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Abstract 

The applicability of higher order neural networks to the classification of low resolution 
imagery is investigated. A novel boundary detection and encoding methodology is 
developed in order to significantly reduce the large number of third order interconnection 
weights which must be found during the training stage of the neural network. The higher 
order neural classifier can be trained by presenting only one sample image per class and 
so enables rapid network learning with a minimal requirement for training data. An 
extensive, MatLab compatible toolbox developed specifically to implement this approach 
is described and documented along with the algorithms employed in the image boundary 
detection and encoding process. 

Resumé 

L'applicabilité des réseaux neurals d'ordre élévé à la classification des images à faible 
résolution est étudié. Une nouvelle méthodologie de détection des conditions limites et 
d'encodage est proposée pour réduire substanciellement le grand nombre de poids 
d'interconnection de troisième ordre que l'on détermine pendant le stage d'apprentissage 
d'un réseau nouveau. Le classificateur neural d'ordre élevé peut apprendre en le 
présentant un seul échantillon d'image et permet ainsi un apprentissage accéléré du réseau 
avec un minimum de données. Un large utilitaire, compatible à MatLab, a été développé 
pour l'éxecution de cette approche et est décrite et documentée avec les algorithmes 
employés pour la détection des conditions limites et les procédures d'encodage. 





Executive Summary 

This report summarizes research conducted at the Communications Research Center from 
1993 to 1995 concerning the applicability of higher order neural networks to the 
classification of low resolution imagery. In order to significantly reduce the large number 
of third order interconnection weights which must be found during the training stage of 
the neural network, a novel boundary detection and encoding methodology is developed. 
The higher order neural classifier can be trained by presenting only one sample image per 
class and so enables rapid network lea rning with a minimal requirement for training data. 
An extensive, MatLab compatible toolbox developed specifically to implement this 
approach is described and documented along with the algorithms employed in the image 
boundary detection and encoding process. 
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1. 	Introduction 

In the preponderance of environments, both military and civilian, in which some form of 
imaging technology is used to provide intelligence through automated target and scene 
classification, the observer has little if any control over the degree of image variability or 
degradation arising from various types of geometric transformations (scaling, object position, 
viewing angle) or from the presence of noise and occultation in the imaging process. The ability, 
therefore, to recognize and classify an object independently of such variations in the image 
presents one of the most critical and challenging aspects in the design of an automated target 
recognition system [2,7,20,21,22,32,35,36]. 

The application of various types of neural networks to image classification has become 
one of the principal thrusts by which researchers are attempting to develop automated target 
recognition systems, particularly within military contexts involving, for example, synthetic 
aperture radar (SAR) imagery, visible and infrared photography, and sonar signal classification 
(several excellent examples [5,6,7,13,21,32,33,35,37,49] of this type of research may be found in 
the 1995 Special Issue on Automatic Target Recognition, Neural Networks, vol. 8, no. 7/8; see 
also Roth [36], Bachmann et al [1], Dudani et al [10], Smith and Wright [42]). There are several 
advantages to the use of neural networks for pattern recognition and image classification with the 
principal ones being: (a), artificial neural networks possess the ability to "learn" classification 
criteria not necessarily known a priori by adaptively training the network on known examples; 
(b), neural networks are parallel processing systems and so offer the potential for real-time, in-
line automated target classification in the case, e.g., of high resolution, land SAR imagery; (c), 
neural networks are distributed processing systems and thus exhibit, in general, excellent fault 
tolerance (see the reviews by Rogers et al [35] and Roth [36]). 

The most conunon approach in the applications of neural networks to image classification 
consists of two stages; (1) a feature vector representing a specific image is extracted and, (2), 
using the feature vector as its input, a trained neural network classifies the image (i.e., the feature 
vector) as belonging to some particular class of objects. Although it is possible for neural 
networks to learn various types of invariance strictly through the training process, it has been 
found by many researchers that such an approach is impractical in terms of training times and 
amount of training data required and, more importantly, is ineffective in arriving at trained 
networks which are accurate and robust in their tolerance to image variations [2,4,22,35,36,38]. 
The almost universally preferred approach has been to derive image features which are explicitly 
invariant to various types of image variability such as the scale, position, or in-plane angle of the 
object in the image plane [2,3,4,7,14,15,17-20,26,27,39,46,47,50]. One such approach, in 
particular, is based upon the calculation of 'moment invariants' [14,15] using different types of 
basis functions for the feature extraction and work on this technique will be presented in a 
separate report. 

An alternative and fundamentally different approach to incorporating invariance into 
neural network image classification involves the use of higher order neural networks (HONN' s) 
[2,17,28,30,34,40,41,43-45]. Succinctly, such networks employ an input distribution layer which 
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combines more than one image pixel (two in a second order network, three in a third order 
network, etc.) in such a way that, through the imposition of symmetries in the network weights, 
the subsequent processing by additional layers of artificial neurons remains invariant to certain 
types of geometric variations in the input image. In this manner, a HONN builds the desired 
invariances directly into the network architecture and so avoids entirely the need for any form of 
feature extraction, an operation which is frequently computationally very intensive. 

This report describes research performed at the Communications Research Center (CRC) 
between October, 1993, and December, 1995, concerning the applicability of higher order neural 
networks (HONN's) to the identification and classification of synthetic aperture radar (SAR) 
imagery. A novel approach involving image boundary detection and encoding in combination 
with a third order neural network was developed and tested. The implementation of this 
technique led to the development of an extensive HONN, MatLab-compatible toolbox which, 
along with several image array processing algorithms, are described and documented in this 
report. 

The second part of this report gives a general overview of the theory and limitations of 
HONN' s and their applicability to image classification. The third part, which is the most 
extensive, describes in some detail the research performed, the various algorithms developed, and 
the implementation of the MatLab functions. Also described is the validation of the proposed 
network topology and the boundary encoding methodology using a classical recognition problem. 
The final part of the report summarizes the conclusions and offers a brief discussion of the 
problems and the drawbacks encountered with the present approach along with some suggestions 
concerning future directions for this research. An appendix lists the annotated MatLab functions 
written to implement the present work and includes additional software documentation for the 
pre- and post-processing algorithms. 

2. 	Image Classification using Higher Order Neural Networks 

A schematic representation of a conventional, three-layer, feedforward neural network (a 
multilayer perceptron) is shown in figure 2.1. The initial layer to the network serves only as a 
distribution layer which, in the example shown of a fully connected (first order) network, simply 
distributes each input value x; to each and every neuron in the first (processing) layer of the 
network. By convention, the weights wii  are considered 'attached' to this first processing (input) 
layer, the weights  v1  to the hidden layer, and the weights uii to the network's output layer. 
Although this type of neural network can be trained using any of several learning algorithms, the 
predominant technique in use at present is the backpropagation algoritlun along with several 
variations and refinements to the original algorithm [381 

A higher-order neural network (HONN) [8,30,34,43-45] differs from a conventional, first 
order network chiefly in the role played by the input distribution layer. Specifically, the 
distribution layer in a HONN combines input values into pairs, triplets, etc. of values, 
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Figure 2.1 : A three layer, perceptron neural network 
with a first order distribution layer. 
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Figure 2.2 : 	A strictly third order neural network with one 
processing element and N 2  = 4. 
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(2.1) 

xixixk.....xt, before distributing them to the network's first processing layer. The ith neuron in the 
first processing layer will produce an output given by 

yi  = e(E wiaj  k 	 k 	J... , 	. 

where 0 is some non-linear squashing or threshold function (typically a sigmoid, tanh, or 
threshold function) and where the we._ define the interconnection weights. A general nth order 
HONN will contain all terms as indicated in eq. (2.1) up to and including the nth order term. It is 
important to note that a HONN is able to provide nonlinear pattern discrimination using only one 
processing layer and this is a configuration often employed in practice. First order neural 
networks must have at least one hidden layer in order to provide the same degree of generality in 
their ability to discriminate between arbitrary pattern classifications. Single layer, first order 
networks are able only to classify linearly separable problems. This restriction was recognized 
very early in neural network research at a time when no algorithm was known for training 
multilayer, first order neural networks and higher order networks were considered impractical 
owing to the combinatoric increase in the number of weights with input dimension as outlined 
below (Minsky and Papert [29 ] ). 

In applications involving HONN' s, it is more common to consider only strictly nth order 
HONN' s, i.e., a HONN which contains only the nth order term in equation (2.1). A strictly third 
order HONN, for example, combines only triplets of input values according to 

Yi = e(E; EkI l W ijk i XiXkX1) 	 (2.3) 

as illustrated in figure 2.2. With a third order HONN, it is possible to achieve invariance to 
scale, position, and rotation of the image [30,34]. This is accomplished by imposing the 
following condition: the interconnection weights wijki corresponding to triplets of pixels ijk 
which define similar triangles in the image plane are assigned equal values. The property of 
similarity between triangles defined by (non-collinear) points is invariant to any change in scale, 
translation, or rotation of the triangles. An example of such similar triangles common to a pair of 
images, one of which is a scaled, translated, and rotated version of the other, is shown in figure 
2.3. The convention described by Reid and Spirkovska [34,43-45] is adopted for the ordering of 
the angles, i.e., the angles are ordered with the smallest angle first and the next two angles listed 
in the order in which they would be encountered if visited in a clockwise direction. Thus the 
three triangles represented by the angles (15 45 120), (45 120 15), and (120 15 45) are all 
connected to the processing node with the same weights (associated with the (15 45 120) triplet) 
whereas the three triangles with angles (15 120 45), (45 15 120), and (120 45 15) are all 
connected to the processing node with the same weights (associated with the (15 120 45) triplet). 
These two sets of triangles are mirror images of each other and thus, by treating them as distinct, 
such a HONN does not implement mirror invariance. In practice, since the image plane is 
represented by a finite number of pixels, the invariance achieved in this manner is approximate; 
perfect invariance is approached only as the pixel size, for a fixed image, is decreased. A major 
advantage of a third order HONN is that, since the network's output is unchanged by scale, 
translation, and rotation of the image, it is necessary to use only a single view of each object 
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8 
16 
32 
64 
128 
256 
512 
1024 
2048 

N N2  choose 3 

4.17x104 
 2.75x106 

 1.78x108 
 1.14x1016 

 7.33x10" 
4 .69x10" 
3.00x10" 
1.92x1017 

 1.23x10" 

Figure 2.3: 	The similarity of triangles is preserved when an 
image is scaled, translated, and/or rotated. 

Table 2.1: 	The variation of "N 2  choose 3" with N. 
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defining a class in order to train the network. This minimizes the data requirement for training 
and also greatly shortens the training times of the network itself [34]. 

