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Abstract

An image classification system based upon the extraction of moment invariant feature vectors
and an artificial neural network classifier is described. The moment invariant feature vectors
are derived from the test images using series of orthogonal basis functions. Six different basis
functions are studied which include four types of Zernike functions and two types of Walsh
functions. Four different schemes for the normalization of the feature vectors are also
investigated. The images used in the study possess random scales, lateral positions, and
angles of orientation in the image plane. In addition, random noise with different signal-to-
noise ratios is superimposed upon the images. The feature vector extraction technique
employs the concept of moment invariants so that the feature vector components are
independent of the image’s scale, lateral position, and orientation. The neural network
employed for the classification task is a multilayer perceptron network which is trained with
the backpropagation algorithm. The performance of the overall classification system is
determined by measuring the classification accuracy as a function of the signal-to-noise ratio
of the test imagery. The work and the results presented in this study form the basis for a
neural network based, image recognition system which will be employed in the classification
of military, synthetic aperture radar (SAR) imagery of land targets.

Resumé

Un systeme de classification d’images fondé sur I’extraction des vecteurs caractéristiques a
moment invariant et d’un classificateur de réseau neural est décrit. Les vecteurs
caractéristiques & moment invariant sont obtenus par des images de référence en utilisant une
série de fonctions orthogonales. Six fonctions orthogonales sont étudiées incluant quatre
types de fonctions Zernike et deux types de fonctions Walsh. Quatre méthodes de
normalisation de ces vecteurs caractéristiques sont aussi étudiées. Les images utilisées dans
cette étude varient selon 1’échelle, la position latérale et 1’angle d’orientation du plan de
limage. En plus, un bruit de fond aléatoire ayant des rapports signal-bruit différents sera
surimposé sur les images. La technique d’extraction des vecteurs emploie le concept des
moments invariants afin que les composants de ces vecteurs soient indépendants de I’échelle,
de la position latérale et de I’orientation de I’image. Le réseau neural employé pour le travail
de classification est un réseau perceptron a couches multiples qui reconnait I’algorithme de
propagation. Le rendement du systeme de classification est déterminé en mesurant 1’acuité de
la classification en fonction du rapport signal-bruit des images de référence. Le travail et les
résultats présentés dans cette étude forment la base d’un systéme de reconnaissance d’images
fondé sur les réseaux neuraux et qui sera employé dans la classification d’images militaires de
cibles terrestres obtenues par radar a ouverture synthétique (SAR).
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Executive Summary

The work described in this report represents the successful completion of the first phase of a
DND sponsored project which has as its fundamental objective the development of a neural
network based classification system for SAR imagery of land targets. The central purpose of
this initial phase of the project is to comprehensively characterize the methodology of using
moment invariant feature vectors as the means of representing the imagery to the neural
classifier. An image database consisting of binary valued, 2-D objects is employed in these
studies in order to facilitate a determination of an optimum environment for image
classification using this combination of moment invariant features and a multilayer
perceptron, neural network classifier. Six different mathematical bases employed in the image
feature vector extraction are studied. Each of these bases is examined for two types of
training data sets, one containing only noiseless imagery and the second containing a mixture
of noiseless and noisy imagery. In addition, four different schemes are investigated for the
normalization of the feature vectors. Other results described include the measurement of the
dependence of the neural network classifier upon training epoch size, the number of hidden
neurons in the network architecture, and upon the network initialization process. A series of
feature vector graphs is presented which illustrate the measured invariance of the feature
vectors, their degradation with decreasing signal-to-noise ratio, similarities and differences
between feature vectors for similar and dissimilar images, and the dependence of the feature
vectors upon the normalization method. The specific environment and experimental process
determined by this phase of the project shall form the basis for classification studies of actual

SAR imagery during the second phase of the project.
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1. Introduction

Research into the development and application of intelligent systems in military
environments is acquiring increasing significance and importance given the remarkable
progress in the area of sensor technologies and in the ability to collect and process
increasingly complex volumes of sensor data*'. At the very core of the development of
intelligent systems lies the task of extracting ‘information’ from ‘data’. The distinction
between these terms, while occasionally subtle, is always a fundamental and critical one in
this area of research. At present, almost without exception, this task of information extraction
is, largely by default, solely the domain of trained and experienced human interpreters. This
situation, however, is somewhat discrepant with the observation that, for many sensor
technologies such as radar imagery, sonar detection, and infrared photography, the types and
characteristics of the data collected are largely alien to human experience*®''*'?’. Synthetic
aperture radar (SAR) imagery offers the perfect example of this type of data. The large
dynamic range of the radar returns intrinsic to this technique is a characteristic that the human
visual processing system is simply incapable of perceiving. Examples of SAR images, such
as those reproduced in the concluding chapter of this report, are, in fact, ‘depictions’ or
‘representation’ of the true data given the limitations of the printed medium (even if this type
of imagery could be faithfully reproduced, the reader would still be unable to effectively “see”
this dynamic range). In a literal sense, there is more to SAR imagery than meets the eye. In
many respects, therefore, it can be argued that the task of interpreting data such as SAR
imagery should ultimately be left to artificial means since only this approach may be expected
to fully utilize and exploit these types of complex data. The critical step, however, towards
the realization of this approach lies with the development of systems which, like the human
vision system, are capable of recognizing and accurately identifying varied classes of patterns
contained within sensor data. Furthermore, particularly within military contexts, artificial
classification systems must be capable of accurate, robust pattern classification with high
confidence limits and be able to classify quickly, ideally in real time>'#>'?%, Indeed, it is
argued by many researchers*'**%°, future advances in military sensor technologies may be
compromised unless such artificial classification and automated target recognition systems
can be successfully developed in the short to medium term'44%126:127

In the particular field of SAR imagery, a principal thrust in the development of
intelligent systems in this area employs some form of artificial neural network®>* to execute
the task of identification and classification of patternsl4'42'94‘126. The work along this direction
addresses two main areas of research. One is the investigation of different types of artificial
neural systems and learning paradigms™!92#24363118 * ywhile the majority of work employs
some form of multilayer perceptron metwork which is trained using the backpropagation
learning algorithm (or some variation of it), many investigators are studying more general
neural systems which utilize unsupervised learning models and which are capable of some



degree of self-organizing behavior in the determination of and recognition of image
classes>®**”. Other research examines alternate neural networks**>~7>1#8124 guch ag higher
order networks?®**57738391100.10210710% which offer inherent invariance via the network’s
structure to various image transformations such as changes in scale or object orientation. The
second main activity within the research on neural network based classification of SAR
imagery concerns the identification of suitable features which quantitatively characterize the
imagery sufficiently to permit their use as the input parameters for the neural
classifier'>!+ 183281105106 Thig tack, somewhat surprisingly, is proving to be a difficult and
elusive one insofar as determining a generic set of features or a methodology to determine
such a set which proves to be both effective and general in its applicability to various types of
SAR imagery. The reader is referred to the collection of articles which deal specifically with
the task of classification of SAR imagery presented recently as a Special Issue’! of the journal
Neural Networks (Grossberg, Hawkins, and Waxman, eds.). In addition, the reader may find
it instructive to compare the review article concerning neural network classification of SAR
imagery by Rogers et al>* in 1995 with those by Waxman et al'?® in 1993 and Roth® in 1990.

The work described in this report represents the successful completion of the first
phase in a DND sponsored project which has as its fundamental objective the development of
a neural network based classification system for SAR imagery of land targets. This initial
phase of the work concentrates on characterizing the methodology of moment invariant
feature vectors as the means of representing imagery to the neural classifier. To this end, a
simple image database consisting of binary valued, 2-D objects is employed in these studies in
order to concentrate on determining an optimum environment for image classification using
this combination of moment invariant features and a neural network classifier. The essential
advantage to working with simplified imagery in this phase is that the performance of the
classification system can be measured against known standards and thus permit meaningful
optimization of many of the classification system variables and parameters. The method
decided upon by the results of this phase of the project will then form the basis for
classification studies of actual SAR imagery during the second phase of the project. For this
reason, considerable attention is paid to the development of the methods and algorithms
created during this phase of the research to ensure that they can be easily adapted or modified
to remain applicable to the more general characteristics of the SAR imagery. Indeed, at the
time of preparation of this report, work is well underway in the application of these results to
the classification of a recently acquired SAR image database of land targets of military
significance. Other research previously reported under this project includes a study of time-
delay and perceptron neural network classifiers for SAR imagery of shipping''® and a study of
the application of higher order neural networks in conjunction with boundary detection and

encoding algorithms for image classification®®.



Chapter 2 describes the method of moment invariants as it applies to the extraction of
feature vectors for the characterization and classification of imagery’. This technique is based
upon the use of a series of basis functions from which are derived a sequence of global
features which, loosely speaking, are directly related to the generalized Fourier coefficients of
the image with respect to the basis!>86114130, By suitably transforming the image and making
appropriate choices for the basis functions, features are derived which are invariant to changes
in the scale, lateral position, and in-plane orientation of the image. Six different basis
functions are studied in this report of which four have heretofore been unreported in the
literature on this subject. Chapter 2 also includes brief expositions of the mathematical
properties of these six sets of basis functions along a discussion of some of the practical
consequences and limitations of working with finite resolution imagery and sampled versions
of the basis functions. Chapter 3 describes the experimental procedure for the feature vector
extraction and the processing steps in the preparation of this data for use by the neural
network classifier. The various computer programs developed for this purpose are briefly
described in chapter 3. Complete listings of the various algorithms employed in this study are
included as appendices to this report to which the reader interested in the finer details of the
sequence of image processing and feature vector steps is referred. Chapter 4 presents the
results of several prefatory experiments which determine approximately optimum values for
several of the key parameters and variables which characterize both the neural network
classifier and the feature vector processing stage. The results describing the performance of
the overall, neural network based classification system are then presented for each of the basis
function sets employing two different training sets of feature vectors. The classifier’s
performance is judged by measuring the classification accuracy as a function of signal-to-
noise ratio’s for 23 separate test sets of images which possess random scales, lateral positions,
and orientation angles. The signal-to-noise ratios (SNR) of these test sets vary from that of
noiseless imagery through to pure noise. Chapter 5 offers a brief discussion of the main
findings of the present work and considers some of the difficulties and questions which must
be faced in the second phase of this work, namely the application of the methodology studied
here to the analysis and classification of actual SAR imagery.



Chapter 2 : Moment Invariant Feature Vectors for Pattern Recognition
2.1: Overview of Feature Vectors and Moment Invariants

There are two basic concepts which are central to the entire field of pattern
recognition”2%?"#*$>11% " The first is that, in the preponderance of cases, complex signals such
as images or speech patterns can be accurately identified and classified through the use of a
relatively small number of judiciously chosen features which characterize those
signals””>***® " This concept is particularly applicable in the area of image recognition and
classification where, for even fairly modest imagery, the sheer amount of image data can be
problematic (e.g., a single 2048 x 2048 color image with 24 bits/pixel represents 12
megabytes of image data). By making intelligent choices for those quantitative measures to
serve as image features, the task of image classification can be made tractable where it would
otherwise prove pragmatically unworkable if one were forced to deal strictly with raw image
data. The second concept which is also central to the problem of pattern recognition is that
the classification system must possess the capability to accurately classify the signals in the
presence of transformations or processes which modify them, i.e., the classifier must be
invariant""1536165 114130132 4, e or more types of signal transformations or distortions.
Examples would include speaker-independent speech recognition®! and image classification
which is invariant to changes in image scale and viewing angle”' > 1t is important to
recognize a priori that the incorporation of invariance into the pattern classification task
should not be regarded as an appurtenance to the classifier design and methodology. Rather,
the means by which the experimenter chooses to implement invariance into the overall
process will, to a large extent, determine the structure and basic design of the classification
system itself. Finally, it should be noted that these underlying concepts are not entirely
abstract or theoretical contrivances. A growing body of experimental evidence exists which
indicates that biological pattern recognition systems such as human vision explicitly
incorporate various types of feature detection and extraction along with an intrinsic, learned

ability to recognize patterns independently of a broad range of variances in the
patterns®®*74%126127

Image features may be divided into two distinct categories, namely local and global
image features>2%!"% ocal features, as their name implies, are quantitative variables
which depend only upon some localized area(s) or characteristic of the image object.
Examples would include a fractal dimension measured over a small, movable window and
various geometric parameters such as the number of corners present in an image’s boundary
representation. Frequently, although not invariably, local features such as those derived from
the object’s geometric or shape attributes possess the extremely useful property that such
features are independent of a variety of types of transformations or modifications to the image
such as spatial scaling, object translation, in-plane rotation, and image intensity scale or color.



Although this intrinsic possession of invariance by such features is an attractive advantage, the
use of local features to classify imagery suffers from a number of important drawbacks.
Perhaps chief among these drawbacks is the difficulty the experimenter faces when required to
significantly increase the dimension of the feature vector as the image database increases in
image complexity and/or in the number of distinct classes which must be recognized by the
image recognition system. In addition, as experimental evidence has indicated, particularly
with respect to real image data such as SAR imagery of land targetsl4’42'94'126’127, the
classification capabilities for a set of localized features may be excellent for one image data
set but deteriorate or fail completely for a different set of images (e.g., SAR imagery for which
basic parameters such as pixel resolution and polarization discrimination are different). In
effect, the experimenter is forced to customize the choice of feature vector components to the
specific image database under consideration. One final point regarding the use of localized
features which deserves comment is the fact that, in a great deal of the work in which images
are classified using local invariant features, some form of boundary extraction algorithm is
employed to represent the image solely on the basis of its shape'®*"#104131 " Eor many types
of real world imagery such as SAR imagery, the complex nature and wide dynamic range of
the image objects effectively precludes the use of boundary detection techniques for such data.

Global features71240:5986.119.130.132 of 5y image refer to quantities which are calculated
using the entire image. The coefficients of any form of generalized Fourier transform of an
image, for example, represent global image features. The principal advantages in using global
features such as those based upon generalized Fourier coefficients or upon the ‘projection’ of
the image onto some basis series of mathematical functions are as follows' 47121167073,

(1) the derivation of such features is done ‘blindly’, i.e., the method of feature generation
in no way depends upon the specific nature or type of imagery,

2) the dimension of the feature vector can normally be increased or decreased arbitrarily
according to the requirements of the image database complexity;

(3) by choosing orthogonal bases for the generalized Fourier transform or image
projection, the feature vector components can be made to be independent of each other
and possess no information redundancy; and

“4) global features are, in general terms, reasonably insensitive to image noise and minor

occultations.

The chief drawback to the use of global features such as those derived from generalized
Fourier coefficients is that they are dependent, in general, upon global image characteristics
such as spatial scale, lateral position, in-plane rotation of the object, and image intensity scale.
As noted above, this question of invariance of the pattern recognition system to such changes
in image characteristics is a fundamental one for image classification systems since the
observer has little if any control over the degree of image variability or degradation arising



from various types of geometric transformations (scaling, object position, viewing angle) or
the presence of noise and occultation in the imaging process. The ability to recognize and
classify an object independently of such variations in the image presents one of the most
critical and challenging aspects in the design of an automated target recognition

system7’13°’l4’94’95’126.

With respect to image data, one approach to deriving global features which possess the
property of invariance to one or more types of image transformation consists in actively
processing and transforming the image so that it complies or conforms to predefined
templates”®’. For example, if invarjance to image rotation is required, a ‘fitting’ rectangle can
be computed which contains the image object. The image can then be rotated in such a way
that the object and its fitted rectangle are aligned with fixed, principal axes. If this alignment
of the object is done for all the images contained in a database, then any global features
subsequently derived from these transformed images will be independent of the object’s
original orientation. Until relatively recently, this type of image preprocessing and
transformation was the principal method available for incorporating multiple invariances
(such as invariance to image scale, position, and rotation) into the feature extraction process.
Aside from the obvious disadvantage of requiring computationally extensive image
preprocessing on each and every image in the image database, this task is often intractable or
impractical for complex imagery (e.g., 2D imagery of 3D objects38’99) which may contain
noise, asymmetric distortions, or occultations’.

An alternative method to achieve invariance to geometric transformations of an image
(i.e., changes to scale, position, and angle of rotation) was first proposed by Hu>>** in the
early 1960°’s. Hu proposed using global features (specifically, algebraic moments) which did
not possess the required invariances but for which series of algebraic expressions could be
derived which did possess the required invariances. In essence, the invariances could be
achieved by manipulating straightforward global features derived from the image as given
rather than by manipulating the image itself, a generally much more difficult and abstruse task
to perform. Although Hu’s methodology for the derivation of his ‘algebraic invariants’ and
his choice of basis functions by which the global features were calculated were subsequently
replaced by better alternatives”'>*®!"* his work quickly prompted renewed interest in this
problem and led to advancements and improvements being reported by many ‘other
researchers!>1231:3258-61.25,75.839070-13. 103 1411612512912 jpauestionably, the single most
important development since Hu’s seminal work has been the adoption of series of orthogonal
functions to serve as the basis for the feature extraction'®71>16727386.909214130  geyera]
researchers have examined and experimented with a variety of basis functions, among them
the Legendre polynomials, Zernike functions, and complex algebraic functions. The Zernike
functions, first proposed by Teague' ™, have been consistently reported by researchers’”1>°%
61.70-13.7579.86.103.116,122 ¢, outperform other bases in the task of pattern classification using



moment invariant feature vectors. To a certain extent, the (complete) standard and pseudo
Zernike functions serve as standards throughout this report by which other results are
measured. This report examines six types of basis functions which include the standard
Zernike function (SZF), the pseudo Zernike function (PZF), the standard Zernike radial
polynomial (SZRP), the pseudo Zernike radial polynomial (PZRP), the Walsh radial function
(WRF), and the Haar radial function (HRF). Note that the application of SZRP, PZRP, WRF,
and HRF bases described in this report represents novel results; these bases have not,
heretofore, been reported in the literature.

In the remainder of this chapter, the algebraic, Zernike, Walsh, and Haar moments will
be defined and brief expositions of the mathematical properties of these various basis
functions will be given. The final section in this chapter will discuss the discrete (pixel)
formulation of the exact, analog expressions for the moment invariants and some of the
problems which arise from the finite sampling representation of both images and basis
functions. The discussion given above of invariance in feature-based pattern recognition
systems is, of necessity, extremely brief. The interested reader is referred to any of several
review articles"!>6>86114116130 £ much more detailed discussions of this subject and
invariant pattern recognition in general. More detailed descriptions of the various types of

moment invariants and the mathematical bases from which they are derived may also be found
in the literature?!228.56.58-61.68.70.72,73,79,84,86,90,114,130,133

2.2: Algebraic Moments

Algebraic moments (also referred to in the literature as Hu, geometric, regular, or
normal moments) of order p+q are defined as the projection of the image onto the algebraic
basis functions H, (x,y) = x’y’, i.e.,

m,, = [ | fxy)x"y dxdy :p.g=20 (2.1)

0000

where the image density (irradiance) distribution f(x,y), which is everywhere positive, is
assumed to be finite in value and extent (i.e., m,, finite) and piecewise continuous. The
moments m,, represent, in effect, the coefficients of the generalized Fourier transform of the

image with respect to the basis functions H, (x,y)=x’y’. However, although this set of
functions is complete on the unit square, the H, (x,y) with p,g=0 are not generally

orthogonal:



1 i1 4 ;(p+s)and (g+t) even
_[ _[H oo Hdxdy = ”xl’“ Yy dxdy ={ (p+s+1)(g+t+1) (2.2)

-1-1 -i-1 0 i (p+s)or(qg+1t) odd

Similarly, it should also be noted that the area or measure of Hy, is not generally equal to 0,
specifically,

0 ,porqodd

11 11

— P4 —
_”Hpqudy— _”x yidxdy = 4 . p and q even (2.3)
- - (p+D(g+D)

The reader will note that the definition of the algebraic moments, eq. (2.1), involves
integration over the entire Cartesian plane while egs. (2.2) and (2.3) involving only the basis
functions x”y?, are restricted to the region [-1,1] x [-1,1] (in effect, the functions H , (x,y) are

defined to vanish for |x| or [y|>1). In practice, the image distribution f(x,y) will occupy only

a finite portion of the image plane, thus allowing a unit area to be defined (through
renormalization of the x, y coordinates) which encloses the image distribution.

The moments m,, of eq. (2.1) have special meanings and interpretations, particularly
for the lower values of (p+g). Many of these properties are optical or image analogs to

mechanical moments, appropriate given the strictly positive nature of the image irradiance
function f(x,y). The lowest order moment

Moo = | | 3 dxdy (2.4)

represents the total irradiance or ‘optical mass’ of the image (for noiseless, binary images, my,

is simply the total number of ‘black’ pixels). There are two first order moments



= | [£eny)xdrdy
- (2.5)

My, = ﬁf(x’y)ydxdy

which, taken together, define a “center of optical mass” as that point in the image about which
these first order moments would vanish. To transform to a coordinate system centered at this

point and to ascribe a fixed total irradiance ‘B’ to the image, the image is scaled and shifted
and an alternate set of “irradiance normalized central algebraic moments” £, is defined as

= [ [flax+ % 0y+5)x"y" dxdy :p,g20 26)
where
¥=—1
Moo
y=lo | 2.7)
Moo
Moo
o= |—
B

Thus, for any image distribution f(x,Y), the lowest order, normalized central moments are

=B and [=Hy=0 (2.8)

An alternate expression for the normalized central moments is obtained by rewriting eq. (2.6)
in the form

By = ”f(x,y)(x -5 o-3)dsdy ipg20ady=1+22 @9

[moo]’

Taken together, egs. (2.6) and (2.9), although equivalent, indicate that normalized, central
moments may be viewed in two distinct ways. In the first view, the axes of the coordinate



system are scaled and its origin shifted while leaving the image distribution as given (eq.
(2.9)). The second view treats the coordinate system as fixed and scales and shifts the image
distribution (eq. (2.6)). This difference in point of view can become significant in practice
where only a finite portion of the image plane is specified and where, for real world data, the
background of the image distribution is non-uniform. For SAR imagery, for example, a
potential target provided as a small segment of the overall image may require that additional
background be acquired or synthesized in order to process the feature vector extraction using a
uniform sized image segment which has been centered on the object’s “center of optical mass”
as dictated by either form given above of the u, definition. In the present work, the
computer generated images consist of black objects on white backgrounds and so this question
of background “padding” or segment size simply does not arise. Note that the choice of
normalization above is not unique; other normalization criteria are found in the
literature%-5>114:86,96.73,92,114,116,130 Although not presented here, second order algebraic
moments are related to moments of inertia, third order moments to image skewness, and
fourth order moments to image kurtosjs”'%7>86-114.116.130

The irradiance normalized, central moments K,y defined above are invariant to

changes in the scale and position of the image. They are not, however, invariant to the (in-
plane) orientation of the image object. To achieve this invariance, Hu employed a
mathematical technique referred to as the theory of algebraic invariants in conjunction with
expressions relating central moments for different image rotations to derive a series of
algebraic relations among the H g which are invariant to changes in the image’s angle of
orientation. Such relations or, as in the case of the other bases considered in the remainder of
this chapter, the moments themselves are referred to as “moment invariants”. Hu derived
seven such higher order expressions and then demonstrated>>>* for a simple test case that
these moment invariants could be used to classify images independently of their scale,
position, and orientation. These expressions are not repeated here; the interested reader may
consult the articles by Hu’>>* or any of several other articles” 273814130 which offer reviews
of this approach. Other researchers®> - 2>82105:119.125129 have also demonstrated the usefulness

of Hu’s moments as well as offering alternative methods for the calculation of algebraic
moments2®38:52:56.68.69,79.84,99,119,131,133

Several researchers' '&!12112271286 pave examined, from an information-theoretic
point of view, the performance of various sets of basis functions for the extraction of moment
invariants as well as their robustness (i.e., sensitivity to additive noise). The algebraic
moments of Hu suffer from two fundamental shortcomings which severely limit their
applicability to any but the simplest of image classification problems. The first and most
limiting of these shortcomings is the fact that the moments u , , being derived from the non-
orthogonal basis functions H, (x,y), are not independent of each other. Higher order

moments may be viewed as composed of two parts; one is a redundant part containing

10



information already present in lower order moments while the other is that portion which does
contain ‘new’ information. Unfortunately, as clearly demonstrated by Teh and Chin''S, the
ratio of new to redundant information in the moments rapidly falls towards zero as the
moment order increases. Thus, it would not be pragmatically feasible to work with algebraic
moments in any problem requiring a relatively large feature vector dimension. The second
shortcoming of the Hu algebraic moments is their acute sensitivity to the presence of image
noise''®!® " This report suggests a novel explanation for such sensitivity, namely that the
measure of the basis functions, eq. (2.3), is non-zero for many of the moments. When
additive noise is present, the fact that a particular basis function does not integrate to zero
means that even modest amounts of random noise will severely affect the feature vector
component (and, in the case of Hu moments, all higher order moments which possess
information redundant with it) associated with that particular basis function. This proposal
will be illustrated more clearly in Chapter 4 with the behavior of the moments for the SZRP
and PZRP bases.

23: Zernike Moments

2.3.1: The Standard Zernike Function

The set of standard Zernike functions SZF, (x,y) originates with the desire to derive a

set of basis functions with the following characteristics'>'""'"6%:

(1) the set of functions is complete and orthogonal on the unit circle;

(2)  each function is a polynomial in the two variables x = rcos@ and y =rsin6;

(3)  the set of functions transform into themselves under a representation of the two-
dimensional rotation group (in less abstract terms, a set of functions which are
invariant in form with respect to a rotation of axes about the origin); and

(4)  the set of functions contains one member for each permissible combination of the

indices n and m.

Together, these conditions lead to a definition of the standard Zernike function SZF,, (x,y) of
order n and repetition m as a complex-valued polynomial in the two variables x = rcos 6 and
Yy =rsin6 given by

SZF_(x,y) = SZF,(r.8) = SZRP, (D™ ;x*+y* <1,|m|<n,(n—m)even  (2.10)
where the real-valued, standard Zernike radial polynomial is given by, for0 <m < n,

11



(n-m)/2

SZRP,,,(")= D S,ur" (2.11)
=0

with

S =(=1)* (n =)t (2.12)
ok k\[(n+m—2k) /2] [(n-m—2k)/2]!

The standard Zernike polynomials form a complete, orthogonal basis on the unit circle with

127 )
[[ 5ZF,,(x,5)SZF} (x,y)dxdy = | | SZF,,(r,6)SZF;(r,6) rdrd6
00

x2+y<l

0

! 2%
= {.[ SZRP,,(r)SZRP;(r) rdrH | e"'""e-“‘"de}
’ 2.13)

——V

1
= {2(n+ 5 8,!}}{2f55mk}

T
=—36 6
n+l U™ )

where, since Sy.mr = Snmk, We have (SZF,,)* = SZF,.n. Note that the radial polynomials
themselves are orthogonal and independent on the unit circle. The transformation of
SZF,, (r,0) under a rotation of coordinates through an angle ¢ to new coordinates (x’,y") given

by

x'=xcos@+ysin@

y'=—xsin@+ycosQ

is particularly simple, taking the form of a phase change only, i.e.,

SZF, (x’,y")= SZF,,(r,0 + @) =™ SZF, (x,) (2.14)

It is this preservation of form under rotation which makes the Zernike functions particularly
suitable as a basis for rotation invariant features. Note that

12



SZRP, (r=1)=+1 Y n,m (2.15)

SZRP, (r=0)=(~1)*8,,,8,, ;k=012,.. (2.16)

The first few standard Zernike radial polynomials are:

SZRP,,(r)=1
SZRE(r)=r
SZRP,(r)=2r" -1
SZRP,,(r)=r’
SZRB, (r)=3r*=2r (2.17)
SZRP,(r)=r’
SZRP,,(r)=6r*—6r’+1
SZRP,,(r)=4r*-3r’
SZRP,(r) = rt

The radial polynomials for n = 7 and n = 8 are shown in figures 2.1 and 2.2, respectively, as
2-D plots versus the variable r while figures 2.3 and 2.4 illustrate the 3-D plots of SZRP for
the cases {n,m} = {7,3} and {8,0}, respectively. Figures 2.5 and 2.6 show the real part of the
Zernike function over the unit circle for the cases {n,m} = {7,5} and {8,2}. Note that, from
their definition (2.10), the real and imaginary parts of the SZF for m # 0 are simply related as

Im[SZF,,(r,0)] = Re[SZFm(r,G —%n’f)] ; m#0 (2.18)

i.e., the real and imaginary parts of the SZF are identical in form, the imaginary part equal to
the real part rotated through the angle (2r/m).

A parameter of significance in the present work is the integral equation giving the
measure or area of the Zernike radial polynomial over the unit circle as

13
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SZRP(r) withn=7and m=3
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27 [ SZRP,, () rdr = 2m(-1)""™"? —"— i
; n(n+2) (2.19)

=n R

it
o

It follows from this result that the measure of the full Zernike function vanishes forn =1, i.e.,

127

J. J-SZEIm (rv e)l’drde = 27[(_1)(""m)/2 m
00

—8,,
n(n+2)

=0 Vnmwithn=>1 3 (2.20)
= ;n=0

Other properties and relationships for the standard Zernike polynomials, including recurrence
relationships and generating functions, may be found in the literature'"'>17:2,

2.3.2 : Standard Zernike Function Moments

The standard Zernike function moment is here defined as M*2" =|A%%"| where A7 is
the complex Zernike coefficient given by
szF * )
AT = || fx,y)SZE,, (x,y) dxdy
x2+y251
12n "
= | [ £(r.6)sZF,,(r,6) rdrd®
0 - 2.21)

2z 12% .
| £(,6)SZRE,, (r) cos(mB) rdrd® ~ i{ [ £(r,6)SZRE,,(r) sin(mB)rdrd®
0 00

SZF : OSZF
Coh—iS J

ff
O by = ©

where, henceforth, the image distribution function f(x,y)= f(r,0) is assumed to be the
scaled and shifted version (as for eq. (2.9)) such that u, =B and u,, = t,, =0. Since the
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SZF form a complete, orthogonal basis set, the image function f(x,y) may be expressed as a

generalized Fourier series over the SZF, i.e.,

fxy)= Z Z AS”SZF (x,3) (2.22)

n=0 m=-n
{n~m)iseven

It is thus possible to use the Zernike expansion as a means of image representation. Indeed,
one application of this Zernike function series is to compress the image since a finite number
of the coefficients may be used in eq. (2.22) to reconstruct the image to some predetermined
degree of accuracy. Examples of this type of generalized Fourier decomposition using
Zernike functions have been given by different researchers’ '®7>1%2,

The complex coefficients A’ defined above transform simply to A3~e™ upon a
change in the image orientation (counterclockwisa) by the angle ¢. Thus the principal
standard Zernike moment M2 =
position, and orientation and it is th1s quantity which is used in the present work to form the

feature vector of the image. The feature vector derived from this basis consists of the series of
scalar components M>% ordered according to the primary index n with increasing values of m

=0or1,....,n In all of the work presented here, the feature vectors based either on the SZF
or SZRP (see below) utilize the range {n,m} = {3,1} through to {n,m} = {12,12}, inclusively,
for a total dimension for the feature vector of 45 components.

