
CRC REPORT NO. 96-005
May 1996

Ottawa

le work described in this document was sponsored by the Department of
National Defence under Task 1410-233.

TK
5102.:L,
0673e
#96-005

1+1

1 1C
Canad'à

Industry
Canada
CRC

A NOVEL APPROACH TO THE
APPLICATION OF HIGHER ORDER NEURAL

NETWORKS TO IMAGE CLASSIFICATION

by

Fivos Hatsivasiliou and Kenneth L. Sala

T1(
\ 0

C 13e

1 —o

C
- G

A Novel Approach to the Application of
Higher Order Neural Networks

to Image Classification

by

Fivos Hatsivasiliou and Kenneth L. Sala
Communications Systems Research
Antennas and Integrated Electronics

Industry
Cafl

Lintarv - Queen

elx)LiI 2 2 2012 AUG

BibnIcliouthèqt-
stre CanQaudeaen

The work described in this document was sponsored by the Department of
National Defence under Task 1410-233.

COMMUNICATION RESEARCH CENTRE, INDUSTRY CANADA
- CRC REPORT NO. 96-002

May 1996
Ottawa Canacrà

Abstract

The applicability of higher order neural networks to the classification of low resolution
imagery is investigated. A novel boundary detection and encoding methodology is
developed in order to significantly reduce the large number of third order interconnection
weights which must be found during the training stage of the neural network. The higher
order neural classifier can be trained by presenting only one sample image per class and
so enables rapid network learning with a minimal requirement for training data. An
extensive, MatLab compatible toolbox developed specifically to implement this approach
is described and documented along with the algorithms employed in the image boundary
detection and encoding process.

Resumé

L'applicabilité des réseaux neurals d'ordre élévé à la classification des images à faible
résolution est étudié. Une nouvelle méthodologie de détection des conditions limites et
d'encodage est proposée pour réduire substanciellement le grand nombre de poids
d'interconnection de troisième ordre que l'on détermine pendant le stage d'apprentissage
d'un réseau nouveau. Le classificateur neural d'ordre élevé peut apprendre en le
présentant un seul échantillon d'image et permet ainsi un apprentissage accéléré du réseau
avec un minimum de données. Un large utilitaire, compatible à MatLab, a été développé
pour l'éxecution de cette approche et est décrite et documentée avec les algorithmes
employés pour la détection des conditions limites et les procédures d'encodage.

Executive Summary

This report summarizes research conducted at the Communications Research Center from
1993 to 1995 concerning the applicability of higher order neural networks to the
classification of low resolution imagery. In order to significantly reduce the large number
of third order interconnection weights which must be found during the training stage of
the neural network, a novel boundary detection and encoding methodology is developed.
The higher order neural classifier can be trained by presenting only one sample image per
class and so enables rapid network lea rning with a minimal requirement for training data.
An extensive, MatLab compatible toolbox developed specifically to implement this
approach is described and documented along with the algorithms employed in the image
boundary detection and encoding process.

Table of Contents

1. Introduction 	 1
2. Image Classification using Higher Order Neural Networks 	 2

3. Experimental Design and Results 	 6
3.1 One Time Processing of Image Plane Arrays 	 8

3.2 Image Processing 	 12

3.3 Employment of Neural Networks 	 23

4. Conclusions and Recommendations 	 35

Appendix: Listing of the MatLab M-functions 	 A4 - A-17

References 	 REF-1 -REF-5

vii

1. 	Introduction

In the preponderance of environments, both military and civilian, in which some form of
imaging technology is used to provide intelligence through automated target and scene
classification, the observer has little if any control over the degree of image variability or
degradation arising from various types of geometric transformations (scaling, object position,
viewing angle) or from the presence of noise and occultation in the imaging process. The ability,
therefore, to recognize and classify an object independently of such variations in the image
presents one of the most critical and challenging aspects in the design of an automated target
recognition system [2,7,20,21,22,32,35,36].

The application of various types of neural networks to image classification has become
one of the principal thrusts by which researchers are attempting to develop automated target
recognition systems, particularly within military contexts involving, for example, synthetic
aperture radar (SAR) imagery, visible and infrared photography, and sonar signal classification
(several excellent examples [5,6,7,13,21,32,33,35,37,49] of this type of research may be found in
the 1995 Special Issue on Automatic Target Recognition, Neural Networks, vol. 8, no. 7/8; see
also Roth [36], Bachmann et al [1], Dudani et al [10], Smith and Wright [42]). There are several
advantages to the use of neural networks for pattern recognition and image classification with the
principal ones being: (a), artificial neural networks possess the ability to "learn" classification
criteria not necessarily known a priori by adaptively training the network on known examples;
(b), neural networks are parallel processing systems and so offer the potential for real-time, in-
line automated target classification in the case, e.g., of high resolution, land SAR imagery; (c),
neural networks are distributed processing systems and thus exhibit, in general, excellent fault
tolerance (see the reviews by Rogers et al [35] and Roth [36]).

The most conunon approach in the applications of neural networks to image classification
consists of two stages; (1) a feature vector representing a specific image is extracted and, (2),
using the feature vector as its input, a trained neural network classifies the image (i.e., the feature
vector) as belonging to some particular class of objects. Although it is possible for neural
networks to learn various types of invariance strictly through the training process, it has been
found by many researchers that such an approach is impractical in terms of training times and
amount of training data required and, more importantly, is ineffective in arriving at trained
networks which are accurate and robust in their tolerance to image variations [2,4,22,35,36,38].
The almost universally preferred approach has been to derive image features which are explicitly
invariant to various types of image variability such as the scale, position, or in-plane angle of the
object in the image plane [2,3,4,7,14,15,17-20,26,27,39,46,47,50]. One such approach, in
particular, is based upon the calculation of 'moment invariants' [14,15] using different types of
basis functions for the feature extraction and work on this technique will be presented in a
separate report.

An alternative and fundamentally different approach to incorporating invariance into
neural network image classification involves the use of higher order neural networks (HONN' s)
[2,17,28,30,34,40,41,43-45]. Succinctly, such networks employ an input distribution layer which

1

combines more than one image pixel (two in a second order network, three in a third order
network, etc.) in such a way that, through the imposition of symmetries in the network weights,
the subsequent processing by additional layers of artificial neurons remains invariant to certain
types of geometric variations in the input image. In this manner, a HONN builds the desired
invariances directly into the network architecture and so avoids entirely the need for any form of
feature extraction, an operation which is frequently computationally very intensive.

This report describes research performed at the Communications Research Center (CRC)
between October, 1993, and December, 1995, concerning the applicability of higher order neural
networks (HONN's) to the identification and classification of synthetic aperture radar (SAR)
imagery. A novel approach involving image boundary detection and encoding in combination
with a third order neural network was developed and tested. The implementation of this
technique led to the development of an extensive HONN, MatLab-compatible toolbox which,
along with several image array processing algorithms, are described and documented in this
report.

The second part of this report gives a general overview of the theory and limitations of
HONN' s and their applicability to image classification. The third part, which is the most
extensive, describes in some detail the research performed, the various algorithms developed, and
the implementation of the MatLab functions. Also described is the validation of the proposed
network topology and the boundary encoding methodology using a classical recognition problem.
The final part of the report summarizes the conclusions and offers a brief discussion of the
problems and the drawbacks encountered with the present approach along with some suggestions
concerning future directions for this research. An appendix lists the annotated MatLab functions
written to implement the present work and includes additional software documentation for the
pre- and post-processing algorithms.

2. 	Image Classification using Higher Order Neural Networks

A schematic representation of a conventional, three-layer, feedforward neural network (a
multilayer perceptron) is shown in figure 2.1. The initial layer to the network serves only as a
distribution layer which, in the example shown of a fully connected (first order) network, simply
distributes each input value x; to each and every neuron in the first (processing) layer of the
network. By convention, the weights wii are considered 'attached' to this first processing (input)
layer, the weights v1 to the hidden layer, and the weights uii to the network's output layer.
Although this type of neural network can be trained using any of several learning algorithms, the
predominant technique in use at present is the backpropagation algoritlun along with several
variations and refinements to the original algorithm [381

A higher-order neural network (HONN) [8,30,34,43-45] differs from a conventional, first
order network chiefly in the role played by the input distribution layer. Specifically, the
distribution layer in a HONN combines input values into pairs, triplets, etc. of values,

2

Distribution
Layer

Input
Layer

Hidden
Layer

Output
Layer

Processing Layers

Figure 2.1 : A three layer, perceptron neural network
with a first order distribution layer.

x
1

X
2

X
3

X
4

Figure 2.2 : 	A strictly third order neural network with one
processing element and N 2 = 4.

3

(2.1)

xixixk.....xt, before distributing them to the network's first processing layer. The ith neuron in the
first processing layer will produce an output given by

yi = e(E wiaj k 	 k 	J... , 	.

where 0 is some non-linear squashing or threshold function (typically a sigmoid, tanh, or
threshold function) and where the we._ define the interconnection weights. A general nth order
HONN will contain all terms as indicated in eq. (2.1) up to and including the nth order term. It is
important to note that a HONN is able to provide nonlinear pattern discrimination using only one
processing layer and this is a configuration often employed in practice. First order neural
networks must have at least one hidden layer in order to provide the same degree of generality in
their ability to discriminate between arbitrary pattern classifications. Single layer, first order
networks are able only to classify linearly separable problems. This restriction was recognized
very early in neural network research at a time when no algorithm was known for training
multilayer, first order neural networks and higher order networks were considered impractical
owing to the combinatoric increase in the number of weights with input dimension as outlined
below (Minsky and Papert [29]).

In applications involving HONN' s, it is more common to consider only strictly nth order
HONN' s, i.e., a HONN which contains only the nth order term in equation (2.1). A strictly third
order HONN, for example, combines only triplets of input values according to

Yi = e(E; EkI l W ijk i XiXkX1) 	 (2.3)

as illustrated in figure 2.2. With a third order HONN, it is possible to achieve invariance to
scale, position, and rotation of the image [30,34]. This is accomplished by imposing the
following condition: the interconnection weights wijki corresponding to triplets of pixels ijk
which define similar triangles in the image plane are assigned equal values. The property of
similarity between triangles defined by (non-collinear) points is invariant to any change in scale,
translation, or rotation of the triangles. An example of such similar triangles common to a pair of
images, one of which is a scaled, translated, and rotated version of the other, is shown in figure
2.3. The convention described by Reid and Spirkovska [34,43-45] is adopted for the ordering of
the angles, i.e., the angles are ordered with the smallest angle first and the next two angles listed
in the order in which they would be encountered if visited in a clockwise direction. Thus the
three triangles represented by the angles (15 45 120), (45 120 15), and (120 15 45) are all
connected to the processing node with the same weights (associated with the (15 45 120) triplet)
whereas the three triangles with angles (15 120 45), (45 15 120), and (120 45 15) are all
connected to the processing node with the same weights (associated with the (15 120 45) triplet).
These two sets of triangles are mirror images of each other and thus, by treating them as distinct,
such a HONN does not implement mirror invariance. In practice, since the image plane is
represented by a finite number of pixels, the invariance achieved in this manner is approximate;
perfect invariance is approached only as the pixel size, for a fixed image, is decreased. A major
advantage of a third order HONN is that, since the network's output is unchanged by scale,
translation, and rotation of the image, it is necessary to use only a single view of each object

4

8
16
32
64
128
256
512
1024
2048

N N2 choose 3

4.17x104
 2.75x106

 1.78x108
 1.14x1016

 7.33x10"
4 .69x10"
3.00x10"
1.92x1017

 1.23x10"

Figure 2.3: 	The similarity of triangles is preserved when an
image is scaled, translated, and/or rotated.

Table 2.1: 	The variation of "N 2 choose 3" with N.

5

defining a class in order to train the network. This minimizes the data requirement for training
and also greatly shortens the training times of the network itself [34].

As attractive as the above capabilities of a HONN are, there exists one major
disadvantage to HONN' s, namely the greatly increased number of weights required in
comparison to the conventional case of a first order neural network. For a third order HONN and
an image plane of NxN pixels, the maximum number of possible combinations of three pixels is
"N2 choose 3" which is given by the binomial coefficient

[

N2) (N2 ! N2 (N2 — l)(N2 — 2)

3 3!(N2 — 3)! 6

Note that the leading term in this expression is N6 (it would be N4 for a second order network and
N2 for a first order network). Table 2.1 shows the value of "N2 choose 3" for several different
values of N. Clearly, storage requirements alone would prohibit the use of HONN's for values of
N 128 or greater. It should be noted, however, that these numbers represent a maximum
amount, corresponding to the use of every pixel in the NxN image plane. In practice, only a
subset of this plane is used (i.e., pixels with non-zero values). It is then possible to train the
weights wiiki by first setting all of them to zero and then training only on those weights which
correlate with three non-zero pixels in the image plane. Weights corresponding to pixel triplets
having at least one zero value will remain zero and can be ignored a priori, thus somewhat
reducing the number of weights which need to be determined.

