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BABINET'S PRINCIPLE APPLIED TO BRIDGED KNIFE EDGES 

by 

J.H. Whitteker 

ABSTRACT 

In knife-edge diffraction problems, Babinet's principle allows the original ar-
rangement of diffracting screens to be replaced by two new arrangements in which 

any chosen diffracting screen is absent in one of the new arrangements, and is re-

placed by its complement in the other. The two new problems may be easier to 

solve than the original one. The principle is here extended to bridged knife edges, 

in which the spaces between successive diffracting screens are bridged over by per-
fectly reflecting plane surfaces that connect the knife edges. Any such structure 

with a `valley' can be replaced by other structures that do not have that valley. 

Again, the new problems may be easier to solve than the original one. This formu-

lation may also be applied to the multiple (unbridged) knife edge problem, which 
is a special case of the more general problem. 

RÉSUMÉ 

Dans le contexte des problèmes sur la diffraction, le principe de Babinet per-

met le remplacement de l'arrangement original des écrans de diffraction par deux 

autres arrangements pour lesquels un écran au choix est absent dans l'un des ar-

rangements et est remplacé par son complément dans l'autre. Les solutions des 

deux nouveaux problèmes peuvent être plus faciles à déterminer que la solution du 

problème original. On généralise la solution aux cas des arêtes vives reliées par des 

surfaces planes parfaitement réfléchissantes. Une telle structure qui comporte une 

'vallée' peut être remplacée par d'antres structures qui ne comportent pas cette 

vallée. Encore une fois, les nouveaux problèmes peuvent parfois être plus faciles 

à solutionnier que le problème original. Cette approche s'applique également à la 

question des arêtes vives multiples (sans surface réfléchissante reliant les arêtes), 

cas particulier du problème plus général. 
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EXECUTIVE SUMMARY 

The context of this report is continuing research on the prediction of 
radio signal strengths on terrestrial paths at VHF and UHF. On short ob-
structed paths, the most important propagation mechanism is diffraction. 
For at least two methods of calculating diffraction attenuation, the calcu-
lation fails if there are sufficiently deep valleys in the terrain profile, and 
succeeds if there are no valleys. It would be of value, therefore, to have a 
method of transforming terrain diffraction problems with valleys into equiv-
alent problems without valleys. This report describes such a method. 

Babinet's principle, which comes from physical optics, rests on the idea 
of a thin opaque screen (a diffracting screen) that partly blocks the space 
between a source of waves and a point where the wave field strength is to be 
calculated. One can think of another diffracting screen, complementary to 
the first, that blocks the area left open by the first screen and leaves open 
the area blocked by the first screen. Babinet's principle states that the wave 
field received behind the first screen is equal to the field received with no 
screen minus the field received behind the complementary screen. These last 
two quantitites may be easier to calculate than the first one. If there is more 
than one diffracting screen, the principle may be applied to any one of them. 
If the edge of a diffracting screen is straight, it is commonly referred to as a 
knife edge. 

If the terrain along a radiowave propagation path is a series of narrow 
ridges transverse to the path, it can be accurately modelled as a series of 
knife edges. However, if the terrain is gently rolling, a better model is a 
series of flat reflecting surfaces. Even though such a model is physically quite 
different from knife edges, it can be treated mathematically in a similar way. 
This is because the discontinuities between the flat surfaces block reflected 
waves in much the same way that knife edges block unreflected waves. Knife 
edges may be assumed to be present at these discontinuities without affect-
ing the behaviour of the model since the associated diffracting screens are 
underground. They allow the transformation of the problem into knife-edge 
problems, to which Babinet's principle can be applied. 

For both knife-edge models and bridged-knife-edge models, valleys in 
the terrain profile create computational difficulties. This report shows that 
by suitable transformations, terrain profiles with valleys can be replaced by 
profiles without valleys. The transformations make use of both Babinet's 
principle and mirror images. 
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1. INTRODUCTION 

1.1 BACKGROUND 

Babinet's principle as applied to waves diffracted by thin screens is well known 
(Born and Wolf [1, p.381], Kong [2, p.372]). It allows a diffraction problem to be 
replaced by two others which may be easier to solve. In the multiple-knife-edge prob-
lem, each diffracting screen occupies a half plane, and its boundary is a straight line 

(the knife edge). If the diffracting screen occupies the lower half plane, then the 

complementary screen occupies the upper half plane. 

