies on
either side of 5. Once a time serics is formed the information as to where the values of amplitude and
phase came from is lost. Thus filtering of a time-series will not affect V, but it will affect V.

It is this movement of harmonic information in the time domain which results in o, < o, as
expressed in 5.5. If 67 is positive, energy is moved from the lower harmonic ¢ to the higher harmonic
7. But, because of the Gaussian nature of the power spectrum, this means that energy is moved from
an area where it is relatively high to an area where it is relatively low. The reverse happens if 67 is
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negative. In the extreme, if Var(w) is very large, the spectrum of the altered series would approach that
of white noise. From 5.5, this movement of energy due to random temporal changes is contained in the
term (1 + o?Var(w)).

This movement of energy from lower to higher frequencies is also accompanied by movement of phase
information and, hence, phase differences. If there is no dispersion present, phase diflerence is a linear
function of frequency and the gradient of phase difference versus frequency is inversely proportional to
the velocity of the wave components. If phase differences are moved from lower to higher frequencies,
the gradient is reduced and the velocity is increased. From 5.8, the effect of random temporal changes is
to reduce the gradient by (1+02Var(w)), the same factor that reduces o. It is true that phase differences
are also moved from higher to lower frequencies but these are accompanied by less energy than those
going the other way.

Since the factor (1 4- 0°Var(w)) is imbedded in the data and cannot be recovered by filtering, it
follows that p,, of 5.10 will be unaffected by filtering.

In the spatial domain the situation is reversed. Vjy, which is derived from the spatial delay for
maximum spatial cross-correlation, will be unaffected by filtering. On the other hand, V, will be affected.

This transfer from the i** to the 7% harmonic can be used to advantage in terms of reduced
computing time for modeling. Time-series can be made for Model 1 by a summation process but, if the
ihe series is a reasonable length, say 1024 values assumed sampled every 0.25 seconds, there will be 512
harmonics to be summed 1024 times. This work can be considerably reduced if a suitable algorithm
1s used to leak the information around the 7 term and then using the Fast Fourier Transform to
produce the time series. In practice, it was found that, if the necessary information was transferred to
80 harmonics centered on j, the results obtained differed from the summation method by < 0.5% with
a reduction in computing time by a factor of about 12. If less accuracy is acceptable, the time saved
can be even greater. The same technique applies to the formation of spatial-series.

5.3 THE LOW-VELOCITY EFFFECT

The physical relationships of V4 and V, can be appreciated if it is assumed two finite time-series
from the random surface are recorded a distance r apart in the direction of motion. From the discrete
Fourier transform of the scries the phase difference, ®; for the i harmonic, can be deterniined and a
value of V; derived from

V; = 2mir/T®;.

where T is the length of the time-series. The cross-correlation function can then be expressed as

I 2m r
Prr :<Z:1A?COS —r]—w.(r— —‘7‘») (515)
i—
where it is assumed that the normalization term is unity.
The partial derivative of 5.15 with respect to 7 for r = r' is
TA ,
Q2w 2mi r
(ZA;—YTSIH(—T'U— V,» (5.16)

=1

The value of 7 = 7, for which this expression is zero is the necessary condition for V(= r'/r,). 11 the
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sine term is approximated by the first term of its power series, then it can be shown that

T/2
()
— A= (5.17)

AR
(DA
i=1

Thus, for this approximation, 1/V, is the weighted sum of 1,/V;, where the weight is A?/%. From similar
considerations it can be shown that

T/
(D ARV
(O (5.18)

T/ ’
(2o AH/VE)
i=1
Hence, V; is the weighted sum of V; where the weight is not only proportional to A%i?but also to
the reciprocal of V2. Low values of V; will tend to dominate the sum. This effect is referred to as

the low-velocity effect and the derivation of V, and Vj from the weighted values of V; as the weighting
method.

If T = 256s, r = 100m and V; = 100m /s, the phase difference for the 1* harmonic is 1.4 degrees. If
the observed value of ®; > 1.4% then V; < 1001 /s. From 5.1, r 6k comes from a distribution with some
reasonable value of rVar(lc)l/‘Z, say 10° or 20°, then very low values of V; are to be expected. On the
other hand, if ¢ = 50, then, for V; = 100m/s, ®; = 70° and very low values of V; will tend to be rare.
Hence, filtering out the low frequency components before FCA will result in a higher value of Vj.

It can be shown that, for an infinite series, the weighting function for Vy is given by

02

Wy =€~ 2 r*(w?H? + Var(k)) (5.19)

and for V,

=

5.4 FILTERING AND. THE LOW-VELOCITY EFFECT FROM MODELING

To test the effect of filtering and the sine approximations made above , sets of time-series for a
3-aerial system were generated. The aerials were assumed to be located at 3 corners of a square of side
100m, with 1 pair of sides in the direction of motion. Each time-series contained 1024 values assumed

sampled at 0.25s intervals. The design parameters were;
Var(ky)'/2= 0.205°/m, Var(k,)"/?=0.29°/m, Var(w)'/?= 20°/s,
(5.21)
V= 100m/s, o= 2.8s.

For convenience the appropriate values are given in degrees rather than radians. For these design
parameters the surface is isotropic and the correlation parameters are;

Vo= 195m/s, V4= 49m/s.

(5.22)
pm= 0.909, os= 2.0s.
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The choice of the particular parameters of 5.21 was dictated by the desire to have V, about one half,
and Vg about twice the true velocity.

In all, 25 sets were formed using a new seed for the random function generator for each set. These
sets were analysed by FCA and the vector mean of the 25 sets of V, and V; were derived. These means
are shown in Table 5.1 for nil filtering. The mean direction obtained was within a few degrees of the
designed direction

TABLE 5.1

Model-1.Comparison of V, and Vy from FCA and weighting method, both
before and after filtering. For design parameters and filtering methods see
text. All values are in m/s.

FILTER FCA WEIGHT
Ve Va Ve Va

nil 204 50 208 49
1-10 204 73 212 68
1-20 208 98 217 96
n=4 190 90 224 81

To study the effect of filtering, two methods of producing high-pass filters were used. The first
method, a rather simple method, was to delete the first 10 or 20 harmonics from the data before FCA.
However, this method changes the shape of the correlation functions and they are no longer Gaussian.
On the other hand, this method does show the effect of the low harmonic components on the value of
V4 obtained. The second method retains a Gaussian correlation function after filtering and can be sct
to reduce o, from the original series by a given factor. It will be remembered that the amplitudes of
the Fourier series had a Gaussian shape given by

A, = e—w202/4.
If the n®* root of A, is taken then
An) = o, (5.23)

Hence, the value of o after filtering is a/\/(_n). The velocities obtained after filtering, both by deleting
harmonics i=1 to 10 and i=1 to 20, and for n=4, are also included in Table 5.1.

For the weighting method only the pair of time-series in the the direction of motion was considered.
These series were Fouricr analysed and values of A; and Vi determined. Values of V; and V; were
determined by way of 5.17 and 5.18, respectively, and averaged over the 25 sets. The mean values are
included in Table 5.1. As can be seen from this Table there is very good agreement between FCA and
the weighting method, both for the unfiltered and filtered data. Also, only V; is effected by filtering.

Using the parameters of 5.21, Wy, (full line) and W, (dashed line) from 5.19 and 5.20, as a function
of w, are shown in Figure 5.1. Both weights have been normalized to a maxiinum value of 1. It can be
seen that Wy, has a much greater weight at the low-frequency end.