As attractive as the above capabilities of a HONN are, there exists one major 
disadvantage to HONN' s, namely the greatly increased number of weights required in 
comparison to the conventional case of a first order neural network. For a third order HONN and 
an image plane of NxN pixels, the maximum number of possible combinations of three pixels is 
"N2  choose 3" which is given by the binomial coefficient 

[

N2 ) (  N2 !   N2 (N2  — l)(N2  — 2)  

3 3!(N2  — 3)! 6 

Note that the leading term in this expression is N6  (it would be N4  for a second order network and 
N2  for a first order network). Table 2.1 shows the value of "N2  choose 3" for several different 
values of N. Clearly, storage requirements alone would prohibit the use of HONN's for values of 
N 128 or greater. It should be noted, however, that these numbers represent a maximum 
amount, corresponding to the use of every pixel in the NxN image plane. In practice, only a 
subset of this plane is used (i.e., pixels with non-zero values). It is then possible to train the 
weights wiiki by first setting all of them to zero and then training only on those weights which 
correlate with three non-zero pixels in the image plane. Weights corresponding to pixel triplets 
having at least one zero value will remain zero and can be ignored a priori, thus somewhat 
reducing the number of weights which need to be determined. 

Much of the research to date involving HONN's has concentrated on finding practical 
methods to reduce significantly the number of weights that must be calculated and trained. Some 
of the methods proposed include coarse gridding [45], grouping of similar triangles by limiting 
the resolution of the angle measurements [12,34,43], pruning of triplet sets [34,40,43], and the 
use of image boundaries [16,24,25,51]. In the present work, we pursue the latter approach using 
boundary representation of the images but go even further in that the number of boundary points 
is reduced by using algorithmic encoding for regular boundary lines. The next section provides 
more details of this approach. 

3. 	Experimental Design and Results 

The overall design and methodology adopted in the present approach to combining image 
boundary detection and encoding with a third order neural network classifier is outlined in the 
flow chart representation shown in figure 3.1. There are two distinct parts to the overall process 
of classifying a given test image. The left-hand part of the flowchart in figure 3.1 refers to a 
processing sequence which is a one-time only calculation, i.e., for a given resolution NxN, it is 

(2.3) 
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necessary to calculate and sort the angles once and only once and then to store these results in a 
lookup table. Thereafter, the required calculations are as outlined in the right-hand part of the 
flowchart  which refers to a specific test image. Several specific algorithms have been developed 
for each of the flowchart blocks since each block represents a complex operation and these are 
now described in sequence. 

3.1 One Time Processing of Image Plane Arrays 

The one time array calculations for a given resolution NxN of the frame under 
classification consist of determining a set of 5 arrays calculated in an ordered sequence. These 
arrays (for any given resolution in the array segm) have been given the following names: trian, 
dist, ang, sort, and index. All of the arrays corresponding to a given resolution NxN are 
grouped into one file under the name higherNx.mat. For example, the file higher6x.mat groups 
together the arrays calculated for a 6x6 resolution. The array segm refers to the resolution itself 
for which the HONN will be created. In this case, for demonstration purposes, a 6x6 array has 
been chosen. In the course of this work, HONN' s have been constructed for resolutions up to 
11x11. The only limitations are the pragmatic ones of memory requirements and processing 
time; in theory, all of the algorithms developed in this project can operate for an unlimited range 
of resolutions. An example (N=6) of the initial array segm is given in figure 3.2. The next step 
consists of finding all the possible triangles that can be formed using pixels from this array. 

Creation of the possible triangles trian=triang/3(segm).m 

The number of all possible triangles is given by the function combin(n,3), where 
n=NxN=36 for the example case. The number of rows of the trian array will be the number of 
different combinations of 36 taken 3 at a time with no repetitions as given by eq. (2.4), i.e., 7140. 
The function triang13(f).m creates a lookup table with indices which correspond to the triangle 
coordinates formed from all possible combinations of 3 points. It is similar to triang12.m but 
with the implementation of speed optimization. The format of the result is shown in figure 3.3. 
The convention used for the scanning pattern is to proceed clock-wise starting from the left-
upper pixel of the input array, continuing with the first row, followed by the 2nd row, etc. 

Calculation of the Distances dist=distan3(trian).m 

The next step consists of the calculation of the lengths of the triangle sides. The function 
distan3(trian).m is used and the format of the output is a three-column array where the first 
column gives the length between the 1st and 2nd vertex of the triangle, the 2nd column gives the 
length between the 2nd and 3rd vertex of the triangle, and the third column gives the length 
between the 1st and the 3rd vertex. This routine is essentially the same as distan(f) with the only 
difference lying with the input format which now follows the above convention and is faster than 
distan2 due to the speed optimization implemented. The output of this function (the array dist) 
for the 6x6 example is shown in figure 3.4. 
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i.e. the triangle that formed by 
the points with coordinates 
(1,1), (1,2) and (1,6). 

o 	o 	o 	o 	o 	o 
o 	o 	o 	o 	o 	o 
o 	o 	o 	o 	o 	o 
o 	o 	o 	o 	o 	o 
o 	o 	o 	o 	o 	o 
O 	o 	o 	o 	o 	1 

Figure 3.2:  Example of initial array segm for N = 6. 

1 	1 	1 	2 	1 	3 
1 	1 	1 	2 	1 	4 
1 	1 	1 	2 	1 	5 
1 	1 	1 	2 	1 	6 

3 	1 	3 	2 	6 	6 
3 	1 	3 	3 	3 	4 
3 	1 	3 	3 	3 	5 

Figure 3.3: 	Lookup table format for N = 6. 

	

1.0000 	1.0000 	2.0000 

	

1.0000 	2.0000 	3.0000 

	

1.0000 	3.0000 	4.0000 

	

1.0000 	4.0000 	5.0000 

	

1.0000 	1.4142 	1.0000 

Figure 3.4: 	Example of the output array dist for N = 6. 

	

0 	 0 	3.1416 

	

0 	 0 	3.1416 

	

0 	 0 	3.1416 

	

0 	 0 	3.1416 

	

0.7854 	1.5708 	0.7854 
0.785e 	0.7854 	1.5708 

Figure 3.5:  Example output array ang for N  =6.  
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cos C= 
a2 b2 c2 

2ab 
(3.1) 

Calculation of the included Angles ang=angles3(dist).m 

In this step, the function angles3(dist) creates an array with the angles computed from the 
array dist, the three lengths that form the triangles. The result is an array with the same 
dimension as dist. The formula used is 

The format for the sequence of the angles is the same as described above for the function dist3. 
This function incorporates a provision for the case where a side may be of zero length in order to 
prevent the generation of Matlab NaN or "not-a-number" results. This is the reason for the 
provision of the employment routine of zero _fil. The output of the function angles3(dist) for the 
example N=6 is the array ang with the format shown in figure 3.5. 

Sorting of the Angles sor=,sorting3(ang).m 

‘i 	 as 
The term 'granularity' is introduced in this function and refers to the accuracy with which 

t angles will be considered different or equal. The underlying reon is that we deal with 
p elized (i.e., sampled) images, consisting of discrete elements, and a subset of those pixels 
represents the vertex of e angles formed by the above functions. « If the same image is scaled 
down, even without rot on, the scaled image will be represented by a smaller set of pixels and 
thus, owing to the discrete nature of image, the angles which are formed by the corresponding 
pixels may differ. Similar results can also follow from a slighted rotated (e.g., by 0.001 rad) 
representation of the initial image. Figures 3.6 and 3.7 illustrate the nature of the problems that 
may be encountered. Both sides of these figures represent an analysis of a 16x16 image. The left 
side shows a 2x14 linear bar aligned in parallel with the sensor (e.g., a camera) while the right 
side shows the kind of distortion which can be introduced by rotating the image. 

For the purposes of this research, the granularity has been adjusted through 
experimentation to 0.001 rad. The higher the image resolution, the lower the granularity can be 
set. However, at the same time, the lower the granularity the more the calculated features will be 
different and the more discriminating the classification procedure can be, albeit at the cost of a 
noticeably increased processing load. 

The function sorting3(ang) has as its input the ang array with all the possible angles that 
can be created at the given resolution as calculated in the above steps. In the first stage, 
sorting3(ang) operates on each row (row level only) and rearranges the angles that are given in 
every row in ang in such a way that the first is the smallest angle of the triplet but, at the same 
time, the order of the angles is preserved, i.e., (a,b,c)=(b,c,a)=(c,a,b). Numerically, a triplet 
consisting of the angles (60,30,90) will become (30,90,60) and not (30,60,90). The reason for 
the differentiation between the two is that they represent different features and, in the case where 
only one is encountered with the convention as described, the other will not be encountered as 
arising from any rotation, translation, or scaling transformation. The only way in which it can be 
encountered is through a mirroring. Mirroring invariance, though, is here considered as 
undesirable since it is not encountered under normal circumstances. In the second stage, the 
function sorting3(ang) rearranges the array created in the first stage in such a way that it groups 
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Figure  3.6: 	Example of rotation induced distortion on a 
16x16 image grid. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 	 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 0 0 I I I 1 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0  II 	 0 0 0 0 0 0 0 0 0 0 0 I I 	I 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 	 0 0 0 0 0 0 0 0 0 1 	I 1 	I 	I 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 I 	I 	I 	I 	I 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 I I I I 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 	 0 0 0 0 0 0 0 I I 1 I 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 	 0 0 0 0 0 0 I 	I 1 	I 1 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 I I I 1 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 1 I I I 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 1 I 	 0 0 0 0 0 I I 1 I 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 I 1 I 0 0 0 0 0 0 0 0 

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I  I 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 3.7: 	Binary valued arrays corresponding to figure 3.6. 
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all the triplets that have the same smallest angle into subgroups. In the next phase, it operates on 
each subgroup in order to rearrange the elements of the subgroup so that the triplets which have 
the same second angle are grouped together in ascending order. Figure 3.8 shows the format of 
the output array sor. The last element of the last row of the result sor (in the example, the 
number 224) gives also the number of different features that may be encountered since it 
represents the number of groups that all the triplets can form with the imposed granularity. 

Lookup Table Calculation index=indexing(sor) 

The function employed in order to calculate the lookup table, for the given resolution, is 
indexing.m. This function creates a 2-column table as shown in figure 3.9. The first column is 
sorted and contains the triplet angle numbers while the 2nd column gives the corresponding 
feature number. For the example given, the total number of triplets is 7140. In the second 
column, the feature number represents simply the number of the group to which this particular 
set belongs. 

Batch Processing Operation segm_bat(segm) 

All of the above matrices can be generated through a batch processing mode implemented 
with the function segm_bat(segm). Given in segm the segment array (i.e., a 10x10 array), 
segm_bat(segm) calculates each of the five necessary arrays in order to proceed with the HONN 
training. 