Much of the research to date involving HONN's has concentrated on finding practical
methods to reduce significantly the number of weights that must be calculated and trained. Some
of the methods proposed include coarse gridding [45], grouping of similar triangles by limiting
the resolution of the angle measurements [12,34,43], pruning of triplet sets [34,40,43], and the
use of image boundaries [16,24,25,51]. In the present work, we pursue the latter approach using
boundary representation of the images but go even further in that the number of boundary points
is reduced by using algorithmic encoding for regular boundary lines. The next section provides
more details of this approach.

3. 	Experimental Design and Results

The overall design and methodology adopted in the present approach to combining image
boundary detection and encoding with a third order neural network classifier is outlined in the
flow chart representation shown in figure 3.1. There are two distinct parts to the overall process
of classifying a given test image. The left-hand part of the flowchart in figure 3.1 refers to a
processing sequence which is a one-time only calculation, i.e., for a given resolution NxN, it is

(2.3)

6

Sort the angle triplets
preserving the order.

Array: sorting3

Calculate the Look-Up
Tables.

Array: indexing

Correspondence

Create the Links

7 Actual
Image

Smoothing
Algorithm
salt_pep

vir

Perimeter Detection
and Encoding.

perim, peri con

Creation of Feature
Vector

feat vec

Backpropagation
Neural Networic

trainbp
trainbpx
trainlm

m
ag

e
P

ro
ce

ss

stù o_

N x N resolution.

Create all the possible
triangles.

Arrays: trian,distan3

O
ne

 T
im

e
P

ro
ce

ss
 Calculate the angles.

Array: angles3

o

Figure 3.1 : 	Process flowcha rt for the sequence of array
calculations.

7

necessary to calculate and sort the angles once and only once and then to store these results in a
lookup table. Thereafter, the required calculations are as outlined in the right-hand part of the
flowchart which refers to a specific test image. Several specific algorithms have been developed
for each of the flowchart blocks since each block represents a complex operation and these are
now described in sequence.

3.1 One Time Processing of Image Plane Arrays

The one time array calculations for a given resolution NxN of the frame under
classification consist of determining a set of 5 arrays calculated in an ordered sequence. These
arrays (for any given resolution in the array segm) have been given the following names: trian,
dist, ang, sort, and index. All of the arrays corresponding to a given resolution NxN are
grouped into one file under the name higherNx.mat. For example, the file higher6x.mat groups
together the arrays calculated for a 6x6 resolution. The array segm refers to the resolution itself
for which the HONN will be created. In this case, for demonstration purposes, a 6x6 array has
been chosen. In the course of this work, HONN' s have been constructed for resolutions up to
11x11. The only limitations are the pragmatic ones of memory requirements and processing
time; in theory, all of the algorithms developed in this project can operate for an unlimited range
of resolutions. An example (N=6) of the initial array segm is given in figure 3.2. The next step
consists of finding all the possible triangles that can be formed using pixels from this array.

Creation of the possible triangles trian=triang/3(segm).m

The number of all possible triangles is given by the function combin(n,3), where
n=NxN=36 for the example case. The number of rows of the trian array will be the number of
different combinations of 36 taken 3 at a time with no repetitions as given by eq. (2.4), i.e., 7140.
The function triang13(f).m creates a lookup table with indices which correspond to the triangle
coordinates formed from all possible combinations of 3 points. It is similar to triang12.m but
with the implementation of speed optimization. The format of the result is shown in figure 3.3.
The convention used for the scanning pattern is to proceed clock-wise starting from the left-
upper pixel of the input array, continuing with the first row, followed by the 2nd row, etc.

Calculation of the Distances dist=distan3(trian).m

The next step consists of the calculation of the lengths of the triangle sides. The function
distan3(trian).m is used and the format of the output is a three-column array where the first
column gives the length between the 1st and 2nd vertex of the triangle, the 2nd column gives the
length between the 2nd and 3rd vertex of the triangle, and the third column gives the length
between the 1st and the 3rd vertex. This routine is essentially the same as distan(f) with the only
difference lying with the input format which now follows the above convention and is faster than
distan2 due to the speed optimization implemented. The output of this function (the array dist)
for the 6x6 example is shown in figure 3.4.

8

i.e. the triangle that formed by
the points with coordinates
(1,1), (1,2) and (1,6).

o 	o 	o 	o 	o 	o
o 	o 	o 	o 	o 	o
o 	o 	o 	o 	o 	o
o 	o 	o 	o 	o 	o
o 	o 	o 	o 	o 	o
O 	o 	o 	o 	o 	1

Figure 3.2: Example of initial array segm for N = 6.

1 	1 	1 	2 	1 	3
1 	1 	1 	2 	1 	4
1 	1 	1 	2 	1 	5
1 	1 	1 	2 	1 	6

3 	1 	3 	2 	6 	6
3 	1 	3 	3 	3 	4
3 	1 	3 	3 	3 	5

Figure 3.3: 	Lookup table format for N = 6.

	

1.0000 	1.0000 	2.0000

	

1.0000 	2.0000 	3.0000

	

1.0000 	3.0000 	4.0000

	

1.0000 	4.0000 	5.0000

	

1.0000 	1.4142 	1.0000

Figure 3.4: 	Example of the output array dist for N = 6.

	

0 	 0 	3.1416

	

0 	 0 	3.1416

	

0 	 0 	3.1416

	

0 	 0 	3.1416

	

0.7854 	1.5708 	0.7854
0.785e 	0.7854 	1.5708

Figure 3.5: Example output array ang for N =6.

9

cos C=
a2 b2 c2

2ab
(3.1)

Calculation of the included Angles ang=angles3(dist).m

In this step, the function angles3(dist) creates an array with the angles computed from the
array dist, the three lengths that form the triangles. The result is an array with the same
dimension as dist. The formula used is

The format for the sequence of the angles is the same as described above for the function dist3.
This function incorporates a provision for the case where a side may be of zero length in order to
prevent the generation of Matlab NaN or "not-a-number" results. This is the reason for the
provision of the employment routine of zero _fil. The output of the function angles3(dist) for the
example N=6 is the array ang with the format shown in figure 3.5.

Sorting of the Angles sor=,sorting3(ang).m

‘i 	 as
The term 'granularity' is introduced in this function and refers to the accuracy with which

t angles will be considered different or equal. The underlying reon is that we deal with
p elized (i.e., sampled) images, consisting of discrete elements, and a subset of those pixels
represents the vertex of e angles formed by the above functions. « If the same image is scaled
down, even without rot on, the scaled image will be represented by a smaller set of pixels and
thus, owing to the discrete nature of image, the angles which are formed by the corresponding
pixels may differ. Similar results can also follow from a slighted rotated (e.g., by 0.001 rad)
representation of the initial image. Figures 3.6 and 3.7 illustrate the nature of the problems that
may be encountered. Both sides of these figures represent an analysis of a 16x16 image. The left
side shows a 2x14 linear bar aligned in parallel with the sensor (e.g., a camera) while the right
side shows the kind of distortion which can be introduced by rotating the image.

For the purposes of this research, the granularity has been adjusted through
experimentation to 0.001 rad. The higher the image resolution, the lower the granularity can be
set. However, at the same time, the lower the granularity the more the calculated features will be
different and the more discriminating the classification procedure can be, albeit at the cost of a
noticeably increased processing load.

The function sorting3(ang) has as its input the ang array with all the possible angles that
can be created at the given resolution as calculated in the above steps. In the first stage,
sorting3(ang) operates on each row (row level only) and rearranges the angles that are given in
every row in ang in such a way that the first is the smallest angle of the triplet but, at the same
time, the order of the angles is preserved, i.e., (a,b,c)=(b,c,a)=(c,a,b). Numerically, a triplet
consisting of the angles (60,30,90) will become (30,90,60) and not (30,60,90). The reason for
the differentiation between the two is that they represent different features and, in the case where
only one is encountered with the convention as described, the other will not be encountered as
arising from any rotation, translation, or scaling transformation. The only way in which it can be
encountered is through a mirroring. Mirroring invariance, though, is here considered as
undesirable since it is not encountered under normal circumstances. In the second stage, the
function sorting3(ang) rearranges the array created in the first stage in such a way that it groups

10

20

00

1,

li

0.54

0
20

20
0

20

Figure 3.6: 	Example of rotation induced distortion on a
16x16 image grid.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 	 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 0 0 I I I 1 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 II 	 0 0 0 0 0 0 0 0 0 0 0 I I 	I 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 	 0 0 0 0 0 0 0 0 0 1 	I 1 	I 	I 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 I 	I 	I 	I 	I 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 I I I I 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 1 	 0 0 0 0 0 0 0 I I 1 I 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 	 0 0 0 0 0 0 I 	I 1 	I 1 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 I I I 1 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 1 I I I 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 1 I 	 0 0 0 0 0 I I 1 I 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 I 1 I 0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 	 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.7: 	Binary valued arrays corresponding to figure 3.6.

11

all the triplets that have the same smallest angle into subgroups. In the next phase, it operates on
each subgroup in order to rearrange the elements of the subgroup so that the triplets which have
the same second angle are grouped together in ascending order. Figure 3.8 shows the format of
the output array sor. The last element of the last row of the result sor (in the example, the
number 224) gives also the number of different features that may be encountered since it
represents the number of groups that all the triplets can form with the imposed granularity.

Lookup Table Calculation index=indexing(sor)

The function employed in order to calculate the lookup table, for the given resolution, is
indexing.m. This function creates a 2-column table as shown in figure 3.9. The first column is
sorted and contains the triplet angle numbers while the 2nd column gives the corresponding
feature number. For the example given, the total number of triplets is 7140. In the second
column, the feature number represents simply the number of the group to which this particular
set belongs.

Batch Processing Operation segm_bat(segm)

All of the above matrices can be generated through a batch processing mode implemented
with the function segm_bat(segm). Given in segm the segment array (i.e., a 10x10 array),
segm_bat(segm) calculates each of the five necessary arrays in order to proceed with the HONN
training.

3.2 	Image Processing

The size of the feature vector for a given resolution is known after the creation of the
lookup table as described in the one time array processing section. The size of this vector is also
affected by the defined granularity, i.e. a larger feature vector will result when the granularity is
set equal to 0 as compared to the case of a nonzero value of granularity since, in the latter case,
comparable sets of triangles will be grouped under the same feature. For example, in the case of
a 4x4 array, with 560 possible combinations of the pixels taken 3 at a time, only 38 triplets of
ordered angles (groups) can be created and consequently the feature vector will be a 1x38 column
array. For test purposes, a 6x6 array will be used for which the number of features have been
found to be 224. The test images will be the letters c and t which constitute a standard reference
test pattern as commonly employed in the relevant literature[38]. The binary patterns
representing these images are given in figure 3.10.

Smoothing Algorithm

The first step in the processing of the target image is the employment of a "salt and
pepper" algorithm. The underlying idea is to specify a Boolean function on a neighborhood
centered at a pixel p and to assign to this pixel a value of either 1 or 0 depending on the spatial
arrangement and binary values of its neighbors. The 3x3 neighborhood mask is shown in figure
3.11. This algorithm is called "salt and pepper" because (a), it eliminates isolated 1's, and, (b), it

12

o
o
o
O
O

0 	3.1416 	1.0000
0 	3.1416 	1.0000
0 	3.1416 	1.0000
0 	3.1416 	1.0000
0 	3.1416 	1.0000

1.0000
2.0000
3.0000
4.0000

35.0000

1.0e+003 *

1
1
1
1

87
27

1

1
2
3
4

5245
5246
5247

16
28

1
1
1
1
1

5249
5250

7136
7137
7138
7139 -

 7140

4.3250
4.6460
4.9420 Wieanee
5.4950
0.2520
1.5590

3.8380
4.1960
4.4840
4.5850
4.7950
4.8840

0.0001
0.0001
0.0001

0.0001
0.0001
0.0001

0.0010
0.0010
0.0010
0.0010
0.0010
0.0010

0.0029
0.0029
0.0029

0.0029
0.0030
0.0030

0.0010
0.0010
0.0010
0.0010
0.0010
0.0010

	

0.0001 	0.0090

	

0.0001 	0.0090

	

0.0001 	0.0090

	

0.0001 	0.0090

	

0.0001 	0.0100

	

0.0001 	0.0100

	

0.0011 	0.2240

	

0.0011 	0.2240

	

0.0011 	0.2240

	

0.0011 	0.2240

	

0.0011 	0.2240

	

0.0011 	0.2240

The first element (5248) is
the serial index that this

triplet had in the input array
(ang), i.e., this triplet is the

5248th row of ang. The last
element (9) represents the

unique group to which this
triplet belongs. We have

more than one triplet with
the same angles, but all of
them are characterized by

this number (9).

