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Abstract 

This report provides an introduction to the problem of analyzing the performance of satellite 
on-board regenerative repeaters. Two specific group demodulator architectures are discussed: one 
based on a polyphase network followed by an FFT processor, and the other based on a chirp Fourier 
transform implemented using surface acoustic wave (SAW) devices. Due to imperfect filtering 
and channel separation in the group demodulator, intersymbol and interchannel interference are 
introduced into the demodulated output. To show how it is possible to derive error performance 
curves in the presence of intersymbol and interchannel interference, two different analysis methods 
are presented. 
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Chapter 1 

Introduction 

The "switchboard in the sky" is a concept that has been developing in satellite communications over 

the last 20 years. By having a satellite that is a regenerative repeater with multi-beam antennas 

and baseband switching, the need for centralized control is eliminated and it becomes possible 

to have single-hop transmissions between small, portable earth terminals. Regeneration on-board 

the satellite also makes it possible to use different multiple access schemes on the up-link and the 

down-link. .By decoupling the up-link and the downlink, both can be optimized for greater power 

efficiency and bandwidth utilization. 

There have been numerous designs proposed for the on-board regenerative repeater, both in the 

digital and analog domains. When the up-link access method is FDMA and the signals are of equal 

bandwidth and uniformly spaced in frequency, the process of regenerating the carriers is very similar 

to a spectral analysis in which a wideband signal is filtered, sampled and then divided into uniform 

subbands. At the centre of eaçsh of these subbands will be one of the desired signals. In the context 

of on-board processing, this "spectral analyzer" is most often referred to as a group demodulator 

or a multi-carrier demodulator (MCD). The demultiplexing part of the process (separating out 

the signals) can be performed by a number of difference structures, including a polyphase filter 

network followed by an FFT processor [1-3]; a multi-stage filter bank in which half-band filters are 

arranged in a binary tree [4, 5]; an FFT processor followed by frequency domain filtering and an 

inverse FFT [6, 7]; or possibly a chirp Fourier transform implemented using surface acoustic wave 

(SAW) devices [8-12]. 

In most of the work presented to date on multi-carrier demodulators, simulation has been the 

tool used to analyze the system's performance. This is primarily due to the fact that imperfect 

filtering and channel separation cause intersymbol and interchannel interference to appear in the 

demodulated output signal, making it difficult to derive an expression for the probability of error. 

The purpose of this report is to look at methods by which the performance of a group demodulator 
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can be evaluated. Two MCD architectures .in particular will. be  analyzed; the digital polyphase 
filter bank/FFT processor combination, and the SAW-based chirp Fourier transform. 

The subject of performance evaluation in the presence of interference is an old one. 1  A number 
of the techniques that have been prOposed involve computing the moments of the interference and 

then the moments are used in a Gram-Charlier series [14,15] for the probability of error or as part 

of a Gauss quadrature rule [16-18]. Abbther approach that shows fairly rapid convergence is a 

Fourier series method due to Beaulieu' .  [19]. These latter two methods will be investigated here for 

the SAW-based group demodulator and the polyphase network. 

In the next two sections of this report, we give a description of the two group demodulator 

architectures and derive a general expression for the probability of bit error that includes the effects 

of intersymbol and interchannel interference. In both cases, this expression involves integrating over 

the probability density function of the interference. This probability density function is unknown 

and virtually impossible to find. The analysis methods presented in section 4 get around this 

problem by using other characteristics of the interference that can be easily computed. In particular, 

the moments and the characteristic function of the interference can be computed without knowing 

the probability density function of the interference. We adapt the use of these two inte-rference 

analysis methods to the two group demodulator architectures under discussion and show the sources 

of error associated with these computation methods. These methods are then used to compute a set 

of numerical results that are presented in section 5. Various parameters are adjusted to see what 

the effects are on the interference and the group demodulator's performance. Part of the purpose 

of some of these computations is to get a general feel for how well the computation methods work, 

how fast the computations calf be performed, and what are the relative accuracies of the methods 

for a given number of terms in the computation. Finally, conclusions and a discussion of future 

work are presented in section 6. 

I  See the paper of Helstrom [13] for an extensive bibliography. 
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Chapter 2 

Analysis of the  SAW Group 
Demodulator 

The basic receiver structure of a SAW-based group demodulator is as depicted in Figure 2.1. The 

SAW chirp Fourier transform is an IF processor; consequently, it is followed by a down-conversion 

system and a pair of quantizers for the in-phase and quadrature components of the baseband signal. 

The ba,seband signal is then processed by a phase decoder subsystem that tracks and corrects carrier 

phase offsets and recovers the data. As we shall see, the QPSK/FDMA signals appear at the output 

of the chirp Fourier transform as a set of sequential pulses. Each channel is sampled in turn and 

the phase decoder subsystem is time shared between the channels. 

As indicated in Figure 2.2, there are two ways to implement the chirp Fourier transform using 

SAW devices. The first configuration uses two multipliers to which down-chirps are applied and 

a SAW convolver which is an up-chirp. For obvious reasons, this is called the multiply-convolve-
. 

multiply (MCM) configuration. The second configuration uses two SAW convolvers and a single 

multiplier and is called the convolve-multiply-convolve (CMC) configuration. Strictly speaking, the 

Figure 2.1: Block diagram a SAW-based group demodulator structure. 
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mathematical expressions for the outputs of the configurations show that they are not equivalent [9]. 
.f. 

The MCM configuration provides a true short time Fourier transform of the input signal while the 

CMC configuration provides only an approximation. If we compare the two outputs quantitatively, 

however, they are virtually indistinguishable. The CMC configuration has several implementation 

advantages over the MCM configuration, most notably the fact that the SAW convolvers are of 

half the duration of that required by the MCM configuration. This means that devices of half the 

physical length are required for the dMC configuration. In addition, it is possible to incorporate 

any anti-aliasing pre-filtering into the frequen.cy response of the first convolver, and if windowing 

is desired, it can be built into the frequency response of the second convolver. For the MCM 

configuration, separate circuitry would be required to perform these two functions. Thus, it can be 

said that from an analysis stand point that the MCM configuration is simpler to work with, but 

from the point of view of implementation, the CMC configuration is more desirable. 

In the analysis that follows, the mathematical expression for the MCM configuration will be 

used. In terms of the actual performance, the CMC configuration will be equivalent. 

2.1 The FDMA Signal 

The input x(t) to the CFT consists of N QPSK/FDMA signals plus noise, 

N/2-1 
X(t) = E gk (t)ei-ct + Z(t) 

k=—N/2 

assuming an even nurnber of channels N. The complex envelope of the k-th QPSK signal can be 

described by the expression 

co 
= E Akhs(t— nT — 7k )eiPk ti-o,k ,n+sbk] 	 (2.2) 

n=—co 

where ilk is the signal amplitude, wk = 27r (k - )Af is the angular frequency offset with respect 

to the center frequency w, of the group, and Af is the frequency spacing between carriers. The 

parameters -yk and Ok represent random timing and phase offsets, respectively, while akel  is the 

modulating phase in the n-th symbol interval of the k-th channel. The function  h8  (t) is a pulse 

shaping function that is assumed here to be a square pulse, 

(2.1) 

• 

Mt) = 01  
t < 2— 	2 

otherwise 
(2.3) 

where T is the symbol duration. 
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2.2 The Chirp Fourier Tran.sform 

The output of the CFT is a time wayeform y(r) in which the time variable T plays the role of 

frequency. It is well known that  the  Fourier transform of the square pulse shape 118 (t) is a sinc 

function that has very large sidelobes. Traditionally, windowing has been employed to reduce 

the large sidelobes in the output of a short-time Fourier transform. However, there are two costs 

associated with windowing: the signal strength is reduced and the width of the mainlobe is increased 

causing an increase in the noise variance. The Kaiser-Bessel window function, 

w (t)  ,_ 	 (2.4) 
/0 (R-8) 

provides one of the best trade-offs between sidelobe suppression and main lobe expansion. If Kaiser-

Bessel windowing is included in the CFT, the complex envelope of the output in the m-th interval 

mT — < t <mT is given by [9] 

mT+4.' 
D(r) = 	 w(t - mT) dt , 	 (2.5) 

fmT—I 
2 

where is the chirp slope. 

The contribution to the output made by the k-th input signal, gi,(t), is given by 

00 

&(T) = E Ake i95k 	hs (t — nT — yk)eiPk t+ak,nle — ii-L (T — mT)t  w(t — mT) dt . LT- 1. n=—co 	 2 

With a square shaping pulse, and for 7k > 0, this reduces to 

Akeich 
frnT—T 

JrnT- 
2 

7+710 
ht-Fak"1_1 1 e—jp(r—TriT)t w(t — mT) dt 

ei[cok t+ak ,m ] e—ili(T—rnT)t w(t — mT) dt , 	(2.7) 
fmT--1-F7k 

while for 7k  <0,  

f mT T 7+11 
& 	

-F
(T) = Akei° 	— k 	 eiPkt+ak'in i 	 W(t — mT) dt 

LTnT 
-" 

f eiPkt+ek , m+1] e—jeter—mnt  w(t — mT) dt . (2.8) mT+.7247k   

A closed form solution for the CFT output is not possible and we must resort instead to numerical 

integ-ration to evaluate (2.7) and (2.8). 

Figure 2.3 shows the output for a single channel &(7-) with a timing offset of 'yk = 0.3T. The 

system parameters are that of [10]: the time-bandwidth product of the Kaiser-Bessel window is 

••• 

(2.6) 

Ék(T) = 
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5 = 1.85, the signals are 64 kbps QPSK/FDMA signals such that T = 31.25its, and the channel 

spacing is Af = 96kHz. For the chirp Fourier transform, the chirp slope is = 0.091 MHz/,as.  
The r-axis has been shifted by rk = we - + mT so that the pulse is centered about zero. The figure 

shows that the output is dependent on the difference between successive data symbols (ake, and 

aken_ i ). Depending on this difference, there can be substantial attenuation on the peak resulting 

in a degradation in bit-error-rate perforinance. The vertical lines at T —Tk = ±1.055,us and ±2.11/2s 
indicate the centre positions for the adjacent channels k ± 1 and k +2, respectively. If we look at the 

sidelobe levels at these time instances, they are quite high and indicate that the signal on channel 

k will interfere significantly with its neighbours. Of course, the converse is also true, timing offsets 

on the adjacent channels will contribute significant interference into channel k, and it is this effect 

that we wish to analyze. 

To recover the data phase ake, for the k-th channel, the output of the chirp Fourier transform 

must be sampled at the instants rk = Le + mT . The sampled output of the chirp Fourier transform 

is then 

NI2-1 

«TO = àl-kerk) 	E i(rk)+Z(rk) 	 (2.9) 

10k 

where & ( ll) represents the desired signal, E tok  J .  ./ (1-k ) is the interchannel interference and Z (rk) 

is a sample from the noise process 

mT-FTI2 
Z(T) = 	Z(t)W(t — mT)e - Tn —mt dt. 	 "(2.10) 

LT—TI2 	 M 

If the input noise process z(t) it zero mean, additive white Gaussian noise of variance cri, then Z(T) 

will also be a zero mean, additive white Gaussian noise process but with variance 

O.? 
 f

2  W2  (t)dt. T 7 
Let W(f) denote the Fourier transform of the window function w(t), 

(2.11) 

and let 

At the sampling instants Tk 
then be shown to equal 

W  (f) 	W(t) e—.527rft  dt T 	 (2.12) 
2 

1 -141-yht 
rk (f) = W(f) _ T 	w(t) 	ft dt. 	 (2.13)

j.  