2.3.3 : Standard Zernike Radial Polynomial Moments

The standard Zernike function moments of the previous section are derived from the
complex coefficients A,» of eq. (2.21) which must be calculated through two separate
Integrations of each image. As such, these moments are computationally quite demanding and
it would be advantageous to define simpler, Zernike based moments which do not require the
same amount of calculation. To this end, it is proposed to define the standard Zernike radial
polynomial moments as M2 =|AS%*| where the real-valued SZRP coefficients are given by

i

SRE = jj F(x,y)SZRP,, (x,y) dxdy
x +y <1

128 (2.23)
= [ [ £(r.0)SZRE,,(r) rdrd6
00
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so that the SZRP feature vector is formed from the quantities M2 with the same range of
{n,m} values used for the SZF moments. The coefficient A2

m

is a real coefficient which, by

itself, results in a major reduction in the amount of computation which must be done both for
the basis functions and for the formation of the feature vectors. It should be noted, as shown
in section 2.3.1, that the functions SZRP, (r) and hence the SZRP moments M " are

independent.

Note that, by suppressing the (complex) angular dependence e™ to arrive at the
simpler SZRP moments, it is not possible to reconstruct the image f(x,y) from a knowledge
of the A of eq. (2.23) alone as was the case with the SZF coefficients. However, the
present work is concerned solely with the task of accurate image classification; questions of
image reconstruction or image compression have no role to play in the present considerations.
In short, if the SZRP moments were to prove as effective and accurate in the image
classification task, they would be perfectly acceptable as moment invariant feature vectors.

2.3.4: The Pseudo Zernike Function

The pseudo Zernike functions PZF, (r,0) are derived™!” from the same set of

conditions as those prescribed previously for the standard Zernike functions with the one
exception that condition (2) is relaxed to permit a function which is a polynomial in the three
variables, x, y, and r. The resulting functions are found to take the form

PZF, (x,y,r)= PZF, (r,0)=P, (r)e™ ;x*+y* <1, Iml<n (2.24)

where the real valued pseudo Zernike radial polynomial is given by, withO<m <n,

PZRP,, ()= B,,r"* | (2.25)
k=0
with
— I\
B, =1 @n+l-k) (2.26)
kin+m+1-k)(n-—-m-k)!

22



Note the lifting of the restriction that (n-m) be even in the case of the pseudo Zernike
functions. As a consequence, the set of pseudo Zernike functions will have (n+1)2 linearly
independent polynomials of order < » in contrast to the standard Zernike functions which will
have only Y2(n+1)(n+2) linearly independent polynomials of order < n.

Like the standard Zernike polynomials, the pseudo Zernike polynomials form a
complete, orthogonal basis on the unit circle with

121 1
[[ PZF,, (x.y)PZF} (x,y)dxdy = | [ PZF,,(r,6)PZF(r,6) rdrd6
00

x2+_v2$1

! 2rn
= { J PZRF,, (r)PZRP,;(r) rdr}{ J e™e™™d 0}
0

0
1
= {Z(n D 5, }{27:5mk}

T
=——0,06
n+l " mk J

f(2'27)

with an equally simple rotational transformation analogous to that given in eq. (2.14), namely

PZF, (x',y’,r)= PZE, (r,0+¢)= eimeZan (%, y,1) (2.28)

Note that
PZRP, (r=1)=+1 Y nm (2.29)
PZRP, (r=0)=(-1)"(n+ 16,0 (2.30)

The first few pseudo Zernike radial polynomials are:
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PZRP,(r)=1

PZRP(r)=3r-2

PZRF,(r)=r

PZRP,,(r)=10r* -12r+3

PZRP, (r) = 5r2 —4r
PZRP,(r)=r"

PZRP,,(r) =35r’ —=60r* +30r— 4
PZRP, (r)=21r* -30r* +10r
PZRP,,(r)="Tr* —6r?
PZRP,(r)=r’ J

[ (2.31)

The pseudo Zernike radial polynomials for » = 3 and n = 4 are shown in figures 2.7 and 2.8,
respectively, as 2-D plots over the variable r while the 3-D plots of the PZRP for the cases

{n,m} = {3,1} and {4,2} are illustrated in figures 2.9 and 2.10, respectively. Figures 2.11 and
2.12 show the real part of PZF, (r,0) for {n,m} = {3,2} and {4,1}. Note that, as with the

SZF, the real and imaginary components of PZF are related simply by
2r
Im[PZF,,(r,0)] =Re| PZF, (r,6-==)| ; m#0 (2.32)
m

The integral equation giving the measure or area of the pseudo Zernike radial polynomial over
the unit circle takes the form

m(m+1)

1
27 PZRP,, (ryrdr = 2m(~-1y"" ——~""—— n>
) n(n+(n+2)- (2.33)

=7 n=0

It follows from this result that the measure of the full pseudo Zernike function vanishes for
n =1
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1.5

{n,m} = {3,0} ]
....... {n,m} = {3,1} -

——— {nm}=1{3,2)

.............. {n,m} = {3’3}
]

| ' [
0.4 0.6 0.8 1.0
Radius r
Figure 2.7

The Pseudo Zemike Radial Polynomial with n = 3
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Radius r

Figure 2.8

The Pseudo Zernike Radial Polynomial with n = 4
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Figure 2.12

4andm=1

Re(PZF(x,y)} with n



12r
| [ Pz, (r.0)rdrd6 = 2m(~1y""
0

0

m(m+1)

n(n+)(n+2) "
=0 Vamwithn21 (2.34)
=g ;n=0

Other properties and relationships for the pseudo Zernike polynomials, including recurrence
relationships and generating functions, may be found in the literature' ">
2.3.5 : Pseudo Zernike Function Moments

The pseudo Zernike function moment is defined asM " = lA,,’:fF | where A7 is the

PZF coefficient given by

A= [ FGP2E, ey dxdy

x+v <1

127

j' j f(r,0)PZF" (r,0) rdrd®

(2.35)
127 12rx

=J' J’f(r 0)PZRP,, (r)cos(mB) rdrd0 —ij J'f(r, 0)SZRP,, (r) sin(m@)rdrd6
00

where the image distribution function f(x,y)= f(r,0) obeys the same conditions as those

stated following eq. (2.21). Like the SZF, the PZF form a complete, orthogonal basis set and
so the image function f(x,y) may be expressed as a generalized Fourier series over the PZF,
ie.,

<x y)= 2 2 A””PZF L(x,) (2.36)

n=0 m=~-n
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Applications of the full pseudo Zernike coefficients to represent and compress an image have
been reported by different researchers''®731%,

PZFdefined above transform simply to A’ ¢™ upon a

m

The complex coefficients
change in the image orientation (counterclockwise) by the angle ¢. Thus the principal pseudo
Zernike moment M,”" =|A"?"| is independent of the original image scale, lateral position, and
orientation and it is this quantity which is used in the present work to form the feature vector
of the image. The feature vector derived from this basis consists of the series of scalar
components M " ordered according to the primary index n with increasing values of m = 0,
...... n. In all of the work presented here, the feature vectors based either on the PZF or PZRP
(see below) utilize the range {n,m} = {3,0} through to {n,m} = {9,5} inclusively for a total
feature vector dimension of 45.

2.3.6 : Pseudo Zernike Radial Polynomial Moments

Exactly as was the case for the SZF moments, the pseudo Zernike function moments
of the previous section are derived from the complex coefficients A”*" of eq. (2.35) which

m

must be calculated through two separate integrations of each image. It would be
computationally advantageous to define simpler, Zernike based moments which do not require
the same amount of calculation. To provide such a simpler alternative, it is proposed to define
the pseudo Zernike radial polynomial moments as M 2%° =lA,f:nZRP ' where the real-valued

PZRP coefficient is given by

7 =[] f(x.)PZRB,,(x,y) dxdy
x*+y*<l

127 (2.37)
= [ [ £(.0)PZRP,,(r) rdrd®
00

so that the PZRP feature vector is formed from the quantities M~ with the same range of
{n,m} values used for the PZF moments. The coefficient A’ is a real coefficient which

results in a substantive reduction in the amount of computation which must be done both for
the basis functions and for the formation of the feature vectors. It should be noted, as shown
in section 2.3.1, that the functions PZRP, (r) and hence the PZRP moments M'*" are

independent.
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Note that, by suppressing the (complex) angular dependence e™ to arrive at the
simpler PZRP moments, it is not possible to reconstruct the image f(x,y) from a knowledge
of the A7”" of eq. (2.37) alone as was the case with the PZF coefficients. However, the
present work is concerned only with the task of accurate image classification; questions of
image reconstruction or image compression play no role in the present considerations. Thus,
as for the SZRP case, if the PZRP moments were to prove as effective and accurate in the
image classification task, they would be completely acceptable as moment invariant feature
vectors.

2.3.7: General Comments on the Zernike Moments

There are three aspects to the definition of the various Zernike feature vector
components as given above which deserve further comment.

(D) The first concerns the normalization of these coefficients. Different
researchers' > 12258696.99114122.144 1 ve gdescribed renormalization schemes for the derived
moments which are expected to noticeably decrease the dynamic range which would typically
exist for the basic moments such as those defined above. However, such renormalization
schemes have been deliberately disregarded in this work for one fundamental reason. As will
be discussed in more detail in the following chapter concerning the calculation of normalized
feature vectors, it is necessary when dealing with an artificial neural network to ensure that the
input values (in this case, the components of the feature vector) are scaled (i.e., normalized) to
fall within a preset, limited range (typically -1 to +1)*304%%%126  Thus, any prior
“renormalization” of the feature vector components would be, in effect, eradicated and
replaced by scaling parameters which are determined by the (training) data set as a whole.
Such a prior renormalization amounts, in the present work, to unnecessary computation and
complication and so was not implemented. Indeed, even the usual coefficient arising from the
generalized Fourier analysis (the term (n+1)/% in egs. (2.22) and (2.36)) was omitted from the
definition of the principal moment.

(2) A second aspect of the choice for the feature vector components in this work is that
only the principal components as defined by egs. (2.21), (2.23), (2.35) and (2.37) are used to
form the feature vector. There exist, however, n independent moments which can be formed
from nth-order Zernike functions. The principal moment is simply the most obvious and
direct one. Teague'”, Wallfa and Kiibler'?? and other authors'%337:86.92:96.114.119 discuss
methodologies for forming all of the subsidiary moments of nth order. These subsidiary
components, while independent of the principal moment, play a secondary role to the nth-
order principal moment from an information-theoretic view. Thus, particularly given the
Increased complexity of deriving the form of such subsidiary terms, only the principal
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moments were employed in the present work (a custom, it appears, followed by the majority
of researchers'>*%!"">7* who utilize moment invariants for image classification studies).

(3)  Thirdly and lastly, it should be noted that a fourth type of invariance, namely
invariance to mirror transformation(s)!'"*!?*11263130 4f the image is obeyed by the principal
moments (Teague’s “true invariants”''*) but is generally not obeyed for the subsidiary
moments mentioned above (Teague’s “pseudo invariants”m). This observation will be used
in the discussion of the experimental results on the classification of the test images used in the
present work where two of the images (the numerals ‘2’ and ‘5’) are approximately mirror
images of one another.

2.4: Walsh Moments

2.4.1 : Walsh Functions, Walsh Radial Functions, and Walsh Radial Faunction Moments

The family of Walsh functions is composed of a variety of different members which
share two common characteristics. Firstly, each member of this family represents an ordered
set of rectangular waveforms which, generally speaking, form a complete and orthogonal
series of functions. Secondly, Walsh functions assume only a finite number of amplitude
values, being piecewise continuous with a finite number of finite discontinuities at those
points where the amplitude changes (for mathematical rigor, Walsh functions are defined to
assume the value of O at the discontinuities). Some of the better known members of this
family include the Walsh, Haar, slant, and Walsh-Haar functions® >34 08471 ILI23 - Thege
functions and transforms based upon them (the fast Walsh and Hadamard transforms) have
been studied extensively and have found many applications in the fields of
communications45'77'46, image analysis and c0mpression2°'77’85 , and image feature
representation”>¢207"%  Considerable research efforts have also been placed into designing
and fabricating specialized circuitry and hardware to calculate the functions themselves or one
of the variety of fast transforms based upon them. The reader is referred to the texts by
Beauchamp®® and Harmuth*®*’ which provide detailed expositions of the entire family of
Walsh functions along with many examples of their applications. The brief exposition given
in this section adopts the notational conventions found in the texts by Beauchampg’g.

Among the variety of ways to define and calculate the Walsh functions, perhaps the
simplest and most direct is through the use of Rademacher functions which are defined as

RAD(n,x) = sign{sin(2" 7 x)} (2.38)
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where the sign(y) function is +1 for y > 0, -1 for y <0, and equal to O when y = 0. The integer
n = 0 is referred to as the order of the function. The Rademacher functions constitute
an orthogonal but incomplete set of basis functions. Figure 2.13 illustrates the Rademacher
functions for n = O through n = 6. The Walsh functions, which form an ordered set of
rectangular waveforms which are both complete and orthogonal and which assume only the
two amplitude values +1 and -1, are defined by

m 8;
WAL(n, x) = | [[RAD(, x)] (2.39)

i=0

where the order of the Walsh function, 7, is expressed as a binary number

— m m-1 . 1 0
n=>b,2"+b, 2" +---+b2 +b02} (2.40)
={b,.b,_, b, by},
and where the g; represent the Gray code representation of the integer n, i.e.,
GC) = {8810+ 812802 } (2.41)
where g =b,®b,, ;i=0,1,---m with b, =0

with @ denoting modulo-2 addition. This rather circuitous definition can be made clearer
with the aid of a concrete example. To find, e.g., WAL(13,x), one would first write

n=13={1,1,0,1},

GC(”) = {gang’gl ’go} = {1’0’111}2
(

so that WAL(13,x) = RAD(4,x)sRAD(2,x)sRAD(1,x). Note that WAL?(n,x)=1 for any order
n. Figure 2.14 illustrates the 1-D Walsh functions for orders O through 15. The term
“sequency” is commonly used in describing these functions and refers to the number of zero
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n=1

0.00 0.25 0.50 0.75 1.00
n=
0.00 0.25 0.50 0.75 1.00
—_— n=3
0.00 0.25 0.50 0.75 1.00
n=4
0.00 0.25 0.50 0.75 1.00
n=5
0.00 0.25 0.50 0.75 1.00
n=6
0.00 0.25 0.50 0.75 1.00
Figure 2.13

Rademacher functions for n=1to n=6
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The normal Walsh Functions WAL(n,x) forn=1ton=16

37



crossings (discontinuities) which lie in the interval (0,1). Sequency serves as an analogy to
the fixed periodicity or frequency of the trigonometric series {sin(nx), cos(nx)} with which the
Wajsh series shares many similarities. The sequence WAL(n,x) as defined by eq. (2.39) is
said to be sequency ordered and positively phased (i.e., WAL(n,0") = +1 for all n). The reason
why the Gray code conversion appears in the definition of the WAL function is precisely to
ensure that the series so defined is sequency ordered. A series defined exactly as in eq. (2.39)
which used the b; directly in place of the g; would lead to the same set of WAL functions but

in dyadic order instead of sequency order®”.

The series WAL(n,x) is a complete, orthonormal series, i.e.,

1
[ WAL(n, x)WAL(m, x)dx = 6,,, (2.42)
0

The functions, the constant WAL(O,x)=1 excepted, also possess a zero measure, i.e.,

1
[WAL(n,x)dx=0 5 nz1 (2.43)
0

It is a straightforward exercise to extend the Walsh functions to the 2-D plane by forming
series of products of the form WAL(n,x)WAL(m,y) defined on the unit square x € [0,1] and y
€ [0,1] and examples of these functions may be found in Beauchamp®® and Harmuth**’.
However, it is also possible to define a 2-D Walsh function series on the unit circle 0 < r < 1
and 0 £ 6 < 2n whose members are functions of r and 6 and which is complete and
orthonormal there. Such a series is defined and illustrated in Harmuth*’ (note, however, that
Harmuth uncharacteristically errs in the functional definition stated there although the
illustrations of the functions are correct). In the present work, no interest is taken in the
ability of the basis functions to serve as a generalized Fourier basis, i.e., one capable of image
reconstruction, but only in their ability to serve as a basis which yields rotation invariant
moments. Thus, in a fashion akin to that of the SZRP and PZRP bases, the Walsh radial
function is defined as

WRE,(r) = WAL(n,r") (2.44)
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The orthogonality and zero measure characteristics are preserved, i.e.,

12x
j WRE, (r)WRE, (r)rdrd6 = 278 ,, (2.45)
0

0

and

2

1
| [WRE,(ryrdrd6 =0 ; nz1 (2.46)
00

Figure 2.15 illustrates the profiles of the WRF,(r) as a function of r for n = 0O through 15.

These figures should be contrasted with those for the normal Walsh functions shown in figure

2.14. The effect of the * dependence for the WREF is to shift all of the zero crossings towards
the = 1 boundary by an amount which depends upon r. Figure 2.16 illustrates the WRF,(r)

as a 3-D plot.

The WRF moments are defined directly as M"*" =|A""| where the WRF coefficient
is given by

AY = [[ f(x,y)WRE, (x,y) dxdy
% +y2 <1
127

= [ [ f(r.@)WAL(n,r*)rdrd6
00

(2.47)

In the present work, the feature vectors formed from the WRF moments run from »n = 3 to
n =47 and thus are composed of 45 components.

2.4.2 ; Haar Functions, Haar Radial Functions, and Haar Radial Function Moments

The WAL and WRF represent global Walsh functions, i.e., functions which are zero
only at a finite number of points in [0,1]. The other major class of Walsh functions includes
those which are localized functions, i.e., functions which vanish over one or more intervals in
[0,1]. The principal example of a localized Walsh function is the Haar function defined over
[0,11forn>1 as
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+1
202 forin—SxSm 2
p

2P
> +1 +1
HAR(n, )= HARQ2" +m,x)={-2"" for "2 < x <70 (2.48)

0 otherwise

where p = 0,1,2, ... and m = 0,1, ... ,2°-1.

Note that HAR(0,x)=WAIL(0,x) and
HAR(1,x)=WAL(1,x) and so are global functions. The remaining HAR functions for n > 2 are

localized functions. Figure 2.17 illustrates the HAR functions for n = O through 15.

Like the Walsh functions, the Haar functions form a complete, orthonormal basis with

1
| HAR(n, x)HAR(m, x)dx = §,,,
0

(2.49)
while also possessing the property of zero measure forn #0, i.e.,
1
j HAR(n,x)dx=0 ; n=>1 (2.50)
0

In exact analogy with the WRF function defined above, it is possible to define a Haar
radial function as

HRF,(r) = HAR(n,r*)

.51
such that

2

1
| | HRF, (r) HRF, (r)rdrd = 275, (2.52)
00
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and

2z

1
| [HRE,(r)rdrd6 =0 ; nz1 (2.53)
00

Figure 2.18 illustrates the HRF for n = O through 15 and should be contrasted to the case of
the normal Haar dependence of figure 2.17. For the HRF, the r* dependence for the shifts the

position of the entire localized function towards the r = 1 boundary by an amount which
depends upon r. Figure 2.19 illustrates the HRF,,(r) as a 3-D plot.

The HRF moments are defined as M, = IA,,HRF l where the HRF coefficients A7 are

given by

A =] f(x,y)HRF,(x, ) dxdy

127 (2.54)
= j jf(r, OHRF(n,r)rdrd6
00

The HRF-based feature vectors in the present work have dimension 45 and are composed of
the HRF components from n =3 ton = 47. -

2.5: Moment Invariants and Discrete Images

All of the results in the preceding portion of this chapter have been expressed in terms
of analog functions defined in the (x,y) or (r,0) plane. As such, the invariances so calculated
to changes in the image scale, position, and orientation in the plane are exact invariances. In
practice, however, both the images and the basis functions are represented by their values over
a finite grid of pixels (256 x 256 in the present work). Consequently, these exact analog
relationships become approximate ones in which integration becomes replaced by summation.
In short, the existence of a finite pixel size forces the experimenter to deal with sampled
versions of both the image and basis functions.

Throughout the present work, the relationship between the analog and discrete
coordinates, illustrated by figure 2.20 (for a 16 x 16 grid), is given by
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Figure 2.20

The pixel coordinate system used for both images and basis functions.
The image plane is divided into 2N x 2N pixels.
In the example €hown here, N = 16 while N = 128 for all of the work
- inthe present report (256 x 256 grid).
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% =({i-05)A ;i=(-N+11o N} (2.55)

v, =(—-05A ;j=(-N+1)toN

where the grid dimensions are 2N x 2N pixels and A = (1/N) is the pixel width. This particular
assignment of pixel centers places the (x,y) origin at an interpixel point, i.e., there is no pixel
corresponding to the values (0,0) and thus all of the image pixels are used in the calculations.
Each of the integral relationships defined previously in this chapter can now be rewritten as a
summation over the (i,j) indices. For reference, the equations defining the various coefficients
A’ or A’ (xdenoting SZF, PZF, SZRP, or PZRP and y denoting WRF or HRF) are rewritten

here in their discrete forms:

N N
AT =R Y f(x,5,)[Re(SZF,, (x,,y,) ~ i Im(SZF,, (x,,y;))] (2.56)
i=-N+1 j=—N+1
N N
AR = A2 2 Zf(xi,yj )SZRPE,, (x;,y;) (2.57)
i=-N+1 j=-N+1
N N s
AT =AY Y f(x.y,)[RePZE,, (x, )~ iIm(PZF,, (x,y))] (258
i=-N+1 j=-N+1
N N
AHI:"ZRP = A2 z Zf(xnyj)PZRan(xi’yj) (2.59)
i==N+1 j==N+1
N N _
AV = A z Zf(xi’yj)WRF;l (x,5;) (2,60
i=— N+ j=-N+1 v
N N
AnHRF=A2 z Zf(xnyj)HREx(xi’yj) (2.61)
i=— N+1 j==N+1
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In each case, the corresponding moments from which the feature vectors are formed are
simply M, =|A; | for the Zernike cases and M =|A,f l for the WRF and HRF cases. For

small grid dimensions (approximately 32 x 32 or less), the use of straightforward, unweighted
double summations such as those above in place of the double integral would not be
justifiable; instead, a more accurate numerical approximation to the double integrations such
as the use of Simpson’s rule would be required. In the present work with a 256 x 256 grid, the
double summations are sufficiently accurate to forego the need for any type of weighted

summation' .

The finiteness of the pixel grid affects the accuracy with which the feature vectors can
be calculated in two different ways. Firstly, the processes of scaling and shifting the given
image distribution, as dictated in eq. (2.6), will inevitably introduce some distortion into the
final image as the result of the scaling and some error in the image positioning owing to the
discrete nature of the shifting process. Distortion introduced by image scaling will be most
severe for large scaling factors (either up or down) and/or for relatively small grid sizes
(again, small denoting approximately 32 x 32 or less). In the present work, the distortion
introduced through the image rescaling is expected to be relatively minor given the 256 x 256
image plane dimensions and the fact that upper and lower limits were imposed upon the
process of introducing the random scale factor into the image preparation. The shifting of the
(scaled) bitmap also introduces error since, given the discrete nature of the image distribution,
the minimum shift which is possible in either the x- or y-direction is one pixel. In effect, the
image can be positioned to its center of optical mass to within +0.5 pixel width in the general
case. This alignment error is expected to have lesser consequences when the image is
centered against analog basis functions such as the Zernike functions while producing greater
effects and errors for the discrete, stepwise continuous Walsh and Haar functions. Explicit
evidence of this will be shown in chapter 4 where the variance of the feature vectors for the
different basis functions is illustrated graphically.

The second way in which the discrete pixel grid affects the accuracy of the calculation
of the feature vectors is that the basis functions are represented by their sampled versions on
the {ij} grid. In principle and in practice, the computation of the basis function values at
these discrete points is exact. However, the double summation, as in egs. (2.56) to (2.61)
above, uses the value of the basis function at {i,j} as if it were constant over the pixel centered
at {i,j}. For larger grid sizes, this approximation is generally excellent and the double
summations may be evaluated directly as explicitly written. For smaller grid sizes
(approximately 32 x 32 and sgraller), it would be necessary to incorporate a more accurate
means such as the trapezoidal or Simpson’s rule to carry out the numerical integration. The
reader is specifically referred to the papers by Teh and Chin'">'! for a detailed description of
the effect of finite pixel size on the accuracy of integration.
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There is one additional manner in which the finiteness of the pixel grid affects the
overall classification system and that is the fact that, because the basis functions are
represented by their sampled versions, there will exist limits on the order of the basis
functions which may be accurately and correctly represented by this sampling. By considering
the minimum width of a variation in the SZRP or PZRP polynomial, it is possible to arrive at
a “rule of thumb” estimate for the allowable maximum principal index » as a function of N
(where the grid size is 2N x 2N pixels) of the form

Ry4 ~ 4N_15

max

; for SZF or SZRP

IN—5 (2.62)
PZ _

n. 5 ; for PZF or PZRP

These, in turn, leads to rules of thumb for the maximum feature vector dimension for the
Zernike bases as

. 0.04-N* ; for SZF or SZRP
Maximum Dimension of Feature Vector = ) (2.63)
0.08-N° ; for PZF or PZRP

By way of illustration, for N = 128 (the 256 x 256 grid employed in the present work), these
rules of thumb yield n, =50 and n’2 =50 with maximum feature vector dimensions of
approximately 655 and 1310, respectively. Note that these are “generous” rules of thumb
which ignore the inevitable errors incurred in the Cartesian representation of functions which
are naturally defined in terms of polar coordinates (r,8) (such considerations would reduce
the estimates for %2, and n’Z by a factor of ¥2 and, correspondingly, the estimates for the
maximum feature vector dimension by a factor of 2). The essential point here is that, owing
to the analog nature of the Zernike bases, the functions can be accurately represented on a
finite pixel grid over a broad range of indices {n,m} and thus permit relatively high feature
vector dimensions. '

The same considerations for the cases of the WRF and HRF functions, however, yield
much more restrictive findings. Allowing explicitly for the r*> dependence of these basis
functions, a rule of thumb for the maximum order of either the WRF or HRF which can be
accurately represented on a 2N x 2N grid takes the form
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max

p WREHRE _g]__l (2.64)

For N = 128 (the 256 x 256 grid employed in this work), eq. (2.64) yields the value 63 which
would limit the feature vector dimension for either the WRF or HRF to approximately 60 after
excluding the n = 0, 1, and 2 terms. Thus the actual values employed in the present work
(feature vector dimension of 45) were close to this upper limit. Indeed, the rule of thumb, eq.
(2.64), is a generous one; consideration of the polar to Cartesian conversion process would
introduce a further reduction into eq. (2.64) of V2 (in fact, the working upper limit would lie
somewhere between these two estimates). The essential point to be taken from these numbers
is that the restrictions on the order of the basis functions and hence the restrictions on the
maximum allowable feature vector dimensions are much greater for the rectangular waveform
Walsh and Haar bases than for the analog Zernike functions.

51



Chapter 3 : Experimental Design and Execution
3.1: Overview

The primary objective of the present work is to measure the performance of a multi-
layer, backpropagation-trained, neural network classifier against, (a), six different sets of basis
functions used to derive the moment invariant feature vectors for the images and, (b), two
different sets of training vectors, the first consisting solely of noise-free images and the second
consisting of a mix of noiseless and noisy images. The results of these twelve experiments,
which will be presented in chapter 4, serve to identify that set of basis functions which yields
the most accurate and robust classifier performance and will also serve to quantitatively
demonstrate the degree of improvement in the classifier performance which results from the
incorporation of noisy data into the training process.

The overall feature vector extraction and neural network classification system is
governed by several operating parameters and variables, many of which are tacit parameters
for the process, e.g., the form of the activation function for the artificial neurons and the
method employed for the normalization of the feature vectors. Accordingly, prior to
determining the classification performance for the twelve combinations stated in the prior
paragraph, a series of experiments was carried out to measure the dependence of the
classification system on, (1), the number of hidden neurons for the multilayer perceptron
network, (2), the epoch size used in the training stage and, (3), the method for the
normalization of the feature vectors. In addition, measurements were made of the variation in
the classifier performance resulting from the random nature of the network initialization and
presentation of training data. The results of these experiments will also be presented in the
following chapter.

In all of the measurements aimed at determining the performance of the neural
network classifier, the image classification process itself from raw test image to final result
consists of eight steps:

1. Creation of the scaled, translated, and rotated high resolution image.

2. Reduction of the image resolution followed by transformation (scaling and shifting) of
the image to yield irradiance normalized, central moments (L, =8 and
Ko = U =0).

3. Addition of noise and conversion of the image to a standard binary array format.

4. Calculation of the raw (unnormalized) feature vector.

5. Normalization of the feature vector (where the normalization parameters are

determined by the training set).

52



6. Generation of the complete feature vector by concatenation of the normalized feature
vector and the result vector.

7. Classification of the normalized feature vector by the neural network (where the
network has been previously trained).
8. Rating of the classification result.

Figure 3.1 illustrates this sequence in a flowchart format while indicating the differences
between the training and test processes. The first and last steps in this sequence were
executed with the aid of commercial software packages - Corel Draw (version 5.0, run on a
80486 33MHz PC) to generate the basic images and Neuralworks Professional II+ (version
5.1, run on a Sparc 2 workstation) to simulate the artificial neural network. The intermediate
steps were executed using custom programs written in Fortran 77. The core programs used to
carry out the intermediate steps in the sequence above are listed in Appendix A while the
various programs used to calculate and store the different basis functions employed in the
derivation of the feature vectors are listed in Appendix B. The remainder of this chapter will
describe in more detail the individual steps in the sequence listed immediately above. The
reader may refer to the program listings in the appendices for any points of detail not covered
in the following sections.

3.2: Generation of the Training, Validation, and Test Image Sets

All of the images used in this work were derived from a fundamental set of nine
images created by Corel Draw which consisted of the numerals ‘0’ through ‘8’ inclusive in a
sans serif font style (Corel “Switzerland” equivalent to “Helvetica™). Since, for this type of
font, the numeral ‘9’ is essentially identical to a rotated ‘6’, the numeral ‘9’ was not included
in the basis set. This basis set of images, shown in figure 3.2, consisted of the numerals
unscaled, untranslated, and unrotated. To generate the images actually used to form the
various data sets (i.e., training, validation, and test image sets), a series of four random
numbers (each between 0 and 1) was randomly chosen from a table of random numbers. The
first number was multiplied by 2 and was used to scale the image with the restriction that the
scaling factor lie between 0.4 and 1.4 in order to avoid excessive distortions of the image
owing to bitmap scaling. The second and third random numbers were transformed to values
in [-1,1] and were used to translate the image along the x and y axes while the fourth number,
when multiplied by 2, served to introduce a random rotation of the image. The only
condition applied to this overall process was that the final scaled, translated, and rotated
image must lie completely witfin the [-1,1] x [-1,1] square in which the image was originally
framed, i.e., occulted or partial images were not considered in this work. The final step in this
process was to export the scaled, translated, and rotated image as an uncompressed ‘TIFF’
(Tagged Image File Format) bitmap file consisting of 1024 x 1024 binary-valued pixels.
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¢ Figure 3.2

The basic set of nine images as Corel Draw graphics. All of the images in the
training, validation, and test sets are derived by scaling, translating, rotating, and
adding noise to these basic images.
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Two training sets were generated for use in all of the classification measurements in
this work:

e Training Set A consisted of 45 noiseless images, 5 each of the 9 numerals, with each
image having randomly chosen scale, lateral position, and in-plane angle of rotation
(subject only to the restrictions described above). The decision to use 5 images for each
numeral was arrived at by examining the goodness of the invariance of the feature vectors
for difference basis functions and by trial and error. It was found that increasing the
number of examples per numeral beyond five did not result in either more rapid or more
accurate training of the network.

