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Abstract 

An image classification system based upon the extraction of moment invariant feature vectors 
and an artificial neural network classifier is described. The moment invariant feature vectors 
are derived from the test images using series of orthogonal basis functions. Six different basis 
functions are studied which include four types of Zernike functions and two types of Walsh 
functions. Four different schemes for the normalization of the feature vectors are also 
investigated. The images used in the study possess random scales, lateral positions, and 
angles of orientation in the image plane. In addition, random noise with different signal-to-
noise ratios is superimposed upon the images. The feature vector extraction technique 
employs the concept of moment invariants so that the feature vector components are 
independent of the image' s scale, lateral position, and orientation. The neural network 
employed for the classification task is a multilayer perceptron network which is trained with 
the backpropagation algorithm. The performance of the overall classification system is 
determined by measuring the classification accuracy as a function of the signal-to-noise ratio 
of the test imagery. The work and the results presented in this study form the basis for a 
neural network based, image recognition system which will be employed in the classification 
of military, synthetic aperture radar (SAR) imagery of land targets. 

Resumé 

Un système de classification d'images fondé sur l'extraction des vecteurs caractéristiques à 
moment invariant et d'un classificateur de réseau neural est décrit. Les vecteurs 
caractéristiques à moment invariant sont obtenus par des images de référence en utilisant une 
série de fonctions orthogonales. Six fonctions orthogonales sont étudiées incluant quatre 
types de fonctions Zernike et deux types de fonctions Walsh. Quatre méthodes de 
normalisation de ces vecteurs caractéristiques sont aussi étudiées. Les images utilisées dans 
cette étude varient selon l'échelle, la position latérale et l'angle d'orientation du plan de 
l'image. En plus, un bruit de fond aléatoire ayant des rapports signal-bruit différents sera 
surimposé sur les images. La technique d'extraction des vecteurs emploie le concept des 
moments invariants afin que les composants de ces vecteurs soient indépendants de l'échelle, 
de la position latérale et de l'orientation de l'image. Le réseau neural employé pour le travail 
de classification est un réseau perceptron à couches multiples qui reconnaît l'algorithme de 
propagation. Le rendement du système de classification est déterminé en mesurant l'acuité de 
la classification en fonction du rapport signal-bruit des images de référence. Le travail et les 
résultats présentés dans cette étude forment la base d'un système de reconnaissance d'images 
fondé sur les réseaux neuraux et qui sera employé dans la classification d'images militaires de 
cibles terrestres obtenues par radar à ouverture synthétique (SAR). 





Executive Summary 

The work described in this report represents the successful completion of the first phase of a 
DND sponsored project which has as its fundamental objective the development of a neural 
network based classification system for SAR imagery of land targets. The central purpose of 
this initial phase of the project is to comprehensively characterize the methodology of using 
moment invariant feature vectors as the means of representing the imagery to the neural 
classifier. An image database consisting of binary valued, 2-D objects is employed in these 
studies in order to facilitate a determination of an optimum environment for image 
classification using this combination of moment invariant features and a multilayer 
perceptron, neural network classifier. Six different mathematical bases employed in the image 

feature vector extraction are studied. Each of these bases is exarnined for two types of 
training data sets, one containing only noiseless imagery and the second containing a mixture 
of noiseless and noisy imagery. In addition, four different schemes are investigated for the 
normalization of the feature vectors. Other results described include the measurement of the 
dependence of the neural network classifier upon training epoch size, the number of hidden 
neurons in the network architecture, and upon the network initialization process. A series of 
feature vector graphs is presented which illustrate the measured invariance of the feature 
vectors, their degradation with decreasing signal-to-noise ratio, similarities and differences 
between feature vectors for similar and dissimilar images, and the dependence of the feature 
vectors upon the normalization method. The specific environment and experimental process 
determined by this phase of the project shall form the basis for classification studies of actual 

SAR imagery during the second phase of the project. 
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1. 	Introduction 

Research into the development and application of intelligent systems in military 
environments is acquiring increasing signific ance and importance given the remarkable 
progress in the area of sensor technologies and in the ability to collect and process 
increasingly complex volumes of sensor data41 . At the very core of the development of 
intelligent systems lies the task of extracting 'information' from 'data'. The distinction 
between these terms, while occasionally subtle, is always a fundamental and critical one in 
this area of research. At present, almost without exception, this task of information extraction 
is, largely by default, solely the domain of trained and experienced human interpreters. This 
situation, however, is somewhat discrepant with the observation that, for many sensor 
technologies such as radar imagery, sonar detection, and infrared photography, the types and 
characteristics of the data collected are largely alien to human experience 49,110,127. Synthetic 
aperture radar (SAR) imagery offers the perfect example of this type of data. The large 
dynamic range of the radar returns intrinsic to this technique is a characteristic that the human 
visual processing system is simply incapable of perceiving. Examples of SAR images, such 
as those reproduced in the concluding chapter of this report, are, in fact, 'depictions' or 
'representation' of the true data given the limitations of the printed medium (even if this type 
of imagery could be faithfully reproduced, the reader would still be unable to effectively "see" 
this dynamic range). In a literal sense, there is more to SAR imagery than meets the eye. In 
many respects, therefore, it can be argued that the task of interpreting data such as SAR 
imagery should ultimately be left to artificial means since only this approach may be expected 
to fully utilize and exploit these types of complex data. The critical step, however, towards 
the realization of this approach lies with the development of systems which, like the human 
vision system, are capable of recognizing and accurately identifying varied classes of patterns 
contained within sensor data. Furthermore, particularly within military contexts, artificial 
classification systems must be capable of accurate, robust pattern classification with high 
confidence limits and be able to classify quickly, ideally in real tiMe3' 18 '95 ' 126 . Indeed, it is 
argued by many researchers41 '94'95 , future advances in military sensor technologies may be 
compromised unless such artificial classification and automated target recognition systems 
can be successfully developed in the short to medium term 14,42,126,127 

In the particular field of SAR imagery, a principal thrust in the development of 
intelligent systems in this area employs some form of artificial neural network 30'49  to execute 
the task of identification and classification of patterns 14,42,94,126. The work along this direction 

addresses two main areas  of research. One is the investigation of different types of artificial 
8 neural systems and learning paradigms41923"42436311  . While the majority of work employs 

some form of multilayer perceptron.  network which is trained using the backpropagation 
learning algorithm (or some variation of it), many investigators are studying more general 
neural systems which utilize unsupervised learning models and which are capable of some 
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degree of self-organizing behavior in the determination of and recognition of image 

classes3'63 '97 . Other research examines alternate neural networks4,23,37,51,88,124 such as higher 
26,39,57,75,83,91,100,102,107-109 order networks 	 which offer inherent invariance via the network's 

structure to various image transformations such as changes in scale or object orientation. The 
second main activity within the research on neural network based classification of SAR 
imagery concerns the identification of suitable features which quantitatively characterize the 
imagery sufficiently to permit their use as the input parameters for the neural 
classifier 13,14,18,32,81,105,106. This task, somewhat surprisingly, is proving to be a difficult and 
elusive one insofar as determining a generic set of features or a methodology to determine 

such a set which proves to be both effective and general in its applicability to various types of 
SAR imagery. The reader is referred to the collection of articles which deal specifically with 
the task of classification of SAR imagery presented recently as a Special Issue41  of the journal 
Neural Networks (Grossberg, Hawkins, and Waxman, eds.). In addition, the reader may find 

it instructive to compare the review article concerning neural network classification of SAR 
imagery by Rogers et al94  in 1995 with those by Waxman et al 126  in 1993 and Roth95  in 1990. 

The work described in this report represents the successful completion of the first 
phase in a DND sponsored project which has as its fundamental objective the development of 
a neural network based classification system for SAR imagery of land targets. This initial 
phase of the work concentrates on characterizing the methodology of moment invariant 
feature vectors as the means of representing imagery to the neural classifier. To this end, a 
simple image database consisting of binary valued, 2-D objects is employed in these studies in 
order to concentrate on determining an optimum environment for image classification using 
this combination of moment invariant features and a neural network classifier. The essential 
advantage to working with simplified imagery in this phase is that the performance of the 
classification system can be measured against known standards and thus permit meaningful 
optimization of many of the classification system variables and parameters. The method 
decided upon by the results of this phase of the project will then form the basis for 
classification studies of actual SAR imagery during the second phase of the project. For this 
reason, considerable attention is paid to the development of the methods and algorithms 

created during this phase of the research to ensure that they can be easily adapted or modified 

to remain applicable to the more general characteristics of the SAR imagery. Indeed, at the 
time of preparation of this report, work is well underway in the application of these results to 

the classification of a recently acquired SAR image database of land targets of military 

significance. Other research previously reported under this project includes a study of time-
delay and perceptron neural network classifiers for SAR imagery of shipping 118  and a study of 

the application of higher order neural networks in conjunction with boundary detection and 
encoding algorithms for image classification". 
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Chapter 2 describes the method of moment invariants as it applies to the extraction of 

feature vectors for the characterization and classification of imagery7 . This technique is based 
upon the use of a series of basis functions from which are derived a sequence of global 
features which, loosely speaking, are directly related to the generalized Fourier coefficients of 
the image with respect to the basis 12,86,1 14,130By  suitably transforming the image and malcing 
appropriate choices for the basis functions, features are derived which are invariant to changes 
in the scale, lateral position, and in-plane orientation of the image. Six different basis 
functions are studied in this report of which four have heretofore been unreported in the 
literature on this subject. Chapter 2 also includes brief expositions of the mathematical 
properties of these six sets of basis functions along a discussion of some of the practical 
consequences and limitations of working with finite resolution imagery and sampled versions 
of the basis functions. Chapter 3 describes the experimental procedure for the feature vector 
extraction and the processing steps in the preparation of this data for use by the neural 
network classifier. The various computer programs developed for this purpose are briefly 
described in chapter 3. Complete listings of the various algorithms employed in this study are 
included as appendices to this report to which the reader interested in the finer details of the 
sequence of image processing and feature vector steps is referred. Chapter 4 presents the 
results of several prefatory experiments which determine approximately optimum values for 
several of the key parameters and variables which characterize both the neural network 
classifier and the feature vector processing stage. The results describing the performance of 
the overall, neural network based classification system are then presented for each of the basis 
function sets employing two different training sets of feature vectors. The classifier's 
performance is judged by measuring the classification accuracy as a function of signal-to-
noise ratio's for 23 separate test sets of images which possess random scales, lateral positions, 
and orientation angles. The signal-to-noise ratios (SNR) of these test sets vary from that of 

noiseless imagery through to pure noise. Chapter 5 offers a brief discussion of the main 
findings of the present work and considers some of the difficulties and questions which must 

be faced in the second phase of this work, namely the application of the methodology studied 
here to the analysis and classification of actual SAR imagery. 
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Chapter  2: Moment Invariant Feature Vectors for Pattern Recognition 

2.1:  Overview of Feature Vectors and Moment Invariants 

There are two basic concepts which are central to the entire field of pattern 
recognition730'37'49'65 ' 119 . The first is that, in the preponderance of cases, complex signals such 
as images or speech patterns can be accurately identified and classified through the use of a 

relatively small number of judiciously chosen features which characterize those 
SignalS7 '73 '93'98 . This concept is particularly applicable in the area of image recognition and 
classification where, for even fairly modest imagery, the sheer amount of image data can be 
problematic (e.g., a single 2048 x 2048 color image with 24 bits/pixel represents 12 
megabytes of image data). By making intelligent choices for those quantitative measures to 
serve as image features, the task of image classification can  be made tractable where it would 
otherwise prove pragmatically unworkable if one were forced to deal strictly with raw image 
data. The second concept which is also central to the problem of pattern recognition is that 
the classification system must possess the capability to accurately classify the signals in the 
presence of transformations or processes which modify them, i.e., the classifier must be 
invariant1,7,12,53,61,65,114,130,132 to one or more types of signal transformations or distortions. 
Examples would include speaker-independent speech recognition 21  and image classification 
which is invariant to changes in image scale and viewing angle7,12,130,114. It is important to 
recognize a priori that the incorporation of invariance into the pattern classification task 
should not be regarded as an appurtenance to the classifier design and methodology. Rather, 
the means by which the experimenter chooses to implement invariance into the overall 
process will, to a large extent, determine the structure and basic design of the classification 
system itself. Finally, it should be noted that these underlying concepts are not entirely 
abstract or theoretical contrivances. A growing body of experimental evidence exists which 
indicates that biological pattern recognition systems such as human vision explicitly 
incorporate various types of feature detection and extraction along with an intrinsic, learned 
ability to recognize patterns independently of a broad range of variances in the 
patterns 30,37,49,126,127

. 

Image features may be divided into two distinct categories, namely local and global 
image features93

'
52

'
55

'
119. Local features, as their name implies, are quantitative variables 

which depend only upon some localized area(s) or characteristic of the image object. 
Examples would include a fractal dimension measured over a small, movable window and 

various geometric parameters such as the number of corners present in an image's boundary 
representation. Frequently, although not invariably, local features such as those derived from 
the object's geometric or shape attributes possess the extremely useful property that such 
features are independent of a variety of types of transformations or modifications to the image 

such as spatial scaling, object translation, in-plane rotation, and image intensity scale or color. 
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Although this intrinsic possession of invariance by such features is an attractive advantage, the 

use of local features to classify imagery suffers from a number of important drawbacks. 
Perhaps chief among these drawbacks is the difficulty the experimenter faces when required to 
significantly increase the dimension of the feature vector as the image database increases in 

image complexity and/or in the number of distinct classes which must be recognized by the 

image recognition system. In addition, as experimental evidence has indicated, particularly 
with respect to real image data such as SAR imagery of land targets 14,42,94,126,127, the 

classification capabilities for a set of localized features may be excellent for one image data 
set but deteriorate or fail completely for a different set of images (e.g., SAR imagery for which 
basic parameters such as pixel resolution and polarization discrimination are different). In 

effect, the experimenter is forced to customize the choice of feature vector components to the 

specific image database under consideration. One final point regarding the use of localized 
features which deserves comment is the fact that, in a great deal of the work in which images 
are classified using local invariant features, some form of boundary extraction algorithm is 
employed to represent the image solely on the basis of its shape10,27,93,104,131.  For many types 
of real world imagery such as SAR imagery, the complex nature and wide dynamic range of 
the image objects effectively precludes the use of boundary detection techniques for such data. 

Global features1,7,12,40,59,86,119,130,132 of an image refer to quantities which are calculated 
using the entire image. The coefficients of any form of generalized Fourier transform of an 

image, for example, represent global image features. The principal advantages in using global 

features such as those based upon generalized Fourier coefficients or upon the 'projection' of 
70, the image onto some basis series of mathematical functions are as follows 114 7 1211673. 

 " 

(1) the derivation of such features is done 'blindly', i.e., the method of feature generation 
in no way depends upon the specific nature or type of imagery; 

(2) the dimension of the feature vector can normally be increased or decreased arbitrarily 
according to the requirements of the image database complexity; 

(3) by choosing orthogonal bases for the generalized Fourier transform or image 

projection, the feature vector components can be made to be independent of each other 
and possess no information redundancy; and 

(4) global features are, in general terms, reasonably insensitive to image noise and minor 
occultations. 

The chief drawback to the use of global features such as those derived from generalized 
Fourier coefficients is that they are dependent, in general, upon global image characteristics 
such as spatial scale, lateral position, in-plane rotation of the object, and image intensity scale. 
As noted above, this question of invariance of the pattern recognition system to such changes 
in image characteristics is a fundamental one for image classification systems since the 
observer has little if any control over the degree of image variability or degradation arising 
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from various types of geometric transformations (scaling, object position, viewing angle) or 
the presence of noise and occultation in the imaging process. The ability to recognize and 
classify an object independently of such variations in the image presents one of the most 

critical and challenging aspects in the design of an automated target recognition 
system7,130,14,94,95,126

. 

With respect to image data, one approach to deriving global features which possess the 
property of invariance to one or more types of image transformation consists in actively 

processing and transforming the image so that it complies or conforms to predefined 

templates 22'7 . For example, if invariance to image rotation is required, a 'fitting' rectangle can 

 be computed which contains the image object. The image can then be rotated in such a way 

that the object and its fitted rectangle are aligned with fixed, principal axes. If this alignment 

of the object is done for all the images contained in a database, then any global features 

subsequently derived from these transformed images will be independent of the object's 
original orientation. Until relatively recently, this type of image preprocessing and 
transformation was the principal method available for incorporating multiple invariances 
(such as invariance to image scale, position, and rotation) into the feature extraction process. 
Aside from the obvious disadvantage of requiring computationally extensive image 
preprocessing on each and every image in the image database, this task is o ften intractable or 
impractical for complex imagery (e.g., 2D imagery of 3D objects38'99) which may contain 
noise, asymmetric distortions, or occultations7 . 

An alternative method to achieve invariance to geometric transformations of an image 
(i.e., changes to scale, position, and angle of rotation) was first proposed by HU53 '54  in the 
early 1960's. Hu proposed using global features (specifically, algebraic moments) which did 
not possess the required invariances but for which series of algebraic expressions could be 
derived which did possess the required invariances. In essence, the invariances could be 
achieved by manipulating straightforward global features derived from the image as given 
rather than by manipulating the image itself, a generally much more difficult and abstruse task 
to perform. Although Hu's methodology for the derivation of his 'algebraic invariants' and 
his choice of basis functions by which the global features were calculated were subsequently 
replaced by better alternatives 7,12,58,114, his work quickly prompted renewed interest in this 
problem and led to advancements and improvements being reported by many other 
researchers 1,2,12,31,32,58-61,25,75,83,90,70-73,103,114,116,125,129,132. 	Unquestionably, the single most 
important development since Hu's seminal work has been the adoption of series of orthogonal 

1 5 7 1 	72 	2 functions to serve as the basis for the feature extracti 	2 16 73 86 90 9114 130on 	 . Several 
researchers have examined and experimented with a variety of basis functions, among them 
the Legendre polynomials, Zernike functions, and complex algebraic functions. The Zernike 

functions, first proposed by Teague 114 , have been consistently reported by researchers 1712 "58- 

61,70-73,75,79,86,103,116,122 to outperform other bases in the task of pattern classification using 
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moment invariant feature vectors. To a certain extent, the (complete) standard and pseudo 
Zernike functions serve as standards throughout this report by which other results are 
measured. This report examines six types of basis functions which include the standard 
Zernike function (SZF), the pseudo Zernike function (PZF), the standard Zernike radial 
polynomial (SZRP), the pseudo Zernike radial polynomial (PZRP), the Walsh radial function 
(WRF), and the Haar radial function (HRF). Note that the application of SZRP, PZRP, WRF, 

and HRF bases described in this report represents novel results; these bases have not, 
heretofore, been reported in the literature. 

In the remainder of this chapter, the algebraic, Zernike, Walsh, and Haar moments will 
be defined and brief expositions of the mathematical properties of these various basis 
functions will be given. The final section in this chapter will discuss the discrete (pixel) 
formulation of the exact, analog expressions for the moment invariants and some of the 
problems which arise from the finite sampling representation of both images and basis 
functions. The discussion given above of invariance in feature-based pattern recognition 
systems is, of necessity, extremely brief. The interested reader is referred to any of several 

7,12,65,86,114,116,130 review articles 	 for much more detailed discussions of this subject and 
invariant pattern recognition in general. More detailed descriptions of the various types of 
moment invariants and the mathematical bases from which they are derived may also be found 
in the literature2,12,28,56,58-61,68,70,72,73,79,84,86,90,114,130,133. 

2.2:  Algebraic Moments 

Algebraic moments (also referred to in the literature as Hu, geometric, regular, or 
normal moments) of order p+q are defined as the projection of the image onto the algebraic 
basis functions H pg  (x,y) = xPyq , i.e., 

00 00 

m pg  = 	f (x,y).eyq dxdy ; p,q 0 	 (2.1) 

where the image density (irradiance) distribution f(x,y), which is everywhere positive, is 
assumed to be finite in value and extent (i.e.,  m 	and piecewise continuous. The 
moments InPq  represent, in effect, the coefficients of the generalized Fourier transform of the 
image with respect to the basis functions H pq  ( x , y) xPyq . However, although this set of 
functions is complete on the unit square, the I pq  ( x , y) with p,q are not generally 

orthogonal: 
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0 	;porqodd 
f Hp,dxdy = 	yg dxdy = 	4  ; p and q even -1-1 	 (p +1)(q +1) 

1 1 	 1 1 ;porqodd 
(2.3) 

4 

H pq 1-1,,dxdy = 	xP' ye t dxdy .(p+ s+1)(q+ t +1) 	 (2.2) 
	 ; (p + s) and (q + t) even 

—1-1 	 —1-1 	 I 0 ;(p+s)or(q+t)odd 

Similarly, it should also be noted that the area or measure of Hpq is not generally equal to 0, 
specifically, 

The reader will note that the definition of the algebraic moments, eq. (2.1), involves 
integration over the entire Cartesian plane while eqs. (2.2) and (2.3) involving only the basis 
functions xPyq, are restricted to the region [-1,11 x [-1,1] (in effect, the functions Hpq  (x, y) are 
defined to vanish for 1x1  or lyl> 1). In practice, the image distribution f (x, y) will occupy only 

a finite portion of the image plane, thus allowing a unit area to be defined (through 
renormalization of the x, y coordinates) which encloses the image distribution. 

The moments mpg  of eq. (2.1) have special meanings and interpretations, particularly 

for the lower values of (p + q). Many of these properties are optical or image analogs to 

mechanical moments, appropriate given the strictly positive nature of the image irradiance 
function f (x, y) . The lowest order moment 

OD OD 

moo  = f f (x,y) dx dy 	 (2.4) 
—co  

represents the total irradiance or 'optical mass' of the image (for noiseless, binary images, m®  
is simply the total number of 'black' pixels). There are two first order moments 
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Mol = 	 f(X, Y)Y dX dY mo , = f f(x,y)y dxdy 

mio = 	f(x,y)xdxdy 

--00 --00 

■-00 --CO 

C0 00 

■-00 --CO 

00 00 

(2.5) 

= 
P9 

00 OD 

which, taken together, define a "center of optical mass" as that point in the image about which 
these first order moments would vanish. To transform to a coordinate system centered at this 
point and to ascribe a fixed total irradiance '13' to the image, the image is scaled and shifted 
and an alternate set of "irradiance normalized central algebraic moments"/1 pq  is defined as 

f(ax+.3-c,oty+57)xPyl dxdy 	 (2.6) 

where 

= M10 

Moo  

= 01 

Moo  

= 

Thus, for any image distribution f(x,y), the lowest order, normalized central moments are 

s and gm = gm = 0 	 (2.8) 

An alternate expression for the normalized central moments is obtained by rewriting eq. (2.6) 
in the form 

=
[m]7 11 f(x,y)(x—Ï)P(y—yr dxdy ; p,q 0 and y =1+19-11  

13  P 	 2 

Taken together, eqs. (2.6) and (2.9), although equivalent, indicate that normalized, central 
moments may be viewed in two distinct ways. In the first view, the axes of the coordinate 

(2.7) 

(2.9) 

9 



system are scaled and its origin shifted while leaving the image distribution as given (eq. 
(2.9)). The second view treats the coordinate system as fixed and scales and shifts the image 
distribution (eq. (2.6)). This difference in point of view can become significant in practice 
where only a finite portion of the image plane is specified and where, for real world data, the 

background of the image distribution is non-uniform. For SAR imagery, for example, a 
potential target provided as a small segment of the overall image may require that additional 
background be acquired or synthesized in order to process the feature vector extraction using a 

uniform sized image segment which has been centered on the object's "center of optical mass" 
as dictated by either form given above of the ,u pq  definition. In the present work, the 

computer generated images consist of black objects on white backgrounds and so this question 
of background "padding" or segment size simply does not arise. Note that the choice of 
normalization above is not unique; other norma lization criteria are found in the 
literature 12,53,114,86,96,73,92,114,116,130. 	Although not presented here, second order algebraic 
moments are related to moments of inertia, third order moments to image skewness, and 
fourth order moments to image kurtosis7,12,73,86,114,116,130. 

The irradiance normalized, central moments it pg  defined above are invariant to 

changes in the scale and position of the image. They are not, however, invariant to the (in-
plane) orientation of the image object. To achieve this invariance, Hu employed a 
mathematical technique referred to as the theory of algebraic invariants in conjunction with 
expressions relating central moments for different image rotations to derive a series of 
algebraic relations among the ii pq  which are invariant to changes in the image's angle of 

orientation. Such relations or, as in the case of the other bases considered in the remainder of 

this chapter, the moments themselves are referred to as "moment invariants". Hu derived 
seven such higher order expressions and then demonstrated53 '54  for a simple test case that 
these moment invariants could be used to classify images independently of their scale, 
position, and orientation. These expressions are not repeated here; the interested reader may 
consult the articles by Hu53 '54  or any of several other articles 7,12,73,86,114,130  which offer reviews 

25,32,82,105,119,125,129 of this approach. Other researchers 	 have also demonstrated the usefulness 
of Hu's moments as well as offering alternative methods for the calculation of algebraic 
moments ' " " " " " 28 38 52 56 68 69 79 84 99 119 131 133  . 

Several researchers 116,1,121,122,7,12,86  have examined, from an information-theoretic 
point of view, the performance of various sets of basis functions for the extraction of moment 

invariants as well as their robustness (i.e., sensitivity to additive noise). The algebraic 
moments of Hu suffer from two fundamental shortcomings which severely limit their 
applicability to any but the simplest of image classification problems. The first and most 
limiting of these shortcomings is the fact that the moments 1.1. 1,q , being derived from the non-
orthogonal basis functions Hpq (x,y), are not independent of each other. Higher order 

moments may be viewed as composed of two parts; one is a redundant part containing 
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information already present in lower order moments while the other is that portion which does 
contain 'new' information. Unfortunately, as clearly demonstrated by Teh and Chin i16 , the 
ratio of new to redundant information in the moments rapidly falls towards zero as the 
moment order increases. Thus, it would not be pragmatically feasible to work with algebraic 
moments in any problem requiring a relatively large feature vector dimension. The second 
shortcoming of the Hu algebraic moments is their acute sensitivity to the presence of image 
noise116,114. This report suggests a novel explanation for such sensitivity, namely that the 
measure of the basis functions, eq. (2.3), is non-zero for many of the moments. When 
additive noise is present, the fact that a particular basis function does not integrate to zero 
means that even modest amounts of random noise will severely affect the feature vector 
component (and, in the case of Hu moments, all higher order moments which possess 
information redundant with it) associated with that particular basis function. This proposal 
will be illustrated more clearly in Chapter 4 with the behavior of the moments for the SZRP 

and PZRP bases. 

2.3: Zernike Moments 

2.3.1: The Standard Zernike Function 

The set of standard Zernike functions SZFnm (x, y) originates with the desire to derive a 
set of basis functions with the following characteristics 15,17,11,62. 

(1) the set of functions is complete and orthogonal on the unit circle; 
(2) each function is a polynomial in the two variables x = r cos 0 and y = r sin  0;  
(3) the set of functions transform into themselves under a representation of the two-

dimensional rotation group (in less abstract terms, a set of functions which are 
invariant in form with respect to a rotation of axes about the origin); and 

(4) the set of functions contains one member for each permissible combination of the 
indices n and m. 

Together, these conditions lead to a definition of the standard Zernike function SZF„m (x, y) of 
order n and repetition m as a complex-valued polynomial in the two variables x = r cos 0 and 
y = r sin 0 given by 

SZFmn (x, y) = SZF,,„,(r , 0) = SZR1).(r)eime  ;x2  + y2 	5_ n, (n — m) even 	(2.10) 

where the real-valued, standard Zernike radial polynomial is given by, for 0 m < n, 
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with 

(n — k)! 
Sfl„,k = (+1)k 

k![(n+m— 2k)/ 21![(n —m— 2k)/ 21! 
(2.12) 

(2.11) 
(n-m)/2 

SZRP, m (r) =  
k=0 

The standard Zernike polynomials form a complete, orthogonal basis on the unit circle with 

12r 

55 SZF(x,y)SZF i:(x,y)dxdy = SZFnm (r,O)SZFi*k (r , 0) rdrd0 
x2 +y2 5.1 	 0 0 

	

1 	 2r 

= SZRP(r)SZRPik (r) rdrlif ene  e'ke  del 
0 

= { 
 2(n 

1
+1) 

. }{27r8 mk  

= 	 .(5 
n+1 	ink  

(2.13) 

where, since Sn,-m,k = Snmk, we have (SZF,,n)* = SZF,,,,. Note that the radial polynomials 
themselves are orthogonal and independent on the unit circle. The transformation of 
SZFmn  (r, 0) under a rotation of coordinates through an angle cp to new coordinates (x' ,y') given 

by 

x'=xcosw+ysincp 

y'=—x sin 9+ y cost') 

is particularly simple, taking the form of a phase change only, i.e., 

y')= SZFn„,(r, 0 + (p) = em"P SZFnm (x, y) 	 (2.14) 

It is this preservation of form under rotation which makes the Zernike functions particularly 
suitable as a basis for rotation invariant features. Note that 
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SZRPn,n (r = 1) = +1 	V n,m 	 (2.15) 

SZRP,,, n (r = 0) = (-1)k 8n,2k(5m,0 ; k =  0,1,2,.. 	 (2.16) 

The first few standard Zernike radial polynomials are: 

SZRPoo (r) = 1 
SZRPii (r)= r 

SZRP20 (r) = 2r2  —1 

SZRP22 (r) = r2 
 SZRP31 (r)= 3r3  —2r 

SZRP33  (r)= r3  

SZRP40 (r) = 6r4  — 6r2  +1 

SZRP42 (r) = 4r4  — 3r2  

SZRP44 (r) = r4  

(2.17) 

The radial polynomials for n = 7 and n = 8 are shown in figures 2.1 and 2.2, respectively, as 

2-D plots versus the variable r while figures 2.3 and 2.4 illustrate the 3-D plots of SZRP for 

the cases {n,m = {7,3 } and {8,0 } , respectively. Figures 2.5 and 2.6 show the real part of the 

Zernike function over the unit circle for the cases { n,m} = {7 ,51 and {8,21. Note that, from 
their definition (2.10), the real and imaginary parts of the SZF for m 0 are simply related as 

Im[SZF,n (r,0)]. Re[SZF,n (r,0 — 212  )] ; m 0 	 (2.18) 

i.e., the real and imaginary parts of the SZF are identical in form, the imaginary part equal to 
the real part rotated through the angle (27c/m). 

A parameter of significance in the present work is the integral equation giving the 
measure or area of the Zernike radial polynomial over the unit circle as 
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The Standard Zernike Radial Polynomial with n = 7 
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The Standard Zernike Radial Polynomial with n = 8 
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SZRP(r) with n = 7 and m = 3 
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SZRP(r) with n = 8 and m = 0 
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Re(SZF(x,y)} with n  =7 and m = 5 

ilfIlielleil 
,1,1?' 'i '. i•I'' eiliie'illifi' l IN i',1 11.fiett,,1  torslidi 

 jie te• .4111 , ''ufli' 
eiiiItiiklifitilrieli 11 

 )1'1,101, 11,,pelpiii ile,  0 Ile', 

kelle lifilfeeli.fifeeep,',/ .....,.,,,,,,. 



'Cc') 

Figure 2.6 

Re{SZF(x,y)} with n = 8 and m = 2 



21r5  SZRP, z,n (r) rdr = 2r(-1)( n-m )12  
0 

= ;n>1};n = 0 

n(n + 2) (2.19) 

It follows from this result that the measure of the full Zernike function vanishes for n ?. 1, i.e., 

1 2er 

SZF(r,O)rdrd0 = 21E (-1)(')/ 2 	m  
o 0 	 n(n + 2) 

=0  \ n, m with n 1 
=- 7r ;n=0 

Other properties and relationships for the standard Zernike polynomials, including recurrence 
relationships and generating functions, may be found in the literature l 1 ' 15 ' 17 ' 62 . 

2.3.2:  Standard Zernike Function Moments 

The standard Zernike function moment is here defined as MF 	nizr1 where SniZF is  

the complex Zernike coefficient given by 

SZF Anm  = ff f (x, y)SZF(x, y) dxdy 
x 2 +y2 

(2.20) 

(2.21) 

1 2er 

= f (r, 0)SZF(r, 0) rdrd0 
0 o 
]2,r 	 12,r  

= f f f (r , 0)SZRP n,n (r) cos(m0) rdrd0 —if ff (r , 0)SZRPn„,(r) sin(m 0)reIrde 
o o 	 o o 

= CSZF iS SZFnm  

where, henceforth, the image distribution function f (x,y)= f (r,0) is assumed to be the 
scaled and shifted version (as for eq. (2.9)) such that  i 	p and gm  = go, =0.  Since the 

20 



SZF form a complete, orthogonal basis set, the image function f (x, y) may be expressed as a 

generalized Fourier series over the SZF, i.e., 

n 

f (x,y) =I   SZF A nni  SZF,„(x, y) 
n=c, ,„=„ n +1 

(n—m)is even 

(2.22) 

It is thus possible to use the Zernike expansion as a means of image representation. Indeed, 
one application of this Zernike function series is to compress the image since a finite number 
of the coefficients may be used in eq. (2.22) to reconstruct the image to some predetermined 
degree of accuracy. Examples of this type of generalized Fourier decomposition using 
Zernike functions have been given by different researchers 116,73,122. 

The complex coefficients Ans.' defined above transform . simply to An  SmZF einup upon a 

change in the image orientation (counterclockwise) by the angle Ø.  Thus the principal 
standard Zernike moment MF  = lAnsz„,1 is independent of the original image scale, lateral 

position, and orientation and it is this quantity which is used in the present work to form the 
feature vector of the image. The feature vector derived from this basis consists of the series of 
scalar components Mn',nzF  ordered according to the primary index n with increasing values of m 
= 0 or 1, n. In all of the work presented here, the feature vectors based either on the SZF 
or SZRP (see below) utilize the range {n,m} = {3,1} through to {net} = {12,12 } , inclusively, 
for a total dimension for the feature vector of 45 components. 

2.3.3: Standard Zernike Radial Polynomial Moments 

The standard Zernike function moments of the previous section are derived from the 
complex coefficients Anm  of eq. (2.21) which must be calculated through two separate 
integrations of each image. As such, these moments are computationally quite demanding and 
it would be advantageous to define simpler, Zernike based moments which do not require the 
same amount of calculation. To this end, it is proposed to define the standard Zernike radial 
polynomial moments as A/C RP  =1,4'1 where the real-valued SZRP coefficients are given by 

A;r = ff f (x, y)SZRP h,„ (x, y) dxdy 
•

x 2 , y2 
(2.23) 1 Dr 

= 	f (r,O)SZR.Pn„,(r) rdrd0 
o 0 

1 Dr 

= 	f (r,O)SZR.Pn„,(r) rdrd0 
o 0 
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with 

( 
Pnmk  = (-1)k 	

2n +1 — k)! 
 
k!(n+nz+l—k)!(n—m—k)! 

(2.26) 

so that the SZRP feature vector is formed from the quantities 	with the same range of 
{n,m} values used for the SZF moments. The coefficient A ns,nzRP  is a real coefficient which, by 
itself, results in a major reduction in the amount of computation which must be done both for 
the basis functions and for the formation of the feature vectors. It should be noted, as shown 
in section 2.3.1, that the functions SZRP.(r) and hence the SZRP moments Mns,nzRP  are 
independent. 

Note that, by suppressing the (complex) angular dependence einlçb  to arrive at the 
simpler SZRP moments, it is not possible to reconstruct the image f (x , y) from a knowledge 
of the AnSCP  of eq. (2.23) alone as was the case with the SZF coefficients. However, the 
present work is concerned solely with the task of accurate image classification; questions of 
image reconstruction or image compression have no role to play in the present considerations. 
In short, if the SZRP moments were to prove as effective and accurate in the image 
classification task, they would be perfectly acceptable as moment invariant feature vectors. 

2.3.4: The Pseudo Zernike Function 

The pseudo Zernike functions PZFmn (r,0) are derived 15 ' 17  from the same set of 
conditions as those prescribed previously for the standard Zernike functions with the one 
exception that condition (2) is relaxed to permit a function which is a polynomial in the three 
variables, x,  y,  and r. The resulting functions are found to take the form 

PZFnm (x, y, r) = PZFnm (r , 0) = P (r)elme  ; x 2  + y2  1, 	n 	(2.24) 

where the real valued pseudo Zernike radial polynomial is given by, with 0 m n, 

PZRP,,, ±m (r)= E Pnmk r"—k 	 (2.25) 
k=0 
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(2.27) 

Note the lifting of the restriction that (n-m) be even in the case of the pseudo Zernike 

functions. As a consequence, the set of pseudo Zernike functions will have (n+1) 2  linearly 
independent polynomials of order n in contrast to the standard Zernike functions which will 
have only 1/2(n+1)(n+2) linearly independent polynomials of order n. 

Like the standard Zernike polynomials, the pseudo Zernike polynomials form a 
complete, orthogonal basis on the unit circle with 

1 2n.  

fj"  PZF(x,y)PZI",:(x,y)dxdy = f PZF(r ,0)PZFj*k (r , 0) rdrd0 
x 2  + p2 =  i1 27c f PZRP(r)PZRPik (r) rdr}{ en°  Cike  d0} 

{ 

 2(n 
1 

+1) 
8 .}{2m5 

= 	
 

n+1  8
.8

ink  

00  

with an equally simple rotational transformation analogous to that given in eq. (2.14), namely 

(2.28) , y',r)= PZF„„,(r,  0+ (p) = ene PZF,„n (x, y, r) 

Note that 

PZRP,,,n (r =1) = +1 	V n,m 	 (2.29) 

PZRP (r = 0) = (-1)n (n+1)(5„0 	 (2.30) 

The first few pseudo Zernike radial polynomials are: 
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PZRPoo (r)=1 
PZRPio (r)= 3r —2 
PZR11 1 (r)= r 

PZRP20 (r)=10r2  —12r+3 

 PZRP21 (r)=5r2  —4r  
PZRP22 (r)= r2  

PZRP30 (r)=35r3  — 60r2  +30r-4  

PZRP31 (r)= 21r3 -30r2  +10r 

PZRP32 (r)=7r3  — 6r2  

PZRP33 (r)= r3  

(2.31) 

The pseudo Zernike radial polynomials for n = 3 and n = 4 are shown in figures 2.7 and 2.8, 

respectively, as 2-D plots over the variable r while the 3-D plots of the PZRP for the cases 
In,m} = ( 3,1 ) and {4,2} are illustrated in figures 2.9 and 2.10, respectively. Figures 2.11 and 
2.12 show the real part of PZFnm (r,O) for {n,m} = {3,2} and {4,1}. Note that, as with the 

SZF, the real and imaginary components of PZI are related simply by 

Im[PZF,zna  (r, 0)] = Re[PZ,Fmn (r,0 )] ; m # 0 (2.32) 

The integral equation giving the measure or area of the pseudo Zernike radial polynomial over 
the unit circle takes the form 

= 	

n(n +1)(n + 2) 
m(m+1)  

27r f PZRP,,,,,(r) rdr = 2r(-1)' 

= ;n=0 ;n=0 

(2.33) 

It follows from this result that the measure of the full pseudo Zernike function vanishes for 

n 	1 
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The Pseudo Zernike Radial Polynomial with n = 3 
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The Pseudo Zernike Radial Polynomial with n = 4 
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PZRP(r) with n = 3 and m = 1 
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Re{PZF(x,y)} with n = 3 and m = 2 
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RePZF(x,y)} with n = 4 and m — 1 



n 
7r Z A P F  PZF (x,y) 

n=0 m=-n n + 1 	en  (2.36) 

12,r  
M(In +1) 	

mO f PZF (r,O)rdrd0 = 2r(-1)n -m 0 	nm n(n +1)(n + 2) 

=0 V n,m with n 
= Jr  ;n = 0 

(2.34) 

Other properties and relationships for the pseudo Zernike polynomials, including recurrence 
relationships and generating functions, may be found in the literature l 1 ' 15 ' 17

• 
 

2.3.5:  Pseudo Zernike Function Moments 

The pseudo Zernike function moment is defined asMnP,nzF  = lAnP,„z.F 1 where A, F  is the 

PZF coefficient given by 

= 	f (x, y)PZF,(x,y) cbcdy 
x2  + y 2 51 

A PZF n  

1 27r 

f f (r, 0)PZF:m (r, 0) rdrd0 
o o 
12,r 	 12,r  

= f (r, 0)PZRP.(r) cos(m 0) rdrd0 —if f (r,O)SZRP m (r) sin(me)rdrde 
o o 	 o o 

= CPZF  — iS PZF  

(2.35) 

where the image distribution function f (x, y) = f (r, 0) obeys the same conditions as those 
stated following eq. (2.21). Like the SZF, the PZF form a complete, orthogonal basis set and 
so the image function f (x, y) may be expressed as a generalized Fourier series over the PZF, 
i.e., 
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Applications of the full pseudo Zernike coefficients to represent and compress an image have 
,73 .  been reported by different researchers 116,122 

 

The complex coefficients il,,P,nzF  defined above transform simply to AnpmzF e  imo upon a 

change in the image orientation (counterclockwise) by the angle (/). Thus the principal pseudo 
Zernike moment M„PzF  =14,1,PnizF l is independent of the original image scale, lateral position, and 

orientation and it is this quantity which is used in the present work to form the feature vector 
of the image. The feature vector derived from this basis consists of the series of scalar 
components MF ordered according to the primary index n with increasing values of m = 0, 

n. In all of the work presented here, the feature vectors based either on the PZF or PZRP 
(see below) utilize the range {net} = {3,0} through to { n,m } = {9,5} inclusively for a total 
feature vector dimension of 45. 