= 2̀1e,  mT, the output of the CFT for the desired channel  'k(r)  can 

&(Tk) = Ake{( 1— rk(0))eicek 'm  +rk(°)eicek 'm±1 }W(°) (2.14) 
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while the interference terms take on the form 
V. 

1(7-k) = Aie{(1 —riRk - 	+ ri Rk —1)Afiejm± 1 }W[(k — 1)Af] . 
(2.15) 

The factor W(0) on the far right in (2.14) represents the loss in signal strength as the area under 

the curve of the window function is less than that of a rectangular window. This is a fixed loss that 

is independent of any error in the timing of the signal. The effect of the timing error is embodied in 

the term rk (0). The symbol ak,,,± 1  is.  used to indicate that the previous symbol ak,,j_ i  influences 

the present output when -yk > 0 and, similarly, the next symbol ak,m+i  will influence the present 

output when -yk  < O.  Since the data symbols are assumed to be independent, identically distributed 

(i.i.d.) random variables, we are more interested in the magnitude of the timing offset, 1-ykl, than 

its sign and ak,,,± 1  can be thought of as simply a QPSK data symbol. 

2.3 The Probability of Bit Error 

To compute the probability of bit error for the k-th channel, we can split the sampled output 

signal D(rk ) into in-phase and quadrature components. The problem of computing the probability 

of bit error is easily shown to be symmetric between the in-phase and quadrature components and 

it is necessary to consider only one of the two. We consider then only the in-phase component 

= R{D(Tk)} of the sampled output, which is given by 

N/2-1  

= 	+ E r1(7-1,) + 	 (2.16) 
1=-N 

10k 

where ,..L(rk), (rk), and N  = R{Z(r k )} are the in-phase components of the desired signal, the in-

terference signal on channel 1, and the noise, respectively. Assuming perfect phase synchronization, 

(Ok = 0), the in-phase component of the desired signal is given by 

T k) = A k 1[1  — rk(o)]cos(ak,m) + r k (o) cos(ak,..±1)}w(o) 
Ak W (0)  {P. — Fk(0)1ake, + rk(0)ak fin1} 	 (2.17) 

where we have used ejak ,ni = 	jbk, ,,,) and ak,m , bk,,, represent independent binary data 

symbols taking on the values of {-1, +1} with equal probability. In (2.17), only the in-phase data 

symbols aken  and ak,„, i  are present and they are assumed to be independent random variables. 

Note also that rk (0) and W(0) are always real quantities, as is W[(k — 

For the interference, Éi(Tk), the in-phase component is given by 

Él(To 
ALWRk  — 1)Af] t

aien [(1 — 	Cos — r? sin  i] — bier, [11 cos el + (1 — 11) sin  i] 

+aien±i [11! cos 0/  — r? sin Oil — 	[112  cos 0/ + rir sin q5ii} (2.18) 
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where 

and 

(2.19) 

(2.20) 

Ft 	- 1)Afll = 
1  
_ i)pf] L w(t) cos[27r(k - 1)Aft] dt , R{riRk 	vvRk 	41 

1 	f  --141711 
{ 	 . 

w(t) sm[27r(k - °Aft] dt . -c:s1-1/[(k - 1)Afll = wRk -1)Af] 

Each interference term 'ÉL(Tk) is influenced by four binary data symbols, ai,,„ 	 and 

bie,±1. All are assumed to be i.i.d. random variables taking on values of {-1, +1} with equal 

probability and independent of one another. 

Let n  denote the sum of the interference terms 

N/2-1 
= E -11(7.k) • 	 (2.21) 

The decision variable Di,. can then be expressed as 

-/ AkW(0)  
Yk 	-[[1  rk(0)]ak,rn + rk( 0)ak,rn±1} + 7/ +  4. 	 (2.22) 

V2 

If we assume that  ak ,m -= -1 and average over the two possible values for ak,m+i, then the con-

ditional probability of bit error, assuming a fixed timing offset on channel k, can be shown to 

equal 

1 
 Pb177 (7 	
(

k) = Pr 
 AkW(0)

+ +  4>  0) + 1  Pr ( Ak")   [1 211k  (0)] + + ZL > 0) 

k = 2 
	12- 

 (Zk  h1 20)W(0)  > 	71) + -1Fer  (4>  AkW(0)  [1 21'k(0)] —n) • 	(2.23) 
 2 	Nfi 

If Q(w) is the complementary distribution function for Gaussian noise [20, p. 49], 

Q(x) = 
1 
  f00  e

-t2  /2 dt 	 (2.24) 
-Viïr 

then the conditional probability of error can be expressed as 

1 „ (AkW ( 0)  77  +1  Q (Ak") 2rk(0)] — ) • Pbfri eyk) = 	 ) 2 t 	f2-0-0 	 0-0 	2 	\/-2.-o-0 	 cro 
(2.25) 

The probability of bit error Pb is finally obtained by averaging Pb i n  over the probability density 

functions fn  (n) and jell  ('yk) of the interference ri and the timing offset ryk, respectively 

	

- 	 CO 

	

Pb  = L27, 	PbeYk) f71(n) C laq f'Yk(7k) e7k • 	 (2.26) 
7 —0° 

For reasons of simplicity, most of the numerical examples to be presented later in the report 

will be computed assuming a fixed timing offset. Consequently, we will only want to evaluate the 

inner integral and will skip the integ-ration over the probability density fimction fyk  (7 ) . 
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Chapter 3 

An.alysis of the  Polyphase Structure 

The motivation behind any group demodulator for satellite on-board processing is to arrive at 

a single unified structure that can demultiplex N FDMA channels as a group with far smaller 

complexity than N individual circuits for each channel. This can be done by exploiting the fact 

that the channels are uniformly spaced and have the same filtering requirements. In this section, 

we will look at the polyphase filter bank/FFT approach to demultiplexing the FDMA channels. 

3.1 The FDMA Signals 

The input to the multi-carrier demodulator will be a baseband signal consisting of N FDMA signals 

and noise, 

N-1 
y(t) = E sk (t)+z(t). 	 (3.1) 

Assuming that the modulation is QPSK, the k-th FDMA signal takes the form 

CO 

sk (t) 	E Ak ei[2-fkt+-k,i+okih s (t — iTb  — -rk) 
i=--00 

where Ak is the carrier amplitude, fk is the frequency offset associated with the channel, ak,i is the 

data phase in the i-th symbol interval, and  h3 (t) is the transmitted pulse shape. The parameters 

-yk and Ok represent random timing and phase offsets, respectively. In Fig. 3.1, we have a model 

for the baseband signal y(t) when N = 8. The 8 channels are arranged such that fic  = (k + -DA 
where f, is the frequency spacing between channels. Normally, one would represent the baseband 

signals as being symmetrically distributed about the zero frequency mark, but the representation 

of Fig. 3.1 proves convenient as the total bandwidth occupied by the signals is f, = N fe , which is 

also the sampling rate. 

It is assumed that all the channels use the same transmit filter h, (t) which, in general, will have 

a root-Nyquist characteristic to split the filtering requirements between transmitter and receiver. 

(3.2) 
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Figure 3.1: Baseband model for N = 8 channels as input to the demultiplexer. 
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Figure 3.2: Model for the demultiplexing of a single channel. 

If the transmit filter takes on a root-raised cosine characteristic with a rolloff factor of [3 then the 

signal will occupy a bandwidth of (1 + mf b , where fb = 1/Tb is the symbol rate. The channel 

separation A must then be grkater than or equal to (1 + mfb. 

3.2 The Polyphase Network 

For the derivation of the multi-carrier demultiplexer structure based on the polyphase network, we 

begin with the model of Fig. 3.2 for the demultiplexing of a single channel. 

The process of isolating the signal in the k-th channel involves shifting the signal to baseband 

and filtering with a low-pass filter. Since the original signal was sampled at N times the rate of 

a single channel, we can also decimate the output of the low-pass filter by a factor of N. The 

sampled impulse response of the low-pass filter is denoted by h(nTs ), and it is assumed that the 

same filter characteristic is used in the demultiplexing of all of the channels, 0 < k < N — 1. We 

will also assume that h(nTs ) is a finite impulse response filter with NL taps. The equation for the 
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NL 
= e-jern h(nTs )y[(mN — n)T s]ei21r(k + )nI1' (3.3) 

combined frequency shifting and filtering operations is then .. 
.9.: 

NL 
Xk(MTc) = E h,(nTs)y[(mN — n)Tsi e-.1 27r(k+Dfc(inN-n)T,,  

n=1 • 

n=1 

where we have made use of the fact tbat NT, = 1/f, and e —i27rkm  = 1 when k and m are integers. 

If we now express n as 

n = vN — p 

and sum over both v and p, we can rewrite (3.3) as 

N-1 L 
Wk(MT c) = (-1)m E EhR/iN—pgisiy[(rn — v)NT, pTs]ej2D(vN-p)IN 

p=0 v=1 

For each value of p, and running across all values of v, each set of filter coefficients h[(vN — p)Ts ] 

can be associated with a separate filter 

(vTc) = /3p  (vNT, ) = h[(vN — p)1 13]ei" (-1)v h[(vN — p)T s]. 	 (3.5) 

In a similar fashion, the input signal can be written as N separate, decimated signals 

gp [(m — v)Tc] = gp [(m — v)NTs] = y[(m — v)NT, pT s]. 	 (3.6) 

If we combine (3.5) and (3.6), and let 

• 
WN = 	 (3.7) 

then we obtain the final equation for the output 

N-1 
x k (mIle) = 	E  Wi\-T-21cp 14 71e E l5p(v2,c)vp{(m— v)Te] 

p=0 	 v=1 
N-1 

(-1)- E We kP  
P=3 

where * denotes digital convolution. Working from right to left then, the set of operations defined 

by (3.8) are: a digital filtering operation [ 7-5 p(M2 1c) * p(mTc)], multiplication by a set of phase offsets 

[Wei, followed by a discrete Fourier transform {EpAr_701. 
 W 2 ] ,  and finally a set of alternating 

sign changes on the output R-1)1. Note that the filtering operation is actually performed at the 

lower output sampling rate A = 1/Tc  rather than the higher input sampling rate f„ N fc . Fig. 3.3 

gives a block diagram of the overall structure defined by (3.8). 

(3.4) 

(3.8) 
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Figure 3.3: Polyphase network/FFT processor used to demultiplex N channels. 

The filters pp (vTc ) are called polyphase filters, as the decimation process of (3.5) gives a set 

of filters with the same amplitude response but different phase responses [21]. Assuming that the 

original filter h(nTc ) has a linear phase response, the filter pp (vTc ) will have a linear phase response 

whose slope is a constant times pIN. The name polyphase network thus comes from the fact that 

different paths in the network  bave  different phase responses but the same amplitude response. 

The fact that the polyphase filters have finite impulse response means that there cannot be 

perfect separation between the channels and some interchannel interference or crosstalk will occur, 

as illustrated in Fig. 3.4. The design problem for the multi-carrier demultiplexer is thus a tradeoff 

between minimizing the number of taps L in the filters and minimizing the degradation caused by 

the crosstalk. 