In discussing the low-velocity effect, attention was directed towards the phase variations from
random spatial changes. However, even if the random spatial changes in the direction of motion are zero
and only random temporal changes are considered, the value of V; will increase after filtering with a
high-pass filter. As noted in section 5.2, with Var{w) 5% 0 phase information is moved from one harmonic
where it is correct to another harmonic where it will be incorrrect. Thus introducing a a phase error
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Figure 5.1  Weighting functions for Vy(full line) and V,(dashed line) as a function of radians.

of rH6w. This eflect can best be appreciated by expressing the cross-correlation function of Model 1 in
the form

1 )°

208

Pr = Pm¢€

From the definition of 7, then

202\ In ppu| + 72 = 7. (5.24)

It has been shown previously that p,, and 7, are independent of filtering, but o, does vary with filtering.
Ilence, from 5.24, 7y and thus V; will vary with filtering. It follows V; will likewise vary. Chandra and
Briggs(1978) arrived at the same conclusion from a slightly different line of reasoning. However, it will

be noted from 5.24 that the filter effect is a function of p,, and that, from 5.10, py is a function of
Var(k) and Var(w). ’

To show the effect of Var(w), the work on filtering was repeated with the design parameters of 5.21
except that Var(k,) == 0.The results are shown in Table 5.2.

TABLE 5.2

Various correlation parameters derived from data for Model 1 before and l
after filtering. The design parameters are as in 5.21, except Var(k;) = 0.

1"1er‘/§1€ Va Vd Pm
nil 205 96 97
1=1—-10 205 121 97

1=1—-20 203 145 .97




5.5 SIMILAR FADES ANALYSIS

The time-series used for obtaining the results shown in Table 5.1 were subjected to similar fades
analysis for various levels of p,, for acceptance. The results are shown in Table 5.3. The percentage of
sections accepted are also shown in the Table. Section lengths of 2\/(_7r)aa seconds were used for this
work.

TABLE 5.3

Values of Vi and V, from SFA for various levels of p,,. The design parame-
ters are as in 5.21.

Pm %Sections Vi Vs
.75 74 222 101
.80 71 222 102
.85 68 216 103
.90 63 214 106
.95 53 213 115

These values are in good agreement with the expected values of 195m/s and 100m/s for the random
surface and are relatively independent of the level of p,, used.

5.6 TIIE CORRELATION ELLIPSE

From 5.2, the contours of constant correlation which define the correlation ellipse are given by

20510 pro| = TQ((U2 + UQVar(kx))cos2 0 + (MH 4 o*Cov(ky, ky))sin 20
+ (M*® + o*Var(k, ))sin? 9). (5.25)

If the variances of this expression are zero, i.e., no spatial changes, the ellipse will have an axial ratio of
oo. If the covariance is not zero, the ellipse will be oriented with ncither of its axis in the direction of
motion.

To compare the theoretical correlation ellipse with the shape of individual patterns in the random
surface, modeling was carried out by simulating an 11 X 11 aerial array, with 100m spacing between
aerials. The design parameters were as given in 5.21. From these amplitude patterns, correlation ellipses
were derived by the method developed by Felgate and Golley(1971). These workers were recording on
an 89 aerial array, roughly circular, with a diameter of 1km.

An example of the type of amplitude patterns obtained is shown in Figure 5.2, where, for conve-
nience, the amplitude has been normalized to lie in the range 0 to 10 units. For detail in plotting, the
amplitudes for this plot were derived at 25 n spacing. Also included in the Figure is the correlation
ellipse derived for a value of p(r, 8,0) = 0.5. The direction of niotion of the surface is towards the right.

Another pattern is shown in Figure 5.3, this pattern was derived 10s after that for Figure 5.2 using
the same set of random variables. As can be seen, the axial ratio of the correlation ellipse can change
dramatically in a period of 10s from 1.34 in Figure 5.2 to 2.38 in Figure 5.3. Also, it will be noted that
the area of the ellipse can also change just as dramatically.

To investigate the spread in axial ratios, 150 patterns were derived in 6 sets of 25. For each sct a
new range of random variables was used and, within a set, the same range of random variables was used
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to generate patterns at intervals of 10 seconds. For these 150 samples, the axial ratio varied from 1.0 to
2.66, with a median value of 1.46 and a 95 percentile value of 2.19. These results are not inconsistent
with the arguments of Burke(1975) that the correlation ellipse is the average of the shapes within a
random pattern. However, it should be noted that, if the theoretical ellipse has a high axial ratio, then
individual patterns will also have a high value of axial ratio i.e., fringe-like, with each pattern oriented
close to the orientation of the theoretical ellipse. In practice, this situation will occur for orientation of

the major axis at right angles to the direction of motion for which direction the random spatial changes
will be negligeable.

In conclusion, it can be seen for Model 1, that special conditions are needed if FCA is to provide
a true value of speed of the random surface. These condition are that, while random temporal changes
are permitted, there must be no random spatial changes in the direction of motion. However, if the
axial ratio of the correlation ellipse is to be finite, then there must be random spatial changes at right
angles to the direction of motion. These conditions are considered to be very restrictive and unrealistic.
Moreover the ellipse will always be oriented with one of its axis in the the direction of motion.
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Figure 5.2 Contours of constant amplitude over a 1 X 1 km arca for Model 1. The design parameters
are defined in 5.21. The correlation ellipse has an axial ratio of 1.36.
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6. MODEL 2

6.1 THE CORRELATION FUNCTION

From Section 4 it can be shown that the correlation function for this model is

(X Y Y 4n)

w=080=—00bH=—006M=—00

Prgr = 50 »
(22 A%w)
w==0
where
D = cosw((1 + 6Q)r — r((H + 6H) cos § + (M + 6 M)sin 0). (6.1)

The general form of the solution of this expression is given by Integral 2 in the Appendix. From this
solution it can be shown that

_ (r=r(H cos 8+ M sin 0))2
Pr.o,r = E2e 20%E y

where

72Var(Q) + r*(Var(H)cos?0 + Cov(H, M)sin 20 + Var(M)sin*¢ (6.2)

>

E—=1+

o2
and the variances are as defined in section 4.

The presence of E'_% in 6.2 indicates that the correlation function will not be Gaussian. However,
if prg+ is greater than about 0.8, then, to a good approximation(-3%),

-1
Edm~eT (6.3)

For the onc-dimensional case, with the above approximation, 6.2 can be expressed as

_ r2Var (Q)+r2Var(H) (r—rH)?
Prr = € 207 e 2°E (6.4)

wliich does have a Gaussian form. From modeling, it has been found that, for r = 100 and o > 2.0s,
the approximation is reasonable. From 6.4 it, can be seen that, although both the temporal auto- and
cross-correlation functions will have a Gaussian form, 0; > o, and that the ratio o, /o, will increase

with increasing r.

Another way of viewing this is to let Var(Q2) = 0, in which case 6.2, for the one-dimensional case,

can be written as
_(r—r[[ 2
270
Prr = Pme€ 20%/#im ’ (6'5)
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where
m = LA1 + r2Var(H) /2022 . (6.6)
It should be noted that p,, should be expressed as a function of r, i.e., pm(r). Thus

Or = 04/Pm(7). (6.7)

Because o, is greater than o, and is a function of aerial spacing, this model does not conform to
the basic assumptions required for FCA. Thus, if the straight-line method of Briggs et.al. is applied to
data from this model the straight line of the straight-line method will not be straight. However, if FCA

is applied to the data to find V; and V;, certain distinctive features appear which are contrary to those
of Model 1.