Figure 3.8: 	Example of the output array sor for N = 6.

The same triplet # is used
here for demonstration, as
in figure3.8: Format of the

output (array sor).

Figure 3.9: Example of the lookup table created by indexing.

13

1 	1 	o 	o 	o 	o 	1 	1 	1 	o 	o 	o
1 	o 	o 	o 	o 	o 	o 	1 	o 	o 	o 	o
1 	1 	o 	o 	o 	o 	o 	1 	o 	o 	o 	o
o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o
o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o 	o

Figure 3.10: Binary values arrays representing the letters 'C' and 'T'.

a 	b 	c
1-1,j-1 	i-1, j 	i-1, j+1

d 	p 	e
i, j-1 	i, j 	i, j+1

f 	g 	h
i+1,j-1 	i+1, j 	i+1, j+1

Figure 3.11 : Neighborhood mask for the 'salt and pepper'
smoothing algorithm.

14

—1 0 11

(x)* —2 0 2

_-1 0 1 (x)*[

—1 —2 —1 -

 0 0 0

1 	2 	1_
S(x) = (3.4)

eliminates small 'bumps' along straight-edge segments. For each pixel the following expression
is evaluated

B= pi(a+b+d).(e+g+h)+(b+c+e).(d+f +g)] 	 (3.3)

In order to avoid boundary condition problems at the edges, the test image is framed in an
(N+2)x(N+2) array where the perimeter extra columns and rows are filled with 0's. The MatLab
function written for this function is salt_pep(C,t), where C is the array and t represents a
threshold value used to binarize the array C. Further parameter information is given in the
following sections dealing with the perimeter detection algorithms.

Perimeter Detection

It has been proven that, for feature-based identification using HONN' s, it is sufficient to
deal with the features of the perimeter points only [3,9,16,23-25,30,43-45,51]. For the detection
of boundary points, there are several techniques in use, mainly based on local array operators
(usually 3x3). Figures 3.12 and 3.13 illustrate a 'test' image consisting of a 4x4 square of value
'1' placed upon a 16x16 image grid which will be used in the following approaches to boundary
detection for illustration puposes

A representative, local array operator is the Sobel operator given by the following
equation:

where x is the 3x3 array representing the image and where the operator is applied locally on
every pixel. Figures 3.14 and 3.15 show the edge detection result using the Sobel operator on the
test image of figure 3.12. An alternate set of operators are those proposed by Plessey
Semiconductors and implemented in hardware by the same company (PDSP 16401 2-D Edge
Detector). This set consists of four operators and the result is the largest of the four convolutions
of the input image with each of the four operators:

	

Horizontal 	 Vertical
1 	1 	1 	 10-1

 1.5* 0 	0 	0 	 1.5*[1 0 —1

	

_-1 —1 —1 	 1 0 —1

(Diagonal) 450 	 (Diagonal) -450

1 0 —1 	
[1 —1 —2
1 0 —1

1 2 1 	0

_O 	j 	 I 2 1 	0

15

00
00
00
O 0
00
00
00
00
00
00
O 0
O 0
00
O 0
00
00

Figure 3.12: Test image for boundary detection algorithms.

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
O 0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0 0
O 0 0 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 0 0
O 0 0 0 1 1 1 1 1 0 0
0000 	0 0 0 0 0 0
0000 	0 0 0 0 0 0
0000 	0 0 0 0 0 0
O 000 	0 0 0 0 0 0
0000 	0 0 0 0 0 0
0000 	0 0 0 0 0 0
0000 	0 0 0 0 0 0
0 000 	0 0 0 0 0 0
0000 	0 0 0 0 0 0

Figure 3.13: Binary array representation for the test image of
figure 3.12.

16

Figure 3.14: Sobel operator boundary detection for the test
image of figure 3.12.

0 0 0 0 0 0 0
2 3 4.54.54.5 3 2
3 4 4.54.54.5 4 3

4.54.5 0 0 0 4.54.5
4.54.5 0 0 0 4.54.5
4.54.5 0 0 0 4.54.5

4 4.54.54.5 4 3
3 4.54.54.5 3 2
0 	0 	00
0 	0 	00
0 	0 	Go
0 	0 	00
0 	0 	00
0 	0 	00
0 	0 	00
0 	0 	0 0

Figure 3.15: Binary array representation of the boundary
detected image of figure 3.14.

17

(3.7)

(3.8)

The above operators detect vertical, horizontal, and diagonal edges while the factor 1.5 is used to
offset the differences between points lying on horizontal or vertical axis and points on a diagonal
edge (1.5 is the approximation used in hardware for •Nri). Results for the application of the
Plessey operators on the test image are shown in figures 3.16 and 3.17.

Due to the nature of the relatively low resolution images used in this study, such
algorithms are considered to be inappropriate in the present case since such edge detection
operators are essentially differential operators and tend to produce a "double edge" phenomenon.
In a high resolution environment, this may be acceptable but is highly undesirable when the
image resolution is low.

An algorithm much more suited to low resolution images has been developed based upon
the examination of a 3x3 image area and is given in figure 3.18. The truth-table given in figure
3.19 shows under which conditions the pixel (x,y) (with intensity F(x,y)) is considered to be a
point on the perimeter. One further condition for this point to be a point of the perimeter is to
have an intensity value larger than a defined threshold which, in the case of a binary image,
would be F(x,y)=1. The following function can be derived from this table:

Fper = à,-c-ci • (eh + egh)+ -àbcd • (eh + egh) + alic-d • (eh + egh) + abcd(e—gh + egh) 	(3.6)

Simplifying leads to

'per =e•h-b•d <=> Fp, = ehbd +-6 J141

and, with the threshold condition that F(x,y) =1, the final equation can be derived as

Fp„= F(x,y)AND{NOT(e) OR NOT (b) OR NOT (h) OR NOT(d)}

The corresponding M-function that implements the above is perim(D. The result of using this
edge detection algorithm on the test image of figure 3.12 is shown in figures 3.20 and 3.21.

Perimeter Encoding

A further algorithm has been developed in order to "encode" the points of the perimeter.
This "perimeter encoding" reduces the number of the points from which features of the images
need to be extracted in such a manner that, as proved in this work, the remaining points after the
encoding can produce all the features necessary for pattern classification. The function for the
encoding has been derived using the same neighborhood 3x3 area as shown in figure 3.22.

We encode the points of the perimeter that constitute corners and we reject the perimeter
points that lay on contiguous, straight line segments of the perimeter. Under the above
assumptions and using a table similar to that shown in figure 3.22, the corresponding function
that performs this operation has been found to be

Éenc_ per = F(x, y) • ((a • i)+ (c • g)+ (de) + (bh)). 	 (3.9)

It should be noted here that the function as described applies to the array that represents the
perimeter points only and not to the initial image. The corresponding M-function that

18

Figure 3.16: Plessey operators boundary detection for the test
image of figure 3.12.

	

0000 	0 0

	

1.4 3.2 4 4 	3.2 1.4

	

3.2 4.2 4 4 	4.2 3.2

	

4400 	4 4

	

4400 	4 4

	

4400 	4 4

	

3.2 4.2 4 4 	4.2 3.2

	

1.4 3.2 4 4 	3.2 1.4

	

00 	0

	

00 	0

	

00 	0

	

00 	0

	

00 	0

	

00 	0

	

00 	0

	

00 	0

Figure 3.17: Binary array representation of the boundary
detected image of figure 3.16.

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

19

a 	b 	c

	

(x- 1,y- 1) 	(x- 1,y) 	(x- 1 ,y+ 1)

d 	 e

	

(x,y- 1) 	f(x,y) 	(x,y+ 1)

g 	h 	i

	

(x+ 1 ,y- 1) 	(x+ 1 ,y) 	(x+ 1,y+ 1)

Figure 3.18: The 33 boundary detection mask developed for
low resolution images.

abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd 	abcd
eghi 	0000 	0001 	0010 	0011 	0100 	0101 	0110 	0111 	1000 	1001 	1010 	1011 	1100 	1101 	1110 	1111
0000 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
0001 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
0010 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
0011 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
0100 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
0101 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
0110 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
0111 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
1000 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
1001 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
1010 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1
1011 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1 	0
1100 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
1101 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1
1110 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1 	0
1111 	1 	1 	1 	1 	1 	0 	1 	0 	1 	1 	1 	1 	1 	0 	1 	0

Figure 3.19: The 'truth table' giving the 256 possible combinations
corresponding to the detection mask given in figure 3.18.

20

Figure 3.20: The boundary as detected by the array mask of
figure 3.18 for the test image of figure 3.12.

0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 1 1 1 1

o
o
o
O
o
o
o
O

Figure 3.21 : Binary array representation of the boundary
detected image of figure 3.20.

o

21

701%."1111,

bee
-

■•■••■■■••

a 	b 	c

	

(x- 1 ,y- 1) 	(x- 1 ,y) 	(x- 1 ,y+ 1)

d 	 e

	

(x,y- 1) 	f(x,y) 	(x,y+1)

g 	h 	i

	

(x+ 1 ,y- 1) 	(x+ 1 ,y) 	(x+ 1 ,y+ 1)

Figure 3.22: The 3x3 array for encoding of the boundary
detected by the array mask of figure 3.18.

00

20

Figure 3.23: The test image used to demonstrate the
combination of boundary detection and encoding.

Figure 3.24: The boundary detected (left) image and the boundary encoded
image (right) corresponding to the test image of figure 3.23 and the
detection/encoding array masks of figures 3.18 and 3.22.

22

implements the above is peri_con(f). An example of this operation of perimeter encoding is
given using a 16x16 unity array shown in figure 3.23 is given by figures 3.24.

Applying the perimeter detection function only, we get the left pattern of figure 3.24
(with 16 pixels) while, applying the additional perimeter encoding scheme on this pattern, we get
the right pattern with 4 pixels that can characterize the initial image. It should also be noted here
that, as a guideline, the encoding technique is practical only when it is applied to images with a
size of at least 10x10. Otherwise, for lower resolutions, it would cause significant reduction to
the spatial information contained.

Calculation of the feature vector feat_vecX=feat(X,sor,index)

For the calculation of the feature vector for a binary image, the input arguments for the
function feat_vec consist of three arrays. The first one, X, is the binary image resulting from the
application of function perim (or peri_con if the resolution allows the employment of this
function). The other two arrays, sor and index, are calculated for the particular resolution in this
processing stage. The function feat_vec creates the links between the particular sets of triplets
that can be formed from the pixels (with value 1) in the image and the corresponding feature
number that has been assigned in this combination. For the letters c and t, the corresponding
feature vectors are the variables feat_cl and feat_t1 (included in the higher6x.mat) and are
illustrated in figure 3.25.

3.3 Employment of Neural Networks

The proposed network consists of X binary inputs and Y outputs. X is the number of
features that have been found in the array processing stage while Y is the number of classes to be
classified. For the T-C problem in a 6x6 analysis, the number of inputs is 224 and the number of
outputs 2 (since the result might be either C or T). A general, three layer (i.e., one hidden layer)
feedforward neural network was given earlier in figure 2.1. Note, however, that the number of
layers actually used is dependent upon the specific problem as will be explicitly indicated below.
In all cases, due to the nature of the desired outputs, the output transfer function (i.e., for the
output layer) used was exclusively the log-sigmoid function illustrated in figure 3.26.

Networks trained by the backpropagation algorithm were used throughout the course of
this work and, as will be shown, give acceptable solutions. However, the backpropagation
training algorithm can lead to a local rather than a global error minimum. If the local error
minimum is not satisfactory, a network with more neurons and/or layers may perform better. For
comparison purposes and solution optimization, the training of the networks has been performed
employing the three different techniques offered by the Matlab neural network toolbox, namely:
trainbp, trainbpx, and trainlm. Trainbp employs the "classical" backpropagation algorithm
with the assorted problems of local dimima and slow training; the two other algorithms are
improved variations of the classical one. Trainbpx employs backpropagation with the use of
momentum and an adaptive learning rate l Trainlm trains the network with the Levenberg-
Marquardt algorithm and is much faster than the othe two methods. However, the trainlm
approach incurs memory limitation problems since it uses much more memory, typically as much
memory as trainbp multiplied by S*Q where S is the number of neurons in the output layer and

23

Both arrays have
224 rows.

feat_t1
1
0
0
0

1

0
0

feat_cl =
1
0
0
0
0

1

0.6

0.4k

0.2

1 	o
o 	I.

