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MOVING RANDOM SURFACES AND CORRELATION ANALYSIS 

by 

M.J. BURKE 

ABSTRACT 

Five models of moving- random surfaces with known velocity and known 
correlation function are described. The  ran  dom  surfaces are formed from an 
infinite set of plane waves with decorrelation arising from random temporal 
and spatial changes. It is shown that, if there are random spatial changes in 
the direction of motion, then speeds derived by the full correla,tion method 
of Briggs et.al.(1950) will be less than the truc  speed of the surface. Random 
spatial changes at right angles to the direction of motion are necessary if 
the axial ratio of the correlation ellipse is to be finite. From modeling- of a 
multi-a.ntenna array, it is shown that the correlation ellipse is the average 
of the various shapes within the surface as argued by Burke(1975). If 
temporal-series based on the various models are subjected to a hig-h-pass 
filter before correlation analysis, the correlation speeds increase in value. 

Temporal correlation functions from three of the models fail the require-
ments for full correlation analysis because the half-widths of the cross-
correlation functions are, in general, greater than the half-widths of the 
auto-correlation function. However, from a survey of experimental iono-
spheric drift measurements, it is argued that radio interference patterns 
appear to have the form of one of these three models, viz., Alodel 2. For 
this model, correlation speeds increase with increasing antenna spa,cing and 
the correlation ellipse tends to line up with that antenna pair with the g-reat-
est spacing(Golley and Rossiter,1970), the straight line of the straight-line 
method of Briggs et.al., will not be straight(Sales and Bowhil1,1962) and, 
as stated above, the speeds will be low(Wright and Fedor,1967;Sprenger 
and Schininder,1969). 

It  is shown that the similar-fades method(Variant 2 of Sprenger and Sch-
minder,1969) gives a better estimate of the surface speed than does the 
correlation method. 
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1.  INTRODUCTION  

In this report five di fferent models are developed for two-dimensional moving random surfaces 
with known velocity and known correlation function. Although this work was developed specifically to 
investigate the methods of ionospheric drift analysis, the models themselves are completely general and 
can be used wherever the case of a moving random surface arises. 

Briggs and Page(1951) developed a method for forming pairs of random series with known corre-
lation function, but their method cannot be extended to two-dimensional space nor do the time-series 
have a known velocity. Longuet-Higgins(1957a, b), from a consideration of random surfaces, has devel-
oped relationships for the statistical properties of these surfaces in terms of their correlation functions. 
The work in this report, in effect, complements his work in producing random surfaces with known 
correlation functions. 

With respect to ionospheric drifts, radio waves diffracted or reflected from the ionosphere form an 
interference pattern at the ground. If the amplitude of this pattern is recorded as a function of time 
at 3 or more non-collinear points it is found that the time-series fades or varies with time. In addition, 
it is noted that, in general, a series is displaced in time relative to another. This time displacement or 
delay is assumed due to the movement or drift of the interference pattern over the ground. It is a,ssumed 
that this movement arises from the movement of the ionosphere causing the diffraction or reflection 
of the radio waves. Ionospheric drift analysis is concerned with the mea,suring of the velocity of the 
interference pattern over the ground and, via the point source effect , the movement of the ionosphere 
producing the pattern. The point source effect postulates that the the ground pattern will move with 
twice the velocity of the ionosphere. 

One well known method of ionospheric drift analysis is that of Briggs.et.al .(1950), referred to as full 
correlation analysis(FCA). This method of analysis is based on the auto- and cross-correlation functions 
of the time series and is described in detail in the next section. 

The method of FCA is based on the assumption that the ionosphere behaves as a random diffracting 
screen, as proposed by Booker et.al .(1950). For this model it is assumed that the reflecting region of 
the ionosphere is more or less flat and, at or near this reflecting region, there exists a random screen 
of irregularities which impose random phase and/or amplitude changes on radio waves passing through 
the screen. This results in a random amplitude pattern being formed at the ground. A more detailed 
discussion of this work is given by Ratcliffe(1955) who also showed that, provided the screen is not too 
thick, the correlation function over the ground pattern is of the same form as that over the random 
screen. 

Somewhat allied with the proposals of Booker et.al ., Wright and Pitteway(1978) developed a method 
for generating random radio patterns by assuming a number of scatterers to be located in the ionosphere. 
Radio waves are reflected from these scatterers and their interference pattern at the ground determined. 
Motion of this pattern is achieved by moving the scatterers randomly but with a mean motion. However, 
as yet, the correlation function of this ground pattern as a function of the scatterers has not been derived 
nor is there any evidence that the real ionosphere behaves as proposed in their model. 
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While it is highly desirable that a mechanism be determined between the beha,viour of the irradiated 
ionosphere and the observed ground pattern, it is considered that such work could delay the publication 
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of this report, perhaps indefinitely, and hence, is not considered here. 

Another method for deriving the velocity of the ground pattern is that of similar fades analysis(SFA). 
This method is an intuitive method and ha,s no theoretical support. However, it has been used by 
some workers in the field, e.g. Burke and Jenkinson (1957) and Sprenger and Schminder(1969), and the 
ionospheric velocities obtained have been found to be in good agreement with other (non-drift) methods. 
There are two variants of this method and it is the second approach that is recommended.The method 
originated in the 1950's because, without the availability of computers, it was a much simpler method 
than FCA. SFA is discussed in Section 3. 

The random surfaces developed in this report are assumed derived from an infinite set of plane 
waves. Decorrelation is introduced by varying the frequency and wave-number of these waves or their 
amplitudes. The way in which decorrelation is introduced for each model is described in Section 4. 

The analytic solution for the correlation functions and the properties of each of the five models are 
presented in Sections 5 to 9, respectively. Because the analytic solutions for some of the models are rather 
intractable, the properties of these particular models are derived from the modeling of time-series. The 
effect of filtering the time-series before FCA is included in the properties because of some disagreement 
over this feature with respect to ionospheric drift analysis. Sprenger and Schminder(1969) reported that 
high-pass filtering before FCA resulted in higher values of drift speed and that these values were in better 
agreement with speeds derived from meteor trails. On the other hand, Chandra and Briggs(1978) argued 
that the increase in speed after filtering was to be expected and did not imply that the speed was too 
low before filtering. Plots of contours of constant amplitude over a 41 X 41 antenna array are presented 
for each model for isotropic conditions. Correlation ellipses for these contours are also included. This 
work was included because Burke(1975) argued that the correlation ellipse represented the average of 
all the various shapes in the amplitude pattern. This proposal was contrary to the generally accepted 
belief that all the shapes in the pattern were approximately similar to that of the correlation ellipse. 
In reply, Briggs(1976), while agreeing with Burke's conclusion concerning amplitude patterns formed 
by the interference of a few radio waves specularly reflected from the ionosphere, disagreed with the 
conclusion if the pattern was random, e.g. as might be formed from the Booker et. al. model. In fact, 
it was this disagreement that prompted the need for the work presented here. 

A summary of the properties of each model is given in Section 10 and, in Section 11, these properties 
are compared with those found from experimental data. 

It will be shown in this report that, except for a particular case , velocities derived by FCA will be 
less than the true velocity of the random surface. On the other hand, SFA(Variant 2) is shown to give 
better estimates of the velocity. It should be noted that there is no dispute over the direction of motion 
derived by either of these methods, only the magnitude of the velocity derived by FCA. 

It will also be shown that the conclusions about the effects of filtering before FCA depend on the 
parameters of the random pattern and that the significance of the correlation ellipse is more in keeping 
with Burke's proposal. 



and 

(2 .4)  Vd 

2. FULL CORRELATION ANALYSIS 

The full correlation analysis of Briggs et.al.(1950) is based on the fact that, at least close to the 
maximum, the correlation function  lias the form of the function(in 1 direction) 

F(Ar2  —2IIrr +13r2 ), 

where r is the spatial separation between the two observing points and r is the time delay or lag. 
Because, in practice, it  lias  been found that the correlation functions approximate to a Gaussian form 
and because the Gaussian form permits analytic solutions, this form will be used throughout  tins  report. 
In this form the correlation function is 

Ar 2  —21Irr +7 2  

Pr,r e 	202 

where a is the half-width of the correlation function for 0.6065 the maximum value of correlation(p m ). 

Briggs et.al. assumed that, if two spatial-series were taken a time r' apart, the velocity of the 
pattern, Vd is 

Vd  = r„,/r 1 , 

where r„, is the displacement for maximum spatial cross-correlation. 

From 2.2, the condition for maximum spatial correlation can be derived from the partial derivative 
with respect to r, for a delay r'. Thus, for the first stationary condition 

r,„ = Ur' /A 
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(2. 1) 

(2.2) 

(2.3) 

Because, in practice, only temporal-series are available, Briggs et. al. showed how A and 11 could 
be derived from the temporal correlation functions, as shown by typical auto- and cross-correlograms 
in Figure 2.1. From the partial derivative of the cross-correlation function(2.2) with respect to r, for a 
separation ?, it can be shown that the maximum value of cross-correlation occurs for r = r,„, where 

(2.5) 

From this relationship Briggs et.al. defined a velocity called the apparent veloeity(V„), where 

Vo  = 
= 1///. 

The word apparent arose because at first sight this velocity appeared to be the true velocity of the 
pattern but, as argued by Briggs et.al., if there are temporal changes within the pattern, then this 
velocity will be too high. 

(2.6) 
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Figure 2.1. Auto-and cross-correlograms for Model 1. Var(k) 1A = 0.1e/m, Var(w) 0  
200A, cr = 2.88 and r=150m. The parameters  Pm,  7-m  and ro are defined in the text. Var(k) 
and Var(w) are defined in Section 4. 

To derive the coefficient A, Briggs et.al. defined another quantity called the fading velocity(Vf) 

which is based on the time-delay ro  for which the temporal auto-correlation function is equal to the 

cross-correlation function at zero delay, i.e 

PO,ro 	Pr,0 

Or 

r.„21 
e 	e  

i.e., 

Vf =-- 

= 1/\/(A). 
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(2.7) 

Hence, 

Vd Vf2/Va (2.8) 

Briggs et.al. also argued that the temporal random changes in the pattern could be defined in terms 

of a velocity parameter 17,, where 
vf2  vd2  +  V . (2.9) 

In extending the method to a two-dimensional case it is considered that a polar coordinate system 

r =  r ,  0  ) is to be preferred because the correlation function across a random surface, by definition, 



(2.10) 
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is invariant with translation but not with rotation. In an (r, 0) system the correlation function is: 

r2  cos2  0+Csin2  0 -FN sin 20L2rr(ff cos  +M sin B)+/-2  

Pr,O,r = e 	 21 2  

where  FI and M are the reciprocals of the apparent velocity in the x and y directions respectively. The 
coefficients A, C and N define an ellipse, the correlation ellipse, usually measured for the contour 

Pr,o,o ----- 0.5. 

In the (r, 0) system the above velocity parameters can be defined as a function of O.  Thus, 

= r(H cos 0 + M sin 0), 
= 1/(H cos 0 + M sin 0), 

r02,# = r2 (A cos2  0 + C sin2  0 + N sin 20), 

and 

Vf2,0 	1/(A cos 2 0 + C sin2 0 + N sin 20). 	 (2.14) 

The direction of the apparent velocity is given by 

tan(0 a ) = M/H. 	 (2.15) 

The direction of 17,/ can be derived from the partial derivatives with respect to r and 0 of equation 2.10 
and can be shown to be 

tan(0) — (AM — N)/(I IC —  MN). 	 (2.16) 

Then Vd, 0  can be derived from 
1/(1,0 = 110/Va,o. 