2.3.6:  Pseudo Zernike Radial Polynomial Moments 

Exactly as was the case for the SZF moments, the pseudo Zernike function moments 
of the previous section are derived from the complex coefficients A npmz F of eq. (2.35) which 
must be calculated through two separate integrations of each image. It would be 
computationally advantageous to define simpler, Zernike based moments which do not require 
the same amount of calculation. To provide such a simpler alternative, it is proposed to define 
the pseudo Zernike radial polynomial moments as M ni:ZRP  =lAnPniZRP 1 where the real-valued 

PZRP coefficient is given by 

A nPmZRP  = 	f (x, y)PZRP, u,i (x, y) dxdy 
x2 +3,2 

(2.37) 1 2.7c = f f f (r,O)PZRPmn (r) rdrd0 
o o 

1 2.7c = f f f (r,O)PZRPmn (r) rdrd0 
o o 

so that the PZRP feature vector is formed from the quantities M„P„,'" with the same range of 
{n,m} values used for the PZF moments. The coefficient A RP  is a real coefficient which 
results in a substantive reduction in the amount of computation which must be done both for 
the basis functions and for the formation of the feature vectors. It should be noted, as shown 
in section 2.3.1, that the functions PZ.RP.(r) and hence the PZRP moments 1 /CRP  are 
independent. 
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Note that, by suppressing the (complex) angular dependence e im° to arrive at the 
simpler PZRP moments, it is not possible to reconstruct the image f (x, y) from a knowledge 
of the AZ RP  of eq. (2.37) alone as was the case with the PZF coefficients. However, the 

present work is conce rned only with the task of accurate image classification; questions of 
image reconstruction or image compression play no role in the present considerations. Thus, 
as for the SZRP case, if the PZRP moments were to prove as effective and accurate in the 
image classification task, they would be completely acceptable as moment invariant feature 
vectors. 

2.3.7: General Comments on the Zernike Moments 

There are three aspects to the definition of the various Zernike feature vector 
components as given above which deserve further comment. 

(1) The first concerns the normalization of these coefficients. 	Different 
researchers 1,2,12,25,86,96,99,114,122,144 have described renormalization schemes for the derived 
moments which are expected to noticeably decrease the dynamic range which would typically 
exist for the basic moments such as those defined above. However, such renormalization 
schemes have been deliberately disregarded in this work for one fundamental reason. As will 
be discussed in more detail in the following chapter concerning the calculation of normalized 
feature vectors, it is necessary when dealing with an artificial neural network to ensure that the 
input values (in this case, the components of the feature vector) are scaled (i.e., normalized) to 
fall within a preset, limited range (typically -1 to +1)49,30,4,23,95,126. Thus, any prior 
"renormalization" of the feature vector components would be, in effect, eradicated and 
replaced by scaling parameters which are determined by the (training) data set as a whole. 
Such a prior renormalization amounts, in the present work, to unnecessary computation and 
complication and so was not implemented. Indeed, even the usual coefficient arising from the 
generalized Fourier analysis (the term (n+1)/n in eqs. (2.22) and (2.36)) was omitted from the 
definition of the principal moment. 

(2) A second aspect of the choice for the feature vector components in this work is that 
only the principal components as defined by eqs. (2.21), (2.23), (2.35) and (2.37) are used to 
form the feature vector. There exist, however, n independent moments which can be formed 
from nth-order Zernike functions. The principal moment is simply the most obvious and 
direct one. Teague 114 , Weil and Kiibler 122 and other authors 12,35,7986,92,96114,119 discuss 
methodologies for forming all of the subsidiary moments of nth order. These subsidiary 
components, while independent of the principal moment, play a secondary role to the nth-
order principal moment from an information-theoretic view. Thus, particularly given the 
increased complexity of deriving the form of such subsidiary terms, only the principal 
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moments were employed in the present work (a custom, it appears, followed by the majority 
of researchers 1,2,58-61,72,73 who utilize moment invariants for image classification studies). 

(3) 	Thirdly and lastly, it should be noted that a fourth type of invariance, namely 
invariance to mirror transformation(s) 114,122,1,12,65,130  of the image is obeyed by the principal 
moments (Teague' s "true invariants" 114. 

) but is generally not obeyed for the subsidiary 

moments mentioned above (Teague's "pseudo invariants" 114). This observation will be used 
in the discussion of the experimental results on the classification of the test images used in the 

present work where two of the images (the numerals '2' and '5') are approxinzately mirror 
images of one another. 

2.4: Walsh Moments 

2.4.1: Walsh Functions, Walsh Radial Functions, and Walsh Radial Function Moments 

The family of Walsh functions is composed of a variety of different members which 
share two common characteristics. Firstly, each member of this family represents an ordered 
set of rectangular waveforms which, generally speaking, form a complete and orthogonal 
series of functions. Secondly, Walsh functions assume only a finite number of amplitude 
values, being piecewise continuous with a finite number of finite discontinuities at those 
points where the amplitude changes (for mathematical rigor, Walsh functions are defined to 
assume the value of 0 at the discontinuities). Some of the better known members of this 
family include the Walsh, Haar, slant, and Walsh-Haar functions 33,34,50,64,77,111,123. These 
functions and transforms based upon them (the fast Walsh and Hadamard transforms) have 
been studied extensively and have found many applications in the fields of 
communications 4537'46 , image analysis and compression20'77' 85 , and image feature 
representation29'36.20'77 '85 . Considerable research efforts have also been placed into designing 
and fabricating specialized circuitry and hardware to calculate the functions themselves or one 
of the variety of fast transforms based upon them. The reader is referred to the texts by 
Beauchamp8'9  and Harmuth46'47  which provide detailed expositions of the entire family of 

Walsh functions along with many examples of their applications. The brief exposition given 
in this section adopts the notational conventions found in the texts by Beauchamp 8'9 . 

Among the variety of ways to define and calculate the Walsh functions, perhaps the 
simplest and most direct is through the use of Rademacher functions which are defined as 

RAD(n, x) = sign{sin(2n Irx)} 	 (2.38) 
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where the sign(y) function is +1 for y>  0, -1 for y < 0, and equal to 0 when y = O. The integer 
n 0 is referred to as the order of the function. The Rademacher functions constitute 
an orthogonal but incomplete set of basis functions. Figure 2.13 illustrates the Rademacher 
functions for n = 0 through n = 6. The Walsh functions, which form an ordered set of 
rectangular waveforms which are both complete and orthogonal and which assume only the 
two amplitude values +1 and -1, are defined by 

WAL(n, x) =r1[RAD(i, x)] 	 (2.39) 
i=o 

where the order of the Walsh function, n, is expressed as a binary number 

n = 	 + ••• +bi f +b0 2°  

= {b„,, b„,_,,• • • , 	bo } 2  

and where the g, represent the Gray code representation of the integer n, i.e., 

	

GC(n) = {g 	gi ,  g0 }2 

	

where  g. b. 	; i = 0, 1, • -m with bm+i  0 

(2.40) 

(2.41) 

with ED denoting modulo-2 addition. This rather circuitous definition can be made clearer 
with the aid of a concrete example. To find, e.g., WAL(13,x), one would first write 

n =13 = {1,1,0,1} 2  

GC(n) = {83, g2, go = {1,0,1,1 } 2  

so that WAL(13,x) = RAD(4,x).RAD(2,x)•RAD(1,x). Note that WAL2(n,x)=1 for any order 
n. Figure 2.14 illustrates the 1-D Walsh functions for orders 0 through 15. The term 
"sequency" is commonly used in describing these functions and refers to the number of zero 
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crossings (discontinuities) which lie in the interval (0,1). Sequency serves as an analogy to 
the fixed periodicity or frequency of the trigonometric series { sin(nx), cos(nx)} with which the 
Walsh series shares m any similarities. The sequence WAL(n,x) as defined by eq. (2.39) is 
said to be sequency ordered and positively phased (i.e., WAL(n,0+) = +1 for all n). The reason 
why the Gray code conversion appears in the definition of the WAL function is precisely to 
ensure that the series so defined is sequency ordered. A series defined exactly as in eq. (2.39) 
which used the b j  directly in place of the g j  would lead to the same set of WAL functions but 

in dyadic order instead of sequency order 8 '9 . 

The series WAL(n,x) is a complete, orthonormal series, i.e., 

WAL(n, x)WAL(m, x)dx = (2.42) 

The functions, the constant WAL(0,x)=1 excepted, also possess a zero measure, i.e., 

WAL(n, x)cbc = 0 ; n 1 (2.43) 

It is a straightforward exercise to extend the Walsh functions to the 2-D plane by forming 
series of products of the form WAL(n,x)WAL(m,y) defined on the unit square x e [0,1] and y 
E  [0,1] and examples of these functions may be found in Beauchamp" and Harmuth46'47 . 
However, it is also possible to define a 2-D Walsh function series on the unit circle 0 5_ r 1 
and 0 5_ 2ir whose members are functions of r and  O and which is complete and 
orthonormal there. Such a series is defined and illustrated in Harmuth47  (note, however, that 
Harmuth uncharacteristically errs in the functional definition stated there although the 
illustrations of the functions are correct). In the present work, no interest is taken in the 
ability of the basis functions to serve as a generalized Fourier basis, i.e., one capable of image 
reconstruction, but only in their ability to serve as a basis which yields rotation invariant 
moments. Thus, in a fashion akin to that of the SZRP and PZRP bases, the Walsh radial 
function is defined as 

WRF„(r) = WAL(n, r 2  ) 	 (2.44) 
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and 

(2.46) 
1 2r 

WR(r)rdrd0 = 0 ; n 1 
o o 

The orthogonality and zero measure characte ristics are preserved, i.e., 

1 27r 

f f WRF, z (r)WRF,n (r)rdrde = 27r(5,,, 	 (2.45) 
0 0 

Figure 2.15 illustrates the profiles of the WRFn (r) as a function of r for n = 0 through 15. 

These figures should be contrasted with those for the normal Walsh functions shown in figure 

2.14. The effect of the r2  dependence for the WRF is to shift all of the zero crossings towards 
the r = 1 boundary by an amount which depends upon r. Figure 2.16 illustrates the WRF; o (r) 
as a 3-D plot. 

The WRF moments are defined directly as AeRF  =1,4,71 where the WRF coefficient 

is given by 

ArF  = ff f (x, y)WRF,,(x, y) dxdy 
-Fy2 

I 2r = f f f (r,O)WAL(n, r 2  )rdre 
00 

(2.47) 

In the present work, the feature vectors formed from the WRF moments run from n = 3 to 
n  = 47 and thus are composed of 45 components. 

2.4.2:  Haar Functions, Haar Radial Functions, and Haar Radial Function Moments 

The WAL and WRF reepresent global Walsh functions, i.e., functions which are zero 
only at a finite number of points in [0,1]. The other major class of Walsh functions includes 
those which are localized functions, i.e., functions which vanish over one or more intervals in 
[0,1]. The principal example of a localized Walsh function is the Haar function defined over 
[0,1] for n > 1 as 
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Walsh Radial Function WRFn(r) for n = 10 



HAR(n, x) = HAR(2P + m, x 

2P/2  for —m  < x < m “  
2P — — 2P 

= 1 -2P'2  for m+ +  < x  < m+1  
2P — 2P 

(2.48) 

otherwise 

where p = 0,1,2, ... and m = 0,1, ...  ,2' 1. Note that HAR(0,x)=WAL(0,x) and 
HAR(1,x)=WAL(1,x) and so are global functions. The remaining HAR functions for n ?_ 2 are 
localized functions. Figure 2.17 illustrates the HAR functions for n = 0 through 15. 

Like the Walsh functions, the Haar functions form a complete, orthonormal basis with 

i 

J  HAR(n, x)HAR(m, x)dx = (5 . 
o 

while also possessing the property of zero measure for n # 0, i.e., 

1 

5 HAR(n, x)dx = 0 ; n _k 1 
0 

(2.49) 

(2.50) 

In exact analogy with the WRF function defined above, it is possible to define a Haar 
radial function as 

HRF,i (r) = HAR(n, r2  ) 	 (2.51) 

such that 

1 2r S 1 HRF„(r)HRFm (r)rdrd9 = 27rb,„n 	 (2.52) 
0 0 
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and 

1 2.7r 

ff FIRF,(r)rdrde = 0 ; n 1 
0 0 

(2.53) 

Figure 2.18 illustrates the HRF for n = 0 through 15 and should be contrasted to the case of 
the normal Haar dependence of figure 2.17. For the HRF, the r2  dependence for the shifts the 
position of the entire localized function towards the r = 1 boundary by an amount which 
depends upon r. Figure 2.19 illustrates the HRFlo (r) as a 3-D plot. 

The HRF moments are defined as M rEHRF AnHRF1 where the HRF coefficients A HRF  are 

given by 

A nHRF = ff f (x,y)HRFn (x, y) dxdy 
x2 i-y2 51 

1 2ic 

= f (r,e)HRF(n, r) rdrde 
o o 

(2.54) 

The HRF-based feature vectors in the present work have dimension 45 and are composed of 
the HRF components from n = 3 to n = 47. 

2.5: Moment Invariants and Discrete Images 

All of the results in the preceding portion of this chapter have been expressed in terms 
of analog functions defined in the (x,y) or (r ,0) plane. As such, the invariances so calculated 
to changes in the image scale, position, and orientation in the plane are exact invariances. In 
practice, however, both the images and the basis functions are represented by their values over 
a finite grid of pixels (256 x 256 in the present work). Consequently, these exact analog 
relationships become approximate ones in which integration becomes replaced by sununation. 
In short, the existence of a finite pixel size forces the experimenter to deal with sampled 
versions of both the image and basis functions. 

Throughout the present work, the relationship between the analog and discrete 
coordinates, illustrated by figure 2.20 (for a 16 x 16 grid), is given by 
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Figure 2.19 

Haar Radial Function HRF ,(r) tor n = 10 
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The pixel coordinate system used for both images and basis functions. 
The irpage plane is divided into 2N x 2N pixels. 

In the example §hown here, N = 16  white N = 128 for all of the work 
- 	in the present report (256 x 256 grid). 
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x.  =(i— 0.5)A 	;i=(—N+1)to 

yi =(j-0.5)A ;j=(—N+1)to N 
(2.55) 

where the grid dimensions are 2N x 2N pixels and A := (1/N) is the pixel width. This particular 
assignment of pixel centers places the (x,y) origin at an interpixel point, i.e., there is no pixel 
corresponding to the values (0,0) and thus all of the image pixels are used in the calculations. 
Each of the integral relationships defined previously in this chapter can now be rewritten as a 
summation over the (ij) indices. For reference, the equations defining the various coefficients 
Anx or An)  (x denoting SZF, PZF, SZRP, or PZRP and y denoting WRF or HRF) are rewritten 

here in their discrete forms: 

N 	N 
AF,SmZF = 	V" V" zi 	f (x i ,y 1 )[Re(SZFnm (x 1 ,y i )) — iIm(SZFnm (x i , y 	 (2.56) 

i=—N+1 j=—N+1 

N 	N 
AnSnIZRP  = 	 f (x i ,y i )SZRPn„,(xi ,y i ) 

i=—N+1 j=—N+1 
(2.57) 

N 	N 
AnPmZF  = A2 	 f (x i  , y j )[Re(PZFmn (x i ,y i )) — ihn(PZFmn (x i ,y1 ))] 	(2.58) 

i=—N+1 j=—N+1 

	

N 	N 

	

A "  =A2  I 	f (x o y 	 i ) nm 
i=—N+1  j=—N+1 

	

N 	N 

	

AnWRF  = A2  I 	f (x , y i )WRFn (x i ,y i ) 
i=— N+1 j=—N+1 

N 	N 
AnHRF = A2 	 xi,  

i )HRFn (xi ,y i ) 
i=—N+1 j=—N+1 

(2.59) 

(2.60) 

(2.61) 
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In each case, the corresponding moments from which the feature vectors are formed are 
simply M.:. =1A,,,n 1 for the Zernike cases and M,), =1,4,;1 for the WRF and HRF cases. For 

small grid dimensions (approximately 32 x 32 or less), the use of straightforward, unweighted 
double summations such as those above in place of the double integral would not be 
justifiable; instead, a more accurate numerical approximation to the double integrations such 
as the use of Simpson's rule would be required. In the present work with a 256 x 256 grid, the 
double summations are sufficiently accurate to forego the need for any type of weighted 
summation 115 . 

The finiteness of the pixel grid affects the accuracy with which the feature vectors can 
be calculated in two different ways. Firstly, the processes of scaling and shifting the given 
image distribution, as dictated in eq. (2.6), will inevitably introduce some distortion into the 
final image as the result of the scaling and some error in the image positioning owing to the 
discrete nature of the shifting process. Distortion introduced by image scaling will be most 
severe for large scaling factors (either up or down) and/or for relatively small grid sizes 
(again, small denoting approximately 32 x 32 or less). In the present work, the distortion 
introduced through the image resealing is expected to be relatively minor given the 256 x 256 
image plane dimensions and the fact that upper and lower limits were imposed upon the 
process of introducing the random scale factor into the image preparation. The shifting of the 
(scaled) bitmap also introduces error since, given the discrete nature of the image distribution, 
the minimum shift which is possible in either the x- or y-direction is one pixel. In effect, the 
image can be positioned to its center of optical mass to within ±0.5 pixel width in the general 
case. This alignment error is expected to have lesser consequences when the image is 
centered against analog basis functions such as the Zernike functions while producing greater 
effects and errors for the discrete, stepwise continuous Walsh and Haar functions. Explicit 
evidence of this will be shown in chapter 4 where the variance of the feature vectors for the 
different basis functions is illustrated graphically. 

The second way in which the discrete pixel grid affects the accuracy of the cakulation 
of the feature vectors is that the basis functions are represented by their sampled versions on 
the {i,/} grid. In principle and in practice, the computation of the basis function values at 
these discrete points is exact. However, the double sununation, as in eqs. (2.56) to (2.61) 
above, uses the value of the basis function at { ij} as if it were constant over the pixel centered 
at { ij}. For larger grid sizes, this approximation is generally excellent and the double 
summations may be evaluated directly as explicitly written. For smaller grid sizes 
(approximately 32 x 32 and sir aller), it would be necessary to incorporate a more accurate 
means such as the trapezoidal or Simpson's rule to carry out the numerical integration. The 
reader is specifically referred to the papers by Teh and Chit-1 115 ' 116  for a detailed description of 
the effect of finite pixel size on the àccuracy of integration. 
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There is one additional manner in which the finiteness of the pixel grid affects the 
overall classification system and that is the fact that, because the basis functions are 
represented by their sampled versions, there will exist limits on the order of the basis 
functions which may be accurately and correctly represented by this sampling. By considering 
the minimum width of a variation in the SZRP or PZRP polynomial, it is possible to arrive at 
a "rule of thumb" estimate for the allowable maximum principal index n as a function of N 
(where the grid size is 2N x 2N pixels) of the form 

sz 4N-15 

	

ma 	10 
	 ; for SZF or SZRP 

PZ 2N — 5 

	

umax 	 ; for PZF or PZRP 
5 

(2.62) 

These, in turn , leads to rules of thumb for the maximum feature vector dimension for the 
Zernike bases as 

10.04. N 2  ;for  SZF or SZRP 
Maximum Dimension of Feature Vector 	 (2.63) 

0.08. N2  ;for PZF or PZRP 

By way of illustration, for N = 128 (the 256 x 256 grid employed in the present work), these 
rules of thumb yield n sz  50 and n PZ  re 50 with maximum feature vector dimensions of 
approximately 655 and 1310, respectively. Note that these are "generous" rules of thumb 
which ignore the inevitable errors incurred in the Cartesian representation of functions which 
are naturally defined in terms of polar coordinates (r, 8) (such considerations would reduce 
the estimates for nsz . and n PZ  by a factor of and, correspondingly, the estimates for the 
maximum feature vector dimension by a factor of 2). The essential point here is that, owing 
to the analog nature of the Zernike bases, the functions can be accurately represented on a 
finite pixel grid over a broad range of indices { n,m} and thus permit relatively high feature 
vector dimensions. 

The same considerations for the cases of the WRF and HRF functions, however, yield 
much more restrictive findings. Allowing explicitly for the r 2  dependence of these basis 
functions, a rule of thumb for the maximum order of either the WRF or HRF which can be 
accurately represented on a 2N x 2N grid takes the form 
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WRF HRF N n — — max 2 
(2.64) 

For N = 128 (the 256 x 256 grid employed in this work), eq. (2.64) yields the value 63 which 
would limit the feature vector dimension for either the WRF or HRF to approximately 60 after 
excluding the n = 0, 1, and 2 terms. Thus the actual values employed in the present work 
(feature vector dimension of 45) were close to this upper limit. Indeed, the rule of thumb, eq. 
(2.64), is a generous one; consideration of the polar to Cartesian conversion process would 
introduce a further reduction into eq. (2.64) of -./2: (in fact, the working upper limit would lie 
somewhere between these two estimates). The essential point to be taken from these numbers 
is that the restrictions on the order of the basis functions and hence the restrictions on the 
maximum allowable feature vector dimensions are much greater for the rectangular waveform 
Walsh and Haar bases than for the analog Zernike functions. 
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Chapter 3 : Experimental Design and Execution 

3.1:  Overview 

The primary objective of the present work is to measure the performance of a multi-
layer, backpropagation-trained, neural network classifier against, (a), six different sets of basis 
functions used to derive the moment invariant feature vectors for the images and, (b), two 
different sets of training vectors, the first consisting solely of noise-free images and the second 

consisting of a mix of noiseless and noisy images. The results of these twelve experiments, 
which will be presented in chapter 4, serve to identify that set of basis functions which yields 
the most accurate and robust classifier performance and will also serve to quantitatively 
demonstrate the degree of improvement in the classifier performance which results from the 

incorporation of noisy data into the training process. 

The overall feature vector extraction and neural network classification system is 
governed by several operating parameters and variables, many of which are tacit parameters 
for the process, e.g., the form of the activation function for the artificial neurons and the 

method employed for the normalization of the feature vectors. Accordingly, prior to 
determining the classification performance for the twelve combinations stated in the prior 
paragraph, a series of experiments was carried out to measure the dependence of the 

classification system on, (1), the number of hidden neurons for the multilayer perceptron 

network, (2), the epoch size used in the training stage and, (3), the method for the 

normalization of the feature vectors. In addition, measurements were made of the variation in 

the classifier performance resulting from the random nature of the network initialization and 

presentation of training data. The results of these experiments will also be presented in the 

following chapter. 

In all of the measurements aimed at determining the performance of the neural 

network classifier, the image classification process itself from raw test image to final result 
consists of eight steps: 

1. Creation of the scaled, translated, and rotated high resolution image. 

2. Reduction of the image resolution followed by transformation (scaling and shifting) of 
the image to yield irradi ance normalized, central moments  (u 	13 and 

1210 = 	= 0 ). 
3. Addition of noise and conversion of the image to a standard binary array format. 

4. Calculation of the raw (unnormalized) feature vector. 

5. Normalization of the feature vector (where the normalization parameters are 

determined by the training set). 
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6. Generation of the complete feature vector by concatenation of the normalized feature 
vector and the result vector. 

7. Classification of the normalized feature vector by the neural network (where the 
network has been previously trained). 

8. Rating of the classification result. 

Figure 3.1 illustrates this sequence in a flowchart format while indicating the differences 
between the training and test processes. The first and last steps in this sequence were 
executed with the aid of commercial software packages - Corel Draw (version 5.0, run on a 
80486 33MHz PC) to generate the basic images and Neuralworks Professional 11+ (version 
5.1, run on a Sparc 2 workstation) to simulate the artificial neural network. The intermediate 
steps were executed using custom programs written in Fortran 77. The core programs used to 
carry out the intermediate steps in the sequence above are listed in Appendix A while the 
various programs used to calculate and store the different basis functions employed in the 
derivation of the feature vectors are listed in Appendix B. The remainder of this chapter will 
describe in more detail the individual steps in the sequence listed immediately above. The 
reader may refer to the program listings in the appendices for any points of detail not covered 
in the following sections. 

3.2:  Generation of the Training, Validation, and Test Image Sets 

All of the images used in this work were derived from a fundamental set of nine 
images created by Corel Draw which consisted of the numerals '0' through '8' inclusive in a 
sans serif font style (Corel "Switzerland" equivalent to "Helvetica"). Since, for this type of 
font, the numeral '9' is essentially identical to a rotated '6', the numeral '9' was not included 
in the basis set. This basis set a images, shown in figure 3.2, consisted of the numerals 
unscaled, untranslated, and unrotated. To generate the images actually used to form the 
various data sets (i.e., training, validation, and test image sets), a series of four random 
numbers (each between 0 and 1) was randomly chosen from a table of random numbers. The 
first number was multiplied by 2 and was used to scale the image with the restriction that the 
scaling factor lie between 0.4 and 1.4 in order to avoid excessive distortions of the image 
owing to bitmap scaling. The second and third random numbers were transformed to values 
in [-1,1] and were used to translate the image along the x and y axes while the fourth number, 
when multiplied by 27t, served to introduce a random rotation of the image. The only 
condition applied to this overall process was that the final scaled, translated, and rotated 
image must lie completely witen the [-  1 J] x [-1,11 square in which the image was originally 
framed, i.e., occulted or partial images were not considered in this work. The final step in this 
process was to export the scaled, translated, and rotated image as an uncompressed 'TIFF' 
(_Tagged Image File Format) bitmap file consisting of 1024 x 1024 binary-valued pixels. 
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Figure 3.1 
Flowchart representation of experimental design showing 
sequence of image and feature vector processing steps. 
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3 

Figure 3.2 

The basic set of nine images as Coral Draw graphics. All of the images in the 
training, validation, and test sets are derived by scaling, translating, rotating, and 

adding noise to these basic images. 
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Two training sets were generated for use in all of the classification measurements in 

this work: 

• Training Set A consisted of 45 noiseless images, 5 each of the 9 numerals, with each 
image having randomly chosen scale, lateral position, and in-plane angle of rotation 

(subject only to the restrictions described above). The decision to use 5 images for each 
numeral was arrived at by examining the goodness of the invariance of the feature vectors 
for difference basis functions and by trial and error. It was found that increasing the 

number of examples per numeral beyond five did not result in either more rapid or more 

accurate training of the network. 

• Training Set B was composed of two sets of 45 images, the first a noiseless set with 5 
images per numeral and the second an independently derived set (with 5 images per 
numeral) to which was added noise to a SNR of 8 db. The process for the addition of 

noise to images and the definition of SNR for these images is described in detail in the 

following section. 

In order to ensure that the training of the neural network is approximately optimum 
and, more to the point, is neither under- nor over-trained, an independent set of 630 images 

was generated to serve as a validation set. The 630 images consisted of 14 independently 
derived sets of 45 images each, 5 images per numeral in each set, with SNR's for the 14 sets 
which ranged from noiseless down to 2 db. To monitor the network training process, the 
neural network was trained on a given training set for a specified number of passes (one 
training image per pass) and training epoch (the number of passes between network weight 
updates). The overall classification accuracy of the trained network was then measured for the 
entire 630-member validation set. The network was repeatedly trained and tested in this way 
while varying the number of training passes. It is an essential requirement49  in the application 
of artificial neural networks as pattern recognition circuits that the data sets used to train, 
validate, and test the network be independent of one another. In the present case, where the 
images are artificially generated, it is essential that each of these image sets be independently 
generated from the basis set described above. It would be highly facetious and inherently 
misleading, for example, to assess the performance of the trained network if the test image 

data contained or was a subset of the training data, even if the test images were modified 
somewhat by, e.g., the incorporation of additional noise. With 'real world' data, the 
underlying statistics of a given image set can vary from training to test sets or for different test 

sets and this variation can affect, often substantially, the performance of the neural network 
classifier. In the present case, it is expected that the statistical nature of the various image sets 
would vary little if at all given the methodology of generating the images artificially via 
computer software. In addition, the method of generating random noise to add to the images 
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was the same for all image sets. Nevertheless, these idealizations notwithstanding, it 

remained imperative that the training, validation, and test sets be generated in an independent 

manner. Under training was not a problem in the present work; in virtually all cases, the 

neural network converged very quickly to a trained state after only several hundred iterations 

through the training set. Further training then served to reduce the RMS error of the neural 

network. Over training the network also was not a problem in these measurements. It was 

found that training numbers approximately 10 times those ultimately used to train the 

networks were necessary to reveal any measurable degree of network overtraining and, thus, 
this regime was easily avoided. Undoubtedly, this insensitivity to the number of training 

iterations is a direct result of the fact that, even though the training, validation, and test sets 

were independently derived, the underlying statistics of these images sets were essentially 

identical given the fact that all of the images were artificially created from computer generated 

images and subsequently processed by similar routines. 

The test set used in all cases to measure the performance of the classification system 

was composed of 23 subsets of images. Each subset consisted of 45 images, 5 each of the 9 

image classes, with each image independently assigned random values for its scale, position, 

and orientation. The SNR for each subset was different, ranging from noiseless (i.e., SNR = 

00) through to a subset which represented pure noise (SNR = 0 db). The actual values for the 
23 subsets are listed in table 3.1. To simplify the pragmatics of measuring the classifier's 

performance as the SNR of the test data decreased, these 23 test subsets were concatenated 

into one large test set consisting of 1035 images from which was created the ASCII files in the 

formats required for the neural simulation program (these were the "nna" files referred to in 

the data preparation routines given in Appendix A). Throughout this report, reference to 

'measuring the performance of the neural network classification system' is to be interpreted as 

measuring the classification accuracy over this single, large test set containing image data of 

decreasing SNR. The details of the addition of image noise and the exact interpretation of 
SNR values are described in the next section. 

3.3: Conversion to Irradiance Normalized, Central Moments 
and the Addition of Noise 

The scaled, translated, and rotated images created by the commercial graphics software 
Corel Draw were exported as (uncompressed) TIFF (version 5) bitmap files containing 1-bit 
pixels over a 1024 x 1024 grid. A Fortran program entitled "pixelize" and listed in Appendix 
A was written to carry out sever4 basic image processing tasks, namely: 

1. to read the uncompressed TIFF bitmap file; 
2. to convert the 1024 x 1024 imàge to an averaged 256 x 256 pixel bitmap; 

57 



Test Subset 	SNR 	Number of Iterations of 	Exact SNR 
(45 images 	

(db) 	 Random Noise 	measured 
per subset) 	 Generator 	 (db)  

Test01 	 0.0 	 0 	 00 
Test02 	 50 	 207 	 49.9827 
Test03 	 40 	 653 	 39.9983 
Test04 	 30 	 2,071 	 29.9996 
Test05 	 25 	 3,701 	 25.0004 
Test06 	 20 	 6,606 	 19.9997 
Test07 	 15 	 11,717 	 14.9996 
Test08 	 12 	 16,879 	 12.0000 
Test09 	 10 	 21,665 	 10.0002 
Test10 	 9 	 24,543 	 9.0002 
Test11 	 8 	 28,015 	 8.0001 
Test12 	 7 	 31,947 	 7.0001 
Test13 	 6 	 36,446 	 5.9999 
Test14 	 5 	 41,851 	 4.9998 
Test15 	 4.5 	 45,053 	 4.4998 
Test16 	 4 	 49,031 	 4.0003 
Test17 	 3.5 	 53,544 	 3.5000 
Test18 	 3 	 58,460 	 3.0004 
Test19 	 2.5 	 64,970 	 2.5003 
Test20 	 2 	 72,202 	 2.0000 
Test21 	 1.5 	 79,910 	 1.4998 
Test22 	 1 	 95,230 	 0.9999 
Test23 	 0 	 282,800 	 0.0000 

Table 3.1 
The SNR parameters for the 23 test subsets used to 
measure the neural network classifier performance. 
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3. to perform the image scaling and translation; 
4. to optionally add random noise to the image to a prescribed SNR; and 
5. to save the 256 x 256, optically centered and scaled image, with added noise, as a 

standard binary "pix" file containing only the final pixel values (i.e., without headers 
or any other form of graphics-format-dependent structure). 

The process of image scaling and translation carried out by the routine "pixelize" 
corresponded exactly to the scaling and shifting of the image described by eq. (2.6) so that any 
moments subsequently calculated were irradiance normalized, central moments. By 
employing a simple naming scheme for the TIFF and HD< image files (the adoption of the 
"pix" DOS extension for the 256 x 256 binary files being purely a notational choice), the 
"pixelize" program could process large numbers of images automatically over a single run by 
incorporating a simple "do-loop" involving certain of the filename characters. 

The conversion of the high resolution 1024 x 1024 bitmapped image to the lower 
resolution of 256 x 256 was achieved by a simple, running average over 4 x 4 groups of 
pixels in the higher resolution image (with 2 or more black pixels in such a group resulting in 
a black pixel). Figure 3.3 shows several examples of different pixel resolutions for a specific 
noiseless image ranging from 1024 x 1024 down to 8 x 8. The bitmaps shown in figure 3.3 
are obtained by a direct resampling of the 1024 x 1024 image using a commercial, image 
processing tool (Corel Photo Paint V. 7); note that some of the distortion evident in the lowest 
resolution bitmaps (16 x 16 and 8 x 8) originates with the technique employed by the software 
for image resampling or scaling. Any degree of distortion resulting from the undersampling 
of the bitmap image in the 1024 x 1024 to 256 x 256 down-conversion is clearly negligible. 
The decision to work with 256 x 256 images was arrived at by compromise. On one hand, 
this resolution is fine enough to avoid potential problems and errors which arise for images 
defined on low resolution grids (approximately 32 x 32 or less) such as those 115 ' 116  involved in 
ultimately calculating the double integrals defined in Chapter 2 (see the discussion in section 
2.5). On the other hand, some preliminary measurements with resolutions higher than 256 x 
256 indicated that no measurable improvement in the classification performance was 
achieved. This meant that practical problems of greatly increased file sizes and computation 
times attendant to much higher resolution images could be avoided (a 1024 x 1024 image file, 
e.g., would be 16 times larger that the 256 x 256 image file and would, in addition, require 
equally larger files for the off-line storage of the basis functions). 

Working with the 256 ‹. 256 binary image, the lowest order, central algebraic 
moments, goo, and goi were calculated. The image was then shifted in both the x and y 
directions to produce an image with minimal values for gm  and go, . This shifted image was 
then scaled (up or down, as required) to yield an image with a predetermined value of goo  of 
approximately fi. 'Throughout this work, the images were scaled to give a value of ,6 =  8192 
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Figure 3.3 
Effect of image grid dimensions on accuracy of image representation 
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(which is 1/8 of 256 x 256). For binary-valued, noiseless images, goo  = s is simply the 
number of black pixels. Following the image scaling, the values of p,o  and po , were 
recalculated and the image was iteratively shifted to yield final gm  and go, values which were 

minimal. As discussed in section 2.5, the discrete nature of the image representation on a 256 
x 256 pixel grid meant that the final values of the normalized, central algebraic moments goo , 

/1 10 , and go, were generally never exactly equal to 8192, 0, and 0, respectively. Figure 3.4 

shows a sample entry from a file "pixelize.log" which was recorded by the program "pixelize" 

during a typical run. This file recorded several key variables and parameters used during this 
image preparation stage, including the final values calculated for goo , , and go, . Note that, 
although the first order moments p i°  and go , are not zero, the important observation 
regarding these values is that their ratio to goo  = [I is << 1. 

The user was offered the option of adding noise to this scaled, shifted image to a pre-
calibrated SNR. Note that the noise was added after the image had been first scaled and 
shifted, i.e., the problems of determining the optical center and the scaling of a noisy image 
were not dealt with in the present work. Indeed, this problem may be a significant one in 
future work with real world (i.e., noisy) images where it is inherently impossible to 
distinguish between noise and original image for a given pixel. Accurate scaling and 
centering of a noisy image is possible provided the experimenter has sufficient knowledge 
concerning the statistical nature and level of the noise present in the image since the effect of 
the noise on the shifting and scaling of the image can then be predicted. In the present work, 
random noise was added to the image by using a known random number generator to arrive at 
a pair of numbers in the range of [0,1]. This pair was then trivially transformed to correspond 
to an [x,y] coordinate in the image grid covering [-1,1] x [-1,1] for the x and y axes. The pixel 
value at this coordinate was then incremented by adding +1 modulo 2 (i.e., 0+0=0, 

0+1=1+0=1, while 1+1=0). In other words, the existing pixel at this location would be 
changed to black from white or to white from black. By separately calibrating this random 
number routine, the image could be modified to possess any desired SNR by iteratively 
running the random number routine a specified number of times. Note that it is essential to 
account for the degeneracy of this additive noise process in that pixels which are modified an 
even number of time are, in effect, unchanged in value. Only those pixels which are 'hit' an 
odd number of times are changed. Thus, as the calibration process revealed, a rapidly 
increasing number of iterations was needed to produce lower and lower SNR's owing to the 
fact that more and more pixels were being 'hit' an even number of times when the number of 
iterations increased. It is also important to note that, for these computer generated images 
with computer generated additiv( noise, the SNR is an exact, measured parameter given by 
the equation 
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Tag Name Datatype 	Length 	Data Offset Tag 
=== 

******************** Conversion of TIFF Data to Pixel Data ******************** 
Version 4.20 : July 22, 1994 

File : 001022.tif 	Gridsize : 256 x 256 	Precision : Real*4 

254 New Subfile Type 	 Long 	 1 	 0 
256 Image Width (Pixels) 	 Long 	 1 	1024 
257 Image Height (Pixels) 	 Long 	 1 	1024 
258 Bits per Sample 	 Short 	1 	 1 
259 Compression 	 Short 	1 	 1 
262 Photometric Interpretation 	Short 	1 	 1 
273 Strip Offsets 	 Long 	17 	 182 

Strip Offsets 	 Long 	17 	334 
277 Samples per Pixel 	 Short 	1 	 1 
278 Rows per Strip 	 Long 	 1 	 61 
279 Strip Byte Counts 	 Long 	17 	 250 

Strip Byte Counts 	 Long 	17 	7869 
282 X Resolution (dpi) 	 Rational 	1 	 318 

X Resolution (dpi) 	 Rational 	1 	117.72 
283 Y Resolution (dpi) 	 Rational 	1 	 326 

Y Resolution (dpi) 	 Rational 	1 	117.72 
284 Planar Configuration 	 Short 	1 	 1 
296 Resolution Units 	 Short 	1 	 3 

******************** Conversion of TIFF Data to Pixel Data ******************** 
Version 4.20 : July 22, 1994 

File : 001022.tif 	Gridsize : 256 x 256 	Precision : Real*4 

m00 = 	6289.0000 m10 = 	-154.9180 m01 = 	850.8320 

Scaling Factor = 	.8762 
Analog shift factors : 	-.0246 	.1353 
Pixel shift factors : 	-3 	 17 
Pixel shift factors : 	0 	 0 

m00 = 	8201.0000 m10 = 	-5.6211 m01 = 	22.3633 

NP = 21665 Number of hits = 15745 Percentage = 24.02 Measured db = 	10.00 

Figure 3.4 

Typical result for scaling and translation of a single image by the 
program "pixelize" to produce irradiance normalized, central moments 

with nominal values of goo =  f3  = 8192 and gio  = 	= O. 
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SNR(db) = 2010g 

where the grid dimension is 2N x 2N (256 x 256 in the present work) and n is the number of 
pixels changed from the noiseless image. Note that, with this commonly employed definition 

for images, negative values for the SNR are not possible. Rather, a SNR = 0 db represents an 
image of "pure noise", i.e., the probability that a randomly selected pixel represents noise is 
50%. Table 3.1 includes the number of iterations of the random noise generator algorithm for 
a fixed seed value which were required to produce the SNR listed there. Figures 3.5 through 
3.8 show a complete sequence of 23 images of the same numeral to which increasing levels of 

noise have been added from noiseless to SNR = 0 db as described in Table 3.1. This series 

of images serves as an explicit illustration of the SNR levels for the classifier performance 

measurements presented in Chapter 4. Figure 3.9 shows a series of images for two similar 

numerals, the '3' and the '8', for SNR's of 3, 2, and 1 db. This figure illustrates that a SNR of 
2 db represents that level below which human ability to reliably identify the image begins to 
fail. To underscore this point, it is left to the reader to decide which image is the '3' and 

which is the '8' for the 1 db SNR case in figure 3.9. 