This report describes an extension of the use of Babinet's principle to a new type 

of problem in which the spaces between diffracting screens have been bridged over by 

perfectly reflecting plane surfaces connecting the knife edges. In this new problem, 

intended primarily for representing propagation at VHF and UHF over terrain, the 
knife edges are hidden. That is, the reflecting surfaces represent the terrain, and the 
knife edges are retained only as a mathematical convenience. This extended use of 
Babinet's principle contains its application to multiple knife edges as a special case. 

A series solution of the multiple-knife-edge diffraction problem has been developed 
by Vogler [3], and used by Sharp les and Mehler [4], and Whitteker [5]. The motivation 

for the present report is the fact that Vogler's series does not converge if valleys in the 

modelled terrain are too deep. By the use of Babinet's principle, terrain diffraction 
problems with valleys can be replaced by equivalent problems with the valleys removed. 

Although the motivation for the present work comes from [5], the use of Babinet's 
principle for diffraction obstacles of this type does not depend on using the particular 

formulation described in that paper. Vogler [6] describes a procedure, equivalent to 

Babinet's principle, of partitioning the integrals of the multiple-knife-edge problem. 

While the method of [6] is purely algebraic, the method described in the present 

report is based more on geometry, and it applies to bridged knife edges as well as to 

(unbridged) multiple knife edges. 

1.2 BABINET'S PRINCIPLE FOR KNIFE EDGES 

To begin, consider the multiple-knife-edge problem (without bridging surfaces). 

The field due to a source in the presence of the knife edges may be expressed as the 

field obtained in the absence of a particular diffracting screen minus the field obtained 

with the knife edge inverted. With reference to Figure 1, the desired field E1 0 1 0 1  is 

given by 
E10101  = ENT — Kro loi 

The subscripted arrows indicate upright (i) and inverted (1) knife edges. The zeros 

between the arrows are inclnded for consistency with notation used later. (They 

indicate that there are no reflections on surfaces bridging the knife edges.) As the 

diagram indicates, the configurations of knife edges associated with K iln- and Eto pyr  

no longer contain the 'valley' associated with the middle knife edge in the original 

(1) 
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Etotot I 	 • i 	I 

I Etnot 

Figure 1. Babinet's principle applied to knife edges. The original problem (top) is decom-

posed into two other problems (bottom) which may be easier to solve. Each configuration of 

knife edges is labelled with a symbol, e.g. E1 0 1 , representing the field due to that configura-
tion. See (1) in text. 

configuration. This is Babinet's principle for knife edges, and it is also a geometric 
representation of the partitioning of integrals described in [6]. It is one of the two 
building blocks out of which the transformations described in this report are built. 
The other building block, to be described in Sections 2.4 and 2.5, is the replacement 
of the source and other objects by their images, with the removal of bridging surfaces. 

2. APPLICATION TO BRIDGED KNIFE EDGES 

2.1 SYMBOLS AND CONVENTIONS 

The time variation of the field is assumed to be 	Knife edges are numbered 

from 1 to N, with the variable n. The x axis is directed horizontally along the path of 
propagation, the y axis is horizontal and perpendicular to the path of propagation, and 
the z axis is vertical. Knife edges are always assumed to be parallel to the y axis. To 

'invert a knife edge' is to replace the associated diffracting screen with its complement. 

By the symbol E will be meant the scalar value of the field vector at point B due to a 

source at A. Subscripts of E, when they occur, specify whether particular knife-edges 
are inverted, and may specify particular modes of propagation. Superscripts indicate 

that the space on the left or right of some point has been replaced by its image. 

Ems 
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Xn  Xn+i 

Xn  Xn+1 

Ernt  

Erni  

Figure 2. Non-reflected mode. The directed line segments indicate possible wave paths, 

which may pass over any path segment either directly or by reflection. The subscripts of 

E refer to the path segment x n  to x,i4.1. For any mode not reflected in surface Sn  (top 

drawing), surface Sn  may be removed (bottom drawing) without changing the field due to 

that mode. 

2.2 CONSTRUCTION OF BRIDGED KNIFE EDGES 

The diffracting obstacle of interest here is not a series of knife edges, but rather a 

perfectly reflecting surface composed of connected planar strips. It can be constructed 
by bridging the spaces between knife edges with perfectly reflecting surfaces. See the 

upper drawing of Figure 2. 