In the application of FCA to the models discussed in this report, a three-antenna system is assumed 
and a value of r„, and ro  is derived from the correlation functions for each antenna pair. From the three 
values of r„„ II and M are derived from a least squares fit to equation 2.11. From the three values of ro , 
A, C and N. are  derived from 2.13 and the direction of motion 0 from 2.16. Values of Va , 0  and V1,0 are 
derived from 2.12 and 2.14 respectively and hence, Vd,0 from 2.17 

The straight line method of Briggs et.al . is based on the time delay ra  and r, for which, for the 1 
dimensional case, 

PO,  r0 = Pr, Ty • 

From 2.2 

7:41 

2 	Ar2—`11rrf+r.  
— 	 2o9 e 	e 

For reasons that will be explained below, it is assumed here that ai (half-width of the cross-correlation 
function) does not necessarily equal cra (lialf-width of the auto-corelation function). Rearranging the 
terms of 2.18, 

7.2 A7.2 _ /0. Ar 2  /61- — 2H rrr/cr. 

(2.11) 

(2.12) 

(2.13) 

(2.17) 

(2.18) 

(2.19) 

If cr. ---  o,  then 	—  ri),  plotted as a function of rx , is a straight line. From the intercept A can be 
determined and, from the slope, II. However, if ry a 	ar  then the straight line will be curved. 





3. SIMILAR FADES ANALYSIS 

In similar fades analysis, short sections of pairs of fading records are compared and adjusted in time 
for best agreement. For the Variant 1 method these delays are averaged and, from the average values, 
a velocity V1  is determined in the same ma.nner as for Va  of FCA. This method is also referred to as the 
average time-delay method. 

This particular variant of SFA was originally developed by Mitra(1910) and, over the years, it has 
been found that the the velocity derived by this method is in very good agreement with the apparent 
velocity(Va ) of FCA. In the early literature it was frequently referred to as the Mitra method. 

For the Variant 2 method a velocity is derived from each set of time-delays per short section using 
the same method as for V, and then these velocities are avera,ged vectorially to produce the Variant 2 
velocity V2 . This method is also referred to as the average velocity method. 

To clarify possible ambiguity in some of the literature, it should be noted that the results presented 
by Thomas and Burke(1956), and by Bowman(1968) and referred to as Mitra velocities were actually 
determined by Variant 2. Those by Burke and Jenkinson(1057) are also from Variant 2. 

When the comparison of records is done visually it is customary to select those sections of a 
record containing only 1 fade and centered around the maximum of this fade. lf the pairs of fades are 
too dissimilar the section is usually rejected. To adapt this process to computer analysis, the auto-
correlation coefficients of one record are derived and a value of a obtained. The records are then divided 
into lengths of 21(rija . This number was derived by Awe(1964) as the statistical distance between 
maxima in a record. For 4 of the models considered, it was found that the factor of 2 wa.s not too 
critical. Values of 1.75 to 2.25 could be used without significantly changing the value of the velocities 
obtained. However, for one model it was found that, if the factor 2 was increased to 4, better agreement 
between the derived velocity and the true velocity was obtained. This is discussed in the appropriate 
section. The time-delays betsveen pairs of short sections are derived from cross-correlation analysis 
analogous to r,„ of FCA. For each set of short sections, if the maximum value of cross-correlation(p„,) 
of any one pair is less than a preset value, that set is rejected. Values of p,„ between 0.7 and 0.05 are 
considered and it is found that the best value can vary from model to model. Examples are given with 
each model. 

A further refinement, not used here, is that, for a 3-aerial system, 3 values of time-delays are 
a,vailable but only 2 are needed to fincl the velocity. Hence, there is 1 degree of freedom and the error 
in deriving the velocity could be used as a measure to accept or reject that section. 

Shown in Figure 3.1 is a sample of fading records derived from Model 1 for a 3-aerial system. The 
vertical dashed lines indicate the section-breaks dictated by 2 \/(71-)cr a . As can be seen from this figure, 
better sectioning of the record could be done visually and, from the author's experience, only that fade 
between 10 and 18 seconds would have been chosen from this sample for finding the time-delays. While 
better algorithms could be developed for selecting sections, it is considered that such work is outside 
the scope of this report and only the simple method described above is used here. 

o 
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Figure 3.1. Fading records over 80 seconds for Model 1. Design parameters are g-iven by 5.22. The 
vertical dashed lines define the sections used for SFA and are at 2 \err)cra  ---- 75 intervals. 
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4. GENERAL FORM OF RANDOM SURFACES 

1.0 INTRODUCTION 

In deriving a random surface it is assumed initially that the surface is composed of an infinite set of 
plane waves all moving with the same speed V and direction 0. The amplitude, as a function of space 
(R, 0) and time t, of a representative wave from this set is given by 

YR,O,t = Aw,k COS(Wt — kR  cos( 0 — 0) + e), 

where w is the angular frequency, k is the wave-number (= 27r/X, the wavelength), and e is a random 
phase in the range (-77,7r). There is a particular value of c associated with each wave amplitude A,k• 
R is the distance from the origin. To achieve a Gaussian form for the correlation function it is assumed 
that 

11 

(4.1) 

Or 

k2 s2 
=c  4 , 

where 8 is the half-width of the spatial auto-correlation function. From the above two expressions it 
follows that 

(4.3) 

(4.4) w/k = s/cr, 

and the velocity 

V -- w/k. (4.5) 

The correlation between 2 points, say R and R+r, in the surface is a function of differences, in 
particular, phase differences. Hence, 

Pr,B,r 
(YÏÏ,e,t) 

,k cos(wr — kr cos(0 — 0))) 
(4 k ) 

where it is assumed that the mean is zero. It will be noticed that the random phase e disappears. 

For the ideal surface thus far considered the cross-correlation function will have a maximum value 
of unity, i.e., perfect correlation. To introduce decorrelation across the surface it follows from 4.6 that 
there should be random fluctuations in space and/or time of either A,„k, w or k or of any combination of 
these parameters. From the consideration of variations in these parameters 5 models of moving random 
surfaces are developed. For each surface an analytic solution for the correlation function is derived. 

(Y R, YR4 	r)  

(4.6) 



6V = 6w /k. (1.10) 
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4.2 MODEL 1 

This model could be considered as that produced by random phase changes. These phase changes 
are produced by random changes in velocity from 4.5. Thus the representative wave of 4.1 could be 
written as 

YR,O,t = Aw,k COS(CA — R(k z  cos 0 — k y  sin 0) + e), 	 (4.7) 

and decorrelation introduced by 

YR , o , t 	COS((w ± 6 w)t — R((k z  + 6kz ) cos 0 + (k, + 61c5 ) sin 0) + e) , 	 (4.8) 

where k z = k cos and k, = k sin 0 and where 6k z  and 6k 5  are random variables, normally distributed 
with zero mean, variances Var(k,), Var(k 5 ) and covariance Cov(kx , k 5 ). Also, bw is normally distributed 
with zero mean and variance Var(w). It is assumed in this report that 8w is independent of 5k  and 
8k 5 .  It is also assumed, for Model 1, that their variances are independent of w and k. 

It is considered that 4.8 could be better expressed as 

YR,O,t =  A,, cos(w(t — R(II cos 0 + M sin 0)) — R(bk z  cos 0 + 6k9  sin 0) + 6wt + 	(4.9) 

H = k x /w 

M =ky /w, 

and both have the same significance as that for FCA. However it must be stressed that H and M used 
here are those values for the true velocity (Vt ) of the random surface, 

je,  Vt  ---- V = 1M/I 2  + M2 ), 

and are related to the direction of the motion(0) by 

tan 0= M/H. 

In fact, for the remainder of this report II and M will always have these properties. 

It should be noted that, because (Sw is assumed independent of 6kz  and bk,, the random surface 
of 4.8 could be considered as the sum of two surfaces. In one surface, random changes in velocity, 
magnitude only, are produced by 

where where 

and and 

In the second surface, random changes in reciprocal velocity , both in magnitude and direction, are 

produced by 
6(1/V) = 6k/w. 

This subject is discussed further in the next section dealing with Model 1. 

4.3 MODEL 2 

In Model 1 the variances are independent of w and k, in Model 2 the reverse is true. This effect is 
achieved through equation 4.9 by defining 

(4.11) 

yR,g , t =  A  COSP(l(1 ± 6w /w) — R((11 + H) cos 0 + (M + b M) sin 0)) + e) , 	(4.12) 
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where 8w,  611 and 81v1 have the the same properties as that for Model 1 but their variances and 
covariances are Var(S2) for 6w/w and Var(H), Var(M) and Cov(H, M) for 8H and 6M. 

4.4 MODEL 3 

Model 3 is another approach for introducing random phase changes. For this model it is assumed 
initially that each wave can vary in direction in a random fashion about the true direction of motion, 
but maintaining a constant speed V. Variations in V are then introduced by way of random frequency 
changes. For clarity, the wave equation is delined in terms of k radier than w. Thus 

R,B,t = Ak cos(k(Te cos(0 + 80 — 0) — V I) + 8w t e) , 	 (4.13) 

where 60 is a random variable normally distributed, with zero mean and variance Var().  6w is as 
defined for Model 1. 

4.5 MODEL 4 

Model 4 is similar to Model 3, except that the variance Var(w) is a function of k and 8w/k = 8V. 

yR , o , t = Ak COS(k(R cos( -I- 6q  — 0) — (V ± 8V)i) e), 	 (4.14) 

where W is normally distributed with zero mean and variance Var(V). 

4.6 MODEL 5 

This model introduces decorrelation by way of random changes in amplitude and not in phase. 
These changes occur both in space and time. Let 

D = 8cm + t 	+ 1187, cos 0 4-  67, sin 0), 	 (4.15) 

then 

yR,0, 1  =  '4,, cos D cos(w(t — I?(JI  cos 0 + M sin 0)) + 	 (116) 

where Sa, 6 )3 and 67 are random variables normally distributed with zero mean, variance 

Var(a), Var(f3), Var( -y,), Var( 5 ) 

and the covariances are zero except for Cov(y,-4). The variables are independent of w and k, and (5. 1x  
and 67, are the random changes in amplitude in the x and y directions, respectively. 

As will be shown in Section(l)), 6a,  is a necessary part of the expression as is e, but plays no part 
in the correlation function. 





T 2 

—72aa  (5.4) 

5. MODEL 1 

5.1 THE CORRELATION FUNCTION 

From Section 4 it can be shown that the full correlation function for this model is 

00 	00 	00 	 00 

(E E E 
 > AD) 
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Pr,er — 
w =0 	—oo bk x  =- —oobky  =—(x) 

co 

(EA.2 ) 

where 

D = cos(w(r — r(H cos 0 + M sin 0)) — r(81c x  cos 0 + 64, sin 0) + 5w r). 	 (5.1) 

The general form of the solution of this expression is given by Integral 1 in the Appendix. From this 
solution it can be shown that 

(r—r(H cos  +M  sin a)) 2  

Pr,o,r = e —E  e 	2o2  

where 

E= 	
2 	

(5.2) 

and is the same form as 2.10. Thus, it satisfies the conditions for FCA. 

From 5.2, the temporal auto-correlation function 

r2 (I +a 2Var(w))  

P0,0,r 	e 	202  

r 2Var(w) r2 (Var(k x )  cos'  0 + Cov(kx, 	k y ) 	sin 20 ± Var(ky )  sin2  0)  

(5.3) 

where 

0.2  = a2A1 t7 2 Var(w)). 