3.3 Interpolation in the Channel Processor 

Following the multi-carrier demultiplexer is the channel processor where syrabol timing and carrier 

phase synchronization are performed. From the point of view of the analysis here, the most im-

portant part of the channel processor is the rate conversion stage where the input samples at rate 

A = 1/Tc  are converted to a set of samples at the symbol rate fb = 1/Tb. This rate conversion can 
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(/31 -1)T  / (A + 	oi+in 

( 1 — 1 ) Tb 1Tb 	 (1 + 1)Tb 

Figure 3.4: Illustration of the crosstalk between channels that occurs due to the finite impulse 
response of the polyphase filters. 

fractional interval 

input sample times 

1,1 1 71c 

• 
basepoint index 

Figure 3.5: Timing relationships between input and output samples in the rate conversion filter. 

be written as a simple digital filtering operation 

rk(iTb) = E wk(mTc)g(1Tb mTe) 	 (3.9) 

where g(t) is the impulse response of the interpolating filter. Very good descriptions of the rate 

conversion process can be found in [1], [21, Ch. 2], and [22]. The discussion given here is taken 

from [22]. 

The relationship between the timing of the input samples xk(mTc) and the output samples 

rk(lTb) is illustrated on the time line of Fig. 3.5. Here it is seen that there are several input samples 

for every output sample, but the timing of the two sets does not coincide. Several new indices need 

output sample times 
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. [/Tb 
i mt --]  —m  

Te 
(3.10) 

lTb „ 
ILl = — — (3.12) 

to be defin.ed. The first involves converting :the signal index m to a filter index [22] 

where int[z] is the largest integer not exceeding z. Next, since the objective is to interpolate between 

the input samples to produce an output sample at time /Tb, define the basepoint index as the 

index of the input sample just precedirig the /-th output sample, 

[3/ = int [—in ] . 	 (3.1.1) 71, 

The normalized time difference between the input sample at time 

/Tb is referred to as the fractional interval 
13121, and the output sample at 

Then using the indices of (3.10), (3.11) and (3.12), the rate conversion filtering can be rewritten as 

/2 
rk (/Tb) = rk [(A + /4)n] = E wk. 	- 	g [( + /lee] • 	(3.13) 

If g(t) is a finite impulse response filter,  I and 12 are fixed integers and I = 12 — Ii  + 1 is the 

number of filter taps. 

Essentially what the filtering equation of (3.13) tells us is that we must count the number of 

input samples that arrive between output samples to obtain ,81. The value of pi must also be known 

to obtain the proper filter coefficients g Re + pi)Tb]. These two parameters will in fact be estimated 

by the timing recovery algorithm. In general, a finite number of quantization steps will be used 

for so that the filter coefficients can be stored in memory. In the initial stages of analysis, it is 

usually assumed that pi and A are precisely known and then we attempt to determine the number 

of taps, L for the polyphase filters and I for the rate conversion filters, to minimize the probability 

of error. This is also a reasonable assumption given that symbol synchronous transmission is being 

considered for many on-board processing systems [23]. If symbol synchronous transmission is used, 

then there is no real timing recovery performed and the rate conversion filter works its way through 

a set pattern of filter coefficients. This would also imply that the timing offset ryk in the transmitted 

signal response for channel k is either zero (perfect symbol synchronization) or a random quantity 

of small magnitude. 

In the rate conversion process, we have the choice of performing some of the receiver filtering, 

or it can be used simply as a delay to interpolate between the input samples œk(mTc). In the latter 

case, the ideal choice for the impulse response g(t) is a sinc-function. However, there is no reason 

why the receiver filter cannot be split between the polyphase filters Ép(r21) and the rate conversion 
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rk(lTb) = Ake i95k  

where 

ei«k.zu(0) + E 	— in) 
i=-00 

filter. If the overall receiver filter characteristic is to be a root Nyquist response, then the polyphase .r.: 
filters and the rate conversion filter will each approximate a fourth-root Nyquist characteristic as 

was suggested in [I]. 

3.4 The Final Output 

In order to analyze the system performance, we have to arrive at an expression for the output of 

the multi-carrier demultiplexer/demodulator that clearly shows for the k-th channel the desired 

symbol in the i-th symbol interval plus any unwanted interference terms. To arrive at such an 

expression, we must combine the FDMA input of (3.1) and (3.2) with the demultiplexing equation 

of (3.3) or (3.8) and the rate conversion process of (3.13). In terms of the analysis, it is easier to 

work with equation (3.3). To begin, we write the sampled input signal as 

N-1 	 co 
YRMN — n)Ts1 = 6jlrm  E Agejoci E ejaq' i  hs[(TnN — ngs — iTb — -y q]e—i27r(q+Dk -4-z[(mN — n)Ts]. 

q=0 	i—co 	 (3.14) 

Substituting (3.14) into (3.3), we arrive at the demultiplexer output for the k-th channel, 

	

oo 	N L 

	

X k(MT c) = Akeiç bk E 	E h(nTs )h,RmN — n)T, —iTb — 7k1 
i—co 	n=1 

N-1 	 co 	N L 
+ E Ageioq E 	E h(nTs )h,[(mN — n)T s  — iTb — 7 q]ei27r(k— q) k 

q=0 	i=-00 	n=1 
q0k 
N L 

+ E z[(mN — n)T s]h(nTs ). 	 (3.15) 
n=1 

Next, proceeding through the rate conversion stage, the equation for the final output can be given 

by 

N-1 	 co + E A g eic4  E 	— in) +zk(in) 
q=o 	i=-00 	 (3.16) 
q0k 

12 N L 
— iTb) = E E h(nT8)h3[(61 — e)T0 — nTs — iTb — 'Ykig + fled , 

e=-Ii n=1 

12 N L 
V (1Tb — iTb) = E E h(nTs)hs [(A — e)Tc — nTs — 	-Yg]g Re + iteci 

e=ii n=1 

(3.17) 

(3.18) 
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2 = 1g [ce + [Jon ]  1 2  E ih,(nT.9)1 2 . (3.20) 

:1.: 

12 N L 
e-iir(pi -e) e-i2z(k+DnI N zk(116) = E E z[([3/ - 	 + me] nTs]h(nTs )g [(e 

e=./.1 n=1 

and 

(3.19) 

If z (t) is an additive white Gaussian noise process of zero mean  and variance o ,  then the output 

noise samples zk(/Tb) will be from a zero-mean Gaussian noise process but with variance 

NL 

e=h.  

The first term inside the square brackets on the right of (3.16), eiQh , lu(0), is the desired symbol 

for the k-th channel and the /-th symbol interval. The second term in the brackets represents 

intersymbol interference, while the final summation is the interchannel interference or crosstalk 

from the N — 1 other channels. 

To evaluate the probability of bit error we need only consider the in-phase component, as 

the QPSK signal can be thought of as two binary signals in quadrature, and the probability of 

bit error is symmetric between the in-phase and quadrature components. As with the SAW group 

demodulator, let ejak ,i =-1-(ak +jbk,/), where ak,i and bk,/ are independent, identically distributed Nfi 
binary data symbols taking on values of {-1, +1} with equal probability. If we also assume perfect 

phase synchronization, (q5k  = 0) the in-phase component of the output can then be expressed as 

00 

rfflTb) = .Ak ak,/u(0) + E ak,iu(lTb — iTb) 
i=-00 

N-1 	co 

+ E A q  E ta,, i  [vi(in - in) cos oq  - vc2 (in - in) sin Cbqi 

q0k 

[vi  (1Tb — iTb) sin cbq  + vc2  (1Tb — iTb) cos Ogil 

+ zk(iTb ) 	 (3.21) 

where v / (/Tb — iTb) and vQ(/Tb — iTb) are the in-phase and quadrature components, respectively, 

of the filter response v(/Tb — iTb) in (3.18), and 4(/Tb) represents the in-phase component of the 

noise process in (3.19). 
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f (yk)d-yk 
(3.24) 

Let the combined intersymbol and interchannel interference be denoted by 77, 
.r.: 

= E Akak,,u(in in) 
i01 
N-1 	co 

+ E A g  E {aq,i  [vi(lTb  - in) cos Oq  — v c2  (/Tb — iTb) sin Oq] 

q0k 

—b g,i [VI  (In - in) sin (k g  vQ (/Tb — iTb) cos Oq] . 	(3.22) 

The decision variable for the in-phase component is then described compactly by 

71(1Tb) = Akak,1u(0)  +77+   zlic(121b) • 	 (3.23) 

The probability of bit error is easily shown to be symmetric with respect to the data symbols ak,i; 

that is, Pb i ak,i= _ i  = Pblak,1=4-1• Therefore, if we assume that ak,i = —1, the probability of bit error 

conditioned on the interference variable 7) , is given by 

> oif eykwyk  = 2T  Q  Aku(0) —  
-P6177 = 2T  Pr[-AkU(0) 	+ 4(176) 

Cro 

where f (ryk) is the probability density function of the timing offset on channel k. Finally, to obtain 

the unconditional probability of bit error, we must average over the probability density function of 

the interference variable 77. The next section discusses how this is done for the polyphase network 

and for the SAW-based group demodulator using two different analysis methods. 
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Chapter 4 

Methods of Coinputing the BER in 
the Presence of Interference 

Generally, for any symbol interval we can express the output for the k-th channel of the group 

demodulator as the sum of three terms 

rk = akhk 	+ z 

where ak represents a binary data symbol, hk is the impulse response amplitude at the sampling 

instant, n is the interference term, and z is additive white Gaussian noise. The interference n 

is a random variable and will itself be a sum of many terms of intersymbol and/or interchannel 

interference. In evaluating the probability of bit error, we generally assume that ak = —1 and try 

to solve an integral of the form 

a  Pb = fb  Q ( hk 	11 ) fn(n) c171 
a 	crz 

where Q(x) represents the complementary distribution function of the noise, fii (77) is the probability 

density function of the interference and is nonzero in some interval [a, b], and o-z2  is the variance of 

the noise. The central problem with solving (4.2) is that the probability density function of the 

interference is unknown and virtually impossible to find. Finding a method of approximating the 

integ-ral for Pb in the presence of intersymbol and cochannel interference has been the subject of 

a considerable amount of research. Two methods of approximating the integral in (4.2) will be 

discussed: one based on Gauss quadrature rules [16-18] and the second based on a Fourier series 

due to Beaulieu [19]. 

(4.1) 

(4.2) 
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(4.4) 

(4.5) 

4.1 The Gauss Quadrature Rule Method 
r .' 

One approach to approximating the integral (4.2) would be to use a linear combination of the values 

of the function Q(x) at specified points, 

fab (hk  
	 f (7)) c17) 	wic2 ( hk 	xi) • 

The xi are called the abscissas of the 'formula and the wi are called the weights. Together, the set 

xiln is called a Gauss quadrature rule corresponding to the weight function f71 (77), as such 

formulas were first studied by Gauss. The weight function  f,7  (i)  has to satisfy several conditions for 

the approximation of (4.3) to be valid [16]: the function  f,  (i)  must be nonnegative and integrable 

over [a,1)] with 

fab 
fn (71)Cin > 0 

and the integrals 

ict b 
1 7li k  fil( 7I)C171 

must be definite and finite. If this is true, then M abscissas and weights can be found such that 

(4.3) is exact for Q(x) a polynomial of degree n < 2M — 1. Of course, the Q-function is not 

a polynomial but the error in the approximation can be made arbitrarily small by choosing M 
sufficiently large. 

The central problem is, of course, finding the weights and abscissas of the quadrature rule. 

Benedetto et al. [16-18] have proposed using an algorithm due to Golub and Welsch [24] that 

computes the set {wi, xi}im=1  using the first 2M + 1 moments of the interference. The algorithm 

proceeds as follows: 

The unknown weight fun.ction f77 (77) can be approximated by a set of polynomials  P0 (n),  pl (n), 	, 

that are orthonormal with respect to f77 (77). These polynomials satisfy a three-term recurrence re-

lation [24] 

13j—iPi-2( 97) + 	(97) + Pip.; (97). 