The final task performed by the "pixelize" program is simply to save the scaled and 
translated image with its additive noise as a binary file containing only values of the 256 x 

256 pixel grid (in the present work, 2-byte integers for the binary-valued images). This native 
format was one readily used by the subsequent processing algorithms required to read the 
bitmap images. 

3.4:  Calculation of the Raw Feature Vector 

The calculation of the raw (unnormalized) feature vector is a straight forward 
calculation involving the double sunnflation (integration) of the 256 x 256 `pix' file produced 
by the program "pixelize" multiplied by the appropriate basis function previously calculated 
and stored off-line. Care was exercised to ensure that no contribution was made to the 
calculation for any pixels lying outside of the unit circle. The programs "genfvzer" and 
"genfvwal", listed in Appendix A, were used to execute this step. The summation formulas 
used are those given by eqs. (2.56) through (2.61). Each such double summation produces 
one component of the feature vector in the case of the SZRP, PZRP, WRF, and HRF basis 
functions. For the complex-valed SZF and PZF bases, separate double surnmations are 
carried out for each image with the real and imaginary parts of the basis function and the 
feature vector component formed by .taking the square root of the sum of these integrals 
squared.  All  of these double summations are carried out without any weighting function or 

(3.1) 
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zt) 
SNR = co db 

SNR = 40 db 

SNR = 25 db 

SNR = 50 db 

SNR = 30 db 

SNR = 20 db 
Figure 3.5 

Illustration of the image degradation with decreasing SNR ratio from 
noiseless to SNR = 20 db. 
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SNR = 15 db 

SNR = 10 db 

SNR = 8 db 

SNR = 12 db 

SNR = 9 db 

SNR = 7 db 
Figure 3.6 

Illustration of the image degradation with decreasing SNR ratio from 
SNR = 15 db to SNR = 7 db. 
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SNR=6db 

SNR = 4.5 db 

SNR = 3.5 db 

SNR = 5 db 

SNR = 3 db 
Figure 3.7 

Illustration of the image degradation with decreasing SNR ratio from 
SNR = 6 db to SNR = 3 db. 
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SNR = 0 db 
Figure 3.8 

Illustration of the image 
degradation with decreasing SNR ratio from 

SNR = 2.5 db to SNR = 0 db (pure noise). 
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SNR = 3 db 

SNR = 2 db 

SNR = 1 db 

SNR = 3 db 

SNR = 2 db 

SNR = 1 db 
Figure 3.9 

Illustration of similar images for low SN R. Human ability for accurate 

classification begins to sharply deteriorate for SNR's of 2 db and lower. 
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the use of any integration technique such as the trapezoidal rule. This simplification is a 
welcome consequence of using the relatively high resolution of 256 x 256 pixel images 
(indeed, the desire to avoid such mathematical complications was one of the principal reasons 
for choosing this resolution). 

In all cases, the basis functions were calculated and stored offline using a series of 
different algorithms which permitted the calculation of the functions over a user-specified 
range of indices. These programs are listed in appendix B. To verify the validity of these 
calculations, other programs were written to explicitly test the orthonormality of the calculated 
basis functions over the entire range of indices employed in the calculations. Listings of these 
programs are included in Appendix C. In addition to these validations, many of the calculated 
functions were plotted using a commercial graphing package (Axum v. 4.0) as a means to 
provide visual confirmation of the expected behavior of the functions. The calculations of the 
SZRP and PZRP bases (which were also calculated as part of the SZF and PZF calculations, 
respectively) required explicit, algebraic expressions for these polynomials as prescribed by 
eqs. (2.11), (2.12), (2.25), and (2.26). These expressions were calculated 'by hand' and then 
checked by expanding the polynomial expressions (up to n = 40) using a commercial, 
sYmbolic mathematics program (Mathematica) in order to ensure that these expressions were 
error free. 

The choice of 45 as the dimension of the feature vector used throughout this work was 

arrived at by some preliminary trial and error as well as being guided by the work reported by 

several other researchers working on similar problems58-61,1,12,103. This number represents the 
total number of principal moments derived from the use of the SM and SZRP from order n=3, 

m= 1  through to n=12, m=12, inclusively. While this exact number is therefore somewhat 
more arbitrary for the remaining basis functions (being n=3, m=0 through to n=9, m=5 for the 
1)ZF and PZRP functions and from n=3 to n=47 for the WRF and HRF bases), it was felt that 
keeping the dimension of the feature vector constant for all the different basis functions 
allowed for a more meaningful comparison in the final results. In addition, it was observed, 
bY trial and error, that the final performance capability was not particularly sensitive to the 
value of the feature vector dimension58,5"03 . One relatively minor difference adopted in the 
Present work when compared to similar work reported in the literature 1 1 ' 2 ' 58-61 ' 103 is that 
additional lower order moments were excluded from the feature vectors after it was observed 
that the very lowest moments (n=1 and n=2 for both the Zernike and Walsh functions) 
e.  xhibited unusually high sensitivity to the presence of noise in the images (most researchers 
Include the n=2 terms in their feature vectors). 

The calculation of the raw feature vectors constituted one of the most time consuming, 
cPu intensive steps in the overall classification process. To facilitate and automate this step, 
the programs "genfvzer" and "genfvwal" were written to calculate the feature vectors for sets 
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of images in a single run, again using simple and direct filename structures to allow for 
automated processing of the various input and output files. In addition, the programs were 
written to allow for command line parameters upon invocation, i.e., these programs could be 
run from a command line without any need for user prompting. This greatly facilitated the 
task of calculating the feature vectors since these programs could be repeatedly invoked with 
the aid of batch files to calculate results for series of image sets using appropriate command 
line parameters. Typical runs using "genfvzer" and "genfvwal" took several days of 
continuous CPU time but could be carried out without any operator intervention. 

3.5:  Normalization of the Feature Vectors 

Almost without exception, the models used for the artificial neurons which make up an 
artificial neural network incorporate a transfer or activation function which serves as a 
"squashing" or limiting function for the weighted sum of the inputs to that neuron49'30 . Two 
of the most common employed transfer functions are the sigmoid and tanh functions. It is an 
essential requirement in the preparation of data which is to serve as an input to a neural 
network that the range of this data be limited in its scale in order to avoid any one component 
dominating the behavior of those neurons to which it is applied. This scaling of network 
inputs is conunonly referred to normalization of the data. The raw feature vectors as 
calculated by the "genfvzer" and "genfvwal" routines of the previous section typically exhibit 
a range in their component values of 4 to 5 orders of magnitude. If this data were presented to 
the network without normalization, the largest of the vector components would completely 
determine the network's behavior and the training process. The inevitable result would be a 
neural classifier which would exhibit little if any classification capability since it would be 
able to discriminate between classes only upon the basis of a few, dominant components. 

So fundamental is this process of data normalization that all commercially available 
neural simulators as well as software designed for specific neural network hardware explicitly 
incorporate some mechanism to scale the network inputs for both training and test data. In the 
present case, the Neuralworks Professional Simulator II+ software includes, as a default, the 
creation of a `minmax' table derived from the training data. This table is normally used to 
scale both the training data and any subsequent test data to ranges which are acceptable and 
meaningful to the neurons within the network. In the present work, however, this feature of 
the simulator was explicitly disabled in favor of directly calculating the input values according 
to different normalization schemes. 

In all, four different methods of feature vector normalization were evaluated. In order 
to describe them precisely, the following notation concerning the feature vector components is 
first introduced: 
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j) = the _Ph  component of the eh  raw feature vector 
fv(i, j)= the normalized feature vector 
g(j)= mean of the i t"  component of the training set Irfv(i, j)} 
maxl(j) = max[rfv(i, j)]— ,u(j)1 } 

rfv e training set 
max 2(D= PC1)—  min[ifv(i, 

where the quantities p.(j), maxl(j), and max2(j) are determined by allowing the index "i" to 

vary over the entire training set (i = 1 ... 45 for training set A and i = 1 ... 90 for training set 
B). In the present work, j = 1, ... 45 where 45 is the dimension of the feature vectors. 

1. Standard Normalization (SN). 
This is defined by 

ifv(i,./) - 11(j) 
 ft'sN(i,  i) — max [max 1( j), max 2( j)] 

Thus the characteristics of 'standard normalization' are a zero mean with a maximum 
value of +1 (maxl?_max2) or -1 (maxl<max2). 

2. Positive Normalization (PN). 
This is defined by 

fvpN ( i, » =1 uvsN ( i, i) 1 

The characteristics of 'positive normalization' are thus a non-zero, positive mean with 
a maximum value of +1. 

3. Bipolar Normalization (BN). 
This form of normalization is defined by 

2 * rfv(i, j)— [max 1(j) — max 2(  j)  — 2 * it(j)]  
.fvsn4i,./) 

maxl( j) + max 2( j) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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The characteristics of 'bipolar normalization' are a non-zero mean and at least one 
component with a value of +1 and at least one with a value of -1. 

4. 	Differential Normalization (DN). 
This is a radically different type of normalization defined in the following way 

r—  1+ 1; 	+ 1)— fv sN(i, i )1 ?_ o 
fvDN(i, = 	1 ; [ft sN (i, + 1 )— fv sN(i , f)] < o 

The characteristics of 'differential normalization' are thus that, (1), each component of 
the feature vector is either +1 or -1 as determined by eq. (3.6) and, (2), the dimension 
of this feature vector will be one less than that of SN. While, in certain respects, fv DN  
represents a fundamentally different type of feature vector, it is here regarded as one 
more type of normalization given its derivation directly from the standard normalized 
feature vector. The motivation underlying the differential normalization arose from 
the observation (illustrated in the next chapter) that the fonn of the normalized feature 
vector SN (indeed, for the PN and BN vectors as well) remained roughly constant as 
the SNR was decreased for several of the basis functions employed. This suggested 
that a feature vector based only upon the sign of the differences between adjacent 
components would be largely unchanged in the presence of noise and, if so, could 
serve as a viable feature vector. 

The SN, PN, and BN feature vectors were generated by the program "Normfv" which 
is listed in Appendix A. This program normally processed a set of images per execution and, 
like most of the other core Fortran programs in Appendix A, offered the ability to be run from 
command line parameters so that several different sets of images could be normalized by 
creating simple batch files to repeatedly invoke the program. The DN vectors were created 
separately by the program "gencv" also listed in Appendix A. The results for the classifier 
performance as a function of the type of normalization are given in Chapter 4. A final note to 
this section concerns yet one further type of normalization found in the literatûre 58' 12.103  which 
uses the standard deviation of the raw feature vector components and normalizes each 
component (of the training set) such that the standard deviation of the normalized feature 
vector components are exactly equal to one. This type of normalization was tried in the 
present work and found to give poor results, particularly when compared to the SN and BN 
schemes. It is believed that this 'standard deviation' normalization scheme fares poorly 
chiefly owing to the fact that the range of values of the normalized feature vectors can 
significantly exceed the [- 1,1] range characteristic of the schemes described above. 

(3.6) 
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3.6: The Neural Network Classifier 

The decision was made early in this work to employ a three-layer perceptron neural 

network trained using the backpropagation training algorithm (the cumulative-delta variation). 
Figure 3.10 shows a schematic illustration of the three-layer perceptron neural network 
architecture and its associated synaptic weights while figure 3.11 shows an example of the 
actual Neuralworks Professional Simulator II+ interface screen complete with a trained 
network and monitoring instruments (note that the `three-layer' neural network of figure 3.10 

would be referred to by some researchers as a "two-layer" network — there is, unfortunately, 
no consensus on this terminology for neural networks49). Measurements were carried out to 
determine the best choice of transfer functions for the hidden layer and output layer neurons 
(the input layer of neurons acts only as a distribution layer, i.e., it has a linear transfer 
function). Four combinations were tried, namely sigmoid-sigmoid, sigmoid-tanh, tanh-
sigmoid, and tanh-tanh. The tanh-sigmoid combination was found to be noticeably superior to 
the others in terms of the speed of convergence and stability in the training process and so was 
adopted for the neural network throughout all of the present work. Note that this combination 
matches the fact that the inputs to the neural network are, generally, in the range [-1,+11 while 
the output neurons are trained to yield results in the range [0,+1]. 

The dimensionality of the neural network, i.e., the number of neurons in each of the 

three layers, was largely determined by the dimension of the feature vectors which served as 
the network inputs and by the number of classes of the result vectors. Thus, in all of the 
present work, there were 45 input neurons and 9 output neurons with each output neuron 
representing one of the 9 image classes (a +1 value signifying a 'hit' and a value of 0 
signifying a `miss'). A series of measurements was conducted to determine an approximate 
optimum for the number of hidden layer neurons. These involved measuring the classifier's 
performance for a specific basis fiinction set with all other parameters (number of training 
iterations, initialization parameters, etc.) held constant. These results are given in the 
following chapter. Note that although some researchers use a Kohenen-type of neural layer on 
the output (such a layer iteratively cycles the output using a competitive algorithm which 
ultimately forces the output layer to give only one non-zero result - a "winner-take-all" 
behavior), the output layer in the neural classifier used in the present work produced analog 
values, generally in the range of 0 to +1. The values of the outputs representing the individual 
classes provided very useful information concerning the behavior of the classifier as its 
performance degenerated wite decreasing SNR's in the test data. A methodology by which 
the outputs were `rateeis described in the following section. 
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Figure 3.10 
Schematic representation of the three-layer, fully interconnected neural network. 
The weights u,‘  and \i„ are determined by the backpropagation training algorithm. 
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Figure 3.11 
The interface screen to the commercial neural network simulator,  Neural  Works Professional II+. 
In addition to the schematic of the network, the monitoring instruments shown include RMS error 

plots, the confusion matrix, and the histogram of weight values. 



The Neuralworks Professional Simulator II+ uses several different types of ASCII files 
(with options for comma or space delimitation) to serve as inputs and outputs from the neural 
network. Specifically, the input file (denoted by the extension `nna') combined the 
(normalized) feature vector (generated with the program "normfv" in Appendix A) with the 
expected result vector (created with the program "genrv" in Appendix A) to form the 
complete vector file required by the commercial simulator. This nna file was written by the 
program "gencv" in Appendix A. Note that the result vector portion of this file is critical in 
that it is used during the training phase to provide the correct "answers" expected of the 
trained network. When test data is subsequently submitted to the trained network, the 
simulator produces an output ASCII file (the nnr format) which contains the expected result 
vector portion of the complete input vector along with the actual output values calculated by 
the trained network. Note that the form of the input file is thus the same for both training and 
test data, although the simulator uses the result vector portion for very different purposes. 

There exists a richly diverse family of neural network architectures and training 
algorithms49 , most of which are offered through the Neuralworks software. The decision to 
employ a multilayer perceptron trained by the backpropagation algorithm as the neural 
network classifier is, in part, a reflection of the fact that this particular network and training 
algorithm combination has been and continues to be the "workhorse" of neural network 
applications. The backpropagation-trained, multilayer perceptron has proven itself repeatedly 
in many varied applications such as image classification to be an accurate, robust tool for the 
task. Although no attempt was made in the present work to examine other network 
architectures for the task at hand, such research would be highly desirable in the near future in 
connection with the application of the results of the present work to SAR image classification. 
Recent, newly proposed neural networks4,23,51,88,124, some of which are akin in architecture to 
the multilayer perceptron appear to offer the potential of significant computational and 
possibly performance advantages. In addition, several types of affordable, PC-based, neural 
network hardware are appearing commercially which offer impressive gains in computational 
network throughput over neural simulators. These hardware-based networks often are 
designed to work with specific, non-multilayer-perceptron and/or non-backprogation-trained 
architectures. However, the present usefulness of the backpropagation-trained, multilayer 
perceptron should not be underestimated. Recent work by Nair et a180, for example, on image 
classification of a series of targets using several different neural network paradigms found that 
the backpropagation-trained, multilayer perceptron offered the best performance of the five 
types of networks and training algorithms tested. 
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(3.7) 

(3.8) 

3.7:  Assessing the Performance of the Classifier 

The analog result from the neural classifier consists of nine outputs, one for each 

image class (i.e., numeral) with each output lying in the range from 0 to +1. The network is 

deemed to have correctly identified an image only when the output corresponding to that 

particular image class is the largest of the nine outputs. The simplest method, therefore, to 

quantitatively measure the classifier performance is to assign the value +1 (i.e., 100%) for a 
correct result and a 0 otherwise. However, this clearly is a crude measuring meter. For 
example, a correct result for which the ratio of the (correct) largest output is only slightly 

larger than the second largest result represents a value with which would be associated a much 

smaller "confidence level" than one where the largest output is much greater than the next 

largest value. Conversely, a `miss' where the output value for the correct class is only 

nominally smaller than the largest (but incorrect) output should contribute some value to the 
rating of the classifier performance other than a simple zero. 

To arrive at a more faithful measure of the classifier performance over any given test 
subset, a sigmoidal weighting function was adopted to quantitatively rate the individual 
results. Specifically, the model used in the present work was to calculate a value 0 .fS 1 for 
any given result according to 

1  
f  = 1+ e -4(1?-"  

where the measured parameter  'R'  is 

R = 
Ratio of correct result to next largest result for a ' hit' 

Ratio of correct result to the largest result for a' miss' 

The parameters chosen for eq. (3.7) result in f = 0.50 when R =  1 (i.e., a 50% confidence level 
when the correct output is the largest result but equals the output from one other output), f = 
0.60 when R = 1.1, and f = 0.40 when R = 0.9. Although these parameters are somewhat 

subjective in choice, trials with different parameter values revealed that the final, overall 

classification values were quite insensitive to these choices. The results for the measurements 
of classifier performance which are given in the following chapter (performance for each of 
the 23 test subsets of table 3.1) use the accumulated sum of the values off as given in eq. (3.7) 
over one entire test subset (45 images). 
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One final observation which is pertinent to the method for measuring the classifier's 
performance is that, in virtually all of the cases studied, the trained neural network, as the 
SNR of the test images is decreased, fails by tending to predict the same result for all image 
classes which are presented to it. For example, once a given network begins to completely 
fail, it may predict that all test images submitted to it are the numeral '2'. Strictly speaking, 
for the test subsets which consist of 45 images composed of 5 samples from each class, five of 
these results are "correct" so that, apparently, a minimum performance for the classifier must 
be approximately 11%. Clearly, however, such a conclusion is facetious since, at that point, 
the confidence level in any given result is effectively zero. To more accurately reflect this 
characteristic, the classifier performance as plotted versus the individual rating for each of the 
test subsets of table 3.1 is renormalized according to the formula 

f — f inin  Rating(%) = 100 
If -fI  

where, for a given test subset, /*min and f,,za,, are the minimum and maximum values, 
respectively, off over the entire 23 test subsets. In practice, this renormalization has no effect 
on the higher values but sets the lower bound for the measurements to 0% instead of the 11% 
referred to above. 

(3.9) 
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Chapter  4:  Experimental Results 

4.1: The Feature Vectors 

It warrants repeating that the input to the neural network classifier is not the image 
data but is instead the feature vector derived using one of the basis function sets described in 
Chapter 2, i.e., the neural network is employed as a classifier of feature vectors. It is, 
therefore, a reasonable expectation that a direct examination and comparison of the feature 
vectors themselves should reflect many of the characteristics and attributes of the images 

themselves. This section will present a several illustrations of the dependence of the feature 
vectors upon different parameters in order to portray graphically many of the characteristics 
which ultimately will be reflected in the performance of the neural network classifier. 

Figures 4.1 through 4.12 show the feature vectors for the numerals '0' through '8' for 
each of the twelve combinations of function basis and training set with standard normalization 
throughout. In each case, the feature vectors shown are averages of five, single image feature 
vectors corresponding to the same numeral with five different, random combinations of scale, 
translation, and rotation (these are the 45 noiseless images which make up test01 of table 3.1). 
Note that, even though these figures together present the reader with a considerable number of 

illustrative examples, the number of feature vectors illustrated represents only a tiny 
percentage of the 50,000+ feature vectors generated and tested during the course of the present 
work. 

One very general observation which follows from an inspection of these twelve figures 
is that the basic character of the feature vectors are quite different in form for the eight sets of 

Zernike-based feature vectors in comparison to the four sets of Walsh-Haar based vectors. 
Furthermore, the natures of the SZRP and PZRP based feature vectors are more similar to 
each other than to either the SZF or PZF based vectors. Note that some of the feature vectors 
shown in figures 4.1 to 4.12 have components for which the magnitude is > 1. It is important 

to remember that all of the normalization schemes for the feature vectors described in section 

3 .5 ensure that the training feature vector components have magnitudes < 1. The test feature 
vector components, however, may be > 1 in magnitude and, as will be shown shortly, the 
addition of noise can lead to feature vector components, in certain cases, which change by 
'flore  than an order of magnitude from their values in the noiseless case. Finally, again in very 
general terms, note that the feature vectors for a specific basis normalized on training set A 
(noiseless data) are very similar to those normalized on training set B (mixed noiseless and 
noisy data) although significant differences are evident for the SZRP and PZRP bases. 

It is anticipated that, within the set of nine numerals, there should exist greater 
shnilarities for the feature vectors derived from those numerals which are themselves 
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Figure 4.1 
Feature vectors for the numerals '0' through '8' for the SZF basis, 

noiseless images, and standard normalization using Training Set A (noiseless). 
The horizontal axes show the order {n,m} of the Zernike functions. 
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Feature vectors for the numerals '0' through '8' for the PZF basis, 

noiseless images, and standard normalization using Training Set A (noiseless). 
The horizontal axes show the order {n,m} of the Zemike functions. 
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noiseless images, and standard normalization using Training Set A (noiseless). 
The horizontal axes show the order {n,m} of the Zernike functions. 

82 



41 
fl• 

• 
-1.0 	 ............. ....... 	 ... . 	-1.0 

o e" 0-  0 r- 

' 1' 

00 	 0 0 0. .e. 	0- 	tz. 

'0' '2' 

-1.0 	 ..... 1„_.1 ....... ........  
00 0 0 0 

1(1 	 ID 

1.0 

0.5 

0.0 

-0.5 

1.0 

0.5 

0.0 

-0.5 

1.0 

0.5 

0.0 

-0.5 

1 3 1 1 5 1 

1.0 

0.5 

0.0 

-0.5 

-1.0 	1-.. . 1„..1..,, 	...... 1 ....... 	......  
oo o o o o 
ri 	 .6 rz. 	 d 

0 
‘d .4. 	

0 
 

0 0 	o 0 

o o  0 e 
d 	d  u  r- 

I 	I 	1 	1 

1.0 

• 0.5 

0.0 

-0.5 

-1.0 

1.0 

0.5 

0.0 

-0.5 

-1.0 

1 7 1 1 8 1 

1 	1 	1 	1  

0.5 

1.0 

0.0 

-0.5 

-1.0 	r;„1„.,e.„,1 ...... ....... 1 .....  
s  0 e 

e, 	.n 	ocr 02 

• 

o o e ›: 

Figure 4.4 
Feature vectors for the numerals '0' through '8' for the PZRP basis, 

noiseless images, and standard normalization using Training Set A (noiseless). 
The horizontal axes show the order {n,m} of the Zemike functions. 

83 



1.0 

0.5 

0.0 

-0.5 

-1.0 	 ..... , 	-1.0 

1 

-0.5 

'2' 
1.0 

0.5 

0.0 

-0.5 

-1.0 

1.0 

0.5 

0.0 

0 r 	 0 g- 0 e• e e e œr 	e 
1.• 

1n0 g- 0 g- 	 r s ee e e 	a;* o 

'4 

-1.0 	fi. .1„1„ .!...1.. ..1.. ..1 .. ...  I  ..... ...... 	-1.0 	 ..... ..... ..... 	-1.0 

1.0 

0.5 

0.0 

-0.5 

1.0 

0.5 

0.0 

-0.5 

1.0 

0.5 

0.0 

-0.5 

O 

- r r 	 q 
of a; 

171 

I 	- 
-0.5 

-1.0 	1,1"1.111.1".1.1,11.1„1 ..... ..... .....  
gn 0 r 

tee Id Id I.: CI; CI; 0 1- el 

1.0 

0.5 

0.0 

-0.5 

-1.0 

1.0 

0.5 

0.0 

8 1  

r- e O  

1.0 

0.5 

0.0 

-0.5 

-1.0 

q 
▪ erze a; 0 

r r 	 0. 
a e ,  Id 	e e 0 r 0 r g- 0 r 

Lri tie r:: d 

Figure 4.5 
Feature vectors for the numerals '0' through '8' for the SZF basis, 

noiseless images, and standard normalization using Training Set B. 
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noiseless images, and standard normalization using Training Set B. 
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Feature vectors for the numerals '0' through '8' for the PZRP basis, 

noiseless images, and standard normalization using Training Set B. 
The horizontal axes show the order {n,m} of the Zemike functions. 
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Feature vectors for the numerals '0 through '8' for the WRF basis, 

noiseless images, and standard normalization using Training Set A (noiseless). 
The horizontal axes show the order n of the WRF functions. 
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Feature vectors for the numerals '0' through '8' for the HRF basis, 

noiseless images, and standard normalization using Training Set A (noiseless). 
The horizontal axes show the order n of the HRF functions. 
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Figure 4.11 
Feature vectors for the numerals '0' through '8' for the WRF basis, 

noiseless images, and standard normalization using Training Set B. 
The horizontal axes show the order n of the WRF functions. 
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somewhat similar in appearance. Thus, for example, the feature vectors for the numerals '0', 
'3', and '8' should be more "correlated" than, for example, the feature vectors for the 
numerals '0' and '1'. This expectation is illustrated in figure 4.13 which shows the difference 
between the feature vectors for '0' and '8' in part (a) and the difference between the feature 
vectors for '0' and '1' in part (b) (all for the SZF basis with standard normalization against the 
training set A). Clearly, as the number of terms which lie close to zero reveals, the feature 
vectors for the numerals '0' and '8' are much more closely related than those for the numerals 
'0' and '1'. In effect, the neural classifier must distinguish between a '0' and an '8' using a 
reduced number of feature vector components. This means that when the neural classifier's 
performance is measured against the full, 1035 image test set, it should be expected that the 
classifier will 'fail' sooner on the '0' and '8' feature vectors than on the '0' and '1' or 1' and 
'8' combinations. It was noted in Chapter 2 that the feature vectors employed in this work, 
being composed of purely principal or 'true' invariants, are also invariant to mirror 
transformations of the basic images 114 . The numerals '2' and '5' are approximately mirror 
images of one another and figure 4.14, which shows the difference between their feature 
vectors, clearly illustrates this "mirror invariance" by the number of near zero differences 
between the two image vectors. 

The question of how accurately invariance is obeyed for the actual calculated feature 
vectors is addressed in figures 4.15 through 4.20 for the six different basis functions using the 
numeral '3' in each case as a typical representative of the test image set. Each of these six 
figures shows five plots of the feature vector for the numeral '3' for the case of noiseless test 
images (test01 of table 3.1), each of the five vectors representing a different scale, translation, 
and orientation of the numeral. Clearly, the approximation to exact invariance for the case of 
the SZF, PZF, SZRP, and PZRP bases is excellent with only relatively minor fluctuations 

from the average. Furthermore, of these four Zernike bases, the SZRP and PZRP bases come 
closest to perfect invariance in the calculated feature vectors. This is in sharp contrast to the 
case for the Walsh functions, figures 4.19 and 4.20. Evidently, the Walsh and Haar bases 

produce feature vectors with considerably more variance in their values, particularly for the 

higher sequency components of the feature vectors. The principal cause of this increased 
departure from exact invariance is believed to be chiefly the result of the finite pixel size and 
the fact that the image cannot be exactly scaled and translated to its center of optical mass as 
was discussed in sections 2.5 and 3.3. Although the alignment of the scaled and shifted image 
with the basis function can only be done to an accuracy of approximately one-half pixel width, 
such "misalignment" introduces very little error into the double integral calculation of the 
feature vector component in the cases involving the smoothly varying, analog Zernike bases. 

For the Walsh functions, however, this "misalignment" obviously produces greater errors 
given the step-like nature of these basis functions. This misalignment is expected to have its 
greatest effect the finer the step sizes for the Walsh function and this expectation is borne out 

92 



1.5 

1.0 

0.5 

0.0  

-0.5 

-1.0 

-1.5 

1- 0 	 0 0 	 0 
rf 	 ccin 

n,n•n • 

0.0 

-0.5 

-1.0 

-1.5 

-2.0 1 	1 	11  

n-- 

2.0 
(a) Numerals '0' and '8' 

-2.o 

Standard Zernike Function Order 

2.0 

Numerals '0' and '1' 

1. 0 

0.5 

1.5 
(b) 

ri 	 c.6 

1 	I 	Ii 	I 	1 	I 	I 	I 	1 	I 	I 	I 	I i 	1 	I 	1 	1 	1 	1 	I 	I 	1 	1 	1 	1 	1 	I 	1 	1 	1 	1 	1 	1 
0 	 0 O 

r-- 	op- 	 cr.; 	 cNï 

Figure 4.13 
Difference between feature vectors for SZF basis, noiseless images, 

standard normalization on Training Set A. 
(a) Feature vector difference for '0 and '8' 
(b) Feature vector difference for '0' and '1' 

93 



1.0 

0.5 

0.0 

-0.5 

I mil Im m 
0 

L6 	(6 	 c6 

I 	Iii  I 	1 	I 

2.0 Numerals '2' and '5' 

1.5 

-1.0 

-1.5 

-2.0 

Standard Zernike Function Order 

Figure 4.14 
Difference between feature vectors for numerals '2 and '5', 

noiseless images, SZF basis, standard normalization on Training Set A . 



1.0 

0.5 

0.0  

-0.5 

-1.0 

1.0 

0.5 

0.0 

-0.5 

1111 1111 11 11111111 1111111111 

,,.nn . -1.0 
111 11111111 1  

O  
el' 
e- 

T 

T 
T 

Ci., 
el 
r- 

1.• 0 	1- 	g 	I- 	 0 	 .... 	 g 	 r 
Ce .117 	Id 	0 	r.: 	cd' 	C7; 	 0 	 r- 

1- 	 1- 

Standard Zernike Function Order 

(b) 

,- o 	,- 	o 	,- 	o 	,- 0. 
ye 	rs7 	os 	ce 	0 , 

	

_ 	Figure 4.15 
Variance of the feature vectors for the SZF basis, noiseless images, 

for standard normalization on Training Set A. 
(a) Plot of 5 feature vectors for 5 different examples of the numeral '3' 

(b) The mean of the 5 feature vectors of (a) plus their deviations from the mean 

'T 

95 



Ill 	  il 	1 	1 1 	I 	I 	II  

1.0 

0.5 

0.0 

-0.5 

-1 .0 

(a) 

nrr CO 	 CO 	 F- 

T

(xi 
o 

0.0 

-0.5 

- 	 I • 
II I 	I 	1 	1 	1 	1 	1 	1 	i 	1 	1 	1 	1 	1 	1 	I 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1 	1  

o 
oi• 

-1.0 

o 
rf 

0 
cif 

(b) 1.0 1-  

0.5 

Pseudo Zernike Function Order 

11111111111111 	1111 	1111 	11111 

Figure 4.16 
Variance of the feature vectors for the PZF basis, noiseless images, 

for standard normalization on Training Set A. 
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Figure 4.17 
Variance of the feature vectors for the SZRP basis, noiseless images, 

for standard normalization on Training Set A. 
(a) Plot of 5 feature vectors for 5 different examples of the numeral '3' 

(b) The mean of the 5 feature vectors of (a) plus their deviations from the mean 
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by the observation that the variation in the feature vectors for both types of Walsh functions is 
considerably greater at higher orders than at lower orders. 

In Chapter 3, four different normalization schemes were described, namely standard 

normalization (SN), positive normalization (PN), bipolar normalization (BN), and differential 
normalization (DN). These schemes produce very different looking feature vectors as 
illustrated in figure 4.21 for the case of noiseless test images, the PZF basis, and, in each case, 

using the noiseless training set A for the normalization parameters. The question of which 
normalization scheme resulted in the best neural network performance will be dealt with in 

section 4.4 of this chapter. Note that, in figure 4.21, the DN feature vector is shown over the 
45  PZF components even though its dimension is only 44 and, strictly speaking, the x-axis for 
131\1 vectors would be a simple running index and not the PZF {n,m} indices. To facilitate the 

comparison to the SN vector, the DN example simply 'adds' a zero first value for purposes of 

Plotting so that the actual 44 values for DN run from 13,1 to (9,5 ) in figure 4.21. 

The feature vectors, as expected, change as the SNR of the images is decreased. The 

severity of change, however, is strongly dependent upon the basis functions used in the 
extraction of the feature vector. Figures 4.22 through 4.27 illustrate the degradation of the 

feature vector with decreasing SNR for the SZ/F, PZF, SZRP, PZRP, WRF, and HRF bases, 
respectively, for the case of standard normalization derived from the noiseless training set. In 
each case, the feature vectors corresponding to SNR's of 00, 25, 10, and 5 db are shown. 
Quite clearly, the degradation of the feature vectors is the least drastic for the SZF and PZF 

bases. It is considerably worsened for the WRF base but clearly the worst of all for both the 

SZRP and PZRP cases. In the latter cases, the addition of even very moderate amounts of 

n°ise to the image produces relatively major distortions in the feature vectors. Figure 4.28 

shows the difference between the normalized feature vectors for the SZRP basis for the 

nulneral '1' and the cases of noiseless and SNR = 8 db images. This figure explicitly reveals 
that comparatively little distortion of the feature vector with noise occurs for those 
e°n1ponents for which the secondary index m is small but rises quickly as m increases towards 

n. This correlates exactly with eq. (2.19) (and eq. (2.33) for PZRP) giving the measure of 

the SZRP basis function as a function of m and thus reinforces the previously stated 
conclusion that image noise will most severely affect those feature vectors which are derived 
from  basis functions with nonzero measure. In the present example, the measure of the SZRP 

(arld PZRP) basis functions is small (or zero) only for m 0 (or m = 0) and increases to a 
thaximum value when m = n. 

Figure 4.27 for the HRF basis reveals a behavior quite different from that for the other 
ve basis functions employed insofar as the degradation of the feature vector with added noise 

is radically different for different components of the HRF vector. Examination of the feature 
vector degradation with noise for the HRF basis for other numerals reveals a consistent 
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Figure 4.21 
Illustration of the four types of feature vector normalization 

for the noiseless numeral '2', PZF basis, normalized on Training Set A. 
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Degradation of feature vector with decreasing SNR for SZRP basis, 
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Figure 4.28 
Difference between feature vectors of noiseless and SNR 8 db images 
for numeral '4', PZRP basis, standard normalization on Training Set A 



behavior essentially identical to that exhibited in figure 4.27. Note that certain of the HRF-
based vector components are almost exactly constant as the SNR is decreased while a small 
subset of the feature vector components exhibit large changes. This somewhat anomalous 
behavior is directly traceable to the localized nature of the HRF functions (all of the other 

bases are global functions). For example, the component for index n = 31 is one of those 
HRF-based components which is essentially unchanged by the addition of noise. Referring 
back to the illustrations and definition of the HRF functions in chapter 2, it may be seen that 
the n = 31 HRF has a very narrow, non-zero portion which is located at r 1 where either 
very few or no image object pixels can be found. Thus, since this very localized function 
integrates to zero (eq. (2.53)), the corresponding feature vector component can be expected to 
remain approximately constant as the SNR is decreased. This behavior should be contrasted 
with the behavior for the adjoining component at n = 32. The HRF for n = 32 consists of a 

much broader (but still localized) portion which is located at r 0 and it should be expected 
that the corresponding feature vector component will exhibit greater change as the SNR is 
decreased. Although the marked changes for n = 29 and n = 30 are less obvious, the behavior 
at those index values may also be traced to the specific form of the HRF function for those 
indices. 

Each of the graphs shown thus far depicts the "normal" view, i.e., the 45 scalar 
components of a feature vector are shown for a single image as a function of the order of the 

basis function from which the components are derived. However, during the course of 
examining the correlation between feature vector components, it was discovered that there 
existed strong degrees of correlation between certain components of the WRF and HRF 
feature vectors. This follows from the piecewise continuous, rectangular waveform nature of 
these functions. The difference between any two WRF (and, of course, the HRF) will be a 
localized function. For certain pairs of WRF (and HRF) this difference will be non-zero onlY 
for values of r 1 (such pairs can be seen by simply examining the plots such as those of 
figure 2.15). Since the images are irradiance normalized to 13 =  8192,  i.e., normalized to a 
constant 'area', it follows that some of the images will cover the range 0 r 1 more than 
others (the '1', e.g., more than the '0'). In general, all of the images (in the noiseless case) 
will have some "white space" in the image plane for r 1. The feature vector comp onents 

corresponding to these pairs of WRF (or HRF) components may thus be expected to be 
approximately equal for all images. This characteristic is illustrated by figure 4.29(a) which 
shows the n = 5 and n = 6 components of the WRF based features over the entire set of 207  
averaged feature vectors (each vector an average of 5 images). Clearly, as figure 4 • 29(b) 
shows, these two components of the WRF based feature vector are highly correlate d 

 throughout the entire test set, i.e., these components are essentially redundant. Note that even 
 though the WRF are independent and orthogonal, the feature components formed from thee 

can be correlated and hence, to some degree, redundant. This means that, in the cases of the 
 WRF and HRF bases, the "effective dimension" of the feature vectors employed will be les s  
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than the nominal 45 as stated. Indeed, in the present work, it is estimated that this "correlation 
effect" among the WRF and HRF components reduces the effective feature vector dimension 
by approximately 30%. This compounds further the difficulties with Walsh-type bases 
discussed in section 2.5 where it was shown that the practical limits on the dimensions of their 
feature vectors for a given grid size were severe. Note that no such behavior or correlation 
was observed for any of the (analog-valued) Zernike functions. 

A final note to this section on feature vectors concerns the ability of a neural classifier 
to learn distinguishing features which may not be readily observable by a mere inspection of 
the feature vectors themselves along the lines of the figures presented thus far in this chapter. 
A properly trained, multilayer perceptron, neural network classifier, trained with the 
backpropagation algorithm, is expected to learn not only the gross characteristics, examples of 
which have been presented above, but to also learn other, much more subtle differences 
between the feature vectors which should enable the classifier to provide much better 
performance with decreasing SNR than the foregoing, simple observations alone would imply. 
However, it is important that the reader keep in mind that, even though a neural network 
classifier may come impressively close to matching human performance in this one specific 
task (which is the case in the present work), the classification system described in this report 
is an extremely myopic one, limited strictly to an ability to classify only those images 
presented to it during the training process. Human capabilities are far more extensive in that 
general scenes which may contain a plethora of distinct objects are easily recognized and 

accurately classified in a manner invariant to a broad range of changes or transformations to 
such objects. 

4.2: Classifier Performance and the Number of Hidden Neurons 

The three layer perceptron used throughout this work had the dimension of its input 
layer determined by the feature vector dimension (45 in all cases, 44 for the cases of 
differential normalization DN) and the dimension of its output layer set by the number of 
image classes (9 for all cases). The dimension of the important, hidden layer of the neural 
network, however, was left to be determined experimentally. While there does exist several 
"rules of thumb" to estimate this number, these estimates yielded a wide range of possible of 
values. 

To determine an optimum value for the number of hidden neurons, the classifier 
performance was measured for hidden neuron sizes of 6, 12, 18, 24, 30, 36, and 42 for the 
twelve cases of the PZF and SZF bases, training set A, 45,000 training iterations, and an 
epoch size of 16. The results, shown in figure 4.30, indicate a rapid improvement in 
performance up to 24, a subsequent decrease, and a second increase for the largest hidden 
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neuron numbers. However, an excessive number of hidden neurons produces a behavior not 
dissimilar to the "overtraining phenomena" discussed in Chapter 3. For this reason, it was 
determined that a hidden neuron layer dimension of 24 represented the best compromise and 
most accurately trained classifier. This value was subsequently used for all of the 

performance measurements. 