3.2 	Image Processing 

The size of the feature vector for a given resolution is known after the creation of the 
lookup table as described in the one time array processing section. The size of this vector is also 
affected by the defined granularity, i.e. a larger feature vector will result when the granularity is 
set equal to 0 as compared to the case of a nonzero value of granularity since, in the latter case, 
comparable sets of triangles will be grouped under the same feature. For example, in the case of 
a 4x4 array, with 560 possible combinations of the pixels taken 3 at a time, only 38 triplets of 
ordered angles (groups) can be created and consequently the feature vector will be a 1x38  column 
array. For test purposes, a 6x6 array will be used for which the number of features have been 
found to be 224. The test images will be the letters c and t which constitute a standard reference 
test pattern as commonly employed in the relevant literature[38]. The binary patterns 
representing these images are given in figure 3.10. 

Smoothing Algorithm 

The first step in the processing of the target image is the employment of a "salt and 
pepper" algorithm. The underlying idea is to specify a Boolean function on a neighborhood 
centered at a pixel p and to assign to this pixel a value of either 1 or 0 depending on the spatial 
arrangement and binary values of its neighbors. The 3x3 neighborhood mask is shown in figure 
3.11. This algorithm is called "salt and pepper" because (a), it eliminates isolated 1's, and, (b), it 
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0 	3.1416 	1.0000 
0 	3.1416 	1.0000 
0 	3.1416 	1.0000 
0 	3.1416 	1.0000 
0 	3.1416 	1.0000 

1.0000 
2.0000 
3.0000 
4.0000 

35.0000 

1.0e+003 * 

1 
1 
1 
1 

87 
27 

1 

1 
2 
3 
4 

5245 
5246 
5247 

16 
28 

1 
1 
1 
1 
1 

5249 
5250 

7136 
7137 
7138 
7139 - 

 7140 

4.3250 
4.6460 
4.9420 Wieanee 
5.4950 
0.2520 
1.5590 

3.8380 
4.1960 
4.4840 
4.5850 
4.7950 
4.8840 

0.0001 
0.0001 
0.0001 

0.0001 
0.0001 
0.0001 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 

0.0029 
0.0029 
0.0029 

0.0029 
0.0030 
0.0030 

0.0010 
0.0010 
0.0010 
0.0010 
0.0010 
0.0010 

	

0.0001 	0.0090 

	

0.0001 	0.0090 

	

0.0001 	0.0090 

	

0.0001 	0.0090 

	

0.0001 	0.0100 

	

0.0001 	0.0100 

	

0.0011 	0.2240 

	

0.0011 	0.2240 

	

0.0011 	0.2240 

	

0.0011 	0.2240 

	

0.0011 	0.2240 

	

0.0011 	0.2240 

The first element (5248) is 
the serial index that this 

triplet had in the input array 
(ang), i.e., this triplet is the 

5248th row of ang. The last 
element (9) represents the 

unique group to which this 
triplet belongs. We have 

more than one triplet with 
the same angles, but all of 
them are characterized by 

this number (9). 

Figure 3.8: 	Example of the output array sor for N = 6. 

The same triplet # is used 
here for demonstration, as 
in figure3.8: Format of the 

output (array sor). 

Figure 3.9:  Example of the lookup table created by indexing. 
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1 	1 	o 	o 	o 	o 	1 	1 	1 	o 	o 	o 
1 	o 	o 	o 	o 	o 	o 	1 	o 	o 	o 	o 
1 	1 	o 	o 	o 	o 	o 	1 	o 	o 	o 	o 
o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 
o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 

Figure 3.10:  Binary values arrays representing the letters 'C' and 'T'. 

a 	b 	c 
1-1,j-1 	i-1, j 	i-1, j+1  

d 	p 	e 
i, j-1 	i, j 	i, j+1  

f 	g 	h 
i+1,j-1 	i+1, j 	i+1, j+1 

Figure 3.11 : Neighborhood mask for the 'salt and pepper' 
smoothing algorithm. 
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eliminates small 'bumps' along straight-edge segments. For each pixel the following expression 
is evaluated 

B= pi(a+b+d).(e+g+h)+(b+c+e).(d+f +g)] 	 (3.3) 

In order to avoid boundary condition problems at the edges, the test image is framed in an 
(N+2)x(N+2) array where the perimeter extra columns and rows are filled with  0's. The MatLab 
function written for this function is salt_pep(C,t), where C is the array and t represents a 
threshold value used to binarize the array C. Further parameter information is given in the 
following sections dealing with the perimeter detection algorithms. 

Perimeter Detection 

It has been proven that, for feature-based identification using HONN' s, it is sufficient to 
deal with the features of the perimeter points only [3,9,16,23-25,30,43-45,51]. For the detection 
of boundary points, there are several techniques in use, mainly based on local array operators 
(usually 3x3). Figures 3.12 and 3.13 illustrate a 'test' image consisting of a 4x4 square of value 
'1' placed upon a 16x16 image grid which will be used in the following approaches to boundary 
detection for illustration puposes 

A representative, local array operator is the Sobel operator given by the following 
equation: 

where x is the 3x3 array representing the image and where the operator is applied locally on 
every pixel. Figures 3.14 and 3.15 show the edge detection result using the Sobel operator on the 
test image of figure 3.12. An alternate set of operators are those proposed by Plessey 
Semiconductors and implemented in hardware by the same company (PDSP 16401 2-D Edge 
Detector). This set consists of four operators and the result is the largest of the four convolutions 
of the input image with each of the four operators: 

	

Horizontal 	 Vertical 
1 	1 	1 	 10-1  

 1.5* 0 	0 	0 	 1.5*[1 0 —1 

	

_-1 —1 —1 	 1 0 —1 

(Diagonal) 450 	 (Diagonal) -450  

1 0 —1 	
[1 —1 —2 
1 0 —1 

1 2 1 	0 

_O 	j 	 I 2 1 	0 

15 



00  
00  
00  
O 0  
00  
00  
00  
00  
00  
00  
O 0  
O 0  
00  
O 0 
00  
00  

Figure 3.12: Test image for boundary detection algorithms. 

0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
O 0 0 0 1 1 1 1 1 0 0 
0 0 0 0 1 1 1 1 1 0 0 
O 0 0 0 1 1 1 1 1 0 0 
0 0 0 0 1 1 1 1 1 0 0 
O 0 0 0 1 1 1 1 1 0 0 
0000 	0 0 0 0 0 0 
0000 	0 0 0 0 0 0 
0000 	0 0 0 0 0 0 
O 000 	0 0 0 0 0 0 
0000 	0 0 0 0 0 0 
0000 	0 0 0 0 0 0 
0000 	0 0 0 0 0 0 
0 000 	0 0 0 0 0 0 
0000 	0 0 0 0 0 0 

Figure 3.13:  Binary array representation for the test image of 
figure 3.12. 
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Figure 3.14:  Sobel operator boundary detection for the test 
image of figure 3.12. 

0 0 0 0 0 0 0 
2 3 4.54.54.5 3 2 
3 4 4.54.54.5 4 3 

4.54.5 0 0 0 4.54.5 
4.54.5 0 0 0 4.54.5 
4.54.5 0 0 0 4.54.5 

4 4.54.54.5 4 3 
3 4.54.54.5 3 2 
0 	0 	00 
0 	0 	00 
0 	0 	Go 
0 	0 	00 
0 	0 	00 
0 	0 	00 
0 	0 	00 
0 	0 	0 0 

Figure 3.15:  Binary array representation of the boundary 
detected image of figure 3.14. 
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(3.7) 

(3.8) 

The above operators detect vertical, horizontal, and diagonal edges while the factor 1.5 is used to 
offset the differences between points lying on horizontal or vertical axis and points on a diagonal 
edge (1.5 is the approximation used in hardware for •Nri). Results for the application of the 
Plessey operators on the test image are shown in figures 3.16 and 3.17. 

Due to the nature of the relatively low resolution images used in this study, such 
algorithms are considered to be inappropriate in the present case since such edge detection 
operators are essentially differential operators and tend to produce a "double edge" phenomenon. 
In a high resolution environment, this may be acceptable but is highly undesirable when the 
image resolution is low. 

An algorithm much more suited to low resolution images has been developed based upon 
the examination of a 3x3 image area and is given in figure 3.18. The truth-table given in figure 
3.19 shows under which conditions the pixel (x,y) (with intensity F(x,y)) is considered to be a 
point on the perimeter. One further condition for this point to be a point of the perimeter is to 
have an intensity value larger than a defined threshold which, in the case of a binary image, 
would be F(x,y)=1. The following function can be derived from this table: 

Fper = à,-c-ci •  (eh  + egh)+ -àbcd •  (eh  + egh) + alic-d •  (eh  + egh) + abcd(e—gh + egh) 	(3.6) 

Simplifying leads to 

'per  =e•h-b•d <=> Fp, = ehbd +-6 J141 

and, with the threshold condition that F(x,y) =1, the final equation can be derived as 

Fp„= F(x,y)AND{NOT(e) OR NOT (b) OR NOT (h) OR NOT(d)} 

The corresponding M-function that implements the above is perim( D. The result of using this 
edge detection algorithm on the test image of figure 3.12 is shown in figures 3.20 and 3.21. 

Perimeter Encoding 

A further algorithm has been developed in order to "encode" the points of the perimeter. 
This "perimeter encoding" reduces the number of the points from which features of the images 
need to be extracted in such a manner that, as proved in this work, the remaining points after the 
encoding can produce all the features necessary for pattern classification. The function for the 
encoding has been derived using the same neighborhood 3x3 area as shown in figure 3.22. 

We encode the points of the perimeter that constitute corners and we reject the perimeter 
points that lay on contiguous, straight line segments of the perimeter. Under the above 
assumptions and using a table similar to that shown in figure 3.22, the corresponding function 
that performs this operation has been found to be 

Éenc_  per  = F(x, y) • ((a • i)+ (c • g)+ (de) + (bh)). 	 (3.9) 

It should be noted here that the function as described applies to the array that represents the 
perimeter points only and not to the initial image. The corresponding M-function that 
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Figure 3.16:  Plessey operators boundary detection for the test 
image of figure 3.12. 

	

0000 	0 0 

	

1.4 3.2 4 4 	3.2 1.4 

	

3.2 4.2 4 4 	4.2 3.2 

	

4400 	4 4 

	

4400 	4 4 

	

4400 	4 4 

	

3.2 4.2 4 4 	4.2 3.2 

	

1.4 3.2 4 4 	3.2 1.4 

	

00 	0 

	

00 	0 

	

00 	0 

	

00 	0 

	

00 	0 

	

00 	0 

	

00 	0 

	

00 	0 

Figure 3.17:  Binary array representation of the boundary 
detected image of figure 3.16. 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

19 



a 	b 	c 

	

(x- 1,y- 1) 	(x- 1,y) 	(x- 1 ,y+ 1) 

d 	 e 

	

(x,y- 1) 	f(x,y) 	(x,y+ 1) 

g 	h 	i 

	

(x+ 1 ,y- 1) 	(x+ 1 ,y) 	(x+ 1,y+ 1) 

Figure 3.18: The 33 boundary detection mask developed for 
low resolution images. 

abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd  
eghi 	0000 	0001 	0010 	0011 	0100 	0101 	0110 	0111 	1000 	1001 	1010 	1011 	1100 	1101 	1110 	1111  
0000 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
0001 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
0010 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
0011 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
0100 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
0101 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
0110 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
0111 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
1000 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
1001 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
1010 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1  
1011 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1 	0  
1100 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
1101 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  
1110 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1 	0  
1111 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1 	0 

Figure 3.19: The 'truth table' giving the 256 possible combinations 
corresponding to the detection mask given in figure 3.18. 
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Figure 3.20: The boundary as detected by the array mask of 
figure 3.18 for the test image of figure 3.12. 