It is possible to find the coefficients ai and fli for the recurrence relation by knowing only the first 

2M + 1 moments of the interference. First, form an (.114-  +1) x (M +1) Hankel matrix A of the 

moments, 

(4.3) 

(4.6) 

A= faiilt,fin aii = S2i+j-2- 	 (4.7) 
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where •• • • 

2 Ç2 
Wi = qi,1 0  

(4.12) 
Xi = 

çk 
 f

nk fn (n)dx 	 (4.8) 
a 

is the k-th moment of the interference, 0 < k < 2M. Next, we perform the Cholesky decomposition 

A = BTB of the Hankel matrix to obtain an upper triangular matrix B 

i-1 
- E 

k=1 

(4.9) 

- E bki bki  
b = 	 

Once the upper triangular matrix B is found, the coefficients ai and f3i of the three term recurrence 

relation are given by 

	

bid+1 	 j 	1 ,  2 ,  . • • , a • = 	 3 	bjj 	bj-1,j —1 
(4.10) 

_bi+1,i+1  j = 1, 2, • • • ,  M  - 1 

with 4,0 = 1 and 1)0,1 = 0. The weights and abscissa of the quadrature rule are then found from 

the eigenvalues and eigenvectors of the symmetric tridiagonal matrix 

al Pi 
az 	132 

(4.11) 

/3M-2 am-i 
[3M-1 am 

Let qi,i denote the first component of the i-th orthonormalized eigenvector of J and let Ai denote 

the i-th eigenvalue. Then 

where no is the mean or zeroth moment of the interference. 

Although the algorithm may seem slightly complicated, the programming of (4.7)-(4.11) is 

straight forward. As for finding the eigenvalues and orthonormalized eigenvectors of the tridiagonal 

matrix J, this is a common procedure in matrix algebra, and most math function libraries such 

as IMSL or LAPACK contain predefined routines to perform this task. As for the moments of 
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the interference, they can be computed in a recursive mamwr.using a method due to Prabhu [25]. 

Consider that the interference variable 7, is the sum of K separate interference terms, 
• 

= 
i=1 

and let 	denote the partial sum of the.  first n terms, 

(in 
i=1 

Then it is possible to show that the following recursion holds [25] 

k 
E [ nie] = E 

. 

where EH denotes expectation. The k-th moment is then given by 

. k k 	 k—i 
k EK 	 E IIC] — E 	KK-11E{ 71K 1. 

2=0 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

The following subsections briefly discuss computing the moments of the interference for the two 

group demodulators. There are several sources of error in computing the probability of bit error 

with the Gauss quadrature rule. Bounds on these errors will also be discussed. 

4.1.1 Evaluating the Moments of the Interference in the SAW Group Demod-
ulator 

To compute the moments of the interferen.ce in the SAW-based group demodulator, we must find 

the expected value of C-1(7-k)lu for 1 = k ±1,k ± 2, • • • , k ± K/2 and v = 0, • • • , 2M. Essentially, for 

a fixed / and v, we must compute {:51(701- for the 16 possible combinations of ai,m , bi ,m, at,m±i 

and bi,,,±1 using (2.18), and average each combination over the random phase çbi E [0,27r) and the 

random timing offset 

cir(71)} , = 1 rA/WRk — /)Afliu 
 Jo

r[ r 	2 
— rf) cos 0/  — r? sin chi 

27r I.  

[1-12  cos  q  + (1 — rf) sin çbi] 

+ai,m±i [ri.  cos 0/ —  F sin Ot] 

[r? cos 0/ + rf sin q5z] 	f-y1 (-y1)ckyi dq5i . 	(4.17) 

This need only be done once and can be accomplished numerically. Some savings in computation 

can be gained by noting that only the even order moments E Pir(rk)lvi are nonzero. This fact 

can be found by noting that for each combination ai,m , bt ,m , ain±i,  and bi,„,±1., the complementary 
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_x 2 12  
Z(x) = 

 1 
 (4.19) 

combination 	 and —,14, m±i  yields a value of {A .§li (rk)} 1) that is of equal mag- 

nitude to the former but multiplied by the scalar (-1)". When v is odd, the two terms cancel each 

other out and we are left with a momènt of zero. The above observation also means that we need 

only compute 8 of the 16 possible combinations representing a further savings in computation. 

Once the moments E[{:§1(7-k)r] of the individual interference components have been com-

puted, the moments 52, of the total inierference can be easily computed using the recursions of 

(4.15) and (4.16). From there, the probability of bit error is obtained by using the above mentioned 

algorithm to compute the weights and abscissa of the quadrature rule. 

There are two sources of error in this approach to computing the bit error rate. The first is due 

to using only K of the N — 1 possible interferen.ce samples. This can be made arbitrarily small by 

choosing K sufficiently large, or if N is small, computing over the entire set of interference samples. 

The second type of error is due to the truncation of the quadrature rule to .11/I samples by using 

only the first 2M + 1 moments of the interference. Let Rm denote this truncation error. If we 

assume a fixed timing offset of ryk on the desired channel, then from [16, Thm. 1], the magnitude 

of the truncation error can be shown to equal 

IRMI = nit ig?  [
Q

(2m) ( Akw(0) 	) +Q(2m ) ( Ak")  [1 2rk (0)] - .1 cr )1 2(2M)! 	-Via.° 	0.0 	 Via, 	 o  (4.18) 

where Q( 2m)(.) denotes the 2M-th derivative of the complementary distribution function, the A 
are coefficients in the three term recurrence relation of (4.6), and is a quantity that lies within 

the range of the interference n . Let Z(x) denote the normal distribution of unit variance, 

and rewrite (2.24) as 

Q(x) = 
00

Z(t)dt. 	 (4.20) 

From [26, p. 934], the n-th derivative of the complementary distribution function Q(x) is then given 

by 

Q(n) (s) = —z (n--1) (x ) = —irz (x)Hen_I  (x ) 

where  He(x) is a Hermite polynomial satisfying the recurrence relation [26, p. 782] 

(4.21) 

Hen+i(x) = xilen (x)-1-nHe n_1(x). 	 (4.22) 
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(Akw(o) — -vîe  

Vicyo  He211/1-1 Via-0  
(Ak w(o)p_ — 2rk(0)] —  

(4.25) 

(4.26) 

1=k—K 
10k 

ernax = 
7i 

(4.27) 

The magnitude of the truncation error is then written as 
.f.: 

2•1Fr(2./t//)!4/ 14-  [exP  
(AkW(0) — Vie) 2 ) 

+ exp
( (AkW(0)[1 — 2rk (0)1 — \fk) 2 ) 

44 

IRMI = 

(4.23) 

It can be shown [26, p. 787] that 

IHer,(x)I < Bex2 /4-i-ni 

where B 1.086435. Using (4.24), the truncation error can be bounded by 

I Rm I  < C  [exp 
(Ak W(0) 	exp  (Ak W (0) [1 — 2r, (0)] — 	2   ) — \fie) 2  ) 

8o-?,o  

where 

(4.24) 

c=  Bv(2m -1)!Hine  
2,,[271- (2M)!crei 

Again, this assumes a fixed timing offset -yk for the desired channel. If the timing offset 'yk is 

random, then we must average the right hand side of (4.25) over the probability density function 

of -yk, or more specifically, we must average the second exponential over the pdf of -yk. 

To maximize the bound in (4.25), it is easy to see that we must maximize e, or in other words, 

With repeated use of the triangle inequality, we arrive at the expression 

AiW[(k — 1)f]  el (Tk)I < 	 {1(1 —rf) cos 0/1 + 1(1 — rf) sin Oil ± irf cos oi l + irf sin 0/1 
-V-2-  

+2111 sin Oil + 2ir? cos çbii} 	 (4.28) 

For a fixed timing offset 	this expression reaches a maximum at q5z = 771, yielding 

max Èf era < max A/W[(k — 	{1 + 21111 + 2ir?i} 
71) 95 1 

(4.29) 

For fixed timing offsets m , we simply take the term on the far right of (4.29). However, in the 

general case where m is a random quantity, we must evaluate irf + II1I  and find the value of 7/ 

for which this sum reaches a maximum. 
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a 

N-1 
K = R + E Rg  

g.0 
q0k 

(4.31) 

2 
[ak iu(lTb — il lb)] 1)  frk(7k)dlik • 

ak,i - 

T = (4.32) 

2ir 
A, 	

f 	I 2 
—.a- 
8ir Lt 

2 

(ag,i [vI (111 — iTb) cos Oq  — vQ (/Tb — iTb) sin çbq] = 

4.1.2 Evaluating the Moments of,the Interference in the Polyphase Structure 

For the polyphase network, there are two sets of terms involved in the computation of the moments; 

one set for the intersymbol interferénée and one for the interchannel interference. Both the inter-

symbol and the interchannel interference involve infinite sums. These will have to be truncated in 

order to arrive at something that is computable. Let R denote the number of terms of intersymbol 

interference that contribute significantly to the probability of bit error. We assume that of these R 

symbols, mL occur before the /-th symbol interval and mu occur after the /-th symbol interval so 

that R =  m  + mL. Similarly, for the q-th interfering channel, let Rg  -=-- mgr, + mgu + 1 denote the 

number of samples that significantly affect the probability of bit error. The interference variable 77 

of (3.22) is then approximated by 

i+niu 
7/* = 	E Akatt(lTb — iTb) 

i01 
N-1 	1 -1-mqu 

+ E A g  E taq,, [vi(in -in )  cos q5q  — vQ (1Tb — iTb) sin q5q] 
q=0 
qe 

—b g,i [11 (1Tb — iTb) sin Oq  vQ (/Tb — iTb) cos çbq] • 	 (4.30) 

The total number of interference samples is then 

For each of the intersymbol interference terms, we want to evaluate the moment 

Since ak,i is a binary data symbol taking on the values {-1, +I}, it is not difficult to see that the 

odd order moments will be zero. Similarly, each of the K — R interchannel interference terms will 

have a moment of the form 

—b g,i[vi  (1Tb — iTb) sin eiq  vQ (/Tb — iTb) cos Oq] fy,(-yg)d-yg  dOg  

(4.33) 

of which only the even order moments will be nonzero. 
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As with the SAW group demodulator, tkere are two types .of truncation error that arise in using 

this method to evaluate the probability of bit error for the polyphase structure: one is due to using 

only the first 2M + 1 moments and the' second is due to truncation of the two infinite series for the 

intersymbol and interchannel interference. 

The truncation  error due to using only 2M + 1 moments was derived in the previous section 

for the SAW-based group demodulator. For the polyphase structure, it is easily shown that the 

magnitude of this truncation error is equal to [16] 

	

1R —1 	I 	(Aku(o) — 	 \ 
Ma kk 

	

m  I 	2(2M)! 	 n 	dy  (4.34) 

where e is a quantity in the range of the interference variable m  and  cr is the output noise variance 

given by (3.20). Following the steps used in the previous section, the truncation error can be 

bounded by 

IRM1  <C  f 2 T 
eXp (AkU(0) e)2) 

2 	44 frk (7k ) cl-rk 	 (4.35) 

where C is the constant 

2-V2îr(2M)!4m 

and B 1.086435. To maximize the bound of (4.35), we must maximize e, and this can be shown 

to occur when 

B (2M — 1)! fI1  e  c (4.36) 

1 1-mu 	 N-1 	1±rriq u 

= max max  E lAku(iTe- in) + 	Aq ma2c 7k 	 7q 
i=l-m 	 q=0 

ie0 	 qek 

v (in - 	 )1 + iv ( 	- 	) I . 