There may be any number (N) of knife edges, but the diagram shows only three 

of them. Since the motivation of this work is to calculate terrain attenuation of radio 

propagation, the diffracting obstacle will be referred to as terrain. 

2.3 MODES 

Suppose that there are N knife edges with N —1 bridging surfaces between them. 

(Reflecting surfaces can also be placed on either side of all the knife edges, but such 
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surfaces can be eliminated immediately by using source and field-point images [5], and 
these surfaces will not be considered here.) A wave propagating over this structure can 
be decomposed into modes, each defined by the integers m n , n = 1, , N — 1. The 
wave corresponding to each mode passes from the n'th knife edge at x n  to the n + l'th 
at x n+1 either directly (mn  = 0) or by reflection in bridging surface Sn  (m n  = 1). 
There are evidently 2N-1  modes of this type. 

The words 'directly' and 'by reflection' require definition. Consider some point 
with coordinate x r,..f1  located above the n+ l'th knife edge. The field at this point may 
be found by a Huygens'-principle integration of the field over a surface surrounding 
the point, e.g. [2, p.376]. In an extension of the Kirchhoff approximation [7], the 
integration may be limited to two plane surfaces: the vertical surface x x n  above 
the n'th knife edge, and the reflecting surface Sr,. Given this approximation, by a 
wave passing 'directly' from x n  to x 1+1  is meant that a Huygens'-principle integration 
to find the field at x 1 + 1  is performed only over the vertical surface above the n'th 
knife edge. Similarly, for a wave passing by 'reflection', the integration is performed 
only over the reflecting surface Sn . The calculated field must therefore be the sum of 
the fields due to each mode. 

The reason for decomposing the wave into modes is that, for each propagation 
mode, there is an equivalent propagation problem in which any chosen bridging surface 
is removed. If the bridging surfaces on both sides of a knife edge are removed, the 
knife edge reverts to being simply an (unbridged) knife edge, and Babinet's principle 
can then be used in the ordinary way. Removing and restoring bridging surfaces is the 
basis of the application of Babinet's principle to bridged knife edges. 

2.4 REMOVAL OF BRIDGING SURFACES 

To see how a bridging surface may be removed, first consider any propagation 
mode in which the wave is not reflected in  S. Since there is no reflection in Sn, Sn 
may simply be removed (for this mode) with no other change required. This situation 
is illustrated in Figure 2. 

Next consider any propagaton mode in which the wave is reflected in the n'th 
bridging surface, designated S„, as illustrated in Figure 3. 

From the point of view of geometric optics, Sn  is a mirror, and an observer looking 

into Sn  from the right sees the half space to the left of Sn  reflected in the plane of 

S. All objects in this half space are seen to be inverted, as illustrated in the lower 

drawing of Figure 3. Therefore let us replace the original diffraction problem with one 

in which all the objects (the terrain and the source of radiation) in the half space to 

the left of Sn  are replaced with their reflected counterparts. After this is done, the 

calculated field due to this mode will remain unchanged, except for a change in sign 

due to a reflection coefficient of —1. That is, 

= —E (1 12.1. 	 (2) 
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Ere  

xn  Xn+1 

Ere  

Xn  Xn+1 

Figure 3. Reflected mode. Any mode re flected in surface Si, (top drawing) is equivalent 
to a mode with Si, omitted (bottom drawing), provided everything to the left of surface Sn 
is reflected in the projection of Sri , indicated by a broken line. See (2) in text. (Knife edges 

would not be vertical after reflection in a tilted surface. They are nevertheless shown as 
vertical to avoid irrelevant complication.) 

where the subscripted arrows indicate whether the knife edges on either side of S. 
are upright or inverted, the numerals between them indicate the mode parameter m n , 
and the superscript (/) indicates that the world on the left of Sn  has been reflected 
through  S.  

Although the equivalence just introduced is most easily visualized with geometric 
optics, it does not rely on the geometric-optics approximation. If the surface Sn  is a 
perfect conductor, i-t imposes the boundary condition that all tangential electric fields 
vanish on the surface. The nrirror image of all the sources and scatterers to the left of 
Sn  must produce on Sn  a field with tangential components identical to those produced 
by the original sources and scatterers. If this field is negated and superimposed on the 
original field, the boundary condition is satisfied, cf. [2, p.358]. 