¢ Training Set B was composed of two sets of 45 images, the first a noiseless set with 5
images per numeral and the second an independently derived set (with 5 images per
numeral) to which was added noise to a SNR of 8 db. The process for the addition of
noise to images and the definition of SNR for these images is described in detail in the
following section.

In order to ensure that the training of the neural network is approximately optimum
and, more to the point, is neither under- nor over-trained, an independent set of 630 images
was generated to serve as a validation set. The 630 images consisted of 14 independently
derived sets of 45 images each, 5 images per numeral in each set, with SNR’s for the 14 sets
which ranged from noiseless down to 2 db. To monitor the network training process, the
neural network was trained on a given training set for a specified number of passes (one
training image per pass) and training epoch (the number of passes between network weight
updates). The overall classification accuracy of the trained network was then measured for the
entire 630-member validation set. The network was repeatedly trained and tested in this way
while varying the number of training passes. It is an essential requirement® in the application
of artificial neural networks as pattern recognition circuits that the data sets used to train,
validate, and test the network be independent of one another. In the present case, where the
images are artificially generated, it is essential that each of these image sets be independently
generated from the basis set described above. It would be highly facetious and inherently
misleading, for example, to assess the performance of the trained network if the test image
data contained or was a subset of the training data, even if the test images were ‘modified
somewhat by, e.g., the incorporation of additional noise. With ‘real world’ data, the
underlying statistics of a given image set can vary from training to test sets or for different test
sets and this variation can affect, often substantially, the performance of the neural network
classifier. In the present case, it is expected that the statistical nature of the various image sets
would vary little if at all given the methodology of generating the images artificially via
computer software. In addition, the method of generating random noise to add to the images
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was the same for all image sets. Nevertheless, these idealizations notwithstanding, it
remained imperative that the training, validation, and test sets be generated in an independent
manner. Under training was not a problem in the present work; in virtually all cases, the
neural network converged very quickly to a trained state after only several hundred iterations
through the training set. Further training then served to reduce the RMS error of the neural
network. Over training the network also was not a problem in these measurements. It was
found that training numbers approximately 10 times those ultimately used to train the
networks were necessary to reveal any measurable degree of network overtraining and, thus,
this regime was easily avoided. Undoubtedly, this insensitivity to the number of training
iterations is a direct result of the fact that, even though the training, validation, and test sets
were independently derived, the underlying statistics of these images sets were essentially
identical given the fact that all of the images were artificially created from computer generated

images and subsequently processed by similar routines.

The test set used in all cases to measure the performance of the classification system
was composed of 23 subsets of images. Each subset consisted of 45 images, 5 each of the 9
image classes, with each image independently assigned random values for its scale, position,
and orientation. The SNR for each subset was different, ranging from noiseless (i.e., SNR =
o) through to a subset which represented pure noise (SNR = 0 db). The actual values for the
23 subsets are listed in table 3.1. To simplify the pragmatics of measuring the classifier’s
performance as the SNR of the test data decreased, these 23 test subsets were concatenated
into one large test set consisting of 1035 images from which was created the ASCII files in the
formats required for the neural simulation program (these were the “nna” files referred to in
the data preparation routines given in Appendix A). Throughout this report, reference to
‘measuring the performance of the neural network classification system’ is to be interpreted as
measuring the classification accuracy over this single, large test set containing image data of
decreasing SNR. The details of the addition of image noise and the exact interpretation of

SNR values are described in the next section.

3.3: Conversion to Irradiance Normalized, Central Moments
and the Addition of Noise

The scaled, translated, and rotated images created by the commercial graphics software
Corel Draw were exported as (uncompressed) TIFF (version 5) bitmap files containing 1-bit
pixels over a 1024 x 1024 grid. A Fortran program entitled “pixelize” and listed in Appendix
A was written to carry out severgj basic image processing tasks, namely:

1. to read the uncompressed TIFF bitmap file;
2. to convert the 1024 x 1024 image to an averaged 256 x 256 pixel bitmap;
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Test Subset Number of Iterations of | Exact SNR
: SNR g
(45 images (db) Random Noise measured
per subset) Generator (db)
TestO1 ©0 0 oo
Test02 50 207 49.9827
Test03 40 653 39.9983
Test04 30 2,071 29.9996
Test05 25 3,701 25.0004
Test06 20 6,606 19.9997
Test07 15 11,717 14.9996
Test08 12 16,879 12.0000
Test09 10 21,665 10.0002
Test10 9 24,543 9.0002
Test11 8 28,015 8.0001
Test12 7 31,947 7.0001
Test13 6 36,446 5.9999
Test14 5 41,851 4.9998
Test15 4.5 45,053 4.4998
Test16 4 49,031 4.0003
Test17 3.5 53,544 3.5000
Test18 3 58,460 3.0004
Test19 2.5 64,970 2.5003
Test20 & 72,202 2.0000
Test21 1.5 79,910 1.4998
Test22 1 95,230 0.9999
Test23 0 282,800 0.0000
Table 3.1

The SNR parameters for the 23 test subsets used to
measure the neural network classifier performance.

58




3. to perform the image scaling and translation;
4. to optionally add random noise to the image to a prescribed SNR; and
5. to save the 256 x 256, optically centered and scaled image, with added noise, as a

standard binary “pix” file containing only the final pixel values (i.e., without headers
or any other form of graphics-format-dependent structure).

The process of image scaling and translation carried out by the routine “pixelize”
correspdndcd exactly to the scaling and shifting of the image described by eq. (2.6) so that any
moments subsequently calculated were irradiance normalized, central moments. By
employing a simple naming scheme for the TIFF and PIX image files (the adoption of the
“pix” DOS extension for the 256 x 256 binary files being purely a notational choice), the
“pixelize” program could process large numbers of images automatically over a single run by
incorporating a simple “do-loop” involving certain of the filename characters.

The conversion of the high resolution 1024 x 1024 bitmapped image to the lower
resolution of 256 x 256 was achieved by a simple, running average over 4 x 4 groups of
pixels in the higher resolution image (with 2 or more black pixels in such a group resulting in
a black pixel). Figure 3.3 shows several examples of different pixel resolutions for a specific
noiseless image ranging from 1024 x 1024 down to 8 x 8. The bitmaps shown in figure 3.3
are obtained by a direct resampling of the 1024 x 1024 image using a commercial, image
processing tool (Corel Photo Paint V. 7); note that some of the distortion evident in the lowest
resolution bitmaps (16 x 16 and 8 x 8) originates with the technique employed by the software
for image resampling or scaling. Any degree of distortion resulting from the undersampling
of the bitmap image in the 1024 x 1024 to 256 x 256 down-conversion is clearly negligible.
The decision to work with 256 x 256 images was arrived at by compromise. On one hand,
this resolution is fine enough to avoid potential problems and errors which arise for images
defined on low resolution grids (approximately 32 x 32 or less) such as those'>!'® involved in
ultimately calculating the double integrals defined in Chapter 2 (see the discussion in section
2.5). On the other hand, some preliminary measurements with resolutions higher than 256 x
256 indicated that no measurable improvement in the classification performance was
achieved. This meant that practical problems of greatly increased file sizes and computation
times attendant to much higher resolution images could be avoided (a 1024 x 1024 image file,
€.g., would be 16 times larger that the 256 x 256 image file and would, in addition, require
equally larger files for the off-line storage of the basis functions).

Working with the 256 4 256 binary image, the lowest order, central algebraic
moments, iy, M, and py Were calculated. The image was then shifted in both the x and y

directions to produce an image with minimal values for u,, and Mo, This shifted image was
then scaled (up or down, as required) to yield an image with a predetermined value of Mo, Of
approximately 8. Throughout this work, the images were scaled to give a value of B=28192
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(which is 1/8 of 256 x 256). For binary-valued, noiseless images, i, = is simply the
number of black pixels. Following the image scaling, the values of u,, and u, were
recalculated and the image was iteratively shifted to yield final u,, and u,, values which were
minimal. As discussed in section 2.5, the discrete nature of the image representation on a 256
x 256 pixel grid meant that the final values of the normalized, central algebraic moments (i,
L, and u,, were generally never exactly equal to 8192, 0, and O, respectively. Figure 3.4

shows a sample entry from a file “pixelize.log” which was recorded by the program “pixelize”
during a typical run. This file recorded several key variables and parameters used during this
image preparation stage, including the final values calculated for 14, 1,4, and p,,. Note that,
although the first order moments f,, and [, are not zero, the important observation

regarding these values is that their ratio to f,, = f is << 1.

The user was offered the option of adding noise to this scaled, shifted image to a pre-
calibrated SNR. Note that the noise was added after the image had been first scaled and
shifted, i.e., the problems of determining the optical center and the scaling of a noisy image
were not dealt with in the present work. Indeed, this problem may be a significant one in
future work with real world (i.e., noisy) images where it is inherently impossible to
distinguish between noise and original image for a given pixel. Accurate scaling and
centering of a noisy image is possible provided the experimenter has sufficient knowledge
concerning the statistical nature and level of the noise present in the image since the effect of
the noise on the shifting and scaling of the image can then be predicted. In the present work,
random noise was added to the image by using a known random number generator to arrive at
a pair of numbers in the range of [0,1]. This pair was then trivially transformed to correspond
to an [x,y] coordinate in the image grid covering [-1,1] x [-1,1] for the x and y axes. The pixel
value at this coordinate was then incremented by adding +1 modulo 2 (i.e., 0+0=0,
0+1=140=1, while 1+1=0). In other words, the existing pixel at this location would be
changed to black from white or to white from black. By separately calibrating this random
number routine, the image could be modified to possess any desired SNR by iteratively
running the random number routine a specified number of times. Note that it is essential to
account for the degeneracy of this additive noise process in that pixels which are modified an
even number of time are, in effect, unchanged in value. Only those pixels which are ‘hit’ an
odd number of times are changed. Thus, as the calibration process revealed, a rapidly
increasing number of iterations was needed to produce lower and lower SNR’s owing to the
fact that more and more pixels were being ‘hit’ an even number of times when the number of
iterations increased. It is also important to note that, for these computer generated images
with computer generated additiv€ noise, the SNR is an exact, measured parameter given by
the equation
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LE SRS S S SRS EESEREEREEES ConverSlon Of TIFF Data to Pixel Data kkhkhkkhkkhkdhrokhdk hkhkirxkihr

Version 4.20 July 22, 1994
File 001022.tif Gridsize 256 x 256 Precision Real*4
Tag Tag Name Datatype Length Data Offset
254 New Subfile Type Long 1 0
256 Image Width (Pixels) Long 1 1024
257 1Image Height (Pixels) Long 1 1024
258 Bits per Sample Short 1 1
259 Compression Short 1 1
262 Photometric Interpretation Short 1 1
273 Strip Offsets Long 17 182
Strip Offsets Long 17 334
277 Samples per Pixel Short 1 1
278 Rows per Strip Long 1 61
279 Strip Byte Counts Long 17 250
Strip Byte Counts Long 17 7869
282 X Resolution (dpi) Rational 1 318
X Resolution (dpi) Rational 1 117.72
283 Y Resolution (dpi) Rational 1 326
Y Resolution (dpi) Rational 1 117.72
284 Planar Configuration Short 1 1
296 Resolution Units Short 1 3
IS AR R EEERE R EEREEEEES NS COnVerSiOn Of TIFF Data to Pixel Data hkhkkhkdkhkhkhkhkhkkkhkkhkhkdkihkk
Version 4.20 : July 22, 1994
File 001022.tif Gridsize 256 x 256 Precision : Real*4
m00 = 6289.0000 ml0 = -154.9180 m0l = 850.8320
Scaling Factor = . 8762
Analog shift factors -.0246 .1353
Pixel shift factors -3 17
Pixel shift factors 0 0
m00 = 8201.0000 ml0 = -5.6211 m0l = 22.3633
NP = 21665 Number of hits = 15745 Percentage = 24.02 Measured db = 10.00

Figure 3.4

Typical result for scaling and translation of a single image by the
program “pixelize” to produce irradiance normalized, central moments
with nominal values of pgo= = 8192 and p1o = po1 = 0.
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2_—
4N n} G.1)

SNR(db) = 20 log[

where the grid dimension is 2N x 2N (256 x 256 in the present work) and n is the number of
pixels changed from the noiseless image. Note that, with this commonly employed definition
for images, negative values for the SNR are not possible. Rather, a SNR = 0 db represents an
image of ““pure noise”, i.e., the probability that a randomly selected pixel represents noise is
50%. Table 3.1 includes the number of iterations of the random noise generator algorithm for
a fixed seed value which were required to produce the SNR listed there. Figures 3.5 through
3.8 show a complete sequence of 23 images of the same numeral to which increasing levels of
noise have been added from noiseless to SNR = 0 db as described in Table 3.1.  This series
of images serves as an explicit illustration of the SNR levels for the classifier performance
measurements presented in Chapter 4. Figure 3.9 shows a series of images for two similar
numerals, the ‘3’ and the ‘8’, for SNR’s of 3, 2, and 1 db. This figure illustrates that a SNR of
2 db represents that level below which human ability to reliably identify the image begins to
fail. To underscore this point, it is left to the reader to decide which image is the ‘3’ and

which is the ‘8’ for the 1 db SNR case in figure 3.9.

The final task performed by the “pixelize” program is simply to save the scaled and
translated image with its additive noise as a binary file containing only values of the 256 x
256 pixel grid (in the present work, 2-byte integers for the binary-valued images). This native
format was one readily used by the subsequent processing algorithms required to read the

bitmap images.

3.4 : Calculation of the Raw Feature Vector

The calculation of the raw (unnormalized) feature vector is a straight forward
calculation involving the double summation (integration) of the 256 x 256 ‘pix’ file produced
by the program “pixelize” multiplied by the appropriate basis function previously calculated
and stored off-line. Care was exercised to ensure that no contribution was made to the
calculation for any pixels lying outside of the unit circle. The programs “genfvzer” and
“genfvwal”, listed in Appendix A, were used to execute this step. The summation formulas
used are those given by eqgs. (2.56) through (2.61). Each such double summation produces
one component of the feature vector in the case of the SZRP, PZRP, WRF, and HRF basis
functions. For the complex-val'd SZF and PZF bases, separate double summations are
carried out for each image with the real and imaginary parts of the basis function and the
feature vector component formed by taking the square root of the sum of these integrals
squared. All of these double summations are carried out without any weighting function or
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lllustration of the image degradation with decreasing SNR ratio from
SNR =6 db to SNR = 3 db.
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Ilustration of the image degradation with decreasing SNR ratio from
SNR = 2.5db to SNR = 0 db (pure noise).
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Figure 3.9

lllustration of similar images for low SNR. Human ability for accurate
classification begins to sharply deteriorate for SNR’s of 2 db and lower.
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the use of any integration technique such as the trapezoidal rule. This simplification is a
welcome consequence of using the relatively high resolution of 256 x 256 pixel images
(indeed, the desire to avoid such mathematical complications was one of the principal reasons

for choosing this resolution).

In all cases, the basis functions were calculated and stored offline using a series of
different algorithms which permitted the calculation of the functions over a user-specified
Tange of indices. These programs are listed in appendix B. To verify the validity of these
Calculations, other programs were written to explicitly test the orthonormality of the calculated
basis functions over the entire range of indices employed in the calculations. Listings of these
Programs are included in Appendix C. In addition to these validations, many of the calculated
functions were plotted using a commercial graphing package (Axum v. 4.0) as a means to
Provide visual confirmation of the expected behavior of the functions. The calculations of the
SZRP and PZRP bases (which were also calculated as part of the SZF and PZF calculations,
Tespectively) required explicit, algebraic expressions for these polynomials as prescribed by
€gs. (2.11), (2.12), (2.25), and (2.26). These expressions were calculated ‘by hand’ and then
checked by expanding the polynomial expressions (up to n = 40) using a commercial,
Symbolic matbematics program (Mathematica) in order to ensure that these expressions were

€ITor free.

The choice of 45 as the dimension of the feature vector used throughout this work was
aived at by some preliminary trial and error as well as being guided by the work reported by
Several other researchers working on similar problems®**"'*!®®. This number represents the
total number of principal moments derived from the use of the SZF and SZRP from order n=3,
m=1 through to n=12, m=12, inclusively. While this exact number is therefore somewbat
More arbitrary for the remaining basis functions (being n=3, m=0 through to n=9, m=5 for the
PZF and PZRP functions and from n=3 to n=47 for the WRF and HREF bases), it was felt that
keeping the dimension of the feature vector constant for all the different basis functions
allowed for a more meaningful comparison in the final results. In addition, it was observed,

by trial and error, that the final performance capability was not particularly sensitive to the
Value of the feature vector dimension ®>>'®. One relatively minor difference adopted in the

Present work when compared to similar work reported in the literature "1%5861103 4o g
additiona] lower order moments were excluded from the feature vectors after it was observed
that the very lowest moments (n=1 and n=2 for both the Zernike and Walsh functions)

exhibiteq unusually high sensitivity to the presence of noise in the images (most researchers

Include the n=2 terms in their feature vectors).

The calculation of the raw feature vectors constituted one of the most time consuming,

Cpyu intensive steps in the overall classification process. To facilitate and automate this step,
the Programs “genfvzer” and “genfvwal” were written to calculate the feature vectors for setg
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of images in a single run, again using simple and direct filename structures to allow for
automated processing of the various input and output files. In addition, the programs were
written to allow for command line parameters upon invocation, i.e., these programs could be
run from a command line without any need for user prompting. This greatly facilitated the
task of calculating the feature vectors since these programs could be repeatedly invoked with
the aid of batch files to calculate results for series of image sets using appropriate command
line parameters. Typical runs using “genfvzer” and “genfvwal” took several days of
continuous CPU time but could be carried out without any operator intervention.

3.5: Normalization of the Feature Vectors

Almost without exception, the models used for the artificial neurons which make up an
artificial neural network incorporate a transfer or activation function which serves as a
“squashing” or limiting function for the weighted sum of the inputs to that neuron**. Two
of the most common employed transfer functions are the sigmoid and tanh functions. It is an
essential requirement in the preparation of data which is to serve as an input to a neural
network that the range of this data be limited in its scale in order to avoid any one component
dominating the behavior of those neurons to which it is applied. This scaling of network
inputs is commonly referred to normalization of the data. The raw feature vectors as
calculated by the “genfvzer” and “genfvwal” routines of the previous section typically exhibit
a range in their component values of 4 to 5 orders of magnitude. If this data were presented to
the network without normalization, the largest of the vector components would completely
determine the network’s behavior and the training process. The inevitable result would be a
neural classifier which would exhibit little if any classification capability since it would be
able to discriminate between classes only upon the basis of a few, dominant components.

So fundamental is this process of data normalization that all commercially available
neural simulators as well as software designed for specific neural network hardware explicitly
incorporate some mechanism to scale the network inputs for both training and test data. In the
present case, the Neuralworks Professional Simulator II+ software includes, as a default, the
creation of a ‘minmax’ table derived from the training data. This table is normally used to
scale both the training data and any subsequent test data to ranges which are acceptable and
meaningful to the neurons within the network. In the present work, however, this feature of
the simulator was explicitly disabled in favor of directly calculating the input values according
to different normalization schemes.

In all, four different methods of feature vector normalization were evaluated. In order

to describe them precisely, the following notation concerning the feature vector components is
first introduced:
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- max2(j) = p(j) —min[rfv(i, j)]

1fv(i, j) = the j™ component of the i" raw feature vector

fv(i, j) = the normalized feature vector
(3.2)

v

U(j) = mean of the j"™ component of the training set {rfv(i, j)}
max1(j) = max[rfu(i, j)1 - u(j)

} rfv € training set

[1344]

where the quantities (j), max1(j), and max2(j) are determined by allowing the index “i” to
vary over the entire training set (i =1 ... 45 for training set A and i = 1 ... 90 for training set
B). In the present work, j = 1, ... 45 where 45 is the dimension of the feature vectors.

L.

Standard Normalization (SN).
This is defined by

rfv(i, J) — 1) (3.3)

max[max 1(j), max 2(;j)]

fVSN(i’j) =

Thus the characteristics of ‘standard normalization’ are a zero mean with a maximum
value of +1 (max12max2) or -1 (max l<max2).

Positive Normalization (PN).
This is defined by

Poon s 1) =| (Fosy (i, )| (3.4)

The characteristics of ‘positive normalization’ are thus a non-zero, positive mean with
a maximum value of +1.

Bipolar Normalization (BN).
This form of normalization is defined by

€y C o N N s
Foun (i j)=2 rfv(i, j) [maxlfj) max2f1) 2* u(j)]
max 1(j) + max 2()

(3.5)
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The characteristics of ‘bipolar normalization’ are a non-zero mean and at least one
component with a value of +1 and at least one with a value of -1.

4, Differential Normalization (DN).
This is a radically different type of normalization defined in the following way

+1; vy j+D— (i, NIz 0
,j)= 3.6
Poow(e- 1) {—1; gy s j+ )= fogy (i )]< 0 (.0

The characteristics of ‘differential normalization’ are thus that, (1), each component of
the feature vector is either +1 or -1 as determined by eq. (3.6) and, (2), the dimension
of this feature vector will be one less than that of SN. While, in certain respects, fv,,
represents a fundamentally different type of feature vector, it is here regarded as one
more type of normalization given its derivation directly from the standard normalized
feature vector. The motivation underlying the differential normalization arose from
the observation (illustrated in the next chapter) that the form of the normalized feature
vector SN (indeed, for the PN and BN vectors as well) remained roughly constant as
the SNR was decreased for several of the basis functions employed. This suggested
that a feature vector based only upon the sign of the differences between adjacent
components would be largely unchanged in the presence of noise and, if so, could
serve as a viable feature vector.

The SN, PN, and BN feature vectors were generated by the program “Normfv” which
is listed in Appendix A. This program normally processed a set of images per execution and,
like most of the other core Fortran programs in Appendix A, offered the ability to be run from
command line parameters so that several different sets of images could be normalized by
creating simple batch files to repeatedly invoke the program. The DN vectors were created
separately by the program “gencv” also listed in Appendix A. The results for the classifier
performance as a function of the type of normalization are given in Chapter 4. A final note to
this section concerns yet one further type of normalization found in the literature®®'>'* which
uses the standard deviation of the raw feature vector cbrnponents and normalizes each
component (of the training set) such that the standard deviation of the normalized feature
vector components are exactly equal to one. This type of normalization was tried in the
present work and found to give poor results, particularly when compared to the SN and BN
schemes. It is believed that this ‘standard deviation’ normalization scheme fares poorly
chiefly owing to the fact that the range of values of the normalized feature vectors can
significantly exceed the [-1,1] range characteristic of the schemes described above.
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3.6: The Neural Network Classifier

The decision was made early in this work to employ a three-layer perceptron neural
network trained using the backpropagation training algorithm (the cumulative-delta variation).
Figure 3.10 shows a schematic illustration of the three-layer perceptron neural network
architecture and its associated synaptic weights while figure 3.11 shows an example of the
actual Neuralworks Professional Simulator II+ interface screen complete with a trained
network and monitoring instruments (note that the ‘three-layer’ neural network of figure 3.10
would be referred to by some researchers as a “two-layer” network — there is, unfortunately,
no consensus on this terminology for neural networks*”). Measurements were carried out to
determine the best choice of transfer functions for the hidden layer and output layer neurons
(the input layer of neurons acts only as a distribution layer, i.e., it has a linear transfer
function). Four combinations were tried, namely sigmoid-sigmoid, sigmoid-tanh, tanh-
sigmoid, and tanh-tanh. The tanh-sigmoid combination was found to be noticeably superior to
the others in terms of the speed of convergence and stability in the training process and so was
adopted for the neural network throughout all of the present work. Note that this combination
matches the fact that the inputs to the neural network are, generally, in the range [-1,+1] while
the output neurons are trained to yield results in the range [0,+1].

The dimensionality of the neural network, i.e., the number of neurons in each of the
three layers, was largely determined by the dimension of the feature vectors which served as
the network inputs and by the number of classes of the result vectors. Thus, in all of the
present work, there were 45 input neurons and 9 output neurons with each output neuron
representing one of the 9 image classes (a +1 value signifying a ‘hit’ and a value of 0
signifying a ‘miss’). A series of measurements was conducted to determine an approximate
optimum for the number of hidden layer neurons. These involved measuring the classifier’s
performance for a specific basis function set with all other parameters (number of training
iterations, initialization parameters, etc.) held constant. These results are given in the
following chapter. Note that although some researchers use a Kohenen-type of neural layer on
the output (such a layer iteratively cycles the output using a competitive algorithm which
ultimately forces the output layer to give only one non-zero result - a “winner-take-all”
behavior), the output layer in the neural classifier used in the present work produced analog
values, generally in the range of 0 to +1. The values of the outputs representing the individual
classes provided very useful information concerning the behavior of the classifier as its
performance degenerated with decreasing SNR’s in the test data. A methodology by which
the outputs were ‘rated’ is described in the following section.
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Figure 3.10

Schematic representation of the three-layer, fully interconnected neural network.
The weights u, and v, are determined by the backpropagation training algorithm.
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The interface screen to the commercial neural network simulator, NeuralWorks Professional I1+.
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plots, the confusion matrix, and the histogram of weight values.



The Neuralworks Professional Simulator II+ uses several different types of ASCII files
(with options for comma or space delimitation) to serve as inputs and outputs from the neural
network.  Specifically, the input file (denoted by the extension ‘nna’) combined the
(normalized) feature vector (generated with the program “normfv” in Appendix A) with the
expected result vector (created with the program “genrv”’ in Appendix A) to form the
complete vector file required by the commercial simulator. This nna file was written by the
program “gencv” in Appendix A. Note that the result vector portion of this file is critical in
that it is used during the training phase to provide the correct “answers” expected of the
trained network. When test data is subsequently submitted to the trained network, the
simulator produces an output ASCII file (the nnr format) which contains the expected result
vector portion of the complete input vector along with the actual output values calculated by
the trained network. Note that the form of the input file is thus the same for both training and
test data, although the simulator uses the result vector portion for very different purposes.

There exists a richly diverse family of neural network architectures and training
algorithms®, most of which are offered through the Neuralworks software. The decision to
employ a multilayer perceptron trained by the backpropagation algorithm as the neural
network classifier is, in part, a reflection of the fact that this particular network and training
algorithm combination has been and continues to be the “workhorse” of neural network
applications. The backpropagation-trained, multilayer perceptron has proven itself repeatedly
in many varied applications such as image classification to be an accurate, robust tool for the
task. Although no attempt was made in the present work to examine other network
architectures for the task at hand, such research would be highly desirable in the near future in
connection with the application of the results of the present work to SAR image classification.
Recent, newly proposed neural networks*?>* 1'88’124, some of which are akin in architecture to
the multilayer perceptron appear to offer the potential of significant computational and
possibly performance advantages. In addition, several types of affordable, PC-based, neural
network hardware are appearing commercially which offer impressive gains in computational
network throughput over neural simulators. These hardware-based networks often are
designed to work with specific, non-multilayer-perceptron and/or non-backprogation-trained
architectures. However, the present usefulness of the backpropagation-trained, multilayer
perceptron should not be underestimated. Recent work by Nair et al®®, for example, on image
classification of a series of targets using several different neural network paradigms found that
the backpropagation-trained, multilayer perceptron offered the best performance of the five
types of networks and training algorithms tested.
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3.7: Assessing the Performance of the Classifier

The analog result from the neural classifier consists of nine outputs, one for each
image class (i.e., numeral) with each output lying in the range from O to +1. The network is
deemed to have correctly identified an image only when the output corresponding to that
Particular image class is the largest of the nine outputs. The simplest method, therefore, to
quantitatively measure the classifier performance is to assign the value +1 (i.e., 100%) for a
correct result and a O otherwise. However, this clearly is a crude measuring meter. For
example, a correct result for which the ratio of the (correct) largest output is only slightly
larger than the second largest result represents a value with which would be associated a much
smaller “confidence level” than one where the largest output is much greater than the next
largest value. Conversely, a ‘miss’ where the output value for the correct class is only
nominally smaller than the largest (but incorrect) output should contribute some value to the
Tating of the classifier performance other than a simple zero.

To arrive at a more faithful measure of the classifier performance over any given test

subset, a sigmoidal weighting function was adopted to quantitatively rate the individual
Tesults. Specifically, the model used in the present work was to calculate a value 0 < f <1 for

any given result according to

1
f=1r=wn 3.7
Where the measured parameter ‘R’ is
Ratio of correct result to next largest result for a ' hit’ (3.8)
" | Ratio of correct result to the largest result for a' miss' '

The parameters chosen for eq. (3.7) result in f = 0.50 when R = 1 (i.e., a 50% confidence level
when the correct output is the largest result but equals the output from one other output), f =
0.60 when R = 1.1, and f = 0.40 when R = 0.9. Although these parameters are somewhat
Subjective in choice, trials with different parameter values revealed that the final, overall
classification values were quite insensitive to these choices. The results for the measurements
of classifier performance which are given in the following chapter (performance for each of
the 23 test subsets of table 3.1) use the accumulated sum of the values of f as given in eq. (3.7)
Over one entire test subset (45 images).
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One final observation which is pertinent to the method for measuring the classifier’s
performance is that, in virtually all of the cases studied, the trained neural network, as the
SNR of the test images is decreased, fails by tending to predict the same result for all image
classes which are presented to it. For example, once a given network begins to completely
fail, 1t may predict that all test images submitted to it are the numeral 2’. Strictly speaking,
for the test subsets which consist of 45 images composed of 5 samples from each class, five of
these results are “correct” so that, apparently, a minimum performance for the classifier must
be approximately 11%. Clearly, however, such a conclusion is facetious since, at that point,
the confidence level in any given result is effectively zero. To more accurately reflect this
characteristic, the classifier performance as plotted versus the individual rating for each of the
test subsets of table 3.1 is renormalized according to the formula

Rating(%) =100 —L —Jm_ (3.9)

If max f minl
where, for a given test subset, fu, and fn.. are the minimum and maximum values,
respectively, of f over the entire 23 test subsets. In practice, this renormalization has no effect
on the higher values but sets the lower bound for the measurements to 0% instead of the 11%
referred to above.
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Chapter 4 : Experimental Results

4.1: The Feature Vectors

It warrants repeating that the input to the neural network classifier is not the image
data but is instead the feature vector derived using one of the basis function sets described in
Chapter 2, i.e., the neural network is employed as a classifier of feature vectors. It is,
therefore, a reasonable expectation that a direct examination and comparison of the feature
vectors themselves should reflect many of the characteristics and attributes of the images
themselves. This section will present a several illustrations of the dependence of the feature
vectors upon different parameters in order to portray graphically many of the characteristics
Which ultimately will be reflected in the performance of the neural network classifier.

Figures 4.1 through 4.12 show the feature vectors for the numerals ‘0’ through ‘8’ for
€ach of the twelve combinations of function basis and training set with standard normalization
throughout. In each case, the feature vectors shown are averages of five, single image feature
vectors corresponding to the same numeral with five different, random combinations of scale,
translation, and rotation (these are the 45 noiseless images which make up testO1 of table 3.1).
Note that, even though these figures together present the reader with a considerable number of
illustrative examples, the number of feature vectors illustrated represents only a tiny
Percentage of the 50,000+ feature vectors generated and tested during the course of the present
work.