(4.37) 

The second type of truncation error, due to using a finite rather than an infinite series of 

interference terms, is more difficult to classify. However, in [17] it is shown how the effect of finite 

interference on the probability of bit error can be bounded within a given range. If ri represents 

the true interference variable and re is the finite approximation, then it is possible to define a third 

variable 

= E - in) 	 (4.38) 

i>11-mu 
N-1 

+ E A q E ta,,i  [vi(in - in) cos q5q  — v c? (1Tb — iTb) sin q5q1 

q=0 
qek 	i>l+mu 

—b g,i [vr  (1Tb — iTb) sin Oq  + vQ (/Tb — iTb) cos Oqi 	(4.39) 

71** 
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(4.40) 

(4.41) 

[v I (lTb — in) ] 2  + [vQ (in - in )] 2  . 

(4.42) 

Q(x) = E cmein— + e(x) 
771=-00 

(4.43) 

such that n  = 77* + 71**. It can then be shownthat, for a given timing offset -yk, the true probability 

of bit error lies within the interval [17, Eq. 49] 

	

Ja 	ao 

	

Q  ( AkU(°) 	71*  f 71 *  (71 * ) d71 *  

	  fil(77) chi 

	

a 	 Cf o 

	

[1—  (o-, I (70 ) 2] — u 	Q 

	

1 	b 	Aku( 0) 	77* 1.) 	(77 * ) c177 *  
a 	(70[1 - 

where ar.2  is a quantity such that 

E{exp(An**)} exp (____A2
2

0-
r

2) 

for all A. Following the derivation in [17], the value of cr,2  should be chosen such that 

= max 	 2 lAkak,i Min in)1 2  
i</-mL 
i>/-1-rnu 

N-1 
+ max E A2  E laq ,, [vi(in - in) cos Oq  — vQ (/Tb — iTb) sin q] 

64, q=0 

	

qe 	i>14-711U 

[vi  (1Tb — iTb) sin Oq  vc2  (/Tb — iTb) cos çbql 1 2 

 N-1 
< max  E A[a(n-ib - in)] 2  + E A2qm-yax, 

	

i<i_mi, 	 q=O 	i<i_mi, 

	

i>l+mu 	 i>l-Frau 

The inequality of (4.40) is valid as long as the eye pattern of the modulation remains open (i.e., 

the interference is not too large). If that is true, then by choosing R and Ri sufficiently large so 

that crr  remains small, the upper and lower bounds of (4.40) can be made to come together. It is 

stated in [17] that if (cr, I cro ) 2  çz--110 -2 , then the separation between the upper and lower bound will 

be of the order of 0.05 dB. 

4.2 Beaulieu's Fourier Series Method 

In Beaulieu's approach to computing the bit error rate in the presence of interference, the comple-

mentary distribution function Q(s) is apprœdmated by a Fourier series, 
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where e(œ) represents an error term. If thieourier series is substituted into (4.2) with the assump- 

tion that the noise is of unit variance (i.e.,  o 	1), the expression for the probability of bit error 

can be rewritten as 	 . 

co 
Pb = 	f,(97) [ E emeirnw(hk -71) e(hk 97) ] dn. 	

(4.44) 
a 	m=-00 

The characteristic function n1, ,,i (w) of the interference variable n  is given by 

co 
(w) = E 	

- 	
(97)eiwn 	 (4.45) 

00 

Consequently, if we rearrange the order of summation and integration and substitute the charac-

teristic function .. 71 (c.e), the expression for the probability of bit error can be shown to simplify 

to 

co 

Pb = E c_m ei"hkip,(—m,(0)+ p , 	 (4.46) 
m=--00 

where 

= 	fn(n)e(hk — 77)chi  la  (4.47) 

represents the error in using the Fourier series to approximate the probability of bit error. 

The benefit of this approach to computing the probability of error is that, while the probability 

density function of the interference may be unknown, the characteristic function of the interference 

can be easily found. The key to the method is finding a suitable series for (4.43) with coefficients 
a 

Cm  that are easily computed. Beaulieu [19] has done this by combining the usual Fourier series with 

a Chernoff bound that involves gating the unit variance normal distribution with a square wave of 

period  T. The approximate Fourier series for Q(x) then takes the form [19] 

1 	2 
00 

e

_rew2/2 

-7r E  	m sin(mwx) e(x) 	 (4.48) 
ne=1 

m odd 

where 

(T 
ie(x)i < 2 	'xi) 	 (4.49) 

and the angular frequency is co = 27r/T. Using the series of (4.48), suitably truncated to M terms, 

provides an efficient means by which the probability of bit error can be computed. As we shall see, 

the errors associated with this method can be quite tightly bounded. 
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11  
2 	7r m=1 

rnodd 

Pb 

4.2.1 Beaulieu's Method Applied,.to the SAW Group Demodulator 

Substituting the Fourier series of (4.48) in the conditional probability of bit error expression (2.25) 

for the SAW group demodulator, an ci  using the characteristic function (4.45) for the interference 

term 77, we arrive at an expression for the probability of bit error 

2 2 / 

—MmW 	I2  {sin [MCO Ak") ] 
\fi 

f 2 	 [ 	 [1 AkW( 0) 	2  
T Sin  r 	 rk(0)]] f-yk (71c) d'Yk} '1' 71 (—MCJ) Rm -I- 0 
2 

(4.50) 

where Rm is the error due to truncation of the series, and f3 is the error associated with using the 

Fourier series approximation. The expression for the truncation error is straightforward to define; 

for m > ./1// 

1 	
ooem2w2 	

/ 	. [ 	AkW (0)1  
Rm = 	 - 	sin mco 

7r 
m=m+1 
m odd 

2 	 AkW ( 0)  
.1 sin [mco 	[1 2rk(0)]] f k k) 	k} '1' ( —mw) , (4.51) 

\/-2-  

and it is not difficult to show that the magnitude of the truncation error can be bounded by [19] 

2 	00 e —m2 w 2 /2 	 114-
) 

(27r  
IRml 	E 	 r2m 	7- in  m=111+1 

• 	m odd 

The error term 0 due to using a Fourier series approximation can be found from (4.49), 

(4.52) 

7-  AkW (0) 	
k+KI2 

 E max erk) 2 c=k—x/2 
tok 

f'T 	A kw(0) 	
k+KI2 

[1 2rk (0)] - E max eir (rk)I fyk (-yk) d-yk . (4.53) 
2 J Q  2 

— 2 	 1=k—K /2 

The maximum value of the interference (rk) was given in the previous section in (4.29). Direct 

substitution into (4.53) yields the final expression for the error term p. 
It should be remembered that the derivation of the probability of bit error is based on the 

assumption  that the noise is of unit variance. Thus, the signal and interference terms in the above 

expression for 0 in effect represent a signal plus interference-to-noise ratio. This means that as 

< 
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the signal-to-noise ratio increases, we want,,to increase the value of T in order for the error term 

p to remain small. On the other hand, equation (4.52) indicates that an increase in T requires 

a corresponding increase in the numbér of terms  M in the series for the truncation error Rivi to 

remain small. There is a tradeoff then between these two parameters, and,for a specified level of 

accuracy in the computations, there will be an optimum choice for M and T. Experience has shown, 

however, that if T is chosen too small and the error term p is too close to the true probability of 

bit error, the series may not converge. Thus, it is generally safer to set T to a large value and use 

more terms in the series than to have chosen T too small to begin with and have to repeat the 

calculation because the series will not converge. 

To complete the derivation, we must find an expression for 'I( —mw). Let 97/ = (rk). Then 

the characteristic function of the interference ri can be expressed as the product 

k+K 12 

q) 77 (-712W) = 	 15711 ( —rnw ) 

l=k—K12 

(4.54) 

and each term .1.,71 (—mw) can be shown to take the form 

(—mw) = —
127r 

/ 
2 

{cos ( 
rr/WA/Ink  - /)Aje] [ (1 — 	cos — r? sin  i]) 

27r 0 	_T 7 
(MWAIW{(k 	—[ n  •cos 	 cos  q5j  + (1 — rf) sin 01) 

(mw 	AeRk — /)3,,f]  [ I  •cos 	 r, cos q5i — r? sin i])  

•coAh( mwAIW[(k 1)L '
fl  [r? cos q5i + 1-1 sin Ot] 	fyi(YI)du dO. (4.55) 

A closed form solution for ilcni  (—mw) does not seem possible but it can be evaluated quite easily 

by numerical integration. 

In summary, the probability of bit error can be well approximated and easily computed by 

1 1 x11
-,e 

'2'2/2 
 {sin [mw AkW  (°)] 

2 7r LI 	 /2-  m=i 
modd 

f 2 
sin [m,w AkW (0)  p, 211k  (0)]] f-yk, (7k) d'yk ./. 77 (—mco) 	(4.56) Nfî 

2 

with (4.54) and (4.55) used to compute ./.n (—mc.o). The magnitude of the error in the approximation 

is bounded by 

'error' < 1Rml 	1)3 1- 	 (4.57) 
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4.2.2 Beaulieu's Method Applie&to the Polyphase Structure 

For the polyphase structure, application of Beaulieu's Fourier series method yields a bit-error-rate 

expression of the form 

1 	2 xj1-4-, e —m2°2 /2  
sin[mwAku(0)] f-yk (-yk) d-yk 	 ± Id ± 

2 	7r 
in=1 	 (4.58) 

m odd 
where the truncation error Rig is again bounded by (4.52). The error term [3 can be bounded by 

T 1/3 1 < L T  Q ( -AU(0) - 6nax) f-yk( -yk) ol-rk 	 (4.59) 
7 

where .,•„ax  is given by (4.37). 

The characteristic function of the interference is the product of an infinite number of terms of 

intersymbol and interchannel interference. If we again truncate these to R = mL + mu terms for 

the intersymbol interference and Rq  = mqu + 1 terms for each interfering channel, then the 

characteristic function can be approximated by 
1-1-mu 	 N-1 14-inqu 

= 	'5711( —MW ) II  II  (D7.7
#.713 

• (-MW). (4.60) 
q=0 

i01 	 q0k 

The characteristic function of each intersymbol interference component is given by the simple 

expression 

2 
(-MW) 	COS{MWAWIT b in)] fik ( -Yk) rlyk 	 (4.61) 

T 

while the characteristic function of the interchannel interference terms is given by 
71' 

q,j (—mw) = —[277 
1 

(1. 7? 	 cos (mcv [v'(/Tb — jTb) cos q5q  — vQ (1Th — jTb) sin Oqi 
27r Jo 	_T- 2 

• COS (MW [VI  (/21b - in) sin çbq  vQ (/Tb — jTb) cos Oqi fyq (-yq ) d-yq  dOq  

(4.62) 

The use of only K = R Eq0k Rq  interference terms introduces a third error term in the 

probability of bit error expression. The true characteristic function of the interference 11,n (—mco) 

can be shown to be the product of two terms, 

= .1. 77*(—mw)*(—mce) , 	 (4.63) 

where n1n 71*(—mco) is the approximation of (4.60) and s/b 71**(—mcd) is simply all the remaining terms 

in the infinite products, 
N-1 

4P 7)** (—MCIJ) = 	,5,7i (—MCO) II 	II 'Dnqd (—MC,J) . 	 (4.64) 
q=0 

i>t+mu 	ek i>t+Tner 
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The error in using only K interference teri»s is easily shown  to  equal 

2 	e —m2'2 /2 	r  A = --7r E  	s
,

,mwAku(0)] fyk (7k) d-yk e.„*(—mco) 	— . 
rn 	IJT. 

ni=1 
m odd 

(4.65) 

There are ways to further simplify the :term .f.n**(—mco) (see [19]) but we will leave those for the 

moment. It is fairly clear that we want to choose R and the R q  such that 41, 7)**(—mco) approaches 1. 