2.5 DECOMPOSITION OF THE FIELD INTO MODES 

First, a generalization of the original problem is required. The generalization 
is that not all modes need be present in the original problem. Let a parameter ,u n  
specify whether modes reflected in Sn  (modes with m n  = 1) are present. Let p n  = 1 
if they are, and pn  = 0 if they are not. A physical model for setting it. = 0 would be 
bridged-knife-edge terrain in which the the reflecting surface Sn  is absent. If p n  = 0 
for all n, n = 1, , N — 1, the problem reduces to multiple knife edges. Similarly, 
let )4, = 1 if direct modes (modes with mn  = 0) are present and A n  = 0 if they are 
not. There is no physical model for the possibility A n  = 0, but it is an artifice that is 

required in repeated applications of Babinet's principle. 

Now the total field can be expressed as 

E =  An E101  PnEm 

Equation (3) divides the modes into two sets, those for which  mn  = 0 and those for 
which rnn  = 1. Using (2), (3) becomes 

E = À n E101  — it nE(1 121 	 (4) 

Instead of reflecting the world in the half space on the left of Sn , we could have 

reflected the world on the right. The result of the decomposition would then be 

E = A n E-toi — ti n4r2i,  
where the superscript (r) indicates a reflection of the world on the right of Sn . 

The transformation represented by (4) or (5) is not particularly useful by itself, but 
it and Babinet's principle for knife edges are the building blocks for the transformations 
that follow. 

( 3 ) 

(5) 
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( 7 ) 

(s) 

3. APPLICATION TO FIRST OR LAST KNIFE EDGE 

3.1 SPECIALIZATION OF TRANSFORMATION 

Babinet's principle can be applied to the first or last knife edge of a series more 
easily than to an interior knife edge. This is because transformations (4) and (5), 
which are needed in preparation for applying it, can be done in such a way that the 
only object in the reflected half space is the source point or field point. 

Consider a path profile in which knife edge 1 lies below the line between source A 
and knife edge 2, as illustrated in Figures 4 and 5, i.e. knife edge 1 is in a 'valley' that 
we wish to remove. The top drawings in these diagrams represent the same source and 
terrain. In Figure 4, modes not reflected in surface Si  (mi  = 0) are considered, and 
in Figure 5, modes reflected in Si  (m 1  = 1) are considered. For (m i  = 0) modes, S1 
can be removed with no effect (second drawing in Figure 4). For (m i  = 1) modes, Si. 
can be removed along with a world reflection (second drawing in Figure 5). Equation 
(4) becomes 

E =  À 1  E1 0 1 — E(1 10)1 	 (6) 

3.2 BABINET'S PRINCIPLE 

Knife edge 1 is now free of bridging surfaces, and Babinet's principle can be 
applied to it, giving 

E101  =  E1  — E1 01  
(side-by-side drawings in Figure 4) and 

E(1)  = E(1)  — E (1)  E101 	1 	101 

(side-by-side drawings in Figure 5). Equations (7) and (8) may be obtained from (1) 
by removing the subscripted symbol referring to the left-hand knife edge (and the 
accompanying zero), since here only two knife edges are under consideration. 

3.3 REVERTING TO UPRIGHT TERRAIN 

It is most convenient to have all the terrain upright in the final problems to be 
solved. Of the four terms on the right hand side of (7) and (8), only Elm- in (7) 
contains the symbol for an inverted knife edge. Applying (2) in reverse results in 
upright terrain and a mode that is reflected in Si  (bottom of Figure 4). That is, 

E101  = —EV1)1  

Also, the trivial addition of surface Si  leads to the configuration at the bottom of 
Figure 5. 