Because 5.2 is of the same form as 2.10 then ua = az . For the Models discussed in this report u will 
refer to the input parameter and u3  and crx  to the derived values. 

Considering the one dimensional case, then 5.2 reduces to 

r2Vm(w)+r2Var(k) 	(r — *H)2  

Pr,r 	 2 	e 	202  

(5.5) 

(5.6) 



(5.7) 

(5.8) 

(5 .9) 

(5.10) 

(5.11) 

Vd  = 11/(Ir cr 2 Var(k)), 

V/(1 + V2a2Var(k)). 

and 

(5.12) 

(5.13) 

From section 2, the various correlation parameters are 

Tm  = rH/(1 a 2Var(w)), 

Va  = (1 + a 2Var(w))/H, 

= (1 ± cr 2 Var(w))V, 

substituting 7.„, for 7 in 5.6 

r2Var (k)  r2H2Var (w)  

Pm =
e 	2 e  2(1+02 varf4 

Vf2  = (1 ± a2Var(w))/(1-12  + a2Var(k)), 
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As noted in Section 4, V is the true velocity Vt  of the surface. It was also noted in Section 4 that 
the random surface of Model 1 could be considered as the sum of two random surfaces. In one of these 
surfaces Var(k)=0 and hence, from 5.13, Vd is equal to its true velocity  V. In the other surface Var(w)=0 
and, from 5.9, Va  is equal to its true velocity. For a combination of these two surfaces, Vt  lies somewhere 
between the values of Va  and Vd derived from this combination. Similar arguments also pertain to the 
other four models to be considered. It will be noted also from 5.13 that, unless Var(k) = 0, then Vd 
decreases in value as a increases. This leads on to the effect of filtering data from the above model 
before FCA. 

5.2 FILTERING 

For the above model, using 4.9, series can be readily formed for a multi-antenna system. These 
series can be developed either in time or space. The effect of filtering time-series before FCA will be 
considered first and, for simplicity, that for the one-dimensional case. 

From 5.12 it follows that, if a time-series is subjected to a high-pass filter before FCA, then the 
value of Vd obtained will be greater than that from unfiltered data. Conversely, if a low-pass filter is 
used it will be less. 

At first sight, it might be expected from 5.8 that Va  would also be affected by filtering, but this is 
not so. From 5.1, the frequency terms enter by way of w + bw. If these terms are considered as those 
from a discrete Fourier series then, for the ifh harmonic, (w + bw) can be represented as (i + bi), where 

bu  can be greater than one. I,et 
j + 8j = i + bi, 	 (5.14) 

where j is an integer and 18 .11 < 1. Then the amplitude and phase associated with the i th  term is moved 
to the (j + 6j)" term of the series. If 18j1 0, this information is leaked into the various harmonics on 
either side of j. Once a time series is formed the information as to where the values of amplitude and 
phase came from is lost. Thus filtering of a time-series will not affect Va  but it will affect va.  

It is this movement of harinonic information in the tirne domain which results in aa  < a, as 
expressed in 5.5. If (Si is positive, energy is moved from the lower harmonic i to the higher harmonic 
j. But, because of the Gaussian nature of the power spectrum, this means that energy is moved from 
an area where it is relatively high to an area where it is relatively low. The reverse happens if bi is 



cos -,T27,i (r — 	 (5.15) 

T/.2 

Pr,r == 
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negative. In the extreme, if Var(w) is very large, the spectrum of the altered series would approach that 
of white noise. From 5.5, this movement of energy due to random temporal changes is contained in the 
term (1 cr 2Var(w)). 

This movement of energy from lower to higher frequencies is also accompanied by movement of phase 
information and, hence, phase differences. If there is no dispersion present, phase difference is a linear 
function of frequency and the gradient of phase difference versus frequency is inversely proportional to 
the velocity of the wave components. If phase differences are moved from lower to higher frequencies, 
the gradient is reduced and the velocity is increased. From 5.8, the effect of random temporal changes is 
to reduce the gradient by (1 -1-cr 2 Var(w)), the same factor that reduces a. It is true that phase differences 
are also moved from higher to lower frequencies but these are accompanied by less energy than those 
going the other way. 

Since the factor (1 	cr 2Var(w)) is imbedded in the data and cannot be recovered by filtering, it 
follows that p„, of 5.10 will be unaffected by filtering. 

In the spatial domain the situation is reversed. Vd, WhiCh is derived from the spatial delay for 
maximum spatial cross-correlation, will be unaffected by filtering. On the other hand, Va  will be affected. 

This transfer from the i ll' to the Ph  harmonic can be used to advantage in terms of reduced 
computing time for modeling. Time-series can be made for Model 1 by a surrunation process but, if the 
the series is a reasonable length, say 1024 values assumed sampled every 0.25 seconds, there will be 512 
harmonics to be summed 1024 times. This work can be considerably reduced if a suitable algorithm 
is used to leak the information around the je"  term and then using the Fast Fourier Transform to 
produce the time series. In practice, it was found that, if the necessary information was transferred to 
80 harmonics centered on j, the results obtained differed from the summation, method by < 0.5% with 
a reduction in computing time by a factor of about 12. If less accuracy is acceptable, the time saved 
can be even greater. The same technique applies to the formation of spatial-series. 

5.3 THE LOW-VELOCITY EFFECT 

The physical relationships of Vd and Va  can be appreciated if it is assumed two finite time-series 
from the random surface are recorded a distance r apart in the direction of motion. From the discrete 
Fourier transform of the series the phase difference, (I); for the harmonic, can be determined and a 
value of V.  derived from 

271- ir/T4>i. 

where T is the length of the time-series. The cross-correlation function can then be expressed as 

where it is assumed that the normalization terni is unity. 

The partial derivative of 5.15 with respect to r for r = r' is 

o  
..772 	27ri, — —» . (5.16) 

The value of r =  r„, for which this expression is zero is the necessary condition for 	ri/r„,). If the 



sine term is approximated by the first term of its power series, then it can be shown that 

(E A i2  /Vi) 
1 	  • 	 (5.17) 

T/2  
(E iqi2) 

i=1 

(5.19) 

(5.20) 
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Thus, for this approximation, 1/Va  is the weighted sum of 1/V2 , where the weight is iqi2 . From similar 
considerations it can be shown that 

(EAîi2vi/vi2) 

Vd 	i= 	1 	 (5.18) 

Am2) 

Hence, Vd is the weighted sum of Vi where the weight is not only proportional to AV2 ,but also to 
the reciprocal of 'V 2 .  Low values of Vi will tend to dominate the sum. This effect is referred to as 
the low-velocity effect and the derivation of Va  and Vd from the weighted values of Vi  as the weighting 
method. 

If T =  256s, r -== 100/n and Vi = 100m/s, the phase difference for the 1" harmonic is 1.4 degrees. If 
the observed value of 4)i > 1.4° then Vi < 100/n/s. From 5.1, r hk comes from a distribution with some 
reasonable value of rVar(k) 1/12 , say 100  or 20° , then very low values of Vi are to be expected. On the 
other hand, if i =  50, then, for Vi = 100m/s, (1)i = 70°  and very low values of Vi  will tend to be rare. 
Hence, filtering out the low frequency components before FCA will result in a higher value of Vd . 

It can be shown that, for an infinite series, the weighting function for Vd is given by 

—w2 02 

Wd = e 2 r2 (w2 H2  +Var(k)) 

and for Va  
_w2,2 

Wam = ern w2 . 

5.4 FILTERING AND. THE LOW-VELOCITY EFFECT FROM MODELING 

To test the effect of filtering and the sine approximations made above , sets of time-series for a 

3-aerial system were generated. The aerials were assumed to be located at 3 corners of a square of side 

100m, with 1 pair of sides in the direction of motion. Each time-series contained 1024 values assumed 
sampled at 0.25s intervals. The design parameters were; 

Var(k) 1/2 = 0.20e/m, Var(k y ) 1/42 — 0.29°/m, Var(w) 1A 20°A, 
(5.21) 

V= 100m/s, 	 cr= 2.8s. 

For convenience the appropriate values are given in degrees rather than radians. For these design 
parameters the surface is isotropic and the correlation parameters are; 

Va= 195/n/s, Vd=-- 49m/s. 
(5.22) 

0.909, 	cra — 2.0s. 
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The choice of the particular parameters of 5.21 was dictated by the desire to have Va  about one half, 
and Vd about twice the true velocity. 

In all, 25 sets were formed using a new seed for the random function generator for each set. These 
sets were analysed by FCA and the vector mean of the 25 sets of VG  and Vd were derived. These means 
are shown in Table 5.1 for nil filtering. The mean direction obtained was within a few degrees of the 
designed direction 

TABLE 5.1 

Model-1.Comparison of VG  and Vd  from FCA and weighting method, both 
before and after filtering. For design parameters and filtering methods see 
text. All values are in m/s. 

FCA  
Va 	Vd 

204 	50 
204 	73 
208 	98 
190 	90 

FILTER 

nil 
1-10 
1-20 
n=4 

WEIGHT  
VG 	Vd 

208 	49 
212 	68 
217 	96 
224 	81 

To study the effect of filtering, two methods of producing high-pass filters were used. The first 
method, a rather simple method, was to delete the first 10 or 20 harmonics from the data before FCA. 
However, this method changes the shape of the correlation functions and they are no longer Gaussian. 
On the other hand, this method does show the effect of the low harmonic components on the value of 
Vd  obtained. The second method retains a Gaussian correlation function after filtering and can be set 
to reduce a-a  from the original series by a given factor. It will be remembered that the amplitudes of 
the Fourier series had a Gaussian shape given by 

ce 2 02 /4  
= e - 

If the n eh  root of A. ,  is taken then 

eAw) = e 
—w 2 o2/4n (5.23) 

Hence, the value of a after filtering is a/1(n). 'rlie velocities obtained after filtering, both by deleting 
harmonics i=1 to 10 and i=1 to 20, and for n=4, are also included in Table 5.1. 

For the weighting method only the pair of time-series in the the direction of motion was considered. 
These series were Fourier analysed and values of Ai and Vi determined. Values of Va  and Vd  were 
determined by way of 5.17 and 5.18, respectively, and averaged over the 25 sets. The mean values are 
included in Table 5.1. As can be seen from this Table there is very good agreement between FCA and 
the weighting method, both for the unfiltered and filtered data. Also, only Vd is effected by filtering. 

Using the parameters of 5.21, Wd,„(full line) and 1174,(daslied line) from 5.19 and 5.20, as a function 
of w, are shown in Figure 5.1. Both weights have been normalized to a maximum value of 1. It can be 
seen that Wa,„ has a much greater weight at the low-frequency end. 

In discussing the low-velocity effect, attention was directed towards the phase variations from 
random spatial changes. However, even if the random spatial changes in the direction of motion are zero 
and only random temporal changes are considered, the value of Vd will increase after filtering with a 
high-pass filter. As noted in section 5.2, with Var(w)  L  0 phase information is moved from one harmonic 
where it is correct to another harmonic where it will be incorrrect. Thus introducing a a phase error 
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Figure 5.1 	Weig-hting functions for Vd(full line) and V a (dashed line) as a function of radians. 

of rf.I. Sw. This effect can best be appreciated by expressing the cross-correlation function of Model 1 in 
the form 

(r—rm )2  

2  

	

Pr = Pm 	
20 

	

e 	a 	. 

From the definition of To , then 
20.2a  i in  pin  I ± Tni2 = 7(2 .  