Because o, increases with r, then 75 of Section 2 used for finding V; does not increase linearly with
r as for Model 1. Rather, its value is less than that expected from the linear relationship. Hence, V; will
increase with r and likewise V; which is derived from Vf/Va. Because Var(Q2) = 0 for this discussion,

then V; remains unchanged. With Var({) #£ 0, the conclusions that V; and Vj; increase with r remain
essentially the same but the reasons are not as obvious.

The increase of V; and the ratio of o, /5,, as a function of r for various values of Var((1), are shown
in Table 6.1 for V = 100m/s and Var(H)"? = H(1/V). It should be remembered that, for this Model,
V is the true velocity of the random surface. Values of o were chosen so that o, was always 2s. o7 and
o refer to the values of o to the left and right of p,,, respectively. As can be seen from the Table, the
effect is more pronounced for low values of Var({2). This could be due to the fact that the values of o,

are asymmetric with high values of Var({2) and it is the negative values that affect 7.
TABLE 6.1

Va, V4 and 0, /0, as a function of r and Var(Q).For design parameters see text.

r = 100m r = 200m
Var(Q)"? o Ve Vi o] fo, 0} [0, Vo, V4o, /0, 0f /o,
0.00 2.00 100 59 1.12  1.12 100 83 1.41 1.41
0.25 2.00 106 57 1.10 1.15 106 78 1.38 1.49
0.50 2.03 124 54 1.05 1.20 124 55 1.29 1.59
1.00 2.30 196 50 1.03 1.17 191 52 1.20 1.52

6.2 FILTERING

From a comparison of the correlation parameters obtained from data derived for Mode! 2, both
before and after filtering it was found that the results were essentially the same as for Model 1, except
that p,, was affected by filtering. It increased after low-pass filtering and decreased with lngh—pass

To show this effect, modeling was carried out as described for Model 1, where 25 sets of 3-aerial

time-series were subjected to FCA both before and after the use of a high-pass filter. The design
parameters used were

Var(H)"2 = H, Var(M)'2= 1.53H, Var(Q)"2=1, (6.3)
V= 100m/s, o= 2.3s. '



The motion of the surface was in the x direction for which H=1/V and M=0 s/m. For this direction,
it was found convenient to define Var(H) and Var(M) in terms of H. For the above conditions the
correlation parameters were computed to be;

Vo=196m/s,  Vy= 50m/s,

6.
pm=0.88, go= 2.0s, (6.9)

where p,, is that from the pair of time-series in the direction of motion. Filtering was carricd out
by the two methods used for Model 1, i.e., deleting harmonics from the beginning of the serics or by
reducing the harmonic amplitudes appropriately. However, for Model 2 it was found that a factor of
n==2 was suflicient to halve the value of o, no doubt because of the non-Gaussian shape of the correlation
functions. The results from before and after filtering are shown in Table 6.2. As can be seen, the eflect
of filtering is as described above.

TABLE 6.2

Various correlation parameters derived from data for Model 2 before and
after high-pass filtering. The design parameters are as in 6.8.

FILTER Va | 7] Om
nl 220 56 .88
1=1-—10 219 70 .84
1=1-20 230 86 .82
n =2 217 80 .81

It was also found that the weighting method worked as well for this Model as for Model 1. Values
of 235 and 40 m/s were found for V; and Vy respectively.

To show the eflect of filtering on data wliere there are no random spatial changes in the dircction of
motion, the work on filtering was repeated with the design parameters of 6.8 except that Var(/{) = 0.The
results are shown in Table 6.3.

TABLE 6.3

Various correlation parameters derived from data for Model 2 before and
after filtering. The design parameters are as in 6.8, except that Var(11)=0.

FILTER Va Va Pm

ntl 204 95 95
1=1-—10 203 125 .95
i=1-—20 210 149 .95

The interesting feature of the above results is that p, is unchanged after filtering. Whereas, from
Table 6.2, when random spatial changes are present pp, is reduced.

6.3 SIMILAR FADES ANALYSIS

The data used for filtering were also used for SFA. The mean values of Vj and Vi obtained are
shown in Table 6.4. While V} is a little high, V7 is in fair agreement with the true velocity of 100m/s,
especially for low levels of p,,.
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TABLE 6.4

Values of Vi and V;, derived with SFA for various levels of p,,. The design
parameters are as in 6.8.

Pm %Sections Vi Vo
.70 58 245 95
75 55 241 106
.80 48 242 111
.85 40 238 116
.90 30 244 124

6.4 THE CORRELATION ELLIPSE

Because the shape of the correlation function of Model 2 is only approximately Gaussian then, for a
particular design, the axial ratio of the correlation ellipse will vary slightly for different levels of contours
of constant correlation. This effect can be seen from the variation of V; with increasing r. As noted in

Section 2, V; defines the correlation ellipse. From the work used for producing Table 6.1, the variation
of V; with r is shown in Table 6.5.

TABLE 6.5

V; as a function of r for various values of Var(}). The design parameters
are as used for Table 6.1.

VarQ/2 r == 100m r = 200m

0.00 77 91
0.25 78 91
0.50 82 83
1.00 99 100

It will be noted from this Table that the greatest increase in V; occurs with Var(Q2) = 0. If V;
increases with r, then the correlation ellipse will tend to be oriented with its major axis in the direction
of the antenna pair with the greatest spacing. For cousisiency, the level for p = 0.5 will be used for
defining the ellipse for the work presented below.

As for Model 1, various sets of data were generated for an 11 X 11 aerial array with 100m spacings
and the correlation ellipse computed for each pattern. The design parameters were as in 6.8. For these
conditions the surface is isotropic. For the 150 ellipses computed, the axial ratio varied from 1.04 to
2,52, with a median value of 1.40 and a 95 percentile of 2.07. Amplitude patterns 10 seconds apart are
shown in Figures 6.1 and 6.2, with their corresponding ellipses.

Ovwerall, the results are the same as for Model 1, except that there is finer detall structure in the
contours of constant amplitude for Model 2 than for Model 1. It is considered that this occurs because
Var(II) and Var(M) are a function of o and , hence, of the frequency components of the pattern.
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Figure 6.1 Contours of constant amplitude over a 1 X 1 km area for Model 2. The design parameters
are defined in 6.8. The correlation ellipse has an axial ratio of 1.1.
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7. MODEL 3

7.1 THE CORRELATION FUNCTION

From Section 4 the correlation function for this model is

(Z Z Z AZ cos(k(r cos(¢ + 6¢ + 0) — V1) — bwr))
k=06¢p=—00bw=--00
Pror = Py . (71)
(;A@

The solution for 7.1 is given by Integral 3 in the Appendix, i.e.,

_rQVar]w!
Pror = ¢ 2 (D+E),

where

e ZVar ¢
D= chos n?ne_" 7 cosn(¢ + 0) Cpm,

n=0
00 2
. nm _nVar(g)
E = sin %e 2 cosn(¢ + 0) S,
n=0
o0 +2m ® p ﬂ%m—ﬂl:?
o — mm r" cos T (Vrp1 2z~
m = Zocos '2_2,,+2mmg(n + m)! — 2 p!  sntimie
e —
n42m+
—Q—L:Q
. had mm Fntem = sin M(_‘/T_)p_l___._ (7.2)
Sm = ZOCOS 9 2n.+2mmg(n + 7n).' pr 2 p-' snh+2m4p 7 &
m— —

+2mip , .
g =1 for n = 0; else g = 2. and 1" R is in Kramps’s notation.