For this to happen, the filter coefficient u(/Tb —iTb), v / (/Tb —iTb), and vQ(/Tb —iTb) must obviously 

approach zero. 
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Chapter 5 

Numerical Results 

5.1 SAW Group Demodulator 

The computations that we must perform involve a number of numerical integrations, beginning 

with computing the quantities W(0), rk (o), wRk — i)Afi, lit, and F. For all the numerical 

integrations, an extended Simpson's rule [27, Eq. 4.1.14] of 20000 points has been used. Since the 

error in this integration rule is 0 ( 71(4-) for an N-point integration, 20000 points should be sufficient 

to minimize the error due to numerical integration. Indeed, a number of the computations were 

repeated with a 40000 point integration rule and there was no change in the computed bit-error-

rates. For the Kaiser-Bessel window function, the zeroth order modified Bessel function /0(x) is 

computed using the polynomial approximations found in Abramowitz and Stegun [26, Eqs. 9.8.1-2]. 

The magnitude of the error in these approximations is on the order of 10-7 . Both the approximation 

of the Bessel functions and the numerical integration will contribute errors to the estimate of the 

bit-error-rate, but we have attempted to minimize their effect. Double precision arithmetic was 

used throughout to also minimize problems of round-off and truncation. 

For the first part of the analysis, it was assumed that only two interferers were present on 

channels k — 1 and k + 1, where channel k is the desired channel. Although using only two 

interference signals with fixed timing offset is a somewhat idealized case, it will prove useful in that 

the computations can be compaxed against bench measurements with existing hardware [10]. As 

well, we can expect that most of the contribution due to interference will come from the adjacent 

channels. 

The system parameters used in the computations are those of [10]: the time-bandwidth product 

of the Kaiser-Bessel window is â = 1.85, the QPSK/FDMA signals are 64 kbps such that T = 

31.25,us., and the channel spacing is  L f = 96 kHz. For the chirp Fourier transform, the chirp slope 

is ,u = 0.091 MHz/its. 

The first set of results are for zero timing offset on the desired channel, and equal, fixed timing 
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Eb 
No (5.1) 

Eb 
No (5.3) 

offsets on the two interfering channels. This case gives an 'Indication of how the growth in the 

sidelobes caused by timing offsets can affect another signal that is itself well behaved. Tables 5.1 

and 5.2 give the numerical results  for.-y_ i  = -yk+i = 0.1T and -yk .l  = 	= 0.4T, respectively. 

In the tables, rather than quote M, we have quoted the number of non-zero terms in the series, 

Nivr = (M + 1)/2. 

For Beaulieu's method, the value of 7-  was chosen such that 

T AkW(0)  
max e < 8  

2 

where 

{W  ( 3)1 2  (5.2) 
2  w2 (t)dt 
T 

is the inverse of the equivalent noise bandwidth of the window and represents the loss in Eb/No 
associated with windowing. For the particular window used here, A =- —1.16dB. The value of M 
was then chosen such that 

27rM 
T <4 

 

With only a single channel and perfect timing, the probability of bit error is given by Q( \/2AEb/N0). 
Since the probability of error with interchannel interference and non-ideal timing is always going 

to be greater than this value, using (5.1) and (5.3) ensures that the error terms Rm and p become 

vanishingly small. a 

For the Gauss quadrature rule method, a number of trials were run beginning with M = 3 

until no further change could be observed in the results. Eight significant figures are reported for 

the probability of bit error, and six significant figures are given for the truncation error, IRm 
Again, it should be pointed out that the probability of bit error is not guaranteed to be accurate 

to eight significant figures due to approximation of the modified Bessel function and the various 

numerical integrations involved in computing the probability of bit error. However, if both methods 

use the same integration rules, and are therefore subject to the same types of errors, it is feasible 

to compare the two methods and see how closely they agree. Looking through the tables, we see 

that there is generally agreement between the two methods to at least four significant figures, and 

in many cases the two numbers are identical. 

If the number of nonzero terms, Nit,f, of Beaulieu's Fourier series method is compared with the 

number of terms M used in the Gauss quadrature rule, it is seen that far fewer terms are required 

by the latter to achieve similar accuracy. Indeed, in almost all instances where 7 or more terms are 
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Table 5.1: Numerical results for K = 2 interfering channels, zero timing offset on the desired 
channel (ryk ------- 0) and timing offsets of 	= -yk+i = 0.1T. 

	

Beaulieu's Fourier Series  Method 	Gauss Quadrature Rule Method  
Rb/NO 	NM 	"7"- 	Pb 	 IRMI 	m 	Pb 	 IRmi  

0 	6 	16.0 	1.19961238e-01 	2.88605e-06 	3 	1.19961267e-01 	3.42842e-08 
1 	6 	18.0 	9.36790404e-02 	2.55949e-05 	3 	9.36794914e-02 	6.59344e-08 
2 	8 	20.0 	6.95561473e-02 	4.14536e-07 	3 	6.95561235e-02 	1.25601e-07 
3 	10 	23.0 	4.85276438e-02 	3.22474e-08 	3 	4.85276441e-02 	2.36409e-07 
4 	12 	26.0 	3.13462251e-02 	3.91273e-09 	3 	3.13462254e-02 	4.38305e-07 
5 	15 	29.0 	1.84023392e-02 	4.21223e-11 	3 	1.84023392e-02 	7.97320e-07 
6 	18 	32.0 	9.59306238e-03 	7.33817e-13 	4 	9.59306238e-03 	1.02848e-09 
7 	22 	36.0 	4.31303630e-03 	6.53498e-15 	4 	4.31303630e-03 	2.23138e-09 
8 	28 	40.0 	1.61250458e-03 	5.21978e-19 	4 	1.61250459e-03 	4.66097e-09 
9 	35 	45.0 	4.78946580e-04 	4.74770e-23 	4 	4.78946580e-04 	9.28196e-09 
10 	44 	51.0 	1.06756221e-04 	6.21259e-28 	4 	1.06756221e-04 	1.74058e-08 
11 	55 	57.0 	1.66339276e-05 	1.96299e-34 	5 	1.66339276e-05 	5.73309e-11 
12 	68 	64.0 	1.65883643e-06 	2.58927e-41 	5 	1.65883643e-06 	1.14076e-10 
13 	85 	71.0 	9.49292001e-08 	7.62159e-52 	6 	9.49292072e-08 	4.78912e-13 

quoted for the Gauss quadrature, we could get away with using only 4 or 5 terms and still obtain 

accuracy to three or four decimal places. The Gauss quadrature rule method is also significantly 

faster computationally. For a given value of m and a given timing offset, it is possible to compute 

the BER curve in between 1 and 2 minutes on a Sparc 10/30. For Beaulieu's method computing 

the same probability of error curve takes from about 30 minutes, for timing offsets less than 0.2T, 

to more than 1 hour when the timing offset approaches 0.5T. The reason for the large difference in 

computation time is that in the Gauss quadrature rule all the numerical integrations are performed 

up front in the computation of the moments. Once the moments have been obtained, the weights 

and abscissa,s can be found and serve to generate an entire BER curve. For Beaulieu's method, 

however, a numerical integration must be performed to determine the characteristic function of 

the interference for each term in the series and at each value of  Rb/NO. Thus the total number of 

integrations needed to obtain the BER curve is the sum of the NM  values shown in the tables. In 

all fairness, however, we have not sought the optimum value for T and minimized the number of 

terms in the series. The values for the truncation error IRml reported in the tables would seem to 

indicate that the number of terms could be reduced fairly' significantly without sacrificing accuracy. 

While on this subject, it should be stated that choosing the value of 7-  is one of the most 

critical parts of computing with Beaulieu's method. In early attempts with the method, T was 

chosen rather small, and as the value of  Rb/No  increased, the value of the argument in the error 

term fi began to approached zero. The result was that the series tended to diverge and Pb would 

approach 1. After successive attempts at trying to keep T small and still have the series converge, 
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Table 5.2: Numerical results for K =  2 interfering channels, zero timing offset on the desired 
channel (ryk = 0) and timing offsets of 'm-i  =-- ryk+i = 0.4T. 

Beaulieu's Fourier Series Method 	Gauss Quadrature Rule Method  
EbIN0 	NM 	"T" 	Pb 	 IRMI 	771, 	Pb 	 IRMI  

0 	6 	18.0 	1.26281963e-01 	2.55949e-05 	4 	1.26282706e-01 	2.15779e-06 
1 	7 	20.0 	1.01147412e-01 	8.64561e-06 	5 	1.01147425e-01 	6.94119e-08 
2 	8 	22.0 	7.80050408e-02 	3.41898e-06 	6 	7.80049644e-02 	2.90355e-09 
3 	10 	25.0 	5.75944807e-02 	2.99941e-07 	6 	5.75944778e-02 	1.14692e-08 
4 	13 	28.0 	4.04732255e-02 	2.87782e-09 	6 	4.04732255e-02 	4.52122e-08 
5 	16 	31.0 	2.69114036e-02 	4.21223e-11 	7 	2.69114036e-02 	4.28846e-09 
6 	19 	35.0 	1.68376720e-02 	3.71161e-12 	8 	1.68376720e-02 	5.56986e-10 
7 	24 	39.0 	9.86376756e-03 	3.87136e-15 	8 	9.86376756e-03 	3.44597e-09 
8 	30 	44.0 	5.38658785e-03 	3.41113e-18 	9 	5.38658785e-03 	7.90798e-10 
9 	38 	49.0 	2.73092380e-03 	5.61672e-23 	9 	2.73092379e-03 	6.08894e-09 
10 	47 	55.0 	1.27942882e-03 	1.72536e-27 	9 	1.27942881e-03 	4.65067e-08 
11 	59 	62.0 	5.50289451e-04 	1.33233e-33 	10 	5.50289450e-04 	2.38484e-08 
12 	74 	69.0 	2.15034956e-04 	4.35663e-42 	11 	2.15034956e-04 	1.73003e-08 
13 	92 	77.0 	7.50789961e-05 	1.07785e-51 	12 	7.50789961e-05 	1.73204e-08 
14 	116 	87.0 	2.28366454e-05 	8.34181e-64 	12 	2.28366453e-05 	2.48765e-07 
15 	145 	97.0 	5.84050468e-06 	1.44964e-79 	13 	5.84050468e-06 	4.30447e-07 
16 	183 	109.0 	1.19908625e-06 	1.07029e-99 	14 	1.19908626e-06 	1.08521e-06 
17 	230 	122.0 	1.86472756e-07 	5.14558e-125 	15 	1.86472757e-07 	3.94697e-06 
18 	289 	137.0 	2.04401871e-08 	7.84595e-156 	16 	2.04401893e-08 	1.99024e-05 

the rather conservative approach of (5.1) was adopted. The general feeling obtained with experience 

is that it is better to choose  T  too large and use more terms in the series, than to set it too low 

and have to repeat the computation several times because the series didn't converge. 