It has been shown previously that p„„ and I-, are independent of filtering, but cro  does vary with filtering. 
IIence, from 5.24, ro  and thus Vf  will vary with filtering. It follows Vd will likewise vary. Cha.ndra and 
Briggs(1978) arrived at the same conclusion from a slightly different line of reasoning. However, it will 
be noted from 5.24 that the filter effect is a function of p,„ and that, from 5.10, p,„ is a function of 
Var(k) and Var(w). 

To show the effect of Var(w), the work on filtering was repealed with the design parameters of 5.21 
except that Var(k) = 0.The results are shown in Table 5.2. 

TABLE 5.2 

Various correlation parameters derived from data for Model 1 before and 

after filtering. The design parameters are as in 5.21, except Var(k z )=-- 0. 

20 

(5.24) 

	

ILTE I? 	Va 	Vd 	Pm  
nil 	205 	96 	.97 

	

= 1 — 10 	205 	121 	.97 
i 	1 — 20 	203 	145 	.97 
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5.5 SIMILA_R FADES ANALYSIS 

The time-series used for obtaining the results shown in Table 5.1 were subjected to similar fades 
analysis for various levels of p,„ for acceptance. The results are shown in Table 5.3. The percentage of 
sections accepted are also shown in the Table. Section lengths of 2 \470o-a  seconds were used for this 
work. 

TABLE 5.3 

Values of V1  and V2 from SFA for various levels of pm . The design parame-
ters are as in 5.21. 

2oI Iti Pr,o,o1 

Pm 	%Sections 	171 	V2  
.75 	74 	222 	101 
.80 	71 	222 	102 
.85 	68 	216 	103 
.90 	63 	214 	106 
.95 	53 	213 	115 

These values are in good agreement with the expected values of 195m/s and 100m/s for the random 
surface and are relatively independent of the level of  Pm  used. 

5.6 TIIE CORRELATION ELLIPSE 

From 5.2, the contours of constant correlation which define the correlation ellipse are given by 

r2 (( 112  + cr 2Var(k x ))cos 2  0 + (M1 - 1 + cr2 Cov(kx , k))sin 20 

( f2  ± a 2 Var(ky nsin2  0). 	 (5.25) 

If the variances of this expression are zero, i.e., no spatial changes, the ellipse will have an axial ratio of 
oc.  If the covariance is not zero, the ellipse will be oriented with neither of its axis in the direction of 
motion. 

To compare the theoretical correlation ellipse with the shape of individual patterns in the random 
surface, modeling was carried out by simulating an 11 X 11 aerial array, with 100m spacing between 
aerials. The design parameters were as given in 5.21. From these amplitude patterns, correlation ellipses 
were derived by the method developed by Felgate and Golley(1971). These workers were recording on 
an 89 aerial array, roughly circular, with a diameter of 1k in. 

An example of the type of amplitude patterns obtained is shown in Figure 5.2, where, for conve-
nience, the amplitude has been normalized to lie in the range 0 to 10 units. For detail in plotting, the 
amplitudes for this plot were derived at 25 in spacing. Also included in the Figure is the correlation 
ellipse derived for a value of p(r, 0,0) =  0.5. The direction of motion of the surface is towards the right. 

Another pattern is shown in Figure 5.3, this pattern was derived lOs after that for Figure 5.2 using 
the sanie set of random variables. As çan be seen, the axial ratio of the correlation ellipse can change 
dramatically in a period of 10s from 1.3-1 in Figure 5.2 to 2.38 in Figure 5.3. Also, it will be noted that 
the area of the ellipse can also change just as dramatically. 

'ro  investigate the spread in axial ratios, 150 patterns were derived in 6 sets of 25. For each set a 
new range of random variables was used and, within a set, the sanie range of random variables was used 
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to generate patterns at intervals of 10 seconds. For these 150 samples, the axial ratio varied from 1.0 to 
2.66, with a median value of 1.46 and a 95 percentile value of 2.19. These results are not inconsistent 
with the arguments of Burke(1975) that the correlation ellipse is the average of the shapes within a 
random pattern. However, it should be noted that, if the theoretical ellipse has a high axial ratio, then 
individual patterns will also have a high value of axial ratio i.e., fringe-like, with each pattern oriented 
close to the orientation of the theoretical ellipse. In practice, this situation will occur for orientation of 
the major axis at right angles to the direction of motion for which direction the random spatial changes 
will be negligeable. 

In conclusion, it can be seen for Model 1, that special conditions are needed if FCA is to provide 
a true value of speed of the random surface. These condition are that, while random temporal changes 
are permitted, there must be no random spatial changes in the direction of motion. However, if the 
axial ratio of the correlation ellipse is to be finite, then there must be random spatial changes at right 
angles to the direction of motion. These conditions are considered to be very restrictive and unrealistic. 
Moreover the ellipse will always be oriented with one of its axis in the the direction of motion. 
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Figure 5.2 Contours of constant amplitude over a 1 X 1 km area for Model 1. The design parameters 
are defined in 5.21. The correlation ellipse has an axial ratio of 1.36. 
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Figure 5.3 As for Figure 5.2, except that it is 10 seconds later. The correlation ellipse axial ratio is 
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6. MODEL 2 

6.1 THE CORRELATION FUNCTION 

From Section 4 it can be shown that the correlation function for this model is 

00 	00 	00 	 CO 

(E E E E 42,D) 
Pr,B,r 

(EA2 (w)) 

where 

D = cos w((1 + 612)r — r((H + H) cos 0 + (M + M) sin 0). 	 (6.1) 

The general form of the solution of this expression is given by Integral 2 in the Appendix. From this 
solution it can be shown that 

(r—r(// cos 	sin B))2  
_1 E 2 e 	2o2E 

where 

E 1 + 
r2Var(e)  + r 2 (Var(H)cos 2 0 + Cov(H, M)sin 20 + Var(M)sin 2 0  

cr2  

and the variances are as defined in section 4. 

The presence of E 	in 6.2 indicates that the correlation function will not be Gaussian. However, 
if  Pr, , r is greater than about 0.8, then, to a good approximation(-3%), 

25 

(6 .2) 

(E-1)  

e 	2 	. 

For the one-dimensional case, with the above approximation, 6.2 can be expressed as 

r 2  Var 	r2 Var(//) 	(r—rH)2  

= e 	202 	e 202E 

(6 .3) 

(6. 4 ) 

which does have a Gaussian form. From modeling, it  lias  been found that, for r = 100m and a > 9,0,s, 
the approximation is rea,sonable. From 6.4 it, can be seen that, although both the temporal auto- and 
cross-correlation functions will have a Gaussian form, uz  > a,  and that the ratio cr,/aa  will increase 
with increasing r. 

Another way of viewing this is to let Var(Q) = 0, in which case 6.2, for the one-dimensional case, 
can be written as 

(r—r/f) 2  
2,2/ 2 

Pr,r 	P 	 (6.5) 
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where 
1/(1 + r 2Var(H)/2,72 )0  . 	 (6.6) 

It should be noted that  Pm  should be expressed as a function of r, i.e., pm (r). Thus 

(
ix= cra/pm(r). 

Because cr z  is greater than u e  and is a function of aerial spacing, this model does not conform to 
the basic a,ssumptions required for FCA. Thus, if the straight-line method of Briggs et.al . is applied to 
data from this model the straight line of the straight-line method will not be straight. IIowever, if FCA 
is applied to the data to find Va  and Vf , certain distinctive features appear which are contrary to those 
of Model 1. 

Because ur  increases with r, then ro of Section 2 used for finding Vf does not increase linearly with 
r as for Model 1. Rather, its value is less than that expected from the linear relationship. Hence, Vf will 
increase with r and likewise Vd which is derived from Vf2/Va . Because Var(0) 0 for this discussion, 
then Va  remains unchanged. With Var(0)  L  0, the conclusions that Vf and Vd increase with r remain 
essentially the same but the reasons are not as obvious. 

The increase of Vd and the ratio of ax/cr a , as a function of r for various values of Var(0), are shown 
in Table 6.1 for V 100m/s and Var(H) 1A =-- H(1/V). It should be remembered that, for this Model, 
V is the true velocity of the random surface. Values of a were chosen so that cr a  wa,s always 2s. cri-  and 
ax+ refer to the values of a to the left and right of Pm,  respectively. As can be seen from the Table, the 
effect is more pronounced for low values of Var(0). This could be due to the fact that the values of or  
are asymmetric with high values of Var(0) and it is the negative values that affect T. 

TABLE 6.1 

Va , Vd and ar/cc a  as a function of r and Var(2).For design parameters see text. 

r =-- 100m 	 r 200m 
Var (Ç2) 1/2  a 	Va  Vd cr; /cra icra 	Va  Vd 	/0" a Cf: /a« a 

	

0.00 	2.00 	100 59 1.12 	1.12 	100 83 1.41 	1.41 

	

0.25 	2.00 	106 57 1.10 	1.15 	106 78 1.38 	1.49 

	

0.50 	2.03 	124 54 1.05 	1.20 	124 55 1.29 	1.59 

	

1.00 	2.30 	196 50 1.03 	1.17 	191 52 1.20 	1.52 

6.2 FILTERING 

From a comparison of the correlation parameters obtained from data derived for Model 2, both 
before and after filtering it was found that the results were essentially the same as for Model 1, except 
that  Pm  was affected by filtering. It increased after low-pass filtering and decreased with high-pass. 

To show this effect, modeling was carried out as described for Model 1, where 25 sets of 3-aerial 
time-series were subjected to FCA both before and after the use of a high-pass filter. The design 
parameters used were 

Var(H)IA ---- H, 	Var (M) 1/2 == 1.53H, Var(0)0  ---- 1, 
V= 100m/s, 	a---= 2.38. 

(6. 7) 

(6.8) 
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The motion of the surface was in the x direction for which II=1/V and M=0 s/m. For this direction, 
it was found convenient to define Var(H) and Var(M) in terms of II. For the above conditions the 
correlation parameters were computed to be; 

Va= 196m/s, 	Vd= 50111/8, 
p=-- 0.88, 	cra= 2.0s, 

where pm  is that from the pair of time-series in the direction of motion. Filtering was carried out 
by the two methods used for Model 1, i.e., deleting harmonics from the beginning of the series or by 
reducing the harmonic amplitudes appropriately. However, for Model 2 it was found that a factor of 
n=2 was sufficient to halve the value of cr, no doubt because of the non - Gaussian shape of the correlation 
functions. The results from before and after filtering are shown in Table 6.2. As can be seen, the effect 
of filtering is as described above. 

TABLE 6.2 

Various correlation parameters derived from data for Model 2 before and 
after high-pass filtering.The design parameters are as in 6.8. 

FILTER 	Va 	Vd 	e n  

nil 	220 	56 	.88 
i = 1 — 10 	219 	70 	.84 
i 	1 — 20 	230 	86 	.82 

217 	80 	.81 

It was also found that the weighting method worked as well for this Model as for Model 1. Values 

of 235 and 40 m/s were found for Va  and Vd respectively. 

To show the effect of filtering on data where there are no random spatial changes in the direction of 

motion, the work on filtering was repeated with the design parameters of 6.8 except that Var(H) = 0.The 
results are shown in Table 6.3. 

TABLE 6.3 

Various correlation parameters derived from data for Alodel 2 before and 
after filtering.The design parameters are as in 6.8, except that Var(II)=0. 

(6.9) 

F I LT E I? 	Va 	Vd 	Pm  
nil 	204 	95 	.95 

i 	1— 10 	203 	125 	.95 

i =1— 20 	210 	149 	.95 

The interesting feature of the above results is that p,„ is unchanged after filtering. Whereas, from 

Table 6.2, when random spatial changes are present pm  is reduced. 