This solution was determined from working in the k-domain. It can also be readily determined

from the w-domain by using
A2 cos(w(r — & cos(¢ + 6¢ — 0)) + bw1) (7.3)

in 7.1 and summing with respect to w. The only change in 7.2 is to replace s with Vo. An other way is
to replace s with o, V7 with 7 and r with r/V". It should be noted that random spatial changes for this

model enter by way of Var(¢).
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7.2 SURFACE SPEED

For this model the speed of the random surface will be greater than V. This can be seen from 7.3
if Var(w)=0and ¢ =0 =0, i.e,,
A2 cos(w(r — rcc;j&ﬁ))' (7.4)

To the first approximation, the true speed,V;, of the surface is given by

1/V; &= (cos 6¢) /V. (7.5)

This is based on the assumption that, for Var(w) = 0, the speed of the surface is given by V, from FCA.

From Bierens de Haan(1939),Tables 29.2 and 263.6, the integrals of

/00 e dg — 0.5\/(7/p) (7.6a)

0

and

0 2 2
/ eP cosqzdz = 0.5¢ #\/(x/p). (7.8b)
0

Using these integrals it can be shown that
Var(¢
(cosbg) = e~ s (7.7)

Hence,
Var(¢
Vims Ve : . (7.8)

This assumption does not take into account the summation over w. Hence, to a certain extent, V; will
also be a function of o.

The degree of goodness of the above approximation is shown in Table 7.1. The results presented
there were obtained by generating sets of correlation coefficients from 7.2 for various values of Var(¢)
and o, with V = 100m/s, r = 100m and Var(w) = 0. The correlograms were then subjected to FCA
and the values of V,, Vi, pm, 05 /0, and o} /o, obtained are as given in Table 7.1. To assess the degree
of goodness of the approximation of 7.8, all values of V, were multiplied by the appropriate value of
e Var(®/2 and the results are given in parenthesis. The expected value is 100m /s and, to the extent that
the computed values differ from 100m /s, is the degree of goodness of the approximation. As can be seen
from the Table, the approximation is best for low values of Var(¢) and high values of 0. The values of
V,; were also scaled down by the same factor as for V; and the reduced values included in parenthesis.
As can be seen, V; decreases with increasing Var(¢). This is consistent with the results of the previous
models since the random spatial changes increase in magnitude with increasing Var(¢).

Although the values shown in Table 7.1 are for r = 100m, the same values can be also used to show
the variation of the correlation parameters with r. This occurs because the values are constant for a
given ratio of r/o(for a givenVar(4)). Thus, for a given Var(¢), the values of V,, etc.. at r = 100m and
o = ls are the same as for r = 200m and o = 2s. On this basis, it can be seen that there is a slight

reduction in V, and hence V; with increasing r. Also, V, and the ratios of o, /o, increase with increasing
r.

The values of ¢, /0, in Table 7.1 are for Var{w) = 0. The effect of Var(w) #£ 0 is shown in Table 7.2

for r = 100m and r = 200m with Var(¢)/2 = 65°. For convenience, all values of V; and Vj are expressed
as a percentage of V; found for Var(w) = 0 at r = 100m.
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TABLE 7.1

Variation in parameters from FCA of the correlation function of 7.2. V == 100m /s,
r = 100m and Var(w) = 0.

Var(¢)2 o V. Vi Pm 05 /0. 0F /0,
30 1 114( 99) 113(99) .987 1.01  1.01
30 2 115(100) 110(96) .996 1.00  1.00
30 4 115(100) 110(96) .998 1.00  1.00
45 1 131( 96) 122(90) .955 1.04 1.01
45 2 135( 99) 114(84) .987 1.01  1.01
45 4 135( 99) 115(84) .997 1.00  1.00
60 1 156( 90) 122(71) .911 111  1.07
60 2 168 97) 108(62) .974 1.03  1.02
60 4 172( 99) 105(61) .993 101  1.01
90 I 254( 74) 82(24) 831 1.26 1.17
90 2 318( 93) 63(18) .950 1.06  1.05
90 4 337(98) 59(17) .987 101 1.0l
135 1 1041( 65) 20( 1) .793 1.31  1.28
135 2 1458( 91) 14(.9) .941 1.06  1.06
135 4 1586( 98) 13(.8) .985 1.02  1.02

TABLE 7.2

Various correlation parameters as a function of Var(w) and r for Var(¢)"? = 65°
and o = 2s.

r = 100m r = 200m
Var(w)!/? %V %V 0] o, 0 /o4 %Ve %Vy oF fo, 0 /o,
0 100 56 1.04 1.03 91 64 1.14 1.08
10 113 55 1.03 1.03 105 63 1.12 1.08
20 152 54 1.02 1.02 146 60 1.10 1.07

Overall, independent of Var(w), V;, tends to decrease with increasing r whereas, V4 and o, /0, tend
to increase. However, for a given r, as Var(w) increases the ratio of 0;/0, tends to decrease. This latter
effect is consistent with that found for Model 2, as shown in Table 6.1. On the other hand, from a
comparison of the values in Tables 6.1 and 7.2, it will be noted that ratios are not as great with Model

3 as Model 2, nor is the change in V.

7.3 TFILTERING

To study the effect of high-pass filtering on data from this model, 25 sets of of time-series werc
generated as desceribed in Section 5.2. The design parameters were

Var($)/? = 65, Var(w)/2 = 17° /s, (7.9)
V== 100m/s, o=2.5s. "
For these parameters, the axial ratio of the correlation ellipse is 1.1, V; = 183m/s and 0, = 2s. The
value of Var(¢)1/2 — 65° was chosen because it was found from modehng with values of Var(ll) and

Var(M) of 6.8, that the standard deviation of ¢ was about 65°.

The mean values of V; and V; obtained before and after filtering are shown in Table 7.3, expressed
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as a percentage of V;. The value of n=4 was used because, for this value, o, was reduced from a mean
value of 1.99 to 1.03. This indicates that the correlograms are approximately Gaussian. For reference, a
plot of the temporal correlograms for the above design parameters and for r = 200m is shown in Figure
7.1. The dashed curve is for the cross-correlogram at right angles to the direction of motion.

TABLE 7.3

Comparison of V, and V; before and after the use of a high-pass filter. The
design parameters are as in 7.9.

FILTER %Va %V Pm

nil 156 51 .968
1-10 155 60 961
1—-20 157 64 .946
n=4 145 64 912

DELAY IN SECONDS

Figure 7.1  Auto- and cross-correlograms for Model 3. The design parameters are defined
in 7.9. The dashed line is for the cross-correlogram at right angles to the direction of motion.

From a comparison of the values in Table 7.2 with those in Table 6.1, it will be noted that filtering
does not aflect V; for Model 3 as much as it does for Model 2. On the other hand, from use of the
weighting method, mean values of 142% and 49% were obtained for V; and Vg, respectively. These
compare favourably with the unfiltered values of Table 7.2. Thus, the low-velocity eflect is present but
its effect is not as great. :

7.4 SIMILAR FADES ANALYSIS

The data used in the previous section were also subjected to SFA. The reswits obtained from the
various levels of acceptance determined by p,, are shown in Table 7.4 where, as for Table 7.3, the
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velocities are expressed as a percentage of V;. It will be noted that V; is in good agreement with the
unfiltered value of V, of Table 7.2 but V3, while a better estimate of V; than Vg, is still somewhat low.

TABLE 7 4

Values of Vi and Vi from SFA as a function of p,,. The design parameters
are as in 7.9. The values are expressed as a percentage of V; at r=100m.

P %Sections  BVy %V,

.75 82 155 77
.80 82 154 77
.85 79 153 78
.90 74 150 83
.95 63 152 86
.975 50 152 88

The values in Table 7.4 were derived for section lengths of 2\/(_7r)0' seconds. It was found that for
this model, if the section lengths were increased, then values of V; closer to V; were obtained. This effect
is shown in Table 7.5 for section lengths of M\/(_7r)a' seconds, where M is varied from 2 to 4.