T=
The first coltunn refers to

the letter 't' while the
second column refers to

the letter 'c'.

Figure 3.25: The feature vectors corresponding to the images
'C' (left) and 'T' (right).

0.8

Upper limit=1
Lower imit

Figure 3.26: The sigmoid transfer function used for the
processing neurons.

Figure 3.27: Array of target vectors for the 'T-C problem'.

24

Q is the number of training vectors in the training set. The function initff is used for
initialization of the network weights and biases while the function simuff is used to simulate the
trained network. For further documentation and details for any of these functions, the reader is
referred to the MatLab neural network toolbox user's guide.

T-C Problem Solution with HONN

The T-C problem has been presented previously and refers to the invariant discrimination
of the letters C and T in a 6x6 resolution. The number of inputs is 224 and the number of outputs
is 2. For this problem, a single-layer network will be used. T is the array with the target vectors
shown in figure 3.27. The variables weightl and biasl are the initial weight and bias used and
were calculated with the function initff as indicated in figure 3.28. The function trainlm with
parameters given by figure 3.29 was found to be the fastest for this particular problem. It should
be noted that the matrix P used as input is different than the P used in the initialization stage (i.e.
the calculation of the initial weights and biases). The format of the P (as has been also retained
in the higher6x.mat files) is shown in figure 3.30. The set training goals were attained with
trainlm in only 5 epochs as evidenced by figure 3.31. In contrast, training with the trainbp
algorithm was unsuccessful due to the trapping of the function in a local error surface as
indicated by figure 3.32. In both cases, the training was conducted with only one training input,
the matrix P (i.e. the actual feature vectors of the letters c and t). This is the unique characteristic
of the HONNs. The invariance is encoded in the architecture so it is not necessary to present to
the network various views of the same object.

After the training of the NN, the validity of the methodology can be verified using the
patterns shown in figure 3.33. The t 1 is the initial representation for letter t, the t_en1 is a scaled
and translated t, while the t_45 is a 45 degrees rotated and translated t. Corresponding names
have been given to the representations of c. The function simmuf is used to simulate the network
performance with the results given in figure 3.34.

Alphabet Recognition using HONN

The next experiment was to verify the validity of the methodology using a more accurate
representation of the letters and, ideally, to be able to recognize all the 26 letters of the alphabet.
While for the T-C problem there are references in the literature, for the full alphabet problem
there is no reported success with HONN's. The way in which the problem has been approached
is to represent all of the letters of the alphabet with a 7x5 resolution as can be seen in figure 3.35.
The resolution in which those characters will be examined has been set to 8x8, so the characters
will be presented to the network "framed" in a 8x8 window. For this resolution, a new set of
array processing steps has to be taken, as has been described, in order to calculate the initial
arrays that correspond to the 8x8 analysis. All the results, following the convention made for the
filenames, have been stored under the name higher8x.mat. An 8x8 frame, with the given
granularity, results in 441 discrete features so that the feature vector representing the features for
a letter is a column vector with 441 rows. Consequently, the number of inputs for the network
will be 441 and the outputs will be 26 (i.e., the number of letters in the alphabet). One layer
networks have been found to be inadequate for this application as can be seen in figure 3.36. The
training for this one layer network has been performed with the trainbp function since the

25

1
o 	ol

1

The first column is the feature
vector of t (i.e., feat_t1) and

the second column is the
feature vector for c (i.e.,

feat_c 1).

[weightl,biasl] = INITFF(P,S1,'logsig')
P - 224x2 matrix of input vectors, where for the initialization

only each ith row of P must contain expected min and max values for the
ith input, i.e. 0 and 1.

Si - Size of ith layer, here S1=2 (2 neurons output-layer)

P=

o 	1

o 	1
o 	1

Figure 3.28 : Initialization values for the input vectors, training
weights, and bias values.

[weight4,bias4,TE,TR] = TRAINLM(weightl,biasl,'logsig',P,T,TP)
P - RxQ (224x2) matrix of input vectors.
T - SxQ (2x2)matrix of target vectors.
TP - Training parameters (optional).

Returns new weight and bias and
TE - the actual number of epochs trained.
TR - training record: [row of errors]

Training parameters are:
TP(1) - Epochs between updating display, here = 5.
TP(2) - Maximum number of epochs to train, here = 15000.
TP(3) - Sum-squared error goal, here = 0.001.
TP(4) - Minimum gradient, here = 0.0001.
TP(5) - Initial value for MU, default = 0.001.
TP(6) - Multiplier for increasing MU, default = 10.
TP(7) - Multiplier for decreasing MU, default = 0.1.
TP(8) - Maximum value for MU, default = le10.

Missing parameters and NaN's are replaced with defaults.

Figure 3.29: Training parameters employed for the MatLab
neural network algorithm trainlm.

Figure 3.30: The feature vectors for the images of 'C' and 'T'.

26

Su
m

-S
qu

ar
ed

 Er
ro

r

5 4

Su
m

-S
q u

ar
ed

 E
rro

r

10 -3

10 -6

10 "2

10 -11

10 -5

10 -1

10 1

10 0

6 4 o
Epoch

Sum-Squared Network Error for 5 Epochs

2 	3
Epoch

Figure 3.31 : Successful training of the network using trainlm.

Sum-Squared Network Error for 100000 Epochs

1

8 	 10

x 10 4

Figure 3.32: Example of an unsuccessful training run using the
algorithm trainbp.

27

tl c1=
1 	1 	1 	0 	0 	0 	 1 	1 	0 	0 	0 	0
0 	1 	0 	0 	0 	0 	 1 	0 	0 	0 	0 	0
O 1 	0 	0 	0 	0 	 1 	1 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0

t eni = 	 c enl -
- 	1 	1 	1 	1 	1 	0 	 1 	1 	1 	0 	0 	0

0 	0 	1 	0 	0 	0 	 1 	0 	0 	0 	0 	0
O 0 	1 	0 	0 	0 	 1 	0 	0 	0 	0 	0
O 0 	1 	0 	0 	0 	 1 	1 	1 	0 	0 	0
O 0 	1 	0 	0 	0 	 0 	0 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	 0 	0 	0 	0 	0 	0

t_45

-

o 	o 	1 	o 	o 	o
o 1 	o 	o 	o 	o
1 	1 	1 	o 	o 	o
O o 	o 	1 	o 	o
o 	o 	o 	o 	o 	o
O 	o 	o 	o 	o 	o

c 95 -
- 	0 	1 	0 	0 	0 	0

1 	0 	0 	0 	0 	0
0 	1 	0 	1 	0 	0
0 	0 	1 	0 	0 	0
0 	0 	0 	0 	0 	0
0 	0 	0 	0 	0 	0

Figure 3.33: Binary array representation of various test images
used to validate the trained network.

simuff (feat vec(cl,sor,index),weight4,bias4,'logsig')
ans

0.0060
0.9940

simuff (feat vec(c_enl,sor,index),weight4,bias4, 1 logsig')
ans =

0.0004
0.9966

simuff (feat vec(c_45,sor,index),weight4,bias4,'logsig')
ans =

0.0060
0.9940

simuff (feat vec(tl,sor,index),weight4,bias4,ilogsig')
ans =

0.9942
0.0058

simuff (feat_vec(t_enl,sor,index),weight4,bias4, 1 logsig')
ans =

0.8940
0.0368

simuff (feat_vec(t 45,sor,index),weight4,bias4,'logsig')
ans =

0.9852
0.0127

Figure 3.34: Network results for the test images of figure 3.33.

28

11
F.& AL

11111

rr ri
Su

m
-S

q u
ar

ed
 E

rro
r

1 0

-2 10

-3 10

-4 10

10

10

3 10

10 2

0 100 500 200 400 300

Figure 3.35: Examples of letters defined on a 7x5 matrix.

Sum-Squared Network Error for 550 Epochs

Epoch

Figure 3.36: Unsuccessful tr. aining of a single layer network.

29

memory requirements for trainlm are more than what was available. The variables weightl, and
biasl are the initial weight and bias used and were calculated with the function initff as given in
figure 3.37. In both cases (trainbp, trainbpx), the training was performed with
[weight_1,bias_11,TE,TR1= trainbp(x)(weight_tbias_Vlogsigt,feat_alp,targets,TP) where
targets is a 26x26 array which contains the targets, i.e., one column for each letter as shown in
figure 3.38. Alp_feat is a 441x26 array that contains the feature vectors for each letter as
extracted with the function feat_vec.m. For example, the first column of the matrix which
represents the higher order feature vector for the letter a has been calculated using the function
feat_vec(char_dis(alphabet(:,1)), sor,index). Training with trainbx performed a bit better but
was still inadequate as can been seen in figure 3.39 for which
trainbpx(weight_1,bias_11;logsiealp_feat,targets,TP).

The employment of a three layer network solved the problem and the optimum number of
neurons in the hidden layer was found to be 18, figure 3.40. Figure 3.41 shows the response of
the network during the first training epochs. The performance of the network is exceptional
(recognition rate 100%) as long as it operates in a noiseless environment and the letters are
presented in any translational variation within the 8x8 frame. There is some degradation in the
performance when the network operates with rotated and scaled representations of the letters,
which is expected, due to the low resolution and the accompanying problems mentioned in the
section describing the sorting of the angles. The performance falls to 87 % which at the same
time shows the performance of the net with this particular type of noise. Figure 3.42 shows a
typical case where the network failed to recognize the letter C. The network was trained with the
features of the letter as in the leftmost block but, for input, used the scaled representation
pictured in the middle block. The result is as shown in figure 3.43, i.e., the network in this
particular case didn't find any close proximity with any of the letters although the best candidate
(with a very low score though =0.0164) was the letter O. The similarity, and the reason why this
type of confusion was expected stems from the way the letter C was scaled. The conclusion is
that, in low resolutions, experimentation with granularity must be carried out in order to force the
network to perform accurately.

Feature Extraction of SAR Data.

There is the general assumption that HONNs, by definition, can perform only with binary
representations of the images to be classified. This results in a loss of dynamic information since
the representation now is limited to black and white while a typical SAR image can have more
than thousands of gray levels. Hence it is essential to find a way to encode the grayness variation
in the HONN architecture. Figure 3.44 shows a target as acquired by SAR radar and segmented
in a 25x32 frame. Every pixel is encoded with 4 bytes, and the values in this particular segment
vary between 17 and 7863 as can be seen in figure 3.45 The same target after a binarization
process is shown in figure 3.46 while the corresponding representation is given in figure 3.47.
The loss of information is obvious and future efforts have to be directed towards this problem.
The approach proposed in this work, in order to take advantage of the dynamic range encoded in
SAR images is implemented in the function feat_gry(f,sorted,index) which generates the
corresponding feature column vector for the gray scale array given in (O. The algorithm works
by firstly creating a lookup table with indices corresponding to the triangle coordinates that form
all the combinations of the non-zero points of (f) taken 3 at a time. The result is expected to have

30

100 20 0 30 0 40 0

ci

o!
cn

—J

5 10

10

Su
m

- S
q u

a r
e d

 E
rro

r

-5 10

[weight_1,bias_1] = INITFF(P,S1, 1 logsig 1)

P - 441x2 matrix of min-max input vectors.
S1=26

P=
0 	1
0 	1

Figure 3.37: Initialization values for the training run.

target sc....:_____—n
1 	0 	0 	0 	0 	0 	0 	0
0 	1 	0 	0 	0 	0 	0 	0
0 	0 	1 	0 	0 	0 	0 	0
0 	0 	0 	1 	0 	0 	0 	0
0 	0 	0 	0 	1 	0 	0 	0
0 	0 	0 	0 	0 	1 	0 	0
0 	0 	0 	0 	0 	0 	1 	0
0 	0 	0 	0 	0 	0 	0 	1
0 	0 	0 	0 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	0 	0
0 	0 	0 	0 	0 	0 	0 	0

The first column is
the desired output for
the letter a, the second

column is for the
letter b, etc.

Figure 3.38: The format of the 26x26 targets array.

Trainirg for 400 Epochs

mo 	 300 	 eo

Epoch

Figure 3.39: Unsuccessful network training using trainbx and a
single layer network.

0

31

•4.

Le
ar

ni
ng

 R
at

e

4 IA

\

\

Sum Squared Error for a 2-layer Back-Propaption Network
# of neurons (hidden layer) 	SSE 	EPOCHS
10 	 >2 	10,000
12 	 1.4 	10,000
16 	 0.9 	10,000
18 	 0.000998228 	10,000

Figure 3.40: Optimization of the number of hidden neurons.

Trainirg for 1325 Epochs

5 10

10

10 -

0 	 200 	400 	600 	800 	10 00 	12 00

0 	200 	400 	600 	800 	10 00 	12 00

Epoch

Figure 3.41 : Training of the three layer network.