6.3 SIMILAR FADES ANALYSIS 

Tlie  data used for filtering were also used for SFA. The mean values of 171  and V2 obtained are 
shown in Table 6.4. While VI  is a little high, V2 is in fair agreement with the true velocity of 100m/s, 
especially for low levels of p,„. 



TABLE 6.4 

Values of V 1  and V2 derived with SFA for various levels of Pm.  The design 
parameters are as in 6.8. 

pm 	%Sections 	V1 	V2  
.70 	58 	245 	95 
.75 	55 	241 	106 
.80 	48 	242 	111 
.85 	40 	238 	116 
.90 	30 	244 	124 

6.4 THE CORRELATION ELLIPSE 

Because the shape of the correlation function of Model 2 is only approximately Gaussian then, for a 
particular design, the axial ratio of the correlation ellipse will vary slightly for different levels of contours 
of constant correlation. This effect can be seen from the variation of 1.71  with increasing r. As noted in 
Section 2, 171  defines the correlation ellipse. From the work used for producing Table 6.1, the variation 
of V1 with r is shown in Table 6.5. 

TABLE 6.5 

yr  as a function of r for various values of Var(0). The design parameters 
are as used for Table 6.1. 
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VarSZ 1 A 	r 100m 	r = 200m 

	

0.00 	77 	 91 

	

0.25 	78 	 91 

	

0.50 	82 	 83 

	

1.00 	99 	 100 

It will be noted from this Table that the greatest increase in Vf occurs with Var(12) =--- 0. If Vf 
increases with r, then the correlation ellipse will tend to be oriented with its major axis in the direction 
of the antenna pair with the greatest spacing. For consistency, the level for p =- 0.5 will be used for 
defining the ellipse for the work presented below. 

As for Model 1, various sets of data were generated for an 11 X 11 aerial array with 100m spacings 
and the correlation ellipse computed for each pattern. The design parameters were as in 6.8. For these 
conditions the surface is isotropic. For the 150 ellipses computed, the axial ratio varied from 1.04 to 
2.52, with a median value of 1.40 and a 95 percentile of 2.07. Amplitude patterns 10 seconds apart are 
shown  in Figures 6.1 and 6.2, with their corresponding ellipses. 

Overall, the results are the same as for Model 1, except that there is finer detail structure in the 
contours of constant amplitude for Model 2 than for Model 1. It is considered that this occurs because 
Var(II) and Var(M) are a function of a and , hence, of the frequency components of the Pattern. 
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Figure 6.1 Contours of constant amplitude over a 1 X 1 km area for Model 2. The design parameters 
are defined in 6.8. The correlation ellipse has an axial ratio of 1.1. 

200 m 

Figure 6.2 As for Figure 6.1, except that it is 10 seconds later. The correlation ellipse axial ratio is 
1.98. 
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co n7r 	n2Var (0)  
D --= 	q cos —

2
e 	2  COS n(0 + 0) C,„ 

n=0 

n=0 
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2 

7. MODEL 3 

7.1 THE CORRELATION FUNCTION 

From Section 4 the correlation function for this model is 

CO 	00 	 00 

(E E E A2„ cos(k(r cos(0 + 60 + 0) — Vr) -6w r» 
.50 ---cobto=—oo 

co 

(E AÎ) 
k=0 

The solution for 7.1 is given by Integral 3 in the Appendix, i.e., 

r2 Var(w)  

Pr,O,r 	e 	2 	(D + E), 

where 
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Pr, O,r 

n+2m+p  
00 oo 	 .2 

7/211" 	 pr (V r)"  1 	2 rn+2rn 

Cm  E COS 
2 2n+2""m!(n + m)! 

m=o 	 p=0 
n+2m+p  

00 .2 pr (V r)"  1 2 mir  
r  n-1-2m 	oo  

Sm  = sin E cos 

	

2 2n+2mm!(n + m)! E 	2 p ! n+2m+ p 
P= 0  

n-1-2m+p  0  
=1 for n --- 0; else q =- 2. and 1 2 	isiri Kramps's notation. 

This solution was determined from working in the k-domain. It can also be readily determined 

from the w-domain by using 

cos(w(r — -19 cos(0 + 60 — 0)) + Sw r) 

in 7.1 and summing with respect to w. The only change in 7.2 is to replace s with  Va.  An other way is 
to replace 8 with a, Vr with r and r with r /V . It should be noted that random spatial changes for this 
model enter by way of Var(0). 

(7.3) 
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7.2 SURFACE SPEED 

For this model the speed of the random surface will be greater than V. This can be seen from 7.3 
if Var(c4) = 0 and q5=  0 = 0, i.e., 

.50 
cos(w(r 	

r cos 

V 	)). 	
(7.4) 

To the first approximation, the true speed,Vt , of the surface is given by 

1/Vt 	(cos (50)/V. 	 (7.5) 

This is based on the assumption that, for Var(w) = 0, the speed of the surface is given by Va  from FCA. 

From Bierens de Haan(1939),Tables 29.2 and 263.6, the integrals of 

rco 
2 dx =  0.5/p) 	 (7.6a) 

-" 

and 
2 

e-ex2  cos qx dx = 0.5e 4P V(r/p). 	 (7.6b) 

Using these integrals it can be shown that 

Var()  
(COS ) =e 	2 . 	 (7.7) 

Hence, 
Vary  

Vt 	Ve 2  . 	 (7.8) 

This assumption does not take into account the summation over (4. Hence, to a certain extent, Vt  will 
also be a function of a. 

The degree of goodness of the above approximation is shown in 'fable 7.1. The results presented 
there were obtained by generating sets of correlation coefficients from 7.2 for various values of Var(0) 
and a, with V = 100m/s, r 100m and Var(w) = 0. The correlograms were then subjected to FCA 
and the values of Va , Vd,  Pm,  a; /era  and ax+/cra  obtained are as given in Table 7.1. To assess the degree 
of goodness of the approximation of 7.8, all values of Va  were multiplied by the appropriate value of 
e-varl(1))/42  and the results are given in parenthesis. The expected value is 100m/s and, to the extent that 
the computed values differ from 10Orn/s, is the degree of goodness of the approximation. As can be seen 
from the Table, the approximation is best for low values of Var(0) and high values of a. The values of 

Vtt were also scaled down by the saine factor as for Va  and the reduced values included in parenthesis. 
As can be seen, Vd decreases with increasing  Var(). This is consistent with the results of the previous 
models since the random spatial changes increase in magnitude with increasing Var(0). 

Although the values shown in 'fable 7.1 are for r = 100m, the same values can be also used to show 

the variation of the correlation parameters with r. This occurs because the values are constant for a 
given ratio of r/a(for a givenVar(0)). Thus, for a given  Var(),  the values of Va , etc. ,  at r = 100m and 

------- ls are the same as for r = 200m and a =-- 2s. On this basis, it can be seen that there is a slight 
reduction in Va  and hence Vt  with increasing r. Also, Vd and the ratios of  as /a,, increase with increasing 
r. 

The values of ax /a,t  in Table 7.1 are for Var(w) =- 0. The effect of Var(w) 	0 is shown in Table 7.2 
for r = 100m and r = 200m with Var(0) 1A = 650 . For convenience, all values of Va  and Vtt are expressed 
as a percentage of Vt  found for Var(w) =- 0 at r = 100m. 



r = 100m 

%Va %Vd 0;/(ja cf -xF /ua 
100 56 	1.04 	1.03 
113 55 	1.03 	1.03 
152 54 	1.02 	1.02 

r =  200m 
%Va  %Vd cr;laa oVea 
91 64 	1.14 	1.08 

105 63 	1.12 	1.08 
146 60 	1.10 	1.07 

Var(w) 1/42  
0 

10 
20 
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TABLE 7.1 

Variation in parameters from FCA of the correlation function of 7.2. V = 100m/s, 
r = 100m and Var(w) = 0. 

(7.9) 

Pm  

.987 

.996 

.998 

.955 

.987 

.997 

.911 

.974 

.993  

.831 

.950 

.987  

.793 

.941 

.985 

Var ( q ) 1/ 
30 
30 
30  
45 
45 
45  

60 
60 
60  
90 
90 
90  

135 
135 
135  

Va  
1 	114( 99) 
2 	115(100) 
4 	115(100) 
1 	131( 96) 
2 	135( 99) 
4 	135( 99) 
1 	156( 90) 
2 	168( 97) 
4 	172( 99)  
1 	254( 74) 
2 	318( 93) 
4 	337( 98)  
1 1041( 65) 
2 1458( 91) 
4 1586( 98) 

Vd 
113(99) 
110(96) 
110(96) 
122(90) 
114(84) 
115(84) 
122(71) 
108(62) 
105(61) 
82(24) 
63(18) 
59(17)  
20( 1) 
14( .9) 
13( .8)  

/cra cr;iicra 
1.01 	1.01 
1.00 	1.00 
1.00 	1.00 
1.04 	1.01 
1.01 	1.01 
1.00 	1.00 
1.11 	1.07 
1.03 	1.02 
1.01 	1.01 
1.26 	1.17 
1.06 	1.05 
1.01 	1.01 
1.31 	1.28 
1.06 	1.06 
1.02 	1.02 

TABLE 7.2 

Various correlation parameters as a function of Var(w) and r for Var(0) 0  = 650  
and a = 2s. 

Overall, independent of Var(w), Va  tends to decrease with increasing r whereas, Vd and az/cra  tend 

to increase. However, for a given r, as Var(w) increases the ratio of crx /cra  tends to decrease. This latter 
effect is, consistent with that found for Model 2, as shown in Table 6.1. On the other hand, from a 
comparison of the values in Tables 6.1 and 7.2, it will be noted that ratios are not as great with Model 
3 as Model 2, nor is the change in Vd • 

7.3 FILTERING 

To study the effect of high-pass filtering on data from this model, 25 sets of of time-series were 
generated as described in Section 5.2. The design parameters were 

ar(0) 1/2 - 65° , 	Var(w) 1/f2 = 17°/s, 
V= 100m/s, 	a= 2.58. 

For these parameters, the axial ratio of the correlation ellipse is 1.1, Vt = 183m/8 and cra  = 2s. The 
value of Var(0) 1A - 650  was chosen because it was found from modeling with values of Var(II) and 
Var(M) of 6.8, that the standard deviation of 0 was about 65° . 

The mean values of Va  and Vd obtained before and after filtering are shown in Table 7.3, expressed 
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as a percentage of V. The value of n=4 was used because, for this value, at, was reduced from a mean 

value of 1.99 to 1.03. This indicates that the correlograms are approximately Gaussian. For reference, a 

plot of the temporal correlograms for the above design parameters and for r = 200m is shown in Figure 

7.1. The dashed curve is for the cross-correlogram at right angles to the direction of motion. 

TABLE 7.3 

Comparison of Va  and Vd before and after the use of a high-pass filter. The 
design parameters are as in 7.9. 

FILTER %V a  %Vd  Pm  

nil 	156 	51 	.968 
1 — 10 	155 	60 	.961 
1 — 20 	157 	64 	.946 
n = 4 	145 	64 	.912 

DELAY IN SECONDS 

Figure 7.1 Auto- and cross-correlograms for Model 3. The design parameters are defined 
in 7.9. The dashed line is for the cross-correlogram at right angles to the direction of motion. 

From a comparison of the values in Table 7.2 with those in Table 6.1, it will be noted that filtering 

does not affect Vd for Model 3 as much as it does for Model 2. On the other hand, from use of the 

weighting method, mean values of 142% and 49% were obtained for Va  and Vd, respectively. These 

compare favourably with the unfiltered values of Table 7.2. Thus, the low-velocity effect is present but 

its effect is not as great. 