One very general observation which follows from an inspection of these twelve figures
is that the basic character of the feature vectors are quite different in form for the eight sets of
Zemike-based feature vectors in comparison to the four sets of Walsh-Haar based vectors.
Furthermore, the natures of the SZRP and PZRP based feature vectors are more similar to
€ach other than to either the SZF or PZF based vectors. Note that some of the feature vectors
shown in figures 4.1 to 4.12 have components for which the magnitude is > 1. It is important
to remember that all of the normalization schemes for the feature vectors described in section
3.5 ensure that the training feature vector components have magnitudes < 1. The zest feature
vector components, however, may be > 1 in magnitude and, as will be shown shortly, the
addition of noise can lead to feature vector components, in certain cases, which change by
more than an order of magnitude from their values in the noiseless case. Finally, again in very
general terms, note that the feature vectors for a specific basis normalized on training set A
(noiseless data) are very similar to those normalized on training set B (mixed noiseless and
noisy data) although significant differences are evident for the SZRP and PZRP bases.

It is anticipated that, within the set of nine numerals, there should exist greater
Similarities for the feature vectors derived from those numerals which are themselves
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Feature vectors for the numerals '0' through '8' for the SZRP basis,
noiseless images, and standard normalization using Training Set A (noiseless)-
The horizontal axes show the order {n,m} of the Zernike functions.
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Feature vectors for the numerals '0' through '8' for the SZF basis,
noiseless images, and standard normalization using Training Set B.
The horizontal axes show the order {n,m} of the Zemike functions.
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Feature vectors for the numerals '0* through ‘8' for the SZRP basis,
noiseless images, and standard normalization using Training Set B.
The horizontal axes show the order {n,m} of the Zermike functions.
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noiseless images, and standard normalization using Training Set B.
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Feature vectors for the numerals '0' through '8’ for the HRF basis,
noiseless images, and standard normalization using Training Set A (noiseless).
The horizontal axes show the order n of the HRF functions.
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Feature vectors for the numerals '0' through '8' for the WRF basis,
noiseless images, and standard normalization using Training Set B.
The horizontal axes show the order n of the WRF functions.
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Feature vectors for the numerals '0' through ‘8' for the HRF basis,
noiseless images, and standard normalization using Training Set B.
The horizontal axes show the order n of the HRF functions.
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somewhat similar in appearance. Thus, for example, the feature vectors for the numerals ‘0’,
‘3’, and ‘8’ should be more ‘“correlated” than, for example, the feature vectors for the
numerals ‘0’ and ‘1°. This expectation is illustrated in figure 4.13 which shows the difference
between the feature vectors for ‘0’ and ‘8’ in part (a) and the difference between the feature
vectors for ‘0’ and ‘1’ in part (b) (all for the SZF basis with standard normalization against the
training set A). Clearly, as the number of terms which lie close to zero reveals, the feature
vectors for the numerals ‘0’ and ‘8’ are much more closely related than those for the numerals
‘0’ and ‘1’. In effect, the neural classifier must distinguish between a ‘0’ and an ‘8’ using a
reduced number of feature vector components. This means that when the neural classifier’s
performance is measured against the full, 1035 image test set, it should be expected that the
classifier will ‘fail’ sooner on the ‘0’ and ‘8’ feature vectors than on the ‘0’ and ‘1’ or ‘1’ and
‘8’ combinations. It was noted in Chapter 2 that the feature vectors employed in this work,
being composed of purely principal or ‘true’ invariants, are also invariant to mirror
transformations of the basic images''*. The numerals 2’ and ‘5’ are approximately mirror
images of one another and figure 4.14, which shows the difference between their feature
vectors, clearly illustrates this “mirror invariance” by the number of near zero differences
between the two image vectors.

The question of how accurately invariance is obeyed for the actual calculated feature
vectors is addressed in figures 4.15 through 4.20 for the six different basis functions using the
numeral ‘3’ in each case as a typical representative of the test image set. Each of these six
figures shows five plots of the feature vector for the numeral ‘3’ for the case of noiseless test
images (testO1 of table 3.1), each of the five vectors representing a different scale, translation,
and orientation of the numeral. Clearly, the approximation to exact invariance for the case of
the SZF, PZF, SZRP, and PZRP bases is excellent with only relatively minor fluctuations
from the average. Furthermore, of these four Zernike bases, the SZRP and PZRP bases come
closest to perfect invariance in the calculated feature vectors. This is in sharp contrast to the
case for the Walsh functions, figures 4.19 and 4.20. Evidently, the Walsh and Haar bases
produce feature vectors with considerably more variance in their values, particularly for the
higher sequency components of the feature vectors. The principal cause of this increased
departure from exact invariance is believed to be chiefly the result of the finite pixel size and

the fact that the image cannot be exactly scaled and translated to its center of optical mass as
was discussed in sections 2.5 and 3.3. Although the alignment of the $caled and shifted image
with the basis function can only be done to an accuracy of approximately one-half pixel width,
such “misalignment” introduces very little error into the double integral calculation of the
feature vector component in the cases involving the smoothly varying, analog Zernike bases.
For the Walsh functions, however, this “misalignment” obviously produces greater errors
given the step-like nature of these basis functions. This misalignment is expected to have its
greatest effect the finer the step sizes for the Walsh function and this expectation is borne out
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Difference between feature vectors for SZF basis, noiseless images,

standard normalization on Training Set A.
(a) Feature vector difference for '0' and '8'
(b) Feature vector difference for '0' and '1'
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Difference between feature vectors for numerals '2' and '5',
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Figure 4.15
Variance of the feature vectors for the SZF basis, noiseless images,
for standard normalization on Training Set A.
(a) Plot of 5 feature vectors for 5 different examples of the numeral '3’
(b) The mean of the 5 feature vectors of (a) plus their deviations from the mean
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Variance of the feature vectors for the PZF basis, noiseless images,
for standard normalization on Training Set A.
(a) Plot of 5 feature vectors for 5 different examples of the numeral '3'
(b) The mean of the 5 feature vectors of (a) plus their deviations from the mean
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Variance of the feature vectors for the SZRP basis, noiseless images,
for standard normalization on Training Set A.
(a) Plot of 5 feature vectors for 5 different examples of the numeral '3'
(b) The mean of the 5 feature vectors of (a) plus their deviations from the mean
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Variance of the feature vectors for the PZRP basis, noiseless images,
for standard normalization on Training Set A.

(a) Plot of 5 feature vectors for 5 different examples of the numeral '3'
(b) The mean of the 5 feature vectors of (a) plus their deviations from the mea”
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Variance of the feature vectors for the WRF basis, noiseless images,
for standard normalization on Training Set A.

(a) Plot of 5 feature vectors for 5 different examples of the numeral '3'
(b) The mean of the 5 feature vectors of (a) plus their deviations from the mean
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for standard normalization on Training Set A.
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by the observation that the variation in the feature vectors for both types of Walsh functions is
Considerably greater at higher orders than at lower orders.

In Chapter 3, four different normalization schemes were described, namely standard
hormalization (SN), positive normalization (PN), bipolar normalization (BN), and differential
Normalization (DN). These schemes produce very different looking feature vectors as
llustrated in figure 4.21 for the case of noiseless test images, the PZF basis, and, in each case,
Using the noiseless training set A for the normalization parameters. The question of which
Normalization scheme resulted in the best neural network performance will be dealt with in
Section 4.4 of this chapter. Note that, in figure 4.21, the DN feature vector is shown over the
45 PZF components even though its dimension is only 44 and, strictly speaking, the x-axis for
DN vectors would be a simple running index and not the PZF {n,m} indices. To facilitate the
COmparison to the SN vector, the DN example simply ‘adds’ a zero first value for purposes of
Plotting so that the actual 44 values for DN run from {3,1} to {9,5} in figure 4.21.

The feature vectors, as expected, change as the SNR of the images is decreased. The
Severity of change, however, is strongly dependent upon the basis functions used in the
®Xtraction of the feature vector. Figures 4.22 through 4.27 illustrate the degradation of the
feature vector with decreasing SNR for the SZF, PZF, SZRP, PZRP, WRF, and HRF bases,
'eSpectively, for the case of standard normalization derived from the noiseless training set. In
®ach case, the feature vectors corresponding to SNR’s of oo, 25, 10, and 5 db are shown.
Quite clearly, the degradation of the feature vectors is the least drastic for the SZF and PZF
bases. 1t is considerably worsened for the WRF base but clearly the worst of all for both the
SZRP and PZRP cases. In the latter cases, the addition of even very moderate amounts of
M0ise to the image produces relatively major distortions in the feature vectors. Figure 4.28
Shows the difference between the normalized feature vectors for the SZRP basis for the
Wmera] “1° and the cases of noiseless and SNR = 8 db images. This figure explicitly reveals
that comparatively little distortion of the feature vector with noise occurs for those
“mponents for which the secondary index m is small but rises quickly as m increases towards
™= n. This correlates exactly with eq. (2.19) (and eq. (2.33) for PZRP) giving the measure of
the SZRP basis function as a function of m and thus reinforces the previously stated
“Onclusion that image noise will most severely affect those feature vectors which are derived
from basis functions with nonzero measure. In the present example, the measure of the SZRP
(ang PZRP) basis functions is small (or zero) only for m = 0 (or m = 0) and increases to a
Maximum value when m = n.

Figure 4.27 for the HRF basis reveals a behavior quite different from that for the other
_ﬁ"e basis functions employed insofar as the degradation of the feature vector with added noise
s Tadjcally different for different components of the HRF vector. Examination of the feature
Vector degradation with noise for the HRF basis for other numerals reveals a consistent
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Figure 4.21
lllustration of the four types of feature vector normalization
for the noiseless numeral '2', PZF basis, normalized on Training Set A-
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Degradation of feature vector with decreasing SNR for SZF basis,
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Degradation of feature vector with decreasing SNR for PZF basis,
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Figure 4.24
Degradation of feature vector with decreasing SNR for SZRP basis,
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Degradation of feature vector with decreasing SNR for PZRP basis,
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Figure 4.26
Degradation of feature vector with decreasing SNR for WRF basis,
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Difference between feature vectors of noiseless and SNR 8 db images
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behavior essentially identical to that exhibited in figure 4.27. Note that certain of the HRF-
based vector components are almost-exactly constant as the SNR is decreased while a small
subset of the feature vector components exhibit large changes. This somewhat anomalous
behavior is directly traceable to the localized nature of the HRF functions (all of the other
bases are global functions). For example, the component for index n = 31 is one of those
HRF-based components which is essentially unchanged by the addition of noise. Referring
back to the illustrations and definition of the HRF functions in chapter 2, it may be seen that
the n = 31 HRF has a very narrow, non-zero portion which is located at r =1 where either
very few or no image object pixels can be found. Thus, since this very localized function
integrates to zero (eq. (2.53)), the corresponding feature vector component can be expected to
remain approximately constant as the SNR is decreased. This behavior should be contrasted
with the behavior for the adjoining component at n = 32. The HRF for n = 32 consists of 2
much broader (but still localized) portion which is located at r =0 and it should be expected
that the corresponding feature vector component will exhibit greater change as the SNR is
decreased. Although the marked changes for n = 29 and n = 30 are less obvious, the behavior
at those index values may also be traced to the specific form of the HRF function for those
indices.

Each of the graphs shown thus far depicts the “normal” view, i.e., the 45 scalar
components of a feature vector are shown for a single image as a function of the order of the
basis function from which the components are derived. However, during the course of
examining the correlation between feature vector components, it was discovered that there
existed strong degrees of correlation between certain components of the WRF and HRF
feature vectors. This follows from the piecewise continuous, rectangular waveform nature of
these functions. The difference between any two WRF (and, of course, the HRF) will be 2
localized function. For certain pairs of WRF (and HRF) this difference will be non-zero only
for values of r =1 (such pairs can be seen by simply examining the plots such as those of
figure 2.15). Since the images are irradiance normalized to 8 =8192, i.e., normalized to 2
constant ‘area’, it follows that some of the images will cover the range 0<r <1 more thad
others (the ‘1’, e.g., more than the ‘0’). In general, all of the images (in the noiseless case)
will have some “white space” in the image plane for r=1. The feature vector components
corresponding to these pairs of WRF (or HRF) components may thus be expected to b¢
approximately equal for all images. This characteristic is illustrated by figure 4.29(a) which
shows the n = 5 and n = 6 components of the WRF based features over the entire set of 207
averaged feature vectors (each vector an average of 5 images). Clearly, as figure 4.29(0)
shows, these two components of the WRF based feature vector are highly conrelat"fd
throughout the entire test set, i.e., these components are essentially redundant. Note that ever
though the WRF are independent and orthogonal, the feature components formed from thef®
can be correlated and hence, to some degree, redundant. This means that, in the cases of the
WREF and HRF bases, the “effective dimension” of the feature vectors employed will be 165°
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Correlation between WRF feature vector components,
noiseless images, standard normalization on Training Set A.
(a) Feature vector components for WRF withn=5andn =6

(b) Difference of feature vectors given in (a)
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than the nominal 45 as stated. Indeed, in the present work, it is estimated that this “correlation
effect” among the WRF and HRF components reduces the effective feature vector dimension
by approximately 30%. This compounds further the difficulties with Walsh-type bases
discussed in section 2.5 where it was shown that the practical limits on the dimensions of their
feature vectors for a given grid size were severe. Note that no such behavior or correlation
was observed for any of the (analog-valued) Zernike functions.

A final note to this section on feature vectors concerns the ability of a neural classifier
to learn distinguishing features which may not be readily observable by a mere inspection of
the feature vectors themselves along the lines of the figures presented thus far in this chapter.
A properly trained, multilayer perceptron, neural network classifier, trained with the
backpropagation algorithm, is expected to learn not only the gross characteristics, examples of
which have been presented above, but to also learn other, much more subtle differences
between the feature vectors which should enable the classifier to provide much better
performance with decreasing SNR than the foregoing, simple observations alone would imply-
However, it is important that the reader keep in mind that, even though a neural network
classifier may come impressively close to matching human performance in this one specific
task (which is the case in the present work), the classification system described in this report
is an extremely myopic one, limited strictly to an ability to classify only those images
presented to it during the training process. Human capabilities are far more extensive in that
general scenes which may contain a plethora of distinct objects are easily recognized and
accurately classified in a manner invariant to a broad range of changes or transformations t0
such objects.

4.2 : Classifier Performance and the Number of Hidden Neurons

The three layer perceptron used throughout this work had the dimension of its input
layer determined by the feature vector dimension (45 in all cases, 44 for the cases of
differential normalization DN) and the dimension of its output layer set by the number of -
image classes (9 for all cases). The dimension of the important, hidden layer of the neural
network, however, was left to be determined experimentally. While there does exist several
“rules of thumb” to estimate this number, these estimates yielded a wide range of possible of
values.

To determine an optimum value for the number of hidden neurons, the classifief
performance was measured for hidden neuron sizes of 6, 12, 18, 24, 30, 36, and 42 for the
twelve cases of the PZF and SZF bases, training set A, 45,000 training iterations, and a0
epoch size of 16. The results, shown in figure 4.30, indicate a rapid improvement if
performance up to 24, a subsequent decrease, and a second increase for the largest hidde?
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neuron numbers. However, an excessive number of hidden neurons produces a behavior not
dissimilar to the “overtraining phenomena” discussed in Chapter 3. For this reason, it was
determined that a hidden neuron layer dimension of 24 represented the best compromise and
most accurately trained classifier. This value was subsequently used for all of the
performance measurements.

In the remainder of this chapter, several results such as those illustrated in figure 4.30
will be presented which measure the performance of the neural-network-based classification
system. It is, therefore, imperative that it be made clear exactly what a “classification
performance measurement” represents. In each case, the classification accuracy of the neural
network is measured over a test set consisting of 1035 images which is made up from the 23
individual test subsets (of 45 image each) as described in section 3.2. Each of the subsets has
a definite SNR ranging from ‘e’ (noiseless) to O db (pure noise) as given in table 3.1. The
classification accuracy for each subset is measured separately and plotted versus its SNR, i.€-
the performance plots as in figure 4.30 and in the remainder of this chapter plot these 23
points as the measurement of classifier performance as a function of SNR of the test data-
The x-axis is somewhat arbitrarily divided into 23 equal intervals corresponding to the SNR’S
of the test subsets of table 3.1. This scale is essentially immaterial in the sense that the crucial
characteristic which is illustrated is that region of SNR over which the classification falls from
100% to values less than 50%, i.e., it is the relative position of this failing of the classifief
among the various results which is of importance.  The actual values for the classificatio?
accuracy as shown in these figures are arrived at using the “rating” system described in sectio?
3.7 in which the ‘hit’ or ‘miss’ ratios are weighted by the sigmoid function of eq. (3.7) and th®
classification curve is normalized according to eq. (3.9). Note that in each of the “classifief
performance” graphs presented in this chapter, lines corresponding to a SNR of 2 db and 2
classification accuracy of 75% are indicated. These lines are intended to explicitly indicat®
that SNR ratio below which human capability falls off rapidly and to indicate a classificatio®
accuracy level which divides the performance ability as “good” (above 75%) and “pOor”
(below 75%). |

4.3: Classifier Performance and the Training Epoch Size

The term “epoch”, unfortunately, is used with widely differing meanings by the newr?
network community and, understandably, can easily lead to confusion. It is used in this wor
to mean the number of training samples presented to the neural network before the netWofk
weights are actually updated within the backpropagation routing. An epoch size of 1 results »
a dramatically increased training time and considerably more fluctuation in the network err'of
as the training process progresses. An overly large epoch value, on the other hand, whi
leading to much reduced training times, leads also to trained networks with appreciably Jarg?
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errors than those obtained for smaller values of the epoch for the same number of training
Samples. Clearly, some approximate optimum for this parameter exists and must be
determined by trial and error.

To determine this value, the classifier performance was measured for epoch values of
2,4, 8, 16, 32, and 45 for the case of the PZF basis, training set A, 45,000 training 1iterations,
and 24 hidden neurons. The results are shown in figure 4.31. From this result along with a
knowledge of the network’s RMS training error upon successful training completion, it was
determined that an epoch value of 16 represented the best compromise and most accurately
trained classifier. This value was subsequently used for all of the performance measurements.

44 Comparison of Classifier Performance with Normalization Schemes

Measurements of classifier performance were carried out for each of the normalization
Schemes over each of the twelve combinations of basis function and training sets and were
Critically compared in all cases. Representative examples are shown in figures 4.32 and 4.33
for the case of the SZF basis using training set A and the PZRP basis using training set B,
TeSpectively. Clearly, the performance of the PN scheme is the worst of the lot (this was a
Consistent finding). Arguing that the use of the sigmoidal transfer function on the hidden
layer neurons was inappropriate for the PN scheme, several runs were conducted using a
Modified neural network which used the tanh transfer function for both neural layers. Only a
Very slight improvement was observed for the PN and the observation that it was the worst of
the four remained unchanged. The DN scheme performed better than the PN in all cases but,
3 figures 4.32 and 4.33 indicate, performed noticeable poorer than either the SN or BN cases.

In truth, the BN normalization scheme typically performed close to and often equal to
that measured for the SN scheme for several of the runs. However, an examination of all the
Performance measurements for these two schemes clearly indicated that the SN scheme was
“Onsistently better than that of the BN scheme. Thus, in all of the work to follow concerning

® measurements of classifier performance versus choice of basis function, the Standard
Ormalization scheme described in section 3.5 was used exclusively.

15, Variability in Classifier Performance with Random Initialization
in the Training Process

The overall classification system comprising the feature vector extraction algorithms
d the neural network classifier presents the experimenter with an abundance of variables
4 parameters which can be tuned to optimize the overall performance of the classifier. In
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many respects, a neural network based classification system could be termed a “tweaker’s
delight”. However, it is fundamentally important to always keep in mind that the performance
of the neural network is somewhat dependent upon underlying statistical factors which include
inherent statistical variations in the composition of the training and test image sets, the nature
by which the untrained network is initialized to random weights, and the randomness in the
Presentation of the training vectors to the network during the backpropagation training phase
(keeping in mind that, in the present work, the training vector set is presented 1000 times to
the network during the course of training). The latter two factors, in particular, mean that, for
a fixed set of training and test data bases, different runs which use different random
Initializations and/or “shuffle and deal” routines to randomize training vector presentation
order will produce differences in the final measurement of the classifier’s performance. This
“fuzziness” in the performance of the final network is illustrated in figure 4.34 which shows
Performance measurements for the PZF basis using training set A conducted for eight
different choices of the “random seed variable” used by the NeuralWare simulator to both
initialize the untrained network weights and to run the “shuffle and deal” aigorithm for the
Presentation order of the training vectors to the network. Clearly, appreciable differences
Occur in the final measurements and these are due solely to statistical differences in the
Uraining process - the training and test sets are identical in each of the results shown in figure
4.34. Note, however, the constancy of the “shoulder” position of these curves; for all eight
Plots, the classification accuracy begins to fall quickly beyond the 12 db SNR. This result is
intended to remind both the experimenter and reader alike that attempts to precisely optimize
the neural network classifier represent a somewhat facetious activity since such inherent,
Underlying statistical dependencies in the training process ensure that only approximate
Optimization of the overall classification process is truly meaningful.

4.6: Dependence of Classifier Performance upon Basis Function and Training Sets

This section presents what constitute the chief results of the present work, namely the
Measurements of the classification performance for each of the six basis functions using both
trajIling set A (noiseless) and training set B (mixed noiseless and noisy imagery). In all the
Tesults presented here, the environment employed was:

trilayer perceptron with 45 input neurons, 24 hidden neurons, 9 output neurons, trained
using backpropagation, sigmoid transfer function (hidden layer neurons) and tanh transfer

function (output layer neurons), network initialization seed value of 257,

* training on 45,000 iterations for training set A (45 vectors) and 90,000 iterations for
training set B (90 vectors) using an epoch value of 16 in all cases;

119



0cI

Classification Accuracy

100 §
90
80
70
60
50
40
30
20

10

0 L ] L L [ L N I B i I i A s 3 2
o 50 40 30 25 20 15 12 10 9 8 7 6 5 45 4 35 3 25 2
SNRindb
Figure 4.34

N anakon n classiier pedormance with intializalion of network welgnts




¢ standard normalization of the training and test feature vectors.

The results for the SZF, PZF, SZRP, PZRP, WRF, and HRF bases are shown in figures 4.35
through 4.37. Each figure shows the classifier performance for similar basis pairs (i.e., SZF
with PZF, SZRP with PZRP, and WRF with HRF) for both training sets and it is obvious in
cach case that the incorporation of noisy data into the training process greatly improves the
Classification accuracy.

The results shown for SZF and PZF cases clearly show the best performance for both
lraining sets. Indeed, these results provide the standard by which the remaining basis function
Tesults are measured. The performance shown in figure 4.35 for the case of the training set B
and the basis PZF approaches that of a human interpreter of the same images, i.e.,
?laSSiﬁcation accuracies of 75% or better are measured for a SNR as low as 2 db. The reader
IS referred back to figures 3.5 and 3.4 for illustrations of 2 db SNR images.

The results illustrated for the SZRP and PZRP bases in figure 4.36 clearly fall far short
of those for the SZF and PSF results. Nevertheless, the SZRP and PZRP measurements are
4Mmong the most interesting and revealing (keeping in mind the maxim that more is learned
from failures than from successes). The most surprising and striking characteristic of the
SZrRp and PZRP results is that, for the case of the training set A, the classifier catastrophically
fails jn each case when only very small amounts of noise have been added to the images (SNR
of approximately 30 db - see figure 3.4). The reason for this is directly traceable to the fact
thf'it, since the SZRP and PZRP bases have non-zero measures (and only these bases have
this), the feature vectors are dramatically changed by the addition of even very small amounts
of Noise, i.e., figures 4.24 and 4.25. The use of training set B, which includes examples of
10isy feature vectors, dramatically improves the classification performance of the SZRP and

SIﬂ); indeed, the degree of improvement is such that they approach that measured for the

ZF ang PSF bases. In fact, when compared to figure 4.37, it may be seen that the SZRP and

fo P cases improve from being the worst cases (i.e., fifth and sixth places) for training set A
being “runners-up” (i.e., third and fourth places) when training set B is used.

i Given the relatively poor invariance for the WRF and HRF feature vectors as
cluSt.rated in figures 4.19 and 4.20, respectively, the lack luster performance of the neural
evaSSlﬁer when these bases are used, figure 4.37, should come as no great surprise. However,

0 with the high variability in the feature vectors for the WRF and HRF and the extremely
izw Variation in those for the SZRP and PZRP bases, figures 4.17 and 4.18, respectively, it is
rtftr esting that the performance for the WRF and HRF betters that for the SZRP and PSRP for

a‘niflg set A although it falls short of matching the superior performance for the SZF and
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PZF cases for either training set. As well, the improvement for the WRF and HRF bases from
training set A to training set B is the least of all the improvement observed for all six bases
With the consequence that, as noted above, the SZRP and PZRP bases outperform the WRF
and HRF bases when training set B is employed. Clearly, the importance of adopting zero
Ineasure basis functions outweighs the shortcomings in calculated invariance in determining
the performance of the classifier. In addition, as discussed in section 4.1, several of the
Components in the WRF and HRF feature vectors are redundant so that, in effect, the
measurements made for these basis functions are with a feature vector having an effective
dimension considerably less than the stated value of 45. This is a compensating factor when
jUdging the relatively poor performance of these bases in comparison to the full SZF and PZF.
HOWever, this “allowance” may amount to choosing between “a rock and a hard place” since
it would not be possible, given the limitations on the sampling capabilities of the pixel grid for
the Walsh functions, to significantly increase the dimension of either the WRF or HRF bases
in order to compensate for this redundancy in the feature vector components. In particular,
these difficulties would only be expected to become significantly worse for grid dimensions
less than 256 x 256.

For ease of comparison, figure 4.38 shows the performance measurements for the six
basis functions using training set A while figure 4.39 shows the results for the six bases when
Using the training set B. Overall, the PZF basis consistently outperforms all other bases
although the SZF basis runs a close second and deserves, particularly in light of figure 4.34,
A “honorable mention”.
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Chapter S: Discussion and Conclusions

The work described in this report has examined the performance capabilities of a
multi-layer perceptron neural network trained with the backpropagation algorithm as a
classifier of elementary, 2-D imagery. Six different mathematical bases were studied for two
types of training sets, one containing only noiseless imagery and the second containing a
mixture of noiseless and noisy imagery. In addition, four different schemes were investigated
for the normalization of the feature vectors. Other prefatory experiments were described
which measured the neural network’s dependence upon epoch size, the number of hidden
neurons, and upon the network initialization. A series of graphs of feature vectors was
presented which illustrated the measured invariance of the feature vectors, their degradation
with decreasing SNR, similarities and differences between feature vectors for similar and
dissimilar numerals, and the dependence of the feature vectors upon the normalization
method.

The principal findings of this report may be summarized as follows:

e The neural classifier used was a three-layer perceptron network with 24 hidden neurons,
45 input neurons (the feature vector dimension), and 9 output neurons (the number of
image classes). The network was trained with the backpropagation algorithm using an
epoch value of 16.

e Of the six sets of basis functions tested, the basis which provided the best performance
was the PZF (closely followed by the SZF basis). Indeed, as figure 4.39 indicates, the
neural network classifier trained on training set B and using the PZF basis for the feature
vector extraction exhibited an accuracy comparable to human capability to classify the
same set of imagery (the neural classifier maintained a classification accuracy above 75%
for SNR’s down to 2 db inclusively).

e All of the bases studied showed marked improvement in the classifier’s performance when
the mixed noiseless plus noisy training set B was used in place of the noiseless training set

A.

o The SZRP and PZRP bases exhibited “catastrophic” failure for training set A but showed
the greatest improvement in performance when training set B was employed.

e The Walsh bases, WRF and HRF, performed poorly for both training sets, showing the
least improvement of all the bases for training set B over training set A.
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* Based upon the results with the SZRP and PZRP bases which were the only basis
functions which possessed non-zero measures, it was concluded that a necessary condition
for the basis functions to be insensitive to the presence of image noise was that they
possess Zero measure.

® Of the four normalization schemes investigated, the normalization method which
consistently resulted in the best performance was the ‘standard normalization’ (section
3.5). This normalization is characterized by a zero mean for each of the feature vector
components over the training set and training feature vectors which have either a
maximum value of +1 or a minimum value of —1.

Retrospectively, the decision to study the characteristics of the methodology of
Mmoment invariant feature vectors and a neural network classifier using the simplified image
database of this report was both a sound and necessary one. The principal findings from this
Phase of the work were greatly facilitated and the conclusions drawn made much clearer by
the use of this simplified image database possessing known, well understood image and
Statistical characteristics. The more subtle inferences such as that concerning the dependence
of noise sensitivity upon the measure of the basis functions being zero or non-zero or the
highly component-dependent invariance of the HRF basis would almost certainly have gone
Undetected had a more complex image database been employed.

With the results of this study in hand along with the extensive library of computer
algorithms developed, the stage is set to proceed with the application of neural network
Classification using PZF-based moment invariant feature vectors to identify and classify SAR
imagery. Four examples drawn from a database of SAR imagery which is intended for use in
this next phase of the project are illustrated in figure 5.1. Three distinct object classes are
Shown in this figure with figures 5.1(a) and 5.1(d) representing different images of the exact
Same object. Clearly, as these images are intended to illustrate, the classification of such
imagery, except to the very experienced interpreter, is neither intuitive nor elementary by
Nature and the intended objective of accurate classification by artificial means represents a
Challenging one. An essential, arguably crucial, requirement for the application of the
CXperimental classification system presented in this report to this type of SAR imagery is that
the feature vectors computed for images such as those typified in figure 5.1 must possess, to
Some acceptable degree of approximation, invariance to the scale, lateral position, and angle
of view for images belonging to the same class of objects. The finite resolution of the SAR
lrrlagery system, the existence of measurable returns from the background of the object, and
the presence of noise and speckle in the image are examples of characteristics which are
©Xpected to detract from the invariance of the calculated feature vectors. However, the two
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() (d)

Figure 5.1

Examples of airborne SAR imagery of isolated ground targets.
Figures (a), (b), and (c) represent different object classes.
Figure (d) is from the same class as figure (a).
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factors which are anticipated to most seriously affect the accuracy and invariance of the
Calculated features are the following:

L.

SAR images of land targets represent 2-D projections of complex, 3-D objects. Thus,
there are rwo angles which determine the profile of the object as seen by the imaging
system and not simply the “in-plane” rotation angle considered in the present study of 2-D
images. Even under ideal circumstances, the neural network classifier must, in the case of
SAR imagery, be expected to learn in the training phase some measure of invariance
beyond the in-plane invariance incorporated into the calculation of the feature vector. The
practical limitation to how well the neural network can learn this more general invariance
may be ultimately determined by the number of images which constitute the training
database. Moreover, as with any form of 3-D to 2-D projection®®**, there will inevitably
exist some degree of degeneracy with angle of view, i.e., s1mjlar objects will be
indistinguishable when viewed from certain perspectives.

The fundamental nature of the radar imaging process underlying SAR technology dictates
that the intensity of both the absolute and relative radar returns from the different portions
of the object will change dramatically with small changes in the angle of view. This, in
turn, means that the feature vectors may be expected to exhibit, even after feature vector
normalization, a high degree of sensitivity to angle of view. In most respects, it is this
variability of intensity distribution over the 2-D projection which is expected to present
the most serious difficulty in the classification process. Again, as with the previous factor,
limits to overcoming this difficulty may be largely determined by the experimenter’s
ability to present a sufficiently large number of examples to the neural network during the

training phase.