Su
m

-S
qu

ar
ed

 Er
ro

r

Figure 3.42: An example of misclassification by the network for
a scaled 'C' as the letter '0'.

32

0.0035

0.0000

0.0000

0.0000

0.0046

0.0000

8000 -

6000 -

4000 -

2000 ,

0
40

20

00

ans =
Columns 1 through 7

	

0.0000 	0.0000
Columns 8 through 14

	

0.0000 	0.0000
Columns 15 through 21

	

0.0164 	0.0001
Columns 22 through 26

	

0.0069 	0.0000

	

0.0000 	0.0000 	0.0000

	

0.0105 	0.0000 	0.0007

	

0.0000 	0.0001 	0.0005

	

0.0000 	0.0042 	0.0000

Figure 3.43: Results for the classification of the scaled 'C'
(center image) of figure 3.42.

Figure 3.44: Segmented SAR image consisting of 25x32 pixels.

30

Figure 3.45: Intensity variation for the SAR image of figure 3.44.

33

30

Figure 3.46: Conversion of the original SAR image of figure
3.44 to a binary valued image.

00

Figure 3.47: Intensity variation for the image of figure 3.46.

Figure 3.48: Resizing of the 25x32 SAR image of figure 3.44
to a 6x8 image.

34

combin(k,3) rows, where k is the number of non-zero elements. Then, it gives the feature vector
number, provided the array index, that represents the final result of the indexing3 function on an
array MxN. The final column vector is formed by multiplying the normalized values of the three
pixels. Since two or more triplets could correspond to the same feature number (forming similar
triangles but having different intensities), the maximum result of the internal multiplication is
kept in order to represent the magnitude of the particular feature. The 'sorted' parameter in the
input argument stands for the array given after applying the sorting3 function (on the initial
array). The result is the feature vector of the target, but the values are not binary, as has been
done so far, but range between 0 and 1 thus giving information not only for the existence or not
of the particular triplet but for its intensity as well.

In order to demonstrate the operation of the above proposed algorithm, the same target
shown in figure 3.44 has been chosen. In order to deal with the 25x32 resolution, which with the
existing means is considered to be 'high', the target has been resized (using ErgoVista software)
to a 6x8 representation as is shown in figure 3.48. The ratio of compression is approximately 4.
The target is examined in the context of the 8x8 processing that has been performed and the
results have been stored in the higher8x.mat file. The feature vector is expected to have 441
elements but this time their values are not limited to O's or 1 's since on top of that they can take
any value in between. The function is used with the format feature_target_sar =
feat_gry(target_sar,sor,index) where target_sar is the target framed in a 8x8 frame as given in
figure 3.49. The result of the above operation has the format shown in figure 3.50.

Attention has to be paid to the way the normalization is implemented. The way the
function has been encoded is that it takes into consideration as a maximum value the maximum
element of the given segment which varies from segment to segment. The other way is to
provide the maximum value of all the targets set, if it is known. Due to the limited number of
available targets, the first approach has been adopted. If, in the near future, more data is
available, the necessary changes can be made easily since they have been included in the function
by means of comments. The training of the network has no practical value at the time being
since there is no other data with which to compare or train.

4. 	CONCLUSIONS

The most important advantage of the HONN architecture is that invariance to geometric
transformation such as scaling, translation, and rotation of the image can be incorporated directly
into the network and does not need to be learned. Consequently, when compared with other
neural network architectures such as batkpropagation trained first order networks, HONNs have
demonstrated clear advantages in terms of training time, training set size, and recognition
accuracy. Furthermore, the algorithms and methodology developed here specifically address the
issue of anomalously large numbers of netWork weights by significantly reducing the number of
necessary weights through a novel boundary detection and encoding scheme for the image. A
further novel algorithm has been proposed to extend this technique to explicitly include the
dynamic information (gray scale) present in SAR data. The extent of experimentation using SAR

35

o o
o o

targe tsar

Columns 1 through 6

	

655 	 735 	 93 	 51 	 193 	 261

	

541 	 930 	 835 	138 	742 	 555

	

125 	 434 	1805 	1041 	1118 	2193

	

846 	 294 	 137 	1420 	6193 	 993

	

427 	 245 	231 	 554 	2457 	3688

	

179 	 848 	 574 	 623 	 554 	 589

	

0 	 0 	 0 	 0 	 0 	 0

	

0 	 0 	 0 	 0 	 0 	 0
Columns 7 through 8

	

153 	 281

	

231 	 104

	

694 	 711

	

2814 	1235

	

1144 	 600

	

171 	 895

Figure 3.49: Array representation of the scaled down SAR image of
figure 3.48 with added rows of zeros to yield an 8x8 image.

feature target sar
0.1.542 	—

0
0.0153 te,/////

 0.0079
0.0047
0.0421

0
0.0145
0.0016
0.0017
0.0057
0.0139

0
0.0034

0.0051
0
0

0.0009
0

0.0110

A "0" means that the particular combination has not
been encountered. Values other than "0" give the

'weight' of the prominent triplet that corresponds to
the particular feature number. The dimension of

this column vector is 441x1.

Figure 3.50: Feature vector for the gray scale SAR image of
figure 3.48.

36

imagery in this work was limited owing to a lack of sufficient numbers of suitable images.
However, the proposed framework is very promising and has been validated with the
employment of classical pattern classification problems. The application of a HONN combined
with the proposed boundary detection and encoding technique for alphabet recognition has
clearly demonstrated the efficiency with which this topology can be utilized.

The principle limitation which remains for the application of HONN's, even with the
perimeter detection technique developed her, is that the size of the input field is limited
(pragmatically to images containing, at most, a few thousand pixels). This is a technical
limitation rather than an algorithmic one since it is governed by available memory size and
computing throughput. The HONN architecture by itself can perform with unlimited input size.
For SAR, post-segmented images which represent typical targets, an acceptable maximum size
would be — 40x40, a number which, in the present environment, appears well suited to the types
of images encountered in practice. Future efforts in this field should be directed towards the
further reduction of the input size by means of compression and encoding either with
conventional methods or with fractal geometry. Two specific directions worthy of serious
consideration and additional research would be, (a), the development of HONN's for which the
input variables are derived directly from the parameters which characterize fractal compression
transformations of the images and, (b), the application of first order neural networks for which
the feature vector is extracted from an explicit determination of the number, type, and intensity
contents of similar triangles formed by the image pixels.

37

Appendix: Listing of the MatLab M-Functions

function y = angles(f);
% Angles(f)
% Creates an array, given in (f), containing the angles corresponding to
% the 3 lengths that form the triangles.
% The result is an array with the same dimension as (f), i.e., (Nx3).
% Care is taken to ensure that none of the 3 lengths are equal
% to 0, i.e., a*b*c .ne. 0, otherwise the result would be
% NaN type (Not-a-Number). The routine zero_fil is used to disallow
% this possibility.

% Dr. Fivos Hatzivasiliou - June 1994
echo off
aux1=zero_fil(f); % Create a new array auxl with NO null elements.
[m,n]=size(aux1); % The dim of the new array are <= dim(f).
aux2=aux1.^2;
a=aux1(1:m,1); b=aux1(1:m,2); c=aux1(1:m,3);
a2=aux2(1:m,1); b2=aux2(1:m,2); c2=aux2(1:m,3);
C=acos((a2+b2-c2)./(2*a.*b));
B=acos((a2+c2-b2)./(2*a.*c));
% A=acos((c2+b2-a2)./(2*b.*c));
y=abs([pi-(B+C) B C])
% The abs function is used to ensure that no imaginery part will be in the result.

function y = angles3(f);
% Angles3(f)
% Creates an array, given in (0, containing the angles corresponding to
% the 3 lengths that form the triangles.
% The result is an array with the same dimension as (0, i.e., (Nx3).
% Care is taken to ensure that none of the 3 lengths are equal
% to 0, i.e., a*b*c .ne. 0, otherwise the result would be
% NaN type (Not-a-Number). The routine zero_fil is used to disallow
% this possibility.

% Dr. Fivos Hatzivasiliou - Sept 1995
echo off
aux1=f; %aux1=zero_fil(f); % Create a new array auxl with NO null elements.
[m,n]=size(aux1); % The dim of the new array are <= dim(f).
aux2=aux1.^2;
a=aux1(:,1); b=aux1(:,2); c=aux1(:,3);
a2=aux2(:,1); b2=aux2(:,2); c2=aux2(:,3);
C=acos((a2+b2-c2)./(2*a.*b));
B=acos((a2+c2-b2)./(2*a.*c));

A-1

% A=acos((c2+b2-a2)./(2*b.*c));
y=abs([pi-(B+C) B
% The abs function is used to ensure that no imaginery part will be in the result.

function y = aray_ser(f);
% Aray_ser(f)
% Converts the (MxN) array (f) to a vector (MxN,1) suitable for application as
% as direct input to a third order HONN. The result is a vector as described above.

% Dr. Fivos Hatzivasiliou - May 1994
echo off
[m,n]=size(f);
G(m*n)=0; % Auxilliary vector from 2D to 1D.
for x=1:m

for y=1:n
G((x-1)*n +y)=f(x,y);

end
end
k=m*n;
y=G;

function y = char_dis(f);
% Char_dis(f)
% Creates a 7x5 array (lines x columns) with (f) the column-vector containing
% the 35 elements which represents an alphabet letter, i.e., the alphabet(:, 1) represents
% the letter a, the alphabet(:,2) the letter b, and so on. The character is also displayed
% using the function plotchar.

% See also plotchar, prprob.

% Dr. Fivos Hatzivasiliou - Sept 1995
echo off
[m,n]=size(f); % The initial assumption is that n=1 (column vector)
i=1;
for x=1:7

for y=1:5
G(x,y)=f(i);
i=i+1;

end
end
plotchar(f);
y=G;

A-2

function y = chrfeat(f,sorted,index);
% Chr_feat(f,sorted,index)
% Creates an array with 26 columns where each column represents the feature vector
% of the corresponding alphabet letter, i.e., the 1st column represents the feature vector
% for the letter a, the 2nd column for the letter b, and so on. The character is also
% displayed using the function plotchar.
% In (f) is given the alphabet array (35x26), for a 7x5 analysis.
% The 'sorted' parameter in the input argument stands for the array given after applying the
% sortingX.m function (on the INITIAL array). This array has been given a name
% such as sor, in the higherXX.mat file (e.g., an analysis 8x8 is higher8x.mat).
% See also feat_vec, char_dis.
%
% Dr. Fivos Hatzivasiliou - Sept 1995
echo off
[m,n]=size(f); % The initial assumption is that n=1 (column vector)
no_of feat=sorted(combin(64,3),5); % See notes.Find the size (mX1) of the feature vector
G(no_of feat,26)=0;
i=1;
for x=1:26

A(8,8)=0; % Here its only for 8x8 analysis.
A(1:7,1:5)=char_dis(f(:,x));
pause(1);
G(:,x)=feat_vec(A,sorted,index);

end
y=G;

function y = combin(n,k)
% Combin(n,k)
% Gives the number of different combinations of n different
% elements taken k at a time without repetitions ('n choose 3').
% Uses the function

 % (See also Factoria.m)
%
% Dr. Fivos Hatzivasiliou - Feb.94
y=permut(n,k)/factoria(k);
% Ref: Advanced Engineering Mathematics, Kreyszig, p.1191

function y = distan(f); 	_
% Distan(f)
% Gives the lengths for all possible triangles formed from the binary image given in f.
%
% Dr. Fivos Hatzivasiliou - Feb. 1994
echo off

A-3

a=neur_3v3(f);
[m,n]=size(a);
b(1:m,1:6)=a(1:m,5:10); % See function Neur_3v3 for the format
clear a; 	% Here in the b there are only the coordinates

% al,b1 a2,b2 a3,b3 for the triangles.
c(1:m,1:6)=[b(1:m,1)-b(1:m,3) b(1:m,2)-b(1:m,4) b(1:m,3)-b(1:m,5) b(1:m,4)-b(1:m,6) b(1:m,5)-
b(1:m,l) b(1:m,6)-b(1:m,2)];
clear b;
c=c.^2;
d(1:m,1:3)=[c(1:m,1)+c(1:m,2) c(1:m,3)+c(1:m,4) c(1:m,5)+c(1:m,6)];
clear c;
result=sqrt(d);
y=result;

function y = distan2(f);
% Distan2(f)
% Gives the lengths for all possible triangles formed from the data given in (f)
% in the following form [xl yl x2 y2 x3 y3].
% This routine is the same as distan(f) differing only in the input format.
%
% Dr. Fivos Hatzivasiliou - June 1994
echo off
[m,n1=size(f);
b=f; 	 % See function triangle2 for the format

% Here in the b there are only the coordinates
% al,b1 a2,b2 a3,b3 for the triangles.

c(1:m,1:6)=[b(1:m,1)-b(1:m,3) b(1:m,2)-b(1:m,4) b(1:m,3)-b(1:m,5) b(1:m,4)-b(1:m,6) b(1:m,5)-
b(1:m,l) b(1:m,6)-b(1:m,2)];
clear b;
clear f;
c=c.^2;
d(1:m,1:3)=[c(1:m,1)+c(1:m,2) c(1:m,3)+c(1:m,4) c(1:m,5)+c(1:m,6)];
clear c;
result=sqrt(d);
y=result; 	 .

function y = distan3(f);
% Distan3(f)
% Gives the lengths for all possible triangles formed from the data given in (f)
% in the following form [xl yl x2 y2 x3 y3].
% This routine is the same as distan(f) differing only in the input format.
% This function is an optimized version of distan2(f).
%

A-4

% Dr. Fivos Hatzivasiliou - June 1994
echo off
[m,n]=size(f);
b=f; 	 % See function triangle2 for the format
clear f; 	% Here in the b there are only the coordinates

% a 1,b1 a2,b2 a3,b3 for the triangles.
c(m,6)=0;
c(:,:)=[b(:,1)-b(:,3) b(:,2)-b(:,4) b(:,3)-b(:,5) b(:,4)-b(:,6) b(:,5)-b(:, 1) b(:,6)-b(:,2)];
clear b;

c=c. '2;
 d(m,3)=0;

d(:,:)=[c(:,1)+c(:,2) c(:,3)+c(:,4) c(:,5)+c(:,6)];
clear c;
result=sqrt(d);
y=result;

function y = drawing(G)
% Drawing(G)
% Splits the graph-window into 4 sub-windows and plots the array (G)
% in the top left quarter of the screen, the perim(G) in the top right,
% the peri_con(G) in the bottom left and, in the bottom right,
% a comparative plot.