TABLE 7.5

Effect of different section lengths for SFA. p,, = 0.85.

M %Sections %Vi % Ve

2.0 79 153 78
2.5 80 153 90
3.0 80 152 93
4.0 84 154 106

7.5 CORRELATION ELLIPSE

Analogous to Model 2, because 0, > g4, Vs will vary with r. This variation is shown in Table 7.6.
The values were obtained for the same design parameters as used for the results of Table 7.2

TABLE 7.6

V; as a function of r for various values of Var(w) .The values are expressed
as a percentage of V, at r==100m. The design parameters are as in 7.9,
except for the variation of Var(w).

Vaa'(o.))l/'2 r == 100m r = 200m

0 75 76
10 79 81
20 91 94

It will be noted from this Table that, compared with Model 2, the changes are relatively small.
This occurs because V; tends to decrease with r. For the work presented below the correlation ellipse is
defined for p = 0.5.
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From the the way in which the random surface is formed for Model 3 ,the correlation ellipse will
always be oriented with its major axis at right angles to the direction of motion and its axial ratio as a
function of Var(¢). This variation with Var(¢) is shown in Table 7.7. These values were computed from
7.2 and are independent of the value of o used. As can be seen from the Table, the axial ratio varies
monotonically from co to 1 as Var($)'/? increases from 0°

TABLE 7.7

Axial ratio of correlation ellipse at p = 0.5 as a function of Var(¢).

Var(¢)!/? Axial ratio

15 3.9
30 2.3
45 1.4
60 1.2
90 1.0
135 1.0

To examine the contours of constant amplitude over a 1 X 1 km area, 150 patterns were formed
at 10 second intervals as described in Section 5.5. The design parameters were the same as 7.9 except
the velocity V was set at 52.5m/s, for which the true velocity of the surface should be about 100m/s.
As mentioned above the axial ratio will be 1.1. From the 150 ellipses derived, the axial ratio varied
from 1.02 to 2.49, with a median value of 1.38 and a 95 percentile of 2.07. Examples of the contours

of constant amplitude over the 1 X 1 km area are shown in Figures 7.1 and 7.2. These contours were
derived 10 seconds apart in time.
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Figure 7.2 Contours of constant amplitude over a 1 X 1 km area for Model 3. The design parameters
are defined in 7.9. The correlation ellipse has an axial ratio of 1.26.
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Figure 7.3  As for Figure 7.2, except that it is 10 seconds later. The correlation ellipse axial ratio is
1.86.
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8. MODEL 4

8.1 THE CORRELATION FUNCTION

From Section 4 the correlation function for this model is

<f: i f: AR cos(k(r cos(g + 64 + 0) — (V + 6V)r)))
k=06p=—00 6V =—00
Pror — pos . (8.1)
(D A4
k=0

The solution for 8.1 is given by Integral 4 in the Appendix, i.e.,
Prbr = D+ E,

where

Il

x V1r!¢
D = [COb cosn d’ -+ 0 ‘my
0

n

3

n2 Vi (#)
E———Zsm——e T cosn(¢ -+ 0) S
0
n+2m 0 pr (VT)p ol n+2m+p 2

n

I

(e o]
Cm = Z cos Z%E p 4 Z €OS — 1+n+2m+p
P 2 2n+2minl(n 4 m)! 2 p! (s2 + TEVar(V))-—g—2
n+2m+p .
S = > cos B e a2l e
ot 2 2mpd(n + m)! = PP(s2 4 r9Var(V))__Q_L

and ¢=1"for n=0; else ¢ = 2.

This model differs from the previous model only in the way the random temporal changes are
introduced. In Model 3 they were introduced by way of Var(w), in this model they are introduced by
way of Var(V). Thus, what was said for Model 3 concerning the true velocity of the surface derived for
Var(w) = 0, is also true for Model 4 with Var(V)) = 0. The same is also true for the ratio of o, to g,
Where this model differs from Model 3 is the way this ratio varies with Var(V) compared with Var(w)
of the latter model. This variation is shown in Table 8.1. Values of V, and V3, expressed as a percentage
of V, at r==100m, are also included in the Table. The variance of 6V is expressed as a fraction of V.

If the values in Table 8.1 are compared with their corresponding values in Table 7.2, it will be
noted that there is little difference between Vy and o, /0, derived for either model for random temporal

changes.
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TADBLE 8.1

Variation of correlation parameters as a function of Var(V') and r for Var(¢) == 65° and 0 = 2s.

r = 100m r = 200m
Var(V)V2 %Vs %Vy 0oy fo, ot Jo, %Ve %Vy 07 f5, 0F fo4
0.0v 100 56 1.04 1.03 91 64 1.14 1.08
0.5V 124 55 1.00 1.07 114 58 1.07 1.19
1.0V 198 54 1.00 1.08 176 55 1.07 1.21

8.2 FILTERING

Following the usual procedure, 25 sets of time-series were derived from the design parameters given
below,
Var(¢)'/? = 65°, Var(V)/2 = 75V,

(8.3)
V= 100m /s, o= 2.12s.

From these parameters the expected value of V; = 183.0m /s, 0, = 2.0s and the axial ratio, as for Modcl
3, is 1.1. The mean values of various correlation parameters, before and after filtering, are shown in
Table 8.1. A value of n==2 was used because, for this value, the mean value of o, was reduced from

2.02s to 1.18s. This result is analogous to that for Model 2. The values of V, and Vy are expressed as a
percentage of V.

TABLE 8.2

Comparison of V; and Vy before and after the use of a high-pass filter. The
design parameters are as in 8.3.

Filter %V, %Vy Pm

nil 160 54 957
1—10 163 63 .941
1—-20 179 66 928
n==2 168 67 .928

A comparison of the values in Table 8.2 with those in Table 7.3 (Model 3) shows that there is little
difference between the two approaches for introducing the random temporal changes into the models.

8.3 SIMILAR FADES ANALYSIS

The data used in the previous section were also subjected to SFA and the results are presented in
Table 8.3. As there was good agreement with V; over the range of pm,’s used, only section lengths of

2\/(r)o, were used.

8.4 CORRELATION ELLIPSE

The variation of V; as function of r is shown in Table 8.4. The design parameters are as for Table
8.1.
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TABLE 8.3

Values of V| and V; from SFA as a function of p,,. The values are expressed
as a percentage of V; at r==100m. The design parameters are as in 8.3.

Pm %osections %Vi %Vy

75 75 179 103

.80 70 177 104

.85 65 173 109

.90 55 168 110

.95 35 164 123
TABLE 8.4

V; as a function of r for various values of Var(V') . The values are expressed
as a percentage of V, at r=100m. The design parameters are as those used

for Table 8.1.
Var(_V)‘/z r = 100m r = 100m

0.0V 75 76
0.5V 83 81
1.0V 104 98

It will be noted from this Table that the changes, if anything, are small and negative.

Because Models 3 and 4 are identical with respect to random spatial changes, the information given
in the previous section for Model 3 concerning the axial ratio of the correlation ellipse as a function of

Var(¢) applies equally to Model 4.