Clearly, concerns such as those discussed above must be explicitly addressed by the
®Xperimenter in applying the method of moment invariant feature vectors for neural network
“lassification of SAR imagery.

In conclusion, the methodology of using a neural network classifier trained on moment

lnvarlant feature vectors as described in this report offers a very promising and encouraging
3proach to the particular pattern recognition problem posed by SAR image classification.

he robustness and superior performance levels of the PZF-based classifier as presented in °

thig report strongly suggest that it should be capable of classifying SAR imagery with an
accllracy which would make it a viable and practical tool for SAR image classification.
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Appendix A
Fortran Source Code for Core Programs

This appendix contains the source code listings for the following programs:

L.

PIXELIZE.FOR

Reads TIFF bitmap images, reduces the image resolution from 1024 x 1024 to
256 x 256, scales and shifts image to produce irradiance normalized central moments,
adds noise to a user-provided SNR level, and saves final result as native binary format

file.

GENFVZER.FOR
Generates the raw feature vector file for an image or set of images using any of the

SZF, PZF, SZRP, or PZRP bases.

GENFVWAL.FOR
Generates the raw feature vector file for an image or set of images using either of the

WRF or HRF bases.

NORMFV.FOR
Normalizes the raw feature vectors. For training data, stores the normalization

parameters derived from the training set. For test data, reads normalization
parameters. Three different normalization schemes SN, PN, and BN are available as a

user option.

GENRV.FOR
Generates the result vector (generally, a 9 x 9 matrix with +1 for ‘true’ and O for

‘false’) for use by gencv.for.

GENCV .FOR

Generates the complete vector in the nna format required as input for the NeuralWare
simulator software by combining the normalized feature vector with the result vector
from genrv.for. Also generates the DN feature vectors.

RATENNR.FOR
Rates the classification results obtained from the network as given by the nnr file

generated by the NeuralWare simulator software using a sigmoidal weighting function
to measure the effective value of the individual results.
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Program
Version
Author

Summary:

PIXELIZE.FOR (PIXELIZE the TIFF images)
4.2 July 22, 1994

Kenneth L. Sala

Communications Research Center

Ottawa, Ontario, Canada

(613) 998-2823

e-mail sala@digame.dgcd.doc.ca

PIXELIZE reads TIFF bitmap files (generated by the COREL Draw
software) and converts them to "pixel" image files (see below).

Four major operations are carried out by this program:

(1)

(2)

(3)

(4)

The resolution of the TIFF file is reduced by an integral
factor (1,2,3,4,..) with the reduced-size pixel derived
as the average value of the square it represents (e.g.,

a 1024x1024 bitmap image can be reduced to a 256x256
pixel image with each pixel the average of 16 of the
original TIFF pixels);

The 1l-bit (B&W), 2-bit (4 level grayscale), 4-bit
(16-bit), or 8-bit (256 level grayscale) TIFF values
are converted to (possibly averaged) pixel values with
one byte per pixel (integer for B&W and floating point
for true grayscales) with white=0 and black=l;

The image moments m00, m0l, and ml0 are calculated for
the image. The image is first shifted so that its
woptical center of mass” is approximately at the
coordinate origins and then scaled to produce an image
with a pre-determined value for m00. The scaled image
is then iteratively shifted to produce minimized values
for the first moments m0Ol and ml0 (ideally = 0), i.e.,
the scaled image is “optically” centered on the x,¥
grid.

Random neise is superimposed upon the pixel image (a

user option). The user, if electing to add noise to

the image, is prompted for the number of iterations to

be used for the random noise routine (these numbers havind
been precalibrated to correspond to known SNR ratios for
the final image). The program then uses a "Numerical
Recipes" function RAN2 to generate the noise
corresponding to the requested SNR. For binary images,
the modification of the pixels is carried out by adding

1 module 2 to the pixel.

The pixel data is calculated for a square grid of dimension
2N x 2N and then saved as FASCII files with 'automatic'
assignment of filenames.

PROGRAMMING NOTES:
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1.

This program is NOT, repeat NOT, a general TIFF reader. It
does read and decipher the TIFF version 5.0 files generated by
Corel Draw software for B&W/grayscale bitmaps.

The gridsize is NOT a variable for this program. Howevexr,
care has been taken to allow the user to change this
parameter relatively easily. Only the dimensioning
assignments, initialization values, and some format
statements would have to be altered to allow for a different
gridsize.

The TIFF file/tag parameters used in this program are those
recommended for the TIFF 5.0 specification (HP/Aldus).
Specifically, four arrays TAGNAME, TAGID, TAGVALUE, and
TAGTYPE (dimensions of 37, 36, 51, and 5 respectively) "define"
the various characteristics of the TIFF data. All of these
arrays are predefined by program 'data’ statements with the
values of TAGVALUE representing default values (where

possible).
this program.

The arrays are:

Only TAGVALUE is altered during the execution of

ARRAY TAG TAGNAME DATA DEFAULT ERROR
# ID# TYPE VALUES
1 254 (0FEh) New Subfile Type 4 0 .ne.0
2 256(100h) Image Width (Pixels) 3 0or 4 0 .ge.0 & .le.2N
3 257(101h) Image Height (Pixels) 3 or 4 0 .ge.0 & .le.2N
4 258(102h) Bits per Sample 3 1 .ne.1,4,8
5 259(103h) Compression 3 1 .ne.1l
6 262(106h) Photometric Interpretation 3 0 .ne.0,1
7 263(107h) Thresholding 3 1
8 269(10ph) Document Name 2 0
9 270(10Eh) Image Description 2 0

10 271(10Fh) Make 2 0

11 272(110h) Model 2 0

12 273(111h) Strip Offsets 3 or 4 1]

13 277(115h) Samples per Pixel 3 1 .ne.l
14 278(116h) Rows per Strip 3 or 4 1

15 279(117h) Strip Byte Counts 3 0or 4 1

16 282(11Ah) X Resolution (dpi) 5 38 (offsget)
17 283(11Bh) Y Resolution (dpi) 5 40 (offset)
18 284(11Ch) Planar Configuration 3 1

19 285(11Dh) Page Name 2 0

20 286(11Eh) X Position 5 42 (offset)
21 287(11Fh) Y Position 5 44 (offsget)
22 290(122h) Gray Response Unit 3 0

23 291(123h) Gray Response Curve 3 0

24 292(124h) Group 3 Options 4 0

25 293(125h) Group 4 Options 4 0

26 296(128h) Resolution Units 3 2

27 297(12%h) Page Number 3 0

28 305(131h) Software 2 0

29 306(132h) Date & Time - 2 0

30 315(13Bh) Artist 2 0

31 316(13Ch) Host Computer 2 0

32 317(13Dh) Predictor 3 1

33 318(13Eh) White Point 5 46 (offset)
34 319(13Fh) Primary Chromaticities 5 48 (offset)
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35
36
37

320(140h) Coloxr Map 3 0
321(141h) Highlight Shadow 3 0
UNRECOGNIZED TAG NUMBER 50 (offset)

Data Types are : BYTE

ASCII

SHORT (integer*2)

LONG (integer*4)

RATIONAL (integer*4 / integer*4)

Ul W N R

Note: the values stored as defaults for the RATIONAL tagvalues
are 'pointers' to the array location in TAGVALUE where
the two integer*4 values are located, i.e., the first
integer*4 is put in TAGVALUE (TAGVALUE(ID)) and the second
in TAGVALUE (TAGVALUE(ID)+1).

4. Once read from the TIFF file, certain of the tagvalues are
checked to ensure that they are compatible with the present
program. If they are not, or if 2 or more "unknown tags”
have been read, the program is aborted and an appropriate
error message is displayed. The critical tagvalues are:

254 (OFEh) New Subfile Type MUST equal 0

256 (100h) TImage Width (Pixels) MUST not be .le. 0
257(101h) Image Height (Pixels) MUST not be .le. 0
258(102h) Bits per Sample MUST equal 1, 4, or 8
259(103h) Compression MUST equal 1
262(106h) Photometric Interpretation MUST equal 0 or 1
277(115h) Samples per Pixel MUST equal 1

WoaubdWNRE

[
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include 'fgraph.fi'
include 'fgraph.fd’

integer*1l idots(4,1048),dumny(4096)

integer*1l black,cr, 1f, space

integer*2 iver,numtags, tagnum,datatype, isum, int2
integer*2 image(4,1048),datalength(5), tagid(36)

integer*2 idirect(-127:128,-127:128), inorm(-127:128,~127:128)
integer*2 ihits(-127:128,-127:128)

integer*4 ioffset, length,tagdata, tagvalue(51), intda, int4b
integer*4 nhits,np,kk

real*4 m0O0,ml0,m01l, ranval

character*l answer,chipidl,chipid2, infinity

character*8 tagtype(5)

character*26 tagname(37)

character*54 imagefile,pixelfile, trainlog

data tagtype/
+' Byte ',' ASCII ',*' Short ',' Long ', 'Rational'/
data datalength/1,1,2,4,5/

data tagid/254,256,257,258,259,262,263,269,270,271,272,
+273,277,278,279,282,283,284,285,286,287,290,291,
+292,293,296,297,305,306,315,316,317,318,319,320,321/
data tagname/'New Subfile Type', 'Image Width (Pixels)',
+'Image Height (Pixels)', 'Bits per Sample', 'Compression’,




+'Photometric Interpretation', 'Thresholding', 'Document Name',
+'Image Description', 'Make', 'Model', 'Strip Offsets’',

+'Samples per Pixel', 'Rows per Strip', 'Strip Byte Counts',

+'X Resolution (dpi)','Y Resolution (dpi)‘',

+'Planar Configuration', 'Page Name',b 'X Position','Y Position’,
+'Gray Response Unit', 'Gray Response Curve', 'Group 3 Options',
+'Group 4 Options', 'Resolution Units', 'Page Number',
+'Software', ‘Date & Time', 'Artist', 'Host Computer', 'Predictor',
+'White Point', 'Primary Chromaticities', 'Color Map’,

+'Highlight Shadow', 'UNRECOGNIZED TAG NUMBER'/

data tagvalue/0,0,0,1,1,0,1,0,0,0,0,0,1,1,1,38,40,1,0,42,44,0,0,
+0,0,2,0,0,0,0,0,1,46,48,0,0,50,300,1,300,1,0,0,0,0,0,0,0,0,0,0/
data cr/13/,1£/10/,space/32/,infinity/236/

All format statements and only format statements have labels
in the range 1 - 99.
1 format (lh+,20(1h*),' Conversion of TIFF Data to Pixel Data ',
+20(1h*))
2 format(lh ,26x, 'Version 4.20 : July 22, 1994')
3 format(lh ,7x, 'File : ',al2,* Gridsize : ',
+i4,' x ',14," Precision : Real*',il)

4 format (1hO,
+'Enter filename (c/w path & extension) of first TIFF file : ')
5 format(al)
6 format (a54)
7 format(1hO0, 18X,
+'Enter number of image files (default=1l) : '\)
8 format (i3)
9 format (1hO,
+'Enter filename (c/w path & extension) of first PIX file : ')
11 format(1hoO, 4x,
+'Tag',9x, 'Tag Name', 13x, 'Datatype’, 4x,
+'Length', 4x, 'Data Offset')
12 format(1lh, 4x,

+2X, Y P ,4x, ==z’ ,4X, =
13 format(1lh ,4x,i3,2x,a26,2x,a8,4x,14,5x,1i5)
14 format(lh ,4x%,1i3,2x,a26,2x,a8,4x,14,12x,15)
15 format(lh ,9x,a26,2x,a8,4x,1i4,5x,15)
16 format(lh ,9x,a26,2x,a8,4x,14,4x,F6.2)
20 format(lh ,16X,

+'Superimpose noise on pixel image (default=no) ? *\)
21 format(lh ,17X,

+'Enter NP - no. of random write loops: '\)
30 format(lh ,2x,'File : ',al2,’ Gridsize : ',
+i4,' x ',i4," Precision : Real*',il,’ SNR : ',al)
51 format(/20(1h*),' Conversion of TIFF Data to Pixel Data ',
+20(1h*))
52 format (24x, 'Version 4.20 : July 22, 1994')
53 format(7x, 'File : ',al2,’ Gridsize : ',
+i4,' x ',1i4," Precision : Real*',il/)
54 format(2x, ‘File : ',al2,’ -Gridsize : ',
+i4,' x ',i4," Precision : Real*',bil,' SNR : ',al/)

61 format (4x,
+'Tag', 9%, 'Tag Name',13x, 'Datatype’, 4%,
+'Length',4x, ‘Data Offset')

62 format (4x,
+'===',2x'
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+2X, '==z=m===" , 4X1 '======" , 4X1 o= ======"! /)
63 format(4x,1i3,2x,a26,2x,a8,4x,14,5x,15)
64 format (4x,13,2x,a26,2x,a8,4x,1i4,12x,15)
65 format (9x,a26,2x,a8,4x,14,5x,15)
66 format(9x,a26,2x,a8,4x,14,4x,F6.2)
70 format(18x,

+'Pixel shift factors : ',15,7x,1i5)
71 format (18X,
+'Analog shift factors : ',F9.4,3x,F9.4)
72 format (27X
+'Scaling Factor = ',F9.4)
73 format (/9X,
+'m00 = ',Fl2.4," ml0 = ',Fl12.4," m0l = ',Fl2.4/)
80 format(lh ,18x,
+'Pixel shift factors : ',i5,7x,1i5)
81 format(lh ,18X,
+'Analog shift factors : ',F9.4,3x,F9.4)
82 format(1lh0,27X
+'Scaling Factor = ',F9.4)
83 format(1ho,9X,
+'m00 = ',Fl2.4," ml0 = ',F12.4," m0l = ',Fl2.4)
85 format(1h0,2X,'NP =',1i6,' Number of hits =',1is6,
+' Percentage =',F7.2,' Measured db =',6F8.2)
86 format(/2X,'NP =',1i6,' Number of hits =',1i6,
+' Percentage =',F7.2,' Measured db =',F8.2)

87 format(i7)
90 format(1hO,13x,
+'Now have ',il,' unrecognized tag numbers. Program aborted.')
92 format(1hoO, 14X,
+'Imagefile name incorrect. Must have .tif extension.')
93 format(1hO, 25X,
+'Hit any key to restart program.')
94 format(lh ,8X,'Fatal error in one or more ',
+'tagvalues above (1,2,3,4,5,6, or 13)."')
95 format(lh ,11X, 'Program aborted. Correct image tagvalue ',
+'and rerun program.')
96 format(lh0,10X, 'WARNING! A total of ',i2,
+' unknown tagnumbers were encountered.')
98 format(1lho,21X,
+'A total of ',I3,' file(s) were processed.')
99 format (1h0, 21X,
+'Program completed. Normal termination.')

Initialize parameters and then prompt user for filenames and
number of files.

—=F

ierr=0

igridsize=256

igsp2=igridsize+2

N=128

del=L1./float (N)
beta=float ( (igridsize*igridsize) /8)
iprecision=1

iunknown=0

100 call clearscreen ($SGCLEARSCREEN)
write(0,1)
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write(0, 4)
read{(0,6) imagefile
write(0,9)
read(0,6) pixelfile
do 102 i=1,54
trainlog(i:i)=pixelfile(i:1i)

102 continue
i=0

104 i=i+1
if(imagefile(i:1i).eqg.'."') go to 106
if(i.eqg.51) go to 910
go to 104

106 markl=i
1=0

108 i=1i+1
if(pixelfile(i:i).eq.'.’') go to 110
if(i.eq.51) go to 910
go to 108

110 mark2=i1i
initl=1
do 112 i=1,markl+3
if(imagefile(i:i).eq.'\') initl=i+l

112 continue
init2=1
do 114 i=1,mark2+3
if(pixelfile(i:i).eq."'\') init2=i+1

114 continue
trainlog(init2:init2+11l)='pixelize.log’
open (3, file=trainlog, status="'unknown', form='formatted')
write(0,7)
read(0,8) number
1f (number.le.0) number=1
noise=0
write(0,20)
read(0,5) answer
if (answer.eq.'y'.or.answer.eq.'Y') noise=1
if(noise.eq.0) go to 125
write(0,21)
read(0,87) np

125 istart=100* (ichar (imagefile(markl-3:markl-3))-48)
istart=istart+10* (ichar (imagefile (markl-2:markl-2))-48)
istart=istart+(ichar (imagefile (markl-1:markl-1))-48)
ifinish=istart+number-1
istartp=100* (ichar (pixelfile(mark2-3:mark2-3))-48)
istartp=istartp+10* (ichar (pixelfile (mark2-2:mark2-2))-48)
istartp=istartp+ (ichar (pixelfile (mark2-1l:mark2-1))-48)
ifinishp=istartp+number-1
index=istart-1

130 index=index+1
if(index.gt.ifinish) go to 990
nhuns=index/100
ntens=(index-100*nhuns) /10
nunits=index-100*nhuns-10*ntens
imagefile (markl-3:markl-3)=char (nhuns+48)
imagefile(markl-2:markl-2)=char (ntens+48)
imagefile (markl-1:markl-1)=char (nunits+48)
indexp=index+istartp-1 :
nhunsp=indexp/100
ntensp=(indexp-100*nhunsp) /10
nunitsp=indexp-100*nhunsp-10*ntensp
pixelfile(mark2-3:mark2-3)=char (nhunsp+48)

A-7



O00000

135

140

150

pixelfile(mark2-2:mark2-2)=char (ntensp+48)

pixelfile (mark2-1:mark2-1)=char (nunitsp+48)

call clearscreen (S$SGCLEARSCREEN)

write(0,1)

write (0, 2)

if(noise.eq.0) write(0,30) imagefile(initl:init1+11),
+igridsize, igridsize, (4*iprecision),infinity

if (noise.eq.1l) write(0,3) imagefile(initl:initi+11),
+igridsize,igridsize, (4*iprecision)

write(3,51)

write(3,52)

if(noise.eq.0) write(3,54) imagefile(initili:initi+11),
+igridsize,igridsize, (4*iprecision),infinity

if (noise.eq.1l) write(3,53) imagefile(initl:initi+11),
+igridsize, igridsize, (4*iprecision)

open(2, file=imagefile, status="'unknown', form='binary")
read(2) chipidl,chipid2,iver,ioffset

rewind 2

read(2) (dummy(i),i=1,ioffset)

read(2) numtags

At this point, have the fixed image header data plus the number
of tags in the first IFD. File has been rewound and then
positioned at the first tag number given by the value 'ioffset’.
Proceed to read and interpret the tags.

e e s 1 T L X T

write(0,11)

write(0,12)

write(3,61)

write(3,62)

do 200 i=1,numtags

read(2) tagnum, datatype, length, tagdata

id=37

do 135 j=1,36

if (tagnum.eqg.tagid(j)) id=j

continue

if(id.eq.37) iunknown=iunknown+1
numbytes=length*datalength(datatype)

if (numbytes.gt.4) go to 140

write(0,13) tagnum,tagname(id),tagtype(datatype),length, tagdata
write(3,63) tagnum,tagname(id),tagtype(datatype),length,tagdata
tagvalue (id) =tagdata

go to 200

write(0,14) tagnum,tagname(id),tagtype(datatype),length, tagdata
write(3,64) tagnum,tagname(id),tagtype(datatype),length,tagdatad
rewind 2

read(2) (dummy(j),Jj=1,tagdata)

if (datatype.le.2) go to 170

if(datatype.gt.3) go to 150

read(2) int2

tagdata=int?2

tagvalue (id)=tagdata

write(0,15) tagname(id),tagtype(datatype),length,tagdata
write(3,65) tagname(id),tagtype(datatype), length,tagdata

go to 170

if(datatype.gt.4) go to 160

read(2) intda

tagdata=intda

tagvalue(id)=tagdata
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write(0,15) tagname(id),tagtype(datatype),length, tagdata
write(3,65) tagname(id),tagtype(datatype),length, tagdata
go to 170
160 read(2) int4a,int4b
fdata=float(intda)/float (int4b)
tagvalue (tagvalue(id) )=intda
tagvalue(tagvalue(id)+1)=1int4b
write(0,16) tagname(id),tagtype(datatype), length,fdata
write(3,66) tagname(id),tagtype(datatype),length, fdata
170 rewind 2
read(2) (dummy(3j).,j=1, (loffset+2+12*1i))
200 continue
rewind 2
read(2) (dummy(j),Jj=1,tagvalue(l2))
black=2** (tagvalue(4)-1)
ipack=8/tagvalue(4)
nbytes=tagvalue(2) /ipack
if((tagvalue(2)-ipack*nbytes).gt.0) nbytes=nbytes+l
isample=tagvalue(2) /igridsize
if (isample.lt.l) isample=1
ndots=isample*igridsize
ilerr=4
if(tagvalue(4) .eq.l.or.tagvalue(4) .eq.2) ierr=0
if(tagvalue(4) .eq.4.or.tagvalue(4) .eq.8) ierr=0
if (tagvalue(l) .ne.0) ierr=1
if(tagvalue(2) .le.0) ierr=2
if (tagvalue(3).le.0) ierr=3
if (tagvalue(5).ne.1l) ierr=5
if(tagvalue(6).ne.0.and.tagvalue(6).ne.l) ierr=6
if(tagvalue(l13).ne.1l) ierr=13
if(ierr.gt.0) go to 920

ct:================='::::============-__===================================
e

: All the tags have been read and deciphered and the TIFF file has

o been rewound and repositioned to point at the beginning of the

o raster image data.

o Begin reading the TIFF data, converting it to byte values with

o white=0, and 'averaging' the image(i,j) over isample x isample,

o saving as idirect(i,j).

: NOTE: The formulas relating the counting integers i,j with x,y are:
2 x = i*del - 0.5*del ; 1 = ~-N+1 to N

o vy = j*del - 0.5*del ; j = -N+1 to N

e T e T oy

250 nn=nn+1
if(nn.gt.igridsize) go to 500
do 400 i=1,isample
read(2) (idots(i,j),j=1,nbytes)
if(tagvalue(6) .eq.0) go to 310
do 300 j=1,nbytes
idots (i, j)=NOT(idots(i,Jj))
300 continue -
310 if(tagvalue(4).eg.l) go to 350
if(tagvalue(4) .eq.4) go to 330
do 320 j=1,ndots, ipack
image (i, j)=idots (1, ])
if(idots(i,j).1lt.0) image(i,j)=idots(i,j)+256
320 continue



330

340

350

360
400

420

440
460

520
540

go to 400

do 340 j=1,ndots, ipack

ji=1+(j/ipack)

image (i,3)=ishl ((iand(idots(i,jj),2%#11110000)),-4)
image(i,j+1)=iand(idots(i,jj),2#00001111)

continue

go to 400

do 360 j=1,ndots, ipack

jj=1+(3/ipack)

image (i, j)=ishl((iand(idots(i,3jj),2#10000000)),-7)
image(i j+1)=ishl((iand(idots(i,3j3j),2#01000000)),-6)
image(i,j+2)=ishl ((iand(idots(i,jj),2#00100000)),-5)
image (i, j+3)=ishl ( (iand(idots (i, 33),2%00010000)),-4)
image(1i,j+4)=ishl((iand(idots(i,jJj),2#00001000)),-3)
image (i, j+5)=1shl((iand(idots(1i,3j3j),2#00000100)),-2)
lmage(l j+6)=ishl ((iand(idots(i,3jj),2#00000010)),-1)
image (i, j+7)=iand(idots(i,3jj),2#00000001)

continue

continue

ram=0

mro=rmm+ 1

if (mm.gt.igridsize) go to 250

isum=0

do 460 i=1,isample

do 440 j=1,isample
isum=isum+image (i, j+isample* (mm-1))

continue

continue

iarea=isample*isample

ibase=isum/iarea

irem=1isum-iarea*ibase

idiv=iarea/2

if (iarea-2* (iarea/2) .eq.1l) idiv=idiv+1l

idirect (mm-N, -nn+N+1)=ibase+ (irem/idiv)

go to 420

close(2)

Calculate the m00, ml0, and m0l values for the original image-

m01=0.

do 540 i=-N+1,N

do 520 j=-N+1,N
fdir=float (idirect(i,j))
m00=m00+£fdir

m10=m10+de1*(float(')— 5) *fdir
m0l=m0l+del* (float (j)-.5) *fdir
continue

continue

call clearscreen (SGCLEARSCREEN)
write(0,1)

write(0,2)
if(noise.eq.0) write
+igridsize,igridsize,
if (noise.eq.l) write
+igridsize,igridsize,
write(3,51)
write(3,52)

0,30) imagefile(initl:initl+11),
4*iprecision),infinity

0,3) imagefile(initl:initl+11),
4*iprecision)

o~~~
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if(noise.eq.0) write(3,54) imagefile(initl:initl+11),
+igridsize, igridsize, (4*iprecision), infinity
if(noise.eq.l) write(3,53) imagefile(initl:initl+11),
+igridsize, igridsize, (4*iprecision)

write(0,83) mO0,ml10,m01

write(3,73) mO0,ml10,m01

Calculate the scaling factor 'a' and the first-order shiftx and
shifty values. Do the shifting first and then scale the image
to produce 'a value of m0O0 = beta.

600 a=sqgrt (m00/beta)
bx=m10/m00
cx= (bx/del)
ixshift=nint (cx)
by=m01/m00
cy=(by/del)
iyshift=nint (cy)
do 620 i=-N+1,N
do 610 j=-N+1,N
inorm(i,j)=0.

610 continue

620 continue
do 640 i=-N+1,N
ii=i+ixshift
if(ii.lt.-127.0or.ii.gt.128) go to 640
do 630 j=-N+1,N
ji=j+iyshift
if(jj.lt.-127.0r.jj.gt.128) go to 630
inorm(i,j)=idirect(ii,jj)

630 continue

640 continue
do 646 i=—-N+1,N
do 644 j=-N+1,N
ihits(i,3)=0
idirect(i,j)=inorm(i, ;)

644 continue

646 continue
do 660 i=-N+1,N
1ii=NINT(a*(float(i)-0.5)+0.5)
1f(ii.1lt.-127.0r.1i.gt.128) go to 660
do 650 j=-N+1,N
jj=NINT(a*(float(j)-0.5)+0.5)
if(jj.1t.-127.0r.jj.gt.128) go to 650
inorm(i,j)=idirect (ii,jj)

850 continue

860 continue

Original image has now been shifted (once) and scaled.

Recalculate the required shift values and perform the image shift,
repeating until ml0 and m0l are minimized (ideally, both = 0).
m00=0

milo0=0.

m01=0.

do 692 i=-N+1,N
do 690 j=-N+1,N
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a0

690
692

700

710
720

730
740

790
792

fnor=float (inorm(i, j))
mO00=m00+£fnor

ml0=mlO0+del* (float(i)-.5) *fnor
mO0l=m0l+del* (float(j)-.5) *fnor
continue

continue
ixshift2=nint (m10/ (m00*del))
iyshift2=nint (m01l/ (m00*del))
write(0,82) (1./a)
write(0,81) cx,cy

write(0,80) ixshift,iyshift

write(0,80) ixshift2,iyshift2

write(3,72) a

write(3,71) bx,by

write(3,70) ixshift, iyshift

write(3,70) ixshift2,iyshift2
if(ixshift2.eq.0.and.iyshift2.eq.0) go to 800
do 720 i=-N+1,N

do 710 j=-N+1,N

idirect (i, j)=inorm(i, J)

continue

continue

do 740 i=-N+1,N

ii=i+ixshift2

if(ii.1t.-127.0r.11.gt.128) go to 740

do 730 j=-N+1,N

ji=j+iyshift2

if(jj.1t.-127.0r.jj.gt.128) go to 730
inorm(i,j)=idirect(ii,jj)

continue

continue

m00=0.

ml0=0.

m01=0.

do 792 i=-N+1,N

do 790 j=-N+1,N

fnor=float (inorm(i, j))

m00=m00+£fnor

ml10=ml0+del* (float(i)-.5) *fnor
m01l=m0l+del* (float(j)-.5) *fnor

continue

continue

ixshift2=nint (m10/ (m00*del))
iyshift2=nint (m01/ (m00*del))

write(0,80) ixshift2,iyshift2

write(0,83) mO0O,ml0,m01

write(3,70) ixshift2,iyshift2

write(3,73) mO0,ml10,mO1

if (ixshift2.eqg.0.and.iyshift2.eq.0) go to 802
go to 700

o e o o o o e e T o o o e o e e e o i e T e T A e e e T e e Mm m e o — e o — e = S T

Write the final values for m00, mlO, and m0l, and then, if elected
as an option, calculate the noise pixels using the random number
generator RAN2 (IDUM) (from "Numerical Recipes"). Then write the
pixelfile to be used in the feature vector calculations along with
a 'text' version of the same (the latter very useful for quick
printing/viewing by a word processor) .

Consistent with all the other programs comprising this "chain",
the pixelfile is written from left to right, beginning with the
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upper left corner of the image, i1.e., the image is written as
rows x=-1 to x=+1 (i=-N+1 to N) from y=+1 (j=N) down to y=-1
(j=-N+1) .

800 write(0,83) m00,ml10,m01
write(3,73) m00,ml10,m01
802 if(noise.eg.0) go to 875
idum=-7
do 850 kk=1,np
ranval=2*ran2 (idum)-1.
i=int (float (N) *ranval+.5)
1f(i.1t.(-N+1)) i=-N+1
1f(1.9t.N) i=
ranval=2*ran2 (1dum)-1.
j=int (float (N) *ranval+.5)
if(j.1t. (-N+1)) jJ=-N+1
1f(j.gt.N) j=N
ihits (i, j)=ihits (i, j)+1
850 continue
nhits=0
do 860 i=-N+1,N
do 855 j=-N+1,N
k=ihits (i, 3)
imod2=k-2*(k/2)
i1f(imod2.eg.0) go to 855
nhits=nhits+1
if(inorm(i, j).eq.0) ichange=1
if(inorm(i,j).eqg.1l) ichange=0
inorm(i, j)=ichange
855 continue
860 continue
percent=100.*float (nhits)/float (4*N*N)
db=20.*alogl0(-1+float (4*N*N) /float (nhits) )
write(0,85) np,nhits,percent,db
write(3,86) np,nhits,percent,db

Write the ‘pixel’ file.