In the remainder of this chapter, several results such as those illustrated in figure 4.30 
will be presented which measure the performance of the neural-network-based classification 
system. It is, therefore, imperative that it be made clear exactly what a "classification 
performance measurement" represents. In each case, the classification accuracy of the neural 
network is measured over a test set consisting of 1035 images which is made up from the 23 
individual test subsets (of 45 image each) as described in section 3.2. Each of the subsets has 
a definite SNR ranging from (noiseless) to 0 db (pure noise) as given in table 3.1. The 

classification accuracy for each subset is measured separately and plotted versus its SNR, i.e., 
the performance plots as in figure 4.30 and in the remainder of this chapter plot these 23  
points as the measurement of classifier performance as a function of SNR of the test data. 
The x-axis is somewhat arbitrarily divided into 23 equal intervals corresponding to the SNR's 
of the test subsets of table 3.1. This scale is essentially immaterial in the sense that the crucial 
characteristic which is illustrated is that region of SNR over which the classification falls froni 
100% to values less than 50%, i.e., it is the relative position of this failing of the classifier 
among the various results which is of importance. The actual values for the classification 
accuracy as shown in these figures are arrived at using the "rating" system described in section 
3.7 in which the 'hit' or 'miss' ratios are weighted by the sigmoid function of eq. (3.7) and the 
classification curve is normalized according to eq. (3.9). Note that in each of the "classifier 
performance" graphs presented in this chapter, lines corresponding to a SNR of 2 db and a 
classification accuracy of 75% are indicated. These lines are intended to explicitly indicate 
that SNR ratio below which human capability falls off rapidly and to indicate a classification 
accuracy level which divides the performance ability as "good" (above 75%) and "poor 
(below 75%). 

4.3: Classifier Performance and the Training Epoch Size 

The term "epoch", unfortunately, is used with widely differing meanings by the neurej  
network community and, understandably, can easily lead to confusion. It is used in this  won' 

 to mean the number of training samples presented to the neural network before the networe  
weights are actually updated within the backpropagation routing. An epoch size of 1 results in 

a dramatically increased training time and considerably more fluctuation in the network eel'  
as the training process progresses. An overly large epoch value, on the other hand, while 

 leading to much reduced training times, leads also to trained networks with appreciably larg e  
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errors than those obtained for smaller values of the epoch for the same number of training 
samples. Clearly, some approximate optimum for this parameter exists and must be 
determined by trial and error. 

To determine this value, the classifier performance was measured for epoch values of 
2, 4, 8, 16, 32, and 45 for the case of the PZI basis, training set A, 45,000 training iterations, 
and 24 hidden neurons. The results are shown in figure 4.31. From this result along with a 
knowledge of the network's RMS training error upon successful training completion, it was 
determined that an epoch value of 16 represented the best compromise and most accurately 
trained classifier. This value was subsequently used for all of the performance measurements. 

.4:  Comparison of Classifier Performance with Normalization Schemes 

Measurements of classifier performance were carried out for each of the normalization 
schemes over each of the twelve combinations of basis function and training sets and were 
critically compared in all cases. Representative examples are shown in figures 4.32 and 4.33 
for the case of the SZF basis using training set A and the PZRP basis using training set B, 
respectively. Clearly, the performance of the PN scheme is the worst of the lot (this was a 
consistent finding). Arguing that the use of the sigmoidal transfer function on the hidden 
layer neurons was inappropriate for the PN scheme, several runs were conducted using a 
Inodified neural network which used the tanh transfer function for both neural layers. Only a 
verY slight improvement was observed for the PN and the observation that it was the worst of 
the four remained unchanged. The DN scheme performed better than the PN in all cases but, 
as figures 4.32 and 4.33 indicate, performed noticeable poorer than either the SN or BN cases. 

In truth, the BN normalization scheme typically performed close to and often equal to 
that measured for the SN scheme for several of the runs. However, an examination of all the 
Performance measurements for these two schemes clearly indicated that the SN scheme was 
consistently better than that of the BN scheme. Thus, in all of the work to follow concerning 
the measurements of classifier performance versus choice of basis function, the Standard 
1\lcninalization scheme described in section 3.5 was used exclusively. 

4 'S 	Variability in Classifier Performance with Random Initialization 
in the Training Process 

The overall classification system comprising the feature vector extraction algorithms 
the neural network classifier presents the experimenter with an abundance of variables 
Parameters which can be tuned to optimize the overall performance of the classifier. In 
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many respects, a neural network based classification system could be termed a "tweaker's 
delight". However, it is fundamentally important to always keep in mind that the performance 
of the neural network is somewhat dependent upon underlying statistical factors which include 
inherent statistical variations in the composition of the training and test image sets, the nature 
bY which the untrained network is initialized to random weights, and the randomness in the 
presentation of the training vectors to the network during the backpropagation training phase 
(keeping in mind that, in the present work, the training vector set is presented 1000 times to 
the network during the course of training). The latter two factors, in particular, mean that, for 
a fixed set of training and test data bases, different runs which use different random 
initializations and/or "shuffle and deal" routines to randomize training vector presentation 
order will produce differences in the final measurement of the classifier's performance. This 

"fuzziness" in the performance of the final network is illustrated in figure 4.34 which shows 

Performance measurements for the PZF basis using training set A conducted for eight 
different choices of the "random seed variable" used by the NeuralWare simulator to both 
initialize the untrained network weights and to run the "shuffle and deal" algoritlun for the 

Presentation order of the training vectors to the network. Clearly, appreciable differences 
occur in the final measurements and these are due solely to statistical differences in the 
training process - the training and test sets are identical in each of the results shown in figure 
4 .34• Note, however, the constancy of the "shoulder" position of these curves; for a11 eight 
Plots, the classification accuracy begins to fall quickly beyond the 12 db SNR. This result is 
intended to remind both the experimenter and reader alike that attempts to precisely optimize 
the neural network classifier represent a somewhat facetious activity since such inherent, 
underlying statistical dependencies in the training process ensure that only approximate 
optimization of the overall classification process is truly meaningful. 

4.6:  Dependence of Classifier Performance upon Basis Function and Training Sets 

This section presents what constitute the chief results of the present work, namely the 
Measurements of the classification performance for each of the six basis functions using both 
training set A (noiseless) and training set B (rnixed noiseless and noisy imagery). In all the 

results presented here, the environment employed was: 

•  trilayer perceptron with 45 input neurons, 24 hidden neurons, 9 output neurons, trained 
using backpropagation, sigmoid transfer function (hidden layer neurons) and tanh transfer 
function (output layer neurons), network initialization seed value of 257; 

• training on 45,000 iterations for training set A (45 vectors) and 90,000 iterations for 
training set B (90 vectors) using an epoch value of 16 in all cases; 
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• standard normalization of the training and test feature vectors. 

The results for the SZF, PZF, SZRP, PZRP, WRF, and HRF bases are shown in figures 4.35 

through 4.37. Each figure shows the classifier performance for similar basis pairs (i.e., SZF 
with PZF, SZRP with PZRP, and WRF with HRF) for both training sets and it is obvious in 
each case that the incorporation of noisy data into the training process greatly improves the 

Classification accuracy. 

The results shown for SZF and PZF cases clearly show the best performance for both 
training sets. Indeed, these results provide the standard by which the remaining basis function 
results are measured. The performance shown in figure 4.35 for the case of the training set B 
and the basis PZF approaches that of a human interpreter of the same images, i.e., 
Classification accuracies of 75% or better are measured for a SNR as low as 2 db. The reader 
is referred back to figures 3.5 and 3.4 for illustrations of 2 db SNR images. 

The results illustrated for the SZRP and PZRP bases in figure 4.36 clearly fall far short 
of those for the SZF and PSF results. Nevertheless, the SZRP and PZRP measurements are 
alnong the most interesting and revealing (keeping in mind the maxim that more is learned 
frurri failures than from successes). The most surprising and striking characteristic of the 
SZRP and PZRP results is that, for the case of the training set A, the classifier catastrophically 
fails in each case when only very small amounts of noise have been added to the images (SNR 
(4.  aPproximately 30 db - see figure 3.4). The reason for this is directly traceable to the fact 
that, since the SZRP and PZRP bases have non-zero measures (and only these bases have 
this), the feature vectors are dramatically changed by the addition of even very small amounts 
nf noise, i.e., figures 4.24 and 4.25. The use of training set B, which includes examples of 
nuisY feature vectors, dramatically improves the classification performance of the SZRP and 
PSRP; indeed, the degree of improvement is such that they approach that measured for the 
SZF and PSF bases. In fact, when compared to figure 4.37, it may be seen that the SZRP and 
PZ-RP cases improve from being the worst cases (i.e., fifth and sixth places) for training set A 
tn  being "runners-up" (i.e., third and fourth places) when training set B is used. 

Given the relatively poor invariance for the WRF and HRF feature vectors as 
illustrated in figures 4.19 and 4.20, respectively, the lack luster performance of the neural 
classifier when these bases are used, figure 4.37, should come as no great surprise. However, 
ie\'en with the high variability in the feature vectors for the WRF and HRF and the extremely 
. °11e variation in those for the SZRP and PZRP bases, figures 4.17 and 4.18, respectively, it is 
interesting that the performance for the WRF and HRF betters that for the SZRP and PSRP for 
ttaining set A although it falls short of matching the superior performance for the SZF and 
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PZF cases for either training set. As well, the improvement for the WRF and HRF bases from 
training set A to training set B is the least of all the improvement observed for all six bases 
with the consequence that, as noted above, the SZRP and PZRP bases outperform the WRF 
and HRF bases when training set B is employed. Clearly, the importance of adopting zero 
measure basis functions outweighs the shortcomings in calculated invariance in determining 
the performance of the classifier. In addition, as discussed in section 4.1, several of the 
components in the WRF and HRF feature vectors are redundant so that, in effect, the 
Measurements made for these basis functions are with a feature vector having an effective 
dimension considerably less than the stated value of 45. This is a compensating factor when 
judging the relatively poor performance of these bases in comparison to the full SZI and PZF. 
However, this "allowance" may amount to choosing between "a rock and a hard place" since 
it Would not be possible, given the limitations on the sampling capabilities of the pixel grid for 
the Walsh functions, to significantly increase the dimension of either the WRF or HRF bases 
in order to compensate for this redundancy in the feature vector components. In particular, 
these difficulties would only be expected to become significantly worse for grid dimensions 
less than 256 x 256. 

For ease of comparison, figure 4.38 shows the performance measurements for the six 
basis functions using training set A while figure 4.39 shows the results for the six bases when 
11Sing the training set B. Overall, the PZF basis consistently outperforms all other bases 
although the SZF basis runs a close second and deserves, particularly in light of figure 4.34, 
aa "honorable mention". 
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Chapter  5: Discussion and Conclusions 

The work described in this report has examined the performance capabilities of a 
multi-layer perceptron neural network trained with the backpropagation algorithm as a 
classifier of elementary, 2-D imagery. Six different mathematical bases were studied for two 
types of training sets, one containing only noiseless imagery and the second containing a 
mixture of noiseless and noisy imagery. In addition, four different schemes were investigated 
for the normalization of the feature vectors. Other prefatory experiments were described 
which measured the neural network' s dependence upon epoch size, the number of hidden 
neurons, and upon the network initialization. A series of graphs of feature vectors was 
presented which illustrated the measured invariance of the feature vectors, their degradation 
with decreasing SNR, similarities and differences between feature vectors for similar and 
dissimilar numerals, and the dependence of the feature vectors upon the normalization 
method. 

The principal findings of this report may be summarized as follows: 

• The neural classifier used was a three-layer perceptron network with 24 hidden neurons, 
45 input neurons (the feature vector dimension), and 9 output neurons (the number of 
image classes). The network was trained with the backpropagation algorithm using an 

epoch value of 16. 

• Of the six sets of basis functions tested, the basis which provided the best performance 
was the PZF (closely followed by the SZF basis). Indeed, as figure 4.39 indicates, the 
neural network classifier trained on training set B and using the PZF basis for the feature 
vector extraction exhibited an accuracy comparable to human capability to classify the 

same set of imagery (the neural classifier maintained a classification accuracy above 75% 
for SNR's down to 2 db inclusively). 

• All of the bases studied showed marked improvement in the classifier's performance when 
the mixed noiseless plus noisy training set B was used in place of the noiseless training set 

A. 

• The SZRP and PZRP bases exhibited "catastrophic" failure for training set A but showed 
the greatest improvement in performance when training set B was employed. 

• The Walsh bases, WRF and HRF, performed poorly for both training sets, showing the 

least improvement of all the bases for training set B over training set A. 
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• Based upon the results with the SZRP and PZRP bases which were the only basis 
functions which possessed non-zero measures, it was concluded that a necessary condition 
for the basis functions to be insensitive to the presence of image noise was that they 
possess zero measure. 

• Of the four normalization schemes investigated, the normalization method which 
consistently resulted in the best performance was the 'standard normalization' (section 
3.5). This normalization is characterized by a zero mean for each of the feature vector 
components over the training set and training feature vectors which have either a 
maximum value of +1 or a minimum value of —1. 

Retrospectively, the decision to study the characteristics of the methodology of 
Moment invariant feature vectors and a neural networlc classifier using the simplified image 
database of this report was both a sound and necessary one. The principal findings from this 
Phase of the work were greatly facilitated and the conclusions drawn made much clearer by 
the use of this simplified image database possessing lcnown, well understood image and 
statistical characteristics. The more subtle inferences such as that concerning the dependence 
of noise sensitivity upon the measure of the basis functions being zero or non-zero or the 
highly component-dependent invariance of the HRF basis would almost certainly have gone 

undetected had a more complex image database been employed. 

With the results of this study in hand along with the extensive library of computer 
algorithms developed, the stage is set to proceed with the application of neural network 
Classification using PZ-based moment invariant feature vectors to identify and classify SAR 
imagery. Four examples drawn from a database of SAR imagery which is intended for use in 
this next phase of the project are illustrated in figure 5.1. Three distinct object classes are 
shown in this figure with figures 5.1(a) and 5.1(d) representing different images of the exact 
same object. Clearly, as these images are intended to illustrate, the classification of such 
iinagery, except to the very experienced interpreter, is neither intuitive nor elementary by 
nature and the intended objective of accurate classification by artificial means represents a 
challenging one. An essential, arguably crucial, requirement for the application of the 
experimental classification system presented in this report to this type of SAR imagery is that 

the feature vectors computed for images such as those typified in figure 5.1 must possess, to 
some acceptable degree of approximation, invariance to the scale, lateral position, and angle 
°f view for images belonging to the same class of objects. The finite resolution of the SAR 
itilagery system, the existence of measurable returns from the background of the object, and 
the presence of noise and speckle in the image are examples of characteristics which are 
expected to detract from the invariance of the calculated feature vectors. However, the two 
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(a) (b) 

(c) (d) 

Figure 5.1 

Examples of airborne SAR imagery of isolated ground targets. 
Figures (a), (b), and (c) represent different object classes. 

Figure (d) is from the same class as figure (a). 
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1. 

2. 

factors which are anticipated to most seriously affect the accuracy and invariance of the 
calculated features are the following: 

SAR images of land targets represent 2-D projections of complex, 3-D objects. Thus, 
there are Iwo angles which determine the profile of the object as seen by the imaging 
system and not simply the "in-plane" rotation angle considered in the present study of 2-D 
images. Even under ideal circumstances, the neural network classifier must, in the case of 
SAR imagery, be expected to learn in the training phase some measure of invariance 
beyond the in-plane invariance incorporated into the calculation of the feature vector. The 

practical limitation to how well the neural network can learn this more general invariance 

may be ultimately determined by the number of images which constitute the training 

database. Moreover, as with any form of 3-D to 2-D projection 38 '99 , there will inevitably 
exist some degree of degeneracy with angle of view, i.e., similar objects will be 
indistinguishable when viewed from certain perspectives. 

The fundamental nature of the radar imaging process underlying SAR technology dictates 
that the intensity of both the absolute and relative radar returns from the different portions 
of the object will change dramatically with small changes in the angle of view. This, in 

turn, means that the feature vectors may be expected to exhibit, even after feature vector 
normalization, a high degree of sensitivity to angle of view. In most respects, it is this 

variability of intensity distribution over the 2-D projection which is expected to present 
the most serious difficulty in the classification process. Again, as with the previous factor, 

limits to overcoming this difficulty may be largely determined by the experimenter's 

ability to present a sufficiently large number of examples to the neural network during the 

training phase. 

Clearly, concerns such as those discussed above must be explicitly addressed by the 

c)(Perimenter in applying the method of moment invariant feature vectors for neural network 
classification of SAR imagery. 

In conclusion, the methodology of using a neural network classifier trained on moment 
invariant feature vectors as described in this report offers a very promising and encouraging 
aPProach to the particular pattern recognition problem posed by SAR image classification. 

Ile robustness and superior performance levels of the PZF-based classifier as presented in 

this report strongly suggest that it should be capable of classifying SAR imagery with an 
ecuracy which would make it a viable and practical tool for SAR image classification. 
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1. 

Appendix A 
Fortran Source Code for Core Programs 

This appendix contains the source code listings for the following programs: 

P1XELIZE.FOR 
Reads TI-F bitmap images, reduces the image resolution from 1024 x 1024 to 
256 x 256, scales and shifts image to produce irradiance normalized central moments, 
adds noise to a user-provided SNR level, and saves final result as native binary format 
file. 

GENFVZFR.FOR 
Generates the raw feature vector file for an image or set of images using any of the 
SZF, PZF, SZRP, or PZRP bases. 

GENFVWAL.FOR 
Generates the raw feature vector file for an image or set of images using either of the 
WRF or HRF bases. 

NORMFV.FOR 
Normalizes the raw feature vectors. For training data, stores the normalization 
parameters derived from the training set. For test data, reads normalization 
parameters. Three different normalization schemes SN, PN, and BN are available as a 
user option. 

GENRV.FOR 
Generates the result vector (generally, a 9 x 9 matrix with +1 for 'true' and 0 for 
'false') for use by gencv.for. 

GENCV.FOR 
Generates the complete vector in the nna format required as input for the NeuralWare 
simulator software by combining the normalized feature vector with the result vector 
from genrv for. Also generates the DN feature vectors. 

RATENNR.FOR 
Rates the classification results obtained from the network as given by the nnr file 
generated by the NeuralWare simulator software using a sigmoidal weighting function 
to measure the effective value of the individiial results. 
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• Program : PIXELIZE.FOR (PIXELIZE  the TIFF images) 
• Version : 4.2 July 22, 1994 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

PIXELIZE reads TIFF bitmap files (generated by the COREL Draw 
software) and converts them to "pixel" image files (see below). 

Four major operations are carried out by this program: 

(1) The resolution of the TIFF file is reduced by an integral 
factor (1,2,3,4,..) with the reduced-size pixel derived 
as the average value of the square it represents (e.g., 
a 1024x1024 bitmap image can be reduced to a 256x256 
pixel image with each pixel the average of 16 of the 
original TIFF pixels); 

(2) The 1-bit (B&W), 2-bit (4 level grayscale), 4-bit 
(16-bit), or 8-bit (256 level grayscale) TIFF values 
are converted to (possibly averaged) pixel values with 
one byte per pixel (integer for B&W and floating point 
for true grayscales) with white=0 and black=1; 

(3) The image moments m00, m01, and m10 are calculated for 
the image. The image is first shifted so that its 
"optical center of mass" is approximately at the 
coordinate origins and then scaled to produce an image 
with a pre-determined value for m00. The scaled image 
is then iteratively shifted to produce minimized values 
for the first moments m01 and m10 (ideally = 0), i.e., 
the scaled image is "optically" centered on the x,y 
grid. 

(4) Random noise is superimposed upon the pixel image (a 
user option). The user, if electing to add noise to 
the image, is prompted for the number of iterations to 
be used for the random noise routine (these numbers having 
been precalibrated to correspond to known SNR ratios for 
the final image). The program then uses a "Numerical 
Recipes" function RAN2 to generate the noise 
corresponding to the requested SNR. For binary images, 
the modification of the pixels is carried out by adding 
1 modulo 2 to the pixel. 

The pixel data is calculated for a square grid of dimension 
2N x 2N and then saved as FASCII files with 'automatic , 

 assignment of filenames. 

PROGRAMMING NOTES: 
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• 1. This program is NUT, repeat NOT, a general TIFF reader. It 
does read and decipher the TIFF version 5.0 files generated by 
Corel Draw software for B&W/grayscale bitmaps. 

C 	2. The gridsize is NOT a variable for this program. However, 
care has been taken to allow the user to change this 

o parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 

o statements would have to be altered to allow for a different 
o gridsize. 

• 3. The TIFF file/tag parameters used in this program are those 
recommended for the TIFF 5.0 specification (HP/Aldus). 

o Specifically, four arrays TAGNAME, TAGID, TAGVALUE, and 
o TAGTYPE (dimensions of 37, 36, 51, and 5 respectively) "defineu 

the various characteristics of the TIFF data. All of these 
o arrays are predefined by program 'data' statements with the 

values of TAGVALUE representing default values (where 
possible). Only TAGVALUE is altered during the execution of 

o this program. The arrays are: 
o 
C  ARRAY TAG 	 TAGNAME 	 DATA DEFAULT 	ERROR 
C # 	ID# 	 TYPE 	 VALUES 

c 1 254(OFEh) New Subfile Type 	 4 	0 	 .ne.0 
• 2 256(100h) Image Width (Pixels) 	3 or 4 	0 .ge.0 & .1e.2N 
C 	3 257(101h) Image Height (Pixels) 	3 or 4 	0 .ge.0 & .1e.2N 
C 	4 258(102h) Bits per Sample 	 3 	 1 	.ne.1,4,8 
C 5 259(103h) Compression 	 3 	1 	 .ne.1 
C 6 262(106h) Photometric Interpretation 3 	0 	 .ne.0,1 
C 7 263(107h) Thresholding 	 3 	 1 
C 8 269(10Dh) Document Name 	 2 
C 9 270(10Eh) Image Description 	 2 	0 
C 10 271(10Fh) Make 	 2 
• 11 272(110h) Model 	 2 
C 12 273(111h) Strip Offsets 	 3 or 4 	0 
C 13 277(115h) Samples per Pixel 	 3 	1 	 .ne.1 
C 14 278(116h) Rows per Strip 	 3 or 4 1 
C 15 279(117h) Strip Byte Counts 	 3 or 4 1 
C 16 282(11Ah) X Resolution (dpi) 	 5 	38 (offset) 
C 17 283(11Bh) Y Resolution (dpi) 	 5 	40 (offset) 
C 18 284(11Ch) Planar Configuration 	3 	 1 
C 19 285(11Dh) Page Naine 	 2 
C 20 286(11Eh) X Position 	 5 	42 (offset) 
C 21 287(11Fh) Y Position 	 5 	44 (offset) 
C 22 290(122h) Gray Response Unit 	 3 
C 23 291(123h) Gray Response Curve 	 3 
C 24 292(124h) Group 3 Options 	 4 
C 25 293(125h) Group 4 Options 	 4 
C 26 296(128h) Resolution Units 	 3 	2 
C 27 297(129h) Page Number 	 3 
C 28 305(131h) Software 	 2 
c 29 306(132h) Date & Time 	 2 	 0 
c 30 315(13Bh) Artist 	 2 

• C 31 316(13Ch) Host Computer 	 2 
c 32 317(13Dh) Predictor 	 3 	 1 
C 33 318(13Eh) White Point 	 5 	46 (offset) 
C 34 319(13Fh) Primary Chramaticities 	5 	48 (offset) 
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3 
3 

c 35 320(140h) 
c 36 321(141h) 
c 37 

Color Map 
Highlight Shadow 
UNRECOGNIZED TAG NUMBER 

0 
o 
50 (offset) 

Data Types are : 1 = BYTE 
2 = ASCII 
3 = SHORT (integer*2) 
4 = LONG (integer*4) 
5 = RATIONAL (integer*4 / integer*4) 

Note: the values stored as defaults for the RATIONAL tagvalues 
are 'pointers' to the array location in TAGVALUE where 
the two integer*4 values are located, i.e., the first 
integer*4 is put in TAGVALUE(TAGVALUE(ID)) and the second 
in TAGVALUE(TAGVALUE(ID)+1). 

4. Once read from the TIFF file, certain of the tagvalues are 
checked to ensure that they are compatible with the present 
program. If they are not, or if 2 or more "unknown tags" 
have been read, the program is aborted and an appropriate 
error message is displayed. The critical tagvalues are: 

1 254(OFEh) 
2 256(100h) 
3 257(101h) 
4 258(102h) 
5 259(103h) 
6 262(106h) 
13 277(115h) 

New Subfile Type 
Image Width (Pixels) 
Image Height (Pixels) 
Bits per Sample 
Compression 
Photometric Interpretation 
Samples per Pixel 

MUST equal 0 
MUST not be .1e. 0 
MUST not be .1e. 0 
MUST equal 1, 4, or 8 
MUST equal 1 
MUST equal 0 or 1 
MUST equal 1 

include 'fgraph.fi' 
include 'fgraph.fd' 

integer*1 idots(4,1048),dummy(4096) 
integer*1 black,cr,lf,space 
integer*2 iver,numtags,tagnum,datatype,isum,int2 
integer*2 image(4,1048),datalength(5),tagid(36) 
integer*2 idirect(-127:128,-127:128),inorm(-127:128,-127:128) 
integer*2 ihits(-127:128,-127:128) 
integer*4 ioffset,length,tagdata,tagvalue(51),int4a,int4b 
integer*4 nhits,np,kk 
real*4 m00,m10,m01,ranval 
character*1 answer,chipidl,chipid2,infinity 
character*8 tagtype(5) 
character*26 tagname(37) 
character*54 imagefile,pixelfile,trainlog 

data tagtype/ 
+' 	Byte ',' ASCII ',' 	Short ',' 	Long 	','Rational'/ 
data datalength/1,1,2,4,5/ 
data tagid/254,256,257,258,259,262,263,269,270,271,272, 
+273,277,278,279,282,283,284,285,286,287,290,291, 
+292,293,296,297,305,306,315,316,317,318,319,320,321/ 
data tagname/'New Subfile Type','Image Width (Pixels)', 
+'Image Height (Pixels)','Bits per Sample','Compression', 
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+'Photometric Interpretation','Thresholding','Document Name', 
+'Image Description','Make','Model','Strip Offsets', 
+'Samples per Pixel','Rows per Strip','Strip Byte Counts', 
+'X Resolution (dpi)','Y Resolution (dpi)', 
+'Planar  Configuration', 'Page  Name','X  Position', 'Y  Position', 
+'Gray Resnonse  Unit' ,'Gray  Response Curve','Group 3 Options', 
+'Group 4 Options','Resolution Units','Page Number', 
+'Software','Date & Time','Artist','Host Computer','Predictor', 
+'White Point','Primary Chromaticities','Color Map', 
+'Highlight Shadow','UNRECOGNIZED TAG NUMBER'/ 
data tagvalue/0,0,0,1,1,0,1,0,0,0,0,0,1,1,1,38,40,1,0,42,44,0,0, 
+0,0,2,0,0,0,0,0,1,46,48,0,0,50,300,1,300,1,0,0,0,0,0,0,0,0,0,0/ 
data cr/13/,1f/10/,space/32/,infinity/236/ 

All format statements and only format statements have labels 
in the range 1 - 99. 

C- 	

1  format(lh+,20(1h*),' Conversion of TIFF Data to Pixel Data ', 
+20(1h*)) 

2 format(lh  ,26x, 'Version  4.20 : July 22, 1994') 
3 format(lh  ,7x, 'File  : ',a12,' 	Gridsize : 
+i4,' x ',i4,' 	Precision : Real*',i1) 

4 format(lhO, 
+'Enter filename (c/w path & extension) of first TIFF file : ') 

5 format(al) 
6 format(a54) 
7 format(1h0,18X, 
+'Enter number of image files (default=1) : '\) 

8 format(13) 
9 format(lhO, 
+'Enter filename (c/w path & extension) of first PIX file : ') 

11 format(1h0,4x, 
+'Tag',9x,'Tag Name',13x,'Datatype',4x, 
+'Length',4x,'Data Offset') 

12 format(lh,4x, 

	

+'===',2x,' 	

	

+2x,'    ',4x,'    ',4x,'=---  	
13 format(lh ,4x,i3,2x,a26,2x,a8,4x,i4,5x,i5) 
14 format(lh ,4x,i3,2x,a26,2x,a8,4x,i4,12x,15) 
15 format(lh ,9x,a26,2x,a8,4x,i4,5x,i5) 
16 format(lh ,9x,a26,2x,a8,4x, 1 4,4x,F6.2) 
20 format(lh ,16X, 

+'Superimpose noise on pixel image (default=no) ? '\) 
21 format(lh ,17X, 

+'Enter NP - no. of random write loops: '\) 
30 format(lh  ,2x, 'File  : ',a12,' 	Gridsize : 

+i4,' x ',i4,' 	Precision : Real*',i1,' 	SNR : ',al) 
51 format(/20(1h*),' Conversion of TIFF Data to Pixel Data ', 

+20(1h*)) 
52 format(24x,'Version 4.20 : July 22, 1994') 
53 format(7x,'File : ',a12,' 	Gridsize : 

+i4,' x ',i4,' 	Precision : Real*',i1/) 
54 format(2x,'File : ',a12,' 	-Gridsize : 

+i4,' x ',i4,' 	Precision : Real*',i1,' 	SNR 	',a1/) 
61 format(4x, 
+'Tag',9x,'Tag Name',13x,'Datatype',4x, 
+'Length',4x,'Data Offset') 

62 format(4x, 

	

+'===',2x,'  	
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+2x,' 	',4x,'    ',4x,'==== 		'/) 
63 format(4x,i3,2x,a26,2x,a8,4x, 14,5x,i5) 
64 format(4x,i3,2x,a26,2x,a8,4x,14,12x,i5) 
65 format(9x,a26,2x,a8,4x,i4,5x,i5) 
66 format(9x,a26,2x,a8,4x,i4,4x,F6.2) 
70 format(18x, 

+'Pixel shift factors : ',i5,7x,i5) 
71 format(18X, 

+'Analog shift factors : ',F9.4,3x,F9.4) 
72 format(27X 

+'Scaling Factor = ,F9.4) 
73 format(/9X, 

+'m00 = 	,F12.4,' 	m10 = ',F12.4, 	m01 = ',F12.4/) 
80 format(lh ,18x, 

+'Pixel shift factors : ',i5,7x,i5) 
81 format(lh ,18X, 

+'Analog shift factors : ',F9.4,3x,F9.4) 
82 format(1h0,27X 

+'Scaling Factor = ,F9.4) 
83 format(1h0,9X, 

+'m00 = 	,F12.4,' 	m10 = ',F12.4,' 	m01 = ',F12.4) 
85 format(1h0,2X,'NP =',i6,' Number of hits =',i6, 

+' Percentage =,F7.2,' Measured db =',F8.2) 
86 format(/2X,'NP =',i6,' Number of hits =',i6, 

+' Percentage =',F7.2,' Measured db =',F8.2) 
87 format(i7) 
90 format(1h0,13x, 

+'Now have ',il,' unrecognized tag numbers. Program aborted.') 
92 format(1h0,14X, 

+'Imagefile name incorrect. Must have .tif extension.') 
93 format(1h0,25X, 

+'Hit any key to restart program.') 
94 format(lh ,8X,'Fatal error in one or more ', 

+'tagvalues above (1,2,3,4,5,6, or 13).') 
95 format(lh ,11X,'Program aborted. Correct image tagvalue 

+'and rerun program.') 
96 format(1h0,10X,'WARNING! A total of ',i2, 

+' unknown tagnumbers were encountered.') 
98 format(1h0,21X, 

+'A total of ',I3,' file(s) were processed.') 
99 format(1h0,21X, 

+'Program completed. Normal termination.') 

• Initialize parameters and then prompt user for filenames and 
• number of files. 

ifile=0 
ierr=0 
igridsize=256 
igsp2=igridsize+2 
N=128 
del=1./float(N) 
beta=float((igridsize*igridsize)/8) 
iprecision=1 
iunknown=0 

• 100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
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write(0,4) 
read(0,6) imagefile 
write(0,9) 
read(0,6) pixelfile 
do 102 i=1,54 
trainlog(i:i)=pixelfile(i:1) 

102 continue 
i=0 

104 i=i+1 
if(imagefile(i:i).eq.'.') go to 106 
if(i.eq.51) go to 910 
go to 104 

106 mark1=i 
i=0 

108 i=i+1 
if(pixelfile(i:i).eq.'.') go to 110 
if(i.eq.51) go to 910 
go to 108 

110 mark2=i 
init1=1 
do 112 i=1,mark1+3 
if(imagefile(i:i).eq.'\') init1=i+1 

112 continue 
init2=1 
do 114 i=1,mark2+3 
if(pixelfile(i:i).eq.'\') init2=i+1 

114 continue 
trainlog(init2:init2+11)='pixelize.log' 
open(3,file=trainlog,status='unknown',form='formatted') 
write(0,7) 
read(0,8) number 
if(number.le.0) number=1 
noise=0 
write(0,20) 
read(0,5) answer 
if(answer.eq.'y'.or.answer.eq.'Y') noise=1 
if(noise.eq.0) go to 125 
write(0,21) 
read(0,87) np 

125 istart=100*(ichar(imagefile(mark1-3:mark1-3))-48) 
istart=istart+10*(ichar(imagefile(mark1-2:mark1-2))-48) 
istart=istart+(ichar(imagefile(mark1-1:mark1-1))-48) 
ifinish=istart+number-1 
istartp=100*(ichar(pixelfile(mark2-3:mark2-3))-48) 
istartp=istartp+10*(ichar(pixelfile(mark2-2:mark2-2))-48) 
istartp=istartp+(ichar(pixelfile(mark2-1:mark2-1))-48) 
ifinishp=istartp+number-1 
index=istart-1 

13 0 index=index+1 
if(index.gt .ifinish) go to 990 
nhuns=index/100 
ntens=(index-100*nhuns)/10 
nunits=index-100*nhuns-10*ntens 
imagefile(mark1-3:mark1-3)=char(nhuns+48) 
imagefile(mark1-2:mark1-2)=char(ntens+48) 
imagefile(mark1-1:mark1-1)=char(nunits+48) 
indexp=index+istartp-1 
nhunsp=indexp/100 
ntensp=(indexp-100*nhunsp)/10 
nunitsp=indexp-100*nhunsp-10*ntensp 
pixelfile(mark2-3:mark2-3)=char(nhunsp+48) 
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length,tagdata 
length,tagdata 

length,tagdata 
length,tagdata 

pixelfile(mark2-2:mark2-2)=char(ntensp+48) 
pixelfile(mark2-1:mark2-1)=char(nunitsp+48) 
call clearscreen ($GCLEARSCREEN) 
write(0,1) 
write(0,2) 
if(noise.eq.0) write(0,30) imagefile(initl:init1+11), 

+igridsize,igridsize,(4*iprecision),infinity 
if(noise.eq.1) write(0,3) imagefile(initl:init1+11), 

+igridsize,igridsize,(4*iprecision) 
write(3,51) 
write(3,52) 
if(noise.eq.0) write(3,54) imagefile(initl:init1+11), 

+igridsize,igridsize,(4*iprecision),infinity 
if(noise.eq.1) write(3,53) imagefile(init1:init1+11), 

+igridsize,igridsize,(4*iprecision) 
open(2,file=imagefile,status='unknown',form='binary') 
read(2) chipidl,chipid2,iver,ioffset 
rewind 2 
read(2) (dummy(i),i=1,ioffset) 
read(2) numtags 

At this point, have the fixed image header data plus the number 
of tags in the first IFD. File has been rewound and then 
positioned at the first tag number given by the value 'ioffset'- 
Proceed to read and interpret the tags. 

write(0,11) 
write(0,12) 
write(3,61) 
write(3,62) 
do 200 i=1,numtags 
read(2) tagnum,datatype,length,tagdata 
id=37 
do 135 j=1,36 
if(tagnum.eq.tagid(j)) id=j 

135 continue 
if(id.eq.37) iunknown=iunknown+1 
numbytes=length*datalength(datatype) 
if(numbytes.gt .4) go to 140 
write(0,13) tagnum,tagname(id),tagtype(datatype), 
write(3,63) tagnum,tagname(id),tagtype(datatype), 
tagvalue(id)=tagdata 
go to 200 

140 write(0,14) tagnum,tagname(id),tagtype(datatype), 
write(3,64) tagnum,tagname(id),tagtype(datatype), 
rewind 2 
read(2) (dummy(j),j=1,tagdata) 
if(datatype.le.2) go to 170 
if(datatype.gt .3) go to 150 
read(2) int2 
tagdata=int2 
tagvalue(id)=tagdata 
write(0,15) tagname(id),tagtype(datatype),length, 
write(3,65) tagname(id),tagtype(datatype),length, 
go to 170 

150 if(datatype.gt .4) go to 160 
read(2) int4a 
tagdata=int4a 
tagvalue(id)=tagdata 

tagdata 
tagdata 
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write(0,15) tagname(id),tagtype(datatype),length,tagdata 
write(3,65) tagname(id),tagtype(datatype),length,tagdata 
go to 170 

160 read(2) int4a,int4b 
fdata=float(int4a)/float(int4b) 
tagvalue(tagvalue(id))=int4a 
tagvalue(tagvalue(id)+1)=int4b 
write(0,16) tagname(id),tagtype(datatype),length,fdata 
write(3,66) tagname(id),tagtype(datatype),length,fdata 

170 rewind 2 
read(2) (dummy(j),j=1,(ioffset+2+12*i)) 

200 continue 
rewind 2 
read(2) (dummy(j),j=1,tagvalue(12)) 
black=2**(tagvalue(4)-1) 
ipack=8/tagvalue(4) 
nbytes=tagvalue(2)/ipack 
if((tagvalue(2)-ipack*nbytes).gt.0) nbytes=nbytes+1 
isample=tagvalue(2)/igridsize 
if(isample.lt .1) isample=1 
ndots=isample*igridsize 
ierr=4 
if(tagvalue(4).eq.1.or.tagvalue(4).eq.2) ierr=0 
if(tagvalue(4).eq.4.or.tagvalue(4).eq.8) ierr=0 
if(tagvalue(1).ne.0) ierr=1 
if(tagvalue(2).1e.0) ierr=2 
if(tagvalue(3).1e.0) ierr=3 
if(tagvalue(5).ne.1) ierr=5 
if(tagvalue(6).ne.0.and.tagvalue(6).ne.1) ierr=6 
if(tagvalue(13).ne.1) ierr=13 
if(ierr.gt .0) go to 920 

All the tags have been read and deciphered and the TIFF file has 
been rewound and repositioned to point at the beginning of the 
raster image data. 
Begin reading the TIFF data, converting it to byte values with 
white=0, and 'averaging the image(i,j) over isample x isample, 
saving as idirect(i,j). 