7.4 SIMILAR FADES ANALYSIS 

The data used in the previous section were also anbiected to SFA. The results obtained from the 
various levels of acceptance determined by  Pm  are shown in Table 7.4 where, as for Table 7.3, the 
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velocities are expressed as a percentage of V.  It will be noted that V1  is in good agreement with the 
unfiltered value of Va  of Table 7.2 but V2, while a better estimate of Vt  than Vd , iS still somewhat low. 

TABLE 7.4 

Values of V1 and V2 from SFA as a function of Pm.  The design parameters 
are as in 7.9. The values are expressed as a percentage of Vt  at  r=1 00m. 

Pm 	%Sections %VI 	%V2 
.75 	82 	155 	77 
.80 	82 	154 	77 
.85 	79 	153 	78 
.90 	74 	150 	83 
.95 	63 	152 	86 
.975 	50 	152 	88 

The values in Table 7.4 were derived for section lengths of 2 \471-)cr seconds. It was found that for 
this model, if the section lengths were increased, then values of V2 closer to Vt  were obtained. This effect 
is shown in Table 7.5 for section lengths of M (7r)cf seconds, where M is varied from 2 to 4. 

TABLE 7.5 

Effect of different section lengths for SFA. Pm = 0.85. 

M 	%Sections %V1 	%V2  
2.0 	79 	153 	78 
2.5 	80 	153 	90 
3.0 	80 	152 	93 
4.0 	84 	154 	106 

7.5 CORRELATION ELLIPSE 

Analogous to Model 2, because crx  > cra , V1 will vary with r. This variation is shown in Table 7.6. 
The values were obtained for the same design parameters as used for the results of Table 7.2 

TABLE 7.6 

as a function of r for various values of Var(w) . The values are expressed 
as a percentage of Vt  at r=100m. The design parameters are as in 7.9, 
except for the variation of Var(). 

Var(w) 0 	r =  100m  r = 200m 
75 	76 

10 	79 	81 
20 	91 	 94 

It will be noted from this Table that, compared with Model 2, the changes are relatively small. 
This occurs because Vt  tends to decrea,se with r. For the work presented below the correlation ellipse is 
defined for p = 0.5. 
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From the the way in which the random surface is formed for Model 3 ,the correlation ellipse will 
always be oriented with its major axis at right angles to the direction of motion and its axial ratio as a 
function of Var(). This variation with Var(0) is shown in Table 7.7. These values were computed from 
7.2 and are independent of the value of a used. As can be seen from the Table, the axial ratio varies 
monotonically from co to 1 as Var(0) 1A increases from 00  

TABLE 7.7 

Axial ratio of correlation ellipse at p =  0.5 as a function of Var(). 

Var(0)0 	Axial ratio 
15 	 3.9 
30 	 2.3 
45 	 1.4 
60 	 1.2 
90 	 1.0 

135 	 1.0 

To examine the contours of constant amplitude over a 1 X 1 km area, 150 patterns were formed 
at 10 second intervals as described in Section 5.5. The design parameters were the same as 7.9 except 
the velocity V was set at 52.5m/s, for which the true velocity of the surface should be about 100m/s. 
As mentioned above the axial ratio will be 1.1. From the 150 ellipses derived, the axial ratio varied 
from 1.02 to 2.49, with a median value of 1.38 and a 95 percentile of 2.07. Examples of the contours 
of constant amplitude over the 1 X 1 km area are shown in Figures 7.1 and 7.2. These contours were 
derived 10 seconds apart in time. 
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200 m 

Figure 7.2 Contours of constant amplitude over a 1 X 1 km area for Model 3. The design parameters 
are defined in 7.9. The correlation ellipse has an axial ratio of 1.26. 

200 m 

Figure 7.3 As for Figure 7.2, except tha.t it is 10 seconds later. The correlation ellipse axial ratio is 
1.86. 





(E E E A  cos(k(r  cos(  0 +  60 + 0)— (V 6V)r))) 
k=c).50-00av----00 

(8.1) Pr,o,r — 0.0 

(EAÏ) 
k--+ 

8. MODEL 4 

8.1 THE CORRELATION FUNCTION 

From Section 4 the correlation function for this model is 

00 	00 	00 
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The solution for 8.1 is given by Integral 4 in the Appendix, i.e., 

+ E, 

where 

00 

	

n 	n2Var (0)  

D = Eqcos7c 	2 cos fl(0 0) C„„ 
n 
co 

	

nrr 	n2Var (0)  
E 	sin —e 	2 COS n(0 + 0) S,„ 

‘--n __"0 	2 
n+2m+p  

	

oo 	 oo rn +2m 	 pir (Vr)P 	$1 	2 	'
2 

cos COS 
2 2"+2'nm!(n + in)! 	

i+n-f2,n+r  
2 	p !  (s2  + r2 Var( V)) m=o  

n +2en +p  :2  COCV  n +2m 

— E cos  mr 	 z  . 	(Vr)e  	 s I 	2  
sin 	 (8.2) Sm 	

2 2n+2'nni!(n + in)! 	
I + n 2m ire  

	

n)=-0 	 p=o 	2 	1" !  (s2  r2 Var( V)) 	2 

and q = 1 for n = 0; else q -= 2. 

This model differs froin the previous model only in the way the random temporal changes are 
introduced. In Model 3 they were introduced by way of Var(w), in this model they are introduced by 
way of Var(V). Thus, what was said for Model 3 concerning the true velocity of th e sur face  d er i ved for  

Var(w) =-- 0, is also true for Model 4 with Var(V) 	O. The same is also true for the ratio of az  to a,„ 
Where this model differs from Model 3 is the way this ratio varies with Var(V) compared with Var(w) 
of the latter model. This variation is shown in Table 8.1. Values of Va  and Vd, expressed  as  a percentage 
of I/1  at r — loom, are also included in the Table. The variance of bV is expressed as a fraction of V. 

If the values in Table 8.1 are Compared with their corresponding values in Table 7.2, it tvill be 
noted that there is little difference between Vd and cr /a«  derived for either model for random temporal 
changes. 



Filter  
nil 
— 10 

1- 20  

n = 2 

%Va  
160 
163 
179 
168 

%Vd  
54 
63 
66 
67 

Pm 
.957 
.941 
.928 
.928 

TABLE 8.1 

Variation of correlation parameters as a function of Var(V) and r for Var(0) = 650  and a = 2s. 
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(8.3) 

r ==  100m 

%Va %Vd 0. 2  / a a ;rlicr a 
100 56 	1.04 	1.03 
124 55 	1.00 	1.07 
198 54 	1.00 	1.08 

r =  200m 

%Va  %Vd 0";/0. 0  01/0- a  
91 64 	1.14 	1.08 

114 58 	1.07 	1.19 
176 55 	1.07 	1.21 

Var(V) 1A 
 0.0V 

0.5V 
1.0V 

8.2 FILTERING 

Following the usual procedure, 25 sets of time-series were derived from the design parameters given 
below, 

Var(0) 1 /12 = 650 , 	Var(V) 1A --= .75V, 

100m/s, 	a= 2.12s. 

From these parameters the expected value of Vt  = 183.0m/s, cra  =-- 2.0s and the axial ratio, as for Model 
3, is 1.1. The mean values of various correlation parameters, before and after filtering, are shown in 
Table 8.1. A value of n=2 wa,s used because, for this value, the mean value of a a  was reduced from 
2.02s to 1.18s. This result is analogous to that for Model 2. The values of Va  and Vd are expressed as a 
percentage of V.  

TABLE 8.2 

Comparison of Va  and Va  before and after the use of a high-pass lilter. The 
design parameters are as in 8.3. 

A comparison of the values in Table 8.2 with those in Table 7.3 (Model 3) shows that there is little 

difference between the two approaches for introducing the random temporal changes into the models. 

8.  SIMILAR FADES ANALYSIS 

The data used in the previous section were also subjected to SFA and the results are presented in 

Table 8.3. As there was good agreement with Vt  over the range of p,a 's used, ouly section lengths of 

21(r)cr a  were used. 

8.4 CORRELATION ELLWSE 

The variation of Vf as function of r is shown in Table 8.4. The design parameters are as for Table 
8.1. 



TABLE 8.3 

Values of V1  and V2 from SFA as a function of pm . The values are expressed 
as a percentag-e of 1/ at  r=1 00m.  The design parameters are as in 8.3. 
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P1I1 	 %sections 	%V1 	%V2  
.75 	75 	179 	103 
.80 	70 	177 	104 
.85 	65 	173 	109 
.90 	55 	168 	110 
.95 	35 	164 	123 

TABLE 8.4 

Vf  as a function of r for va.rious values of Var(V) . The values are expressed 
as a percentag-e of VI  at r=100m. The design pa.rameters are as those used 
for Table 8.1. 

Var(V) 0  r  = 100m r = 100m 

	

0.0V 	 75 	76 

	

0.5V 	83 	81 

	

1.0V 	104 	98 

It will be noted from this Table that the changes, if anything, are small and negative. 

Because Models 3 and 4 are identical with respect to random spatial changes, the information given 
in the previous section for Model 3 concerning the axial ratio of the correlation ellipse as a function of 
Var(0) applies equally to Model 4. 

\Vith respect to the amplitude contours over a 1 X 1 km area, the contours were computed with the 
parameters of 8.3 except that the velocity V-52.5 m/s. From the 150 ellipses derived, the axial ratio 

varied from 1.02 to 2.72 with a median value of 1.37 and a 95 percentile value of 2.11. These results are 

very similar to those for Model 3. An example of the amplitude contours is shown in Figures 8.1 and 
8.2 for 2 patterns 10 seconds apart. 
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200 m 

Figure 8.1 Contours of constant amplitude over a 1 X 1 km  area  for Model 3. The design parameters 
are defined in 8.3. The correlation ellipse has an axial ratio of 2.01. 
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200 m 

Figure 8.2 As for Figure 8.1, except that it is 10 seconds later. The correlation ellipse axial ratio is 
1.37. 
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O. MODEL 5 

In deriving the correlation function for this Model it is considered that the discussion can be 
considerably simplified by initially working in one dimensional space with only random spatial changes. 
For these conditions from 4.15 and 4.16 

Pr,r 
[(A,2, COS 2  .5a)(A,?, cos2 (6a + r 6 ,-Ï))] 1/42  

As the random variables are independent of w, and hence A,,„ consider the cosine term in the denomi-
nator, viz., 

cos 2(8a + rb'y)-----  0.5(1 + cos 2(6a + r 

From the integrals of 7.6 it follows that 

-24var(a)+r 2 varm) ). 
(0.5(1 + cos 2(6a + r 6/))) =0.5(1 + e 

For this expression, if Var(a) = 0 then the mean varies asyintotically from 1 to 0.5 as r varies from 0 to 
oo. To prevent this it is necessary to swamp the change in r2Var(7). A value of Var(a) =--- 4 is suggested 
for which 

e -2X 4 0.0003. 

For this condition both the normalization terms in the denominator of 9.1, with respect to bcr and 61, 

will be very close to 0.5. 

For the random variables in the numerator 

cos ba cos(6a + r 15-y) --= cos2  Sc  cos r 	— cos5 a sin basin r 5 )3. 

Since the mean of the sine terms are zero,then 
ar(2 

(COS 2  Sa cos r SI) ----- 0.5(1 + e-2var(') )e—r2V7V 
 

— 0.5e -r 2Var(1 V2  . 