With respect to the amplitude contours over a 1 X 1 km area, the contours were computed with the
parameters of 8.3 except that the velocity V=52.5 m/s. From the 150 ellipses derived, the axial ratio
varied from 1.02 to 2.72 with a median value of 1.37 and a 95 percentile value of 2.11. These results are
very similar to those for Model 3. An example of the amplitude contours is shown in Figures 8.1 and

8.2 for 2 patterns 10 seconds apart.
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Figure 8.1 Contours of constant amplitude over a1 X 1 km area for Model 3. The design parameters
are defined in 8.3. The correlation ellipse has an axial ratio of 2.01.
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Figure 8.2 As for Figure 8.1, except that it is 10 seconds later. The correlation ellipse axial ratio is
1.37.
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9. MODEL 5

In deriving the correlation function for this Model it is considered that the discussion can be
considerably simplified by initially working in one dimensional space with only random spatial changes.
For these conditions from 4.15 and 4.16

_ (Au cos §ar Ay, cos(6a + 1 87) cos (w(r — rH))) | o)
Pr,r [(AE) cos? 5a> <AE, cos®(6a + r 57»]1/2

As the random variables are independent of w, and hence A, consider the cosine term in the denomi-

nator, viz.,
cos?(6a + ré6v) = 0.5(1 + cos 2(6ax + r 67)).

From the integrals of 7.6 it follows that

(0.5(1 + cos 2(6a + r 67))) = 0.5(1 + ¢ 2Var(a)4rVar(2) ) (9.2)

For this expression, if Var(a) = 0 then the mean varies asymtotically from 1 to 0.5 as r varies from 0 to
oo. To prevent this it is necessary to swamp the change in r2Var(7). A value of Var(a) = 4 is suggested

for which
e~2%4 = 0.0003.

For this condition both the normalization terms in the denominator of 9.1, with respect to 6 and é+,
will be very close to 0.5. ,

For the random variables in the numerator

cosba cos(ba + révy) = cos? acosr by — cosbasinSasinréf.

Since the mean of the sine terms are zero,then
2v,
<cos2 Sa cos r5'7> = 0.5(1 + e~ 2Var(a) Y Var(1)/2
— 0.5¢ V()2 (9.3)

It follows from Model 1 that the correlation function of 9.1 is

r2Var(y _(_’;’ﬂlg_
pr,rze“‘ﬂu e 2% . (9.4)

Similar arguments can be presented with respect to random temporal changes, although the process
is not as simple as for spatial changes. This arises because the correlation function is derived as a function
of time for a given r. For this case, the amplitude term of the correlation function would be written as

(cos(6a + t68)cos(ba + 88(t + T)))
(cos¥(ba + t643))

For the denominator, at a given time t

(cosg(ﬁa + t5ﬂ)> =0.5(1 + e‘zvaf(a)‘thVar(ﬂ) ).
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This mean must then be summed over all times t from t=0 to co. However, the end result is the same
if Var(a) > 4 and the resultant correlation function

_rQVargﬂ —ﬁg
204

p(0,7)=¢e " 2 e (9.5)

For the two dimensional case with both temporal and spatial random changes, the resultant corre-
lation function has the same form as Model 1. Hence, the properties of Model 5 are the same as those
described in Section 5 for Model 1.

The similarity with that of Model 1 can be seen in another way by expressing the correlation
function as

pre = (A2 cosr b cos(w(r — rH))). (9.6)

For simplicity, it is assumed that Var(a) = 0 and that the normalization terms are unity. The above
expression can be written as

p(r, T)= <A?‘% cos(w(r —rH) +ré~)) + <J%5 cos(w(r — rH) —ré7)). (9.7)

As 6+ is normally distributed about zero, the two terms of the above expression have the same value,
which is of the same form as Model 1.

Because of the similarity between Models 1 and 5, all discussion of the properties of Model 1 can
be taken as also applying to Model 5.



45

10. SUMMARY

10.1 INTRODUCTION

For comparison purposes some of the more important properties of the various models are listed
below. It will be remembered that the correlation function of Model 5 is of the same form as Model 1,
so that any information on Model 1 applies equally to Model 5. The true velocities for Models 1 and 2
are 100m/s. The velocities for Models 3 and 4 are expressed as a percentage of V;.

10.2  FILTERING

' The values of V obtained from the data for each of the models, before and after filtering, are given
in Table 10.2.1. The high-pass filtering was obtained by deleting the first 20 harmonics from the data.

The changes in p,, are presented in Table 10.2.2.
TABLE 10.2.1

Values of Vy from FCA before and after ﬁ]tering.

Model Before After %Change

1 49 96 96

2 56 86 54

3 51 64 25

4 54 66 22
TABLE 10.2.2

pm before and after filtering. The design value of py is also included in the Table.

Model  Design Before  After

1 91 .91 91
2 .88 .88 .82
3 .97 97 .95
4 .96 .96 .93

10.3 SIMILAR FADES ANALYSIS

The values of Vi, from SFA for each of the models, for various levels of p, are given in Table 10.3

It has been shown that the values for Model 3 can be increased to close to the true velocity b
using section lengths of 4%#)0‘,. Y
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TABLE 10.3

Values of Vy from SFA for various levels of p,,. Section lengths 2\/(—71')0",.

Model p,= 75 80 85 .90
1 101 102 103 106
2 106 111 116 124
3 77 77 78 83
4 103 104 109 110

10.4 THE LOW-VELOCITY EFFECT AND WEIGHTING METHOD

The values of V; obtained from FCA and the weighting method are compared in Table 10.4.
TABLE 10.4

V4 from FCA and weighting method.

Model FCA Weight
1 50 49
2 56 40
3 51 49
4 54 43

It will be noted that for Models 2 and 4, the values from the weighting method are low compared
with FCA. This could be due to the fact that o,/0, is greater than 1 and tends to give a higher value
than expected for FCA. While this explanation appears valid for Model 2, it is questionable with respect
to Model 4, as shown by the values of o, /7, given in Table 10.4.

10.5 THE RATIO OF ¢, TO ¢,

The ratios of o, to o, as a function of r are given in Table 10.5. The values are for the case where
the random temporal changes are zero. It will noted that the effect is more pronounced with Model 2.

TABLE 10.5

Ratios of o, to o, as function of r

r = 100m r = 200m
Model o, /o, of /0, 0, /0., 01 /0,
2 1.12 1.12 1.41 1.41
3/4 1.04 1.03 1.14 1.08

10.6  V; AS A FUNCTION OF r

The variation of V; as a function of r is given in Table 10.6. These values are for the condition of
no random temporal changes. Again Model 2 is affected more than Models 3 and 4.
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TABLE 10.6

V, as a function of aerial spacing.

Model r=100m r=200m %Change
2 59 83 41
3/4 56 64 14

10.7 CORRELATION ELLIPSE

Variation of V; as a function of r is shown in Table 10.7.1 for the case where random temporal
changes are zero. It will be noted from this Table that the greatest change is for Model 2.

Table 10.7.1

V; as a function of r.

Model r = 100m r = 200m
2 77 91
3/4 75 76

The distribution of the axial ratios from the 150 correlation ellipses for each model are summarized

in Table 10.7.2.
TABLE 10.7.2

The range of axial ratios and their 50 and 95 percentile levels.

M odel Range 509%  95%

1 1.00 —- 2.66 1.46 2.19
2 1.04 —2.52 1.40 2.07
3 1.02 —2.49 1.38 2.07
4 1.02 -2.72 1.37 2.11

As can be seen from Table 10.7.2, the ellipse properties of the various models are very similar.
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11. DISCUSSION

11.1 FULL CORRELATION ANALYSIS

Of the 5 models of moving random surfaces discussed in this report, only Models 1 and 5 satisfy
the necessary conditions for the full correlation method of Briggs et.al. For these two models it is shown

theoretically that the two correlation velocities, apparent velocity

V, = (1 + o*Var(w))V,, (11.1)
and the drift velocity
Vi = VAL + 0?V2Var(ky), (11.2)
where V, is the true velocity of the surface in the direction ¢, Var(w) is a measure of the random temporal
changes and Var(k,) the spatial changes in the direction of motion ¢.