NOTE: The formulas relating the counting integers i,j with x,y are: 

x = i*del - 0.5*del ; i = -N+1 to N 
y = j*del - 0.5*del ; j = -N+1 to N 

250 

300 
310 

320 

nn=0 
nn=nn+1 
if(nn.gt .igridsize) go to 500 
do 400 i=1,isample 
read(2) (idots(i,j),j=1,nbytes) 
if(tagvalue(6).eq.0) go to 310 
do 300 j=1,nbytes 
idots(i,j)=NOT(idots(i,j)) 
continue 
if(tagvalue(4).eq.1) go to 350 

- if(tagvalue(4).eq.4) go to 330 
do 320 j=1,ndots,ipack 
image(i,j)=idots(i,j) 
if(idots(i,j).1t.0) image(i,j)=idots(i,j)+256 
continue 
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go to 400 
330 do 340 j=1,ndots,ipack 

jj=1+(j/ipack) 
image(i,j)=ishl((iand(idots(i,jj),2#11110000)),-4) 
image(i,j+1)=iand(idots(i,jj),2#00001111) 

340 continue 
go to 400 

350 do 360 j=1,ndots,ipack 
jj=1+(j/ipack) 
image(i,j)=ishl((iand(idots(i,jj),2#10000000)),-7) 
image(i,j+1)=ishl((iand(idots(i,jj),2#01000000)),-6) 
image(i,j+2)=ishl((iand(idots(i,jj),2#00100000)),-5) 
image(i,j+3)=ishl((iand(idots(i,jj),2#00010000)),-4) 
image(i,j+4)=ishl((iand(idots(i,jj),2#00001000)),-3) 
image(i,j+5)=ishl((iand(idots(i,jj),2400000100)),-2) 
image(i,j+6)=ishl((iand(idots(i,jj),2400000010)),-1) 
image(i,j+7)=iand(idots(i,jj),2400000001) 

360 continue 
400 continue 

mm=0 
420 mm=mm+1 

if(mm.gt .igridsize) go to 250 
isum=0 
do 460 i=1,isample 
do 440 j=1,isample 
isum=isum+image(i,j+isample*(mm-1)) 

440 continue 
460 continue 

iarea=isample*isample 
ibase=isum/iarea 
irem=isum-iarea*ibase 
idiv=iarea/2 
if(iarea-2*(iarea/2).eq.1) idiv=idiv+1 
idirect(mm-N,-nn+N+1)=ibase+(irem/idiv) 
go to 420 

500 close(2) 

Calculate the m00, m10, and m01 values for the original image. 

m00=0. 
m10=0. 
m01=0. 
do 540 i=-N+1,N 
do 520 j=-N+1,N 
fdir=float(idirect(i,j)) 
m00=m00+fdir 
ml0=m10+del*(float(i)-.5)*fdir 
mOl=m01+del*(float(j)-.5)*fdir 

520 continue 
540 continue 

call clearscreen ($GCLEARSCREEN) 
write(0,1) 
write(0,2) 
if(noise.eq.0) write(0,30) imagefile(initl:init1+11), 
+igridsize,igridsize,(4*iprecision),infinity 
if(noise.eq.1) write(0,3) imagefile(initl:init1+11), 

+igridsize,igridsize,(4*iprecision) 
write(3,51) 
write(3,52) 
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if(noise.eq.0) write(3,54) imagefile(init1:init1+11), 
+igridsize,igridsize,(4*iprecision),infinity 
if(noise.eq.1) write(3,53) imagefile(initl:init1+11), 

+igridsize,igridsize,(4*iprecision) 
write(0,83) m00,m10,m01 
write(3,73) m00,m10,m01 

• Calculate the scaling factor 'a and the first-order shiftx and 
• shifty values. Do the shifting first and then scale the image 
• to produce a value of m00 = beta. 

600 a=sqrt(m00/beta) 
bx=m10/m00 
cx=(bx/del) 
ixshift=nint(cx) 
by=m01/m00 
cy=(by/del) 
iyshift=nint(cy) 
do 620 i=-N+1,N 
do 610 j=-N+1,N 
inorm(i,j)=0. 

610 continue 
620 continue 

do 640 i=-N+1,N 
ii=i+ixshift 
if(ii.lt.-127.or.ii.gt .128) go to 640 
do 630 j=-N+1,N 
jj=j+iyshift 
if(jj.lt.-127.or.jj.gt .128) go to 630 
inorm(i,j)=idirect(ii,jj) 

63 0 continue 
640 continue 

do 646 i=-N+1,N 
do 644 j=-N+1,N 
ihits(i,j)=0 
idirect(i,j)=inorm(i,j) 

644 continue 
646 continue 

do 660 i=-N+1,N 
ii=NINT(a*(float(i)-0.5)+0.5) 
if(ii.lt.-127.or.ii.gt .128) go to 660 
do 650 j=-N+1,N 
jj=NINT(a*(float(j)-0.5)+0.5) 
if(jj.lt.-127.or.jj.gt .128) go to 650 
inorm(i,j)=idirect(ii,jj) 

65 0 continue 
continue 

• Original image has now been shifted (once) and scaled. 
• Recalculate the required shift values and perform the image shift, 
• repeating until m10 and m01 are minimized (ideally, both = 0). 

m00=0. 
m10=0. 
m01=0. 
do 692 i=-N+1,N 
do 690 j=-N+1,N 
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fnor=float(inorm(i,j)) 
m00=m00+fnor 
ml0=m10+del*(float(i)-.5)*fnor 
mOl=m01+del*(float(j)-.5)*fnor 

690 continue 
692 continue 

ixshift2=nint(m10/(m00*del)) 
iyshift2=nint(m01/(m00*del)) 
write(0,82) (1./a) 
write(0,81) cx,cy 
write(0,80) ixshift,iyshift 
write(0,80) ixshift2,iyshift2 
write(3,72) a 
write(3,71) bx,by 
write(3,70) ixshift,iyshift 
write(3,70) ixshift2,iyshift2 
if(ixshift2.eq.0.and.iyshift2.eq.0) go to 800 

700 do 720 i=-N+1,N 
do 710 j=-N+1,N 
idirect(i,j)=inorm(i,j) 

710 continue 
720 continue 

do 740 i=-N+1,N 
ii=i+ixshift2 
if(ii.lt.-127.or.ii.gt .128) go to 740 
do 730 j=-N+1,N 
jj=j+iyshift2 
if(jj.lt.-127.or.jj.gt .128) go to 730 
inorm(i,j)=idirect(ii,jj) 

730 continue 
740 continue 

m00=0. 
m10=0. 
m01=0. 
do 792 i=-N+1,N 
do 790 j=-N+1,N 
fnor=float(inorm(i,j)) 
m00=m00+fnor 
ml0=m10+del*(float(i)-.5)*fnor 
mOl=m01+del*(float(j)-.5)*fnor 

790 continue 
792 continue 

ixshift2=nint(m10/(m00*del)) 
iyshift2=nint(m01/(m00*del)) 
write(0,80) ixshift2,iyshift2 
write(0,83) m00,m10,m01 
write(3,70) ixshift2,iyshift2 
write(3,73) m00,m10,m01 
if(ixshift2.eq.0.and.iyshift2.eq.0) go to 802 
go to 700 

• Write the final values for m00, m10, and m01, and then, if elected 
• as an option, calculate the noise pixels using the random number 
• generator RAN2(IDUM) (from "Numerical Recipes"). Then write the 
• pixelfile to be used in the feature vector calculations along with 
• a 'text' version of the same (the latter very useful for quick 
• printing/viewing by a word processor). 

• Consistent with all the other programs comprising this "chain", 
• the pixelfile is written from left to right, beginning with the 
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• upper left corner of the image, i.e., the image is written as 
• rows x=-1 to x=+1 (i=-N+1 to N) from y=+1 (j=N) down to y=-1 
• (j=-N+1). 

800 write(0,83) m00,m10,m01 
write(3,73) m00,m10,m01 

802 if(noise.eq.0) go to 875 
idum=-7 
do 850 kk=1,np 
ranval=2*ran2(idum)-1. 
i=int(float(N)*ranval+.5) 
if(i.lt.(-N+1)) i=-N+1 
if(i.gt.N) i=N 
ranval=2*ran2(idum)-1. 
j=int(float(N)*ranval+.5) 
if(j.lt.(-N+1)) j=-N+1 
if(j.gt.N) j=N 
ihits(i,j)=ihits(i,j)+1 

850 continue 
nhits=0 
do 860 i=-N -1-1,N 
do 855 j=-N+1,N 
k=ihits(i,j) 
imod2=k-2*(k/2) 
if(imod2.eq.0) go to 855 
nhits=nhits+1 
if(inorm(i,j).eq.0) ichange=1 
if(inorm(i,j).eq.1) ichange=0 
inorm(i,j)=ichange 

855 continue 
860 continue 

percent=100.*float(nhits)/float(4*N*N) 
db=20.*alog10(-1+float(4*N*N)/float(nhits)) 
write(0,85) np,nhits,percent,db 
write(3,86) np,nhits,percent,db 

• Write the 'pixel' file. 

875 open(2,file=pixelfile,status='unknown',form='binary') 
do 880 j=N,-N+1,-1 
write(2) (inorm(i,j),i=-N+1,N) 

880 continue 
ifile=ifile+1 
endfile 2 

882 if(N.ge.0) go to 899 

• The code immediately below is used to write an ASCII file which 
• can be read, displayed, and printed by WordPerfect, i.e., a QAD 
• way to verify the program's operation. The statement 882 above 
• should be commented out if these ASCII files are to be written. 
• Although QAD, the images displayed in this way, when suitable 
• graphics characters are used, are indeed accurate representations 
• of the images. The code below offers two possibilities: (1), put 
• the numerals 0 through 9 for black pixels to represent their 
• grayscale values, or, (2), put a graphics symbol (extended ASCII) 
• which corresponds to a printed black pixel. 
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pixelfile(mark2+1:mark2+3)='txt' 
open(2,file=pixelfile,status='unknown',form='binary') 
idiv=1 
if(ipack.eq.2) idiv=4 
if(ipack.eq.1) idiv=32 
do 883 i=1,igsp2 
dummy(i)=-6 

883 continue 
write(2) (dummy(i),i=1,igsp2) 
write(2) cr,lf 
iblackpixel=48 

• iblackpixel=218 
do 890 j=N,-N+1,-1 
do 885 i=-N+1,N,+1 
if(iblackpixel.eq.48) dummy(i+N+1)=iblackpixel+(inorm(i,j)/idiv) 
if(iblackpixel.eq.218) dummy(i+N+1)=iblackpixel 
if(inorm(i,j).eq.0) dummy(i+N+1)=space 

885 continue 
write(2) (dummy(i),i=1,igsp2) 
write(2) cr,lf 

890 continue 
do 892 i=1,igsp2 
dummy(i)=-6 

892 continue 
write(2) (dummy(i),i=1,igsp2) 
write(2) cr,lf 
endfile 2 
pixelfile(mark2+1:mark2+3)='pix' 

899 go to 130 

• Error messages. Program execution will be aborted if an unknown 
• tag number is encountered. 

900 write(0,90) iunknown 
go to 1000 

910 write(0,92) 
write(0,93) 
read(0,5) answer 
go to 100 

920 write(0,94) 
write(0,95) 
read(0,5) answer 
go to 1000 

990 if(iunknown.gt .0) write(0,96) iunknown 
write(0,98) ifile 
write(0,99) 

1000 continue 
endfile 3 
end 

• Random number generator from section 7.1 of "Numerial Recipes 
• Fortran". 

FUNCTION RAN2(IDUM) 
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PARAMETER (M=714025,1A=1366,IC=150889,RM=1.4005112E-8) 
DIMENSION IR(97) 
DATA IFF /0/ 
IF(IDUM.LT.O.OR.IFF.EQ.0)THEN 

IFF=1 
IDUM=MOD(IC-IDUM,M) 
DO 11 J=1,97 

IDUM=MOD(IA*IDUM+IC,M) 
IR(J)=IDUM 

CONTINUE 
IDUM=MOD(IA*IDUM+IC,M) 
IY=IDUM 

ENDIF 
J=1+(97*IY)/M 
IF(J.GT.97.0R.J.LT.1) PAUSE 
IY=IR(J) 
RAN2=IY*RM 
IDUM=MOD(IA*IDUM+IC,M) 
IR(J)=IDUM 
RETURN 
END 
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Program : GENFVZER.FOR (GENerate Feature Vector for ZERnike basis) 
Version : 3.4 June 21, 1995 
Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digeme.dgcd.doc.ca  

Summary: 

GENFVZER (GENerate Feature Vectors) calculates the 
feature vectors for a series of .pix files w.r.t. the 
Zernike functions (previously calculated and stored as files). 
The features are calculated on a square grid of dimension 
2N x 2N in either single or double precision. 
The resulting file is saved as a FASCII file in the format 
correct for use by NeuralWare Professional II (a .nna file). 

PROGRAMMING NOTES: 

1. The formats for the various data files are specified 
separately in those programs which generate them (ZERNIKE, 
PIXELIZE, ...). 

2. The gridsize is NOT a variable for this program. However, 
some care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 
statements would have to be altered to allow for a different 
gridsize. 

include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 basis(-127:128,-127:128),fv(1100,100) 
integer*2 pixel(-127:128,-127:128),kchar(3) 
character*1 answer,cr,lf,drive 
character*3 bufint 
character*54 pixelfile,basisfile,fvfile,buffer 
data cr/13/,1f/10/ 

-------------------------------------------------------------------- _-= 

• All format statements and only format statements have .labels 
• in the range 1 - 99. 

1 format(lh+, 
+' Rotation 

2 format(lh , 
3 format(lh , 
4 format(lhO, 
+ . (c/w path 

44 format(lhO, 
+'(c/w path 

17(1h*), 
Invariant Feature Vector Generation ',17(1h*)\) 
25x, 'Version  3.40 : June 21, 1995) 
27x,'Grid Size : 	x ',i4) 
'Enter filename  
& extension) of starting .pix file : ') 
'Enter filename ', 
& extension) of feature vector file : ') 
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5 format(al) 
6 format(a54) 
7 format(1h0,18X, 
+'Enter number of pixel files (default=1) 

8 format(i3) 
9 format(1h0,18x,'Initial Principal Index Value (NO default) = '\) 

10 format(lh ,18x, Final Principal Index Value (NO default) = '\) 
11 format(lhO,'Drive letter location of basis functions 

+ (ONE character) : 
20 format(1h0,26x, 

+'Choice of basis functions :q 
21 format(lh ,12X, 

+'Pseudo Zernike Polynomials 	 (1)') 
22 format(lh ,12X, 

+'Standard Zernike Polynomials 	 (2)q 
23 format(lh ,12X, 

+'Pseudo Zernike Polynomials 	- Radial Portion Only 	(3)q 
24 format(lh ,12X, 

+'Standard Zernike Polynomials - Radial Portion Only 	(4)') 
29 format(1h0,16X, 

+'Indicate basis function choice (NO default)  
31 format(lh+,14(1h*), 

+' Feature Vector using  , 
+'the Pseudo Zernike Polynomials ',13(1h*)\) 

32 format(lh+,13(1h*), 
+' Feature Vector using 
+ . the Standard Zernike Polynomials ',12(1h*)\) 

40 format(lh ,11x, 
+'Now integrating ',a12,' with ',a12,' 

42 format(1h0,24x,'Program completed successfully.') 
43 format(lh ,20x,'Total of ',i4,' pixel files were processed.') 
50 format(F12.5,','\) 
51 format(2a1\) 
90 format(lhO, 

+'The index value is negative.') 
91 format(lhO, 

+'The final index value is less than the initial value.') 
92 format(lhO, 

+'The secondary index value exceeds the principal index value.') 
93 format(lhO, 

+'The two indices must be the same parity.') 
94 format(lhO, 

+'Secondary index position is outside permissible range.') 
99 format(lhO,'Hit <RET> to restart program. '\) 

• Begin by prompting user for the initial pixel image filename (c/w 
• path if necessary), the number of image files, the choice of basis 
• functions, and the range of basis function parameters (in effect, 
• the dimension of the feature vector). 

	

c- 	
igridsize=256 
N=128 
itype=1 	 -  
irco=0 

- del=1.D0/dfloat(N) 
zero=0.D0 
half=0.5D0 
one=1.D0 

100 call clearscreen ($GCLEARSCREEN) 
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mall=1 
ifile=0 
write(0,1) 
write(0,2) 
write(0,3) igridsize,igridsize 

Check at this point to see if the "prompts" have been passed 
to this program as command line parameters. If so, skip the 
prompts and proceed to the calculations. 

Order and specification of the command line prompts are: 

argl = pixelfile (a54 c/w path if needed) 
arg2 = fvfile (a54 c/w path if needed) 
arg3 = drive letter for basis functions (al) 
arg4 = itype (integer = 1,2,3,4) 
arg5 = number (number of pixel files) 
arg6 = nstart (starting index value) 
arg7 = nfinish (ending index value) 

numargs=nargs() 
if(numargs.gt.1) ibatch=1 
if(ibatch.eq.0) go to 120 
call getarg(1,pixelfile,istatus) 
call getarg(2,fvfile,istatus) 
call getarg(3,buffer,istatus) 
drive=buffer(1:1) 
bufint=' 
call getarg(4,bufint,istatus) 
nsf=3 
do 102 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 102 
kchar(i)=0 
nsf=nsf-1 

102 continue 
itype=0 
do 104 i=1,nsf 
itype=10*itype+kchar(4-i) 

104 continue 
bufint=" 
call getarg(5,bufint,istatus) 
nsf=3 
do 106 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 106 
kchar(i)=0 
nsf=nsf-1 

106 continue 
number=0 
do 108 i=1,nsf 
number=10*number+kchar(4-i) 

108 continue 
bufint=' 
call getarg(6,bufint,istatus) 
nsf=3 
do 110 1=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 110 

A-18 



kchar(i)=0 
nsf=nsf-1 

110 continue 
nstart=0 
do 112 i=1,nsf 
nstart=nstart*10+kchar(4-i) 

112 continue 
bufint=" 
call getarg(7,bufint,istatus) 
nsf=3 
do 114 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 114 
kchar(i)=0 
nsf=nsf-1 

114 continue 
nfinish=0 
do 116 i=1,nsf 
nfinish=nfinish*10+kchar(4-i) 

116 continue 
go to 130 

c- 	

We come here only if ibatch=0, i.e., no command line 
parameters have been entered and the user must be prompted 
for each of the filenames and variables. 

120 write(0,4) 
read(0,6) pixelfile 
write(0,44) 
read(0,6) fvfile 
write(0,11) 
read(0,5) drive 
write(0,7) 
read(0,8) number 
if(number.le.0) number=1 
write(0,20) 
write(0,21) 
write(0,22) 
write(0,23) 
write(0,24) 
write(0,29) 
read(0,8) itype 
write(0,9) 
read(0,8) nstart 
write(0,10) 
read(0,8) nfinish 
if(nstart.lt .0) go to 900 

130 if(itype.gt .2) irco=1 
if(itype.gt .2) itype=itype-2 
basisfile(1:54)='X:\PZZ\PZ_nnmm.bin ' 
if(itype.eq.2) basisfile(8:81='S' 
if(itype.eq.2) basisfile(4:4)='S' 
if(irco.eq.1) basisfile(10:10)='C' 
if(irco.eq.1) basisfile(6:6)='C' 
if(irco.eq.0) basisfile(6:6)='F' 
basisfile(1:1)=drive 
i=0 
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134 i=i+1 
if(pixelfile(i:i).eq.'.') go to 136 
if(i.eq.51) go to 910 
go to 134 

136 markpix=i 
initpix=1 
do 140 i=1,markpix+3 
if(pixelfile(i:i).eq.'\') initpix=i+1 

140 continue 
i=0 

144 i=i+1 
if(fvfile(i:i).eq.'.') go to 146 
if(i.eq.51) go to 910 
go to 144 

146 markfv=i 
initfv=1 
do 150 i=1,markfv+3 
if(fvfile(i:i).eq.'\') initfv=i+1 

150 continue 
ipbeg=nstart-2*(nstart/2) 
ipfin=nfinish-2*(nfinish/2) 
if((nfinish-nstart).1t.0) go to 910 
if(itype.eq.2.or.itype.eq.4) go to 170 
isub=(nstart*(nstart+1))/2 
idim=(((nfinish+1)*(nfinish+2))/2)-isub 
if(nfinish.eq.9) idim=45 
go to 180 

170 L=(nfinish+1)/2 
LSUB=nstart/2 
if(ipbeg.eq.0) isub=LSUB*(LSUB+1) 
if(ipbeg.eq.1) isub=(LSUB+1)*(LSUB+1) 
if(ipfin.eq.0) idim=(L+1)*(L+1)-isub 
if(ipfin.eq.1) idim=L*(L+1)-isub 

180 istart=100*(ichar(pixelfile(markpix-3:markpix-3))-48) 
istart=istart+10*(ichar(pixelfile(markpix-2:markpix-2))-48) 
istart=istart+(ichar(pixelfile(markpix-1:markpix-1))-48) 
ifinish=istart+number-1 
index=istart-1 
irow=0 

190 index=index+1 
irow=irow+1 
icol=0 
if(index.gt .ifinish) go to 1200 
mstart=0 
if(itype.eq.2.or.itype.eq.4) mstart=ipbeg 
mfinish=nstart 
nhuns=index/100 
ntens=(index-100*nhuns)/10 
nunits=index-100*nhuns-10*ntens 
pixelfile(markpix-3:markpix-3)=char(nhuns+48) 
pixelfile(markpix-2:markpix-2)=char(ntens+48) 
pixelfile(markpix-1:markpix-1)=char(nunits+48) 
open(2,file=pixelfile,status='unknown',form='binary') 
do 196 j=N,-N+1,-1 
read(2) (pixel(i,j),i=-N+1,N) 

196 continue 
ifile=ifile+1 
endfile 2 

Have read pixel file into array pixel(i,j). Now read the basis 
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• function files and perform the 'integration'. 

call clearscreen ($GCLEARSCREEN) 
if(itype.eq.1) write(0,31) 
if(itype.eq.2) write(0,32) 
write(0,2) 
write(0,3) igridsize,igridsize 

o 	

• We now have specific starting values for n and m. 

o 	  

200 nindex=nstart-1 
mindex=mstart-itype 

210 nindex=nindex+1 
if(nindex.eq.9.and.itype.eq.1) mfinish=5 
if(nindex.gt .nfinish) go to 190 

220 mindex=mindex+itype 
if(mindex.gt .mfinish) go to 210 
icol=icol+1 

• We are now ready to proceed with the actual calculations of the 
• feature vector components. 

ntens=nindex/10 
nunit=nindex- 10*ntens 
mtens=mindex/10 
munit=mindex-10*mtens 
basisfile(11:11)=char(ntens+48) 
basisfile(12:12)=char(nunit+48) 
basisfile(13:13)=char(mtens+48) 
basisfile(14:14)=char(munit+48) 
basisfile(10:10)='R' 
if(irco.eq.1) basisfile(10:10)='C' 
write(0,40) pixelfile(initpix:initpix+11),basisfile(8:19), 
+nindex,mindex 
open(2,file=basisfile,status='unknown',form='binary') 
do 300 j=N,-N+1,-1 
read(2) (basis(i,j),i=-N+1,N) 

300 continue 
endfile 2 

310 sumr=0.0 
do 330 j=-N+1,N 
do 320 i=-N+1,N 
if(basis(i,j).eq.0.0.or.pixel(i,j).eq.0) go to 320 
sumr=sumr+basis(i,j)*float(pixel(i,j)) 

320 continue 
330 continue 

if(mindex.eq.0.or.irco.eq.1) go to 600 
basisfile(10:10)='I' 
write(0,40) pixelfile(initpix:initpix+11),basisfile(8:19), 
+nindex,mindex 
open(2,file=basisfile,status='unknown',form='binary') 
do 350 j=N,-N+1,-1 
read(2) (basis(i,j),i=-N+1,N) 

3 50 continue 
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endfile 2 
360 sumi=0.0 

do 380 j=-N+1,N 
do 370 i=-N+1,N 
if(basis(i,j).eq.0.0.or.pixel(i,j).eq.0) go to 370 
sumi=sumi+basis(i,j)*float(pixel(i,j)) 

370 continue 
380 continue 

600 if(mindex.eq.O.or.irco.eq.1) fv(irow,icol)=abs(sumr) 
if(mindex.gt.0.and.irco.eq.0) fv(irow,icol)=sqrt(sumr**2+sumi**2) 
if(mindex.lt .mfinish) go to 220 
mindex=0 
ip=nindex+1-2*((nindex+1)/2) 
if(itype.eq.2) mindex=ip 
mfinish=nindex+1 
mindex=mindex-itype 
go to 210 

Error messages. The program restarts (from line 100) after each 
message is displayed. 

900 write(0,90) 
write(0,99) 
read(0,5) answer 
go to 100 

910 write(0,91) 
write(0,99) 
read(0,5) answer 
go to 100 

920 write(0,92) 
write(0,99) 
read(0,5) answer 
go to 100 

930 write(0,93) 
write(0,99) 
read(0,5) answer 
go to 100 

940 write(0,94) 
write(0,99) 
read(0,5) answer 
go to 100 

1200 open(2,file=fvfile,status='unknown',form='formatted') 
do 1260 i=1,number 
do 1250 j=1,idim 
write(2,50) fv(i,j) 

1250 continue 
write(2,51) cr,lf 

1260 continue 
endfile 2 
write(0,42) 
write(0,43) ifile 
end 
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• Program : GENFVWAL.FOR (GENerate Feature Vectors for WALsh basis) 
• Version : 1.1 June 9, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail salaedigame.dgcd.doc.ca  

• Summary: 

GENFVWAL (GENerate Feature Vectors) calculates the 
feature vectors for a series of .pix files w.r.t. a set of 
basis functions (previously calculated and stored as files). 
A choice of either Walsh or Haar functions is offered as 
the basis functions. 
The features are calculated on a square grid of dimension 
2N x 2N in either single or double precision. 
The resulting file is saved as a FASCII file in the format 
correct for use by NeuralWare Professional II (a .nna file). 

• PROGRAMMING NOTES: 

• 1. The formats for the various data files are specified 
separately in those programs which generate them (WALSH, 
PIXELWAL, ...). 

• 2. The gridsize is NOT a variable for this program. However, 
some care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 
statements would have to be altered to allow for a different 
gridsize. 

include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 fv(1100,100) 
integer*1 basis(-127:128,-127:128) 
integer*2 pixel(-127:128,-127:128),kchar(3) 
character*1 answer,cr,lf,drivel,null 
character*3 bufint 
character*54 pixelfile,basisfile,fvfile,buffer 
data cr/13/,1f/10/,nu11/0/ 

All format statements and only format statements have labels 
in the range 1 - 99. 

1 format(lh+,17(1h*), 
+' Rotation Invariant Feature Vectoi-  Generation ',17(1h*)\) 
2 format(1h  ,25x, 'Version 1.10 : June 9, 1995) 
3 format(lh ,28x,'Grid Size : 	x ',i4) 
4 format(lhO,'Enter filename ', 
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+'(c/w path & extension) of 	starting .pix 	file : ') 
44 format(lhO,'Enter filename , 

+'(c/w path & extension) of raw feature vector file : ') 
5 format(al) 
6 format(a54) 
7 format(lhO, 
+'Enter number of pixel files (default=1) 

8 format(i3) 
9 format(lhO,'Initial Index Value (NO default) = '\) 

10 format(lh ,' Final Index Value (NO default) = '\) 
20 format(lhO, 

+'Choice of basis functions :') 
21 format(lh , 

+'Radial Walsh Functions 	 (1)') 
22 format(lh , 

+'Radial Haar Functions 	 (2)') 
29 format(lhO, 

+'Indicate basis function choice (NO default) : '\) 
23 format(lhO,'Drive letter location of basis functions 

+ (ONE character) : ') 
31 format(lh+,16(1h*), 

+' Feature Vector using ', 
+'the Radial Walsh Functions ',15(1h*)\) 

32 format(lh+,16(1h*), 
+' Feature Vector using , 
+'the Radial Haar Functions ',16(1h*)\) 

40 format(lh ,15x, 
+'Now integrating ',a12, with ',a10) 

42 format(1h0,24x,'Program completed successfully.') 
43 format(lh ,20x,'Total of ',i4,' pixel files were processed.') 
50 format(F12.5,','\) 
51 format(2a1\) 
90 format(lhO, 

+'The index value is negative.') 
91 format(lhO, 

+'The final index value is less than the initial value.') 
99 format(lhO,'Hit <RET> to restart program. '\) 

• Begin by prompting user for the initial pixel image filename 
• path if necessary), the number of image files, the choice of be51-  
• functions, and the range of basis ,function parameters (in effect' 
• the dimension of the feature vector). 

igridsize=256 
N=128 
itype=1 
del=1.DO/dfloat(N) 
ibatch=0 

100 call clearscreen ($GCLEARSCREEN) 
ifile=0 
write(0,1) 
write(0,2) 
write(0,3) igridsize,igridsize 

Check at this point to see if the "prompts" have been passed 
to this program as command line parameters. If so, skip the 
prompts and proceed to the calculations. 
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Order and specification of the command line prompts are: 
argl = pixelfile (a54 c/w path if needed) 
arg2 = fvfile (a54 c/w path if needed) 
arg3 = drive letter for basis functions (al) 
arg4 = itype (integer, 1 for Walsh, 2 for Haar) 
arg5 = number of pixel files (integer) 
arg6 = starting index value (integer) 
arg7 = ending index value (integer) 

numargs=nargs() 
if(numargs.gt.1) ibatch=1 
if(ibatch.eq.0) go to 120 
call getarg(1,pixelfile,istatus) 
call getarg(2,fvfile,istatus) 
call getarg(3,buffer,istatus) 
drivel=buffer(1:1) 
bufint=" 
call getarg(4,bufint,istatus) 
nsf=3 
do 102 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 102 
kchar(i)=0 
nsf=nsf-1 
continue 
itype=0 
do 104 i=1,nsf 
itype=10*itype+kchar(4-i) 
continue 
bufint=" 
call getarg(5,bufint,istatus) 
nsf=3 
do 106 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 106 
kchar(i)=0 
nsf=nsf-1 
continue 
number=0 
do 108 i=1,nsf 
number=10*number+kchar(4-i) 
continue 
bufint=" 
call getarg(6,bufint,istatus) 
nsf=3 
do 110 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 110 
kchar(i)=0 
nsf=nsf-1 
continue 
nbegin=0 
do 112 i=1,nsf 
nbegin=nbegin*10+kchar(4-i) 
continue 
bufint=" 
call getarg(7,bufint,istatus) 
nsf=3 
do 114 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
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if(kchar(i).ge.0.and.kchar(i).1e.9) go to 114 
kchar(i)=0 
nsf=nsf-1 

114 continue 
nfinish=0 
do 116 i=1,nsf 
nfinish=nfinish*10+kchar(4-i) 

116 continue 
go to 130 

We come here only if ibatch=0, i.e., no command line 
parameters have been entered and the user must be prompted 
for each of the filenames and variables. 

120 write(0,4) 
read(0,6) pixelfile 
write(0,44) 
read(0,6) fvfile 
write(0,20) 
write(0,21) 
write(0,22) 
write(0,29) 
read(0,8) itype 
if(itype.ne .2) itype=1 
write(0,23) 
read(0,5) drivel 
write(0,7) 
read(0,8) number 
if(number.le.0) number=1 
write(0,9) 
read(0,8) nbegin 
write(0,10) 
read(0,8) nfinish 

130 if(itype.eq.1) basisfile(1:54)='x:\walsh\walnnn.bin ' 
if(itype.eq.2) basisfile(1:54)='x:\haar\harnnn.bin ' 
basisfile(1:1)=drivel 
i=0 

132 i=i+1 
if(pixelfile(i:i).eq.'.') go to 134 
if(i.eq.51) go to 910 
go to 132 

134 markpix=i 
initpix=1 
do 136 i=1,markpix+3 
if(pixelfile(i:i).eq.'\') initpix=i+1 

136 continue 
i=0 

140 i=i+1 
if(fvfile(i:i).eq.'.') go to 142 
if(i.eq.51) go to 910 
go to 140 

142 markfv=i 
initfv=1 
do 144 i=1,markfv+3 
if(fvfile(i:i).eq.'\') initfv=i+1 

144 continue 
idim=nfinish-nbegin+1 
if(nbegin.lt .0) go to 900 
if((nfinish-nbegin).1t.0) go to 910 
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istart=100*(ichar(pixelfile(markpix-3:markpix-3))-48) 
istart=istart+10*(ichar(pixe1file(markpix-2:markpix-2))-48) 
istart=istart+(ichar(pixelfile(markpix-1:markpix-1))-48) 
ifinish=istart+number-1 
index=istart-1 
irow=0 

180 index=index+1 
irow=irow+1 
icol=0 
if(index.gt .ifinish) go to 1200 
nhuns=index/100 
ntens=(index-100*nhuns)/10 
nunits=index-100*nhuns-10*ntens 
pixelfile(markpix-3:markpix-3)=char(nhuns+48) 
pixelfile(markpix-2:markpix-2)=char(ntens+48) 
pixelfile(markpix-1:markpix-1)=char(nunits+48) 
open(2,file=pixelfile,status='unknown',form='binary') 
do 190 j=N,-N+1,-1 
read(2) (pixel(i,j),i=-N+1,N) 

19 0 continue 
ifile=ifile+1 
endfile 2 

Have read pixel file into array pixel(i,j). Now read the basis 
function files and perform the 'integration'. 

call clearscreen ($GCLEARSCREEN) 
if(itype.eq.1) write(0,31) 
if(itype.eq.2) write(0,32) 
write(0,2) 
write(0,3) igridsize,igridsize 

O  nindex=nbegin-1 
410  nindex=nindex+1 

if(nindex.gt .nfinish) go to 180 
Q. 	icol=icol+1 

We are now ready to proceed with the actual calculations of the 
feature vector components. 

nhuns=nindex/100 
ntens=(nindex-100*nhuns)/10 
nunit=nindex-100*nhuns-10*ntens 
kk=13 
if(itype.eq.2) kk=12 
basisfile(kk:kk)=char(nhuns+48) 
basisfile(kk+1:kk+1)=char(ntens+48) 
basisfile(kk+2:kk+2)=char(nunit+48) 
write(0,40) pixelfile(initpix:initpix+11),basisfile(kk-3:kk+6) 
open(2,file=basisfile,status='unknown',form='binary') 
do 300 j=N,-N+1,-1 
read(2) (basis(i,j),i= -N+1,N) 

f30  continue 
3 , endfile 2 
' 0  sum=0.0 

do 330 j=-N+1,N 
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do 320 i=-N+1,N 
if(basis(i,j).eq.0.0.or.pixel(i,j).eq.0) go to 320 
sum=sum+float(basis(i,j)*pixel(i,j)) 

320 continue 
330 continue 

600 fv(irow,icol)=abs(sum) 
go to 210 

Error messages. The program restarts (from line 100) after eacll 
message is displayed. 

900 write(0,90) 
write(0,99) 
read(0,5) answer 
go to 100 

910 write(0,91) 
write(0,99) 
read(0,5) answer 
go to 100 

1200 open(2,file=fvfile,status='unknown',form='formatted') 
do 1260 i=1,number 
do 1250 j=1,idim 
write(2,50) fv(i,j) 

1250 continue 
write(2,51) cr,lf 

1260 continue 
endfile 2 
write(0,42) 
write(0,43) ifile 
'end 

,rere e  

,rerfeee 
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C.--. 	  

Program : NORMFV.FOR (NORMalize the Feature Vectors) 
Version : 4.0 July 08, 1995 
Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

Summary: 
Normalizes either a training raw feature vector (assumed to be 
with a filename as 'FVnn.RANT') or a test raw feature vector 
file (assumed to be with a filename as 'FVniamm.RAW'). The 
former case writes the 'statfile' containing the mean, maximum, 
minimum, and sigma information while the latter reads the 
statfile and uses these parameters in order to normalize the 
test set. The maximum and minimum referred to for the statfile 
are equal to (fvmax-mean) and (mean-fvmin) respectively. Thus, 
all four elements of the statfile are .ge. 0. 

This program writes 3 types of normalized feature vector files. 

The first (code letter 'v') is: 
fvnorml = (fv - mean)/max(bigl,big2) 
and is characterized by a zero mean, with a maximum value of 
+1 (bigl.gt .big2) OR a minimum value of -1 (big1.1t.big2) 

The second (code letter 'p') is: 
fvnorm2 = abs(fvnorml) 
and is characterized by a non-zero mean, components which are 
always .ge. 0, and a maximum value of +1. 

c 	The third (code letter 'b') is: 
fvnorm3 = (2*fv - (bigl-big2-2*mean))/(bigl+big2) 
and is characterized by always having at least one value of 
+1 AND one value of -1. 

c 	Note 1: 
An earlier version of this program produced a .sig file 
representing 'sigma normalized' vectors, i.e., 
fvnorm = (fv - mean)/sigma 
characterized by a zero mean and unit sigma value. However, 
these "normalized" fv often resulted in vectors (for both 
training and test sets) with components substantially greater 
than +1 or less than -1. This meant either "renormalizing" or 
explicitly setting up "minmax" tables for the neural simulator. 
Either way, the end result was that a form of fvnorml or 
fvnorm3 was used as input. Actual tests using the .sig and 
.max files (fvnorml) with NO minmax tables revealed that the 
networks trained with the .max files performed noticably 
better than those trained with the .sig files. 

Note 2: 
All the filenames are a12 - this program MUST be run from 
within the directory containing all the necessary feature 
vector and stat files. 
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include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 fv(1100,100),fvnorm1(1100,100),fvnorm2(1100,100) 
real*4 fvnorm3(1100,100) 
real*4 mean(100),sigma(100),big1(100),big2(100) 
integer*2 kchar(3) 
character*1 answer,cr,lf,comma,dummyl,dummy2 
character*3 bufint 
character*12 fvfile,normfile,statfile 
data cr/13/,1f/10/ 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,21(1h*), 
+' Normalization of Feature Vector File ',21(1h*)\) 

2 format(lh  ,25x, Version  4.00 : July 08, 1995) 
3 format(lhO,'Is this a training or a test/recall set ?') 
4 format(lhO,'Enter filename ', 
+'(path & extension) for reading raw feature file 	: ) 

7 format(1h0,15X, 
+'Enter number of vectors 	 (NO default) : '\) 

8 format(1h0,15X, 
+'Enter dimension of feature vectors (NO default)  

9 format(lhO,'Enter filename ', 
+Mpath & extension) for writing mean/maxim/sigma file : ') 

10 format(1h0,24x,'Program completed successfully.') 
11 format(F12.5,a1\) 
12 format(2a1) 
13 format(al) 
14 format(a12) 
15 format(i3) 
16 format(F12.5,','\) 
17 format(2a1\) 
18 format(i2) 
19 format(lhO,'Enter filename ', 

+.(path & extension) for reading mean/maxim/sigma file : ) 
20 format(lh ,'Training Set 	- Answer 1 :') 
21 format(lh ,'Test/Recall Set - Answer 2 :') 
22 format(lhO,'Answer (no default) : '\) 
23 format(lh ,'Writing feature vector file ',a12) 
90 format(lhO, 

+'The number of vectors must be a positive integer .gt. 1.') 
91 format(lhO, 

+'The feature vector dimension must be a positive integer.') 
99 format(lhO,'Hit <RET> to restart program. '\) 

• 100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
write(0,2) 

Check at this point to see if the "prompts" have been passed 
to this program as command line parameters. If so, skip the 
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prompts and proceed to the calculations. 