The values for the truncation error IRmI reported in the tables for Beaulieu's method were 

computed using the Maple Symbolic Computation system. The series approximation of the com-

plementary error function in [26] breaks down for large arguments, and consequently, other means 

must be found to compute the truncation error. The Maple system claims to evaluate functions 

to any desired degree of accuracy, and in this case seems to function quite well. For large values 

of Eb/No, the truncation error is so many orders of magnitude smaller than the probability of bit 

error that it is inconsequential. Beaulieu has reported [19] that for the intersymbol and co-channel 

interference problems he has analyzed, the error bounds.àre quite tight. We have no reason to 

believe that this is not the case here. For the Gauss quadrature rule method, the truncation bound 

tends to be somewhat loose for moderate to high values of Eb/No and as the amount of interference 

becomes large. If we compare against the values obtained by Beaulieu's method, we see that in 

many cases the probability of bit error has converged to the same value, but the bound on trunca-

tion error of the Gauss quadrature rule is only two or three orders of magnitude smaller than the 
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Figure 5.1: Probability of bit error for K = 2 interfering channels with zero timing offset on the 
desired channel (7k = 0). 

probability of bit error. Increasing the number of terms M in the quadrature rule will lower the 

truncation error, but the probability of bit error will not improve beyond what is given. Essentially, 

this in.dicates that by itself, the truncation error bound is not a very useful measure for determining 

what is a sufficient number of terms to achieve a desired accuracy. Instead, it is more useful to look 

directly at the probability of bit error and increase M until the probability of bit error converges 

to the desired number of significant digits. Given the speed of the computation method, there is 

nothing particularly wrong with this approach. It takes .ai; out 20 minutes to compute the BER 

curves for all values of M in the range from 3 to 20; hardly an onerous amount of computation 

time. 

These results of Tables 5.1 and 5.2 are plotted in Fig. 5.1 along with those for other timing 

offsets. It is fairly clear from this figure that adjacent channel interference is not a problem so 

long as the timing offsets are kept to within about 10% of the symbol interval. Beyond that, the 
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adjacent channel interference causes significant degradation in the desired channel. The effect is 

even more severe when we consider the next case where the desired channel and the two interfering 

channels have equal timing offsets. Tables 5.3 and 5.4 show the results when all three channels, k, 
k -  1 and k + 1 have timing offsets of 0.1T and 0.4T, respectively. If we compare Tables 5.1 and 

5.3, we see that there is relatively little change in the probability of bit error and in the number 

of terms required by each of the computation methods. However, a comparison of Tables 5.2 and 

5.4 tells quite a different story. In the latter table, we see that not only does the probability of 

bit error increase dramatically, but there is also more than a four-fold increase in the number of 

terms required by Beaulieu's method as the value of Eb/No becomes large, although again we have 

not attempted to optimize the procedure. By comparison, the Gauss quadrature rule method still 

requires relatively few terms (M < 20), but we can see that as the value of Eb/No becomes large, 

the method seems to break down a little as the truncation error bound becomes greater than one. 

This is a problem that we will elaborate more on shortly. 

Table 5.3: Numerical results for K 	2 interfering channels and timing offsets of -yk = 
7k-1-1 = 0.1T. 

	

Beaulieu's Fourier Series Method 	Gauss Quadrature Rule  Method  
EbIN0 	NM 	T 	Pb 	 IRMI 	m 	Pb 	 IRml  

0 	6 	16.0 	1.22983590e-01 	2.88605e-06 	3 	1.22983627e-01 	3.44186e-08 
1 	6 	18.0 	9.65278928e-02 	2.55949e-05 	3 	9.65284624e-02 	6.62602e-08 
2 	8 	20.0 	7.21235285e-02 	4.14536e-07 	3 	7.21235047e-02 	1.26383e-07 
3 	10 	23.0 	5.07140125e-02 	3.22474e-08 	3 	5.07140125e-02 	2.38266e-07 
4 	12 	26.0 	3.30803159e-02 	3.91273e-09 	3 	3.30803162e-02 	4.42648e-07 
5 	15 	29.0 	1.96601419e-02 	4.21223e-11 	4 	1.96601419e-02 	4.65727e-10 
6 	18 	32.0 	1.04085423e-02 	7.33817e-13 	4 	1.04085423e-02 	1.04472e-09 
7 	22 	36.0 	4.77227353e-03 	6.53498e-15 	4 	4.77227353e-03 	2.27592e-09 
8 	28 	40.0 	1.82924120e-03 	5.21978e-19 	4 	1.82924120e-03 	4.77870e-09 
9 	35 	45.0 	5.60922239e-04 	4.74770e-23 	5 	5.60922239e-04 	1.14507e-11 
10 	44 	51.0 	1.30258508e-04 	6.21259e-28 	5 	1.30258508e-04 	2.72582e-11 
11 	55 	57.0 	2.13999362e-05 	1.96299e-34 	5 	2.13999362e-05 	6.02931e-11 
12 	68 	64.0 	2.28629112e-06 	2.58927e-41 	5 	2.28629111e-06 	1.21593e-10 
13 	85 	71.0 	1.43168783e-07 	7.62159e-52 	6 	1.43168790e-07 	5.19298e-13 
14 	107 	80.0 	4.62516982e-09 	3.84447e-64 	7 	4.62516139e-09 	2.50663e-15 

To better appreciate the effects of the interference, in Fig. 5.2 we have plotted the probability 

of bit error for channel k with different timing offsets but no interference. This is followed by 

Fig. 5.3, where we now have two interfering channels with timing offsets equal to that on channel 

k. The most notable effect of the interference is that error floors begin to appear when the timing 

offset is large on the desired chann.els and on the interfering channels. With only two interfering 

channels, the error floors do not begin to appear until the timing offsets approach 0.4T. However, 
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Table 5.4: Numerical results for K .--- 2 interfering channels and timing offsets of ryk :----. -yk_ i  = 
7k+i = 0.4T. 

Beaulieu's Fourier Series Method 	Gauss Quadrature Rule  Method  
Eb/No 	NA,f 	7.- 	 Pb 	 IRml 	rn, 	Pb 	 IRMI  

0 	6 	18.0 	2.28979092e-01 	2.55949e-05 	5 	2.28979047e-01 	2.21115e-08 
1 	7 	20.0 	2.07480374e-01 	8.64561e-06 	5 	2.07480280e-01 	6.96219e-08 
2 	8 	22.0 	1.86362813e-01 	3.41898e-06 	6 	1.86362757e-01 	2.91462e-09 
3 	10 	25.0 	1.66065811e-01 	2.99941e-07 	6 	1.66065810e-01 	1.15243e-08 
4 	13 	28.0 	1.46975974e-01 	2.87782e-09 	6 	1.46975974e-01 	4.54860e-08 
5 	16 	31.0 	1.29376769e-01 	4.21223e-11 	6 	1.29376769e-01 	1.79133e-07 
6 	19 	35.0 	1.13419027e-01 	3.71161e-12 	7 	1.13419027e-01 	2.13642e-08 
7 	24 	39.0 	9.91242860e-02 	3.87136e-15 	8 	9.91242860e-02 	3.48785e-09 
8 	30 	44.0 	8.64199180e-02 	3.41113e-18 	8 	8.64199180e-02 	2.15370e-08 
9 	38 	49.0 	7.51891170e-02 	5.61672e-23 	9 	7.51891170e-02 	6.20707e-09 

10 	47 	55.0 	6.53128719e-02 	1.72536e-27 	10 	6.53128719e-02 	2.56699e-09 
11 	59 	62.0 	5.66894692e-02 	1.33233e-33 	10 	5.66894692e-02 	2.45900e-08 
12 	74 	69.0 	4.92325012e-02 	4.35663e-42 	11 	4.92325012e-02 	1.79829e-08 
13 	92 	77.0 	4.28588266e-02 	1.07785e-51 	11 	4.28588266e-02 	2.11516e-07 
14 	116 	87.0 	3.74781108e-02 	8.34181e-64 	12 	3.74781108e-02 	2.64677e-07 
15 	145 	97.0 	3.29894203e-02 	1.44964e-79 	14 	3.29894203e-02 	5.46321e-08 
16 	183 	109.0 	2.92843478e-02 	1.07029e-99 	14 	2.92843478e-02 	1.19926e-06 
17 	230 	122.0 	2.62534461e-02 	5.14558e-125 	16 	2.62534461e-02 	7.27129e-07 
18 	289 	137.0 	2.37927647e-02 	7.84595e-156 	16 	2.37927646e-02 	2.34159e-05 
19 	364 	154.0 	2.18084033e-02 	6.47841e-195 	18 	2.18084033e-02 	4.33853e-05 
20 	459 	173.0 	2.02183892e-02 	7.95780e-245 	18 	2.02183898e-02 	1.96344e-03 
21 	577 	194.0 	1.89524360e-02 	7.07711e-307 	18 	1.89524362e-02 	8.17971e-02 
22 	724 	217.0 	1.79507396e-02 	2.38729e-385 	19 	1.79507380e-02 	9.50713e-01 
23 	913 	244.0 	1.71627580e-02 	7.59627e-484 	19 	1.71627016e-02 	3.96556e+01 
24 	1146 	273.0 	1.65462980e-02 	4.31470e-608 	19 	1.65460490e-02 	1.41539e+03 
25 	1446 	307.0 	1.60667076e-02 	1.12135e-764 	19 	1.60665917e-02 	4.16993e+04 

if the number of interfering channels were to increase, we might expect to see error floors at smaller 

timing offsets. This is the basis for the next set of computations presented. 

Figs. 5.4 and 5.5 show the results when the desired channel has zero timing offset and the 

interfering channels all have the same timing offset of between 'yi = 0.2T and -yi = 0.5T. The cases 

of -yi = 0 and 71 = 0.1T have not been included, as Fig. 5.1 indicates that the adjacent channel 

interference ha,s little or no effect on the probability of, bit error, and increasing the number of 

channels is not expected to change this. For 'yk = 'Il = 0.2T, Fig. 5.4 shows that increasing the 

number of channels does not substantially alter the performance. At a BER of 10-8 , there seems 

to be no more than about 0.5 dB degradation when the number of interfering channels increases 

from K = 2 to K = 10, and there is almost no further degradation when K increases beyond 10. 

When the timing offset increases to yk = ryi = 0.3T, however, the number of interfering channels 
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Figure 5.2: Bit-error-rate curves for a single channel with various fixed timing offsets. 

does significantly affect the probability of bit error. For values of BER around 10-7 , the error 

performance degrades by about 2 - 2.5 dB when the number of interfering channels increases to 

K = 10, and there is a further 0.5 dB degradation when K = 20. Clearly, when timing offsets are 

large, a significant number of channels can affect the performance of a given channel. When the 

timing offsets on the interfering channels increase to = 0.4T and = 0.5T, the performance of 

the desired channel is limited by the interference as error floors appear. Similar results are found 

when the desired channel also has a timing offset as shown in Fig. 5.6. For -yk = = 0.2T, the 

degradation is again only about 0.5 dB at Pb = 10-8  when we go from K =-- 2 to K = 10. However, 

for -yk = = 0.3T, an asymptotic error floor begins to appear when K = 10, and by the time 

we reach K = 20, the asymptotic value of this error floor seems to be of the order of 5 x 10-6 . 

Previous results in Fig. 5.3 showed that the adjacent channel interference was sufficient to introduce 

a fairly large error floor when -yk = = 0.4T, and so we have not bothered to compute the error 

probability for K>  2 as the only effect would be to raise this error floor. 
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Figure 5.3: Probability of bit error for K = 2 interfering channels and equal timing offset 'Ile = 711 
= k ± 1. 