It follows from Model 1 that the correlation function of 9.1 is 

r2var(r) 	(r—r1112  
p r 	e 	2 	e 

Similar arguments can be presented with respect to random temporal changes, although the process 
is not as simple as for spatial changes. This arises because the correlation function is derived as a function 
of time for a given r. For this case, the amplitude term of the correlation function would be written as 

(cos(6a + t Sp) cos(ba + 8,3(t+ r)))  
(cos2 (6a + t5,3)) 

For the denominator, at a given time t 

(cos2(6a + t 60)) ---- 0.5(1 + C2vart2var(fil ). 
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(24„, cos 6a A,, cos(6a + r 8-y)cos(w(r — rH)» 
(9.1) 

(9.2) 
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This mean must then be summed over all times t from t=0 to co. However, the end result is the same 
if Var(a) > 4 and the resultant correlation function 

r2Var(e)  _  r2,  
p(0, r) 	e 	2 	e 2ciz , 

For the two dimensional case with both temporal and spatial random changes, the resultant corre-
lation function has the same form as Model 1. Hence, the properties of Model 5 are the same as those 
described in Section 5 for Model 1. 

The similarity with that of Model 1 can be seen in another way by expressing the correlation 
function as 

Prd-  = (A3 cos r Sy cos(w(r — rH))). 

For simplicity, it is assumed that Var(a) = 0 and that the normalization terms are unity. The above 
expression can be written as 

Ac2,, 	 i4?„ 
p(r, r) — (-

2 

cos(w(r — rH) + r s'-y)) + ( —
2 

cos(w(r — rH) — rh)). 

As 6-y is normally distributed about zero, the two terms of the above expression have the same value, 
which is of the same form as Model 1. 

Because of the similarity between Models 1 and 5, all discussion of the properties of Model 1 can 
be taken as also applying to Model 5. 

(9.5) 

(9.6) 

(9.7) 



10. SIJMMARY 

10.1 INTRODUCTION 

For comparison purposes some of the more important properties of the various models are listed 

below. It will be remembered that the correlation function of Model 5 is of the same form as Model 1, 
so that any information on Model 1 applies equally to Model 5. The true velocities for Models 1 and 2 

are 100m/s. The velocities for Models 3 and 4 are expressed as a percentage of Vt• 

10.2 FILTERING 

The values of Vd obtained from the data for each of the models, before and after filtering, are given 
in Table 10.2.1. The high-pass filtering was obtained by deleting the first 20 harmonics from the data. 

The changes in Pm  are presented in Table 10.2.2. 

TABLE 10.2.1 

Values of Vd from FCA before and after filtering. 

Model Be f ore A f ter %Change 
1 	49 	96 	96 

2 	56 	86 	54 

3 	51 	64 	25 

4 	54 	66 	22 

TABLE 10.2.2 

Pm before and after filtering. The design value of Pm  is also included in the rible. 

Model 	Design 	Be f ore 	A f ter 
1 	.91 	.91 	.91 

2 	.88 	.88 	.82 

3 	.97 	.97 	.95 

4 	.96 	.96 	.93 

10.3 SEVIILAR FADES ANALYSIS 

The values of V2 from SFA for each of the models, for various levels of p, are given in Table 10.3. 

It, has been shown that the values for Model 3 can be increased to close to the true velocity by 
using section lengths of 41(7)(7.. 
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TABLE 10.3 

Values of V2 from SFA for various levels of pm • Section leng- ths 2 V(r)cr a . 

	

Model p m =  .75 	.80 	.85 	.90 
1 	 101 	102 103 	106 
2 	 106 	111 	116 	124 
3 	 77 	77 	78 	83 
4 	 103 	104 109 110 

10.4 THE LOW-VELOCITY EFFECT AND WEIGHTING METHOD 

The values of Vd obtained from FCA and the weighting method are compared in Table 10.4. 

TABLE 10.4 

Vd from FCA and weighting method. 

Model 	FCA 	Weight 
1 	50 	49 
2 	56 	40 
3 	51 	49 
4 	54 	43 

It will be noted that for Models 2 and 4, the values from the weighting method are low compared 
with FCA. This could be due to the fact that crx/cr a  is greater than 1 and tends to give a higher value 
than expected for FCA. While this explanation appears valid for Model 2, it is questionable with respect 
to Model 4, as shown by the values of (T x /a-a  given in Table 10.4. 

10.5 THE RATIO OF ax  TO aa  

The ratios of crx  to cra  as a function of r are given in Table 10.5. The values are for the case where 
the random temporal changes are zero. It will noted that the effect is more pronounced with Model 2. 

TABLE 10.5 

Ratios of err  to (f a  as function of r 

r = 100m 	r = 200m 
Model cr;/cra  cr/o'a 	(7Xja«. cr;Vaa 

2 	1.12 	1.12 	1.41 	1.41 
3/4 	1.04 	1.03 	1.14 	1.08 
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10.6 Vd AS A FUNCTION OF r 

The variation of Vd as a function of r is given in Table 10.6. These values are for the condition of 
no random temporal changes. Again Model 2 is affected more than Models 3 and 4. 



TABLE 10.6 

Vd as a function of aerial spacing. 

Model r =  100m  r =  200m %Change  
2 	59 	83 	41 

3/4 	56 	64 	14 	 

10.7 CORRELATION ELLIPSE 

Variation of V1  as a function of r is shown in Table 10.7.1 for the case where random temporal 
changes are zero. It will be noted from this Table that the greatest change is for Model 2. 

Table 10.7.1 

V1 as a function of r. 

Model 	r =  100m 	r =-- 200m 
2 	 77 	 91 

3/4 	75 	76  

The distribution of the axial ratios from the 150 correlation ellipses for each model are summarized 
in Table 10.7.2. 

TABLE 10.7.2 

The range of axial ratios and their 50 and 95 percentile levels. 

Model 	Range 	50% 95%  
1 	1.00 — 2.66 	1.46 	2.19 

2 	1.04 — 2.52 	1.40 	2.07 

3 	1.02 — 2.49 	1.38 	2.07 

4 	1.02 — 2.72 	1.37 	2.11 
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As can be seen from Table 10.7.2, the ellipse properties of the various models are very similar. 





(11.3) 

(11.9) 

11. DISCUSSION 

11.1 FULL CORRELATION ANALYSIS 

Of the 5 models of moving random surfaces discussed in this report, only Models 1 and 5 satisfy 
the necessary conditions for the full correlation method of Briggs et.al . For these two models it is shown 
theoretically that the two correlation velocities, apparent velocity 

Va  = (1 + cr 2Var(w))Vt,, 	 (11.1) 

and the drift velocity 
Vd = VtAi a2 Vt2Var(lco )), 	 (11.2) 

where Vt  is the true velocity of the surface in the direction 0, Var(w) is .a measure of the random temporal 

changes and Var(k4 the spatial changes in the direction of motion 0. 

From 5.2, it follows that the spatial auto-correlation functions in the direction of motion and at 

right angles to this direction are 

pr,0,0 	e-r2 ( 1 	8 2Var(lco))/28 2  

and 

-r2Var(k(01_,A) )/28 2  
= e 

where  8  = Vta 

It follows from 11.2 that, if there are random spatial changes in the direction of motion, then the 

correlation velocity Vd will be less than  V.  While random surfaces for Models 1 and 5 can be designed 

with Var(w) 0 and Var(k) = 0, it follows from 11.4 that, if the correlation ellipse is to have a finite 

axial ratio, then there must be random spatial changes at right angles to the direction of motion. It is 

considered that such surfaces, while possible, are unrealistic and impracticable. 

Models 2, 3 and 4 fail to satisfy the conditions for FCA, basically because 	aa . However, if the 

correlation functions of these models are subjected to FCA, then, as shown in this report, interesting 

results are found. 

11.2 SIMILAR FADES ANALYSIS 

It has been shown that, even when a simple approach to SFA is applied to time-series from the 5 
models, the velocities obtained are iu much better agreement with Vt  than those obtained from FCA. 

This is especially true for Models 1 and 4, as shown in Table 10.3. 
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It is considered that, if the improvements mentioned in Section 3 are applied, then even the velocities 
for Models 2 and 3 will be improved. It is also hoped that, because of the encouraging results reported 
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here, further work will place this method on a more rigorous base. In this respect it is considered that 
the work of Longuet-Higgins might be of some value. 

11.3 IONOSPHERIC DRIFTS 

Experimental evidence did not support the random screen model of Booker et.al . and it is now 
considered by most, if not all, workers in the field that the ground interference pattern is formed from 
the interference of a few radio waves specularly reflected from the ionosphere. For this reason one should 
be cautious in comparing the moving random surface models developed in this report with the radio 
interference patterns on the ground. However, as shown below, available experimental evidence suggest 
that the ground pattern has properties similar to Model 2. 

11.3.1 	cr./cra• 

The early application of FCA was based on the straight-line method of Briggs et.al . However, as 
stated by Sales and Bowhill(1962), the 'Briggs straight line was frequently far from straight'. They 
assumed this defect to be due to sampling errors but, examination of a 'typical correlogram' presented 
in their Figure 2, shows 

cra = 1.05m ai/cra =--- 1.05, cr r+ /cra ---- 1.33. 

For their work the radio frequency was 60khz, antenna spacing 3km and the reflection was from the D 
region of the ionosphere. For these conditions a is in minutes rather than seconds. 

Keneshea et.al.(1965), from E region data at 2.9 Mhz and r=104m, extended the work of Sales and 
Bowhill. From the typical correlogram in their Figure 5 it can be shown that 

ø a= 38, a;- /cf a=- 1.33, crx+/cr a = 1.33. 

From the correlograms in Figure 4 of Chandra and Briggs 

cra= 0.7s, cr;/aa--- 1.45, az+/rYa= 1.23. 

Their work was from D-region partial reflection data at 1.98Mhz with r 	200m. 

Meek(1980), in discussing results obtained from D-region partial-reflection data, stated that 'it 
appears that the cross-correlograms are wider, on the average, than the auto correlograms'. 

Shown in Figure 11.1 are the distributions of the ratios of az/aa  for 42 day-time E region records 
and 31 night-time F - region records. These values were derived by the author from data recorded at 
Brisbane on 2.28Mhz with r=100m. aa  and az  were derived from the least square fit of the correlation 
coefficients to a Gaussian curve. Thus, az  is the average of cr; and az+. 

All of the above experimental evidence suggests that the ground interference pattern behaves as 

predicted by Models 2, 3 and 4. 

Colley and Rossiter(1970), from the use of a multi-aerial array at 1.98Mhz, fotind that Va increased 
with increasing aerial spacing, whereas V a  showed no variation with r. They also found that the correla-

tion ellipse tended to be aligned along the hypotenuse when small right-angled triangles for the antennae 

were used. 

Models 2, 3 and 4 predict that Vd  will increase with r, but only Model 2 predicts that Va  is 

independent of r. Moreover, Model 2 shows that Vf increa.ses with r and hence the correlation ellipse 
will tend to be aligned along the direction of the antenna pair with the largest spacing. 
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Figure 11.1: 	Ratios of o-,/aa  for Brisbane data at 2.28 MHz. 
a) Daytime E-region. 
b) Night-time F-region. 

11.3.2 LOW vd  

Wright and Fedor(1967), from a simultaneous comparison of ionospheric winds obtained by FCA 
of ionospheric drift data and by luminous trail releases from rockets, found the luminous trail speed to 

be a factor of 2 greater than the speeds from FCA. 

Sprenger and Schminder(1969), from a comparison of correlation speed with those obtained from 

meteor trails, found the former to be too low by a factor of 2 or more. 