0 0 0 0 0 
0 0 0 0 0 
1 1 1 1 1 
1 0 0 0 1 
1 0 0 0 1 
1 0 0 0 1 
1 1 1 1 1 

o 
o 
o 
O 
o 
o 
o 
O  

Figure 3.21 : Binary array representation of the boundary 
detected image of figure 3.20. 

o 
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a 	b 	c 

	

(x- 1 ,y- 1) 	(x- 1 ,y) 	(x- 1 ,y+ 1) 

d 	 e 

	

(x,y- 1) 	f(x,y) 	(x,y+1) 

g 	h 	i 

	

(x+ 1 ,y- 1) 	(x+ 1 ,y) 	(x+ 1 ,y+ 1 ) 

Figure 3.22: The 3x3 array for encoding of the boundary 
detected by the array mask of figure 3.18. 

00  

20 

Figure  3.23:  The test image used to demonstrate the 
combination of boundary detection and encoding. 

Figure 3.24: The boundary detected (left) image and the boundary encoded 
image (right) corresponding to the test image of figure 3.23 and the 
detection/encoding array masks of figures 3.18 and 3.22. 
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implements the above is peri_con(f). An example of this operation of perimeter encoding is 
given using a 16x16 unity array shown in figure 3.23 is given by figures 3.24. 

Applying the perimeter detection function only, we get the left pattern of figure 3.24 
(with 16 pixels) while, applying the additional perimeter encoding scheme on this pattern, we get 
the right pattern with 4 pixels that can characterize the initial image. It should also be noted here 
that, as a guideline, the encoding technique is practical only when it is applied to images with a 
size of at least 10x10. Otherwise, for lower resolutions, it would cause significant reduction to 
the spatial information contained. 

Calculation of the feature vector feat_vecX=feat(X,sor,index) 

For the calculation of the feature vector for a binary image, the input arguments for the 
function feat_vec consist of three arrays. The first one, X, is the binary image resulting from the 
application of function perim (or peri_con if the resolution allows the employment of this 
function). The other two arrays, sor and index, are calculated for the particular resolution in this 
processing stage. The function feat_vec creates the links between the particular sets of triplets 
that can be formed from the pixels (with value 1) in the image and the corresponding feature 
number that has been assigned in this combination. For the letters c and t, the corresponding 
feature vectors are the variables feat_cl and feat_t1 (included in the higher6x.mat) and are 
illustrated in figure 3.25. 

3.3 Employment of Neural Networks 

The proposed network consists of X binary inputs and Y outputs. X is the number of 
features that have been found in the array processing stage while Y is the number of classes to be 
classified. For the T-C problem in a 6x6 analysis, the number of inputs is 224 and the number of 
outputs 2 (since the result might be either C or T). A general, three layer (i.e., one hidden layer) 
feedforward neural network was given earlier in figure 2.1. Note, however, that the number of 
layers actually used is dependent upon the specific problem as will be explicitly indicated below. 
In all cases, due to the nature of the desired outputs, the output transfer function (i.e., for the 
output layer) used was exclusively the log-sigmoid function illustrated in figure 3.26. 

Networks trained by the backpropagation algorithm were used throughout the course of 
this work and, as will be shown, give acceptable solutions. However, the backpropagation 
training algorithm can lead to a local rather than a global error minimum. If the local error 
minimum is not satisfactory, a network with more neurons and/or layers may perform better. For 
comparison purposes and solution optimization, the training of the networks has been performed 
employing the three different techniques offered by the Matlab neural network toolbox, namely: 
trainbp, trainbpx, and trainlm. Trainbp employs the "classical" backpropagation algorithm 
with the assorted problems of local dimima and slow training; the two other algorithms are 
improved variations of the classical one. Trainbpx employs backpropagation with the use of 
momentum and an adaptive learning rate l  Trainlm trains the network with the Levenberg-
Marquardt algorithm and is much faster than the othe two methods. However, the trainlm 
approach incurs memory limitation problems since it uses much more memory, typically as much 
memory as trainbp multiplied by S*Q where S is the number of neurons in the output layer and 
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Both arrays have 
224 rows. 

feat_t1 
1 
0 
0 
0 

1 

0 
0 

feat_cl = 
1 
0 
0 
0 
0 

1 

0.6 

0.4k 

0.2 

1 	o 
o 	I. 

T=  
The first coltunn refers to 

the letter 't' while the 
second column refers to 

the letter 'c'. 

Figure 3.25: The feature vectors corresponding to the images 
'C' (left) and 'T' (right). 

0.8 

Upper limit=1 
Lower imit 

Figure  3.26: The sigmoid transfer function used for the 
processing neurons. 

Figure 3.27:  Array of target vectors for the 'T-C problem'. 
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Q is the number of training vectors in the training set. The function initff is used for 
initialization of the network weights and biases while the function simuff is used to simulate the 
trained network. For further documentation and details for any of these functions, the reader is 
referred to the MatLab neural network toolbox user's guide. 

T-C Problem Solution with HONN 

The T-C problem has been presented previously and refers to the invariant discrimination 
of the letters C and T in a 6x6 resolution. The number of inputs is 224 and the number of outputs 
is 2. For this problem, a single-layer network will be used. T is the array with the target vectors 
shown in figure 3.27. The variables weightl and biasl are the initial weight and bias used and 
were calculated with the function initff as indicated in figure 3.28. The function trainlm with 
parameters given by figure 3.29 was found to be the fastest for this particular problem. It should 
be noted that the matrix P used as input is different than the P used in the initialization stage (i.e. 
the calculation of the initial weights and biases). The format of the P (as has been also retained 
in the higher6x.mat files) is shown in figure 3.30. The set training goals were attained with 
trainlm in only 5 epochs as evidenced by figure 3.31. In contrast, training with the trainbp 
algorithm was unsuccessful due to the trapping of the function in a local error surface as 
indicated by figure 3.32. In both cases, the training was conducted with only one training input, 
the matrix P (i.e. the actual feature vectors of the letters c and t). This is the unique characteristic 
of the HONNs. The invariance is encoded in the architecture so it is not necessary to present to 
the network various views of the same object. 

After the training of the NN, the validity of the methodology can be verified using the 
patterns shown in figure 3.33. The t 1 is the initial representation for letter t, the t_en1 is a scaled 
and translated t, while the t_45 is a 45 degrees rotated and translated t. Corresponding names 
have been given to the representations of c. The function simmuf is used to simulate the network 
performance with the results given in figure 3.34. 

Alphabet Recognition using HONN 

The next experiment was to verify the validity of the methodology using a more accurate 
representation of the letters and, ideally, to be able to recognize all the 26 letters of the alphabet. 
While for the T-C problem there are references in the literature, for the full alphabet problem 
there is no reported success with HONN's. The way in which the problem has been approached 
is to represent all of the letters of the alphabet with a 7x5 resolution as can be seen in figure 3.35. 
The resolution in which those characters will be examined has been set to 8x8, so the characters 
will be presented to the network "framed" in a 8x8 window. For this resolution, a new set of 
array processing steps has to be taken, as has been described, in order to calculate the initial 
arrays that correspond to the 8x8 analysis. All the results, following the convention made for the 
filenames, have been stored under the name higher8x.mat. An 8x8 frame, with the given 
granularity, results in 441 discrete features so that the feature vector representing the features for 
a letter is a column vector with 441 rows. Consequently, the number of inputs for the network 
will be 441 and the outputs will be 26 (i.e., the number of letters in the alphabet). One layer 
networks have been found to be inadequate for this application as can be seen in figure 3.36. The 
training for this one layer network has been performed with the trainbp function since the 
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1 
o 	ol  

1 

The first column is the feature 
vector of t (i.e., feat_t1) and 

the second column is the 
feature vector for c (i.e., 

feat_c 1). 

[weightl,biasl] = INITFF(P,S1,'logsig') 
P - 224x2 matrix of input vectors, where for the initialization 

only each ith row of P must contain expected min and max values for the 
ith input, i.e. 0 and 1. 

Si - Size of ith layer, here S1=2 (2 neurons output-layer) 

P= 

o 	1 

o 	1 
o 	1 

Figure 3.28 : Initialization values for the input vectors, training 
weights, and bias values. 

[weight4,bias4,TE,TR] = TRAINLM(weightl,biasl,'logsig',P,T,TP) 
P - RxQ (224x2) matrix of input vectors. 
T - SxQ (2x2)matrix of target vectors. 
TP - Training parameters (optional). 

Returns new weight and bias and 
TE - the actual number of epochs trained. 
TR - training record: [row of errors] 

Training parameters are: 
TP(1) - Epochs between updating display, here = 5. 
TP(2) - Maximum number of epochs to train, here = 15000. 
TP(3) - Sum-squared error goal, here = 0.001. 
TP(4) - Minimum gradient, here = 0.0001. 
TP(5) - Initial value for MU, default = 0.001. 
TP(6) - Multiplier for increasing MU, default = 10. 
TP(7) - Multiplier for decreasing MU, default = 0.1. 
TP(8) - Maximum value for MU, default = le10. 

Missing parameters and NaN's are replaced with defaults. 

Figure 3.29: Training parameters employed for the MatLab 
neural network algorithm trainlm. 

Figure 3.30: The feature vectors for the images of 'C' and 'T'. 
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Figure 3.31 : Successful training of the network using trainlm. 