% Dr. Fivos Hatzivasiliou - March 94
clg;
subplot(221),mesh(G);
title('Original Image');
p=perim(G); % Perimeter.
subplot(222),mesh(p);
title('Perimeter');
c=peri_con(p); % Encoded (reduced) perimeter.
subplot(223),mesh(c);
title('Encoded Perimeter');
x=[sum(sum(G)) sum(sum(p)) sum(sum(c))];
for i=1:3
yy(i)=combin(x(i),3);

end
subplot(224),sernilogy(yy);
ylabel('Number of Triangles'); -
y=x;

A-5

function y = factoria(x)
% Factoria(x)
% Gives the factorial function of x.
% If x is < 150 then it uses the function x!=x(x-1)(x-2)...1.
% If x>150, then it uses the Stirling Formula approximation

% Dr. Fivos Hatzivasiliou - Feb.94
if x<=150,

m=1;
for i=1:x

m=m*i;
end

else
m.(x/exp(1))Ax * sqrt(2*x*pi); % Stirling Formula
end
y=m
% Ref: Advanced Engineering Mathematics, Kreyszig, p.1192

function y = feat_gry(f, sorted,index);
% Feat_gry(f,sorted,index)
% Generates the corresponding feature column vector for
% the gray scale array given in (f).
% Feat_gry.m first creates a lookup table with indices the triangle coordinates
% that form all the combinations of the non-zero points of (f) taken 3 at a time.
% The result will have combin(k,3) rows, where k is the # of non-zero elements.
% This routine then gives the feature vector #, provided the array index,
% representing the final result of the indexing.m function on an array mXn.
% Normally this lookup table has been given a name like ind (in the mat file).
% The final column vector is formed by multiplying the normalized values of the three pixels.
% Since two or more triplets could correspond to the same feature (forming similar triangles but
% having different intensities), the max result of the internal multiplication is kept in order to
% represent the magnitude of the particular feature.
% The 'sorted' parameter in the input argument stands for the array given after applying the
% sorting2.m function (on the INITIAL array). In the same way, this array is given
% a name such as ss, in the higherXX.mat file (e.g., for an analysis 4x4).

% Dr. Fivos Hatzivasiliou - Sept 1995
echo off
threshold=0.1; % The threshold is defined as the minimum 'intensity' value, that would

%represent the existense of useful information (i.e. targets)
aux3=f; 	% Conversion from array to vector. The invertion (') is being used in order the result
aux4=aux3(:); % to comply with the way we've defined the scanning pattern. (all the columns in
1st row, 2nd row...)
Irn,n1=size(f); % The initial assumption is that m=n

A-6

maxim=max(aux4); % Find the max "intensity" OR maxim= maximum value given as
% parameter.

size_of=m*n;
no_of feat=sorted(combin(size_of,3),5); % See notes.Find the size (mX1) of the feature vector
non_zero=find(f); % Creates a vector with the non-zero elements of f,

% e.g. if f is 4x4 could give, 3, 13, 15, 16.
[mm,nn]=size(non_zero);
if mm>2 & maxim>threshold % to avoid situations with just 2 active-pixels in the array.

% (i.e. No possible triangle), or no information at all.
k=1; i=1;
aux4=aux4 ./ maxim; % Normalisation.
feat_vec(no_of feat)=0; % Creation of the feature vector, lenght = the # of features.
for x=1:size_of

for y=x+1:size_of %
for z=y+1:size_of %

if aux4(x)&aux4(y)&aux4(z)
G(i,1:4)=[k x y z];

G(i)=k; % Since we are interested only in the # of the combination.
%aux5(i)=index(k,2);
aux5=index(k,2);

feat_vec(aux5)=maxgfeat_vec(index(k,2)) aux4(x)*aux4(y)*aux4(z)));
i =i+1; % The above command accomodates the function that selects the most

end 	% prominent (maximum) value for the feature in the feature vector.
k=k+1; % So for all the similar triangles, only one value will be taken

end 	% into account, the maximum.
end

end
end % For the IF loopl

y=feat_vec'
% To create a column vector (one column, # of features rows).

function y = feat_vec(f, sorted,index);
% Feat_vec(f,sorted,index)
% Generates the corresponding feature column vector for the binary array given in (f).
% Feat_vec.m first creates a lookup table with indices the triangle coordinates
% that form all the combinations of the non-zero points of (f) taken 3 at a time.
% The result will be combin(k,3) rows, where k is the # of non-zero elements.
% This routine then gives the feature vector #, provided the array index,
% representing the final result of the indexing.m function on an array MxN.
% Normally this lookup table is given a name such as ind (in the Matlab file).
% The 'sorted' parameter in the input argument stands for the array given after
% applying the sorting2.m function (on the INITIAL array). In the same way, a name such
% as ss is given in the higherXX.mat file (e.g., for an analysis 4x4).

A-7

% Dr. Fivos Hatzivasiliou - June 1995
echo off
aux3=f; 	% Conversion from array to vector. The invertion (') is being used in order the result
aux4=aux3(:); % to comply with the way we've defined the scanning pattern. (all the columns in
1st row, 2nd row...)
[m,n]=size(f); % The initial assumption is that m=n
size_of=m*n;
no_of feat=sorted(combin(size_of,3),5); % See notes.Find the size (mX1) of the feature vector
non_zero=find(f); % Creates a vector with the non-zero elements of f,

% e.g. if f is 4x4 could give, 3, 13, 15, 16.
[mm,nn]=size(non_zero);
if mm>2 % to avoid situations with just 2 active-pixels in the array. (No possible triangle)
k=1; i=1;
feat_vec(no_of feat)=0; % Creation of the feature vector, lenght = the # of features.
for x=1:size_of

for y=x+1:size_of %
for z=y+1:size_of %

if aux4(x)&aux4(y)&aux4(z)
G(i,1:4)=[k x y z];

G(i)=k; % Since we are interested only in the # of the combination.
aux5(i)=index(k,2);
feat_vec(index(k,2))=1;

i =i+1;
end
k=k+1;

end
end

end
end % For the IF loopl
i=i-1;
y=feat_vec'
% To create a column vector (one column, # of features rows).

function y=file_inp(name)
% File_inp('name')
% Opens and reads the file named 'name'.

% Dr. Fivos Hatzivasiliou
fid=fopen(name);
a=input('How many rows 7);
b=input('How many columns ?');
matrix=fread(fid,[a,b],'float');
fclose(fid);
y=matrix;

A-8

function y = grouping(f);
% Grouping(f)
% Given in (f) the 3 angles that form the triangles containing no
% zero elements since the function zero_fil was applied, this routine
% creates a new array with the same or smaller dimension than f, (Nx3),
% eliminating all the triplets having the same elements taking into account
% the relative order (e.g., a b c is different from a c b).

% Dr. Fivos Hatzivasiliou - July 1994
echo off
[m,n]=size(f); % The dim of the new array will be <= dim(f).
n=1;k=1;
aux(m)=0; 	% Auxilliary vector m.
for i=k:m-1

if abs(f(i,1)-f(i+1,1)) <= 0.0001,
C(1:n+1,1:3)=[C(1:n,1:3)' f(i,1:3)']'; % The' operation is very time consuming
ind=ind+1;

else,
aux(n)=i;
n=n+1;

end
end

if abs(f(m-1,1)-f(m,1)) > 0.0001, % Boundary Condition, since in the
aux(n)=m; 	 % above if-loop there is no provision

end 	 % for the m-th element.
y=aux;

function y = indexing(f);
% Indexing(f)
% Creates a 2-column indexing table with the following structure:
% the first column is sorted and contains the triplet #, while the 2nd
% column gives the corresponding feature vector position.
% (f) is the result of the sorting2 routine and has in the first column the initial
% index of the triplet, (e.g., 11, for a 6x6, means the 1 lth combination; see also
% triang12.m routine), while in the fifth colurnn the no. of the feature vector,
% or set of angles, to which it corresponds.

% Dr. Fivos Hatzivasiliou - June 1995
echo off
[m,n]=size(f);
[Y,I]=sort(f(1:m,1));
G(m,2)=0;

G(:,2)=f(I(1:m),5); % Sorting regarding the 1st element
G(:,I)=[1:m]';

y=G;

A-9

function y = peri_con(f)
% Peri_con(f)
% Perimeter edge detection and encoding using our developed algorithm where (f)
% is the binary input array (dim MxN). When the perimeter is found, another
% algorithm is applied in order to find the vertex points of the perimeter.
% In order to avoid boundary condition problems, an auxilliary array dim m+2,n+2 is used.
% The result is another array (MxN) with l's showing the perimeter vertex points.
%
% Dr. Fivos Hatzivasiliou - March 1994
echo off
% thres_points=
% The max number of perim. points that won't be converted to perimeter vertex points
[m ri]=size(f).
G(m+2,n+2)=0;
G(2:m+1,2:n+1)=f;
T(m+2,n+2)=0;
C=T; % Declaration of auxiliary arrays.
for x=2:m+1

for y=2:m+1
T(x,y)=(G(x,y)&(--G(x+1,y)l-G(x,y+1)1--G(x,y-1)1-G(x-1,y)));

end
end
%points=sum(sum(T)); % Gives the number of the perimeter points (Binary Image).
% if points <= thres_points, C=T;
% else
for x=2:m+1

for y=2:n+1
if T(x,y)==1,

C(x,y)=-((T(x-1,y-1) & T(x+1,y+1)) 1 (T(x-1,y+1) & T(x+1,y-1)) 1 (T(x,y-1)&T(x,y+1))
1 (T(x-1,y)&T(x+1,y)));

end
end

end
%end
y=C(2:m+1,2:n+1);

function y = perim(f)
% Perim(f)
% Perimeter edge detection using our developed algorithm where (f)
% is the binary input array (dim MxN). There is also a provision for the points
% lying diagonally to he multiplied with the factor 1.414 (sqrt 2).
% In order to avoid boundary condition problems an auxilliary array dim m+2,n+2 is used.
% The result is another array (MxN) with l's showing the perimeter points.

A-10

% Dr. Fivos Hatzivasiliou - Feb. 1994
echo off
[m n]=size(f);
G(m+2,n+2)=0;
G(2:m+1,2:n+1)=f;
T(m+2,n+2)=0;
for x=2:m+1

for y=2:m+1
T(x,y)=(G(x,y)&(-G(x+1,y)l-G(x,y+1)1-G(x,y-1)1-G(x-1,y)));

end
end
%for x=2:m+1
% for y=2:n+1
% if (T(x-1,y-1) & -T(x-1,y) & -T(x,y-1))1(T(x-1,y+1) & -T(x,y+1) & -T(x-1,y))
% 	T(x,y)=T(x,y)*1.414;
% end
% end
%end
y=T(2:m+1,2:n+1);

function y = permut(n,k)
% Permut(n,k)
% Gives the number of different permutations of n different
% things taken k at a time without repetitions ('n choose 3').
% Uses the function n!/(n-k)!=n(n-1)(n-2)...(n-k+1).
% (See also Factoria.m)

% Dr. Fivos Hatzivasiliou - Feb.94
m=1;
for i=n-k+1:n

m=m*i;
end
y=m;
% Ref: Advanced Engineering Mathematics, Kreyszig, p.1190

function y = salt_pep(C,t)
% Salt_pep(C,t)
% Removes from the array C (dim MxN), the isolated l's and smooths the 'bumps'.
% Initially binarizes the C with threshold t (i.e., if C(i,j)<=t then =0 else =1)
% Ref. Robotics pp.341.
% The result is a filtered binary array with the same dimensions.