Order and specification of the command line prompts are: 
argl = fvfile (a12) 
arg2 = statfile (a12) 
arg3 = itypefv (integer, 1 for train, 2 for test) 
arg4 = nv (number of feature vectors) 
arg5 = ndim (dimension of feature vector) 

ibatch=0 
numargs=nargs() 
if(numargs.gt.1) ibatch=1 
if(ibatch.eq.0) go to 120 
call getarg(1,fvfile,istatus) 
call getarg(2,statfile,istatus) 
bufint=" 
call getarg(3,bufint,istatus) 
nsf=3 
do 102 1=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 102 
kchar(i)=0 
nsf=nsf-1 

102 continue 
itypefv=0 
do 104 i=1,nsf 
itypefv=10*itypefv+kchar(4-i) 

104 continue 
bufint=" 
call getarg(4,bufint,istatus) 
nsf=3 
do 106 1=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 106 
kchar(i)=0 
nsf=nsf-1 

106 continue 
nv=0 
do 108 i=1,nsf 
nv=10*nv+kchar(4-i) 

108 continue 
bufint=" 
call getarg(5,bufint,istatus) 
nsf=3 
do 110 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 110 
kchar(i)=0 
nsf=nsf-1 

110 continue 
ndim=0 
do 112 i=1,nsf 
ndim=ndim*10+kchar(4-i) 

112 continue 
go to 200 

C  ======================================= = =============================== 

We come here only if ibatch=0, i.e., no command line 
parameters have been entered and the user must be prompted 
for each of the filenames and variables. 
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120 write(0,3) 
write(0,20) 
write(0,21) 
read(0,18) itypefv 
write(0,4) 
read(0,14) fvfile 
if(itypefv.eq.1) write(0,9) 
if(itypefv.eq.2) write(0,19) 
read(0,14) statfile 
write(0,7) 
read(0,15) nv 
if(nv.le.0) go to 900 
write(0,8) 
read(0,15) ndim 
if(ndim.le.0) go to 910 

200 normfile(1:12)=fvfile(1:12) 
mark=6 
if(itypefv.eq.2) mark=8 
normfile(mark:mark+2)='max' 
normfile(2:2)='v' 

Now read the 'raw' feature vector file noting that both 
programs GENFVZER and GENFVWAL produce raw feature vector 
files for which fv(i,j).GE.0 for all values of i,j. 

open(2,file=fvfile,status='unknown',form='formatted') 
do 220 i=1,nv 
do 210 j=1,ndim 
read(2,11) fv(i,j),comma 

210 continue 
read(2,12) dummyl,dummy2 

220 continue 
close (2)  
if(itypefv.eq.1) go to 300 

250 open(2,file=statfile,status='unknown',form='formatted') 
do 260 j=1,ndim 
read(2,11) mean(j),comma 

260 continue 
read(2,12) dummyl,dummy2 
do 270 j=1,ndim 
read(2,11) bigl(j),comma 

270 continue 
read(2,12) dummy1,dummy2 
do 275 j=1,ndim 
read(2,11) big2(j),comma 

275 continue 
read(2,12) dummyl,dummy2 
do 280 j=1,ndim 
read(2,11) sigma(j),comma 

280 continue 
read(2,12) dummyl,dummy2 
close(2) 
do 298 j=1,ndim 
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do 290 1=1, 
big=big1(j) 
if(big2(j). 
fvnorm1(i,j 
fvnorm2(i,j 
a=2./(big1( 
b=-(big1(j) 
fvnorm3(i,j 

290 continue 
298 continue 

go to 400  

nv 

gt.big1(j)) big=big2(j) 
)=(fv(i,j)-mean(j))/big 
)=abs(fvnorm1(i,j)) 
j)+big2(j)) 
-big2(j)+2.*mean(j))/(bigl(j)+big2(j)) 
)=a*fv(i,j)+b 

300 do 340 j=1,ndim 
sum=0. 
do 310 i=1,nv 
sum=sum+fv(i,j) 

310 continue 
mean(j)=sum/float(nv) 
sum=0. 
fmax=mean(j) 
fmin=mean(j) 
do 320 i=1,nv 
sum=sum+(fv(i,j)-mean(j))**2 
if(fv(i,j).gt.fmax) fmax=fv(i,j) 
if(fv(i,j).1t.fmin) fmin=fv(i,j) 

320 continue 
sigma(j)=sqrt(sum/float(nv)) 
bigl(j)=fmax-mean(j) 
big2(j)=mean(j)-fmin 
if(big1(j).1e.0.001) big1(j)=1. 
if(big2(j).1e.0.001) big2(j)=1. 
big=big1(j) 
if(big2(j).gt.bigl(j)) big=big2(j) 
do 330 i=1,nv 
fvnorm1(i,j)=(fv(i,j)-mean(j))/big 
fvnorm2(i,j)=abs(fvnorml(i,j)) 
a=2./(big1(j)+big2(j)) 
b=-(big1(j)-big2(j)+2.*mean(j))/(big1(j)+big2(j)) 
fvnorm3(i,j)=a*fv(i,j)+b 

330 continue 
340 continue 

400 normfile(2:2)='v' 
normfile(mark:mark+2)='max' 
open(2,file=normfile,status='unknown',form='formatted') 
do 460 i=1,nv 
do 450 j=1,ndim 
write(2,16) fvnorm1(i,j) 

450 continue 
write(2,17) cr,lf 

460 continue 
endfile 2 

500 normfile(2:2)='P' 
open(2,file=normfile,status='unknown',form='formatted') 
do 520 i=1,nv 
do 510 j=1,ndim 
write(2,16) fvnorm2(i,j) 
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510 continue 
write(2,17) cr,lf 

520 continue 
endfile 2 

540 normfile(2:2)='b' 
open(2,file=normfile,status='unknown',form='formatted') 
do 560 i=1,nv 
do 550 j=1,ndim 
write(2,16) fvnorm3(i,j) 

550 continue 
write(2,17) cr,lf 

560 continue 
endfile 2 
if(itypefv.eq.2) go to 1000 

600 open(2,file=statfile,status='unknown',form=rformatted') 
do 620 j=1,ndim 
write(2,16) mean(j) 

620 continue 
write(2,17) cr,lf 
do 640 j=1,ndim 
write(2,16) big1(j) 

640 continue 
write(2,17) cr,lf 
do 650 j=1,ndim 
write(2,16) big2(j) 

650 continue 
write(2,17) cr,lf 
do 660 j=1,ndim 
write(2,16) sigma(j) 

660 continue 
write(2,17) cr,lf 
endfile 2 
go to 1000 

900 write(0,90) 
write(0,99) 
read(0,13) answer 
go to 100 

910 write(0,91) 
write(0,99) 
read(0,13) answer 
go to 100 

1000 write(0,10) 
end 
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• Program : GENRV.FOR (GENerate Result Vectors) 
• Version : 1.0 March 11, 1993 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

GENRV (GENerate Result Vectors) writes a set of 
result vectors corresponding to a series of .pix files 
generated by GENFV. 
This program prompts the user to supply the number of 
vectors NV (rows) and the vector dimension NDIM (columns). 

If "AUTO" mode is selected, a simple matrix is then written 
consisting of NGROUP groups of (NV/NDIM) rows each, with each 
group having a single value = 1. (its 'class') and the 
remainder of the columns = 0. 

If "PROMPT" mode is selected, then the user is prompted to 
give the position of the vector component = 1 for each feature 
vector in turn (1 to NV). 

include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 rv(1100,100) 
character*1 answer,cr,lf 
character*54 rvfile 
data cr/13/,1f/10/ 

c - 
c 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,22(1h*), 
+' Generation of a Result Vector File ',22(1h*)\) 

2 format(lh  ,25x, Version 1.00 : March 11, 1993) 
3 format(lh ,8X) 
4 format(1h0,8X,'Enter filename 
+'(c/w path & extension) for writing result file : ') 

5 format(al) 
6 format(a54) 
7 format(1h0,15X, 
+'Enter number of result vectors/cycle (NO default) : '\) 

8 format(1h0,15X, 
+'Enter number of classes of Vectors (NO default)  

9 format(i3) 
10 format(1h0,24x,'Program completed successfully.') 
11 format(F12.5,','\) 
12 format(2a1\) 
13 format(1h0,15X, 
+'Run prompt or automated mode (default=Auto) 	? '\) 
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14 format(1h0,15X, 
+'Enter result vector dimension (NO default) 	: '\) 

15 format(lh ,24X, 
+'RV(i,j) = 1 with i =',i3,' and j = '\) 

16 format(1h0,12X, 
+'Enter number of cycles for RV generation (default=1) : '\) 

90 format(lhO, 
+'The number of vectors must be a positive integer.') 

91 format(lhO, 
+'The number of classes must be a positive integer.') 

92 format(lhO, 
+'The number of vectors must be an integral multiple ' 
+'of the number of classes.') 

99 format(lhO,'Hit <RET> to restart program. '\) 

• Begin by prompting user for the initial pixel image filename (c/W 
• path if necessary), the number of image files, the choice of basis 
• functions, and the range of basis function parameters (in effect, 
• the dimension of the feature vector). 

iprecision=1 
100 call clearscreen ($GCLEARSCREEN) 

write(0,1) 
write(0,2) 
write(0,4) 
write(0,3) 
read(0,6) rvfile 
write(0,7) 
read(0,9) nv 
if(nv.le.0) go to 900 
write(0,14) 
read(0,9) ndim 
write(0,13) 
do 210 i=1,nv 
do 200 j=1,ndim 
rv(i,j)=0. 

200 continue 
210 continue 

read(0,5) answer 
if(answer.eq.'p'.or.answer.eq.'P') go to 400 
ngroup=nvindim 
itest=nv-ndim*ngroup 
if(itest.ne .0) go to 920 
write(0,16) 
read(0,9) ncycle 
if(ncycle.le.0) ncycle=1 
do 320 j=1,ncycle 
do 310 k=1,ndim 
do 300 i=1,ngroup 
ii=(j-1)*nv+(k-1)*ngroup+i 
rv(ii,k)=1. 

300 continue 
310 continue 
320 continue 

go to 1000 

Come to line 400 if user wishes to write the result vector bY 
'prompt' mode, i.e., program will write each vector sequentiallY 
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prompting the user for the position of the '1 component for 
each. 

400 do 440 i=1,nv 
write(0,15) i 
read(0,9) j 
rv(i,j)=1. 

440 continue 
go to 1000 

Error messages. The program restarts (from line 100) after each 
message is displayed. 

900 write(0,90) 
write(0,99) 
read(0,5) answer 
go to 100 

910 write(0,91) 
write(0,99) 
read(0,5) answer 
go to 100 

920 write(0,92) 
write(0,99) 
read(0,5) answer 
go to 100 

1 000 open(2,file=rvfile,status='unknown',form='formatted') 
do 1070 k=1,ncycle 
do 1060 i=1,nv 
do 1050 j=1,ndim 
ii=(k-1)*nv+i 
write(2,11) rv(ii,j) 

1050 continue 
write(2,12) cr,lf 

1060 continue 
1070 continue 

endfile 2 
write(0,10) 
end 
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	 - 
c 	Program : GENCV.FOR (GENerate Complete Vectors) 
• Version : 4.2 July 9, 1995 — 
C 	Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

GENCV (Combined/Complete Feature Vector) combines a 
normalized feature vector file (from NORMFV) with its 
result vector file (from GENRV) to form the complete 
.nna training or test data file to serve as the input 
for NeuralWare Professional II simulator. GENCV will 
generate CXnamm.NNA files where X = v, p, or b with 
the corresponding FXnnmm.MAX file as input. Note, the 
"differential" file CDnnmm.NNA is generated by using 
FVnnmm.MAX with CDnnmm.NNA as input file names. 

This program prompts the user to supply the number of 
vectors NV (rows), the dimension NFVDIM of the feature vector , 

 and the dimension NRVDIM of the result vector, i.e., the 
feature vector file is dimension NVXNFVDIM while that of 
the result vector is NVxNRVDIM. 

These two files are then combined to form the single data 
set of dimension NVX(NFVDIM+NRVDIM), written as an ASCII file 
with the elements delimited by commas and 'end-of-records' 
(vectors) by CR,LF. 

include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 fv(1100,200) 
integer*2 kchar(3) 
character*1 answer,cr,lf,comma,dummyl,dummy2 
character*3 bufint 
character*12 fvfile,rvfile,cvfile 
data cr/13/,1f/10/ 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,22(1h*), 
+' Generation of a Result Vector File ',22(1h*)\) 
2 format(lh  ,25x, Version 4.20 : July 09, 1995) 
4 format(lhO,'Enter filename 
+'(c/w path & extension) for reading feature file : ') 
5 format(lhO,'Enter filename , 
+'(c/w path & extension) for reading result file : ') 
6 format(lhO,'Enter filename 
+'(c/w path & extension) for writing the cv file : ') 
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7 format(1h0,15X, 
+'Enter number of vectors 	 (NO default) : '\) 

8 format(1h0,15X, 
+'Enter dimension of feature vectors (NO default) : '\) 

9 format(1h0,15X, 
+'Enter dimension of result vectors (NO default) : '\) 

10 format(1h0,24x,'Program completed successfully.') 
11 format(F12.5,a1\) 
12 format(2a1) 
13 format(al) 
14 format(a12) 
15 format(i3) 
16 format(F12.5,','\) 
17 format(2a1\) 
18 format(i2) 
90 format(lhO, 

+'The number of vectors must be a positive integer.') 
91 format(lhO, 

+'The feature vector dimension must be a positive integer.') 
92 format(lhO, 

+'The result vector dimension must be a positive integer.') 
99 format(lhO,'Hit <RET> to restart program. '\) 

C- 
C  
• Begin by prompting user for the initial pixel image filename (c/w 
• path if necessary), the number of image files, the choice of basis 
• functions, and the range of basis function parameters (in effect, 
• the dimension of the feature vector). 

iprecision=1 
100 call clearscreen ($GCLEARSCREEN) 

write(0,1) 
write(0,2) 

Check at this point to see if the "prompts" have been passed 
to this program as command line parameters. If so, skip the 
prompts and proceed to the calculations. 

Order and specification of the command line prompts are: 
argl = fvfile (a12) 
arg2 = rvfile (a12) 
arg3 = cvfile (a12) 
arg4 = nv (number of feature vectors) 
arg5 = nfvdim (dimension of feature vector) 
arg6 = nrvdim (dimension of result vector) 

numargs=nargs() 
if(numargs.gt.1) ibatch=1 
if(ibatch.eq.0) go to 120 
call getarg(1,fvfile,istatus) 
call getarg(2,rvfile,istatus) 
call getarg(3,cvfile,istatusi 
bufint=" 
call getarg(4,bufint,istatus) 
nsf=3 
do 102 1=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 102 
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kchar(i)=0 
nsf=nsf-1 

102 continue 
nv=0 
do 104 i=1,nsf 
nv=10*nv+kchar(4-i) 

104 continue 
bufint=" 
call getarg(5,bufint,istatus) 
nsf=3 
do 106 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 106 
kchar(i)=0 
nsf=nsf-1 

106 continue 
nfvdim=0 
do 108 i=1,nsf 
nfvdim=10*nfvdim+kchar(4-i) 

108 continue 
bufint=" 
call getarg(6,bufint,istatus) 
nsf=3 
do 110 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 110 
kchar(i)=0 
nsf=nsf-1 

110 continue 
nrvdim=0 
do 112 i=1,nsf 
nrvdim=nrvdim*10+kchar(4-i) 

112 continue 
go to 200 

We come here only if ibatch=0, i.e., no command line 
parameters have been entered and the user must be prompted 
for each of the filenames and variables. 

120 write(0,4) 
read(0,14) fvfile 
write(0,5) 
read(0,14) rvfile 
write(0,6) 
read(0,14) cvfile 
write(0,7) 
read(0,15) nv 
if(nv.le.0) go to 900 
write(0,8) 
read(0,15) nfvdim 
if(nfvdim.le.0) go to 910 
write(0,9) 
read(0,15) nrvdim 
if(nrvdim.le.0) go to 920 

200 open(2,file=fvfile,status='unknown',form='formatted') 
do 220 i=1,nv 
do 210 j=1,nfvdim 
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Qr 

read(2,11) fv(i,j),comma 
210 continue 

read(2,12) dummyl,dummy2 
220 continue 

close (2)  

300 open(2,file=rvfile,status='unknown',form='formatted') 
do 320 i=1,nv 
do 310 j=1,nrvdim 
k=j+nfvdim 
read(2,11) fv(i,k),comma 

310 continue 
read(2,12) dummyl,dummy2 

320 continue 
close (2)  

400 ndim=nfvdim+nrvdim 
if(cvfile(2:2).eq.'d'.or.cvfile(2:2).eq.'D') go to 500 
open(2,file=cvfile,status='unknown',form='formatted') 
do 420 i=1,nv 
do 410 j=1,ndim 
write(2,16) fv(i,j) 

410 continue 
write(2,17) cr,lf 

420 continue 
endfile 2 
go to 1000 

Special case for writing the file CDnnmm.NNA. 
We form the "differential" by comparing fv(i,j+1) with fv(i,j), 
setting the result to +1 if fv(i,j+1).ge.fv(i,j) and to -1 
otherwise. Note that the dimension of CDnnmm.NNA will be 
(nfvdim-1+nrvdim). 

c-_ 	  
500 do 520 i=1,nv 

do 510 j=nfvdim,2,-1 
delta=fv(i,j)-fv(i,j-1) 
fv(i,j)=1. 
if(delta.lt .O.) fv(i,j)=-1 

510 continue 
520 continue 
600 open(2,file=cvfile,status='unknown',form='formatted') 

do 620 i=1,nv 
do 610 j=2,ndim 
write(2,16) fv(i,j) 

610 continue 
write(2,17) cr,lf 

620 continue 
endfile 2 
close(2) 
go to 1000 

Error messages. The program restarts (from line 100) after each 
message is displayed. 
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C  

C  

C  

900 write(0,90) 
write(0,99) 
read(0,5) answer 
go to 100 

910 write(0,91) 
write(0,99) 
read(0,5) answer 
go to 100 

920 write(0,92) 
write(0,99) 
read(0,5) answer 
go to 100 

1000 write(0,10) 
end 
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• Program : RATENNR.FOR (RATE the Neural Network Result vectors) 
• Version : 5.6 July 5, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

RATENNR provides a convenient method of "rating" the result 
file (*.nnr) obtained from the NeuralWare simulator. 
It examines the .nnr file and determines whether or not a 
given vector result is correct (correct interpreted simply 
as the largest network output agreeing in position with the 
result vector). A ratio is calculated as, (a), if correct, 
the value of the correct result divided by the second largest 
output or, (b), if incorrect, the value of the output of the 
"correct" position divided by the largest output. A summary 
is given of the number of result vectors in the file along 
with the overall, weighted classification accuracy. 

In order to account for some measure of "confidence" in the 
classification results, a weighting factor is calculated 
using the ratio defined above as: 

factor = 11[1 + exp(-4*(ratio-1))] 

and it is this factor which is measured as a `hit'. Thus a 
ratio of 1 produces a factor of 0.5, a ratio of 1.5 yields 
a factor of .88, while a ratio of 0.5 gives a factor = .12. 
Although this is a purely ad hoc manner of weighting the 
performance, it gives more meaningful results than those 
obtained by simply counting `hits' (i.e., ratio.gt .1) as 
+1 and `misses' (i.e., ratio.le.1) as 0. 

The user is presented with options to print either summary 
information or a complete listing of the ratio results on a 
vector by vector basis. An "information" file (*.inf) is 
also written which contains the detailed listing of the 
classification results. 

C-. 	 === 	 == 	========= 
include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 rv(1536,50),info(1536,4),sumup(100,100) 
character*1 cr,lf,tab,ff,dummyl,dummy2,answer, 
character*54 rvfile,infofile,sumupfile 
data cr/13/,1f/10/,tab/09/ -,'ff/12/ 

Qr  

All format statements and only format statements have labels 
in the range 1 - 99. 
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1 format(lh+,21(1h*), 
+' Result Rating of an .nnr Vector File ',21(1h*)\) 

2 format(lh  ,25x, Version  5.60 : July 05, 1995) 
3 format(lhO, 
+'Enter number of mir files to process (NO default) : '\) 

4 format(lh ,'Total hits : ',i4, of ', 
+i4,' (',f7.3,'%) 	Sigmoid Value :',F9.4) 

5 format(lhO,'Enter filename ', 
+'(c/w path & extension) for reading .nnr file 	: ') 
6 format(lhO,'Enter filename ', 
+'(c/w path & extension) for writing the info file : ') 

7 format(lhO, 
+'Enter total no. of vectors in NNR file (NO default) 
8 format(lhO, 
+'Enter the number of classes for this result (NO default) : '\) 

9 format(lhO,'Subfile ',i3,' of nnr file : ',a54\) 
10 format(1h0,24x,'Program completed successfully.') 
11 format(F7.6\) 
12 format(F8.5\) 
13 format(al) 
14 format(a54) 
15 format(i4) 
16 format(F12.5,','\) 
17 format(2a1\) 
18 format(i2) 
20 format(lhO,'Ensure that printer is online and set to ', 

+'non-ps mode before proceeding. '\) 
21 format(al\) 
22 format(lh ,'Sum of Ratios = ',F11.3,' : Average = ',F9.4) 
23 format(lh ,15X,'Sum of Ratios = ',F11.3,' : Average = ',F9.4//) 
24 format(lh ,'Do you wish to print the results (LPT1:)? '\) 
25 format(lh ,'Details or Summary (default = details) ?') 
26 format(lh ,'Answer d,D or s,S : '\) 
27 format(lh ,'NNR files are concatenated (default=no) ? '\) 
28 format(lh ,'No. of vectors per subfile = '\) 
29 format(lh ,'No. of subfiles = '\) 
30 format(lh ,14X,4F12.5) 
32 format(1h0/) 
33 format(lh  ,9X, 'Total  hits : ',i4,' of ', 

+i4,' (',f7.3,'%) 	Sigmoid Value :',F9.4) 
34 format(lh+,16X,'Result for subfile ',i3,' of mir file : ',a54) 
35 format(lh ,a1) 
36 format(lh ,5a1) 
37 format(lh ,2a1) 
38 format(lh ,23X,'SUMMARY FOR NNR FILE : ',a54) 
39 format(lh , 

+'Do you wish to write a summary info file (default=no) ? '\) 
40 format(lh ,'Enter filename ', 

+'for writing the summary info file : '\) 
90 format(lhO, 	 - 

+'The number of vectors must be a positive integer.') 
91 format(lhO, 

+'The feature vector dimension must be a positive integer.') 
92 format(lhO, 

+'The result vector dimension must be a positive integer.') 
99 format(lhO,'Hit <RET> to restart program. '\) 

• Begin by prompting user for the number of nnr files to process ,  
• filenames, feature vector dimensions, and choices for printing 
• calculated results in detail or in summary form. 
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iprecision=1 
100 call clearscreen ($GCLEARSCREEN) 

write(0,1) 
write(0,2) 
write(0,24) 
read(0,13) answer 
iprint=0 
if(answer.eq.'y'.or.answer.eq.'Y') iprint=2 
if(iprint.eq.0) go to 101 
write(0,25) 
write(0,26) 
read(0,13) answer 
if(answer.eq.'s'.or.answer.eq.'S') iprint=1 
write(0,20) 
read(0,13) answer 

101 write(0,5) 
read(0,14) rvfile 
write(0,3) 
read(0,15) number 
write(0,39) 
read(0,13) answer 
isumup=0 
if(answer.eq.'y'.or.answer.eq.'Y') isumup=1 
if(isumup.eq.0) go to 102 
write(0,40) 
read(0,14) sumupfile 

102 do 103 i=1,54 
infofile(i:i)=rvfile(i:i) 

103 continue 
i=0 

104 i=i+1 
if(rvfile(i:i).eq.'.') go to 106 
go to 104 

106 mark=i 
infofile(mark+1:mark+3)='inf' 
if(number.eq.1) go to 108 
itens=ichar(rvfile(mark-2:mark-2))-48 
iunits=ichar(rvfile(mark-1:mark-1))-48 
istart=10*itens+iunits 
ifinish=istart+number-1 
go to 110 

108 istart=1 
ifinish=1 

110 nf=1 
write(0,27) 
icat=0 
read(0,13) answer 
if(answer.eq.'Y'.or.answer.eq.'y') icat=1 
if(icat.eq.0) go to 120 
write(0,28) 
read(0,15) nvf 
write(0,29) 
read(0,15) nf 

, 	go to 130 
4* 20  write(0,7) 
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read(0,15) nvf 
130 write(0,8) 

read(0,15) nc 
ncp1=nc+1 
nc2=2*nc 
nv=nvf*nf 
if(iprint.eq.0) go to 150 
open(3,file='PRN') 

• Begin execution of large, outside DO-loop which processes the 
• individual result (nnr) files written by the NeuralWare Simulator- 

150 do 600 k=istart,ifinish 
if(number.eq.1) go to 200 
dummyl=char((k/10)+48) 
dummy2=char(k-10*(k/10)+48) 
rvfile(mark-2:mark-2)=dummyl 
rvfile(mark-1:mark-1)=dummy2 
infofile(mark-2:mark-2)=dummyl 
infofile(mark-1:mark-1)=dummy2 

200 open(2,file=rvfile) 
do 220 i=1,nv 
read(2,*) (rv(i,j),j=1,nc2) 

220 continue 
close(2) 

do 260 i=1,nv 
do 250 j=1,nc2 
rv(i,j)=abs(rv(i,j)) 

250 continue 
260 continue 

• Initialize the sums to 0 and then begin the large inner DO-loop 
• to process the 'subfiles' contained within each nnr file (this 
• allows the program to treat concantenated test sets). 

- 

bigsum=0. 
nthits=0 
bigsumsig=0. 
do 550 ifile=1,nf 
nhits=0 
sigfunc=0. 
lines=0 
do 380 i=1,nvf 
ii=nvf*(ifile-1)+i 
fpmax=0. 
frmax=0. 
do 340 j=1,nc 
if(rv(ii,j).1t.fpmax) go to 340 
fpmax=rv(ii,j) 
markp=j 

340 continue 
do 360 j=ncpl,nc2 
if(rv(ii,j).1t.frmax) go to 360 
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frmax=rv(ii,j) 
markr=j 

360 continue 
temp=rv(ii,markr) 
rv(ii,markr)=0. 
frmax=0. 
do 370 j=ncpl,nc2 
if(rv(ii,j).1t.frmax) go to 370 
frmax=rv(ii,j) 
markr2=j 

370 continue 

• Having determined the two largest outputs from the network, 
• calculate the appropriate ratio according to whether it is a 
• 'hit' or a 'miss'. Then compute the sigmoidal "factor" which 
• will be used as the measure of the 'hit'-'miss'. 
• Note that a ratio of 1 yields a factor of 0.5, i.e., a 50% 
• "confidence" level. 

c- 	
rv(ii,markr)=temp 
if((markr-markp).eq.nc) ratio=rv(ii,markr)/rv(ii,markr2) 
if((markr-markp).ne.nc) ratio=rv(ii,markp+nc)/rv(ii,markr) 
if((markr-markp).eq.nc) nhits=nhits+1 
factor=1./(1.+EXP(-4.*(ratio-1.))) 
sigfunc=sigfunc+factor 
info(i+1,1)=float(markp-1) 
info(i+1,2)=float(markr-nc-1) 
info(i+1,3)=ratio 
info(i+1,4)=factor 

380 continue 

percent=100.*float(nhits)/float(nvf) 
info(1,1)=float(nhits) 
info(1,2)=float(nvf) 
info(1,3)=percent 
info(1,4)=sigfunc 
sum=0. 
sumsig=0. 
do 390 kk=2,(nvf+1) 
sum=sum+info(kk,3) 
sumsig=sumsig+info(kk,4) 

390 continue 
avg=sum/float(nvf) 
bigsum=bigsum+sum 
nthits=nthits+nhits 
avgsig=sumsig/float(nvf) 
bigsumsig=bigsumsig+sumsig 

Write the various measurements derived from the nnr file into 
the 'infofile' with one file per nnr file. 

4 00 open(2,file=infofile,status='unknown',form='formatted') 
do 420 i=1,(nvf+1) 
do 410 j=1,4 
write(2,16) info(i,j) 

41 0 continue 
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	 - 
c 

Finish the program by writing the final summary information. 

bigpercent=100.*float(nthits)/float(nv) 
bigavg=bigsum/float(nv) 
write(2,16) float(nthits) 
write(2,16) float(nv) 
write(2,16) bigpercent 
write(2,17) cr,lf 
close (2)  
write(0,32) 
write(0,4) nthits,nv,bigpercent,sumsig 
write(0,22) bigsum,bigavg 
if(iprint.eq.0) go to 590 
write(3,32) 
write(3,38) rvfile 
write(3,33) nthits,nv,bigpercent,sigfunc 
write(3,23) bigsum,bigavg 
write(3,35) ff 

590 continue 
600 continue 

write(2,17) cr,lf 
420 continue 

write(0,9) ifile,rvfile 
write(0,4) nhits,nvf,percent,sigfunc 
write(0,22) sum,avg 
if(iprint.eq.0) go to 500 
write(3,34) ifile,rvfile 
write(3,33) nhits,nvf,percent,sumsig 
write(3,23) sum,avg 
lines=lines+4 
if(lines.le.52) go to 440 
write(3,35) ff 
lines=0 

440 if(iprint.eq.1) go to 500 
do 460 i=1,(nvf+1) 
write(3,30) (info(i,j),j=1,4) 
lines=lines+1 
if(lines.le.55) go to 460 
write(3,35) ff 
lines=0 

460 continue 
write(3,35) ff 

500 continue 
jcol=4*(k-1)+1 
sumup(ifile,jcol)=info(1,1) 
sumup(ifile,jcol+1)=info(1,4) 

550 continue 

if(isumup.eq.0) go to 900 
do 700 k=1,number 
j=4* (k-1)+1 
smin=1000. 
do 650 i=1,nf 
if(sumup(i,j+1).1e.smin) smin=sumup(i,j+1) 

650 continue 
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do 660 i=1,nf 
sumup(i,j+2)=float(nvf)*(sumup(i,j+1)-smin)/(float(nvf)-smin) 
sumup(i,j+3)=100.*sumup(i,j+2)/float(nvf) 

660 continue 
700 continue 

open(2,file=sumupfile,status='unknown',form='formatted') 
do 880 i=1,nf 
do 860 k=1,number 
jcol=4*(k-1) 
do 840 j=1,4 
write(2,16) sumup(i,jcol+j) 

840 continue 
860 continue 

write(2,17) cr,lf 
880 continue 

endfile 2 
close (2) 

900 write(0,10) 
end 
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3. 

Appendix B 
Fortran Source Code for Programs to Calculate the Basis Functions 

This appendix contains the source code listings for the following programs: 

1. ZERNIKE.FOR 
Calculates the SZF or PZF bases in either of 3 modes (single n single m, single n many 
m, or many n all m) and stores the results as separate real and imaginary parts. Double 
precision variables are used in the calculation of the polynomial coefficients to permit 
calculation up to approximately n = 40. 

2. WALSH.FOR 

Calculates the 2-D Walsh radial function WRF for a user specified range of orders. 

HARR.FOR 
Calculates the 2-D Haar radial function HRF for a user specified range of orders. 

4. 	ZERNRAD.FOR 
Calculates the SZRP or PZRP bases in either of 3 modes (single n single m, single n 
many m, or many n all m). Double precision variables are used in the calculation of 
the polynomial coefficients to permit calculation up to approximately n = 40. 

WALSH1D.FOR 
Calculates the one-dimensional Walsh function for a user-specified range of orders. 
Can calculate either the 'normal' Walsh function (x dependence) or the 'radial' Walsh 
function (x*x dependence) by a trivial modification of the code. 

HAAR1D.FOR 
Calculates the one-dimensional Haar function for a user-specified range of orders. 
Can calculate either the 'normal' Haar function (x dependence) or the 'radial' Haar 
function (x*x dependence) by a trivial modification of the code. 
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• Program : ZERNIKE.FOR 
• Version : 6.0 June 19, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail salaedigame.dgcd.doc.ca  

• Summary: 

ZERNIKE calculates the real and imaginary parts of either the 
Standard (itype=2) or Pseudo (itype=1) Zernike polynomial 
V (x,y) for x,y in the unit circle and for positive values 
nm 
of the integer index n .LE. 40 (with m.LE.n, m.GE.0, and, for 
itype=2, (n-m) even). 

The data is calculated on a square grid of dimension 
2N x 2N and then saved as FASCII files with 'automatic' 
assignment of filenames. 

• PROGRAMMING NOTES: 

• 1. This program offers three 'modes' of calculating the Zernike 
polynomials: 

imode = 1 corresponds to the calculation for one specific 
n,m pair. 

imode = 2 corresponds to the calculation for a single value 
of n over a range of allowable values for m. 

mode = 3 allows for the calculation over a range of the 
principal index n. In this case, the calculation0 

 are carried out for all possible values of the 
secondary index m allowed for each value of n. 

• 2. Double precision variables are used to calculate the 
coefficients c(k) of the "radial" function part of V(x,y) 
and subsequently for the calculation of the function itself. 
This is necessary since the c(k) requires the calculation of 
ratios of factorials (the function 'fact' listed at the end 
of this program) and the numerators and denominators get verY 
large for even modest values of n. The range for double 
precision means that this calculation is limited to values of, 10 
n .LE. 40. To extend this program beyond this value, it woule 

 necessary to calculate and store the c(k) values separatelY 
using an infinite precision tool such as Mathamatica and to 
evaluate the polynomial terms with explicit retention of as 

many significant figures such as occur in the largest c(k) 
coefficient. 

• 3. The saved data files have names in the form TZXNUMM.TYP where: 

 T = S (Standard Zernike) or P (Pseudo Zernike) 
X = R (real part) or I (imaginary part) 
NN = value of principal index (0,1,2,3, 	 
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MM = value of secondary index (0,1,2,3,...) such that 
(NN-MM) is even and GE. 0 

TYP= bin (raw data stored as 4-byte floating point) 
= fsc (FASCII file used for 'import data' for graphing 

software such as AXUM,...) 

4. The gridsize is NOT a variable for this program. However, 
care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 
statements would have to be altered to allow for a different 
gridsize. 

c=== 	
include 'fgraph.fi' 
include 'fgraph.fd' 

real*8 c(86),top,bot,fact,x,y,a,b,r,rho,theta,del,power 
real*8 zero,half,one,delsq 
real*4 vr(-127:128, - 127:128),vi(-127:128,-127:128) 
real*4 theory(200),areas(200),diff(200) 
character*1 answer,response,cr,lf 
character*12 fullname,measures,names(200) 
data cr/13/,1f/10/ 

All format statements and only format statements have labels 
in the range 1 - 99. 

	

C- 	
1  format(lh+,19(1h*), 
+' Calculation of the Zernike Polynomials ',20(1h*)) 

2 format(lh  ,25x, 'Version  6.00 : June 19, 1995') 
3 format(lh ,27x,'Grid Size : 	x ',i4) 
4 format(1h0,6x,'Do you wish to calculate for a range', 
+' of n,m values (default=no)? '\) 

5 format(al) 
6 format(1h0,18x,'Principal Index Value (NO default) 
7 format(i2) 
8 format(lh ,18x,'Secondary Index Value (NO default) 	=.\) 
9 format(1h0,18x,'Initial Principal Index Value (NO default) = '\) 

10 format(lh ,18x,' Final Principal Index Value (NO default) = '\) 
11 format(1h0,18x,'Initial Secondary Index Value (NO default) = '\) 
12 format(lh ,18x,' Final Secondary Index Value (NO default) = '\) 
13 format(1h0,6x,'Do you wish to calculate for all possible', 

+' m values (default=yes)? '\) 
23 format(1h0,6x, 
+'Calculate Pseudo or Standard Zernike', 
+' polynomials (default=P) ? '\) 

24 format(lh+,16(1h*), 
+' Calculation of the Pseudo Zernike Polynomials ',16(1h*)) 

25 format(lh+,15(1h*), 
+' Calculation of the Standard Zernike Polynomials ',15(1h*)) 

26 format(1h0,6x, 
+'Suppress the angular dependence', 
+' (default=n) ? '\) 

27 format(lh+,3(1h*), Calculation of the Pseudo Zernike,' 
+' Polynomials - Radial Dependence Only ',4(1h*)) 

28 format(lh+,2(1h*),' Calculation of the Standard Zernike,' 
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+' Polynomials - Radial Dependence Only ',2(1h*)) 
30 format(65536(F10.5)\) 
31 format(256(F10.5)\) 
32 format(128(F10.5)\) 
33 format(85(F10.5)\) 
34 format(64(F10.5)\) 
35 format(a12,3(F18.6)\) 
36 format(2a1\) 
40 format(lh ,24x,'Now writing datafile ',a12) 
41 format(lh ) 
42 format(1h0,24x,'Program completed successfully.') 
43 format(lh  ,24x, Total of ',i4, files were written.') 
50 format(a10\) 
51 format(F10.5\) 
90 format(lhO, 

+'The index value is negative.') 
91 format(lhO, 

+'The final index value is less than the initial value.') 
92 format(lhO, 

+'The secondary index value exceeds the principal index value.') 
93 format(lhO, 

+'The two indices must be the same parity.') 
94 format(lhO, 

+'Secondary index position is outside permissible range.') 
99 format(1h0,25x,'Hit <RET> to restart program.'\) 

• Begin by prompting user for the index values after first 
• offering the option to calculate over a range of index values or 
• for a specific n,m combination. 

• The values and the combinations they represent are: 

imode=1 	Calculate for one specific n,m pair 
imode=2 	Calculate for all allowable values of m for one 

specific value of n 
imode=3 	Calculate over a range of n values supplied 

by user via a prompt (and for all allowable values 
of m) 

itype=1 	The Pseudo Zernike polynomials 
itype=2 	The Standard Zernike polynomials 
inangle=0 	Suppress angular dependence ("Circular" functionS )  
inangle=1 Include the angular dependence (the complete 

standard or pseudo functions with real and 
imaginary parts) 

igridsize=256 
N=128 
itype=1 
fullname(1:12)='PZ_nnmm.bin' 
measures='measures. 	' 
del=1.DO/dfloat(N) 
delsq=del*del 
pi=3.14159265 
zero=0.D0 
half=0.5D0 
one=1.D0 

100 call clearscreen ($GCLEARSCREEN) 
mall=0 
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ifilebin=0 
ifilefsc=0 
write(0,1) 
write(0,2) 
write(0,3) igridsize,igridsize 
write(0,23) 
read(0,5) response 
if(response.eq.'s'.or.response.eq.'S') itype=2 
if(itype.eq.2) fullname(1:1)='S' 
write(0,26) 
read(0,5) answer 
inangle=1 
if(answer.eq.'y'.or.answer.eq.'Y') inangle=0 
if(inangle.eq.0) fullname(3:3)='C' 
write(0,4) 
read(0,5) answer 
call clearscreen ($GCLEARSCREEN) 
if(itype.eq.l.and.inangle.eq.1) write(0,24) 
if(itype.eq.2.and.inangle.eq.1) write(0,25) 
if(itype.eq.l.and.inangle.eq.0) write(0,27) 
if(itype.eq.2.and.inangle.eq.0) write(0,28) 
write(0,2) 
write(0,3) igridsize,igridsize 
if(answer.eq.'y'.or.answer.eq.'Y') go to 175 

150 imode=1 
write(0,6) 
read(0,7) nstart 
if(nstart.lt .0) go to 900 
nfinish=nstart 
write(0,8) 
read(0,7) mstart 
if(mstart.lt.0) go to 900  
if(mstart.gt .nstart) go to 920 
mfinish=mstart 
if(itype.eq.1) go to 200 
if((nstart-mstart-2*((nstart-mstart)/2)).ne.0) go to 930 
go to 200 

1 75 write(0,9) 
read(0,7) nstart 
if(nstart.lt .0) go to 900 
iparity=nstart-2*(nstart/2) 
write(0,10) 
read(0,7) nfinish 
if((nfinish-nstart).1t.0) go to 910 
if((nfinish-nstart).gt.0) go to 180 
imode=2 
write(0,11) 
read(0,7) mstart 
if(mstart.lt .0) go to 900 
if(mstart.gt .nstart) go to 920 
if(itype.eq.1) go to 177 
if((nstart-mstart-2*((nstart-mstart)/2)).ne.0) go to 930 

177 write(0,12) 
read(0,7) mfinish 
if((mfinish-mstart).1t.0) g6 to 910 
if(mfinish.gt .nstart) go to 920 
if(itype.eq.1) go to 200 
if((nstart-mfinish-2*((nstart-mfinish)/2)).ne.0) go to 930 
go to 200 

180 imode=3 
mall=1 
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mstart=0 
if(itype.eq.2) mstart=iparity 
mfinish=nstart 
go to 200 

• We now have specific starting values for n and m. Begin by 
• calculating the coefficients for the radial portion of V (x,y) 

rim 
• after initializing the nindex and mindex variables for the 
• n-loop (label 210 - applicable only when imode = 3) and the 
• m-loop (label 220 - applicable when imode = 2 or 3). 