Sum-Squared Network Error for 100000 Epochs 

1 
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x 10 4  

Figure 3.32:  Example of an unsuccessful training run using the 
algorithm trainbp. 
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tl c1= 
1 	1 	1 	0 	0 	0 	 1 	1 	0 	0 	0 	0 
0 	1 	0 	0 	0 	0 	 1 	0 	0 	0 	0 	0 
O 1 	0 	0 	0 	0 	 1 	1 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0 

t eni = 	 c enl - 
- 	1 	1 	1 	1 	1 	0 	 1 	1 	1 	0 	0 	0 

0 	0 	1 	0 	0 	0 	 1 	0 	0 	0 	0 	0 
O 0 	1 	0 	0 	0 	 1 	0 	0 	0 	0 	0 
O 0 	1 	0 	0 	0 	 1 	1 	1 	0 	0 	0 
O 0 	1 	0 	0 	0 	 0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0 

t_45 

- 

 

o 	o 	1 	o 	o 	o 
o 1 	o 	o 	o 	o 
1 	1 	1 	o 	o 	o 
O o 	o 	1 	o 	o 
o 	o 	o 	o 	o 	o 
O 	o 	o 	o 	o 	o 

c 95 - 
- 	0 	1 	0 	0 	0 	0 

1 	0 	0 	0 	0 	0 
0 	1 	0 	1 	0 	0 
0 	0 	1 	0 	0 	0 
0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 

Figure 3.33:  Binary array representation of various test images 
used to validate the trained network. 

simuff (feat vec(cl,sor,index),weight4,bias4,'logsig') 
ans 

0.0060 
0.9940 

simuff (feat vec(c_enl,sor,index),weight4,bias4, 1 logsig') 
ans = 

0.0004 
0.9966 

simuff (feat vec(c_45,sor,index),weight4,bias4,'logsig') 
ans = 

0.0060 
0.9940 

simuff (feat vec(tl,sor,index),weight4,bias4,ilogsig') 
ans = 

0.9942 
0.0058 

simuff (feat_vec(t_enl,sor,index),weight4,bias4, 1 logsig') 
ans = 

0.8940 
0.0368 

simuff (feat_vec(t 45,sor,index),weight4,bias4,'logsig') 
ans = 

0.9852 
0.0127 

Figure 3.34:  Network results for the test images of figure 3.33. 
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Figure 3.35:  Examples of letters defined on a 7x5 matrix. 

Sum-Squared Network Error for 550 Epochs 

Epoch 

Figure 3.36:  Unsuccessful tr.  aining of a single layer network. 
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memory requirements for trainlm are more than what was available. The variables weightl, and 
biasl are the initial weight and bias used and were calculated with the function initff as given in 
figure 3.37. In both cases (trainbp, trainbpx), the training was performed with 
[weight_1,bias_11,TE,TR1= trainbp(x)(weight_tbias_Vlogsigt,feat_alp,targets,TP) where 
targets is a 26x26 array which contains the targets, i.e., one column for each letter as shown in 
figure 3.38. Alp_feat is a 441x26 array that contains the feature vectors for each letter as 
extracted with the function feat_vec.m. For example, the first column of the matrix which 
represents the higher order feature vector for the letter a has been calculated using the function 
feat_vec(char_dis(alphabet(:,1)), sor,index). Training with trainbx performed a bit better but 
was still inadequate as can been seen in figure 3.39 for which 
trainbpx(weight_1,bias_11;logsiealp_feat,targets,TP). 

The employment of a three layer network solved the problem and the optimum number of 
neurons in the hidden layer was found to be 18, figure 3.40. Figure 3.41 shows the response of 
the network during the first training epochs. The performance of the network is exceptional 
(recognition rate 100%) as long as it operates in a noiseless environment and the letters are 
presented in any translational variation within the 8x8 frame. There is some degradation in the 
performance when the network operates with rotated and scaled representations of the letters, 
which is expected, due to the low resolution and the accompanying problems mentioned in the 
section describing the sorting of the angles. The performance falls to 87 % which at the same 
time shows the performance of the net with this particular type of noise. Figure 3.42 shows a 
typical case where the network failed to recognize the letter C. The network was trained with the 
features of the letter as in the leftmost block but, for input, used the scaled representation 
pictured in the middle block. The result is as shown in figure 3.43, i.e., the network in this 
particular case didn't find any close proximity with any of the letters although the best candidate 
(with a very low score though =0.0164) was the letter O. The similarity, and the reason why this 
type of confusion was expected stems from the way the letter C was scaled. The conclusion is 
that, in low resolutions, experimentation with granularity must be carried out in order to force the 
network to perform accurately. 

Feature Extraction of SAR Data. 

There is the general assumption that HONNs, by definition, can perform only with binary 
representations of the images to be classified. This results in a loss of dynamic information since 
the representation now is limited to black and white while a typical SAR image can have more 
than thousands of gray levels. Hence it is essential to find a way to encode the grayness variation 
in the HONN architecture. Figure 3.44 shows a target as acquired by SAR radar and segmented 
in a 25x32 frame. Every pixel is encoded with 4 bytes, and the values in this particular segment 
vary between 17 and 7863 as can be seen in figure 3.45 The same target after a binarization 
process is shown in figure 3.46 while the corresponding representation is given in figure 3.47. 
The loss of information is obvious and future efforts have to be directed towards this problem. 
The approach proposed in this work, in order to take advantage of the dynamic range encoded in 
SAR images is implemented in the function feat_gry(f,sorted,index) which generates the 
corresponding feature column vector for the gray scale array given in (O. The algorithm works 
by firstly creating a lookup table with indices corresponding to the triangle coordinates that form 
all the combinations of the non-zero points of (f) taken 3 at a time. The result is expected to have 
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P - 441x2 matrix of min-max input vectors. 
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P= 
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0 	1 

Figure 3.37:  Initialization values for the training run. 

target sc....:_____—n 
1 	0 	0 	0 	0 	0 	0 	0 
0 	1 	0 	0 	0 	0 	0 	0 
0 	0 	1 	0 	0 	0 	0 	0 
0 	0 	0 	1 	0 	0 	0 	0 
0 	0 	0 	0 	1 	0 	0 	0 
0 	0 	0 	0 	0 	1 	0 	0 
0 	0 	0 	0 	0 	0 	1 	0 
0 	0 	0 	0 	0 	0 	0 	1 
0 	0 	0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	0 	0 
0 	0 	0 	0 	0 	0 	0 	0 

The first column is 
the desired output for 
the letter a, the second 

column is for the 
letter b, etc. 

Figure 3.38: The format of the 26x26 targets array. 

Trainirg for 400 Epochs 

mo 	 300 	 eo 

Epoch 

Figure 3.39:  Unsuccessful network training using trainbx and a 
single layer network. 
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Sum Squared Error for a 2-layer Back-Propaption Network  
# of neurons (hidden layer) 	SSE 	EPOCHS  
10 	 >2 	10,000  
12 	 1.4 	10,000  
16 	 0.9 	10,000  
18 	 0.000998228 	10,000 

Figure 3.40:  Optimization of the number of hidden neurons. 

Trainirg for 1325 Epochs 
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Figure 3.41 : Training of the three layer network. 
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Figure 3.42: An example of misclassification by the network for 
a scaled 'C' as the letter '0'. 
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00  

ans = 
Columns 1 through 7 

	

0.0000 	0.0000 
Columns 8 through 14 

	

0.0000 	0.0000 
Columns 15 through 21 

	

0.0164 	0.0001 
Columns 22 through 26 

	

0.0069 	0.0000  

	

0.0000 	0.0000 	0.0000 

	

0.0105 	0.0000 	0.0007 

	

0.0000 	0.0001 	0.0005 

	

0.0000 	0.0042 	0.0000 

Figure 3.43:  Results for the classification of the scaled 'C' 
(center image) of figure 3.42. 

Figure 3.44:  Segmented SAR image consisting of 25x32 pixels. 

30 

Figure 3.45:  Intensity variation for the SAR image of figure 3.44. 
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30 

Figure 3.46: Conversion of the original SAR image of figure 
3.44 to a binary valued image. 

00  

Figure 3.47:  Intensity variation for the image of figure 3.46. 

Figure 3.48:  Resizing of the 25x32 SAR image of figure 3.44 
to a 6x8 image. 
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combin(k,3) rows, where k is the number of non-zero elements. Then, it gives the feature vector 
number, provided the array index, that represents the final result of the indexing3 function on an 
array MxN. The final column vector is formed by multiplying the normalized values of the three 
pixels. Since two or more triplets could correspond to the same feature number (forming similar 
triangles but having different intensities), the maximum result of the internal multiplication is 
kept in order to represent the magnitude of the particular feature. The 'sorted' parameter in the 
input argument stands for the array given after applying the sorting3 function (on the initial 
array). The result is the feature vector of the target, but the values are not binary, as has been 
done so far, but range between 0 and 1 thus giving information not only for the existence or not 
of the particular triplet but for its intensity as well. 

In order to demonstrate the operation of the above proposed algorithm, the same target 
shown in figure 3.44 has been chosen. In order to deal with the 25x32 resolution, which with the 
existing means is considered to be 'high', the target has been resized (using ErgoVista software) 
to a 6x8 representation as is shown in figure 3.48. The ratio of compression is approximately 4. 
The target is examined in the context of the 8x8 processing that has been performed and the 
results have been stored in the higher8x.mat file. The feature vector is expected to have 441 
elements but this time their values are not limited to O's or 1 's since on top of that they can take 
any value in between. The function is used with the format feature_target_sar = 
feat_gry(target_sar,sor,index) where target_sar is the target framed in a 8x8 frame as given in 
figure 3.49. The result of the above operation has the format shown in figure 3.50. 

Attention has to be paid to the way the normalization is implemented. The way the 
function has been encoded is that it takes into consideration as a maximum value the maximum 
element of the given segment which varies from segment to segment. The other way is to 
provide the maximum value of all the targets set, if it is known. Due to the limited number of 
available targets, the first approach has been adopted. If, in the near future, more data is 
available, the necessary changes can be made easily since they have been included in the function 
by means of comments. The training of the network has no practical value at the time being 
since there is no other data with which to compare or train. 

4. 	CONCLUSIONS 

The most important advantage of the HONN architecture is that invariance to geometric 
transformation such as scaling, translation, and rotation of the image can be incorporated directly 
into the network and does not need to be learned. Consequently, when compared with other 
neural network architectures such as batkpropagation trained first order networks, HONNs have 
demonstrated clear advantages in terms of training time, training set size, and recognition 
accuracy. Furthermore, the algorithms and methodology developed here specifically address the 
issue of anomalously large numbers of netWork weights by significantly reducing the number of 
necessary weights through a novel boundary detection and encoding scheme for the image. A 
further novel algorithm has been proposed to extend this technique to explicitly include the 
dynamic information (gray scale) present in SAR data. The extent of experimentation using SAR 
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targe tsar 

Columns 1 through 6 

	

655 	 735 	 93 	 51 	 193 	 261 

	

541 	 930 	 835 	138 	742 	 555 

	

125 	 434 	1805 	1041 	1118 	2193 

	

846 	 294 	 137 	1420 	6193 	 993 

	

427 	 245 	231 	 554 	2457 	3688 

	

179 	 848 	 574 	 623 	 554 	 589 

	

0 	 0 	 0 	 0 	 0 	 0 

	

0 	 0 	 0 	 0 	 0 	 0 
Columns 7 through 8 

	

153 	 281 

	

231 	 104 

	

694 	 711 

	

2814 	1235 

	

1144 	 600 

	

171 	 895 

Figure 3.49:  Array representation of the scaled down SAR image of 
figure 3.48 with added rows of zeros to yield an 8x8 image. 

feature target sar 
0.1.542 	— 

0 
0.0153 te,///// 

 0.0079 
0.0047 
0.0421 

0 
0.0145 
0.0016 
0.0017 
0.0057 
0.0139 

0 
0.0034 

0.0051 
0 
0 

0.0009 
0 

0.0110 

A "0" means that the particular combination has not 
been encountered. Values other than "0" give the 

'weight' of the prominent triplet that corresponds to 
the particular feature number. The dimension of 

this column vector is 441x1. 