From 5.2, it follows that the spatial auto-correlation functions in the direction of motion and at
right angles to this direction are

Prbo = -r(1 + .32\/ar(lc'¢))/2$2 (11.3)

and

_ o Var(k(giam) ) /267 11.4
Pr,(¢+7/2),0 € ’

where s = Vio.

It follows from 11.2 that, if there are random spatial changes in the direction of motion, tllc.n the
correlation velocity Vy will be less than V;. While random sur.faces for Modfels 1 a'nd 5' can be deslgne.d
with Var(w) # 0 and Var(ky) = 0, it follows from 11.4 that, if the correlation .e]]1])§e is to l]a\.rc a ﬁn¥te
axial ratio, then there must be random spatial changes at right a.ngles Lq the direction of motion. It is
considered that such surfaces, while possible, are unrealistic and impracticable.

Models 2. 3 and 4 fail to satisly the conditions for FCA, basically becalxs? Oz 75 o, I'Iov»tevelx if the
correlation functions of these models are subjected to FCA, then, as shown in this report, mteresting

results are found.

11.2  SIMILAR FADES ANALYSIS

It has been shown that, even when a simple approach to SFA is applied to time-series from the 5
models. the velocities obtained are in much better agreement with V; than those obtained from FCA.

This is especially true for Models 1 and 4, as shown in Table 10.3.

It is considered that, if the improvements mentioned in Section 3 are applied, then even the velocities
for Models 2 and 3 will be improved. It is also hoped that, because of the encouraging results reported
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here, further work will place this method on a more rigorous base. In this respect it is considered that
the work of Longuet-Higgins might be of some value.

11.3 IONOSPHERIC DRIFTS

Experimental evidence did not support the random screen model of Booker et.al. and it is now
considered by most, if not all, workers in the field that the ground interference pattern is formed from
the interference of a few radio waves specularly reflected from the ionosphere. For this reason one should
be cautious in comparing the moving random surface models developed in this report with the radio
interference patterns on the ground. However, as shown below, available experimental evidence suggest
that the ground pattern has properties similar to Model 2.

11.3.1 o, /0,.

The early application of FCA was based on the straight-line method of Briggs et.al. However, as
stated by Sales and Bowhill(1962), the ‘Briggs straight line was frequently far from straight’. They
assumed this defect to be due to sampling errors but, examination of a ‘typical correlogram’ presented
in their Figure 2, shows

0,=1.05m o, fo,—=1.05, o} /0,= 1.33.

For their work the radio frequency was 60khz, antenna spacing 3km and the reflection was from the D
region of the ionosphere. For these conditions o is in minutes rather than seconds.

Keneshea et.al.(1965), from E region data at 2.9 Mhz and r=104m, extended the work of Sales and
Bowhill. From the typical correlogram in their Figure 5 it can be shown that

o0,=3s, 0; /0,=1.33, of fo,—1.33.

From the correlograms in Figure 4 of Chandra and Briggs
0,=0.7s, o0 fo,=1.45, o} fo,=— 1.23.

Their work was from D-region partial reflection data at 1.98Mhz with r ~ 200m.

Meek(1980), in discussing results obtained from D-region partial-reflection data, stated that ‘it
appears that the cross-correlograms are wider, on the average, than the auto correlograms’.

Shown in Figure 11.1 are the distributions of the ratios of o,/o, for 42 day-time E region records
and 31 night-time F region records. These values were derived by the author from data recorded at
Brisbane on 2.28Mhz with r=100m. o, and o, were derived from the least square fit of the correlation
coeflicients to a Gaussian curve. Thus, o, is the average of o7 and o .

All of the above experimental evidence suggests that the ground interference pattern behaves as
predicted by Models 2, 3 and 4.

Golley and Rossiter(1970), from the use of a multi-aerial array at 1.98Mhz, found that Vy increased
with increasing acrial spacing, whereas V, showed no variation with r. They also found that the correla-

tion ellipse tended to be aligned along the hypotenuse when small right-angled triangles for the antennae
were used.

Models 2, 3 and 4 predict that V; will increase with r, but only Model 2 predicts that V; is
independent of r. Moreover, Model 2 shows that V; increases with r and hence the correlation cllipse
will tend to be aligned along the direction of the antenna pair with the largest spacing.
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Figure 11.1: Ratios of 0, /0, for Brisbane déta at 2.28 MHz.
a) Daytime E-region.
b) Night-time F-region.

11.3.2 LOW v,

Wright and Fedor(1967), from a simultaneous comparison of ionospheric winds obtained by FCA
of ionospheric drift data and by luminous trail releases from rockets, found the luminous trail speed to

be a factor of 2 greater than the speeds from FCA.

Sprenger and Schminder(1969), from a comparison of correlation speed with those obtained from
meteor trails, found the former to be too low by a factor of 2 or more,

The author found the correlation speeds derived from E- and F-region records at Brisbane were too
low by a factor of 2 or more compared with ionospheric speed derived by other methods at Brisbane,

All of the above results are consistent with the predictions of all of the models when random spatial

changes are present in the direction of motion.

11.3.3 FILTERING

Sprenger and Schminder reported that after filtering their fading data with a high-pass lilter, the
correlation speed increased by a factor of 2 or more and were in much better agreement with the meteor

trail speeds. They also reported that V was relatively unchanged after filtering.

The author also found similar results after filtering some F region records with a high-pass filter.

V4 increased and V, remained unchanged.

Chandra and Briggs also found experimentally that Vj increased after the use of a high-pass filter
but they argued that the effect on ¢orrelation speeds was no criterion that the speeds were too low. The’
same conclusion was arrived at for Model 1 from other reasoning and shown to be true both for Models
1 and 2 when there were no random spatial changes in the direction of motion. However, while pm of
Model 1 remains unaffected by filtering whether random spatial changes are present or not, p,, for Model
2 only remains unaffected if there are no random spatial changes. If these changes are present, then

-



pm decreases after high-pass filtering and, conversely, increases after low-pass. From their experimental
data, Chandra and Briggs found p,, to increase after low-pass filtering which strongly suggests that
random spatial changes were present in their data and thus accounted for the increase in Vj.

Because random spatial changes must always be present in Models 3 and 4, the effect of filtering
when no such changes are present cannot be considered for these models.

While all models predict that V4 will increase after high-pass filtering and that V, will remain
relatively unaflected, only Models 2, 3 and 4 predict that p,, will decrease after such filtering.

11.3.4 CHOICE OF MODEL

The above experimental evidence, taken in toto, strongly suggests that the radio interference pattern
formed at the ground from a few rays specularly reflected from the ionosphere is of a form similar to
Model 2 of this report. While much of the evidence also supports Model 3 and 4, the observation of
Golley and Rossiter that the correlation ellipse tend to line up with its major axis in the direction of
the antenna pair with the greatest spacing is peculiar to Model 2.

Also, there is much experimental evidence that the correlation ellipse can be oriented with neither
axis in the direction of motion. If these results are real and not due to sampling errors, then the results
automatically exclude Models 3 and 4.

Finally, the way random spatial changes are introduced into Models 3 and 4 is rather forced and
restrictive, whereas, for Model 2, the approach is much freer and therefore more likely to occur.

11.4 RECOMMENDATIONS

From the work presented here, it is recommended that the use of the full correlation method of
Briggs et.al. for ionospheric drifts analysis be treated with caution and that the Similar Fades Method
(Variant 2) be used in its place. With regard to this latter method, it is hoped that further work will
be done to refine it and place it on more rigorous grounds.