200 write(0,41) 
nindex=nstart-1 
mindex=mstart-itype 

210 nindex=nindex+1 
iparity=nindex-2*(nindex/2) 
if(nindex.gt .nfinish) go to 1000 

220 mindex=mindex+itype 
if(mindex.gt .mfinish) go to 210 
if(itype.eq.1) iparity=mindex-2*(mindex/2) 
nterms=nindex-mindex+1 
if(itype.eq.2) nterms=1+((nindex-mindex)/2) 
nl=nindex-mindex+1 
n2=nindex+mindex+2 
if(itype.eq.2) n1=1+((nindex-mindex)/2) 
if(itype.eq.2) n2=1+((nindex+mindex)/2) 
do 240 k=1,nterms 
top=fact((3-itype)*nindex+3-itype-k) 
bot=fact(k-1)*fact(n2-k)*fact(nl-k) 
c(k)=dfloat((-1)**(k+1))*top/bot 

240 continue 
e e 

• We are now ready to proceed with the actual calculations of the 
• real and imaginary parts of V over the grid 2N x 2N. 
• We set up two loops with the y variable on the outside and the X 
• variable on the inside. The formulas relating the counting 
• integers i,j with x,y are: 

• x = i*del - 0.5*del ; i = -N+1 to N 
• y = j*del - 0.5*del ; j = -N+1 to N 

• Because of the symmetry of the Zernike functions, each calculat l  
• results in the value for 8 points in the x,y plane (4 points if i ,e  
• y = +/- x). Accordingly, we calculate the function for each ye' 
• of j from 1 to N and with i running from i=j to i=N and then 
• assign the other 7 (or 3) values from the symmetry relations. - 
c 	Each point is first checked to see whether or not it lies witbin  
• the unit circle - if not, the values for vr and vi are set 
• to zero. Since the imaginary part of the Zernike polynomial 
• vanishes when m = 0, no file is written in this case. 

do 700 j=1,N 
y=del*(dfloat(j)-half) 
do 600 i=j,N 
x=del*(dfloat(i)-half) 
r=dsqrt(x**2+y**2) 
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if(r.gt .one) go to 410 
theta=datan2(y,x) 
rho=c(1) 
if(nterms.le.1) go to 380 
if(itype.eq.2) go to 340 
do 330 k=2,nterms 
rho=rho*r+c(k) 

330 continue 
go to 380 

340 do 350 k=2,nterms 
rho=rho*(r**2)+c(k) 

350 continue 
380 power=r**mindex 

if(mindex.eq.0) power=one 
rho=rho*power 
if(inangle.eq.0) go to 405 
a=rho*dcos(dfloat(mindex)*theta) 
b=rho*dsin(dfloat(mindex)*theta) 
go to 420 

405 a=rho 
b=0. 
sign=1. 
go to 432 

410 a=zero 
b=zero 

420 if(iparity.eq.1) go to 450 
430 k=mindex/2 

sign=float((-1)**k) 
432 vr(i,j)=a 

vr(-j+1,i)=sign*a 
vr(-i+1,-j+1)=a 
vr(j,-i+1)=sign*a 
vi(i,j)=b 
vi(- j+1,i)=sign*b 
vi(-i+1,-j+1)=b 
vi(j,-i+1)=sign*b 
if(i.eq.j) go to 500 
vr(j,i)=sign*a 
vr(-i+1,j)=a 
vr(-j+1,-i+1)=sign*a 
vr(i,-j+1)=a 
vi(j,i)=-1.*sign*b 
vi( -1 +1,j)= - 1-*b 
vi(-j+1,-i+1)=-1.*sign*b 
vi(i,-j+1)=-1.*b 
go to 500 

450 k=(mindex+1)/2 
sign=float((- 1)**k) 
vr(i,j)=a 
vr(-j+1,i)=sign*b 
vr(-i+1,-j+1)=-1.*a 
vr(j,-i+1)=-1.*sign*b 
vi(i,j)=b 
vi(-j+1,i)=-1.*sign*a 
vi(-i+1,-j+1)=-1.*b 
vi(j,-i+1)=sign*a 
if(i.eq.j) go to 500 
vr(j,i)=-1.*sign*b 
vr(- i+1,j)=-1.*a 
vr(-j+1,-i+1)=sign*b 
vr(i,-j+1)=a 
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vi(j,i)=-1.*sign*a 
vi(- i+1, j)=b 
vi(-j+1,-i+1)=sign*a 
vi(i,-j+1)=-1.*b 

500 continue 
600 continue 
700 continue 

Now save the results as data files, assigning the filenames as 
described in the comments at the start of this listing. 

ntens=nindex/10 
nunit=nindex-10*ntens 
mtens=mindex/10 
munit=mindex- l0 *mtens 
fullname(4:4)=char(ntens+48) 
fullname(5:5)=char(nunit+48) 
fullname(6:6)=char(mtens+48) 
fullname(7:7)=char(munit+48) 
fullname(3:3)='R' 
if(inangle.eq.0) fullname(3:3)='C' 
fullname(9:11)='bin' 
write(0,40) fullname 

720 open(2,file=fullname,status='unknown',form='binary') 
do 722 j=N,-N+1,-1 
write(2) (vr(i,j),i=-N+1,N) 

722 continue 
ifilebin=ifilebin+1 
endfile 2 
sumr=0.0 
do 740 j=-N+1,N 
do 730 i=-N+1,N 
sumr=sumr+vr(i,j) 

730 continue 
740 continue 

names(ifilebin)=fullname 
areas(ifilebin)=sumr*delsq 
if(inangle.eq.0) go to 742 
theory(ifilebin)=0.0 
if(nindex.eq.0) theory(ifilebin)=pi 
diff(ifilebin)=theory(ifilebin)-areas(ifilebin) 
go to 748 

742 if(nindex.gt .0) go to 744 
theory(ifilebin)=pi 
diff(ifilebin)=pi-areas(ifilebin) 
go to 748 

744 if(itype.eq.1) go to 746 
signt1=float((-1)**((3*nindex+mindex)/2)) 
top=2.*pi*signtl*float(mindex) 
bot=float(nindex*(nindex+2)) 
theory(ifilebin)=top/bot 
diff(ifilebin)=theory(ifilebin)-areas(ifilebin) 
go to 748 

746 signt2=float((-1)**(nindex+mindex)) 
top=2.*pi*signt2*float(mindex*(mindex+1)) 
bot=float(nindex*(nindex+1)*(nindex+2)) 
theory(ifilebin)=top/bot 
diff(ifilebin)=theory(ifilebin)-areas(ifilebin) 

748 fullname(9:11)='fsc' 
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write(0,40) fullname 
open(2,file=fullname,status='unknown',form='formatted') 
do 760 j=N,-N+1,-1 
do 750 i=-N+1,N 
rsq=delsq*((float(i)-0.5)**2+(float(j)-0.5)**2) 
if(rsq.gt.1.0) then 
write(2,50) 'missingval' 
else 
write(2,51) vr(i,j) 
end if 

750 continue 
760 continue 

ifilefsc=ifilefsc+1 
endfile 2 

if(mindex.eq.0.or.inangle.eq.0) go to 800 
fullname(3:3)='I' 
fullname(9:11)='bin' 
write(0,40) fullname 
open(2,file=fullname,status='unknown',form='binary') 
do 762 j=N,-N+1,-1 
write(2) (vi(i,j),i=-N+1,N) 

762 continue 
ifilebin=ifilebin+1 
endfile 2 
sumi=0.0 
do 780 j=-N+1,N 
do 770 i=-N+1,N 
sumi=sumi+vi(i,j) 

770 continue 
780 continue 

names(ifilebin)=fullname 
areas(ifilebin)=sumi*delsq 
theory(ifilebin)=0.0 
diff(ifilebin)=-areas(ifilebin) 

7 88 fullname(9:11)='fsc' 
write(0,40) fullname 
open(2,file=fullname,status='unknown',form='formatted') 
do 792 j=N,-N+1,-1 
do 790 i=-N+1,N 
rsq=delsq*((float(i)-0.5)**2+(float(j)-0.5)**2) 
if(rsq.gt.1.0) then 
write(2,50) 'missingval' 
else 
write(2,51) vi(i,j) 
end if 

790 continue 
792 continue 

ifilefsc=ifilefsc+1 
endfile 2 

For imode = 2 or 3, have to reassign the values of mstart and 
mfinish and then return to either the m-loop (label 220) or the 
n-loop (label 210). If imode = 1, quit. 

80 0 if(imode.eq.1) go to 1000 
if(imode.eq.2) go to 220 
if(mindex.lt.mfinish) go to 220 
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ip=(nindex+1)-2*((nindex+1)/2) 
mstart=0 
if(itype.eq.2) mstart=ip 
mfinish=nindex+1 
mindex=mstart-itype 
go to 210 

• Error messages. The program restarts (from line 100) after each 
• message is displayed. 

900 write(0,90) 
write(0,99) 
read(0,5) answer 
go to 100 

910 write(0,91) 
write(0,99) 
read(0,5) answer 
go to 100 

920 write(0,92) 
write(0,99) 
read(0,5) answer 
go to 100 

930 write(0,93) 
write(0,99) 
read(0,5) answer 
go to 100 

940 write(0,94) 
write(0,99) 
read(0,5) answer 
go to 100 

1000 if(itype.eq.2.and.inangle.eq.1) measures(10:12)='SZF' 
if(itype.eq.l.and.inangle.eq.1) measures(10:12)='PZF' 
if(itype.eq.2.and.inangle.eq.0) measures(10:12)='SZC' 
if(itype.eq.l.and.inangle.eq.0) measures(10:12)='PZC' 
write(0,41) 
write(0,40) measures 
open(2,file=measures,status='unknown',form='formatted') 
do 1200 i=1,ifilebin 
write(2,35) names(i),theory(i),areas(i),diff(i) 
write(2,36) cr,lf 

1200 continue 
endfile 2 
write(0,42) 
write(0,43) (ifilebin+ifilefsc+1) 
end 

• This function calculates the factorial of integer 'ii' using 
• double precision floating point values. As such, the limit for 
• for ii is ii.LE.170. 
• The return of a value fact(ii).1t.0 should be interpreted by 
• the calling program as an error. 

real*8 function fact(ii) 
integer*4 ij 
if(ii.eq.0.or.ii.eq.1) fact=1. 
if(ii.lt.0) fact=-1. 
if(ii.le.1) go to 100 
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if(ii.gt .12) go to 80 
ij=1 
do 50 jj=2,ii 
ij=ij*int4(jj) 

50 continue 
fact=dfloat(ij) 
go to 100 

80 fact=479001600.D0 
do 90 jj=13,ii 
fact=fact*dfloat(jj) 

90 continue 
100 continue 

end 
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• Program : WALSH.FOR (calculate the radial WALSH functions 
with r**2 dependence on the unit circle) 

• Version : 2.0 June 12, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail salaedigame.dgcd.doc.ca  

• Summary: 

WALSH calculates the radial Walsh function WAL(nwal,r**2) over 
the rectangular grid 2Nx2N with WAL(nwal,r**2)=0 for r.gt.l. 
The functions are calculated via the Rademacher functions 
and the graycode representation of the integer nwal. 

Three files are written for each value of nwal: 
- a 'bin' file contains the function as an integer*1 binary 

file 
- an 'fsc' file contains the function stored as a FASCII file 

for direct import into MUM 
- a 'WP' file is an ASCII represention of the function which 
can easily be imported into WordPerfect and printed 

In addition, a file "measures" is written which contains 
the values of the integral of WAL(nwal,r**2) over the 
unit circle. 

c NOTE: The gridsize is NOT a variable for this program. However, 
some care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some  format 
statements would have to be altered to allow for a different 
gridsize. 

	 so° 

include 'fgraph.fi' 
include 'fgraph.fd' 

integer*1 itemp,b(8),g(8),walsh(-127:128,-127:128),rad,order( 256) 
 real*4 measure(256) 

character*54 walshfile,axumfile,wpfile,measures 
character*1 answer,cr,lf,space,black,plus,minus,zero 
data cr/13/,1f/10/,space/32/,black/88/,plus/43/,minus/45/,zer 0 / 48/... 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

soee 

1 format(lh+,'Calculation of Walsh Funtion - 
+'Sequency Ordering') 

2 format(lhO,'Enter starting integer value : '\) 
7 format(1h0,'Enter ending integer value : '\) 
3 format(lhO,'Enter filename 
+'(c/w path & extension) for writing Walsh file : ') 
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4 format(lh ,'Enter filename 
+'(c/w path & extension) for writing Axum file : ') 

5 format(lh ,'Enter filename ', 
+'(c/w path & extension) for writing WP 	file : ') 

6 format(lh ,'Area calculation: nwal = ',I3,' 	Area = ',F9.6) 
20 format(1h0,24x,'Program completed successfully.') 
10 format(lhO,'nwal = 	 graycode = 

maxbit = ',i3) 
11  format (1h ,'nwal = ',8i1) 
9 format(lh ,'gray = ',8i1) 

12 format(lhO,'Repeat ? '\) 
13 format(al) 
14 format(a54) 
15 format(i3) 
16 format(F12.5,','\) 
17 format(2a1\) 
18 format(i4) 
19 format(256(i2)\) 
21 format(256a1\) 
22 format(i4,F10.6\) 
23 format(i2\) 

Get the starting and ending values for nwal. 

100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
write(0,2) 
read(0,18) nwalbeg 
write(0,7) 
read(0,18) nwalend 	 • 
walshfile='wal 	.bin' 
axumfile='wal 	.fsc' 
wpfile='wal 	.wp' 
measures='measures' 
N=128 
del=1.0/float(N) 
delsq=del*del 

Begin the calculations 

do 2000 nwal=nwalbeg,nwalend 
nhuns=nwa1/100 
ntens=(nwal-100*nhuns)/10 
nunits=nwal- l00*nhuns-10*ntens 
walshfile(4:4)=char(nhuns+48) 
walshfile(5:5)=char(ntens+48) 
walshfile(6:6)=char(nunits+48) 
axumfile(4:4)=char(nhuns+48) 
axumfile(5:5)=char(ntens+48) 
axumfile(6:6)=char(nunits+48) 
wpfile(4:4)=char(nhuns+48i 
wpfile(5:5)=char(ntens+48) 
wpfile(6:6)=char(nunits+48) 

Calculate the graycode value for nwal. 
Use the g(i) plus the rad function to calculate Walsh 
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for r.le.l. 

b(1)=iand(nwa1,2#00000001) 
b(2)=ishl((iand(nwa1,2#00000010)),-1) 
b(3)=ishl((iand(nwa1,2#00000100)),-2) 
b(4)=ishl((iand(nwa1,2#00001000)),-3) 
b(5)=ishl((iand(nwa1,2#00010000)),-4) 
b(6)=ishl((iand(nwa1,2#00100000)),-5) 
b(7)=ishl((iand(nwa1,2#01000000)),-6) 
b(8)=ishl((iand(nwa1,2#10000000)),-7) 
g(1)=iabs(b(1)-b(2)) 
g(2)=iabs(b(2)-b(3)) 
g(3)=iabs(b(3)-b(4)) 
g(4)=iabs(b(4)-b(5)) 
g(5)=iabs(b(5)-b(6)) 
g(6)=iabs(b(6)-b(7)) 
g(7)=iabs(b(7)-b(8)) 
g(8)=b(8) 
M=0 
do 200 i=8,1,-1 
M=2*M+g(i) 

200 continue 
maxbit=1 
do 220 i=1,8 
if(g(i).eq.1) maxbit=i 

220 continue 
write(0,10) nwal,M,maxbit 
write(0,11) (b(i),i=8,1,-1) 
write(0,9) (g(i),i=8,1,-1) 
do 700 j=1,N 
do 600 i=j,N 
rsq=delsq*float(i*(i-1)+j*(j-1)+0.5) 
ival=1 
do 300 k=1,maxbit 
if(g(k).eq.1) ival=ival*rad(k,rsq) 

300 continue 
if(rsq.gt .1.) ival=0 

Exploit the radial symmetry of the function to assign one 
calculated value to 7 other values (4 if x=y) on the grid. 
In this way, the calculations need only be done on 
(2Nx2N)/8 points. 

walsh(i,j)=ival 
walsh(i,-j+1)=ival 
walsh(-i+1,j)=ival 
walsh(-i+1,-j+1)=ival 
if(i.eq.j) go to 600 
walsh(j,i)=ival 
walsh(j,-i+1)=ival 
walsh(-j+1,i)=ival 
walsh(-j+1,-i+1)=ival 

600 continue 
700 continue 

Now calculate the 'measure', i.e., the integral of the  
over the unit circle. This is used to check on the algoritrw' 
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validity. Note, however, that the measure will still run to 
zero even when the function is under sampled, i.e., nwal exceeds 
the limit possible for the given gridsize. NWAL max is given 
by ( (N12) - 1 ) - a "soft" limit. 

sum=0. 
do 900 j=-N+1,N 
do 800 i=-N+1,N 
sum=sum+float(walsh(i,j)) 

800 continue 
900 continue 

sum=delsq*sum 
write(0,6) nwal,sum 
order(nwal)=nwal 
measure(nwal)=sum 

1000 open(2,file=walshfile,status='unknown',form='binary') 
do 1010 j=N,-N+1,-1 
write(2) (walsh(i,j),i=-N41,N) 

1010 continue 
endfile 2 

Write an AXUM data file as a FASCII file. 

Q- 
1100 open(2,file=axumfile,status='unknown',form='formatted') 

do 1120 j=N,-N+1,-1 
do 1110 i=-N+1,N 
rsq=delsq*((float(i)-0.5)**2+(float(j)-0.5)**2) 
if(rsq.gt.1.0) then 
write(2,17) 'ms' 
else 
write(2,23) walsh(i,j) 
end if 

1110 continue 
1120 continue 

Note: If "missing values" are not required, then replace 
the 2 loops above with: 
do 1120 j=N,-N+1,-1 
write(2,19) (walsh(i,j),i=-N+1,N) 

1120 continue 

endfile 2 
close (2 

120 0 open(2,file=wpfile,status='unknown',form='formatted') 
do 1400 j=N,-N+1,-1 
do 1300 i=-N+1,N 
itemp=walsh(i,j) 
walsh(i,j)=space 	 - 
if(itemp.eq.1) walsh(i,j)=plus 
if(itemp.eq.-1) walsh(i,j)=minus 

0 0 continue 
.*°0 continue 

do 1500 j=N,-N+1,-1 
write(2,21) (walsh(i,j),i=-N+1,N) 
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write(2,17) cr,lf 
1500 continue 

close (2)  

2000 continue 
open(2,file=measures,status='unknown',form='formatted') 
do 2200 i=nwalbeg,nwalend 
write(2,22) order(i),measure(i) 
write(2,17) cr,lf 

2200 continue 

write(0,12) 
read(0,13) answer 
if(answer.eq.'y'.or.answer.eq.'Y') go to 100 
end 

The Rademacher function. 
rad(k,x) = sign[sin{(2**k)*pi*x)] 

integer*1 function rad(k,x) 
temp=x 
x=x-aint(x) 
if(x.lt.0.) x=1.+x 
ir=NINT(AINT((x*float(2**k)))) 
ir=ir-2*(ir/2) 
rad=1 
if(ir.ne.0) rad=-1 
x=temp 
return 
end 

,ree 
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• Program : KAAR.FOR (calculate the radial HAAR functions 
with r**2 dependence on the unit circle) 

• Version : 2.0 June 12, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail salemedigame.dgcd.doc.ca  

• Summary: 

HAAR calculates the radial Haar function HAR(nhaar,r**2) over 
the rectangular grid 2Nx2N with HAR(nhaar,r**2)=0 for r.gt.l. 
The functions are calculated directly by the definition 
of the Haar functions as local functions on specific 
subintervals of the range [0,1]. 

Three files are written for each value of nhaar: 
- a 'bin' file contains the function as an integer*1 binary 

file 
- an 'fsc' file contains the function stored as a FASCII file 

for direct import into MUM 
- a 'WP' file is an ASCII represention of the function which 
can easily be imported into WordPerfect and printed 

In addition, a file "measures" is written which contains 
the values of the integral of HAR(nhaar,r**2) over the 
unit circle. 

NOTE: The gridsize is NOT a variable for this program. However, 
some care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 
statements would have to be altered to allow for a different 
gridsize. 

==== 	 = nn ==== nn ========== 	= 
include 'fgraph.fi' 
include 'fgraph.fd' 

integer*1 itemp,haar(-127:128,-127:128),order(256) 
real*4 measure(256) 
character*54 haarfile,axumfile,wpfile,measures 
character*1 answer,cr,lf,space,black,plus,minus,zero 
data cr/13/,1f/10/,space/32/,black/88/,plus/43/,minus/45/,zero/48/ 

All format statements and only format statements have labels 
in the range 1 - 99. 

1 format(lh+,'Calculation of Haar Function 
+'Sequency Ordering') 

2 format(lhO,'Enter starting integer value 
7 format(lhO,'Enter ending integer value 
3 format(lhO,'Enter filename 
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+'(c/w path & extension) for writing Haar file : ') 
4 format(lh ,'Enter filename ', 
+'(c/w path & extension) for writing Axum file : ') 
5 format(lh ,'Enter filename  
+'(c/w path & extension) for writing WP 	file : ') 
6 format(lh ,'Area calculation: nhaar =',I3, 	Area = ,F9.6) 

20 format(1h0,24x,'Program completed successfully.') 
10 format(lhO,'nhaar = 	 = 2**(',i2,') + ',i3) 
11 format(lh ,'Nonzero region : ',f9.6,' to ', 

+f9.6,' to ',f9.6) 
12 format(lhO,'Repeat ? '\) 
13 format(al) 
14 format(a54) 
15 format(13) 
16 format(F12.5,','\) 
17 format( 2a1\) 
18 format(i4) 
19 format(256(i2)\) 
21 format(256a1\) 
22 format(i4,F10.6\) 
23 format(i2\) 

Begin by prompting user for the start and end values of nhaar. 

100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
write(0,2) 
read(0,18) nhaarbeg 
write(0,7) 
read(0,18) nhaarend 
haarfile='har 	.bin' 
axumfile='har 	.fsc' 
wpfile='har 	.wp' 
measures='measures' 
N=128 
del=1.0/float(N) 
delsq=del*del 

Begin the calculations of the Haar functions. 

do 2000 nhaar=nhaarbeg,nhaarend 
ip=0 
m=nhaar 

200 m=m/2 
if(m.eq.0) go to 250 
ip=ip+1 
go to 200 

250 m=nhaar-2**ip 
if(nhaar.eq.0) m=0 

Now have nhaar defined as = 2**ip + m. 
Calculate the three "boundries" al, a2, a3 as below. 
Haar is +1 between al,a2 and -1 between a2,a3 (zero elsewhere)- 

C  

al=float(m)/float(2**ip) 
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a2=(float(m)+0.5)/float(2**ip) 
a3=(float(m)+1.0)/float(2**ip) 
if(nhaar.eq.0) al=0. 
if(nhaar.eq.0) a2=1. 
if(nhaar.eq.0) a3=1. 
write(0,10) nhaar,ip,m 
write(0,11) al,a2,a3 
nhuns=nhaar/100 
ntens=(nhaar-100*nhuns)/10 
nunits=nhaar-100*nhuns-10*ntens 
haarfile(4:4)=char(nhuns+48) 
haarfile(5:5)=char(ntens+48) 
haarfile(6:6)=char(nunits+48) 
axumfile(4:4)=char(nhuns+48) 
axumfile(5:5)=char(ntens+48) 
axumfile(6:6)=char(nunits+48) 
wpfile(4:4)=char(nhuns+48) 
wpfile(5:5)=char(ntens+48) 
wpfile(6:6)=char(nunits+48) 
do 700 j=1,N 
do 600 i=j,N 
rsq=delsq*float(i*(i-1)+j*(j-1)+0.5) 
ival=0 
if(rsq.gt .1) go to 300 
if(rsq.lt.al ) go to 300 
ival=1 
if(rsq.lt .a2) go to 300 
iva1=-1 
if(rsq.lt .a3) go to 300 
ival=0 

Exploit the symmetry of these functions to assign 7 values 
to each one calculated (4 if x=y). Thus it is necessary to 
calculate only (2Nx2N)/8 points to complete the 2Nx2N grid. 

300 haar(i,j)=ival 
haar(i,-j+1)=ival 
haar(-i+1,j)=ival 
haar(-i+1,-j+1)=ival 
if(i.eq.j) go to 600 
haar(j,i)=ival 
haar(j,-i+1)=ival 
haar(-j+1,i)=ival 
haar(-j+1,-i+1)=ival 

600 continue 
700 continue 

Calculate the "measure" of the Haar function, i.e., its 
integral over the unit circle. Note that this value will 
still tend to zero even in the undersampled case. A limit 
for nhaar max is (N/2)*(2**0.5) or about 80 for N=128 (this 
is a "soft" limit). 

c--------------------------------------- 

do 900 j=-N+1,N 
do 800 i=-N+1,N 
sum=sum+float(haar(i,j)) 
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800 continue 
900 continue 

sum=delsq*sum 
write(0,6) nhaar,sum 
order(nhaar)=nhaar 
measure(nhaar)=sum 

Now write the binary, FASCII, and WordPerfect files. 

1000 open(2,file=haarfile,status='unknown',form='binary') 
do 1010 j=N,-N+1,-1 
write(2) (haar(i,j),i=-N+1,N) 

1010 continue 
endfile 2 

1100 open(2,file=axumfile,status='unknown',form='formatted') 
do 1120 j=N,-N+1,-1 
do 1110 i=-N+1,N 
rsq=delsq*((float(i)-0.5)**2+(float(j)-0.5)**2) 
if(rsq.gt.1.0) then 
write(2,17) 'ms' 
else 
write(2,23) haar(i,j) 
end if 

1110 continue 
1120 continue 

Note: If "missing values" are not required, then replace 
the 2 loops above with: 
do 1120 j=N,-N+1,-1 
write(2,19) (haar(i,j),i=-N+1,N) 

c 1120 continue 

endfile 2 
close (2) 

1200 open(2,file=wpfile,status='unknown',form='formatted') 
do 1400 j=N,-N+1,-1 
do 1300 i=-N+1,N 
itemp=haar(i,j) 
haar(i,j)=space 
if(itemp.eq.1) haar(i,j)=plus 
if(itemp.eq.-1) haar(i,j)=minus 

1300 continue 
1400 continue 

do 1500 j=N,-N+1,-1 
write(2,21) (haar(i,j),i=-N+1,N) 
write(2,17) cr,lf 

1500 continue 
close (2) 

Write the "measures" file and then offer user option to rerun. 
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C  

C  

C  

C  

C  

C  

2000 continue 
open(2,file=measures,status='unknown',form='formatted') 
do 2200 i=nhaarbeg,nhaarend 
write(2,22) order(i),measure(i) 
write(2,17) cr,lf 

2200 continue 

write(0,12) 
read(0,13) answer 
if(answer.eq.'y'.or.answer.eq.'Y') go to 100 
end 

The Rademacher function. 
rad(k,x) = sign(sin{(2**k)*pi*xj] 

integer*1 function rad(k,x) 
temp=x 
x=x-aint(x) 
if(x.lt.0.)  x=1.--x 
ir=NINT(AINT((x*float(2**k)))) 
ir=ir-2*(ir/2) 
rad=1 
if(ir.ne.0) rad=-1 
x=temp 
return 
end 

C  
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• Program : ZERNRAD.FOR 
• Version : 5.0 November 17, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

ZERNRAD calculates either the Standard (itype=2) or Pseudo 
(itype=1) Zernike polynomial V (r) along the real line 

mm 
segment r in [0,1] for n positive and n.LE.40 (with m.LE.n, 
m.GE.0, and, for itype=2, (n-m) even). 

o 

• PROGRAMMING NOTES: 

• 1. This program offers three 'modes' of calculating the Zernike 
polynomials: 

imode = 1 corresponds to the calculation for one specific 
n,m pair. 

imode = 2 corresponds to the calculation for a single value 
of n over a range of allowable values for m. 

imode = 3 allows for the calculation over a range of the 
principal index n. In this case, the calculationS 
are carried out for all possible values of the 
secondary index m allowed for each value of n. 

• 2. Double precision variables are used to calculate the 
coefficients c(k) of the "radial" function part of V(x,y) 
and subsequently for the calculation of the function itself. 
This is necessary since the c(k) requires the calculation of 
ratios of factorials (the function 'fact' listed at the end 
of this program) and the numerators and denominators get very 
large for even modest values of n. The range for double 
precision means that this calculation is limited to values of le 
n .LE. 40. To extend this program beyond this value, it woulueA   

necessary to calculate and store the c(k) values separately 
using an infinite precision tool such as Mathematica and to 
evaluate the polynomial terms with explicit retention of as 
many significant figures such as occur in the largest c(k) 
coefficient. 

• 3. The saved data files have names in the form TRADnnmm.ASC whet.:  

o T = S (Standard Zernike) or P (Pseudo Zernike) 
nn = value of principal index (0,1,2,3 ...... ) 
mm = value of secondary index (0,1,2,3,...) such that 

(MN-MM)  is even and .GE. 0 
(Note that, in the case where more than one function is 
calculated, imode=2 or 3, then nn and mm will be the value:3  

o corresponding to the last function calculated). 
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for a range', 

= \ (NO default) 

'Now writing datafile ',a12) 

'Program completed successfully.') 
'Total of ',i4,' functions were calculated.') 

is negative.') 

value is less than the initial value.') 

include 'fgraph.fi' 
include 'fgraph.fd' 

real*8 c(86),top,bot,fact,r,rho,del,power 
real*4 poly(1001,100),theory(100),areas(100),diff(100) 
character*1 answer,response,cr,lf 
character*12 fullname,measures,names(100) 
data cr/13/,1f/10/ 

All format statements and only format statements have labels 
in the range 1 - 99. 

1 format(lh+,19(1h*), 
+' Calculation of the Zernike Polynomials ',20(1h*)) 

2 format(lh  ,23x, 'Version  5.00 : November 17, 1995') 
3 format(lh  ,29x, Segment  Size : ',i5) 
4 format(1h0,6x,'Do you wish to calculate 
+ of n,m values (default=no)? '\) 

5 format(al) 
6 format(1h0,18x,'Principal 
7 format(i2) 
8 format(lh ,18x,'Secondary Index Value (NO default) 	= ,\) 
9 format(1h0,18x,'Initial Principal Index Value (NO default) = '\) 

10 format(lh ,18x,' Final Principal Index Value (NO default) = '\) 
11 format(1h0,18x,'Initial Secondary Index Value (NO default) = '\) 
12 format(lh ,18x,' Final Secondary Index Value (NO default) = '\) 
13 format(1h0,6x,'Do you wish to calculate for all possible', 

+' m values (default=yes)? '\) 
23 format(1h0,6x, 

+'Calculate Pseudo or Standard Zernike', 
+' polynomials (default=P) ? '\) 

27 format(lh+,3(1h*),' Calculation of the 
+' Polynomials - Radial Dependence Only 

28 format(lh+,2(1h*),' Calculation of the 
+' Polynomials - Radial Dependence Only 

30 format(65536(F10.5)\) 
31 format(256(F10.5)\) 
32 format(128(F10.5)\) 
33 format(85(F10.5)\) 
34 format(64(F10.5)\) 
35 format(a12,3(F18.6)\) 
36 format(2a1\) 
40 format(lh ,24x, 
41 format(lh ) 
42 format(1h0,24x, 
43 format(lh ,20x, 
50 format(a10\) 
51 format(2001(F10.5)\) 
52 format(F10.5,','\) 
53 format(2a1\) 
90 format(lhO, 

+'The index value 
91 format(lhO, 

+'The final index 
92 format(lhO, 

+.The secondary index value exceeds the principal index 
93 format(lhO, 

Index Value 

Pseudo Zernike,' 
4(1h*)) 

Standard Zernike,' 
',2(1h*)) 

value.') 
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+'The two indices must be the same parity.') 
94 format(lhO, 

+'Secondary index position is outside permissible range.') 
99 format(1h0,25x,'Hit <RET> to restart program.'\) 

• Begin by prompting user for the index values after first 
• offering the option to calculate over a range of index values or 
• for a specific n,m combination. 

• The values and the combinations they represent are: 

imode=1 	Calculate for one specific n,m pair 
imode=2 	Calculate for all allowable values of m for one 

specific value of n 
imode=3 	Calculate over a range of n values supplied 

by user via a prompt (and for all allowable values 
of m) 

itype=1 	The Pseudo Zernike polynomials 
itype=2 	The Standard Zernike polynomials 

c ======================================================================= 
N=1001 
itype=1 
fullname(1:12)='PRADnnmm.ASC' 
measures='measures. 	' 
del=1.DO/dfloat(N-1) 
pi=3.14159265 

100 call clearscreen ($GCLEARSCREEN) 
mall=0 
write(0,1) 
write(0,2) 
write(0,3) N 
write(0,23) 
read(0,5) response 
if(response.eq.'s'.or.response.eq.'S') itype=2 
if(itype.eq.2) fullname(1:1)='S' 
inangle=1 
write(0,4) 
read(0,5) answer 
call clearscreen ($GCLEARSCREEN) 
if(itype.eq.1) write(0,27) 
if(itype.eq.2) write(0,28) 
write(0,2) 
write(0,3) N 
if(answer.eq.'y'.or.answer.eq.'Y') go to 175 

150 imode=1 
write(0,6) 
read(0,7) nstart 
if(nstart.lt .0) go to 900 
nfinish=nstart 
write(0,8) 
read(0,7) mstart 
if(mstart.lt .0) go to 900 
if(mstart.gt .nstart) go to 920 
mfinish=mstart 
if(itype.eq.1) go to 200 
if((nstart-mstart-2*((nstart-mstart)/2)).ne.0) go to 930 
go to 200 

175 write(0,9) 
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read(0,7) nstart 
if(nstart.lt .0) go to 900 
iparity=nstart-2*(nstart/2) 
write(0,10) 
read(0,7) nfinish 
if((nfinish-nstart).1t.0) go to 910 
if((nfinish-nstart).gt.0) go to 180 
imode=2 
write(0,11) 
read(0,7) mstart 
if(mstart.lt .0) go to 900 
if(mstart.gt .nstart) go to 920 
if(itype.eq.1) go to 177 
if((nstart-mstart-2*((nstart-mstart)/2)).ne.0) go to 930 

177 write(0,12) 
read(0,7) mfinish 
if((mfinish-mstart).1t.0) go to 910 
if(mfinish.gt .nstart) go to 920 
if(itype.eq.1) go to 200 
if((nstart -mfinish-2*((nstart-mfinish)/2)).ne.0) go to 930 
go to 200 

180 imode=3 
mall=1 
mstart=0 
if(itype.eq.2) mstart=iparity 
mfinish=nstart 
go to 200 

======================================================================= 

• We now have specific starting values for n and m. Begin by 
• calculating the coefficients for the radial polynomial V (r) 

nm 
• after initializing the nindex and mindex variables for the 
• n-loop (label 210 - applicable only when imode = 3) and the 
• m-loop (label 220 - applicable when  mode = 2 or 3). 

c============ 	======================================================= 
200 kk=0 

write(0,41) 
nindex=nstart-1 
mindex=mstart-itype 

210 nindex=nindex+1 
iparity=nindex-2*(nindex/2) 
if(nindex.gt .nfinish) go to 1000 

220 mindex=mindex+itype 
if(mindex.gt .mfinish) go to 210 
kk=kk+1 
if(itype.eq.1) iparity=mindex-2*(mindex/2) 
nterms=nindex-mindex+1 
if(itype.eq.2) nterms=1+((nindex-mindex)/2) 
nl=nindex-mindex+1 
n2=nindex+mindex+2 
if(itype.eq.2) n1=1+((nindex-mindex)/2) 
if(itype.eq.2) n2=1+((nindex+mindex)/2) 
do 240 k=1,nterms 
top=fact((3-itype)*nindex+3-itype-k) 
bot=fact(k-1)*fact(n2-k)*fact(nl-k) 
c(k)=dfloat((-1)**(k+1))*top/bot 

240 continue 
c----------------------------------------------------------------------- 
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• We are now ready to proceed with the actual calculations of 
• V(r) over the line segment. 

• r = (i-1)/del ; i = 1 to N 

do 600 i=1,N 
r=float(i-1)*del 
rho=c(1) 
if(nterms.le.1) go to 380 
if(itype.eq.2) go to 340 
do 330 k=2,nterms 
rho=rho*r+c(k) 

330 continue 
go to 380 

340 do 350 k=2,nterms 
rho=rho*(r**2)+c(k) 

350 continue 
380 power=r**mindex 

if(mindex.eq.0) power=1. 
rho=rho*power 
poly(i,kk)=rho 

600 continue 

ntens=nindex/10 
nunit=nindex-10*ntens 
mtens=mindex/10 
munit=mindex- 10 *mtens 
fullname(5:5)=char(ntens+48) 
fullname(6:6)=char(nunit+48) 
fullname(7:7)=char(mtens+48) 
fullname(8:8)=char(munit+48) 

725 sumr=0.0 
do 730 i=1,N 
sumr=sumr+poly(i,kk)*float(i-1)*del 

730 continue 
names(kk)=fullname 
areas(kk)=sumr*del 

742 if(nindex.gt .0) go to 744 
theory(kk)=1. 
diff(kk)=1.-areas(kk) 
go to 748 

744 if(itype.eq.1) go to 746 
signt2=float((-1)**((nindex-mindex)/2)) 
top=signt2*float(mindex) 
bot=float(nindex*(nindex+2)) 
theory(kk)=top/bot 
diff(kk)=theory(kk)-areas(kk) 
go to 748 

746 signtl=float((-1)**(nindex-mindex)) 
top=signtl*float(mindex*(mindex+1)) 
bot=float(nindex*(nindex+1)*(nindex+2)) 
theory(kk)=top/bot 
diff(kk)=theory(kk)-areas(kk) 

748 continue 

c ======================================================================= 

• For imode = 2 or 3, have to reassign the values of mstart and 
• mfinish and then return to either the m-loop (label 220) or the 
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n-loop (label 210). If imode = 1, quit. 

800 if(imode.eq.1) go to 1000 
if(imode.eq.2) go to 220 
if(mindex.lt .mfinish) go to 220 
iP=(nindex+1) -2 *((nindex+1)/2) 
mstart=0 
if(itype.eq.2) mstart=ip 
mfinish=nindex+1 
mindex=mstart-itype 
go to 210 

• Error messages. The program restarts (from line 100) after each 
• message is displayed. 

----------------------- 
900 write(0,90) 

write(0,99) 
read(0,5) answer 
go to 100 

910 write(0,91) 
write(0,99) 
read(0,5) answer 
go to 100 

920 write(0,92) 
write(0,99) 
read(0,5) answer 
go to 100 

930 write(0,93) 
write(0,99) 
read(0,5) answer 
go to 100 

940 write(0,94) 
write(0,99) 
read(0,5) answer 
go to 100 

• Now save the results as data files, assigning the filenames as 
• described in the comments at the start of this listing. 

c---------------------------------------------------------------------- 
1000 write(0,40) fullname 

open( 2, file=fullname,status='unknown',form='formatted') 
do 1040 i=1,N 
do 1020 j=1,kk 
write(2,52) PolY(i,j) 

1020 continue 
write(2,53) cr,lf 

1040 continue 
endfile 2 
if(itype.eq.2) measures(10:12)='SZC' 
if(itype.eq.1) measures(10:12)='PZC' 
write(0,41) 
write(0,40) measures 
open( 2, file=measures , status='unknown',form='formatted') 
do 1200 i=1,kk 
write(2,35) names(i),theory(i),areas(i),diff(i) 
write(2,36) cr,lf 
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1200 continue 
endfile 2 
write(0,42) 
write(0,43) kk 
end 

• This function calculates the factorial of integer 'ii using 
• double precision floating point values. As such, the limit for 
• for ii is ii.LE.170. 
• The return of a value fact(ii).1t.0 should be interpreted by 
o the calling program as an error. 

real*8 function fact(ii) 
integer*4 ij 
if(ii.eq.O.or.ii.eq.1) fact=1. 
if(ii.lt.0) fact=-1. 
if(ii.le.1) go to 100 
if(ii.gt .12) go to 80 
ij=1 
do 50 jj=2,ii 
ij=ij*int4(jj) 

50 continue 
fact=dfloat(ij) 
go to 100 

80 fact=479001600.D0 
do 90 jj=13,ii 
fact=fact*dfloat(jj) 

90 continue 
100 continue 

end 
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function WAL(nwal,r**2) or 
[0,1] in "high resolution" 
meant to serve as detailed 
functions calculated 

Rademacher functions 

1 format(lh+,'Calculation of Walsh Funtion - 
+'Sequency Ordering') 

2 format(lhO,'Enter starting integer value : '\) 
3 format(lh ,'Enter ending integer value 
10 format(lhO,'nwal = 	; graycode = 	 ; 
11 format(lh ,'nwal = ',8i1) 
12 format(lh ,'gray = ',8i1) 
16 format(i2,','\) 
17 format(2a1\) 
18 format(i4) 
20 format(1h0,24x,'Program completed successfully.') 

100 call clearscreen ($GCLEARSCREEN) 
101 imode=1 

Begin by prompting user for values of nwalbeg and nwalend. 

maxbit = ',i3) 

Program : 

Version : 
Author : 

WALSH1D.FOR (calculate the 1-D WALSH functions with 
either a r**2 dependence along the `normal' r dependence 
along the line segment [0,1] 
3.0 November 18, 1995 
Kenneth L. Sala 
Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

SumniarY: 

WALSH1D calculates the radial Walsh 
WAL(nwal,r) along the line interval 
(2001 points). These functions are 
references for the 2-D radial Walsh 
on the unit circle by WALSH. 
The functions are calculated via the 

C: 

and the graycode representation of the integer nwal. 

NOTE: 
This program is easily modified and recompiled to give 
either one which calculates the "normal" Walsh functions, 
i.e., WAL(nwal,r) on [0,1] or the `radial' Walsh functions 
WAL(nwal,r**2) by simply setting imode=0 for the `normal' 
case and imode=1 for the `radial' case - statement 101. 