Figure 3.50:  Feature vector for the gray scale SAR image of 
figure 3.48. 
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imagery in this work was limited owing to a lack of sufficient numbers of suitable images. 
However, the proposed framework is very promising and has been validated with the 
employment of classical pattern classification problems. The application of a HONN combined 
with the proposed boundary detection and encoding technique for alphabet recognition has 
clearly demonstrated the efficiency with which this topology can be utilized. 

The principle limitation which remains for the application of HONN's, even with the 
perimeter detection technique developed her, is that the size of the input field is limited 
(pragmatically to images containing, at most, a few thousand pixels). This is a technical 
limitation rather than an algorithmic one since it is governed by available memory size and 
computing throughput. The HONN architecture by itself can perform with unlimited input size. 
For SAR, post-segmented images which represent typical targets, an acceptable maximum size 
would be — 40x40, a number which, in the present environment, appears well suited to the types 
of images encountered in practice. Future efforts in this field should be directed towards the 
further reduction of the input size by means of compression and encoding either with 
conventional methods or with fractal geometry. Two specific directions worthy of serious 
consideration and additional research would be, (a), the development of HONN's for which the 
input variables are derived directly from the parameters which characterize fractal compression 
transformations of the images and, (b), the application of first order neural networks for which 
the feature vector is extracted from an explicit determination of the number, type, and intensity 
contents of similar triangles formed by the image pixels. 
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Appendix: Listing of the MatLab M-Functions 

function y = angles(f); 
% Angles(f) 
% Creates an array, given in (f), containing the angles corresponding to 
% the 3 lengths that form the triangles. 
% The result is an array with the same dimension as (f), i.e., (Nx3). 
% Care is taken to ensure that none of the 3 lengths are equal 
% to 0, i.e., a*b*c .ne. 0, otherwise the result would be 
% NaN type (Not-a-Number). The routine zero_fil is used to disallow 
% this possibility. 

% Dr. Fivos Hatzivasiliou - June 1994 
echo off 
aux1=zero_fil(f); % Create a new array auxl with NO null elements. 
[m,n]=size(aux1); % The dim of the new array are <= dim(f). 
aux2=aux1.^2; 
a=aux1(1:m,1); b=aux1(1:m,2); c=aux1(1:m,3); 
a2=aux2(1:m,1); b2=aux2(1:m,2); c2=aux2(1:m,3); 
C=acos( (a2+b2-c2)./(2*a.*b) ); 
B=acos( (a2+c2-b2)./(2*a.*c) ); 
% A=acos( (c2+b2-a2)./(2*b.*c) ); 
y=abs([pi-(B+C) B C]) 
% The abs function is used to ensure that no imaginery part will be in the result. 

function y = angles3(f); 
% Angles3(f) 
% Creates an array, given in (0, containing the angles corresponding to 
% the 3 lengths that form the triangles. 
% The result is an array with the same dimension as (0, i.e., (Nx3). 
% Care is taken to ensure that none of the 3 lengths are equal 
% to 0, i.e., a*b*c .ne. 0, otherwise the result would be 
% NaN type (Not-a-Number). The routine zero_fil is used to disallow 
% this possibility. 

% Dr. Fivos Hatzivasiliou - Sept 1995 
echo off 
aux1=f; %aux1=zero_fil(f); % Create a new array auxl with NO null elements. 
[m,n]=size(aux1); % The dim of the new array are <= dim(f). 
aux2=aux1.^2; 
a=aux1(:,1); b=aux1(:,2); c=aux1(:,3); 
a2=aux2(:,1); b2=aux2(:,2); c2=aux2(:,3); 
C=acos( (a2+b2-c2)./(2*a.*b) ); 
B=acos( (a2+c2-b2)./(2*a.*c) ); 
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% A=acos( (c2+b2-a2)./(2*b.*c) ); 
y=abs([pi-(B+C) B 
% The abs function is used to ensure that no imaginery part will be in the result. 

function y = aray_ser(f); 
% Aray_ser(f) 
% Converts the (MxN) array (f) to a vector (MxN,1) suitable for application as 
% as direct input to a third order HONN. The result is a vector as described above. 

% Dr. Fivos Hatzivasiliou - May 1994 
echo off 
[m,n]=size(f); 
G(m*n)=0; % Auxilliary vector from 2D to 1D. 
for x=1:m 

for y=1:n 
G((x-1)*n +y)=f(x,y); 

end 
end 
k=m*n; 
y=G; 

function y = char_dis(f); 
% Char_dis(f) 
% Creates a 7x5 array (lines x columns) with (f) the column-vector containing 
% the 35 elements which represents an alphabet letter, i.e., the alphabet(:, 1)  represents 
% the letter a, the alphabet(:,2) the letter b, and so on. The character is also displayed 
% using the function plotchar. 

% See also plotchar, prprob. 

% Dr. Fivos Hatzivasiliou - Sept 1995 
echo off 
[m,n]=size(f); % The initial assumption is that n=1 (column vector) 
i=1; 
for x=1:7 

for y=1:5 
G(x,y)=f(i); 
i=i+1; 

end 
end 
plotchar(f); 
y=G; 
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function y = chrfeat(f,sorted,index); 
% Chr_feat(f,sorted,index) 
% Creates an array with 26 columns where each column represents the feature vector 
% of the corresponding alphabet letter, i.e., the 1st column represents the feature vector 
% for the letter a, the 2nd column for the letter b, and so on. The character is also 
% displayed using the function plotchar. 
% In (f) is given the alphabet array (35x26), for a 7x5 analysis. 
% The 'sorted' parameter in the input argument stands for the array given after applying the 
% sortingX.m function (on the INITIAL array). This array has been given a name 
% such as sor, in the higherXX.mat file (e.g., an analysis 8x8 is higher8x.mat). 
% See also feat_vec, char_dis. 
% 
% Dr. Fivos Hatzivasiliou - Sept 1995 
echo off 
[m,n]=size(f); % The initial assumption is that n=1 (column vector) 
no_of feat=sorted(combin(64,3),5); % See notes.Find the size (mX1) of the feature vector 
G(no_of feat,26)=0; 
i=1; 
for x=1:26 

A(8,8)=0; % Here its only for 8x8 analysis. 
A(1:7,1:5)=char_dis(f(:,x)); 
pause(1); 
G(:,x)=feat_vec(A,sorted,index); 

end 
y=G; 

function y = combin(n,k) 
% Combin(n,k) 
% Gives the number of different combinations of n different 
% elements taken k at a time without repetitions ('n choose 3'). 
% Uses the function 

 % (See also Factoria.m) 
% 
% Dr. Fivos Hatzivasiliou - Feb.94 
y=permut(n,k)/factoria(k); 
% Ref: Advanced Engineering Mathematics, Kreyszig, p.1191 

function y = distan(f); 	_ 
% Distan(f) 
% Gives the lengths for all possible triangles formed from the binary image given in f. 
% 
% Dr. Fivos Hatzivasiliou - Feb. 1994 
echo off 
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a=neur_3v3(f); 
[m,n]=size(a); 
b(1:m,1:6)=a(1:m,5:10); % See function Neur_3v3 for the format 
clear a; 	% Here in the b there are only the coordinates 

% al,b1 a2,b2 a3,b3 for the triangles. 
c(1:m,1:6)=[b(1:m,1)-b(1:m,3) b(1:m,2)-b(1:m,4) b(1:m,3)-b(1:m,5) b(1:m,4)-b(1:m,6) b(1:m,5)- 
b(1:m,l) b(1:m,6)-b(1:m,2)]; 
clear b; 
c=c.^2; 
d(1:m,1:3)=[c(1:m,1)+c(1:m,2) c(1:m,3)+c(1:m,4) c(1:m,5)+c(1:m,6)]; 
clear c; 
result=sqrt(d); 
y=result; 

function y = distan2(f); 
% Distan2(f) 
% Gives the lengths for all possible triangles formed from the data given in (f) 
% in the following form [xl yl x2 y2 x3 y3]. 
% This routine is the same as distan(f) differing only in the input format. 
% 
% Dr. Fivos Hatzivasiliou - June 1994 
echo off 
[m,n1=size(f); 
b=f; 	 % See function triangle2 for the format 

% Here in the b there are only the coordinates 
% al,b1 a2,b2 a3,b3 for the triangles. 

c(1:m,1:6)=[b(1:m,1)-b(1:m,3) b(1:m,2)-b(1:m,4) b(1:m,3)-b(1:m,5) b(1:m,4)-b(1:m,6) b(1:m,5)- 
b(1:m,l) b(1:m,6)-b(1:m,2)]; 
clear b; 
clear f; 
c=c.^2; 
d(1:m,1:3)=[c(1:m,1)+c(1:m,2) c(1:m,3)+c(1:m,4) c(1:m,5)+c(1:m,6)]; 
clear c; 
result=sqrt(d); 
y=result; 	 . 

function y = distan3(f); 
% Distan3(f) 
% Gives the lengths for all possible triangles formed from the data given in (f) 
% in the following form [xl yl x2 y2 x3 y3]. 
% This routine is the same as distan(f) differing only in the input format. 
% This function is an optimized version of distan2(f). 
% 
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% Dr. Fivos Hatzivasiliou - June 1994 
echo off 
[m,n]=size(f); 
b=f; 	 % See function triangle2 for the format 
clear f; 	% Here in the b there are only the coordinates 

% a 1,b1 a2,b2 a3,b3 for the triangles. 
c(m,6)=0; 
c(:,:)=[b(:,1)-b(:,3) b(:,2)-b(:,4) b(:,3)-b(:,5) b(:,4)-b(:,6)  b(:,5)-b(:, 1)  b(:,6)-b(:,2)]; 
clear b; 

c=c. '2; 
 d(m,3)=0; 

d(:,:)=[c(:,1)+c(:,2) c(:,3)+c(:,4) c(:,5)+c(:,6)]; 
clear c; 
result=sqrt(d); 
y=result; 

function y = drawing(G) 
% Drawing(G) 
% Splits the graph-window into 4 sub-windows and plots the array (G) 
% in the top left quarter of the screen, the perim(G) in the top right, 
% the peri_con(G) in the bottom left and, in the bottom right, 
% a comparative plot. 