(9) 
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2 1 2 

Figure 4. Elimination of a -çralley at the location of the first bridged knife edge of series, 

for modes in which m1 = 0 (top of diagram). The transformation proceeds from the top of 

the diagram to the bottom. The final result is that the original problem (with field Epyr) is 

transformed into the two labelled with the symbols Er and Er(11).r . See Section 3 in text. 
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3.4 TOTAL FIELD 

Combining (6), (7), (8), and (9), gives the field due to the original terrain and 

source: 
E = A i (E-t Eg)1 ) — (41)  —  E 1 ) 	 (10) 

The original problem seems to be replaced by four new ones, but not all of them must 
be solved. If the original problem is the ordinary one in which A1 = = 1, (10) 
becomes 

E = E — E(1)  E 1)  ( 	 ( 11) rt 

where E(1)  — Eiot  (1) 	E 1)t  ( is the field due to the original bridged-knife-edge  configura- 
tion  with an image source. The absence of numerals in the subscripts in (11) indicates 

that all modes are to be included, i.e. the new problems are ordinary bridged -knife -edge 
problems. There are three new problems in this case. 

If, however, we begin with a problem in which A 1  = 0 or pi = 0, then we must 
use (10), but only two of the four new problems have to be solved. Note that if we 
begin with a problem in which p i  = 0 (reflecting surface not present), we get in (10) 
a problem (411)1 ) in which a direct mode is not present. This is the non-physical part 
of the generalization mentioned in Section 2.5. 

In summary, (10) and (11) give the result of applying Babinet's principle to the 
first knife edge. The field E due to a terrain profile in which the first knife edge lies 
below the line joining the source to the second knife edge, forming a valley, is given in 
terms of fields due to terrain models with the valley removed. 

Similar considerations apply to the N'th, or final, knife edge, and a field point 
beyond it. The result is 

E = ÀN_i (Et + 4121 ) — 1iN_ 1 (E r)  — E.. 1;21.) 

which, if AN- 1  = arvi = 1, becomes 

(r) 	(r) E = El  — 	+ En 	 (13) 

Here, a single arrow refers to the N — l'th knife edge, and two arrows refer to the 

N — l'th and N'th knife edges. 

(12) 
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Et it  

1 2 

(1) Et ot  

A' 

Figure 5. Elimination of a valley at the location of the first bridged knife edge of series, 
for modes in which m1 = 1 (top of diagram). The final result is that the original problem 

(with field E1 1 1 ) is transformed into the two labelled with the symbols EV)  and E 1 . 101.. _ _ 
Section 3 in text. 
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4. APPLICATION TO AN INTERIOR KNIFE EDGE 

4.1 DECOMPOSITION OF FIELD 

This section describes the removal of an interior valley in the terrain profile. 
Consider a path profile in which the n'th knife edge lies below the line between the 
n - 1'th and n l'th knife edge, as illustrated in Figures 6-9. Here, there are two 
bridging surfaces to eliminate, Sn _ i  and  S. There are four sets of modes to consider, 
corresponding to the four possible pairs of values of mn _ i  and mn . That is, the field 
to be found may be expressed as 

E = Àn—iAnETOTO/ Àn-1iinE10111 ittn—l)tnET11- 01- 	 (14) 

Equation (14) is the same as (3), except that the wave is divided into four sets of 
modes rather than two. Figures 6-9 illustrate configurations for the four terms on the 
right-hand side of (14), for which mn _i and mn  are successively 0 and 1. 

The analyses are given algebraically in the following sections, but the easiest way 
to arrive at the final equations is to follow the diagrams, in which each configuration 
is labelled with the corresponding field symbol. Where Babinet's principle is applied, 
the diagram splits left and right, and the field becomes the sum of two fields. The 
only detail not given in the diagrams is the sign of the terms. The rule for the sign is 
that it changes on each addition or deletion of a reflecting surface, and it changes for 
the right-hand drawing where the diagram splits. 

4.1.1 	Analysis of E-to/o/ 

For the set of modes illustrated in Figure 6, both Sn- i  and Sn  can  be removed 
with no effect. As illustrated in the second drawing from the top, knife edge n has 
been left free, and Babinet's principle can be applied to it, giving 

E10r10I = EI0 1  E1 010 1  

where the terms on the right hand side of (15) are illustrated by side-by-side drawings 
in Figure 6. 

On the left-hand side of Figure 6, a new bridging surface may be introduced 
between knife edges n - 1 and n 1 with no effect, and the symbol _Etc, /  is retained. 