A-11

% Dr. Fivos Hatzivasiliou - Feb. 1994
echo off
[m n]=size(C);
v(m+2,n+2)=0;
L(m+2,n+2)=0;
megisto=max(max(C)); %
v(2:m+1,2:n+1)=C; %

for i=2:m+1 %
for j=2:n+1 %

if v(i,j)<=t
v(i,j)=0;

else
v(i,j)=1;

end
end

end
for i=2:m+1

for j=2:n+1
if v(i,j)==1

a=v(i-1,j-1); %
b=v(i-1,j); %
c=v(i-1,j+1);
d=v(i,j-1);
e=v(i,j+1);
f=v(i+1,j-1);
g=v(i+1,j);
h=v(i+1,j+1);
L(i,j)=(((albld) & (elglh)) I ((bide) & (dIflg))) I (C(i-1,j-1) > .2*megisto);

else 	% The array L is used only to preserve the elements
L(i,j)=0; % of v during the loop

end
end

end
y=L(2:m+1,2:n+1); % The result has the same dim. mxn.

function [trian,distang,sor,index] = segm_bat(f);
% Segm_bat(f)
% Given in (f) the segment array (i.e. a 10x10 array), we generate the five arrays
% required to proceed with HONN training.
% Attention must be paid to the way granularity is defined in the employed m.files.

% Dr. Fivos Hatzivasiliou Sept. 1995
echo off
trian=triang13(f);

A-12

dist=distan3(trian);
ang=angles3(dist);
sor=sorting2(ang);
index=indexing(sor);

function y = sorting3(1);
% Sorting3(f)
% Rearranges the angles that are given in (f), in such a way that, in every row,
% the first is the smallest angle of the triplet but, at the same time,
% the order of the angles is preserved (e.g., (a,b,c)=(b,c,a)=(c,a,b)).
% Finally, it sorts the rows, deleting at the same time all the rows having
% the form 0.001 3.14 0.000 etc., i.e., any 'line' triangles (180 0 0).

% Dr. Fivos Hatzivasiliou - June 1995
echo off
granularity=0.001;
f=abs(f); % To eliminate the elements -0.00000....
[m,n]=size(f);
aux1=f;
for i=1:m

if abs(f(i,1)-f(i,3))<granularity, 	% First, we try to preserve the order.
f(i,1)=auxl(i,1); % Then, we replace the values of i.e. i,1 and i,3 with one (i.e. i,1),

because
f(i,2)=auxl(i,1); % we want the further procedure to deal with exact equal values. Some

inequalities
f(i,3)=auxl(i,2); % result from the routine angles, since employement of the cos function

is made.
elseif abs(f(i,2)-f(i,3))<granularity,
f(i,1)=auxl(i,2);
f(i,2)=aux 1(i,2);
f(i,3)=aux1(i,1);

elseif abs(f(i,1)-f(i,2))<granularity,
f(i,1)=auxl(i,1);
f(i,2)=auxl(i,1);
f(i,3)=aux 1(i,3);

end
aux2=f(i,1:3); % Local aux. vector.
[x,ind]=min(f(i,1:3)); % Sorting procedure starts here.
if ind==2,

f(i,1)=aux2(2);
f(i,2)=aux2(3);
f(i,3)=aux2(1);

elseif ind==3,
f(i,1)=aux2(3);

A-13

f(i,2)=aux2(1);
f(i,3)=aux2(2);
else
end

end
aux1=f; % Section that sorts the rows.
[Y,I]=sort(f(1:m,1));
1=1; mm=1;
clear f;
I(m+1)=m+1; %Trick
auxl(m+1,1)=4; % Trick (Because 4>3.14, the max. number can be found in the array, the sort
procedure

% will take place also for the last set of elements.
aux2(m+1,2)=4;
aux3(m,5)=0; % Attempt to optimize the procedure, pre-specifying the array size.
for i=1:m

aux2(i,1:3)=auxl(I(i),1:3); % Sorting regarding the 1st element

if auxl(I(i+1),1) - aux2(i,1) > granularity % define granularity
[Y_SUB,I_SUB]=sort(aux2(1:i,2));
for ind=1:i

aux3(ind,1)=I(I_SUB(ind-1+1)+1-1);
aux3(ind,2:4)=aux2(I_SUB(ind-1+1)+1-1,1:3); % Because refers to A subset
if ind>2

if aux3(ind,3) - aux3(ind-1,3) > granularity % Define granularity
mm=mm+1; % The index (mm) here changes for the rows in WITHIN

the same subset
end 	% i.e. for the rows with the

end
aux3(ind,5)=mm;

end
mm=mm+1; % The index here changes for the rows WITHIN different subsets.
1=41;

end

end
y=aux3;

function y = tempor(f);
% Tempor(f)
% Creates a lookup table with indices the triplet Ws which form all possible combinations
% of 3 points plus the serial index #. The result will have combin(m*n,4) rows.
%
% Dr. Fivos Hatzivasiliou - June 1995

A-14

echo off
[m,n]=size(f); % The initial assumption is that m=n
size_of=m*n;
No_of triangles=combin(size_of,3);
i=1;
for x=1:size_of

for y=x+1:size_of %
for z=y+1:size_of %

G(i,1:4)=[i x y z];
i=i+1;

end
end

end
i=i-1;
%tim=fix(clock)-tim; % This timer gives the elapsed calculation time
y=G;

function y = triang12(f);
% Triang12(f)
%Creates a lookup table with indices the triangle coordinates which form all possible
% combinations of 3 points. The result will have combin(m*n,3) rows.

% Dr. Fivos Hatzivasiliou - June 1994
echo off
[m,n]=size(f); % The initial assumption is that m=n
size_of=m*n;
No_of triangles=combin(size_of,3);
i=1;
for x=1:size_of

for y=x+1:size_of %
for z=y+1:size_of %

G(i,1:3)=[x y z];
i=i+1;

end
end

end
i=i-1
%tim=fix(clock)-tim; % This timer gives the elapsed calculation time
% pause
aux1=ceil(G/n); % Calculation of the row index of each element
aux2=G-(aux1-1)*n; %Calculation of the column index
G(1:i,1)=aux1(1:i,1);
G(1:i,2)=aux2(1:i,1);
G(1:i,3)=aux1(1:i,2);
G(1:i,4)=aux2(1:i,2);

A-15

G(1:i,5)=aux1(1:i,3);
G(1:i,6)=aux2(1:i,3);
% from this part on we try to arrange the triangles in a clockwise direction.
for ind=1:i

x(1:6)=G(ind,1:6);
if x(1)==x(3)
elseif (x(3)==x(5)) I ((x(2)==x(4)) & (x(6)>x(4)))

G(ind,3:6)=[x(5) x(6) x(3) x(4)];
elseif (((x(2)-x(4))/(x(1)-x(3)))*(x(5)-x(1)) + x(2)) < x(6)

G(ind,3:6)=[x(5) x(6) x(3) x(4)];
end

end
y=G;

function y = triang13(f);
% Triang13(f)
% Creates a look-up table with indices the triangle coordinates which form all possible
% combinations of 3 points. The result will have combin(m*n,3) rows.
% This routine is an optimized version of the routine triang12.m above

% Dr. Fivos Hatzivasiliou - Sept. 1995
echo off
[m,n]=size(f); % The initial assumption is that m=n
size_of=m*n;
No_of triangles=combin(size_of,3);
G(No_of triangles,3)=0;
i=1;
for x=1:size_of

for y=x+1:size_of %
for z=y+1:size_of %

G(i,1:3)=[x y z];
i=i+1;

end
end

end
i=i-1
%tim=fix(clock)-tim; % This timer gives the elapsed calculation time
% pause
aux1=ceil(G/n); % Calculation of the row index of each element
aux2=G-(aux1-1)*n; %Calculation of the column index
G(:,1)=aux1(:,1);
G(:,2)=aux2(:,1);
G(:,3)=aux1(:,2);
G(:,4)=aux2(:,2);

A-16

routine creates a new array
eliminating all triangles for

be different than 0,

G(:,5)=aux1(:,3);
G(:,6)=aux2(:,3);
% from this part on we try to arrange the triangles in a clockwise direction.
for ind=1:i

x(1: 6)=G(ind,1: 6);
if x(1)==x(3)
elseif (x(3)==x(5)) 1 ((x(2)==x(4)) & (x(6)>x(4)))

G(ind,3:6)=[x(5) x(6) x(3) x(4)];
elseif (((x(2)-x(4))/(x(1)-x(3)))*(x(5)-x(1)) + x(2)) < x(6)

G(ind,3:6)=[x(5) x(6) x(3) x(4)];
end

end
y=G;

function y = zero_fil(f);
% Zerofil(f)
% Given in (f) the 3 lengths that form the triangles, this
% with the same or smaller dimension than f, (Nx3), by
% which there is one (or more) zero lengths.
% This routine is used to ensure that the 3 lengths must
% i.e., a*b*c .ne. 0, otherwise there is no triangle.

% Dr. Fivos Hatzivasiliou - June 1994
echo off
[m,n]=size(f); % The dim of the new array are <= dim(f)
pro=(prod(f))';
ind=1;
for i=1:m

if pro(i) -= 0,
C(ind,1:3)=f(i,1:3);
ind=ind+1;

end
end
y=C;

A-17

REFERENCES

1. Bachmann C. M., Musman S. A., and Schultz A., "Lateral inhibition neural networks for
classification of simulated radar imagery", Int. Joint Conf. Neural Networks, Baltimore,
MD, June 1992, vol. II, pp. 115-120.

2. Barnard E. and Casaent D., "Invariance and neural nets", IEEE Trans. Neural Networks 2,
no. 5, pp. 498-508, Sept. 1991.

3. Bebis G. N. and Papadourakis G. M., "Object recognition using invariant object boundary
representations and neural network models", Pattern Recognition 25, no. 1, pp. 25-44,
1992.

4. Belkasim S. O., M. Shridhar, and M. Ahmadi, "Pattern recognition with moment
invariants: A comparative study and new results", Pattern Recognition 24, no. 12, pp.
1117-1138, 1991.

5. Bradski G. and S. Grossberg, "Fast-learning Viewnet architectures for recognizing three-
dimensional objects from multiple two-dimensional views", Neural Networks 8, no. 7/8,
pp. 1053-1080, 1995 (1995 Special Issue on Automatic Target Recognition).

6. Casasent D. and S. Natarajan, "A classifier neural net with complex-valued weights and
square-law nonlinearities", Neural Networks 8, no. 7/8, pp. 989-998, 1995 (1995 Special
Issue on Automatic Target Recognition).

7. Casasent D. P. and L. M. Neiberg, "Classifier and shift-invariant automatic target
recognition neural networks", Neural Networks 8, no. 7/8, pp. 1117-1129, 1995 (1995
Special Issue on Automatic Target Recognition).

8. Chang C., J. Lin, and J. Y. Cheung, "Polynomial and standard higher order neural
network", IEEE Int. Conf. on Neural Networks, Vol. 2, pp. 989-994, 1993.

9. Chen K., "Efficient parallel algorithms for the computation of two-dimensional image
moments", Pattern Recognition 23, no. 1/2, pp. 109-119, 1990.

10. Dudani S. A., Breeding K. J., and McGhee R. B., "Aircraft identification by moment
invariants", IEEE Trans. Computers C-26, no. 1, pp. 39-45, Jan. 1977.

11. Fukushima K., "Analysis of the process of visual pattern recognition by the
neocognitron", Neural Networks 2, no. 6, pp. 413-420, 1989.

12. Ghosh J. and Y. Shin, "Efficient higher-order neural networks for classification and
function approximation", Int. J. Neural Systems 3, no. 4, pp. 323-350, 1992.

REF-1

13. Grossberg S., E. MingoIla, and J. Williamson, "Synthetic aperture radar processing by a
multiple scale neural system for boundary and surface representation", Neural Networks
8, no. 7/8, pp. 1005-1028, 1995 (1995 Special Issue on Automatic Target Recognition).