% Dr. Fivos Hatzivasiliou - March 94 
clg; 
subplot(221),mesh(G); 
title('Original Image'); 
p=perim(G); % Perimeter. 
subplot(222),mesh(p); 
title('Perimeter'); 
c=peri_con(p); % Encoded (reduced) perimeter. 
subplot(223),mesh(c); 
title('Encoded Perimeter'); 
x=[sum(sum(G)) sum(sum(p)) sum(sum(c))]; 
for i=1:3 
yy(i)=combin(x(i),3); 

end 
subplot(224),sernilogy(yy); 
ylabel('Number of Triangles'); - 
y=x; 
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function y = factoria(x) 
% Factoria(x) 
% Gives the factorial function of x. 
% If x is < 150 then it uses the function x!=x(x-1)(x-2)...1. 
% If x>150, then it uses the Stirling Formula approximation 

% Dr. Fivos Hatzivasiliou - Feb.94 
if x<=150, 

m=1; 
for i=1:x 

m=m*i; 
end 

else 
m.(x/exp(1))Ax * sqrt(2*x*pi); % Stirling Formula 
end 
y=m 
% Ref: Advanced Engineering Mathematics, Kreyszig, p.1192 

function y = feat_gry(f, sorted,index); 
% Feat_gry(f,sorted,index) 
% Generates the corresponding feature column vector for 
% the gray scale array given in (f). 
% Feat_gry.m first creates a lookup table with indices the triangle coordinates 
% that form all the combinations of the non-zero points of (f) taken 3 at a time. 
% The result will have combin(k,3) rows, where k is the # of non-zero elements. 
% This routine then gives the feature vector #, provided the array index, 
% representing the final result of the indexing.m function on an array mXn. 
% Normally this lookup table has been given a name like ind (in the mat file). 
% The final column vector is formed by multiplying the normalized values of the three pixels. 
% Since two or more triplets could correspond to the same feature (forming similar triangles but 
% having different intensities), the max result of the internal multiplication is kept in order to 
% represent the magnitude of the particular feature. 
% The 'sorted' parameter in the input argument stands for the array given after applying the 
% sorting2.m function (on the INITIAL array). In the same way, this array is given 
% a name such as ss, in the higherXX.mat file (e.g., for an analysis 4x4). 

% Dr. Fivos Hatzivasiliou - Sept 1995 
echo off 
threshold=0.1; % The threshold is defined as the minimum 'intensity' value, that would 

%represent the existense of useful information (i.e. targets) 
aux3=f; 	% Conversion from array to vector. The invertion (') is being used in order the result 
aux4=aux3(:); % to comply with the way we've defined the scanning pattern. (all the columns in 
1st row, 2nd row...) 
Irn,n1=size(f); % The initial assumption is that m=n 
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maxim=max(aux4); % Find the max "intensity" OR maxim= maximum value given as 
% parameter. 

size_of=m*n; 
no_of feat=sorted(combin(size_of,3),5); % See notes.Find the size (mX1) of the feature vector 
non_zero=find(f); % Creates a vector with the non-zero elements of f, 

% e.g. if f is 4x4 could give, 3, 13, 15,  16.  
[mm,nn]=size(non_zero); 
if mm>2 & maxim>threshold % to avoid situations with just 2 active-pixels in the array. 

% (i.e. No possible triangle), or no information at all. 
k=1; i=1; 
aux4=aux4 ./ maxim; % Normalisation. 
feat_vec(no_of feat)=0; % Creation of the feature vector, lenght = the # of features. 
for x=1:size_of 

for y=x+1:size_of % 
for z=y+1:size_of % 

if aux4(x)&aux4(y)&aux4(z) 
G(i,1:4)=[k x y z]; 

G(i)=k; % Since we are interested only in the # of the combination. 
%aux5(i)=index(k,2); 
aux5=index(k,2); 

feat_vec(aux5)=maxgfeat_vec(index(k,2)) aux4(x)*aux4(y)*aux4(z))); 
i =i+1; % The above command accomodates the function that selects the most 

end 	% prominent (maximum) value for the feature in the feature vector. 
k=k+1; % So for all the similar triangles, only one value will be taken 

end 	% into account, the maximum. 
end 

end 
end % For the IF loopl 

y=feat_vec' 
% To create a column vector (one column, # of features rows). 

function y = feat_vec(f, sorted,index); 
% Feat_vec(f,sorted,index) 
% Generates the corresponding feature column vector for the binary array given in (f). 
% Feat_vec.m first creates a lookup table with indices the triangle coordinates 
% that form all the combinations of the non-zero points of (f) taken 3 at a time. 
% The result will be combin(k,3) rows, where k is the # of non-zero elements. 
% This routine then gives the feature vector #, provided the array index, 
% representing the final result of the indexing.m function on an array MxN. 
% Normally this lookup table is given a name such as ind (in the Matlab file). 
% The 'sorted' parameter in the input argument stands for the array given after 
% applying the sorting2.m function (on the INITIAL array). In the same way, a name such 
% as ss is given in the higherXX.mat file (e.g., for an analysis 4x4). 
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% Dr. Fivos Hatzivasiliou - June 1995 
echo off 
aux3=f; 	% Conversion from array to vector. The invertion (') is being used in order the result 
aux4=aux3(:); % to comply with the way we've defined the scanning pattern. (all the columns in 
1st row, 2nd row...) 
[m,n]=size(f); % The initial assumption is that m=n 
size_of=m*n; 
no_of feat=sorted(combin(size_of,3),5); % See notes.Find the size (mX1) of the feature vector 
non_zero=find(f); % Creates a vector with the non-zero elements of f, 

% e.g. if f is 4x4 could give, 3, 13, 15,  16.  
[mm,nn]=size(non_zero); 
if mm>2 % to avoid situations with just 2 active-pixels in the array. (No possible triangle) 
k=1; i=1; 
feat_vec(no_of feat)=0; % Creation of the feature vector, lenght = the # of features. 
for x=1:size_of 

for y=x+1:size_of % 
for z=y+1:size_of % 

if aux4(x)&aux4(y)&aux4(z) 
G(i,1:4)=[k x y z]; 

G(i)=k; % Since we are interested only in the # of the combination. 
aux5(i)=index(k,2); 
feat_vec(index(k,2))=1; 

i =i+1; 
end 
k=k+1; 

end 
end 

end 
end % For the IF loopl 
i=i-1; 
y=feat_vec' 
% To create a column vector (one column, # of features rows). 

function y=file_inp(name) 
% File_inp('name') 
% Opens and reads the file named 'name'. 

% Dr. Fivos Hatzivasiliou 
fid=fopen(name); 
a=input('How many rows 7); 
b=input('How many columns ?'); 
matrix=fread(fid,[a,b],'float'); 
fclose(fid); 
y=matrix; 
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function y = grouping(f); 
% Grouping(f) 
% Given in (f) the 3 angles that form the triangles containing no 
% zero elements since the function zero_fil was applied, this routine 
% creates a new array with the same or smaller dimension than f, (Nx3), 
% eliminating all the triplets having the same elements taking into account 
% the relative order (e.g., a b c is different from a c b). 

% Dr. Fivos Hatzivasiliou - July 1994 
echo off 
[m,n]=size(f); % The dim of the new array will be <= dim(f). 
n=1;k=1; 
aux(m)=0; 	% Auxilliary vector m. 
for i=k:m-1 

if abs(f(i,1)-f(i+1,1)) <= 0.0001, 
C(1:n+1,1:3)=[C(1:n,1:3)' f(i,1:3)']'; %  The'  operation is very time consuming 
ind=ind+1; 

else, 
aux(n)=i; 
n=n+1; 

end 
end 

if abs(f(m-1,1)-f(m,1)) > 0.0001, % Boundary Condition, since in the 
aux(n)=m; 	 % above if-loop there is no provision 

end 	 % for the m-th element. 
y=aux; 

function y = indexing(f); 
% Indexing(f) 
% Creates a 2-column indexing table with the following structure: 
% the first column is sorted and contains the triplet #, while the 2nd 
% column gives the corresponding feature vector position. 
% (f) is the result of the sorting2 routine and has in the first column the initial 
% index of the triplet, (e.g., 11, for a 6x6, means the 1 lth combination; see also 
% triang12.m routine), while in the fifth colurnn the no. of the feature vector, 
% or set of angles, to which it corresponds. 

% Dr. Fivos Hatzivasiliou - June 1995 
echo off 
[m,n]=size(f); 
[Y,I]=sort(f(1:m,1)); 
G(m,2)=0; 

G(:,2)=f(I(1:m),5); % Sorting regarding the 1st element 
G(:,I)=[1:m]'; 

y=G; 
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function y = peri_con(f) 
% Peri_con(f) 
% Perimeter edge detection and encoding using our developed algorithm where (f) 
% is the binary input array (dim MxN). When the perimeter is found, another 
% algorithm is applied in order to find the vertex points of the perimeter. 
% In order to avoid boundary condition problems, an auxilliary array dim m+2,n+2 is used. 
% The result is another array (MxN) with l's showing the perimeter vertex points. 
% 
% Dr. Fivos Hatzivasiliou - March 1994 
echo off 
% thres_points= 
% The max number of perim. points that won't be converted to perimeter vertex points 
[m ri]=size(f). 
G(m+2,n+2)=0; 
G(2:m+1,2:n+1)=f; 
T(m+2,n+2)=0; 
C=T; % Declaration of auxiliary arrays. 
for x=2:m+1 

for y=2:m+1 
T(x,y)=(G(x,y)&(--G(x+1,y)l-G(x,y+1)1--G(x,y-1)1-G(x-1,y) ) ); 

end 
end 
%points=sum(sum(T)); % Gives the number of the perimeter points (Binary Image). 
% if points <= thres_points, C=T; 
% else 
for x=2:m+1 

for y=2:n+1 
if T(x,y)==1, 

C(x,y)=-( (T(x-1,y-1) & T(x+1,y+1)) 1 (T(x-1,y+1) & T(x+1,y-1)) 1 (T(x,y-1)&T(x,y+1)) 
1 (T(x-1,y)&T(x+1,y)) ); 

end 
end 

end 
%end 
y=C(2:m+1,2:n+1); 

function y = perim(f) 
% Perim(f) 
% Perimeter edge detection using our developed algorithm where (f) 
% is the binary input array (dim MxN). There is also a provision for the points 
% lying diagonally to he multiplied with the factor 1.414 (sqrt 2). 
% In order to avoid boundary condition problems an auxilliary array dim m+2,n+2 is used. 
% The result is another array (MxN) with l's showing the perimeter points. 
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% Dr. Fivos Hatzivasiliou - Feb. 1994 
echo off 
[m n]=size(f); 
G(m+2,n+2)=0; 
G(2:m+1,2:n+1)=f; 
T(m+2,n+2)=0; 
for x=2:m+1 

for y=2:m+1 
T(x,y)=(G(x,y)&(-G(x+1,y)l-G(x,y+1)1-G(x,y-1)1-G(x-1,y) ) ); 

end 
end 
%for x=2:m+1 
% for y=2:n+1 
% if (T(x-1,y-1) & -T(x-1,y) & -T(x,y-1) )1( T(x-1,y+1) & -T(x,y+1) & -T(x-1,y) ) 
% 	T(x,y)=T(x,y)*1.414; 
% end 
% end 
%end 
y=T(2:m+1,2:n+1); 

function y = permut(n,k) 
% Permut(n,k) 
% Gives the number of different permutations of n different 
% things taken k at a time without repetitions ('n choose 3'). 
% Uses the function n!/(n-k)!=n(n-1)(n-2)...(n-k+1). 
% (See also Factoria.m) 