Acknowledgements: 1 am indebted to Dr. B. A. Senior who gave me hope and, thus, started me on the
course of this work. I am also indebted to Dr C. E. Meek for his critical review of this work.
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APPENDIX. INTEGRAL SOLUTIONS

Al INTEGRAL 1

The integral to be considered in this section is

o0 2,2 [oo  ___k?
/ e_w_QL/ e Vult) cos(wr — rk)dk dw
w=0 k=—00

00 2 9 00 k2
/ e_W_Qde/ e NVl gk
w=0 k=—o00

where w and k are independent variables.

(AL.1)

’

In solving this integral only those sections pertinent to the discussion will be considered and it is
assumed that, in the integration of the numerator with respect to a particular variable, its counterpart
in the denominator is also included.

Expanding the cosine term of Al.1,then

cos(wt — rlc) = cos wT ¢os kr + sinwT sin kr.

Because sin kr is an odd function, its integration with respect to k will be zero. Using the integrals of

_ r2Var(k )
4 .

Similarly, the integration of coswT with respect to 7 is

7.6, the integration of cos kr is

Thus, the solution to integral Al.1 is \ )
—r“Var(k) _
ol -5 (A1.2)

e 2 €

In the main body of the text 7 may be a function of several variables, e.g., 7—r/{ and rk may be tle
sum of up to 3 random variables. In the latter case, not only their variances but also their covariances

must be considered.

A2 INTEGRAL 2
The integral to be considered in this section is
o 22 [0  ___H2
/ e‘LﬁL/ e NVa(H) cos(wr —wrH)dH dw
e e B : (A2.1)
e T dw e 2VarlH) g

w=0 H=—0c0
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where H and w are independent variables.

As for Integral 1, expand the cosine term, neglect the sine term of the expansion and integrate with
respect to H. The solution is

e—w2r2Va.r(H)/2 .
This term modifies e=%29*/2 to
e—w2(02+r2Va.r(H)) /‘2

Then integrate with respect to w and the solution of A2.1 is

2

1 2ag(l+r§Va.\'(H) ai) .

(1 + r2Var(H) /0?) 12

€

(A2.2)

For this integration, it should be noted that the coefficient of w? in the numerator is (0* + r*Var(H)),
whereas in the denominator it is o2

A3 INTEGRAL 3

The integral to be considered in this section is

00 29 oo _ 2 ) W2
/ e_LQL/ e Nar(d) / e Nal) cos(k(rcos(® + ¢) — V1) + wr)dw do dk
k=0 $=-00 w=—00
0 22 o ¢4 w @ ’
/ e_LZL dk/ e 2Var(9) qu/ e 2Var(w) du
k=0 =—00 w=—00

where w, and k are independent variables.

(A3.1)

Following the procedures from Integral 1 by expanding the outer cosine term of A3.1, integrating
with respect to w and rejecting the sine term, then the integral for the w term is

12Vnru[
ez . (A3.2)

Further expansion of the cosine term results in
cos(kr cos(P + ¢)) cos kV 7 + sin(kr cos(P + ¢))sin kV 7.

To integrate this with respect to ¢ it is necessary to expand the cos(cos) and sin(cos) terms into their
power series of which a convenient form is

cos(z cos(y)) = Jo(z) — 2{(Ja(x) cos 2y — Jy(z)cos 4y -+ - - | (A3.3)

and

sin(z cos(y)) = 2[Ji(z)cosy — Js(z) cos 3y + Js(x)cos by — - - -], (A3.4)
where J,(z) is the Bessel function of the first kind and is

n+2m

(@) = D (1" Sz

™0 )’m!(n + m)! ) (A3.5)
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For integration with respect to ¢, the relevant portion of the n* term is cos n(®+ 4). On expansion
of this cosine term and integration with respect to ¢, it follows from the previous work that the solution

2v;
cos n@e—ﬁ—;ﬂﬂ . (A3.6)

is

Finally, for integration with respect to k, it is necessary to expand cos(kV 7) and sin(kV'r) into their
power series, which can best be represented as

[e o]
. pr (kV T)P
cos kVr= E cos Y ol

p=0

and

o0
. . pr (kV )
sinkVr= E sin ?T
p=0

Considering the cos(cos) term first, then the relevant (n,m) term for k is combined with the p** from

cos(kV 1) to produce N o
k"2 (kVr

p!
A solution for the integral associated with this term is given by Bierens de Haan(1939), Table 81.6, in

/ e 2r :l:2ad:t= 1a:2p2a+1 \/(_271,))
—00

where 1%2 is in Kramps notation, viz,
¢ = ¢(c + b)(c + 2b)(c + 3b) - - - (¢ + (a — 1)b.

the form

Applying this to A3.1 the integral with respect to k is

lk‘wﬁ (Vr)

g2n+2m-+p) p! (A3'7)
Collecting the various values then the integral of A3.1 for the cos(cos) term is
ZVa.r w) nQVar!ﬂ
g cos —-—e cosnd Cy,,
n=0
where ¢ = 1 for n = 0; else ¢ = 2, and

o +2m V )p 1 n2m+p)

mmr " T :
Cm = 3 <08 5 i)t 2o Zwb pl sbremip) (13.8)

m=0
The integral for the sin(cos) term is very similar, viz.,

T—%M Zsm L 12_‘/’2”_@1 cosnd Sy,

where n +2m-+

ool pnt2m oo .
. pr(Vrp 1
= Z 2 m' n + m)' Z_:()Sln ? p! s(ﬂ+2m+p) : (A39)
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A4 INTEGRAL 4

The integral to be considered in this section is

0 29 00 _ 2 0o
/ e_k_ﬁs_/ € 2V”(¢5/ e 2V’*"("j cos(k(r cos(® + ¢) — (V + v)r)dv d¢ dk
k=0 =—00 ——00
in‘dk-/ e 2Va.rid> d(ﬁ/ e 2Va.r(v

v=—00

(Ad.1)

k= 0

where k, ¢ and v are independent variables.

The solution for this integral follows along very similar lines to that for Integral 3 and much of what
was said there will be taken for granted. Thus the integration with respect to ¢ will produce a term

2var(9)
cosnde™ T . (A4.2)

In the first expansion of the outer cosine term of A4.1,the two terms with respect to v are
cos k(V + v)r and sink(V + v)r

The expansion and integration with respect to v of the cosine term will result in the term

k2r2Var (v
coskVre p)

)

and for the sine term
sinkVr c’m)'.
Thus the relevant portions of the cos(cos) term for integration with respect to k are
e—k;(SQ-HQVar(v)) km2m (kY r)? /pt.
The integration of this term produces
(Vr)” 1 (n+2m-+p):2 s
P! (s2 + r2Var(v)) P22 (52 4 12Var(v))

Combining the relevant terms, the integral of the cos(cos) term is

ad nm _nQVar ]
E q cos 76 2 cosnd C,,

where ¢ = 1 for n = 0; elsc ¢ = 2, and

o mr pntom %0 1({"*_2'2";*31:28
O = EOCOS 2 m!(n+m)! X:OCOS ! ( 2 4 72Var(v))(ttntomp)2 (A1.3)
m= p=

Similarly, it can be shown that the integral for the sin{cos) term is

) 2
nm Var(4)
E sin ?e cosnd S,
n=0

where

0 "+2m (] prr (Vr)p 1 n+2m+p) :23
= E cos =8 1
2 ml(n

—_ . Ad.4
+m) =Osm 2 p! (32+72Vzu'(v))(1’“"’*2"""’)/2 ( )

m=0
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