875 open(2,file=pixelfile, status="'unknown', form='binary"')
do 880 j=N,-N+1,-1
write(2) (inorm(i,3j),i=-N+1,N)
880 continue
ifile=ifile+l
endfile 2
882 if(N.ge.0) go to 899

The code immediately below is used to write an ASCII file which
can be read, displayed, and printed by WordPerfect, i.e., a QAD
way to verify the program's operation. The statement 882 above
should be commented out if these ASCII files are to be written.
Although QAD, the images displayed in this way, when suitable
graphics characters are used, are indeed accurate representations
of the images. The code below offers two possibilities: (1), put
the numerals 0 through 9 for black pixels to represent their
grayscale values, or, (2), put a graphics symbol (extended ASCII)
which corresponds to a printed black pixel.
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c=======================================================================

pixelfile(mark2+1l:mark2+3)="txt"'
open(2,file=pixelfile, status="unknown', form='binary')
idiv=1
if(ipack.eqg.2) idiv=4
if(ipack.eqg.l) idiv=32
do 883 i=1,igsp2
dummy (1) =-6

883 continue
write(2) (dummy(i),i=1,igsp2)
write(2) cr,1lf
iblackpixel=48

c iblackpixel=218

do 890 j=N,-N+1,-1
do 885 i=-N+1,N,+1
if(iblackpixel.eq.48) dummy (i+N+1)=iblackpixel+(inorm(i,j)/idiv)
if (iblackpixel.eq.218) dummy (1+N+1l)=iblackpixel
if(inorm(i,j) .eq.0) dummy(i+N+1l)=space

885 continue
write(2) (dummy(i),i=1,igsp2)
write(2) cr,1lf

890 continue
do 892 i=1l,igsp2
dummy (1) =-6

892 continue
write(2) (dummy(i),i=1,igsp2)
write(2) cr,1lf
endfile 2
pixelfile(mark2+l:mark2+3)="pix"

Error messages. Program execution will be aborted if an unknown
tag number is encountered.

aaoaoa

900 write(0,90) iunknown
go to 1000

910 write(0,92)
write(0,93)
read(0,5) answer
go to 100

920 write(0,94)
write(0,95)
read(0,5) answer
go to 1000

990 if(iunknown.gt.0) write(0,96) iunknown
write(0,98) ifile

write(0,99)
c
c
1000 continue
endfile 3
end _=Z
c====================================================================’
c
c Random number generator from section 7.1 of "Numerial RecipeS
c Fortran".
c _o=F
c===================================================================’

FUNCTION RAN2 (IDUM)
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PARAMETER (M=714025,IA=1366,1C=150889,RM=1.4005112E~6)

DIMENSION IR(97)
DATA IFF /0/
IF(IDUM.LT.0.OR.IFF.EQ.0)THEN
JFF=1
IDUM=MOD (IC-IDUM, M)
DO 11 J=1,97
IDUM=MOD (IA*IDUM+IC, M)
IR(J)=IDUM
CONTINUE
IDUM=MOD (IA*IDUM+IC, M)
IY=IDUM
ENDIF
J=1+(97*1Y)/M
IF(J.GT.97.0R.J.LT.1) PAUSE
IY=IR(J)
RAN2=IY*RM
IDUM=MOD (IA*IDUM+IC, M)
IR(J)=IDUM
RETURN
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Program : GENFVZER.FOR (GENerate Feature Vector for ZERnike basis)
Version : 3.4 June 21, 1995
Author : Kenneth L. Sala

Communications Research Center

Ottawa, Ontario, Canada

(613) 998-2823

e-mail sala@digame.dgcd.doc.ca

Summary:

GENFVZER (GENerate Feature Vectors) calculates the

feature vectors for a series of .pix files w.r.t. the

Zernike functions (previously calculated and stored as files).
The features are calculated on a square grid of dimension

2N x 2N in either single or double precision.

The resulting file is saved as a FASCII file in the format
correct for use by NeuralWare Professional II (a .nna file).

PROGRAMMING NOTES:

1. The formats for the various data files are specified

separately in those programs which generate them (ZERNIKE,
PIXELIZ2E, ...).

2. The gridsize is NOT a variable for this program. However,
some care has been taken to allow the user to change this
parameter relatively easily. Only the dimensioning
assignments, initialization values, and some format
statements would have to be altered to allow for a different
gridsize.

include 'fgraph.fi'
include 'fgraph.fd'

real*4 basis(-127:128,-127:128), £v(1100,100)
integer*2 pixel(~127:128,-127:128),kchar(3)
character*l answer,cr,lf,drive

character*3 bufint

character*54 pixelfile,basisfile, fvfile,buffer
data cr/13/,1£/10/

All format statements and only format statements have ‘labels
in the range 1 - 99.

1 format (lh+,17 (1h*),
+' Rotation Invariant Feature Vector Generation ',17(1h*)\)
2 format (lh ,25x, 'Version 3.40 : June 21, 1995')
3 format(lh ,27x%,'Grid Size : ',i4d,' x ',id)
4 format(1lhO, 'Enter filename ',
+'(c/w path & extension) of starting .pix file : ')
44 format (1h0, 'Enter filename ',
+'(c/w path & extension) of feature vector file : ')
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5 format(al)

6 format (a54)

7 format (1h0, 18X,

+'Enter number of pixel files (default=1) : '\}

8 format(i3)

9 format(1ho0,18x, 'Initial Principal Index Value (NO default)
10 format(lh ,18x,' Final Principal Index Value (NO default)
11 format(1hO, 'Drive letter location of basis functions

+ (ONE character) : ')
20 format(1ho,26x,
+'Choice of basis functions :')
21 format(lh ,12X,
+'Pseudo Zernike Polynomials (1))
22 format(ih ,12X,
+'Standard Zernike Polynomials (2)")
23 format(lh ,12X,
+'Pseudo Zernike Polynomials - Radial Portion Only (3) ")
24 format(lh ,12X,
+'Standard Zernike Polynomials - Radial Portion Only (4)")
29 format(1ho, 16X,
+'Indicate basis function choice (NO default) : '\)
31 format(lh+,14(1h*),
+' Feature Vector using ',
+'the Pseudo Zernike Polynomials ',13(1h*)\)
32 format(lh+,13 (1h%*),
+' Feature Vector using °*,
+'the Standard Zernike Polynomials ',12(1h*)\)
40 format (1h ,11x,
+'Now integrating ',al2,' with ',al2,' [n=',i2,',m=',1i2,']")
42 format (1h0,24x, 'Program completed successfully.')
43 format(lh ,20x%,'Total of ',i4,’' pixel files were processed.')
50 format (F12.5,"',"'\)
51 format(2al\)
90 format (1hoO,
+'The index value is negative.')
91 format (1h0,
+'The final index value is less than the initial value.')
92 format (1h0,
+'The secondary index value exceeds the principal index value.')
93 format (1ho0,
+'The two indices must be the same parity.')
94 format (1h0,
+'Secondary index position is outside permissible range.')
99 format (1h0, 'Hit <RET> to restart program. '\)

Begin by prompting user for the initial pixel image filename (c/w
path if necessary)., the number of image files, the choice of basis
functions, and the range of basis function parameters (in effect,

the dimension of the feature vector).

igridsize=256
N=128
itype=1 -
irco=0
del=1.D0/dfloat (N)
zero=0.D0
half=0.5D0
one=1.D0
100 call clearscreen {$SGCLEARSCREEN)
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102

104

106

108

mali=1

ifile=0

write(0,1)

write(0,2)

write(0,3) igridsize,igridsize

Check at this point to see if the "prompts" have been passed
to this program as command line parameters. If so, skip the
prompts and proceed to the calculations.

Order and specification of the command line prompts are:

argl = pixelfile (a54 c/w path if needed)
arg2 = fvfile (a%4 c/w path if needed)

arg3 = drive letter for basis functions (al)
argd = itype (integer = 1,2,3,4)

arg5 = number (number of pixel files)

argbé = nstart (starting index value)

arg7 = nfinish (ending index value)

numargs=nargs ()

if (numargs.gt.l) ibatch=1

if (ibatch.eqg.0) go to 120

call getarg(l,pixelfile,istatus)
call getarg(2, fvfile,istatus)

call getarg(3,buffer, istatus)
drive=buffer(1l:1)

bufint="' '

call getarg(4,bufint, istatus)
nsf=3

do 102 i=1,3

kchar (i)=ichar(bufint (4-i:4-i))-48
if(kchar(i).ge.0.and.kchar(i).le.9) go to 102
kchar (1) =0

nsf=nsf-1

continue

itype=0

do 104 i=1,nsf
itype=10*itype+kchar (4-i)

continue

bufint="' !

call getarg(5,bufint, istatus)
nsf=3

do 106 i=1,3
kchar(i)=ichar (bufint (4-i:4-1i))-48
if(kchar(i).ge.0.and.kchar(i).1le.9) go to 106
kchar (i)=0

nsf=nsf-1

continue

number=0

do 108 i=1,nsf
number=10*number+kchar (4-1i)
continue

bufint="' '

call getarg(6,bufint, istatus)
nsf=3

do 110 i=1,3

kchar (i) =ichar(bufint (4-i:4-i))-48
if(kchar(i).ge.0.and.kchar(i).l1le.9) go to 110
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kchar(i)=0
nsf=nsf-1
110 continue
nstart=0
do 112 i=1,nsf
nstart=nstart*l0+kchar (4-1)
112 continue
bufint="' '
call getarg(7,bufint,istatus)
nsf=3
do 114 i=1,3
kchar(i)=ichar (bufint(4-1i:4-1))-48
if(kchar (i) .ge.0.and.kchar (i) .le.9) go to 114
kchar (1) =0
nsf=nsf-1
114 continue
nfinish=0
do 116 i=1l,nsft
nfinish=nfinish*10+kchar(4-1)
116 continue
go to 130

R s oo s oo E s o e T T T e T I e A Ee Tt T e I A T e T e e T e e e e e i e e e

We come here only if ibatch=0, i.e., no command line
parameters have been entered and the user must be prompted
for each of the filenames and variables.

=====--—::::——'——""======'—==—=—=====_—===:===========_—======—==—=—————:::

120 write(0,4)
read(0,6) pixelfile
write(0,44)
read(0,6) fvfile
write(0,11)
read(0,5) drive
write(0,7)
read(0, 8) number
i1f (number.le.0) number=1
write (0, 20)
write(0,21)
write (0,22)
write(0,23)
write(0,24)
write(0,29)
read(0,8) itype
write(0,9)
read(0,8) nstart
write(0,10)
read(0,8) nfinish
if(nstart.1t.0) go to 900

130 if(itype.gt.2) irco=1
if(itype.gt.2) itype=itype-2
basisfile(1:54)='X:\PZZ\PZ_nnmm.bin"
1if(itype.eq.2) basisfile(8:8)='S"
if(itype.eq.2) basisfile(4:4)='S"'
if(irco.eq.l) basisfile(10:10)='C’
if(irco.eq.l) basisfile(6:6)='C"
if(irco.eq.0) basisfile(6:6)="'F"
basisfile(1l:1)=drive
i=0 '
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134

136

140

144

146

150

170

180

190

196

i=i+1

if(pixelfile(i:i).eq.'.') go to 136
if(i.eqg.51) go to 910

go to 134

markpix=i

initpix=1

do 140 i=1,markpix+3
if(pixelfile(i:i).eq.'\') initpix=i+1l
continue

i=0

i=i+1

if(fvfile(i:i).eq.'."') go to 146
if(i.eqg.51) go to 910

go to 144

markfv=i

initfv=1

do 150 i=1,markfv+3
if(fvfile(i:i).eqg.'\') initfv=i+1
continue

ipbeg=nstart-2* (nstart/2)
ipfin=nfinish-2* (nfinish/2)
if((nfinish-nstart).1t.0) go to 910
if(itype.eq.2.or.itype.eq.4) go to 170
isub=(nstart* (nstart+1))/2

idim=({ (nfinish+1) * (nfinish+2))/2)~isub
if(nfinish.eqg.9) idim=45
go to 180

L=(nfinish+1) /2

LSUB=nstart/2

if(ipbeg.eq.0) isub=LSUB* (LSUB+1)

if (ipbeg.eqg.1) isub=(LSUB+1)* (LSUB+1)
if(ipfin.eq.0) idim=(L+1)*(L+1)-isub
if(ipfin.eq.1l) idim=L*(L+1)-isub

istart=100* (ichar(pixelfile(markpix-3:markpix-3))-48)
istart=istart+10* (ichar(pixelfile (markpix-2:markpix-2))-48)
istart=istart+(ichar(pixelfile (markpix-1:markpix-1))-48)
ifinish=istart+number-1

index=istart-1

irow=0

index=index+1

irow=irow+1

icol=0

if(index.gt.ifinish) go to 1200

mstart=0

if(itype.eqg.2.0r.itype.eq.4) mstart=ipbeg
mfinish=nstart

nhuns=index/100

ntens= (index-100*nhuns) /10
nunits=index-100*nhuns-10*ntens
pixelfile(markpix-3:markpix-3)=char (nhuns+48)
pixelfile(markpix-2:markpix-2)=char (ntens+48)
pixelfile(markpix-1:markpix-1)=char(nunits+48)
open{(2, file=pixelfile, status='unknown', form='binary')
do 196 7j=N,-N+1,-1

read(2) (pixel(i,j),i=-N+1,N)

continue

ifile=ifile+l

endfile 2

Have read pixel file into array pixel(i,3j). Now read the basis
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function files and perform the 'integration'.

call clearscreen (SGCLEARSCREEN)
if(itype.eq.l) write(0,31)
if(itype.eq.2) write(0,32)
write(0,2)

write(0,3) igridsize,igridsize

200 nindex=nstart-1
mindex=mstart-itype

210 nindex=nindex+1
if(nindex.eq.9.and.itype.eq.l) mfinish=5
if (nindex.gt.nfinish) go to 190

220 mindex=mindex+itype
if (mindex.gt.mfinish) go to 210
icol=icol+1l

We are now ready to proceed with the actual calculations of the
feature vector components.

[ [ e [ ——

ntens=nindex/10
nunit=nindex-10*ntens
mtens=mindex/10
munit=mindex-10*mtens
basisfile(11l:11)=char (ntens+48)
basisfile(12:12)=char (nunit+48)
basisfile(13:13)=char (mtens+48)
basisfile(1l4:14)=char (munit+48)
basisfile(10:10)="'R"
if(irco.eq.l) basisfile(10:10)="C"
write(0,40) pixelfile(initpix:initpix+11l),basisfile(8:19),
+nindex, mindex
open(2,file=basisfile, status="'unknown', form='binary')
do 300 j=N,-N+1,-1
read(2) (basis(i,j).,i=-N+1,N)
300 continue
endfile 2
310 sumr=0.0
do 330 j=-N+1,N
do 320 i=-N+1,N
if(basis(i,j).eq.0.0.0r.pixel(i,]j).eq.0) go to 320
sumr=sumr+basis(i,j)*float(pixel(i,j))
320 continue
330 continue

if (mindex.eq.0.0r.irco.eq.l) go to 600
basisfile(10:10)="1" B

write(0,40) pixelfile(initpix:initpix+1l),basisfile(8:19),
+nindex,mindex .

open (2, file=basisfile, status="'unknown', form='binary')

do 350 j=N,-N+1,-1

read(2) (basis(i,j),i=-N+1,N)

350 continue
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370
380

600

NN

910

920

930

940

endfile 2

sumi=0.0

do 380 j=-N+1,N

do 370 i=-N+1,N

if(basis(i,j) .eq.0.0.0r.pixel(i,j) .eq.0) go to 370
sumi=sumi+basis (i, J) *float (pixel (i, j))

continue

continue

if (mindex.eqg.0.0r.irco.eqg.l) fv(irow, icol)=abs (sumr)

if (mindex.gt.0.and.irco.eq.0) fv(irow,icol)=sqgrt (sumr**2+sumi**2)
if(mindex.lt.mfinish) go to 220

mindex=0

ip=nindex+1-2* ( (nindex+1) /2)

if(itype.eq.2) mindex=ip

mfinish=nindex+1

mindex=mindex-itype

go to 210

Error messages. The program restarts (from line 100) after each
message is displayed.

———=

write(0,90)
write(0,99)
read(0,5) answer
go to 100
write(0,91)
write(0,99)
read(0,5) answer
go to 100
write(0,92)
write(0,99)
read(0,5) answer
go to 100
write(0,93)
write(0,99)
read(0,5) answer
go to 100
write(0,94)
write(0,99)
read(0,5) answer
go to 100

open(2, file=fvfile, status="'unknown', form='formatted"')
do 1260 i=1,number
do 1250 j=1,idim
write(2,50) fv(i,3)
continue
write(2,51) cr,1lf
continue

endfile 2
write(0,42)
write(0,43) ifile
end
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Program : GENFVWAL.FOR (GENerate Feature Vectors for WALsh basis)
Version : 1.1 June 9, 1995
Author : Kennmeth L. Sala

Communications Research Center

Ottawa, Ontario, Canada

(613) 998-2823

e-mail sala@digame.dgcd.doc.ca

Summary:

GENFVWAL (GENerate Feature Vectors) calculates the

feature vectors for a series of .pix files w.r.t. a set of
bagis functions (previously calculated and stored as files).
A choice of either Walsh or Haar functions is offered as
the basis functions.

The features are calculated on a square grid of dimension
2N x 2N in either single or double precision.

The resulting file is saved as a FASCII file in the format
correct for use by NeuralWare Professional IT (a .nna file).

PROGRAMMING NOTES:

1. The formats for the various data files are specified
separately in those programs which generate them (WALSH,
PIXELWAL, ...).

2. The gridsize is NOT a variable for this program. However,
some care has been taken to allow the user to change this
parameter relatively easily. Only the dimensioning
assignments, initialization values, and some format
statements would have to be altered to allow for a different
gridsize.
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include 'fgraph.fi’
include ' fgraph.fd’

N
N
real*4 f£v(1100,100)
integer*l basis(-127:128,-127:128)
integer*2 pixel(-127:128,-127:128),kchar(3)
character*l answer,cr,lf,drivel,null
character*3 bufint
character*54 pixelfile,basisfile, fvfile, buffer
os data c¢cx/13/,1£/10/,null/0/
Q \—===================================:================================
g All format statements and only format statements have labels
o in the range 1 - 99.
Cxa P

B T T T T L T T T T T T T T T T T b T b Tt e Ly U S U

1 format (lh+,17(1h*), )
+' Rotation Invariant Feature Vector Generation ',17(1h*)\)

2 format(lh ,25x, 'Version 1.10 : June 9, 1995')
3 format(lh ,28x, '‘Grid Size : ',i4,' x ',i4)
4 format (1hO, 'Enter filename ',
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+'(c/w path & extension) of starting .pix file : ")
44 format(lhO, 'Enter filename ‘',
+' (c/w path & extension) of raw feature vector file : ')
5 format(al)
6 format(a54)
7 format (1ho,
+'Enter number of pixel files (default=1l) : '\)
8 format(i3)

9 format(lhO, 'Initial Index Value (NO default) = "\)
10 format(lh ,' Final Index Value (NO default) = '\)
20 format(1ho,

+'Choice of basis functions :')
21 format(lh ,

+'Radial Walsh Functions (1))
22 format(lh ,

+'Radial Haar Functions (2) ")
29 format(1ho,

+'Indicate basis function choice (NO default) : '\)

23 format(1hO, 'Drive letter location of basis functions
+ (ONE character) : ')
31 format(lh+,16(1h*),
+' Feature Vector using ‘',
+'the Radial Walsh Functions ',15(1h*)\)
32 format(lh+,16(1h*),
+' Feature Vector using ',
+'the Radial Haar Functions ',16(1h*)\)
40 format(lh , 15x,
+'Now integrating ',al2,' with ',al0)
42 format(1h0,24x, 'Program completed successfully.')
43 format(lh ,20x, 'Total of ',i4,' pixel files were processed.')
50 format(Fl12.5,°',"'\)
51 format(2al\)
90 format(1hoO,
+'The index value is negative.')
91 format (1hoO,
+'The final index value is less than the initial value.')
99 format(1h0, 'Hit <RET> to restart program. '\)

Begin by prompting user for the initial pixel image filename (c/¥
path if necessary), the number of image files, the choice of past
functions, and the range of basis .function parameters (in effect:
the dimension of the feature vector).

igridsize=256
N=128
itype=1
del=1.D0/dfloat (N)
ibatch=0
100 call clearscreen ($GCLEARSCREEN)
ifile=0
write(0,1)
write(0,2)
write(0,3) igridsize,igridsize

T gt

Check at this point to see if the "prompts" have been passed
to this program as command line parameters. If so, skip the
prompts and proceed to the calculations.
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¢ Order and specification of the command line prompts are:
c argl = pixelfile (a54 c/w path if needed)
c arg2 = fvfile (a54 c/w path if needed)
¢ arg3 = drive letter for basis functions (al)
c argd = itype (integer, 1 for Walsh, 2 for Haar)
c arg5 = number of pixel files (integer)
¢ arg6 = starting index value (integer)
: arg7 = ending index value (integer)
C=====:================:=============::========:===:========:======:::——
numargs=nargs{()
if (numargs.gt.l) ibatch=1
if (ibatch.eqg.0) go to 120
call getarg(l,pixelfile,istatus)
call getarg(2, fvfile, istatus)
call getarg(3,buffer, istatus)
drivel=buffer(l:1)
bufint=" '
call getarg(4,bufint, istatus)
nsf=3
do 102 i=1,3
kchar (i) =ichar (bufint (4-1:4-1i))-48
if (kchar(i).ge.0.and.kchar(i).le.9) go to 102
kchar (1)=0
nsf=nsf-1
102 continue
itype=0

do 104 i=1,nsf
itype=10*itype+kchar (4-1i)

104 continue
bufint=" !
call getarg(5,bufint, istatus)
nsf=3
do 106 i=1,3
kchar (i)=ichar (bufint(4-i:4-1i))-48
if (kchar(i).ge.0.and.kchar(i).le.9) go to 106
kchar (1) =0
nsf=nsf-1

106 continue
number=0
do 108 i=1,nsf
number=10*number+kchar (4-1)

108 continue
bufint=" '
call getarg(6,bufint, istatus)
nsf=3
do 110 i=1,3
kchar (i)=ichar (bufint (4-i:4-1))-48
if (kchar(i) .ge.0.and.kchar(i).le.9) go to 110
kchar(i)=0
nsf=nsf-1

110 continue
nbegin=0
do 112 i=1,nsf
nbegin=nbegin*10+kchar (4-1i)

112 continue
bufint=" !
call getarg(7,bufint, istatus)
nsf=3
do 114 i=1,3
kchar (1) =ichar (bufint (4-1:4-i))-~48

A-25



nNnNnonn

114

if(kchar(i).ge.0.and.kchar(i).le.9) go to 114
kchar (i) =0

nsf=nsf-1

continue

nfinish=0

do 116 i=1,nsf

nfinish=nfinish*10+kchar (4-1i)

continue

go to 130 _
We come here only if ibatch=0, i.e., no command line
parameters have been entered and the user must be prompted
for each of the filenames and variables.

write(0, 4)

130

132

134

136

140

142

144

read(0,6) pixelfile
write(0, 44)

read(0,6) fvfile
write(0,20)

write(0,21)

write(0,22)

write(0,29)

read(0,8) itype
if(itype.ne.2) itype=1
write(0,23)

read(0,5) drivel
write(0,7)

read(0, 8) number

if (number.le.0) number=1l
write(0,9)

read(0,8) nbegin
write(0,10)

read(0,8) nfinish
if(itype.eg.l) basisfile(l:54)='x:\walsh\walnnn.bin'
if(itype.eg.2) basisfile(l:54)='x:\haar\harnnn.bin’
basisfile(l:1)=drivel

i=0

i=i+l

if (pixelfile(i:i).eqg.'.') go to 134
if(i.eqg.51) go to 910

go to 132

markpix=i

initpix=1

do 136 i=1,markpix+3
if(pixelfile(i:i).eqg.'\') initpix=i+l
continue

i=0

i=i+1l

if(fvfile(i:i).eqg.'.') go to 142
if(i.eqg.51) go to 910

go to 140

markfv=i

initfv=1

do 144 i=1,markfv+3
if(fvfile(i:i).eq.'\') initfv=i+l
continue

idim=nfinish-nbegin+1
if(nbegin.1t.0) go to 900
if((nfinish-nbegin).1lt.0) go to 910
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istart=100* (ichar (pixelfile (markpix-3:markpix-3))-48)
istart=istart+10* (ichar(pixelfile (markpix-2:markpix~2))-48)
istart=istart+ (ichar (pixelfile (markpix-1:markpix-1))-48)
ifinish=istart+number-1

index=istart-1

irow=0

index=index+1

irow=irow+1

icol=0

if(index.gt.ifinish) go to 1200

nhuns=index/100

ntens=(index-100*nhuns) /10
nunits=index-100*nhuns-10*ntens

pixelfile (markpix-~3:markpix-3)=char (nhuns+48)
pixelfile (markpix-2:markpix-2)=char (ntens+48)
pixelfile(markpix-1:markpix-1)=char (nunits+48)

open (2, file=pixelfile, status='unknown', form="'binary')
do 190 j=N,-N+1,-1

read(2) (pixel(i,j),i=-N+1,N)

continue

ifile=ifile+l

endfile 2

Have read pixel file into array pixel(i,j). Now read the basis
function files and perform the 'integration'.

call clearscreen ($GCLEARSCREEN)
if(itype.eqg.1l) write(0,31)
if(itype.eqg.2) write(0,32)
write(0,2)

write(0,3) igridsize,igridsize

nindex=nbegin-1
nindex=nindex+1

if (nindex.gt.nfinish) go to 180
icol=icol+l

We are now ready to proceed with the actual calculations of the
feature vector components.

nhuns=nindex/100
ntens=(nindex-100*nhuns) /10
nunit=nindex-100*nhuns-10*ntens

kk=13

if(itype.eq.2) kk=12

basisfile(kk:kk)=char (nhuns+48)
basisfile(kk+1l:kk+1l)=char(ntens+48)
basisfile(kk+2:kk+2)=char (nunit+48)

write(0,40) pixelfile(initpix:initpix+11),basisfile(kk-3:kk+6)
open(2, file=basisfile, status='unknown', form='binary’)
do 300 j=N,-N+1,-1

read(2) (basis(i,Jj).,i=-N+1,N)

continue

endfile 2

sum=0.0

do 330 j=-N+1,N
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1200

1250

1260

do 320 i=-N+1,N

if(basis(i,]j) .eg.0.0.0or.pixel(i,j) .eg.0) go to 320
sum=sum+float (basis(i,j) *pixel(i,3))

continue

continue

fv(irow, icol)=abs (sum)

Error messages. The program restarts (from line 100) after each
message 1is displayed.

——==

write(0,90)
write(0,99)
read(0,5) answer
go to 100
write(0,91)
write(0,99)
read(0,5) answer
go to 100

open(2,file=fvfile, status='unknown', form="'formatted"')
do 1260 i=1,number

do 1250 j=1,idim

write(2,50) fv(i,J)

continue

write(2,51) cr,1lf

continue

endfile 2

write(0,42)

write(0,43) ifile
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Program : NORMFV.FOR (NORMalize the Feature Vectors)
Version : 4.0 July 08, 1995
Author : Kenneth L. Sala

Communications Research Center

Ottawa, Ontario, Canada

(613) 998-2823

e-mail sala@digame.dgcd.doc.ca

Summary:
Normalizes either a training raw feature vector (assumed to be
with a filename as 'FVnn.RAW') or a test raw feature vector
file (assumed to be with a filename as 'FVnnmm.RAW'). The
former case writes the 'statfile' containing the mean, maximum,
minimum, and sigma information while the lattexr reads the
statfile and uses these parameters in order to normalize the
test set. The maximum and minimum referred to for the statfile
are equal to (fvmax-mean) and (mean-fvmin) respectively. Thus,
all four elements of the statfile are .ge. 0.

This program writes 3 types of normalized feature vector files.

The first (code lettexr 'v') is:

fvnorml = (fv - mean)/max(bigl,big2)

and is characterized by a zeroc mean, with a maximum value of
+1 (bigl.gt.big2) OR a minimum value of -1 (bigl.lt.big2)

The second (code letter 'p') is:

fvnorm2 = abs(fvnorml)

and is characterized by a non-zero mean, components which are
always .ge. 0, and a maximum value of +1.

The third (code letter 'b') is:

fvnorm3 = [2*fv - (bigl-big2-2*mean)]/(bigl+big2)

and is characterized by always having at least one value of
+1 AND one value of -1.

Note 1:
An earlier version of this program produced a .sig file
representing 'sigma normalized' vectors, i.e.,
fvnorm = (fv - mean)/sigma
characterized by a zeroc mean and unit sigma value. However,
these "normalized" fv often resulted in vectors (for both
training and test sets) with components substantially greater
than +1 or less than -1. This meant either "renormalizing" or
explicitly setting up "minmax" tables for the neural simulator.
Either way, the end result was that a form of fvnorml or
fvnorm3 was used as input. Actual tests using the .sig and
.max files (fvnorml) with NO minmax tables revealed that the
networks trained with the .max files performed noticably
better than those trained with the .sig files.

Note 2:
All the filenames are al2 - this program MUST be run from
within the directory containing all the necessary feature
vector and stat files.

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
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include ‘fgraph.fi’
include 'fgraph.fd’

real*4 £fv(1100,100), fvnorml1(1100,100), fvnorm2(1100,100)
real*4 fvnorm3 (1100,100)

real*4 mean(100),sigma(100),bigl (100),big2(100)
integer*2 kchar(3)

character*l answer,cr, 1f, comma, dummyl , dummy?2
character*3 bufint

character*12 fvfile,normfile,statfile

data c¢r/13/,1£/10/

All format statements and only format statements have labels
in the range 1 - 99.

1 format(lh+,21(1lh*),
+' Normalization of Feature Vector File ',21(1lh*)\)
2 format(lh ,25x, 'Version 4.00 : July 08, 1995')
3 format(1hO, 'Is this a training or a test/recall set ?')
4 format (1lhO, 'Enter filename ‘',
+' (path & extension) for reading raw feature file ")
7 format (1hO, 15X,

+'Enter number of vectors (NO default) : '\)
8 format(1lhoO, 15X,
+'Enter dimension of feature vectors (NO default) : '\)

9 format(1lhO, 'Enter filename ',
+' (path & extension) for writing mean/maxim/sigma file : ')
10 format(1h0,24x, 'Program completed successfully.')
11 format(Fl2.5,al\)
12 format(2al)
13 format(al)
14 format(al2)
15 format(i3)
16 format (Fl12.5,"','\)
17 format(2al\)
18 format(i2)
19 format(1hO, 'Enter filename ',
+' (path & extension) for reading mean/maxim/sigma file : ')

20 format(lh , 'Training Set - Answer 1 :')
21 format(lh ,'Test/Recall Set - Answer 2 :')
22 format(1lh0, 'Answer (no default) : '\)

(

23 format(lh , 'Writing feature vector file ',al2)
90 format(1lho,
+'The number of vectors must be a positive integer .gt. 1.')
91 format (1hO, .
+'The feature vector dimension must be a positive integer.')
99 format(1hO, 'Hit <RET> to restart program. '\)

100 call clearscreen (S$SGCLEARSCREEN)
write(0,1)
write(0,2)

Check at this point to see if the "prompts" have been passed
to this program as command line parameters. If so, skip the

A-30



O00000000

0 0a0an

prompts and proceed to the calculations.

Order and specification of the command line prompts are:
argl = fvfile (al2)

arg2 = statfile (al2)

arg3 = itypefv (integer, 1 for train, 2 for test)

arg4d = nv (number of feature vectors)

arg5 = ndim (dimension of feature vector)

ibatch=0
numargs=nargs ()
if (numargs.gt.l) ibatch=1
if(ibatch.eq.0) go to 120
call getarg(l,fvfile,istatus)
call getarg(2,statfile, istatus)
bufint=" '
call getarg(3,bufint,istatus)
nsf=3
do 102 i=1,3
kchar (i) =ichar (bufint(4-i:4-1))-48
if(kchar(i).ge.0.and.kchar(i).1e.9) go to 102
kchar (1)=0
nsf=nsf-1

102 continue
itypefv=0
do 104 i=1,nsf
itypefv=10*itypefv+kchar (4-1)

104 continue
bufint=" '
call getarg(4,bufint,istatus)
nsf=3
do 106 i=1,3
kchar(i)=ichar(bufint(4-i:4-1i))-48
if(kchar (i) .ge.0.and.kchar(i).1le.9) go to 106
kchar(i)=0
nsf=nsf-1

106 continue
nv=0
do 108 i=1,nsf
nv=10*nv+kchar (4-1i)

108 continue
bufint=" '
call getarg(5,bufint,istatus)
nsf=3
do 110 i=1,3
kchar (i)=ichar(bufint (4-i:4-1i))-48
if(kchar(i).ge.0.and.kchar(i).le.9) go to 110
kchar(i)=0
nsf=nsf-1

110 continue
ndim=0
do 112 i=1,nsf
ndim=ndim*10+kchar (4-1i)

112 continue .