Starting from the configuration at the middle right of Figure 6, the world to the 

left of knife edge n is reflected in Sn _ i , and the world to the right is reflected in Sn , by 

applying equation (2) for half-space reflection in reverse. Because (2) is used twice, the 

sign does not change. The result is denoted by (Eili11 1 ), in which the superscript (1, r) 
indicates that a single reflection has occurred on the left and on the right. This results 

in the whole space being upside down. The diagram may be inverted without affecting 

the field. If the inversion is done by reflecting everything in the plane bridging the 

(15) 
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n-1 n n+1 

n-1 n+1 n-1 n n+1 

Figure 6. Elimination of a valley at the location of the n'th bridged knife edge, for modes 

in which m n _ i  = 0 and rnon  = 0 (top of diagram). The problem is transformed into the two 

illustrated at the bottom left and right. See Section 4.1.1 in text. 
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knife edges n — 1 and n 1, the resulting diagram is similar in some respects to the 
diagram at the lower left, and to the diagrams corresponding to the other three terms. 
Surnmarizing the last two transformations of Figure 6, we have 

E10101 	
E1

11,7-1 1 1  = E(
1

21 /
1
,71-. ) 

where the superscript (2 1 , 2r) indicates two reflections of both the left-hand and right-
hand worlds. Then combining (15) and (16) gives 

E10101  =  E101  E 	.tr  ) 

4.1.2 Analysis of Emil/ 

For the set of modes illustrated in Figure 7, Sn_i can be removed with no effect, 
and Sn  can be removed along with a half-space reflection. The result is 

Enin- = -41'41 	 (18) 

where the reflection indicated by the superscript (r) is in surface Sn . As illustrated in 
the second drawing of Figure 7, knife edge n has been left free, and Babinet's principle 
can be applied to it, giving 

(16)  

(17)  

„ = 	— —to.L01 	 (19) 

where the terms on the right hand side of (19) are illustrated in the side-by-side 
drawings in Figure 7. 

Equation (2) for half-space reflection may be applied to E(r)  in reverse, resulting îol 
in upright terrain and a mode that is reflected in the surface that bridges knife edges 
n — 1 and n 1, as illustrated in the lower left of Figure 7. The half space to the right 
of Sn  has now undergone two reflections, one in S and another in the new bridge 
that spans the valley that knife edge n occupied. That is 

E (r) -E(2r)  TO1 

where the superscript (2r) indicates that the world on the right of Sn  has been twice 
reflected. 

Starting from the configuration at the middle right of Figure 7, the next step is 

to reflect the half space to the left of Sn _ i  in Sn _ i  . This results in the whole space 
(IA being upside down (E11101 ). The diagram may be inverted without affecting the field. 

As before, the inversion is done by reflecting everything in the plane bridging the knife 

edges n — 1 and n 1. Summarizing the last two transformations of Figure 7, we have 

E (7-) = E 	= — E (21
'
2r) 

1 0101 	11101 	1 1 1 0 1  

(20)  

(21)  
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n-1 n+1 

n+1 n-1 

(r) 
E 

(I,r) 
E111.01 

n+1 n-1 

Figure 7. Elimination of a valley at the location of the n'th bridged knife edge, for modes 

in which rn n _ 1  = 0 and m n  = 1 (top of diagram). The problem is transformed into the two 

illustrated at the bottom left and right. See Section 4.1.2 in text. 
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n-1 n+1 

n-1 n+1 n-1 n+1 

(21,2r) 
1.0t 1t 

Figure 8. Elimination of a valley at the location of the n'th bridged knife edge, for modes 
in which m n _ 1  = 1 and m n  = 0 (top of diagram). The problem is transformed into the two 
illustrated at the bottom left and right. See Section 4.1.3 in text. 
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n-1 n+1 

n-1 n+1 

n-1 n+1 

E 01" 

Figure 9. Elimination of a valley at the location of the n'th bridged knife edge, for modes 

in which rn n _ i  = 1 and m n  = 1 (top of diagram). The problem is transformed into the two 

illustrated at the bottom left and right. See Section 4.1.4 in text. 
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removed with no effect, 
The analysis here is the 
Sn_ 1  are reversed. The 

(27) 

(31) 

(32) 

(33) 

Then combining (18) to (21) gives 

• = 	421 1t,02;) (22) 

4.1.3 Analysis of Emoi 

For the set of modes illustrated in Figure 8, Sn  can be 
and Sn_ 1  can be removed along with a half-space reflection. 
same as in the last section, except that the roles of Sn  and 
result is 