The author found the correlation speeds derived from E- and F-region records at Brisbane were too 

low by a factor of 2 or more compared with ionospheric speed derived by other methods at Brisbane. 

All of the above results are consistent with the predictions of all of the models when random spatial 
changes are present in the direction of motion. 

11.3.3 FILTERING 

Sprenger and Schminder reported that after filtering their fading data with a high-pass  liter, the 

correlation speed increased by a factor of 2 or more and were in much better agreement with the meteor 
trail speeds. They also reported that Va  was relatively unchanged after filtering. 

The author also found similar results after filtering some F region records with a high-pass filter. 
Va increased and Va  remained unchanged. 

Chandra arid Briggs also found experimentally that Va increa,sed after the use of a high-pass filter

'  but they argued that the effect on çorrelation speeds was no criterion that the speeds were too low. The 
same conclusion was arrived at for Model 1 from other reasoning and shown to be true both for Models 
1 and 2 when there were no random spatial changes in the direction of motion. However, while pm  of 
Model 1 remains unaffected by filtering whether random spatial changes are present or not, Pm  for Model 
2 only remains unaffected if there are no random spatial changes. If these changes are present, then 
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pm  decreases after high-pass filtering and, conversely, increases after low-pass. From their experimental 
data, Chandra and Briggs found  Pm  to increase after low-pass filtering which strongly suggests that 
random spatial changes were present in their data and thus accounted for the increase in Vd. 

Because random spatial changes must always be present in Models 3 and 4, the effect of filtering 
when no such changes are present cannot be considered for these models. 

While all models predict that Vd will increase after high-pass filtering and that Va  will remain 
relatively unaffected, only Models 2, 3 and 4 predict that  Pm  will decrease after such filtering. 

11.3.4 CHOICE OF MODEL 

The above experimental evidence, taken in toto, strongly suggests that the radio interference pattern 
formed at the ground from a few rays specularly reflected from the ionosphere is of a form similar to 
Model 2 of this report. While much of the evidence also supports Model 3 and 4, the observation of 
Golley and Rossiter that the correlation ellipse tend to line up with its major axis in the direction of 
the antenna pair with the greatest spacing is peculiar to Model 2. 

Also, there is much experimental evidence that the correlation ellipse can be oriented with neither 
axis in the direction of motion. If these results are real arid not due to sampling errors, then the results 
automatically exclude Models 3 and 4. 

Finally, the way random spatial changes are introduced into Models 3 and 4 is rather forced and 
restrictive, whereas, for Model 2, the approach is much freer and therefore more likely to occur. 

11.4 RECOMMENDATIONS 

From the work presented here, it is recommended that the use of the full correlation method of 
Briggs et.al . for ionospheric drifts analysis be treated with caution and that the Similar Fades Method 
(Variant 2) be used in its place. With regard to this latter method, it is hoped that further work will 
be done to refine it and place it on more rigorous grounds. 

Acknowledgements: I am indebted to Dr. B. A. Senior who gave me hope and, thus, started me on the 
course of this work. I am also indebted to Dr C. E. Meek for his critical review of this work. 
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Al INTEGRAL 1 

The integral to be considered in this section is 

fos 42

J. 

 00 	kz e _ 	f 
2Var(k) COSPT — rk)dk dw 

‘,=o 	k=-00 

f 00 	w2p2oo 	k2 

e 2  dw 	e 2var(k) dk 
fo=o 	fk=-00 

where  w and k are independent variables. 

(A1.1) 

In solving this integral only those sections pertinent to the discussion will be considered and it is 

assumed that, in the integration of the numerator with respect to a particular variable, its counterpart 

in the denominator is also included. 

Expanding the cosine term of A1.1,then 

cos(wr — rk) =  cos wr cos kr + sin wr sin kr. 

Because sin kr is an odd function, its integration with respect to k will be zero. Using the integrals of 

7.6, the integration of cos kr is 

Similarly, the integration of cos wr with respect to r is 

2 _ 
e 2a2  

r2Var(k)  e 	2 	. 

Thus, the solution to integral A1.1 is 
–r2Var (k)  _ 

e 	2 	e (A 1.2) 

In the main body of the text r may be a function of several variables, e.g., 7-  — rli and rk may be the 
sum of up to 3 random variables. In the latter case, not only their variances but also their covariances 

must be considered. 

A2 INTEGRAL 2 

The integral to be considered in this section is 

f os 	22r00 	H2  

j
e _k.?  f  e Wallin cos(wr — wril)dH du, 

e-=-0 	H= –cx,  
f 00 22 tv 29 

dw 
oo  

e a—le-TdH I 
L=o 	f e 

2v 
H-----00 

(A2.1) 



2 
2a2 (1+r2var (H)/o2  (A2.2) 

r2 Var (w)  
e 	2 	. (A3.2) 
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where H and w are independent variables. 

As for Integral 1, expand the cosine term, neglect the sine term of the expansion and integrate with 
respect to H. The solution is 

e 	
r2var  (in ,e)  

This term modifies  e2°2/2  to 
e —w 2 (o. 2 +r2Var(H)) 

Then integrate with respect to w and the solution of A2.1 is 

1 

(1 + r2Var(H)/cr 2 ) 1/2  

For this integration, it should be noted that the coefficient of w 2  in the numerator is (cr 2  + r2Var(H)), 
whereas in the denominator it is cr2 . 

A3 INTEGRAL 3 

The integral to be considered in this section is 

e 

4, 	co 	w2  

.1 =-o

o° 	2 2  

	

_ k 5 
2 	e 2va---;GT5  L eoe 2var(w) cos(k(r cos(4) + 0) — Vr) + wr)dur chk dk 
f co _ 2 

0=-00  
00 _*2,2 	oo 	_. 2 	oo 	w2  

e 	dk f_ _ co  ir e 2var(e) do fw_00, 2var(w) d, fk =o 

where w, and k are independent variables. 

(A3.1) 

Following the procedures from Integral 1 by expanding the outer cosine term of A3.1, integrating 
with respect to w and rejecting the sine term, then the integral for the w term is 

Further expansion of the cosine term results in 

cos(kr  cos(  cD + 0)) cos kVr + sin(kr cos(c1) + 0)) sin kVr. 

To integrate this with respect to 0 it is necessary to expand the cos(cos) and sin(cos) ternis into their 
power series of which a convenient form is 

cos(x cos(y)) = Jo (x) — 21(./2 (x) cos 2y — J4 (x) cos 4y + • • .1 	 (A3.3) 

and 

sin(x cos(y)) = 21Ji (x) cos y — J3(x) cos 3y + J5(x) cos 5y — • • .1, 	 (A3.4) 

where  J(x) is the Bessel function of the first kind and is 

x n+2rn 
.1„(x) 

2(n +27n) 7771(ti 	rrt)! 
m=0 

(A3.5) 



n2var (o) 

cos wzDe 	2 	. (A3.6) 
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For integration with respect to 0, the relevant portion of the nth  term is cos n(4)+0). On expansion 
of this cosine term and integration with respect to 0, it follows from the previous work that the solution 
is 

Finally, for integration with respect to  k,  it is necessary to expand cos(kV r) and sin(kVr) into their 
power series, which can best be represented as 

oo pm- (kV r)P cos kV r = E cos 
2 	p! 

P=0 

and 
co 

sin kV r = 
E 

sin  797 
(kV r)p 

2 	p! 
P=0 

Considering the cos(cos) term first, then the relevant (n,m) term for k is combined with the pth  from 
cos(kVr) to produce 

103  _4  
e 2P x 2a dx = la'2p2a+1  \/(27r), 

co 

where 	is in Kramps notation, viz, 

	

C a' 6 = C(C 	b)(c + 26)(c + 3b) • • • (c + (a — 1)b. 

Applying this to A3.1 the integral with respect to k is 
(n+2m+p)  2  

1 	2 	
. 
• (Vr)P  

82(n+2m+19) 

Collecting the  var 0115  values then the integral of A3.I for the cos(cos)  ter 111  is 

r2Var(w) nr n2Var(0)  
e 	2  E q cos — e 	2 cos n(I) C,7„ 

2 
n=0 

where q =  1 for n = 0; else q = 2, and 

kn+2m (kV r)P 

p! 
A solution for the integral associated with this term is given by Bierens de Haan(1939), Table 81.6, in 
the form 

(A3.7) 

where 

oo oo 	 frz+2fra+p)  

inhi 	rn+2m 	pr (V re 	2 	:` 
en, =_- E cos 

2 ni.!(n + m)! 	cos  2 	p! 	5(n -F 2rn+P) 
tn=0 	 P= 0  

The integral for the sin(cos) term is very similar, viz., 

Var(w) 	nil- 	n2  Var (01 
2 	E sin 	2 	COS ncl) S,„, 

n=0 

00 (n 2m 4 p)  
rn1-2rn 	 2 	:2

Sm  -= E COS 	
rp (Vr)P 1 mir 

sin 
2 m!(n + m)! 	2 	p! 	8 (10-2M+p) • 

M=0 	 P=0  

(.13.8) 

(A3.9) 



and for the sine term 
k2 r2Var(v)  

sin kV r c 	2 	. 
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A4 INTEGRAL 4 

The integral to be considered in this section is 

co 1.00 	k2  2 	 02   /00 	v2  

	

e
_ 
 2

5 	 2Var (0) 	e 2var(v) cos(k(r cos(4) + 0) — (V + v)r)dv chi) dk 
A-0 	

_co 	

v--.0 

[co 	fr  	f oo 	0.2 	oo 	2 _V___ 
e 	dk 	2(0) do 	2Var(v) d, 

k =0 	 0=-00 	ar 
	
Jv= _00  

where k, 0 and v are independent variables. 

(A4.1) 

The solution for this integral follows along very similar lines to that for Integral 3 and much of what 

was said there will be taken for granted. Thus the integration with respect to 0 will produce a term 

n2Var(ck)  
cos wzDe 	2 	 (A4.2) 

In the first expansion of the outer cosine term of A4.1,the two terms with respect to v are 

cos k(V + v)r and sin k(V + v)r 

The expansion and integration with respect to v of the cosine term will result in the term 

k2 r2v-a.r (v) 

COS kV r e 	2 

Thus the relevant portions of the cos(cos) term for integration with respect to k are 

2  2 2‘ r 
e -k,r(s 	var 	kn 	( k v r)P/p ! .  

The integration of this term produces 

(Vr)P 	(n+2m+p):2 	 8 

19 ! (s2  + r2Var(v)) (n+2m+ P)/2  Ngs2  + r2Var(v)) 

Combining the relevant terms, the integral of the cos(cos) term is 

cc 
nrr 	n2Var (0)  

E q cos -le 	2 cos n(I) 	, 

n=0 

where q = 1 for n = 0; else q =  2, and 

oo oo 	 (n +2m +p)  
t + 	 Fr 	P 	 s 

Cm  E 	 I.' 	2m  
  

E cos 
2 m!(n + In)! 	2 

(V r) 	1 	2 

	

p! 	(s 2  + r2 Var(v))( 1 +" -1-27n -1  P)/2  
P= 0  

Similarly, it can be shown that the integral for the sin(cos) term is 

E sin 1-- e 	2 
n 2 var (0) 

 cos ncl) S„„ 
cc 

2 

(n i-2rn +p)  
00

mir 	rn+21n 	
sin 

prr (1/7- )P 	1 	2 	'` 
Sm  = E cos  

2 m!(n + in)! 	2 p! (s2  +  
m=0 	 P=0  

n=0 

where 

(A1.3) 

(A4.4) 
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