For K =  10, the results shown in Figs. 5.4 and 5.6 were computed using both Beaulieu's method 

and the Gauss quadrature rule method. The remaining results for K = 20 in Figs. 5.4 and 5.6, and 

the results shown in Fig. 5.6, were computed using the Gauss quadrature rule method alone. As 

the number of channels increases, the amount of computation time required by Beaulieu's method 

increases exponentially. Again, this is due to the large number of numerical integrations that must 

be performed. When K = 10, the computation time increases to about 30 hours on a Sparc 10/30 

for each case. It is for this reason that we did not pursue the case of K = 20 interfering channels 

and larger timing offsets with this method. For the Gauss quadrature rule method, however, the 

computation time with K =  10 and m = 25 is of the order of 7 minutes. When the number 

of interfering channels increases to K = 20 and the number of moments increases to m = 30, the 

computation time is apprœdmately 15 — 20 minutes. For a large number of interfering channels, the 

problem with the Gauss quadrature rule method is not one of computation time, but rather that 
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Figure  5.4: Probability of bit error for various numbers of interfering channels with zero timing 
offset on the desired channel mild equal timing offsets of = 0.2T and ryt = 0.3T on the interfering 
channels. 

the method begins to break down as the amount of interference increases and Eb/No becomes large. 

For timing offsets of 0.2T and 0.3T, the method still works reasonabll well, but when the timing 

offset increases to 0.4T or 0.5T, the method is slow to converge and the truncation error bound 

becomes positive and large. An increasing number of terms M are required to accurately compute 

Pb, but there is a limit to this number as the highest order moments of the interference become too 

small and begin to underflow the double precision arithmetic. It should be stated, however, that 

these cases are interesting from a cornputational point of view but are not reasonable conditions 

for an operational system. Indeed, for the cases that we would be interested in for an operational 

system (i.e., small timing offsets), the Gauss quadrature rule method performs adequately and is 

quite fast. 
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Figure 5.5: Probability of bit error for various numbers of interfering channels with zero timing 
offset on the desired channel and equal timing offsets of = 0.4T and = 0.5T on the interfering 
channels. 

5.2 Polyphase Network 

For the digital group demodulator based on the polyphase network/FFT, several channel spacing 

and filtering scenarios were examined. In the first of these scenarios, it will be assumed that the 

spacing between carriers is 1.5 times the symbol rate of the signals (f, = 1.5fb ) and that the 

group demodulator has N = 8 channels. The transmit filter will have a root raised cosine spectral 

characteristic, while the polyphase network and the rate conversion filters will each have a fourth 

root raised cosine characteristic. The rolloff factor of the raised cosine response was set to 0.4. 

Under ideal conditions, the cascade of these three filters would produce a full raised cosine spectral 

response. 

To design the filters, the root raised cosine or fourth root raised cosine spectral characteristics 

are specified in the frequency domain, and then an inverse FFT is used to obtain the time domain 
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Figure 5.6: Probability of bit error for various numbers of interfering channels with equal timing 
offsets of yk = = 0.2T and •lic = = 0.3T on the desired and interfering channels. 

response. A large FFT of 8192 points was used in order to better approximate the true time 

function. This is then truncated to the desired number of filter taps or transmit filter coefficients 

as the case may be. For the polyphase filter and the rate conversion filter, the filter coefficients are 

normalized to have unit energy, so that for convenience, (7°2  = u? in (3.20). 

To simplify the initial computations and estimate the number of taps required for the filters, the 

signals are all assumed to be time synchronized with the group demodulator. With perfect timing 

and a channel spacing of A = 1.5fb, there are only two possibilities for the timing parameters pi  
and pi in (3.13): either AT, = 1Tb and pal = 0 or AT, = /Tb — Tb/3 and //12-., = Tb/3.  The rate 

conversion filter will alternate between these two sets of values from one symbol interval to the 

next, and with the assumption of perfect timing, will know exactly which state to be in during any 

symbol interval. In the analysis, the probability of bit error will be computed for each state, and 

the average of the two values taken. When AT, = /Tb and pin = 0, the filtering equations can be • 
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rewritten as 

NL 
U(121b - in) = >2/ E 1.t(nTs)g(Tc)hs[lTb — iTb — — NL12)T 3  — TCJ, 	(5.4) 

e=Ii n=1 

and 

I NL 
V (in - 	= E E h(nTs )g(Tl)h s [in — iTb — — NL12)T 8  — 	 . 

n=1 

Similar equations follow for ATC  = /Tb — Tb/3 and pt,T, =To. 
The taps of the prototype filter h(nTs ) for the polyphase network are chosen such that NLI2 is 

always the center tap. This accounts for the offset of NL/2 in the transmit response 1-1, 3 (t) in (5.4) 

and (5.5). For the rate conversion filter, the taps are chosen such that /1 = —1/2 and 12 = 1/2 — 1 

when the number of filter taps I is even, or /I.  = — 1)/2 and 12 = (I — 1)/2 when I is odd. 

When AT,  = /Tb and pin = 0, the filter tap at e = 0 will be the peak of the rate conversion filter 

response g("Tc), while for the second case, an offset of /..t/Tc  = Tb/3 means that the peak of the root 

raised cosine response occurs at a point half way between the taps at e = 0 and = 1. 

Fig. 5.7 shows the first set of results where all the carriers are assumed to have the same power. 

The desired signal, for which the BER was computed, is assumed to be on channel k = 3 in the 

middle of the group of signals. The number of taps L in the polyphase filters and I in the rate 

conversion filter were chosen to be equal to integer multiples of the channel spacing so that the 

impulse response would span an integer number of symbol intervals. The figure shows that with as 

few as 6 taps per filter, the error performance closely approximates that of an ideal QPSK signal. 

Unfortunately, the assumption of equal power on all the carriers is a somewhat idealistic one. A 

scenario that we would more commonly want to design for is where the desired channel is faded 

with respect to the other carriers. In such a case, the interchannel interference could have a much 

more significant impact on the performance of the desired signal, and we want to choose the number 

of filter taps to be large enough to provide sufficient isolation from the adjacent channels. Fig. 5.8 

gives one example of this where the desired signal is experiencing a fairly severe flat fade of 9 dB 

with respect to the remaining channels. By choosing the number of taps to be L = I  =  9, the 

performance will be degraded by no more than 1 dB at an error rate of 10-8 . 

Generally, windowing is used to reduce the sidelobes of a finite impulse response filtering. For the 

present case, this would imply that windowing would lower the amount of interchannel interference. 

To see what improvements in error performance are possible, Hamming windowing was applied to 

the polyphase and rate conversion filters, and this last computation was repeated. The results 

shown in Fig. 5.9 indicate that significant improvements can be obtained in the performance with 

(5.5) 
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Figure 5.7: Probability of bit error for an 8 channel digital group demodulator with a channel 
spacing of 1.5 times the baud rate. L is the number of taps per polyphase filter and I is the 
number of taps in the rate conversion filter. All the carriers are assumed to be of equal power. 

L I = 6 taps by using windowing, and for L =  I  = 9 taps, we can come to within about 0.5 dB 

of the theoretical performance at an error rate of 10-8 . 

If we in.crease the channel spacing, we would expect that for a given error performance, the 

number of required taps would be reduced. To this end, we increased the channel spacing to 1.75 

times the symbol rate and set the rolloff factor of the filters to 0.5. Hamming windowing was 

also used for the polyphase and rate conversion filters. With a 9 dB fade on the desired channel, 

Fig. 5.10 shows that we can get away with L = I = 8 taps and still get the same performance as 

with a channel spacing of A = 1.5fb and L = I = 9 taps. If we are willing to accept a slightly 

larger degradation, L =  I  = 7 taps can be used with a channel spacing of 1.75. 

To obtain these results, both the Gauss quadrature rule and the Fourier series method were 

used. For the numerical integ-rations over the phase in (4.33) and (4.62), a 2000 point integral was 
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Figure 5.8: Probability of bit error for an 8 channel digital group demodulator with a channel 

spacing of 1.5 times the baud rate. L is the number of taps per polyphase filter and I is the 

number of taps in the rate conversion filter. The desired carrier is assumed to be experiencing a 

fade of 9 dB relative to the remaining channels. 

used with the alternative extended Simpson's rule [27, Eq. 4.1.14]. For the number of contributing 

intersymbol and interchannel interference samples, mL and mU were chosen to equal 20. Although 

the error associated with the truncated series has not been computed, it is expected to be very 

small. Similar results and timing were experienced as with the SAW-based group demodulator. 

For the Gauss quadrature rule, rather than search for the smallest number of moments, we simply 

set M = 15 for all the cases. The resultant truncation was in almost all instances vanishingly 

small compared to the probability of bit error. Execution time was of the order of 7 – 8 minutes 

on a Sparc 10/30 for each case. For the Fourier series method, a comparable set of inequalities 

to those of (5.1) and (5.3) were used to choose M and T (i.e., the same upper limits were used). 

The average computation time was more than 6 hours for each set of values for L and I. Eight 

signifi cant figures were recorded in each of the computations, and there was agreement to at least 
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Figure 5.9: Probability of bit error for an 8 channel digital group demodulator with a channel 
spacing of 1.5 times the baud rate. The desired carrier is assumed to be experiencing a fade of 
9 dB relative to the remaining channels. Hamming windowing has been applied to the polyphase 
and rate conversion filters to reduce the sidelobes. 

four significant figures between the two methods. 
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Figure 5.10: Probability of bit error for an 8 channel digital group demodulator with a channel 
spacing of 1.75 times the baud rate. The desired carrier is assumed to be experiencing a fade of 
9 dB relative to the remaining channels. The filters were designed with a rolloff factor of 0.5 and 
Hamming windowing was applied to the polyphase and rate conversion filters. 



Chapter 6 

Conclusions 

Two methods of analysis in interference environments have been presented and applied to two 

different group demodulator structures for satellite on-board processing. In each of these structures, 

the demodulated signal contains some amount of intersymbol and/or interchannel interference. In 

general, the probability density function of this interference is difficult to find but certain other 

measures, such as the moments of the interference or its characteristic function, can be readily 

computed. Using these measures, the Gauss quadrature rule method and Beaulieu's Fourier series 

method allow for the efficient computation of the probability of bit error. When we compare the 

two methods in terms of computational speed, the Gauss quadrature rule method proved to be 

significantly faster. This is offset somewhat by the fact that the Gauss quadrature rule method 

tends to break down when the interference and the signal-to-noise ratio become large. Given 

sufficient computing time, however, virtually any desired level of accuracy can be achieved with 

Beaulieu's Fourier series method. In general, it can be said that both methods work very well 

for small to moderate amounts of interference. Given that these are the conditions under which 

any system is likely to be designed and operated, either method could be used to predict system 

performance with a high degree of accuracy. In such circumstances, the one thing that favours the 

Gauss quadrature rule method is its speed. 

The numerical results that have been presented have concentrated on fairly idealized conditions 

mostly for purposes of demonstration. The general goal of this report has been to develop the 

analysis and prove the efficacy of the two computation methods. The next stage of this work 

will be to broaden the analysis to include such issues as quantization and the use of error-control 

coding. To analyze quantization effects, some simplifying assumptions will have to be made to 

make the problem manageable, particularly since the group demodulator includes many additions 

and multiplications where re-quantization would take place. Some changes will also be required to 

analyze a system with error-control coding. In particular, the analysis done thus far has assumed 
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that the symbols are uncorrelated, but cçeling will introduCe some correlation f_rom symbol to 

symbol. As a first approximation, we might ignore this correlation and simply modify the error 

expressions derived here to include ,coaing. In such a situation, we would expect that whatever 

coding gain is possible on a Gaussian channel would also be available here. Further work needs to 

be done to look into this in more detail. 
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