E incrt  = Et21 11? Egwv 

4.1.4 	Analysis of .S1 1 111  

For the set of modes illustrated in Figure 9, Sn_ i  and Sn  can be removed along 
with a half-space reflection for each. The result is 

= E(1 1  0,1r)01  

Knife edge n has been left free, and Babinet's principle can be applied to it, giving 

E (1 ' 1.)  = E(1 ' r)  — E (1 ' r)  1 0 1 0 1 	1 0 1 	1 0 1 0 1 

where the terms on the right han.d side of (29) are illustrated in the side-by-side 
drawings in Figure 9. On the left of Figure 9, it is now only necessary to insert a 
spanning reflecting surface, and to reflect everything in it, to arrive at 

(30) 

Similarly, on the right, it is only necessary to insert reflecting surfaces and to 

reflect everything in the spanning surface. This gives 

(1 ' r) 	(21 ' 2r) 
E10101 = Elf:110 1  

Then combining (28) to (31) gives 

= E (r20 11,2r) 	420 11, 02 1r) 
E i1/1/ 

4.2 TOTAL FIELD 

The final result for an interior knife edge is 

E = À n_ i  A n (Erot - 	 )tn-iiin(Egri- )  - 421 1-i021- r) ) 
tin_1An(E, 21 11) _ E, 20 11,21Tr) ) 	litn ( E(r20 11,2r) 	E. 20 /1, 02 ,tr) )  

(28) 

(29) 

 ,(21,2r) 
'101 — 1 0 1 

20 



In each of the eight new problems in (33), the half spaces are either reflected twice, 
or not at all. Where there are two reflections, one is in either Sn_i (1 reflections) 
or Sn  (r reflections), and the other is in the spanning bridge. Where the superscript 
(21,2r) occurs, the middle, or n'th knife edge also undergoes two reflections, which 
may equally be considered part of the 21 or 2r reflections. 

If An-1 = An = 	= /in = 1, then (33) reduces to 

E 	 E(r2i rt) 	421 11) 	E(t2olt,2r) 	E11
( 211,2 r)  

There are five new problems in this case. In four of these, knife edge n has been 
omitted, and in the fifth, the valley at x n  has been replaced by a hill. If any of the A's 
or it's are zero, then (33) must be used, but at most four of the eight new problems 
in (33) have to be solved. 

5. REPETITIVE APPLICATION 

By use of (10), (12), or (33), the original problem is transformed into two or 
more new problems in which a valley has been removed from the model terrain profile. 
However, some of the new terrain profiles may contain other valleys. Therefore it may 
be necessary to do successive transformations. This is a straightforward matter, since 
the new problems have the same form as the original one, with the generalization 
mentioned in Section 2.5. To find the solution of each diffraction problem, it is first 
necessary to assign values to the A n  and the [i n •  

In the original problem, A n  = 1 for all values of n. Depending on whether a 
bridging surface is or is not present between knife edges n and n 1, fi n  = 1 or 0. 

In problems arising out of previous applications of Babinet's principle, values for 
the A n  and fi n  are assigned as follows: If the numeral in the subscript of the symbol 
E in the position corresponding to surface Sn  is a zero, then A n  = 1 and [in  = 0. 
Conversely, if the numeral is a 1, then A n  = 0 and fi n  = 1. If there is no numeral, as 
in (11), then  A 	1 and ti n  = 1. For any n not represented in the subscripts of E 
(attention is always limited to one or two values of n), the values of A n  and 	are 
retained from the previous problem. After all necessary transformations have been 

done, the final values of the A n  and the p n  may be used in equation (35) of [5]. 

(34) 
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6. IMAGE POSITIONS 

6.1 DEFINITIONS AND ASSUMPTIONS 

This section provides formulas for locating the reflected images of the source A, 
field point B, and terrain points. Let the slope of surface Sn  be  y,.  Then if the height 
of the n'th knife edge is  h , the height zs of the reflecting surface as a function of x is 

zs = hn -1-1'n(x — xn) 	 (35) 

In the following it is assumed that all distances in the direction of propagation are 
much greater than any perpendicular distances. In particular, Fyn,' << 1. 