14. Hu M., "Pattern recognition by moment invariants", Proc. IRE 49, no. 9, pg. 1428, Sept.
1961.

15. Hu M., "Visual pattern recognition by moment invariants", IRE Trans. Information
Theory IT-8, no. 2, pp. 179-187, Feb. 1962.

16. Jiang X. Y. and H. Bunke, "Simple and fast computation of moments", Pattern
Recognition 24, no. 8, pp. 801-806, 1991.

17. Kanaoka T., R. Chellappa, M. Yoshitaka, and S. Tomita, "A higher-order neural network
for distortion invariant pattern recognition", Pattern Recognition Lett. 13, no. 12, pp. 837-
841, Dec. 1992.

18. Khotanzad A. and Y. H. Hong, "Rotation invariant image recognition using features
selected via a systematic method", Pattern Recognition 23, no. 10, pp. 1089-1101, 1990.

19. Khotanzad A. and Lu J. H., "Distortion invariant character recognition by a multi-layer
perceptron and back-propagation learning", IEEE Conf. Neural Networks, San Diego,
CA, July 1988, vol. I, pp. 1625-1632.

20. Khotanzad A. and Lu J., "Classification of invariant image representations using a neural
network", IEEE Trans. Acoustics, Speech, and Signal Processing 38, no. 6, pp. 1028-
1038, June 1990.

21. Koch M. W., M. M. Moya, L. D. Hostetler, and R. J. Fogler, "Cueing, feature discovery,
and one-class learning for synthetic aperture radar automatic target recognition", Neural
Networks 8, no. 7/8, pp. 1081-1102, 1995 (1995 Special Issue on Automatic Target
Recognition).

22. Lenz R., "Group invariant pattern recognition", Pattern Recognition 23, no. 1/2, pp. 199-
217, 1990.

23. Leu J., "Computing a shape's moments from its boundary", Pattern Recognition 24, no.
10, pp. 949-957, 1991.

24. Li B. and J. Shen, "Fast computation of moment invariants", Pattern Recognition 24, no.
8, pp. 807-813, 1991.

25. Li. B., "A new computation of geometric moments", Pattern Recognition 26, no. 1, pp.
109-113, 1993.

REF-2

26. Li Y., "Applications of moment invariants to neurocomputing for pattern recognition",
Electronics Lett. 27, no. 7, pp. 587-588, March 1991.

27. Li Y., "Reforming the theory of invariant moments for pattern recognition", Pattern
Recognition 25, no. 7, pp. 723-730, 1992.

28. Lisboa P. J. G. and S. J. Perantonis, "Invariant pattern recognition using third-order
networks and Zernike moments", IEEE Int. Joint Conf. on Neural Networks 1991, Vol. 2,
pp.1421-1425.

29. Minsky M. L. and S. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969.

30. Perantonis S. J. and Lisboa P. J. G., "Translation, rotation, and scale invariant pattern
recognition by high-order neural networks and moment classifiers", IEEE Trans. Neural
Networks 3, no. 2, pp. 241-251, March 1992.

31. Prokop R. J. and A. P. Reeves, "A survey of moment-based techniques for unoccluded
object representation and recognition", CVGIP Graphical Models and Image Processing
54, no. 5, pp. 438-460, Sept. 1992.

32. Ranganath H. S., D. E. Kerstetter, and S. R. F. Sims, "Self partitioning neural networks
for target recognition", Neural Networks 8, no. 7/8, pp. 1475-1486, 1995 (1995 Special
Issue on Automatic Target Recognition).

33. Ravichandran A. and B. Yegnanarayana, "Studies on object recognition from degraded
images using neural networks", Neural Networks 8, no. 7/8, pp. 481-488, 1995 (1995
Special Issue on Automatic Target Recognition).

34. Reid M. B., L. Spirkovska, and E. Ochoa, "Rapid training of higher-order neural
networks for invariant pattern recognition", Int. Joint Conf. on Neural Networks IJCNN
(Washington D. C.), 1989, Vol. 1, pp. 1689-1692.

35. Rogers S. K., J. M. Colombi, C. E. Martin, J. C. Gainey, K. H. Fielding, T. J. Burns, D.
W. Ruck, M. Kabrisky, and M. Oxley, "Neural networks for automatic target
recognition", Neural Networks 8, no. 7/8, pp. 1153-1184, 1995 (1995 Special Issue on
Automatic Target Recognition).

36. Roth M. W., "Survey of neural network technology for automatic target recognition",
IEEE Trans. Neural Netw_orks 1, no. 1, pp. 28-43, March 1990.

37. Rubin M. A., "Application of fuzzy"Artmap and Art-emap to automatic target recognition
using radar range profiles", Neural Networks 8, no. 7/8, pp. 1109-1116, 1995 (1995
Special Issue on Automatic Target Recognition).

REF-3

38. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning inte rnal representations by
error propagation", in Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, Vol.!, MIT Press, Cambridge, MA, 1986, pp. 38-362.

39. Sadjadi F. A. and Hall E. L., "Three-dimensional moment invariants", IEEE Trans.
Pattern Anal. Machine Intell. PAMI-2, no. 2, pp. 127-136, March 1980.

40. Schmidt W. A. C. and J. P. Davis, "Pattern recognition properties of various feature
spaces for higher order neural networks", IEEE Trans. Pattern Anal. Machine Intel'. 15,
no. 8, pp. 795-801, Aug. 1993.

41. Shin Y. and J. Ghosh, "The Pi-sigma network : an efficient higher-order neural network
for pattern classification and function approximation", Int. Joint Conf. on Neural
Networks IJCNN, 1991, Vol. 1, pp. 113-118

42. Smith F. W. and Wright M. H., "Automatic ship photo interpretation by the method of
moments", IEEE Trans. Computers C-20, no. 9, pp. 1089-1095, Sept. 1971.

43. Spirkovska L. and M. B. Reid, "Connectivity strategies for higher-order neural networks
applied to pattern recognition", Int. Joint Conf. on Neural Networks IJCNN 1990 (San
Diego), vol. 1, pp. 121-126.

44. Spirkovska L. and M. B. Reid, "Robust position, scale, and rotation invariant object
recognition using higher-order neural networks", Pattern Recognition 25, no. 9, pp. 975-
985, 1992.

45. Spirkovska L. and M. B. Reid, "Coarse-coded higher order neural networks for PSR1
object recognition", IEEE Trans. Neural Networks 4, no. 2, pp. 276-283, March 1993.

46. Teague M. R., "Image analysis via the general theory of moments", J. Opt. Soc. Am. 70,
no. 8, pp. 920-930, Aug. 1980.

47. Teh D. and Chin R. T., "On image analysis by the methods of moments", IEEE Trans.
Pattern Anal. Machine Intell. 10, no. 4, pp. 496-512, July 1988.

48. Troxel S. E., Rogers S. K., and Kabrisky M., "The use of neural networks in PSRI target
recognition", IEEE Conf. Neural Networks, San Diego, CA, July 1988, vol. I, pp. 593-
600.

49. Waxman A. M., M. C. Seibert, A. Gove, D. A. Fay, A. M. Bernardon, C. Lazott, W. R.
Steele, and R. K. Cunningham, "Neural processing of targets in visible, multispectral JR
and SAR imagery", Neural Networks 8, no. 7/8, pp. 1029-1051, 1995 (1995 Special Issue
on Automatic Target Recognition).

REF-4

50. Wong R. Y. and Hall E. L., "Scene matching with invariant moments", Computer
Graphics and Image Processing 8, no. 1, pp. 16-24, 1978.

51. Zakaria M. F., L. J. Vroomen, P. J. A. Zsombor-Murray, and J. M. H. M. van Kessel,
"Fast Algorithm for the computation of moment invariants", Pattern Recognition 20, no.
6, pp. 639-643, 1987.

REF-5

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

63

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

.... 	

1 . 	 ORIGINATOR 	(the name and address of the organization preparing the document. 	2. 	SECURITY CLASSIFICATION
Organizations for whom the document was prepared, e.g. Establishment sponsoring 	 (overall security classification of the document
a contractor's report, or tasking agency, are entered in section 8.) 	 including special warning terms if applicable)

COMMUNICATIONS RESEARCH CENTRE UNCLASSIFIED 3701 CARLING AVENUE, P.O. BOX 11490, STN H
OTTAWA, ONTARIO, CANADA 	K2H 8S2 	

3 . 	 TITLE 	(the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or ll) 	in parentheses after the title.)

A NOVEL APPROACH TO THE APPLICATION OF HIGHER ORDER NEURAL NETWORKS TO IMAGE
CLASSIFICATION (U)

•... 	
4. 	AUTHORS 	(Last name, first name, middle initial)

HATZIVASILIOU, 	FIVOS AND SALA, KENNETH L.

•._ 	
S. 	DATE OF PUBLICATION 	(month and year of publication of 	6a. NO. OF PAGES 	(total 	6b. NO. OF REFS (total cited in

document) 	 containing information. Include 	document)

MAY 	1996 	 Annexes, Appendices, etc.)

...., 	 62 	 51
7 . 	 DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of

report, 	e.g. 	interim, progress, summary, annual or 	final. 	Give the inclusive 	dates when a specific 	reporting period 	is 	covered.)

TECHNICAL REPORT OCT. 93 — DEC. 95

,... 	
S. 	SPONSORING ACTIVITY 	(the name of the department project office or laboratory sponsoring the research and development. Include the

address.)
DEFENCE RESEARCH ESTABLISHMENT OTTAWA (DREO)
3701 CARLING AVENUE, OTTAWA, ONTARIO 	KlA 0Z2

.....
Sa. PROJECT OR GRANT NO. 	(if appropriate, the applicable research 	9h. CONTRACT NO. 	(if appropriate, the applicable number under

and development project or grant number under which the document 	which the document was written)
was written. Please specify whether project or grant)

1410 FE 233
s...,

1 0a. ORIGINATOR'S DOCUMENT NUMBER (the official document 	10b. OTHER DOCUMENT NOS. 	(Any other numbers which may
number by which the document is identified by the originating 	 be assigned this document either by the originator or by the
activity. This number' must be unique to this document.) 	 sponsor)

CRC—RP-96-00 2
....,
11 . DOCUMENT AVAILABILITY 	(any limitations on further dissemination of the document, other than those imposed by security classification)

(X) 	Unlimited distribution
I 	I 	Distribution 	limited to defence departments and defence contractors; 	further distribution only as approved
() 	Distribution limited to defence departments and Canadian defence contractors; 	further distribution only as approved
I 	1 	Distribution limited to government departments and agencies; 	further distribution only as approved
I) 	Distribution limited to def ence departments; further distribution only as approved
() 	Other 	(please 	specify):

•..... 	
1 2. DOCUMENT ANNOUNCEMENT 	(any limitation to the bibliographic announcement of this document. This will normally correspond to

the Document Availabilty (11). However, where further distribution (beVond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

UNLIMITED
n ,_

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

DC003 2/06/87

13. ABSTRACT (a brief and f actual summary of the document It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classif ied documents be unclassif ied. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassif ied) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both of f ical languages unless the text is bilingual/.

THE APPLICABILITY OF HIGHER ORDER NEURAL NETWORKS TO THE CLASSIFICATION OF LOW
RESOLUTION IMAGERY IS INVESTIGATED. A NOVEL BOUNDARY DETECTION AND ENCODING
METHODOLOGY IS DEVELOPED IN ORDER TO SIGNIFICANTLY REDUCE THE LARGE NUMBER OF THIRD
ORDER INTERCONNECTION WEIGHTS WHICH MUST BE FOUND DURING THE TRAINING STAGE OF THE
NEURAL NETWORK. THE HIGHER ORDER NEURAL CLASSIFIER CAN BE TRAINED BY PRESENTING
ONLY ONE SAMPLE IMAGE PER CLASS AND SO ENABLES RAPID NETWORK LEARNING WITH A MINIMAL
REQUIREMENT FOR TRAINING DATA. AN EXTENSIVE, MATLAB COMPATIBLE TOOLBOX DEVELOPED
SPECIFICALLY TO IMPLEMENT THIS APPROACH IS DESCRIBED AND DOCUMENTED ALONG WITH THE
ALGORITHMS EMPLOYED IN THE IMAGE BOUNDARY DETECTION AND ENCODING PROCESS.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. ldentif iers, such as equipment
model designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected
from a published thesaurus. e.g. Thesaurus of Engineering and Scientif ic Terms (TEST) and that thesaurus-identif ied. If it is not possible to
select indexing terms which are Unclassif ied, the classification of each should be indicated as with the title.)

NEURAL NETWORKS, HIGHER ORDER NEURAL NETWORKS, IMAGE CLASSIFICATION, SAR IMAGERY

64 UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

INDUSTRY CANADA INDUSTRIE CANADA

III II RII911111 10 1 III

r