We come here only if ibatch=0, i.e., no command line
parameters have been entered and the user must be prompted
for each of the filenames and variables.
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120 write(0,3)
write(0,20)
write(0,21)
read(0,18) itypefv
write(0,4)
read(0,14) fvfile
if(itypefv.eq.1l) write(0,9)
if(itypefv.eq.2) write(0,19)
read(0,14) statfile
write(0,7)
read(0,15) nv
if(nv.le.0) go to 900
write(0,8)
read(0,15) ndim
if(ndim.le.0) go to 910

200 normfile(l:12)=fvfile(l:12)
mark=6
if(itypefv.eq.2) mark=8
normfile (mark:mark+2)="'max"'
normfile(2:2)="'v"

Now read the 'raw' feature vector file noting that both
programs GENFVZER and GENFVWAL produce raw feature vector
files for which fv(i,j).GE.Q for all values of 1i,j.

oo T S e o e s o e e e e e e e e e Em e A e M e e e A e e e e e e e e S M e e e e e S S

open(2,file=fvfile, status="unknown', form='formatted’)
do 220 i=1,nv
do 210 j=1,ndim
read(2,11) fv(i,3j),comma
210 continue
read(2,12) dummyl, dummy?2
220 continue
close(2)
if(itypefv.eg.l) go to 300

250 open(2, file=statfile,status="unknown', form='formatted’)
do 260 j=1,ndim
read(2,11) mean(j),comma

260 continue
read(2,12) dummyl, dummy2
do 270 j=1,ndim
read(2,11) bigl(j), comma

270 continue
read(2,12) dummyl, dummy2
do 275 j=1,ndim
read(2,11) big2(j), comma

275 continue
read(2,12) dummyl, dummy2
do 280 j=1,ndim
read(2,11) sigma(j),comma

280 continue
read(2,12) dummyl, dummy?2
close(2)
do 298 j=1,ndim
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290
298

300

310

320

330
340

400

450

460

500

do 290 i=1,nv

big=bigl(j)

if(big2(j) .gt.bigl(j)) big=big2(j)
fvnorml (i, j)=(£fv(i,j)-mean(j))/big
fvnorm2 (1i,j)=abs (fvnorml(i,3j))
a=2./(bigl(j)+big2(j))
b=-(bigl(3j)-big2(j)+2.*mean(j))/(bigl(j)+big2(3j))
fvnorm3 (i, j)=a*fv(i,j)+b

continue

continue

go to 400

do 340 j=1,ndim

sum=0.

do 310 i=1,nv

sum=sum+fv (i, j)

continue

mean (j)=sum/float (nv)

sum=0.

fmax=mean (Jj)

fmin=mean (7j)

do 320 i=1,nv

sum=sum+ (fv(i,j)-mean(j)) **2
if(fv(i,]) .gt.fmax) fmax=fv(i,3j)
if(fv(i,j).lt.fmin) fmin=fv(i,J)
continue

sigma(j)=sqgrt (sum/float(nv))
bigl(j)=fmax-mean(j)
big2(j)=mean(j)-fmin
if(bigl(j).le.0.001) bigl(j)=
if(big2(3).1le.0.001) big2(j)=
big=bigl (Jj)
if(big2(j).gt.bigl(3j)) big=big2(j)

do 330 i=1,nv

fvnorml (i, j)=(fv(i,j)-mean(j))/big

fvnorm2 (i, j)=abs(fvnorml (i, 3j))
a=2./(bigl{(j)+big2(3))
b=-(bigl(j)-big2(j)+2.*mean(j))/(bigl(j)+big2(3j))
fvnorm3(i,j)=a*fv(i,j)+b

continue

continue

1.
1

normfile(2:2)="v'

normfile (mark:mark+2)="max'’

open(2,file=normfile, status="'unknown', form='formatted")
do 460 i=1,nv

do 450 j=1,ndim

write(2,16) fvnorml (i, 3)

continue

write(2,17) cr,1lf

continue

endfile 2

normfile(2:2)='p"' -
open(2,file=normfile, status='unknown', form="'formatted’)
do 520 i=1l,nv

do 510 j=1,ndim

write(2,16) fvnorm2(i,j)
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520

540

550

560

600

620

640

650

660

900

910

continue
write(2,17) cr,1lf
continue
endfile 2

normfile(2:2)="'b"

open{2, file=normfile, status='unknown', form='formatted"')
do 560 i=1,nv

do 550 j=1,ndim

write(2,16) fvnorm3(i,3Jj)

continue

write(2,17) cr,1f

continue

endfile 2

1f(itypefv.eqg.2) go to 1000

open (2, file=statfile, status="'unknown', form="'formatted')
do 620 j=1,ndim
write(2,16) mean(j)
continue
write(2,17) cxr,1lf
do 640 j=1,ndim
write(2,16) bigl(j)
continue
write(2,17) cr,1lf
do 650 j=1,ndim
write(2,16) big2(3j)
continue
write(2,17) cr,1lf
do 660 j=1,ndim
write(2,16) sigma(j)
continue
write(2,17) cr,1lf
endfile 2

go to 1000

write(0,90)
write(0,99)
read(0,13) answer
go to 100
write{0,91)
write(0,99)
read(0,13) answer
go to 100
write(0,10)

end

s = S
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=======================================================================
Program : GENRV.FOR (GENerate Result Vectors)
Version : 1.0 March 11, 1993
Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary:

GENRV (GENerate Result Vectors) writes a set of

result vectors corresponding to a series of .pix files
generated by GENFV.

This program prompts the user to supply the number of
vectors NV (rows) and the vector dimension NDIM (columns).

If "AUTO"™ mode is selected, a simple matrix is then written
consisting of NGROUP groups of (NV/NDIM) rows each, with each
group having a single value = 1. (its ‘class') and the
remainder of the colummns = 0.

If "PROMPT" mode is selected, then the user is prompted to
give the position of the vector component = 1 for each feature
vector in turn (1 to NV).

include ' fgraph.fi’
include 'fgraph.fd*

real*4 rv(1100,100)
character*l answer,cr,1lf
character*54 rvfile

data cr/13/,1£/10/

All format statements and only format statements have labels
in the range 1 ~ 99.

1 format (lh+,22(1h*),

+' Generation of a Result Vector File ',22(1lh*)
2 format(lh ,25x, 'Version 1.00 : March 11, 1993
3 format(lh , 8X)
4 format (1ho, 8X, 'Enter filename ',

+'(c/w path & extension) for writing result file : ‘)
5 format (al)
6 format(ab54)

(

—
~—

7 format(1lhO, 15X,

+'Enter number of result vectors/cycle (NO default) : '\)
8 format{(1hO, 15X, )

+'Enter number of classes of vectors (NO default) '\

9 format(i3) .
10 format (1h0,24x, 'Program completed successfully.')
11 format(F12.5,',"'\)
12 format(2al\)
13 format (1h0, 15X,
+'Run prompt or automated mode (default=Auto) 2 '"\)
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14 format(1lhO, 15X,

+'Enter result vector dimension (NO default) : "\)
15 format(lh ,24X,
+'RV(1i,3) =1 with i =*,13," and j = '\)
16 format (1hO, 12X,
+'Enter number of cycles for RV generation (default=1l) : '\)

90 format(1lhO,
+'The number of vectors must be a positive integer.')
91 format (1lhO,
+'The number of classes must be a positive integer.')
92 format(lhoO,
+'The number of vectors must be an integral multiple
+'0of the number of classes.')
99 format (lhO, 'Hit <RET> to restart program. '\)

Begin by prompting user for the initial pixel image filename (c/W
path if necessary), the number of image files, the choice of basis
functions, and the range of basis function parameters (in effect,

the dimension of the feature vector).

iprecision=1

100 call clearscreen ($GCLEARSCREEN)
write(0,1)
write(0,2)
write(0,4)
write(0,3)
read(0,6) rvfile
write(0,7)
read(0,9) nv
if(nv.le.0) go to 900
write(0,14)
read(0,9) ndim
write(0,13)
do 210 i=1l,nv
do 200 j=1,ndim
rv(i,j)=0.

200 continue

210 continue
read(0,5) answer
if (answer.eq.'p'.or.answer.eq.'P') go to 400
ngroup=nv/ndim
itest=nv-ndim*ngroup
if(itest.ne.0) go to 920
write(0,16)
read(0,9) ncycle
if (ncycle.le.0) ncycle=1
do 320 j=1,ncycle
do 310 k=1,ndim
do 300 i=1,ngroup
ii=(j-1) *nv+ (k-1) *ngroup+i
rv(ii,k)=1.

300 continue

310 continue

320 continue
go to 1000

Come to line 400 if user wishes to write the result vector by
'prompt' mode, i.e., program will write each vector sequentlally
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prompting the user for the position of the 'l' component for
each.

400 do 440 i=1,nv
write(0,15) 1
read(0,9) j
rv(i,j)=1.

440 continue
go to 1000

Error messages. The program restarts (from line 100) after each
message is displayed.

900 write(0,90)
write(0,99)
read(0,5) answer
go to 100

910 write(0,91)
write(0,99)
read(0,5) answer
go to 100

920 write(0,92)
write(0,99)
read(0,5) answer
go to 100

1000 open(2, file=rvfile, status='unknown', form='formatted"')
do 1070 k=1,ncycle
do 1060 i=1,nv
do 1050 j=1,ndim
ii=(k-1)*nv+i
write(2,11) rv(ii,])

1050 continue
write(2,12) cr,1f

1060 continue

1070 continue
endfile 2
write(0,10)
end
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Program : GENCV.FOR (GENerate Complete Vectors)
Version : 4.2 July 9, 1995

Author : Kenneth L. Sala

Communications Research Center
Ottawa, Ontario, Canada

(613) 998-2823

e-mail sala@digame.dgcd.doc.ca

Summary:

GENCV (Combined/Complete Feature Vector) combines a
normalized feature vector file (from NORMFV) with its
result vector file (from GENRV) to form the complete
.nna training or test data file to serve as the input
for NeuralWare Professional II simulator. GENCV will
generate CXnnmm.NNA files where X = v, p, or b with
the corresponding FXnnmm.MAX file as input. Note, the
"differential" file CDnnmm.NNA is generated by using
FVnnmm.MAX with CDnnmm.NNA asg input file names.

This program prompts the user to supply the number of

vectors NV (rows), the dimension NFVDIM of the feature vector,
and the dimension NRVDIM of the result vector, i.e., the
feature vector file is dimension NVXNFVDIM while that of

the result vector is NVxNRVDIM.

These two files are then combined to form the single data

set of dimension NVx(NFVDIM+NRVDIM), written as an ASCII file
with the elements delimited by commas and 'end-of-records'
(vectors) by CR,LF.

include 'fgraph.fi’
include 'fgraph.fd’

real*4 £v(1100,200)

integer*2 kchar(3)

character*1l answer, cr,lf, comma, dummyl, dummy2
character*3 bufint

character*12 fvfile,rvfile,cvfile

data cr/13/,1£/10/

==

All format statements and only format statements have labels
in the range 1 - 99. '

—— e e e e e E e e — e i mmEm mmm e m e = S

1 format(lh+,22(1lh*),

+' Generation of a Result Vector File ',22(1h*)\)

2 format(lh ,25x%, 'Version 4.20 : July 09, 1995')
4 format (1h0, 'Enter filename ',

+' (c/w path & extension) for reading feature file : ')

5 format{(1hO, 'Enter filename ‘',

+'{c/w path & extension) for reading result file : ')

6 format (1hO, 'Enter filename ',

+' {c/w path & extension) for writing the cv file : ')
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7 format (1hO, 15X,

+'Enter number of wvectors (NO default) : '\)
8 format (1hO, 15X,

+'Enter dimension of feature vectors (NO default) : '\)
9 format (1h0, 15X,

+'Enter dimension of result vectors (NO default) : "\)

10 format(1lhO,24x, ' 'Program completed successfully.')
11 format (F1l2.5,al\)
12 format(2al)
13 format (al)
14 format(all)
15 format(i3)
16 format(F1l2.5,','\)
17 format(2al\l)
18 format (i2)
90 format (1hoO,

+'The number of vectors must be a positive integer.')
91 format(1lho,

+'The feature vector dimension must be a positive integer.')
92 format (1hoO,

+'The result vector dimension must be a positive integer.')
99 format (1hO, 'Hit <RET> to restart program. '\)

Cesmc—s===zo=c=—s===c=m=-c=m==oc—ooom==s=s=s=s=o===cocss—z—moo—ss—s==—=—=——=—===
c

¢ Begin by prompting user for the initial pixel image filename (c/w
¢ path if necessary), the number of image files, the choice of basis
c functions, and the range of basis function parameters (in effect,
c the dimension of the feature vector).

c
Cxrsem—srmo—c—=c—sr-—=c—ss-o—co—-——scom—c—z——o—=—=--mT-s—s=m—=To———s=———===——=—=

iprecision=1

100 call clearscreen (S$SGCLEARSCREEN)
write(0,1)
write(0,2)

Q========='—'=======—_.=====-=-_—'====-_-‘==-_-======================—_.==============.=
c

N Check at this point to see if the "prompts" have been passed

¢ to this program as command line parameters. If so, skip the

E prompts and proceed to the calculations.

N Order and specification of the command line prompts are:

N argl = fvfile (al2)

N arg2 = rvfile (al2)

N arg3 = cviile (al2)

N arg4 = nv (number of feature vectors)

N arg5 = nfvdim (dimension of feature vector)

E argbé = nrvdim (dimension of result vector)

Qit _____________________________________________________________________

numargs=nargs ()

if (numargs.gt.1l) ibatch=1
if(ibatch.eqg.0) go to 120

call getarg(l,fvfile, istatus)

call getarg(2,rvfile,istatus)

call getarg(3,cvfile, istatus)
bufint="' !

call getarg(4,bufint, istatus)
nsf=3

do 102 i=1,3

kchar(i)=ichar (bufint(4-i:4-1i))-48
if(kchar(i).ge.0.and.kchar(i).le.9) go to 102
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102

104

106

108

110

kchar (i) =0
nsf=nsf-1

===

continue

nv=0

do 104 i=1,nsf

nv=10*nv+kchar (4-1i)

continue

bufint=" !

call getarg(5,bufint, 1status)

nsf=3

do 106 i=1,3

kchar (i)=ichar (bufint (4-1i:4-1))-48

if(kchar(i) .ge.0.and.kchar(i).le.9) go to 106

kchar (i)=0

nsf=nsf-1

continue

nfvdim=0

do 108 i=1,nsf

nfvdim=10*nfvdim+kchar (4-1)

continue

bufint=" !

call getarg(6,bufint, istatus)

nsf=3

do 110 i=1,3

kchar (1i)=ichar (bufint (4-1:4-1))-48

if (kchar (i) .ge.0.and.kchar (i) .le.9) go to 110

kchar (1)=0

nsf=nsf-1

continue

nrvdim=0

do 112 i=1,nsf

nrvdim=nrvdim*10+kchar (4-1)

continue

go to 200
We come here only if ibatch=0, i.e., no command line
parameters have been entered and the user must be prompted
for each of the filenames and variables.

write(0,4)

read(0,14) fvfile

write(0,5)

read(0,14) rvfile

write (0, 6)

read(0,14) cvfile

write(0,7)

read(0,15) nv

if(nv.le.0) go to 900

write(0, 8)

read(0,15) nfvdim

if (nfvdim.le.0) go to 910

write(0,9)

read(0,15) nrvdim

if (nrvdim.le.0) go to 920

open{2,file=fvfile, status='unknown', form='formatted"')

200

do 220 i=1,nv
do 210 j=1,nfvdim
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read(2,11) fv(i,j),comma
210 continue

read(2,12) dummyl, dummy?2
220 continue

close(2)

300 open(2,file=rvfile, status="unknown', form="'formatted')
do 320 i=1,nv
do 310 j=1,nrvdim
k=j+nfvdim
read(2,11) fv(i,k),comma
310 continue
read(2,12) dummyl, dummy2
320 continue
close(2)

400 ndim=nfvdim+nrvdim
i1f(cvfile(2:2).eq.'d" .or.cvfile(2:2).eq.'D') go to 500
open (2, file=cvfile,status="'unknown', form='formatted')
do 420 i=1,nv
do 410 j=1,ndim
write(2,16) fv(i,3)
410 continue
write(2,17) cr,1lf
420 continue
endfile 2
go to 1000

Special case for writing the file CDnnmm.NNA.

We form the "differential" by comparing fv(i,j+1) with fv(i,3),
setting the result to +1 if fv(i,j+l).ge.fv(i,j) and to -1
otherwise. ©Note that the dimension of CDnnmm.NNA will be
(nfvdim-1l+nrvdim) .

500 do 520 i=1,nv
do 510 j=nfvdim,2,-1
delta=fv(i,j)~fv(i,j-1)
fv(i,j)=1.
if(delta.lt.0.) fv(i,j)=-1

510 continue

520 continue

600 open(2,file=cvfile, status='unknown', form='formatted')
do 620 i=1l,nv
do 610 j=2,ndim
write(2,16) fv(i,J)

610 continue
write(2,17) cr,1lf

620 continue

endfile 2

close(2)

go to 1000 .

Error messages. The program restarts (from line 100) after each

message is displayed.
c============.—_=====:================================':_—.==================



900

910

920

write(0,90)
write(0,99)
read(0,5) answer
go to 100
write (0, 91)
write(0,99)
read(0,5) answer
go to 100
write(0,92)
write(0,99)
read(0,5) answer
go to 100

write(0,10)
end
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Program : RATENNR.FOR (RATE the Neural Network Result vectors)
Version : 5.6 July 5, 1995
Author : Kenmeth L. Sala

Communications Research Center

Ottawa, Ontario, Canada

(613) 998-2823

e-mail sala@digame.dgcd.doc.ca

Summary:

RATENNR provides a convenient method of "rating” the result
file (*.nnr) obtained from the NeuralWare simulator.

It examines the .nnr file and determines whether or not a
given vector result is correct (correct interpreted simply
as the largest network output agreeing in position with the
result vector). A ratio is calculated as, (a), if correct,
the value of the correct result divided by the second largest
output or, (b), if incorrect, the value of the output of the
“correct” position divided by the largest output. A summary
is given of the number of result vectors in the file along
with the overall, weighted classification accuracy.

In order to account for some measure of “confidence” in the
classification results, a weighting factor is calculated
using the ratio defined above as:

factor = 1/[1 + exp(-4*(ratio-1))]

and it is this factor which is measured as a ‘hit’. Thus a
ratio of 1 produces a factor of 0.5, a ratio of 1.5 yields
a factor of .88, while a ratio of 0.5 gives a factor = .12.
Although this is a purely ad hoc manner of weighting the
performance, it gives more meaningful results than those
obtained by simply counting ‘hits’ (i.e., ratio.gt.l) as

+1 and ‘nmisses’ (i.e., ratio.le.l) as 0.

The user is presented with options to print either summary
information or a complete listing of the ratio results on a
vector by vector basis. An "information" file (*.inf) is
also written which contains the detailed listing of the
classification results.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

e=========-================== ————— —ESETTEDoEET== i+ 4+ 1+ttt 1+t 1 1 i+ 1+t 1+ttt
include 'fgraph.fi’
o include 'fgraph.fd’
]
real*4 rv(1536,50),info(1536,4),sumup(100,100)
character*l cr, 1lf, tab, ff, dummyl, dummy?2, answer
character*54 rvfile,infofile, sumupfile
o data cr/13/,1£/10/,tab/09/5;££/12/
c it A S s Tt S S K .
¢ All format statements and only format statements have labels
2 in the range 1 - 99.
O s e e e o o e e e e e e e e e o
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1 format (lh+,21(1h¥*),

+' Result Rating of an .nnr Vector File ',21(1lh*)\)
2 format(lh ,25x,'Version 5.60 : July 05, 1995')
3 format (1hO,

+'Enter number of nnr files to process (NO default) : '\)
4 format(lh ,'Total hits : ',i4,' of ',
+14,"' (',£7.3,'%) Sigmoid Value :',F9.4)

5 format (1hO, 'Enter filename ',

+'(c/w path & extension) for reading .nnr file )
6 format (lhO, 'Enter filename ',

+'{c/w path & extension) for writing the info file : ')
7 format (1lhO,

+'Enter total no. of vectors in NNR file (NO default) : '\)

8 format(lhoO,

+'Enter the number of classes for this result (NO default) : '\)
9 format(1lhO, 'Subfile ',13,' of nnr file : ',a54\)

10 format (1lhO, 24x, 'Program completed successfully.’')

11 format (F7.6\)

12 format (F8.6\)

13 format (al)

14 format (ab4)

15 format(i4)

16 format(Fl2.5,',"'\)

17 format(2al\)

18 format (i2)

20 format (1lhO, 'Ensure that printer is online and set to ‘',
+'non-ps mode before proceeding. '\)

21 format(al\)

22 format(lh ,'Sum of Ratios = ',F11.3,' : Average = ',F9.4)

23 format(lh ,15X, 'Sum of Ratios = ',F1l1.3,' : Average = ',F9.4//)

24 format(lh , 'Do yvou wish to print the results (LPT1:)? '\)

25 format(lh , 'Details or Summary (default = details) ?')

26 format(lh , 'Answer d,D or s,S : '\)

27 format(lh ,'NNR files are concatenated (default=no) ? '\)
28 format(lh , 'No. of vectors per subfile = '\)

29 format(lh ,'No. of subfiles = '\)

30 format(lh ,14X,4F12.5)
32 format(1lh0/)

33 format(lh ,9X, 'Total hits : ',i4,' of ',
+i4," (',£7.3,'%) Sigmoid Value :',F9.4)
34 format (lh+,16X, 'Result for subfile ',i3,' of nnr file : ',a54)

35 format(lh ,al)
36 format(lh ,5al)
37 format(lh ,2al)
38 format(lh ,23X,'SUMMARY FOR NNR FILE : ', ab4)
39 format(lh ,
+'Do you wish to write a summary info file (default=no) ? '\)
40 format(lh , 'Enter filename ',
+'for writing the summary info file : '\)
90 format(1ho,
+'The number of vectors must be a positive integer.')
91 format (1lho,
+'The feature vector dimension must be a positive integer.')
92 format (1ho,
+'The result vector dimension must be a positive integer.')
99 format (lhO, 'Hit <RET> to restart program. '\) _z

=T

Begin by prompting user for the number of nnr files to procgss'
filenames, feature vector dimensions, and choices for printind
calculated results in detail or in summary form.
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iprecision=1
100 call clearscreen ($GCLEARSCREEN)
write(0,1)
write(0,2)
write (0, 24)
read(0,13) answer
iprint=0
if (answer.eq.'y' .or.answer.eq.'Y') iprint=2
if(iprint.eq.0) go to 101
write(0,25)
write(0,26)
read(0,13) answer
if(answer.eq.'s'.or.answer.eq.'S') iprint=1
write(0,20)
read(0,13) answer
101 write(0,5)
read(0,14) rvfile
write(0,3)
read(0,15) number
write(0,39)
read(0,13) answer
isumup=0
if(answer.eq.'y'.or.answer.eq.'Y') isumup=1
if(isumup.eq.0) go to 102
write (0, 40)
read(0,14) sumupfile

102 do 103 i=1,54
infofile(i:i)=rvfile(i:1i)

103 continue
i=0

104 i=i+1
if(rvfile(i:i).eq.'.') go to 106
go to 104

106 mark=i
infofile(mark+1l:mark+3)="'inf"
if(number.eq.l) go to 108
itens=ichar (rvfile(mark-2:mark-2))-48
iunits=ichar(rvfile(mark-1:mark-1))-48
istart=10*itens+iunits
ifinish=istart+number-1
go to 110

108 istart=1
ifinish=1

lelNe]

write(0,27)
icat=0
read(0,13) answer
if (answer.eq.'Y'.or.answer.eq.'y') lcat=1l
if(icat.eq.0) go to 120 -
write(0,28)
read(0,15) nvf
write(0,29)
read(0,15) nf
go to 130
120 write(0,7)
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read(0,15) nvi
130 write(0,8)
read(0,15) nc
ncpl=nc+1
nc2=2*nc
nv=nvi*nf
if(iprint.eq.0) go to 150
open(3,file="'PRN")

Begin execution of large, outside DO-loop which processes the
individual result (nnr) files written by the NeuralWare Simulator-

150 do 600 k=istart,ifinish
if (number.eqg.1l) go to 200
dummyl=char ((k/10)+48)
dummy2=char (k-10* (k/10) +48)
rviile (mark-2:mark-2)=dummyl
rviile (mark-1:mark-1)=Adummy?2
infofile (mark-2:mark-2)=dummyl
infofile(mark-1:mark-1)=Adummy?2

200 open(2,file=rvfile)

do 220 i=1,nv

read(2,*) (rv(i,3j),j=1,nc2)
220 continue

close(2)

do 260 i=1,nv
do 250 j=1,nc2
rv(i,j)=abs(xv(i,j))
250 continue
260 continue

e e e s e e S £ o e e e e et i S £ e o i e e e S e e S i i S S e S S e S e e S S S s st e e e e e e = SRS

Initialize the sums to 0 and then begin the large inner DO-loo0p
to process the ‘subfiles’ contained within each nnr file (this
allows the program to treat concantenated test sets).

bigsum=0.

nthits=0

bigsumsig=0.
do 550 ifile=1,nf
nhits=0
sigfunc=0.
lines=0
do 380 i=1,nvf
ii=nvi* (ifile-1)+1
fpmax=0.
frmax=0.
do 340 j=1,nc
if(rv(ii,j).1lt.fpmax) go to 340
fpmax=rv(ii, Jj)
markp=3j
340 continue
do 360 j=ncpl,nc2
if(rv(ii,j).1lt.frmax) go to 360
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frmax=rv(ii, j)
markr=j

360 continue
temp=rv(ii,markr)
rv(ii,markr)=0.
frmax=0.
do 370 j=ncpl,nc2
if(rv(ii,j).1lt.frmax) go to 370
frmax=rv(ii,j)
markr2=j

370 continue

Having determined the two largest outputs from the network,
calculate the appropriate ratio according to whether it is a
‘hit’ or a '‘miss’. Then compute the sigmoidal “factor” which
will be used as the measure of the ‘hit’-‘miss’.

Note that a ratio of 1 yields a factor of 0.5, i.e., a 50%
“confidence” level.

rv(ii,markr)=temp
if ( (markr-markp) .eq.nc) ratio=rv(ii,markr)/rv(ii,markr2)
if((markr-markp) .ne.nc) ratio=rv(ii,markp+nc)/rv(ii,markr)
if ( (markr-markp) .eq.nc) nhits=nhits+1
factor=1./(1.+EXP(-4.*(ratio~-1.)))
sigfunc=sigfunc+factor
info(i+1,1)=float (markp-1)
info(i+1,2)=float (markr-nc-1)
info(i+1,3)=ratio
info(i+1,4)=factor

380 continue

percent=100.*float (nhits)/float (nvf)

info(1l,1)=float (nhits)

info(1,2)=float (nvf)

info(1, 3) =percent

info(1l, 4)=sigfunc

sum=0.

sumsig=0.

do 390 kk=2, (nvf+l)

sum=sum+info (kk, 3)

sumsig=sumsig+info (kk, 4)
390 continue

avg=sum/float (nvf)

bigsum=bigsum+sum

nthits=nthits+nhits

avgsig=sumsig/float (nvf)

bigsumsig=bigsumsig+sumsig

Write the various measurements derived from the nnr file into
the ‘infofile’ with one filg per nnr file.

400 open(2,file=infofile,status="'unknown', form='formatted')
do 420 i=1, (nvf+1)
do 410 j=1,4
write(2,16) info(i,])

410 continue '
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write(2,17) cr,1f
420 continue

write(0,9) ifile,xrvfile
write(0,4) nhits,nvf,percent, sigfunc
write(0,22) sum,avg
if(iprint.eqg.0) go to 500
write(3,34) ifile,xrvfile
write(3,33) nhits,nvf,percent, sumsig
write(3,23) sum, avg
lines=1lines+4
if(lines.le.52) go to 440
write(3,35) ff
lines=0

440 if(iprint.eg.l) go to 500
do 460 i=1, (nvf+1l)
write(3,30) (info(i,j),j=1,4)
lines=lines+1
if(lines.le.55) go to 460
write(3,35) ff
lines=0

460 continue
write(3,35) ff

500 continue
jcol=4*(k-1)+1
sumup (ifile,jcol)=info(1,1)
sumup(ifile,jcol+l)=info (1, 4)

550 continue

bigpercent=100.*float (nthits)/float (nv)
bigavg=bigsum/float (nv)
write(2,16) float(nthits)
write(2,16) float (nv)
write(2,16) bigpercent
write(2,17) cxr,1f
close(2)
write(0,32)
write(0,4) nthits,nv,bigpercent, sumsig
write(0,22) bigsum,bigavg
if (iprint.eg.0) go to 590
write(3,32)
write(3,38) rvfile
write(3,33) nthits,nv,bigpercent, sigfunc
write(3,23) bigsum,bigavg
write(3,35) ff
590 continue
600 continue . z

if (isumup.eqg.0) go to 900

do 700 k=1, number

Jj=4*(k-1)+1

smin=1000.

do 650 i=1,nf

if(sumup(i,j+1).le.smin) smin=sumup(i,j+1)
650 continue
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660
700

do 660 i=1,nf

sumup (i, §+2)=float (nvf) * (sumup (i, j+1) -smin)/ (float (nvf)-smin)
sumup (i, j+3)=100.*sumup (i, j+2)/float (nvf)

continue

continue

open(2, file=sumupfile, status="unknown', form='formatted')
do 880 i=1,nt

do 860 k=1,number

jcol=4*(k-1)

do 840 j=1,4

write(2,16) sumup(i,jcol+])

continue

continue

write(2,17) cr,1f

continue

endfile 2

close(2)

write(0,10)

end
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Appendix B
Fortran Source Code for Programs to Calculate the Basis Functions

This appendix contains the source code listings for the following programs:

L.

ZERNIKE.FOR

Calculates the SZF or PZF bases in either of 3 modes (single n single m, single » many
m, or many » all m) and stores the results as separate real and imaginary parts. Double
precision variables are used in the calculation of the polynomial coefficients to permit
calculation up to approximately n = 40.

WALSH.FOR
Calculates the 2-D Walsh radial function WREF for a user specified range of orders.

HARR.FOR
Calculates the 2-D Haar radial function HRF for a user specified range of orders.

ZERNRAD.FOR

Calculates the SZRP or PZRP bases in either of 3 modes (single n single m, single n
many m, or many n all m). Double precision variables are used in the calculation of
the polynomial coefficients to permit calculation up to approximately n = 40.

WALSHID.FOR

Calculates the one-dimensional Walsh function for a user-specified range of orders.
Can calculate either the ‘normal’ Walsh function (x dependence) or the ‘radial’ Walsh
function (x*x dependence) by a trivial modification of the code.

HAARID.FOR
Calculates the one-dimensional Haar function for a user-specified range of orders.