% Dr. Fivos Hatzivasiliou - Feb.94 
m=1; 
for i=n-k+1:n 

m=m*i; 
end 
y=m; 
% Ref: Advanced Engineering Mathematics, Kreyszig, p.1190 

function y = salt_pep(C,t) 
% Salt_pep(C,t) 
% Removes from the array C (dim MxN), the isolated l's and smooths the 'bumps'. 
% Initially binarizes the C with threshold t (i.e., if C(i,j)<=t then =0 else =1) 
% Ref. Robotics pp.341. 
% The result is a filtered binary array with the same dimensions. 
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% Dr. Fivos Hatzivasiliou - Feb. 1994 
echo off 
[m n]=size(C); 
v(m+2,n+2)=0; 
L(m+2,n+2)=0; 
megisto=max(max(C)); % 
v(2:m+1,2:n+1)=C; % 

for i=2:m+1 % 
for j=2:n+1 % 

if v(i,j)<=t 
v(i,j)=0; 

else 
v(i,j)=1; 

end 
end 

end 
for i=2:m+1 

for j=2:n+1 
if v(i,j)==1 

a=v(i-1,j-1); % 
b=v(i-1,j); % 
c=v(i-1,j+1); 
d=v(i,j-1); 
e=v(i,j+1); 
f=v(i+1,j-1); 
g=v(i+1,j); 
h=v(i+1,j+1); 
L(i,j)=( ( (albld) & (elglh) ) I ( (bide) & (dIflg) ) ) I (C(i-1,j-1) > .2*megisto); 

else 	% The array L is used only to preserve the elements 
L(i,j)=0; % of v during the loop 

end 
end 

end 
y=L(2:m+1,2:n+1); % The result has the same dim. mxn. 

function [trian,distang,sor,index] = segm_bat(f); 
% Segm_bat(f) 
% Given in (f) the segment array (i.e. a 10x10 array), we generate the five arrays 
% required to proceed with HONN training. 
% Attention must be paid to the way granularity is defined in the employed m.files. 

% Dr. Fivos Hatzivasiliou Sept. 1995 
echo off 
trian=triang13(f); 
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dist=distan3(trian); 
ang=angles3(dist); 
sor=sorting2(ang); 
index=indexing(sor); 

function y = sorting3(1); 
% Sorting3(f) 
% Rearranges the angles that are given in (f), in such a way that, in every row, 
% the first is the smallest angle of the triplet but, at the same time, 
% the order of the angles is preserved (e.g., (a,b,c)=(b,c,a)=(c,a,b)). 
% Finally, it sorts the rows, deleting at the same time all the rows having 
% the form 0.001 3.14 0.000 etc., i.e., any 'line' triangles (180 0 0 ). 

% Dr. Fivos Hatzivasiliou - June 1995 
echo off 
granularity=0.001; 
f=abs(f); % To eliminate the elements -0.00000.... 
[m,n]=size(f); 
aux1=f; 
for i=1:m 

if abs(f(i,1)-f(i,3))<granularity, 	% First, we try to preserve the order. 
f(i,1)=auxl(i,1); % Then, we replace the values of i.e. i,1 and i,3 with one (i.e. i,1), 

because 
f(i,2)=auxl(i,1); % we want the further procedure to deal with exact equal values. Some 

inequalities 
f(i,3)=auxl(i,2); % result from the routine angles, since employement of the cos function 

is made. 
elseif abs(f(i,2)-f(i,3))<granularity, 
f(i,1)=auxl(i,2); 
f(i,2)=aux 1(i,2); 
f(i,3)=aux1(i,1); 

elseif abs(f(i,1)-f(i,2))<granularity, 
f(i,1)=auxl(i,1); 
f(i,2)=auxl(i,1); 
f(i,3)=aux 1(i,3); 

end 
aux2=f(i,1:3); % Local aux. vector. 
[x,ind]=min(f(i,1:3)); % Sorting procedure starts here. 
if ind==2, 

f(i,1)=aux2(2); 
f(i,2)=aux2(3); 
f(i,3)=aux2(1); 

elseif ind==3, 
f(i,1)=aux2(3); 
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f(i,2)=aux2(1); 
f(i,3)=aux2(2); 
else 
end 

end 
aux1=f; % Section that sorts the rows. 
[Y,I]=sort(f(1:m,1)); 
1=1; mm=1; 
clear f; 
I(m+1)=m+1; %Trick 
auxl(m+1,1)=4; % Trick (Because 4>3.14, the max. number can be found in the array, the sort 
procedure 

% will take place also for the last set of elements. 
aux2(m+1,2)=4; 
aux3(m,5)=0; % Attempt to optimize the procedure, pre-specifying the array size. 
for i=1:m 

aux2(i,1:3)=auxl(I(i),1:3); % Sorting regarding the 1st element 

if auxl(I(i+1),1) - aux2(i,1) > granularity % define granularity 
[Y_SUB,I_SUB]=sort(aux2(1:i,2)); 
for ind=1:i 

aux3(ind,1)=I(I_SUB(ind-1+1)+1-1); 
aux3(ind,2:4)=aux2(I_SUB(ind-1+1)+1-1,1:3); % Because refers to A subset 
if ind>2 

if aux3(ind,3) - aux3(ind-1,3) > granularity % Define granularity 
mm=mm+1; % The index (mm) here changes for the rows in WITHIN 

the same subset 
end 	% i.e. for the rows with the 

end 
aux3(ind,5)=mm; 

end 
mm=mm+1; % The index here changes for the rows WITHIN different subsets. 
1=41; 

end 

end 
y=aux3; 

function y = tempor(f); 
% Tempor(f) 
% Creates a lookup table with indices the triplet Ws which form all possible combinations 
% of 3 points plus the serial index #. The result will have combin(m*n,4) rows. 
% 
% Dr. Fivos Hatzivasiliou - June 1995 
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echo off 
[m,n]=size(f); % The initial assumption is that m=n 
size_of=m*n; 
No_of triangles=combin(size_of,3); 
i=1; 
for x=1:size_of 

for y=x+1:size_of % 
for z=y+1:size_of % 

G(i,1:4)=[i x y z]; 
i=i+1; 

end 
end 

end 
i=i-1; 
%tim=fix(clock)-tim; % This timer gives the elapsed calculation time 
y=G; 

function y = triang12(f); 
% Triang12(f) 
%Creates a lookup table with indices the triangle coordinates which form all possible 
% combinations of 3 points. The result will have combin(m*n,3) rows. 

% Dr. Fivos Hatzivasiliou - June 1994 
echo off 
[m,n]=size(f); % The initial assumption is that m=n 
size_of=m*n; 
No_of triangles=combin(size_of,3); 
i=1; 
for x=1:size_of 

for y=x+1:size_of % 
for z=y+1:size_of % 

G(i,1:3)=[x y z]; 
i=i+1; 

end 
end 

end 
i=i-1 
%tim=fix(clock)-tim; % This timer gives the elapsed calculation time 
% pause 
aux1=ceil(G/n); % Calculation of the row index of each element 
aux2=G-(aux1-1)*n; %Calculation of the column index 
G(1:i,1)=aux1(1:i,1); 
G(1:i,2)=aux2(1:i,1); 
G(1:i,3)=aux1(1:i,2); 
G(1:i,4)=aux2(1:i,2); 
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G(1:i,5)=aux1(1:i,3); 
G(1:i,6)=aux2(1:i,3); 
% from this part on we try to arrange the triangles in a clockwise direction. 
for ind=1:i 

x(1:6)=G(ind,1:6); 
if x(1)==x(3) 
elseif (x(3)==x(5)) I ( (x(2)==x(4)) & (x(6)>x(4)) ) 

G(ind,3:6)=[x(5) x(6) x(3) x(4)]; 
elseif ( ((x(2)-x(4))/(x(1)-x(3)))*(x(5)-x(1)) + x(2) ) < x(6) 

G(ind,3:6)=[x(5) x(6) x(3) x(4)]; 
end 

end 
y=G; 

function y = triang13(f); 
% Triang13(f) 
% Creates a look-up table with indices the triangle coordinates which form all possible 
% combinations of 3 points. The result will have combin(m*n,3) rows. 
% This routine is an optimized version of the routine triang12.m above 

% Dr. Fivos Hatzivasiliou - Sept. 1995 
echo off 
[m,n]=size(f); % The initial assumption is that m=n 
size_of=m*n; 
No_of triangles=combin(size_of,3); 
G(No_of triangles,3)=0; 
i=1; 
for x=1:size_of 

for y=x+1:size_of % 
for z=y+1:size_of % 

G(i,1:3)=[x y z]; 
i=i+1; 

end 
end 

end 
i=i-1 
%tim=fix(clock)-tim; % This timer gives the elapsed calculation time 
% pause 
aux1=ceil(G/n); % Calculation of the row index of each element 
aux2=G-(aux1-1)*n; %Calculation of the column index 
G(:,1)=aux1(:,1); 
G(:,2)=aux2(:,1); 
G(:,3)=aux1(:,2); 
G(:,4)=aux2(:,2); 
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routine creates a new array 
eliminating all triangles for 

be different than 0, 

G(:,5)=aux1(:,3); 
G(:,6)=aux2(:,3); 
% from this part on we try to arrange the triangles in a clockwise direction. 
for ind=1:i 

x(1: 6)=G(ind,1: 6); 
if x(1)==x(3) 
elseif (x(3)==x(5)) 1 ( (x(2)==x(4)) & (x(6)>x(4)) ) 

G(ind,3:6)=[x(5) x(6) x(3) x(4)]; 
elseif ( ((x(2)-x(4))/(x(1)-x(3)))*(x(5)-x(1)) + x(2) ) < x(6) 

G(ind,3:6)=[x(5) x(6) x(3) x(4)]; 
end 

end 
y=G; 

function y = zero_fil(f); 
% Zerofil(f) 
% Given in (f) the 3 lengths that form the triangles, this 
% with the same or smaller dimension than f, (Nx3), by 
% which there is one (or more) zero lengths. 
% This routine is used to ensure that the 3 lengths must 
% i.e., a*b*c .ne. 0, otherwise there is no triangle. 

% Dr. Fivos Hatzivasiliou - June 1994 
echo off 
[m,n]=size(f); % The dim of the new array are <= dim(f) 
pro=(prod(f))'; 
ind=1; 
for i=1:m 

if pro(i) -= 0, 
C(ind,1:3)=f(i,1:3); 
ind=ind+1; 

end 
end 
y=C; 
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