6.2 SINGLE REFLECTIONS 

Suppose that the world to the left of Sn  is reflected through  S.  The image of 
any point (x, y, z), x  <x  appears at (xl, y, z 1 ), where 

z' = z — 2(z — zs) 
= x ry„,(z — z I) 

The horizontal displacements x' — x have small magnitudes compared to the dis-
tances between knife edges, and must be taken into account only because the change 
in path length affects the phase of the field. Furthermore, only the shifts in the end 
points of the paths have any effect, since for intermediate points, the path is length-
ened on one side and shortened by an equal amount on the other. Therefore the only 
horizontal displacements of importance are 

AX A,n — ' -rn(h A — h A') 

and 
AxB, n  = --y,(1/B — hEr) 	 (38) 

where hA ,  and hEr are the heights of the images A' and B' of the source at A and of 
the field point at B, found from (36) (see Figure 10). 

The quantities AxA m  and AxB, n  are the distances by which the image paths 

are shorter than the original paths. Therefore, in finding the fields due to reflected 
worlds on the left and right sides of Sn , horizontal coordinates can be left unchanged, 

provided the fields are multiplied by exp(ikAx A , n ) and exp(ile,Ax B , n ), respectively. 

6.3 DOUBLE REFLECTIONS 

Suppose now that the world on the left of 5n _ 1  is reflected twice, once through 

Sn _ i  and once through the surface spanning  5n _ 1  and Sn . (In Figure 11, the spanning 

surface coincides with the broken line between knife edges n — 1 and n 1.) 

(36) 

(37) 
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Figure 10. For a single reflection, the displacement of the image of the source with respect 

to the source. See (37) and (38) in text. 

Figure 11. For a double reflection, the displacement of the image of the source with respect 

to the source. See (40) and (41) in text. 
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(39)  

(40) 

Consider the angle 0/ between Sn _ 1  and the bridge spanning Sn _ i  and Sn  (Fig-
ure 11). As a result of the two reflections, the world for x < x n  pivots about knife 
edge n - 1 by angle 20/. Similarly, when the world on the right of Sr, is reflected 
twice, once through Sn  and once through the spanning surface, the world for x > x n  
pivots about knife edge n 1 by angle 20,, where 0, is the angle between Sr, and the 
spanning bridge. (When knife edge n is present its reflection in the spanning bridge 
is consistent with both rotations.) 

For double reflections of the left half-space, the image of any point (x, y, z), x < 
appears at (x",y,z"), where 

z = z - 20/ (xn _ i  - x) 
x" = x - 0/ (z z" - 2hn _ 1 ) 

As with single reflections, the only horizontal displacements of importance are 

Ax Am  = - 0/(hA + hA,  - 2h n- 1) 

and 
= 0,(hB he, - 2hni-1) 	 (41) 

where hAn and he , are the heights of the images of A and B, found from (39). As 
with single reflections, AxA m  and AxB, n  are the distances by which the image paths 
are shorter that the original paths. Therefore, in finding the fields due to reflected 
worlds on the left and right sides of x n , horizontal coordinates can be left unchanged, 
provided the fields are multiplied by exp(ikAxA, n ) and exp(ikAxB, n ) respectively. 

7. CONCLUSION 

A terrain diffraction problem composed of bridged knife edges of arbitrary height 
can be replaced by other bridged-knife-edge problems in which there are no valleys. 

This replacement can be accomplished by repeated use of (10), (12), and (33). Equa-

tions (10) and (12) are used to remove valleys at the ends of the terrain profile, and 
(33) is used to remove interior valleys. These equations can be used to transform the 

original problem into new problems, which themselves can be transformed, and so 

on, until all the valleys are removed. In the final problems, a segmented line passing 

through the source, terrain vertices and field point is everywhere convex upward. 

As a special case, all of the coefficients ft n  may be set to zero in the original 
problem. That is, all of the bridging surfaces may be omitted. The transformations 

given here then provide a way of finding the field due to multiple knife edges in cases 

where the series in [3] does not converge. 

For both bridged and unbridged knife edges, Vogler's series [3] does converge in 

the presence of shallow valleys, and only fails to converge when the valleys are deep 
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enough. The conditions for convergence in general have not been worked out. However, 
the series seems to always converge for terrain in which all valleys have been removed. 

The transformations described here were used in the sample calculations of [5], 
and except for the three-knife-edge example, the calculations could not have been done 
over the whole range of parameters that are shown without these transformations. 
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