=====i- n = 	 = nnnn ==r==== 
include 'fgraph.fi' 
include 'fgraph.fd' 

integer*1 b(8),g(8),walsh(2001,128),rad 
character*54 walshfile 
character*1 cr,lf 
data cr/13/,1f/10/ 

All format statements and only format statements have labels 
in the range 1 - 99. 
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write(0,1) 
write(0,2) 
read(0,18) nwalbeg 
write(0,3) 
read(0,18) nwalend 
ntotal=nwalend-nwalbeg+1 
if(imode.eq.0) walshfile='walln 	.asc' 
if(imode.eq.1) walshfile='walld 	.asc' 
N=2001 
del=1./float(N-1) 
delsq=del*del 

Begin calculations of Wal(nwal,r**2) 

do 2000 nwal=nwalbeg,nwalend 
index=nwal-nwalbeg+1 

Convert nwal to graycode g(i) and then use g(i) plus the 
Rademacher functions rad to calculate walsh(i,j) 

b(1)=iand(nwa1,2#00000001) 
b(2)=ishl((iand(nwa1,2#00000010)),-1) 
b(3)=ishl((iand(nwa1,2#00000100)),-2) 
b(4)=ishl((iand(nwa1,2#00001000)),-3) 
b(5)=ish1((iand(nwal,2#00010000)),-4) 
b(6)=ishl((iand(nwa1,2#00100000)),-5) 
b(7)=ishl((iand(nwa1,2#01000000)),-6) 
b(8)=ishl((iand(nwa1,2#10000000)),-7) 
g(1)=iabs(b(1)-b(2)) 
g(2)=iabs(b(2)-b(3)) 
g(3)=iabs(b(3)-b(4)) 
g(4)=iabs(b(4)-b(5)) 
g(5)=iabs(b(5)-b(6)) 
g(6)=iabs(b(6)-b(7)) 
g(7)=iabs(b(7)-b(8)) 
g(8)=b(8) 
M=0 
do 200 i=8,1,-1 
M=2*M+g(i) 

200 continue 
maxbit=1 
do 220 i=1,8 
if(g(i).eq.1) maxbit=i 

220 continue 
write(0,10) nwal,M,maxbit 
write(0,11) (b(i),i=8,1,-1) 
write(0,12) (g(i),i=8,1,-1) 
do 600 i=1,N 
r=de1*float(i-1) 
if(imode.eq.0) var=r 
if(imode.eq.1) var=r*r 
walsh(i,index)=1. 
do 300 j=1,maxbit 

1000 if(g(j).eq.1) walsh(i,index)=walsh(i,index)*rad(j,var) 
300 continue 
600 continue 

2000 continue 

Write the ASCII (comma delimited) formatted files. 

3000 nwal=nwal-1 
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nhuns=nwa1/100 
ntens=(nwal-100*nhuns)/10 
nunits=nwal-100*nhuns-10*ntens 
walshfile(6:6)=char(nhuns+48) 
walshfile(7:7)=char(ntens+48) 
walshfile(8:8)=char(nunits+48) 
open(2,fi1e=wa1shfi1e,status='unknown',form='formatted') 
do 3200 i=1,N 
do 3100 j=1,ntotal 
write(2,16) walsh(i,j) 

3100 continue 
write(2,17) cr,lf 

3200 continue 
endfile 2 
write(0,20) 
end 

The Rademacher function. 
rad(k,x) = sign[sin{(2**k)*pi*x}] 

integer*1 function rad(k,x) 
temp=x 
x=x-aint(x) 
if(x.lt.0.) x=1.+x 
ir=NINT(AINT((x*float(2**k)))) 
ir=ir-2*(ir/2) 
rad=1 
if(ir.ne.0) rad=-1 
x=temp 
return 
end 
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• Program : HAAR1D.FOR (calculate the 1-D HAAR functions with either 
a r**2 dependence or the 'normal' r dependence along the 
line segment [0,1] 

• Version : 3.0 NoveMber 18, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

HAAR1D calculates the 1-D Haar function HAR(nwal,r**2) or 
HAR(nwal,r) along the line interval [0,1] in "high 
resolution" (2001 points). 
These functions are meant to serve as detailed refernences 
for the 2-D radial Haar functions calculated on the unit 
circle by HAAR. 
The functions are calculated directly by the definition 
of the Haar functions as local functions on specific 
subintervals of the range [0,1]. 

NOTE: 
This program is easily modified and recompiled to give 
either one which calculates the "normal" Haar functions, 
i.e., HAR(nwal,r) on [0,1] or the 'radial' Haar functions 
HAR(nwal,r**2) by simply setting imode=0 for the 'normal' 

o case and imodeml for the 'radial' case - statement 101. 

include 'fgraph.fi' 
include 'fgraph.fd' 

integer*1 haar(2001,128) 
character*54 haarfile 
character*1 cr,lf 
data cr/13/,1f/10/ 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,'Calculation of Haar Funtion - 
+'Sequency Ordering') 

2 format(lhO,'Enter starting integer value  
3 format(lh ,'Enter ending integer value  
4 format(1h0,24x,'Program completed successfully.') 

10 format(lhO,'nhaar = 	 = 2**(',i2,') + ',i3) 
11  format (1h  ,'Nonzero region : ',f9.6, to 

+f9.6,' to ',f9.6) 
15 format(i4) 
16 format(i2,',.\) 
17 format(2a1\) 
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C 
c 	Begin by prompting user for start & end values of nhar 
C 
C 	  

100 call clearscreen ($GCLEARSCREEN) 
101 imode=1 

write(0,1) 
write(0,2) 
read(0,15) nharbeg 
write(0,3) 
read(0,15) nharend 
ntotal=nharend-nharbeg+1 
if(imode.eq.0) haarfile='harin 	.asc' 
if(imode.eq.1) haarfile='harld 	.asc' 
N=2001 
del=1./float(N-1) 
delsq=del*del 

C  
c 

do 2000 nhar=nharbeg,nharend 
index=nhar-nharbeg+1 
ip=0 
m=nhar 

200 m=m/2 
if(m.eq.0) go to 250 
ip=ip+1 
go to 200 

250 m=nhar-2**ip 
if(nhar.eq.0) m=0 

C 	
c 
c 	Now have nhar defined as = 2**ip + m. 
c 	Calculate the three "boundries" al, a2, a3 as below. 
c 	Haar is +1 between al,a2 and -1 between a2,a3 (zero elsewhere). 
c 
c 	  

al=float(m)/float(2**ip) 
a2=(float(m)+0.5)/float(2**ip) 
a3=(float(m)+1.0)/float(2**ip) 
if(nhar.eq.0) al=0. 
if(nhar.eq.0) a2=1. 
if(nhar.eq.0) a3=1. 
write(0,10) nhar,ip,m 
write(0,11) al,a2,a3 
do 600 i=1,N 
r=del*float(i-1) 
if(imode.eq.0) var=r 
if(imode.eq.1) var=r*r 
ival=0 

1000 if(var.gt .1) go to 300 
1001 if(var.lt.al ) go to 300 

ival=1 
1002 if(var.lt .a2) go to 300 

iva1=-1 
1003 if(var.lt .a3) go to 300 

ival=0 
300 haar(i,index)=ival 
600 continue 

2000 continue 
C  
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Write the ASCII (comma delimited) file. 

3000 nhar=nhar-1 
nhuns=nhar/100 
ntens=(nhar-100*nhuns)/10 
nunits=nhar- 100 *nhuns-10*ntens 
haarfile(6:6)=char(nhuns+48) 
haarfile(7:7)=char(ntens+48) 
haarfile(8:8)=char(nunits+48) 

3001 open(2,file=haarfile,status='unknown',form='formatted') 
do 3200 i=1,N 
do 3100 j=1,ntotal 
write(2,16) haar(i,j) 

3100 continue 
write(2,17) cr,lf 

3200 continue 
close (2)  

write(0,4) 
end 
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Appendix C 
Fortran Source Code for Utility Programs 

This appendix contains the source code listings for the following programs: 

1. CALNOISE.FOR 
Calibrates the SNR for the Numerical Recipes routine "RAN2" for a given seed 
variable and number of iterations. This calibration was the basis for the preparation of 
the test subsets used to measure classifier performance. 

2. FVASC.FOR 
Calculates a series of feature vector files in various transposed versions and a fitted 
version for convenience of graphical display. The files produced by this routine are 
extremely useful for the display/plotting of individual and groups of feature vectors 
since they can be imported directly as FASCII files in different orderings by a number 
of different graphical software packages. 

3. TORTHZER.FOR 
Tests the orthogonality and normality for functions from the SZF, SZRP, PZF, or 
PZRP bases. 

4. TORTHWAL.FOR 
Test the orthogonality and normality for the Walsh functions. 

5. TORTHHAR.FOR 
Tests the orthogonality and normality for the Haar functions. 
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• Program : CALNOISE.FOR 
• Version : 2.2 July 22, 1993 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: The purpose of this little program is to provide a 
calibration of the random number subroutine "RAN2(IDUM)" 
from section 7.1 of "Numerical Recipes (Fotran)". 
This program asks for : 

NP = Number of iterations for the CALL RAN2 loop 
Seed Integer = initial value of IDUM (first call of RAN2) 

The program then runs the loop (NP times) and "measures" 
the final number of changed pixels (keeping in mind that 

c 	 the addition is done modula 2 for binary images) in order 
to calculate the actual SNR generated by NP and ISEED. 
The noise runs for the Zernike NN tests used ISEED = -7 
in all cases. 
The program, in addition to giving the measure SNR, gives 
various other statistics such as percentage of changed 
pixels, number of double, triple, 	 "hits", etc. 

Note that the size of the image grid is NOT a variable 
but can be changed readily by altering the one line 
defining "N= " below and changing the dimensioning of 
array "ihits". 

	 === 	
include 'fgraph.fi' 
include 'fgraph.fd' 

integer*2 ihits( - 127:128,-127:128) 
integer*4 nhits(0:20),np,k,nchange 
character*1 answer 

1 format(lhO,'NP = '\) 
2 format(i7) 
3 format(1h0,'Seed integer (.LT.0) = '\) 
4 format(i3) 
5 format(1h0,'Rerun program (default=yes) ? '\) 
6 format(al) 

85 format(1h0,2X,'NP =',i7, No. of changes =',i7, 
+' Percentage =,F7.2,' Measured db =',F9.4) 

86 format(/2X,'NP =',i7,' No. of changes =',i7, 
+' Percentage =',F7.2,' Measured db =',F9.4) 

87 format(1h ,'Ratio nchange/NP = ',F7.4) 
88 format(lh ,7i8) 

N=128 
100 call clearscreen ($GCLEARSCREEN) 
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do 646 i=-N+1,N 
do 644 j=-N+1,N 
ihits(i,j)=0 

644 continue 
646 continue 

write(0,1) 
read(0,2) np 
write(0,3) 
read(0,4) iseed 

idum=-7 
idum=iseed 

do 850 k=1,np 
ranval=2*ran2(idum)-1. 
i=int(float(N)*ranval+.5) 
if(i.lt.(-N+1)) i=-N+1 
if(i.gt.N) i=N 
ranval=2*ran2(idum)-1. 
j=int(float(N)*ranval+.5) 
if(j.lt.(-N+1)) j=-N+1 
if(j.gt.N) j=N 
ihits(i,j)=ihits(i,j)+1 

850 continue 
do 860 i=0,20 
nhits(i)=0 

860 continue 
icount=0 
nchange=0 
do 890 i=-N+1,N 
do 880 j=-N-i-1,N 
k=ihits(i,j) 
if(k.gt.20) go to 870 
nhits(k)=nhits(k)+1 

870 icount=k-2*(k/2) 
nchange=nchange+icount 

880 continue 
890 continue 

ratio=float(nchange)/float(np) 
percent=100.*f1oat(nchange)/float(4*N*N) 
db=20.*alog10( - 1+float(4*N*N)/float(nchange)) 
write(0,85) np,nchange,percent,db 
write(0,87) ratio 
write(0,88) (nhits(i),i=0,6) 
write(0,88) (nhits(i),i=7,13) 
write(0,88) (nhits(i),i=14,20) 
write(0,5) 
read(0,6) answer 
if(answer.eq.'n'.or.answer.eq.'N') go to 1000 
go to 100 

1000 end 

Random number generator from section 7.1 of "Numerial Recipes : 
Fortran". 

FUNCTION RAN2(IDUM) 
PARAMETER (M=714025,1A=1366,IC=150889,R1I=1.4005112E-6) 
DIMENSION IR(97) 
DATA IPF /0/ 
IF(IDUM.LT.O.OR.IFF.EQ.0)THEN 

IFF=1 
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IDUM=MOD(IC-IDUM,M) 
DO 11 J=1,97 

IDUM=MOD(IA*IDUM+IC,M) 
IR(J)=IDUM 

11 	CONTINUE 
IDUM=MOD(IA*IDUM+IC,M) 
IY=IDUM 

ENDIF 
J=1+(97*IY)/M 
IF(J.GT.97.0R.J.LT.1) PAUSE 
IY=IR(J) 
RAN2=IY*RM 
IDUM=MOD(IA*IDUM+IC,M) 
IR(J)=IDUM 
RETURN 
END 

C  
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CXkkllmm.NNA 

AXkkllmm.ASC 
.., 	181 

Program : FVASC.FOR 
Version : 6.0 November 3, 1995 
Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail saleedigame.dgcd.doc.ca  

Summary: 

FVASC (Feature Vector ASCII files) reads a CXkkllmm.NNA 
(test) file or a CXkk.NNA (train) file and generates a 
series of other ASCII files as below: (X = S, P, or B) 

CXkklimm.NNA = 
AXkkllmm.ASC = 

RXkklimm.ASC = 

FXkkllmm.ASC = 

original file 
transposed averaged version of 
arranged as testsets 01, 02, . 
transposed averaged version of 
arranged as classes '0', '1', . 
Fitted version of RXkkllmm.ASC 

The averaged versions are formed by replacing the fv's for 
any given image by its average (e.g., a set of 23 sets 
each consisting of 5 fv's for 9 classes will be reduced to 
a collection of 23 sets consisting of 9 averaged fv's). 

The "fitted" version using a linear transformation on each 
of the averaged fv's representing a noisy image to give a 
LMS best fit to its noiseless counterpart. 

The .ASC files are written for convenience as column vectors 
for direct import into graphing software such as MUM. 
In addition, the files RX... and FX... are written as 9 
groups of 23 vectors, each group representing ONE image class 
(contrast to CV... CP... CB... where the vectors are 
arranged as 23 groups of 45 vectors and AX... which is 
written as 23 groups of 9 (averaged) vectors). 

If the original CX file represents a training set, then a 
shortened filename as CXkk.NNA is assumed. 

NOTE: All filenames are a12. This program must be run from 
within the directory containing the original CX... file. 

include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 fv(1200,200),cv(1200,200) 
integer*2 kchar(3) 
character*1 answer,cr,lf,comma,dummyi,dummy2 
character*3 bufint 
character*12 cvfile,fvfile 
data cr/13/,1f/10/ 
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• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,14(1h*), 
+' Generation of Extended Feature Result Vector Files ',14(1h*)\) 

2 format(lh  ,24x, Version 6.00 : November 03, 1995') 
4 format(lhO, 
+'Enter filename for reading cv file 	 : '\) 

5 format(lhO, 
+'Training or test set (1=train, 2=test) 	(NO default) : '\) 

6 format(lhO, 
+'Enter number of subfiles in cv file (NO default) 	: '\) 

7 format(lhO, 
+'Enter number of vectors in each subfile (NO default) : '\) 

8 format(lhO, 
+'Enter dimension of feature vectors (NO default) 	: '\) 

9 format(lhO, 
+'Enter dimension of result vectors (NO default) 	: '\) 

10 format(1h0,24x,'Program completed successfully.') 
11 format(F12.5,a1\) 
12 format(2a1) 
13 format(al) 
14 format(a12) 
15 format(i4) 
16 format(F12.5,','\) 
17 format(2a1\) 
18 format(i2) 
90 format(lhO, 

+'The number of vectors must be a positive integer.') 
91 format(lhO, 

+'The feature vector dimension must be a positive integer.') 
92 format(lhO, 

+'The result vector dimension must be a positive integer.') 
99 format(lhO,'Hit <RET> to restart program. '\) 

• Begin by prompting or by reading the original cv filename, train 
• or test set status, fv dimension, rv dimension (no. of classes), 
• no. of subfiles, and feature vectors per subfile. 

100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
write(0,2 

Check at this point to see if the "prompts" have been passed 
to this program as command line parameters. If so, skip the 
prompts and proceed to the calculations. 

Order and specification of the command line prompts are: 
argl = cvfile (a12) 
arg2 = itype (1=train, 2=test) 
arg3 = nfvdim (dimension of feature vectors) 
arg4 = nrvdim (dimension of result vector (no. of classes)) 
arg5 = nsub (no. of subfiles in cvfile) 
arg6 = nfvsub (no. of fv's per subfile) 

Note: 
Total no. of feature vectors in cvfile = nsub*nfvsub 
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No. of vectors per class per subfile = nfvsub/nrvdim 

ibatch=0 
numargs=nargs() 
if(numargs.gt.1) ibatch=1 
if(ibatch.eq.0) go to 160 
call getarg(1,cvfile,istatus) 
bufint=" 
call getarg(2,bufint,istatus) 
nsf=3 
do 102 1=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.O.and.kchar(i).1e.9) go to 102 
kchar(i)=0 
nsf=nsf-1 

102 continue 
itype=0 
do 104 i=1,nsf 
itype=10*itype+kchar(4-i) 

104 continue 
bufint=" 
call getarg(3,bufint,istatus) 
nsf=3 
do 106 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 106 
kchar(i)=0 
nsf=nsf-1 

106 continue 
nfvdim=0 
do 108 i=1,nsf 
nfvdim=10*nfvdim+kchar(4-i) 

108 continue 
bufint=" 
call getarg(4,bufint,istatus) 
nsf=3 
do 110 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.O.and.kchar(i).1e.9) go to 110 
kchar(i)=0 
nsf=nsf-1 

110 continue 
nrvdim=0 
do 112 i=1,nsf 
nrvdim=nrvdim*10+kchar(4-i) 

112 continue 
bufint=" 
call getarg(5,bufint,istatus) 
nsf=3 
do 114 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 114 
kchar(i)=0 
nsf=nsf-1 

114 continue 
nsub=0 
do 116 i=1,nsf 
nsub=nsub*10+kchar(4-i) 

116 continue 
bufint=" 
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call getarg(6,bufint,istatus) 
nsf=3 
do 118 i=1,3 
kchar(i)=ichar(bufint(4-i:4-i))-48 
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 118 
kchar(i)=0 
nsf=nsf-1 

118 continue 
nfvsub=0 
do 120 i=1,nsf 
nfvsub=nfvsub*10+kchar(4-i) 

120 continue 
go to 180 

We come here only if ibatch=0, i.e., no command line 
parameters have been entered and the user must be prompted 
for each of the filenames and variables. 

160 write(0,4) 
read(0,14) cvfile 
write(0,5) 
read(0,15) itype 
write(0,8) 
read(0,15) nfvdim 
write(0,9) 
read(0,15) nrvdim 
write(0,6) 
read(0,15) nsub 
write(0,7) 
read(0,15) nfvsub 

180 if(nfvdim.le.0) go to 1010 
if(nrvdim.le.0) go to 1020 
nfv=nsub*nfvsub 
nfvpi=nfvsub/nrvdim 
ncvdim=nfvdim+nrvdim 
base=float(nfvpi) 
	 - 

c 
Read the CXkkllmm.NNA file where X = S, P, or B. 
Size check for this file: 
Size = nfv*[13*(nfvdim+nrvdim)+2] 

The CXkkllmm.NNA file contains nfv rows by (nfvdim+nrvdim) 
columns. In the processes below, we will transpose this 
(after 'discarding' the rv portion of the cx... file) to 
*.ASC files which contain nfvdim rows by nstep (= nfv/nfvpi) 
averaged columns. 

200 open(2,file=cvfile,status='unknown',form='formatted') 
do 220 i=1,nfv 
do 210 j=1,nfvdim 
read(2,11) cv(i,j),comma 

210 continue 
read(2,12) dummy1,dummy2 

220 continue 
close(2) 
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• Now replace each nfvpi vectors (rows of cx...) with its average 
• value, reducing the total number of vectors from nfv to nstep = 
• nfv/nfvpi. Then reset the remaining cx... vectors (vectors from 
• [nstep+1] to nfv) to 0. 

nstep=nfv/nfvpi 
do 360 j=1,nfvdim 
do 340 i=1,nstep 
k=5*(i-1)+1 
cv(i,j)=(cv(k,j)+cv(k+i,j)+cv(k+2,j)+cv(k+3,j)+cv(k+4,j))/base 

340 continue 
360 continue 

do 390 i=(nstep+1),nfv 
do 380 j=1,nfvdim 
cv(i,j)=0. 

380 continue 
390 continue 

Write the AXkkllmm.ASC file. 
Size check for this file: 
Size = nfvdim*[13*(nstep)+2] 

fvfile=cvfile 
fvfile(1:1)='a' 
if(itype.eq.1) fvfile(6:8)='asc' 
if(itype.eq.2) fvfile(10:12)='asc' 

300 open(2,file=fvfile,status='unknown',form='formatted') 
do 320 j=1,nfvdim 
do 310 i=1,nstep 
write(2,16) cv(i,j) 

310 continue 
write(2,17) cr,lf 

320 continue 
endfile 2 
close (2)  

• The AXkkllmm.ASC file above is written as vector no. running 
• along the columns and vector component running along the rows. 
• The vectors are grouped as for CXkkllmm.NNA, i.e., in groups 
• corresponding to the testsets, each group containing the image 
• classes in sequence (45 = 9x5 for CX... and 9 = 9x1 for AX...). 
• Now want to rearrange the vectors into nrvdim (always=9) groups, 
• with each group containing nsub (usually = 23) vectors. Each 
• group of nsub vectors correspond to ONE image class '0', '1', 

'8'. 

400 do 420 i=1,nstep 
ndiv=(i-1)/nrvdim 
nclass=i-nrvdim*ndiv 
nset=l+ndiv 
k=nsub*(nclass-1)+nset 
do 410 j=1,nfvdim 
fv(k,j)=cv(i,j) 

410 continue 
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420 continue 

Write the RXkkllmm.NNA file. 
Size check for this file (same as AXkkllmm.ASC): 
Size = nfvdim*[13*(nstep)+2] 

fvfile(1:1)='r' 
500 open(2,file=fvfile,status='unknown',form='formatted') 

do 520 j=1,nfvdim 
do 510 i=1,nstep 
write(2,16) fv(i,j) 

510 continue 
write(2,17) cr,lf 

520 continue 
endfile 2 
close (2) 
	 - 

c 
Now calculate and write the "fitted" FXkkllmm.ASC file. 
Size check for this file: 
Size = nfvdim*[13*(nstep)+2] 

600 do 700 i=1,nrvdim 
sumx=0.0 
do 620 j=1,nfvdim 
sumx=sumx+cv(i,j) 

620 continue 
do 680 isub=2,nsub 
k=9*(isub-1)+i 
sumy=0.0 
sumxy=0.0 
sumysq=0.0 
do 640 j=1,nfvdim 
sumy=sumy+cv(k,j) 
sumxy=sumxy+cv(i,j)*cv(k,j) 
sumysq=sumysq+(cv(k,j)*cv(k,j)) 

640 continue 
denom=(sumy*sumy)-sumysq*float(nfvdim) 
a=(sumx*sumy-sumxy*float(nfvdim))/denom 
b=(sumy*sumxy-sumx*sumysq)/denom 
do 660 j=1,nfvdim 
cv(k,j)=a*cv(k,j)+b 

660 continue 
680 continue 
700 continue 

do 720 i=1,nstep 
ndiv=(i-1)/nrvdim 
nclass=i-nrvdim*ndiv 
nset=l+ndiv 
k=nsub*(nclass-1)+nset 
do 710 j=1,nfvdim 
fv(k,j)=cv(i,j) 

710 continue 
720 continue 

fvfile(1:1)='f' 
800 open(2,file=fvfile,status='unknown',form='formatted') 

do 820 j=1,nfvdim 
do 810 i=1,nstep 
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write(2,16) fv(i,j) 
810 continue 

write(2,17) cr,lf 
820 continue 

endfile 2 
close (2) 
go to 2000 

Error messages. The program restarts (from line 100) after each 
message is displayed. 

1000 write(0,90) 
write(0,99) 
read(0,5) answer 
go to 100 

1010 write(0,91) 
write(0,99) 
read(0,5) answer 
go to 100 

1020 write(0,92) 
write(0,99) 
read(0,5) answer 
go to 100 

2000 write(0,10) 
end 
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• Program : TORTHZER.FOR 
• Version : 5.2 March 10, 1993 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 

o (613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

TORTHZER calculates the 'orthogonality product' for two 
Standard or Pseudo Zernike functions V (x,y) for x,y 

nm 
in the unit circle and for positive values of integer indices 
n and m (with m .LE. n, m .GE. 0, and, for the Standard case, 
(n-m) even). 

• PROGRAMMING NOTES: 

• 1. The data files have naines in the form TZXNNMM.BIN where: 

T = P (Pseudo Zernike) or S (Standard Zernike) 
X = R (real part) or I (imaginary part) 
NN = value of principal index (0,1,2,3, 	 
MM = value of secondary index (0,1,2,3,...) such that 

(NN-MM) is even and .GE. 0 

• 2. The gridsize is NOT a variable for this program. However, 
some care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 
statements would have to be altered to allow for a different 
gridsize. 

include 'fgraph.fi' 
include 'fgraph.fd' 

real*4 v1(256,256),v2(256,256),sum(4) 
character*1 answer 
character*28 fullnamel,fullname2 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,15(1h*), 
+' Test of Orthogonality of the' 
+' Zernike Polynomials ',15(1h*)\) 

2 format(lh  ,25x, 'Version 5.20 : March 10, 1993') 
3 format(lh ,19x,'Grid Size : 	x ',i4, 
+' 	Precision : Real*',i1) 

4 format(1h0,6x, 
+'Calculate for Pseudo or Standard Zernike', 
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+' polynomials (default=P) ? '\) 
5 format(al) 
7 format(i4) 
8 format(lh+,11(1h*), 
+' Test of Orthogonality of the Pseudo' 
+' Zernike Polynomials ',12(1h*)\) 

9 format(lh+,10(1h*), 
+' Test of Orthogonality of the Standard' 
+' Zernike Polynomials ',11(1h*)\) 

10 format(1h0,22x, 
+'Enter n value for first file. n1 = '\) 

11 format(lh ,22x, 
+'Enter m value for first file. ml  = '\) 

12 format(lh ,22x, 
+'Enter n value for second file. n2 = '\) 

13 format(lh ,22x, 
+'Enter m value for second file. m2 = '\) 

31 format(256(F8.5)\) 
40 format(lh ) 
41 format(1h0) 
42 format(1h0,17x, 

+'Theoretical result = (',F9.6,') + i ( 0.000000)') 
43 format(lh ,17x, 

+'Calculated result = (',F9.6,') + i (',F9.6,')') 
44 format(1h0,12x,'Sum(i) : ',4(E12.6)) 
45 format(lh ,25x,'Rl-R2',7x,'11-12',7x,'R2-11',7x,'R1-12') 
60 format(1h0,24x,'Rerun program (default=yes)? : '\) 

• Begin by prompting user for the index values after first 
• offering the option to calculate over a range of index values or 
• for a specific n,m combination 

igridsize=256 
N=128 
ndata=256 
pixelarea=1./(float(N*N)) 
ipower=8 
iprecision=1 
pi=3.141592654 
fullnamel(1:28 )= ' e:\zernike\PZ_nnmm. 	' 
fullname2(1:28)='e:\zernike\PZ_nnmm. 	' 
fullnamel(20:20)=char(iprecision+48) 
fullname2(20:20)=char(iprecision+48) 
fullnamel(21:22)='08' 
fullname2(21:22)='08' 

100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
write(0,2) 
write(0,3) igridsize,igridsize,(4*iprecision) 
itype=1 
write(0,4) 
read(0,5) answer 
if(answer.eq.'s'.or.answer.eq.'S') itype=2 
if(itype.eq.1) fullnamel(12:12)='P' 
if(itype.eq.1) fullname2(12:12)='P' 	 - 
if(itype.eq.2) fullnamel(12:12)='S' 
if(itype.eq.2) fullname2(12:12)='S' 
iauto=0 
theory=0. 
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amplitude=1. 
do 110 i=1,4 
sum(i)=0. 

110 continue 
call clearscreen ($GCLEARSCREEN) 
if(itype.eq.1) write(0,8) 
if(itype.eq.2) write(0,9) 
write(0,2) 
write(0,3) igridsize,igridsize,(4*iprecision) 
write(0,10) 
read(0,7) n1 
write(0,11) 
read(0,7) m1 
write(0,12) 
read(0,7) n2 
write(0,13) 
read(0,7) m2 
if(nl.eq.n2.and.m1.eq.m2) iauto=1 
if(iauto.eq.1) theory=1. 
if(iauto.eq.1) amplitude=(1.+float(n1))/pi 

ntens=n1/10 
nunit=n1- l0*ntens 
mtens=m1/10 
munit=m1-10*mtens 
fullname1(15:15)=char(ntens+48) 
fullname1(16:16)=char(nunit+48) 
fullnamel(17:17)=char(mtens+48) 
fullname1(18:18)=char(munit+48) 
ntens=n2/10 
nunit=n2-10*ntens 
mtens=m2/10 
munit=m2-10*mtens 
fullname2(15:15)=char(ntens+48) 
fullname2(16:16)=char(nunit+48) 
fullname2(17:17)=char(mtens+48) 
fullname2(18:18)=char(munit+48) 
fullname1(14:14)='R' 
fullname2(14:14)='R' 

250 open(2,file=fullnamel,status='unknown',form='binary') 
do 254 j=1,ndata 
read(2) (v1(i,j),i=1,ndata) 

254 continue 
endfile 2 
rewind 2 
if(iauto.eq.0) go to 260 
do 258 i=1,ndata 
do 256 j=1,ndata 
sum(1)=sum(1)+v1(i,j)*v1(i,j) 

256 continue 
258 continue 

if(m1.eq.0) go to 600 
go to 300 

260 open(2,file=fullname2,status='unknown',form='binary') 
do 264 j=1,ndata 
read(2) (v2(i,j),i=1,ndata) 

264 continue 
endfile 2 
rewind 2 
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do 268 i=1,ndata 
do 266 j=1,ndata 
sum(1)=sum(1)+v1(i,j)*v2(i,j) 

266 continue 
268 continue 

300 if(m2.eq.0) go to 400 
fullname2(14:14)='I' 

350 open(2,file=fullname2,status='unknown',form='binary') 
do 354 j=1,ndata 
read(2) (v2(i,j),i=1,ndata) 

354 continue 
endfile 2 
rewind 2 
if(iauto.eq.1) go to 400 
do 358 i=1,ndata 
do 356 j=1,ndata 
sum(4)=sum(4)+v1(i,j)*v2(i,j) 

356 continue 
358 continue 

400 if(ml.eq.0) go to 500 
if(iauto.eq.0) go to 440 
do 430 i=1,ndata 
do 420 j=1,ndata 
sum(2)=sum(2)+v2(i,j)*v2(i,j) 

420 continue 
430 continue 

go to 500 
440 fullnamel(14:14)=I' 
450 open(2,file=fullname1,status='unknown',form='binary') 

do 454 j=1,ndata 
read(2) (v1(i,j),i=1,ndata) 

454 continue 
endfile 2 
rewind 2 
if(m2.eq.0) go to 555 
do 458 i=1,ndata 
do 456 j=1,ndata 
sum(2)=sum(2)+v1(i,j)*v2(i,j) 

456 continue 
458 continue 

500 if(m1.eq.0.or.iauto.eq.1) go to 600 
fullname2(14:14)='R' 

550 open(2,file=fullname2,status='unknown',form='binary') 
do 554 j=1,ndata 
read(2) (v2(i,j),i=1,ndata) 

554 continue 
endfile 2 
rewind 2 

555 do 558 i=1,ndata 
do 556 j=1,ndata 
sum(3)=sum(3)+v1(i,j)*v2(i,j) 

556 continue 
558 continue 
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600 continue 
sumr=(sum(1)+sum(2))*pixelarea*amplitude 
sumi=(sum(3)-sum(4))*pixelarea*amplitude 
write(0,40) 
write(0,44) sum(1),sum(2),sum(3),sum(4) 
write(0,45) 
write(0,40) 
write(0,42) theory 
write(0,43) sumr,sumi 
write(0,60) 
read(0,5) answer 
if(answer.eq.'n'.or.answer.eq.'N') go to 1000 
go to 100 

1000 continue 
end 
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c 	Program : TORTHWAL.FOR 
• Version : 1.0 May 25, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail salaedigame.dgcd.doc.ca  

• Summary: 

TORTHWAL calculates the 'orthonormality product' for two 
radial Walsh functions defined on the unit circle. 

• PROGRAMMING NOTES: 

• 1. The data files have names in the form WALnnn bin and MUST 
reside in the same path as this program. 

• 2. The gridsize is NOT a variable for this program. However, 
some care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 
statements would have to be altered to allow for a different 
gridsize. 

include 'fgraph.fi' 
include 'fgraph.fd' 

integer*1 wall(-127:128,-127:128),wal2(-127:128,-127:128) 
character*1 answer 
character*28 fullnamel,fullname2 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,12(1h*), 
+' Test of Orthonormality of the' 
+' Radial Walsh Functions ',12(1h*)) 

5 format(al) 
7 format(i4) 

10 format(lhO, 
+'Enter n value for first file. ni  = '\) 

11 format(lh , 
+'Enter n value for second file. n2 = '\) 

40 format(lh ) 
42 format(lh , 

+'Theoretical result = ',F9.6) 
43 format(lhO, 

+'Calculated result = ',F9.6) 
60 format(1h0,24x,'Rerun program (default=yes)?. : '\) 

Begin by prompting user for the index values after first 
offering the option to calculate over a range of index values or 
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for a specific n,m combination 

igridsize=256 
N=128 
ndata=256 
del=1./float(N) 
pixelarea=1./(float(N*N)) 
fullnamel(1:28)='wal 	.bin' 
fullname2(1:28)='wal 	.bin' 

100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
iauto=0 
theory=0. 
write(0,10) 
read(0,7) n1 
write(0,11) 
read(0,7) n2 
if(nl.eq.n2) iauto=1 
if(iauto.eq.1) theory=3.1415927 

nlhuns=n1/100 
nitens=(n1-100*nlhuns)/10 
nlunit=n1- 100*nlhuns-10*nitens 
n2huns=n2/100 
n2tens=(n2-100*n2huns)/10 
n2unit=n2-100*n2huns-10*n2tens 
fullnamel(4:4)=char(nlhuns+48) 
fullnamel(5:5)=char(nitens+48) 
fullnamel(6:6)=char(nlunit+48) 
fullname2(4:4)=char(n2huns+48) 
fullname2(5:5)=char(n2tens+48) 
fullname2(6:6)=char(n2unit+48) 

250 open(2,file=fullnamel,status='unknown',form='binary') 
do 254 j=-N+1,N 
read(2) (wall(i,j),i=-N+1,N) 

254 continue 
endfile 2 
rewind 2 
if(iauto.eq.0) go to 260 
sum=0. 
do 258 j=-N-i-1,N 
do 256 i=-N+1,N 
sum=sum+float(wall(i,j)*wall(i,j)) 

256 continue 
258 continue 

go to 600 
260 open(2,file=fullname2,status='unknown',form='binary') 

do 264 j=-N+1,N 
read(2) (wal2(i,j),i=-N+1,N) 

264 continue 
endfile 2 
rewind2 
sum=0. 
do 268 j=-N+1,N 
do 266 i=-N+1,N 
sum=sum+float(wall(i,j)*wal2(i,j)) 

266 continue 
268 continue 
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C  

C  

600 continue 
sum=sum*pixelarea 
write(0,40) 
write(0,43) sum 
write(0,42) theory 
write(0,60) 
read(0,5) answer 
if(answer.eq.'n'.or.answer.eq.'N') go to 1000 
go to 100 

1000 continue 
end 
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• Program : TORTHHAR.FOR 
• Version : 1.0 aune 2, 1995 
• Author : Kenneth L. Sala 

Communications Research Center 
Ottawa, Ontario, Canada 
(613) 998-2823 
e-mail sala@digame.dgcd.doc.ca  

• Summary: 

TORTHHAR calculates the 'orthonormality product' for two 
radial Haar functions defined on the unit circle. 

• PROGRAMMING NOTES: 

• 1. The data files have names in the form HARnnn.BIN and MUST 
reside in the same path as this program. 

• 2. The gridsize is NOT a variable for this program. However, 
some care has been taken to allow the user to change this 
parameter relatively easily. Only the dimensioning 
assignments, initialization values, and some format 
statements would have to be altered to allow for a different 
gridsize. 

include 'fgraph.fi' 
include 'fgraph.fd' 

integer*1 haarl(-127:128,-127:128),haar2(-127:128,-127:128) 
character*1 answer 
character*28 fullnamel,fullname2 
data root2/1.41421356/ 

• All format statements and only format statements have labels 
• in the range 1 - 99. 

1 format(lh+,12(1h*), 
+' Test of Orthonormality of the' 
+' Radial Haar Functions ',12(1h*)) 

5 format(al) 
7 format(i4) 

10 format(lhO, 
+'Enter n value for first file. n1 = '\) 

11 format(lh , 
+'Enter n value for second file. n2 = '\) 

40 format(lh ) 
42 format(lh , 

+'Theoretical result = ,F9.6) 
43 format(lhO, 

+'Calculated result = ',F9.6) 
60 format(1h0,24x,'Rerun program (default=yes)? : '\) 

• Begin by prompting user for the index values after first 
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offering the option to calculate over a range of index values or 
for a specific n,m combination 

igridsize=256 
N=128 
ndata=256 
del=1./float(N) 
pixelarea=1./(float(N*N)) 
fullnamel(1:28)='har 	.bin' 
fullname2(1:28)='har 	.bin' 

100 call clearscreen ($GCLEARSCREEN) 
write(0,1) 
iauto=0 
theory=0. 
write(0,10) 
read(0,7) n1 
write(0,11) 
read(0,7) n2 
if(nl.eq.n2) iauto=1 
if(iauto.eq.1) theory=3.1415927 
ip1=0 
m=n1 

140 m=m/2 
if(m.eq.0) go to 150 
ipl=ip1+1 
go to 140 

150 ml=n1-2**ipl 
ampl=root2**ipl 
if(n1.1e.1) ampl=1. 
ip2=0 
m=n2 

160 m=m/2 
if(m.eq.0) go to 170 
ip2=ip2+1 
go to 160 

170 m2=n2-2**ip2 
amp2=root2**ip2 
if(n2.1e.1) amp2=1. 

n1huns=n1/100 
nitens=(n1-100*nlhuns)/10 
nlunit=n1-100*nlhuns-10*nitens 
n2huns=n2/100 
n2tens=(n2-100*n2huns)/10 
n2unit=n2-100*n2huns-10*n2tens 
fullnamel(4:4)=char(nlhuns+48) 
fullnamel(5:5)=char(nitens+48) 
fullnamel(6:6)=char(nlunit+48) 
fullname2(4:4)=char(n2huns+48) 
fullname2(5:5)=char(n2tens+48) 
fullname2(6:6)=char(n2unit+48) 

250 open(2,file=fullnamel,status='unknown',form='binary') 
do 254 j=-N+1,N 
read(2) (haarl(i,j),i=-N+1,N) 

254 continue 
endfile 2 
rewind 2 
if(iauto.eq.0) go to 260 
sum=0. 
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do 258 j=-N+1,N 
do 256 i=-N+1,N 
sum=sum+f1oat(haar1(i,j)*haar1(i,j)) 

256 continue 
258 continue 

go to 600 
260 open(2,file=fullname2,status='unknown',form='binary') 

do 264 j=-N+1,N 
read(2) (haar2(i,j),i=-N+1,N) 

264 continue 
endfile 2 
rewind2 
sum=0. 
do 268 j=-N+1,N 
do 266 i=-N+1,N 
sum=sum+float(haar1(i,j)*haar2(i,j)) 

266 continue 
268 continue 

600 continue 
sum=sum*pixelarea*amp1*amp2 
write(0,40) 
write(0,43) sum 
write(0,42) theory 
write(0,60) 
read(0,5) answer 
if(answer.eq.'n'.or.answer.eq.'N') go to 1000 
go to 100 

1000 continue 
end 
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