Can calculate either the ‘normal’ Haar function (x dependence) or the ‘radial’ Haar
function (x*x dependence) by a trivial modification of the code.
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Program

ZERNIKE.FOR

Version : 6.0 June 19, 1995

Author

Kenneth L. Sala

Communications Research Center
Ottawa, Ontario, Canada

(613) 998-2823

e-mail sala@digame.dgcd.doc.ca

Summary :

ZERNIKE calculates the real and imaginary parts of either the
Standard (itype=2) or Pseudo (itype=1l) Zernike polynomial

Vv (x,v) for x,v in the unit circle and for positive values
nm

of the integer index n .LE. 40 (with m.LE.n, m.GE.0, and, for
itype=2, (n-m) even).

The data is calculated on a sguare grid of dimension
2N x 2N and then saved as FASCII files with 'automatic®
assignment of filenames.

PROGRAMMING NOTES:

1.

2.

This program offers three 'modes' of calculating the Zernike
polynomials:

imode = 1 corresponds to the calculation for one specific
n,m pair.

imode = 2 corresponds to the calculation for a single value
of n over a range of allowable values for m.
imode = 3 allows for the calculation over a range of the

principal index n. In this case, the calculation$
are carried out for all possible values of the
secondary index m allowed for each value of n.

Double precision variables are used to calculate the
coefficients c(k) of the "radial" function part of V(x,y)

and subsequently for the calculation of the function itself.
This is necessary since the c(k) requires the calculation of
ratios of factorials (the function 'fact' listed at the end
of this program) and the numerators and denominators get very
large for even modest values of n. The range for double
precision means that this calculation is limited to values of
n .LE. 40. To extend this program beyond this value, it wou
necessary to calculate and store the c(k) values separately
using an infinite precision tool such as Mathematica and to
evaluate the polynomial terms with explicit retention of as
many significant figures such as occur in the largest c(k)
coefficient.

The saved data files have names in the form TZXNNMM.TYP where’

T = 8 (Standard Zernike) or P (Pseudo Zernike)
X = R (real part) or I (imaginary part)
NN = value of principal index (0,1,2,3,.....)
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c MM = value of secondary index (0,1,2,3,...) such that

c (NN-MM) is even and .GE. 0

c TYP= bin (raw data stored as 4-byte floating point)

c = fsc (FASCII file used for 'import data’ for graphing

c software such as AXUM,...)

c

c 4. The gridsize is NOT a variable for this program. However,

c care has been taken to allow the user to change this

c parameter relatively easily. Only the dimensioning

c assignments, initialization values, and some format

c statements would have to be altered to allow for a different
c gridsize.

c
c=======================================================================

include 'fgraph.fi'
include 'fgraph.£fd’

c
c

real*8 c(86),top,bot, fact,x,y.,a,b, r,rho, theta, del,power

real*8 zero,half, one,delsqg

real*4 vr(-127:128,-127:128),vi(-127:128,~-127:128)

real*4 theory(200),areas(200),diff(200)

character*1l answer, response,cr,1f

character*12 fullname,measures,names (200)

data cr/13/,1£/10/
C==========='_‘================.=======:.‘======='_‘======:'::.==—_.=========‘======
c
¢ All format statements and only format statements have labels
¢ in the range 1 - 99.
c
c====‘_-======.==================.—_=================-_—‘========================

1 format(1lh+,19(1h*),
+' Calculation of the Zernike Polynomials ',20(1h*))

2 format(lh ,25x, 'Version 6.00 : June 19, 1995')

3 format(lh ,27x,'Grid Size : ',i4,' x ',i4)

4 format (1hO0,6x, 'Do you wish to calculate for a range',
+' of n,m values (default=no)? '\)

5 format(al)

6 format(1lh0,18x, 'Principal Index Value (NO default) = '\)
7 format(i2)
8 format(lh ,18x, 'Secondary Index Value (NO default) = "\)

9 format(1hO0,18x, 'Initial Principal Index Value (NO default)
10 format(lh ,18x,' Final Principal Index Value (NO default)
11 format(1hO0,18x,'Initial Secondary Index Value (NO default)
12 format(lh ,18x,' Final Secondary Index Value (NO default)
13 format(1h0, 6x, 'Do you wish to calculate for all possible',

+' m values (default=yes)? '\)
23 format(1hO0, 6x,

+'Calculate Pseudo or Standard Zernike',

+' polynomials (default=pP) ? '\)
24 format(lh+,16(1h*),

+' Calculation of the Pseudo Zernike Polynomials ',16(1h*))
25 format (lh+,15(1h*),

+' Calculation of the Standard Zernike Polynomials ',15(1lh*))
26 format (1ho0, 6x,

+'Suppress the angular dependence’,

+' (default=n) ? '\)

i wn-~

P
—

27 format (1h+,3(1h*),' Calculation of the Pseudo Zernike,'
+' Polynomials - Radial Dependence Only ',4(1lh*))
28 format (1lh+,2(1h*),' Calculation of the Standard Zernike,'
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+' Polynomials - Radial Dependence Only ',2(1h*))
30 format (65536 (F10.5)\)
31 format (256 (F10.5)\)
32 format(128(F10.5)\)
33 format(85(F10.5)\)
34 format(64(F10.5)\)
35 format(al2,3(F18.6)\)
36 format(2all)
40 format(lh ,24x,'Now writing datafile ',al2)
41 format(ilh )
42 format (1hO, 24x, 'Program completed successfully.')
43 format(lh ,24x, 'Total of ',i4,' files were written.')
50 format(alO\)
51 format(F10.5\)
90 format(1ho,
+'The index value is negative.')
91 format (1hO,
+'The final index value is less than the initial value.')
92 format (1hO,
+'The secondary index value exceeds the principal index value.
93 format(1hO,
+'The two indices must be the same parity.')
94 format(1lhO,
+'Secondary index position is outside permissible range.')
99 format (1h0,25x, 'Hit <RET> to restart program.'\)

")

—— e, e e e e m e e e e = = S

Begin by prompting user for the index values after first

offering the option to calculate over a range of index values OF

for a specific n,m combination.

The values and the combinations they represent are:

imode=1 Calculate for one specific n,m pair

imode=2 Calculate for all allowable values of m for one
specific value of n

imode=3 Calculate over a range of n values supplied
by user via a prompt (and for all allowable valueS
of m)

itype=1 The Pseudo Zernike polynomials

itype=2 The Standard Zernike polynomials

inangle=0 Suppress angular dependence ("Circular"” functions)

inangle=1 Include the angular dependence (the complete
standard or pseudo functions with real and
imaginary parts)

igridsize=256
N=128
itype=1
fullname(1:12)="'PZ_nnmm.bin'
measures='measures.__ '
del=1.D0/dfloat (N)
delsg=del*del
pi=3.14159265
zero=0.D0
half=0.5D0
one=1.D0

100 call clearscreen ($GCLEARSCREEN)
mall=0

==



ifilebin=0
ifilefsc=0
write(0,1)
write(0,2)
write(0,3) igridsize,igridsize
write(0,23)
read(0,5) response
if (response.eq.'s'.or.response.eq.'S') itype=2
if (itype.eq.2) fullname(l:1)='S’
write(0,26)
read(0,5) answer
inangle=1
if (answer.eq.'y'.or.answer.eq.'Y') inangle=0
if (inangle.eq.0) fullname(3:3)='C’
write(0,4)
read(0,5) answer
call clearscreen ($GCLEARSCREEN)
if(itype.eg.l.and.inangle.eqg.l) write(0,24)
if(itype.eqg.2.and.inangle.eqg.l) write(0,25)
if (itype.eq.l.and.inangle.eq.0) write(0,27)
if (itype.eqg.2.and.inangle.eqg.0) write(0,28)
write (0, 2)
write(0,3) igridsize,igridsize
if (answer.eq.'y'.or.answer.eqg.'Y') go to 175
150 imode=1
write(0,6)
read(0,7) nstart
if(nstart.1lt.0) go to 900
nfinish=nstart
write (0, 8)
read(0,7) mstart
if (mstart.1lt.0) go to 900
if (mstart.gt.nstart) go to 920
mfinish=mstart
if(itype.eq.1l) go to 200
if ( (nstart-mstart-2*((nstart-mstart)/2)).ne.0) go to 930
go to 200
175 write(0,9)
read(0,7) nstart
if (nstart.1t.0) go to 900
iparity=nstart-2* (nstart/2)
write(0,10)
read(0,7) nfinish
if ((nfinish-nstart).1t.0) go to 910
if((nfinish-nstart).gt.0) go to 180
imode=2
write(0,11)
read(0,7) mstart
if (mstart.1lt.0) go to 900
if (mstart.gt.nstart) go to 920
if(itype.eqg.1l) go to 177
if ( (nstart-mstart-2*( (nstart-mstart)/2)) .ne.0) go to 930
177 write(0,12)
read(0,7) mfinish
if((mfinish-mstart) .1t.0) go to 910
if (mfinish.gt.nstart) go to 920
if(itype.eqg.l) go to 200
if((nstart-mfinish-2*((nstart-mfinish)/2)).ne.0) go to 930
go to 200
180 imode=3
mall=1
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220

mstart=0

if(itype.eq.2) mstart=iparity
mfinish=nstart

go to 200

We now have specific starting values for n and m. Begin by
calculating the coefficients for the radial portion of V (x,v)

nm
after initializing the nindex and mindex variables for the
n-loop (label 210 - applicable only when imode = 3) and the
m-loop (label 220 - applicable when imode = 2 or 3).

i e e e e e e e s e e e e e e e e i e e e e e e e e e i et e s e sm = e =R

write(0,41)

nindex=nstart-1

mindex=mstart-itype

nindex=nindex+1

iparity=nindex-2* (nindex/2)
if(nindex.gt.nfinish) go to 1000
mindex=mindex+itype

if (mindex.gt.mfinish) go to 210
if(itype.eq.l) iparity=mindex-2* (mindex/2)
nterms=nindex-mindex+1

if(itype.eq.2) nterms=1+((nindex-mindex) /2)
nl=nindex-mindex+1

n2=nindex+mindex+2

if(itype.eq.2) nl=1+((nindex-mindex)/2)
if(itype.eq.2) n2=1+((nindex+mindex)/2)

do 240 k=1,nterms

top=fact ((3-itype) *nindex+3-itype-k)
bot=fact (k-1) *fact (n2-k) *fact (nl-k)
c(k)=dfloat((-1)**(k+1))*top/bot

continue

We are now ready to proceed with the actual calculations of the
real and imaginary parts of V over the grid 2N x 2N.

We set up two loops with the y variable on the outside and the ¥
variable on the inside. The formulas relating the counting
integers i,j with x,y are:

x
Y

i*del - 0.5*del ;

i -N+1 to N
j*del - 0.5*del ;

-N+1 to N

Because of the symmetry of the Zernike functions, each calcul?tlor1
results in the value for 8 points in the x,y plane (4 points 1 ue
vy = +/~ x). Accordingly, we calculate the function for each val
of 7 from 1 to N and with i running from i=3j to i=N and then
assign the other 7 (or 3) values from the symmetry relations. |
Each point is first checked to see whether or not it lies withi?
the unit circle - if not, the values for vr and vi are set

to zero. Since the imaginary part of the Zernike polynomial
vanishes when m = 0, no file is written in this case.

4

do 700 j=1,N

yv=del* (dfloat (j)-half)
do 600 i=j,N

x=del* (dfloat (i) -half)
r=dsqgrt (x**2+y**2)
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330
340

350
380

405

410

420
430

432

450

if(r.gt.one) go to 410
theta=datan2 (y, x)

rho=c (1)

if(nterms.le.1l) go to 380
if(itype.eqg.2) go to 340
do 330 k=2,nterms
rho=rho*r+c (k)

continue

go to 380

do 350 k=2,nterms
rho=rho* (r**2) +c (k)
continue

power=r**mindex

if (mindex.eq.0) power=one
rho=rho*power
if(inangle.eqg.0) go to 405

a=rho*dcos (dfloat (mindex) *theta)
b=rho*dsin(dfloat (mindex) *theta)

go to 420

a=rho

b=0.

sign=1.

go to 432

a=zero

b=zero

if (iparity.eqg.1l) go to 450

k=mindex/2

sign:float((-l)**k)
r(i,j)=

j+1, 1) =sign*a

~-i+l1,~j+1)=a

,—1+1)—s19n*a

I )

3+1 1) =gign*b

i+l,-j+1)=b

v1(3,—1+1) =sign*b

if(i.eqg.j) go to 500

vr(j,1i)=sign*a

vr( i+1,j)=a
r(-j+1,-i+l)=sign*a
(1 —3+1)—a

i(j,1)=-1.*sign*b

i(-

i(-

i

T (-
r(-
r(J
i1
i(-
i(-

1+l j)=-1.*b

Jj+1,-i+1)=-1.*sign*b

i,-j+1)=-1.%*b
go to 500
k= (mindex+1) /2
sign=£float ((-1) **k)
vr(i,j)=
vr(-j+1,1i)=sign*b
vr(-i+l,-j+1)=-1.%*a
vr(j,-i+1l)=-1.*sign*b
vi(i,j)=b
vi(-j+1,1i)=~1.*sign*a
vi(-i+1,-j+1)=-1.%*Db
vi(j,-1+1)=sign*a
if(i.eqg.j) go to 500
vr(j,1i)=-1.*sign*b
vr(-i+1,j)=-1.%*a
vr(-j+1,-i+1l)=sign*b
vr(i,-j+l)=a
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vi(j,i)=~1.*sign*a
vi(-i+1,5)=b
vi(-j+1,-1+1)=sign*a
vi(i,-j+1)=-1.*Db

500 continue

600 continue

700 continue

Now save the results as data files, assigning the filenames as
described in the comments at the start of this listing.

ntens=nindex/10
nunit=nindex-10*ntens
mtens=mindex/10
munit=mindex-10*mtens
fullname (4:4)=char (ntens+48)
fullname (5:5)=char (nunit+48)
fullname(6:6)=char (mtens+48)
fullname (7:7)=char (munit+48)
fullname(3:3)="'R"
if (inangle.eq.0) fullname(3:3)='C'
fullname(9:11)="bin"
write(0,40) fullname
720 open(2,file=fullname, status='unknown', form='binary"')
do 722 j=N,-N+1,-1
write(2) (vr(i,j),i=-N+1,N)
722 continue
ifilebin=ifilebin+1
endfile 2
sumr=0.0
do 740 j=-N+1,N
do 730 i=-N+1,N
sumr=sumr+vr (i, J)
730 continue
740 continue
names (ifilebin)=fullname
areas (ifilebin)=sumr*delsq
if (inangle.eqg.0) go to 742
theory(ifilebin)=0.0
if (nindex.eq.0) theory(ifilebin)=pi
diff(ifilebin)=theory(ifilebin)-areas(ifilebin)
go to 748
742 if(nindex.gt.0) go to 744
theory (ifilebin)=pi
diff(ifilebin)=pi-areas(ifilebin)
go to 748
744 if(itype.eq.l) go to 746
signtl=float ((-1) ** ((3*nindex+mindex) /2))
top=2.*pi*signtl*float (mindex)
bot=float (nindex* (nindex+2))
theory(ifilebin)=top/bot
diff(ifilebin)=theory(ifilebin)-areas(ifilebin)
go to 748
746 signt2=float ((-1)** (nindex+mindex))
top=2.*pi*signt2*float (mindex* (mindex+1))
bot=float (nindex* (nindex+1) * (nindex+2))
theory(ifilebin)=top/bot
diff(ifilebin)=theory(ifilebin)-areas(ifilebin)
748 fullname(9:11)='fsc’
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750
760

762

770
780

788

write(0,40) fullname

open (2, file=fullname, status="'unknown', form='formatted')
do 760 j=N,-N+1,-1

do 750 1i=-N+1,N

rsqg=delsqg* ((float (1)-0.5)**2+(float (j)-0.5)**2)
if(rsqg.gt.1.0) then

write(2,50) ‘'‘missingval’

else

write(2,51) vr(i,3)

end if '

continue

continue

ifilefsc=ifilefsc+l

endfile 2

if (mindex.eq.0.o0r.inangle.eq.0) go to 800
fullname(3:3)="1"

fullname(9:11)="'bin’

write(0,40) fullname

open(2, file=fullname, status="'unknown', form="'binary')
do 762 j=N,-N+1,-1

write(2) (vi(i,j),i=-N+1,N)

continue

ifilebin=ifilebin+1l

endfile 2

sumi=0.0

do 780 j=-N+1,N

do 770 i=-N+1,N

sumi=sumi+vi(i,J)

continue

continue

names (ifilebin) =fullname

areas (ifilebin)=sumi*delsqg
theory(ifilebin)=0.0
diff(ifilebin)=-areas(ifilebin)
fullname(9:11)="£fsc’

write(0,40) fullname

open (2, file=fullname, status="'unknown', form='formatted')
do 792 j=N,-N+1,-1

do 790 i=-N+1,N

rsqg=delsqg* ((float (1) -0.5)**2+(float(j)-0.5)**2)
if (rsqg.gt.1.0) then

write(2,50) 'missingval’

else

write(2,51) vi(i,J)

end if

continue

continue

ifilefsc=ifilefsc+1l

endfile 2

For imode = 2 or 3, have to reassign the values of mstart and

mfinish and then return to either the m-loop (label 220)
n-loop (label 210). If imode = 1, quit.

if (imode.eg.1l) go to 1000
if (imode.eq.2) go to 220
if (mindex.lt.mfinish) go to 220
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N0

ip=(nindex+1)-2* ( (nindex+1)/2)
mstart=0

if(itype.eq.2) mstart=ip
mfinish=nindex+1
mindex=mstart-itype

go to 210

Error messages. The program restarts (from line 100) after each
message is displayed.

910

920

930

940

1000

1200

—_————=— ——=

write(0,90)
write(0,99)
read(0,5) answer
go to 100
write(0,91)
write(0,99)
read(0,5) answer
go to 100
write(0,92)
write(0,99)
read(0,5) answer
go to 100
write(0,93)
write(0,99)
read(0,5) answer
go to 100
write (0, 94)
write(0,99)
read(0,5) answer
go to 100

if (itype.eqg.2.and.inangle.eqg.1l) measures(10:12)="'SZF"'
if (itype.eqg.l.and.inangle.eg.1l) measures(10:12)='PZF’
if(itype.eqg.2.and.inangle.eqg.0) measures(10:12)='SzC’
if(itype.eqg.l.and.inangle.eq.0) measures(10:12)='PZC’

write(0,41)

write(0,40) measures

open (2, file=measures, status="'unknown', form='formatted"')
do 1200 i=1,ifilebin

write(2,35) names (i), theory(i),areas(i),diff (i)
write(2,36) cr,lf

continue

endfile 2

write (0, 42)

write(0,43) (ifilebin+ifilefsc+1)

end

This function calculates the factorial of integer 'ii' using -
double precision floating point values. As such, the limit for
for ii is 1i.LE.170.

The return of a value fact(ii).lt.0 should be interpreted by
the calling program as an error.

real*8 function fact(ii)
integer*4 1ij
if(ii.eqg.0.0r.ii.eq.1l) fact=1l.
if(ii.1lt.0) fact=-1.
if(ii.le.1l) go to 100
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if(ii.gt.12) go to 80
1j=1
do 50 jj=2,1ii
ij=ij*int4(33)

50 continue
fact=dfloat (ij)
go to 100

80 fact=479001600.D0
do 90 jj=13,ii
fact=fact*dfloat(jj)

90 continue .

100 continue
end

NN r e e M e e e e e T e e e e e e I e I T e I e I I T e e e e
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Program : WALSH.FOR (calculate the radial WALSH functions
with r**2 dependence on the unit circle)
Version : 2.0 June 12, 1995
Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary:

WALSH calculates the radial Walsh function WAL (nwal,x**2) over
the rectangular grid 2Nx2N with WAL (nwal,x**2)=0 for r.gt.l.
The functions are calculated via the Rademacher functions

and the graycode representation of the integer nwal.

Three files are written for each value of nwal:

- a 'bin' file contains the function as an integer*l1 binary
file

- an 'fsc¢' file contains the function stored as a FASCII file
for direct import into AXUM

- a 'WP' file is an ASCII represention of the function which
can easily be imported into WordPerfect and printed

In addition, a file "measures” is written which contains
the values of the integral of WAL(nwal,r**2) over the
unit circle.

]
3
o]

The gridsize is NOT a variable for this program. However,
some care has been taken toc allow the user to change this
parameter relatively easily. Only the dimensioning
assignmentg, initialization values, and some format
statements would have to be altered to allow for a different
gridsize.
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include 'fgraph.fi’
include 'fgraph. £fd’

c
c
integer*1l itemp,b(8),g(8),walsh(—127:128,—127:128),rad,order(256)
real*4 measure(256)
character*54 walshfile,axumfile,wpfile, measures
character*l answer,cr, lf, space,black, plusg,minus, zero 48/
data cr/13/,1£/10/,space/32/,black/88/,plus/43/,minus/45/,zexro/*7]
c.—_==================================::==:===========================-’="=”
c
c All format statements and only format statements have labels
c in the range 1 - 99.
Cc _=Zz%
c======================================= ============================’

1 format(lh+, 'Calculation of Walsh Funtion - ',
+'Sequency Ordering')
2 format (1h0, 'Enter starting integer value : '
7 format (1h0, 'Enter ending integer wvalue !
3 format(1lhO, 'Enter filename ',
+'(c/w path & extension) for writing Walsh file : ')



4 format(lh , 'Enter filename ',
+' (c/w path & extension) for writing Axum file : ')
5 format(lh , 'Enter filename ',
+' (c/w path & extension) for writing WP file : )

6 format(lh , 'Area calculation: nwal = ',I3," Area = ',F9.6)
20 format (1h0,24x, 'Program completed successfully.')
10 format(lh0, ‘nwal = ',i3,' ; graycode = ',
+i3,"' ; maxbit = ',i3)
11 format(lh , 'nwal = ',b8il)
9 format(lh ,'gray = ',8il)

12 format(1hO, 'Repeat ? '\)
13 format(al)

14 format(a54)

15 format (i3)

16 format(F12.5,"',"'\)
17 format (2al\)

18 format(i4)

19 format (256 (i2)\)
21 format (256al\)

22 format (i4,F10.6\)
23 format(i2\)

100 call clearscreen (SGCLEARSCREEN)
write(0,1)
write(0,2)
read(0,18) nwalbeg
write(0,7)
read(0,18) nwalend
walshfile="wal___ .bin"
axumfile='wal___ .fsc'
wpfile='wal___ .wp'
measures= 'measures’
N=128
del=1.0/float(N)
delsg=del*del

=

O I o oo o o s o e e e o T T T e e e T A Y T e T e o e e e B B e e e o e e o e e e e o e e e e e e T S A e A e T v e T e e T A S o

do 2000 nwal=nwalbeg,nwalend
nhuns=nwal/100
ntens=(nwal-100*nhuns) /10
nunits=nwal-100*nhuns-10*ntens
walshfile(4:4)=char (nhuns+48)
walshfile(5:5)=char (ntens+48)
walshfile(6:6)=char(nunits+48)
axumfile(4:4)=char (nhuns+48)
axumfile(5:5)=char(ntens+48)
axumfile(6:6)=char (nunits+48)
wpfile(4:4)=char (nhuns+487
wpfile(5:5)=char(ntens+48)
wpfile(6:6)=char (nunits+48)

Calculate the graycode value for nwal.
Use the g (i) plus the rad function to calculate Walsh
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for r.le.l.

b(1l)=iand(nwal, 2400000001)

b(2)=ishl( (iand(nwal, 2#00000010)),-1)
b(3)=ishl( (iand(nwal, 2#00000100)),-2)
b(4)=ishl( (iand(nwal, 2#00001000)),-3)
b(5)=ishl( (iand(nwal,2#00010000)),-4)
b(6)=ishl( (iand(nwal, 2#00100000)),-5)
b(7)=ishl( (iand(nwal,2#01000000)),-6)

b(8)=ishl( (iand(nwal,2#10000000)),-7)
g(l)=iabs(b(1)~-b(2))
g(2)=iabs(b(2)-b(3)
g(3)=iabs(b(3)-b(4)
g(4)=iabs (b(4)-b(5)
g(5)=iabs(b(5)~-b(6)
g(6)=1iabs (b(6)-b(7)
g(7)=iabs (b(7)-b(8)
g(8)=b(8)
M=0
do 200 i=8,1,-1
M=2*M+g (i)
200 continue
maxbit=1
do 220 i=1,8
if(g(i).eq.l) maxbit=i
220 continue
write(0,10) nwal,M,maxbit
write(0,11) (b(i),i=8,1,-1)
write(0,9) (g(i),i=8,1,-1)
do 700 3=1,N
do 600 i=3j,N
rsg=delsqg*float (i* (i-1)+3*(3-1)+0.5)
ival=1
do 300 k=1,maxbit
if(g(k).eqg.l) ival=ival*rad(k,rsq)
300 continue
if(rsq.gt.1.) ival=0

Exploit the radial symmetry of the function to assign one
calculated value to 7 other values (4 if x=y) on the grid.
In this way, the calculations need only be done on
(2Nx2N) /8 points.

aa0a0a0aan

—————m

walsh(i,j)=ival
walsh(i,~-j+1)=ival
walsh(-i+1l,j)=ival
walsh(-i+l,-j+1)=ival
if(i.eqg.3j) go to 600
walsh(j,i)=ival
walsh(j,-i+1l)=ival
walsh(-j+1,1)=ival
walsh(-j+1,-i+1)=ival

600 continue

700 continue

===

. . joP
o} Now calculate the 'measure', i.e., the integral of the fu?ct '8
c over the unit circle. This is used to check on the algorit
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c validity. Note, however, that the measure will still run to

c zero even when the function is under sampled, i.e., nwal exceeds
c the limit possible for the given gridsize. NWAL max is given

c by ( (N/2) - 1) - a "soft" limit.

c

sum=0.
do 900 j=-N+1,N
do 800 i=-N+1,N
sum=sum+f£loat (walsh(i,j))
800 continue
900 continue
sum=delsqg*sum
write{0,6) nwal,sum
order (nwal)=nwal
measure (nwal)=sum
1000 open(2, file=walshfile, status='unknown', form='binary")
do 1010 j=N,-N+1,-1
write(2) (walsh(i,j),i=~N+1,N)
1010 continue

endfile 2
C=:'.:_-._==_':.':.-‘-'..’:_':_'::.'::::====-—--======:'=:-:::=-:::':====.'=.‘_'::.':"__‘::-’:=-===='-:===’===="_:==='_—-=
c
¢ Write an AXUM data file as a FASCII file.

c
C":========:'—":::-’—‘:::-’::::»:=======.'_'::.’:.’;’=__—::::::’::::::::::::_T====-’==-=-'—'===::==.’==:

1100 open(2, file=axumfile, status='unknown', form='formatted"')
do 1120 j=N, -N+1,-1
do 1110 i=-N+1,N
rsg=delsqg* ((float (1)-0.5)**2+(float(j)-0.5)**2)
if{rsg.gt.1.0) then
write(2,17) ‘ms’
else
write(2,23) walsh(i,3j)
end if
1110 continue
1120 continue

Q§=====———_".'.‘.':.=.===-'=======-'=-'=::::::::"‘:ﬁ'_‘.—'_‘—"_':"""""""::'.::::'—‘.: ————————————————

o S SSEsE=sssSsssEsassEssssssssssssssssssssasssSssssssssssasssssssssssss=

2 Note: If "missing values" are not required, then replace

N the 2 loops above with:

o do 1120 j=N,-N+1,-1

o write(2,19) (walsh(i,j),i=-N+1,N)

« 1120 continue

Q§§= __________________________________________________
endfile 2

e close(2)

Q

1200 open (2, file=wpfile, status='unknown', form='formatted')
do 1400 j=N,-N+1,-1
do 1300 i=-N+1,N
itemp=walsh(i, j)
walsh({i,j)=space
if(itemp.eqg.1l) walsh(i, j)=plus

3 if (itemp.eq.~-1) walsh(i,j)=minus

1480 continue

0 continue
do 1500 j=N,-N+1,-1
write(2,21) (walsh{i,j),i=-N+1,N)
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write(2,17) cr,1lf
1500 continue
close(2)

2000 continue
open(2, file=measures, status="'unknown', form='formatted")
do 2200 i=nwalbeg,nwalend
write(2,22) order (i) ,measure(i)
write(2,17) cr,1f
2200 continue

write(0,12)
read(0,13) answer
if (answer.eq.'y'.or.answer.eq.'Y') go to 100

end
The Rademacher function.
rad(k,x) = sign[sin{ (2**k) *pi*x}]
integer*1 function rad(k, x)
temp=x
x=X-aint (x)
if(x.1t.0.) x=1.+x
1r=NINT (AINT((x*float (2**k))))
ir=ir-2+*(ir/2)
rad=1
if(ir.ne.0) rad=-1
x=temp
return
end _

—==



Program : HAAR.FOR (calculate the radial HAAR functions
with r**2 dependence on the unit circle)
Version : 2.0 June 12, 1995
Author : Kenneth IL,. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary:

HAAR calculates the radial Haar function HAR(nhaar,r*+*2) over
the rectangular grid 2Nx2N with HAR (nhaar,r**2)=0 for r.gt.l.
The functions are calculated directly by the definition

of the Haar functions as local functions on specific
subintervals of the range [0,1].

Three files are written for each value of nhaar:

~ a 'bin' file contains the function as an integer*l binary
file

-~ an 'fsc' file contains the function stored as a FASCII file
for direct import into AXUM

- a '"WP' file is an ASCII represention of the function which
can easily be imported into WordPerfect and printed

In addition, a file "measures" is written which contains
the values of the integral of HAR(nhaar,r**2) over the
unit circle.

NOTE: The gridsize is NOT a variable for this program. However,
some care has been taken to allow the user to change this
parameter relatively easily. Only the dimensioning
agssignments, initialization values, and some format
statements would have to be altered to allow for a different
gridgize.

700000000 ao0anannanaananaaneaanenataonaaeanaoaaooananaanaq

eha============-‘=-‘='_‘.=='.======-.-=.“:=='.==-"-’==='-T-"-T-"-T-"-T-'-—--‘======-‘='===‘—"“-—'==============-‘-=====
include 'fgraph.fi'
include 'fgraph.fa’

Q
Q
integer*1l itemp,haar(-127:128,-127:128),order (256)
real*4 measure(256)
character*54 haarfile,axumfile,wpfile,measures
character*l answer,cr,lf, space,black,plus,minus, zero
- data cx/13/,1£/10/,space/32/,black/88/,plus/43/,minus/45/,zexo/48/
e R L e e e Y L
Q
o All format statements and only format statements have labels
Q in the range 1 - 99.

1 format (lh+, ‘Calculation of Haar Function - ',
+'Sequency Ordering')

2 format (1h0, 'Enter starting integer value : '\)

7 format (1hO, 'Enter ending integer value : ‘'\)

3 format(1hQ, 'Enter filename ',
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+'(c/w path & extension) for writing Haar file : ')
4 format(lih ,'Enter filename °',
+' (c/w path & extension) for writing Axum file : ')
5 format(lh ,‘'Enter filename ',
+' (c/w path & extension) for writing WP file : ")

6 format(lh , 'Area calculation: nhaar =',I3," Area = ',F9.6)
20 format (1hO,24x, 'Program completed successfully.')
10 format(1hO, 'nhaar = ',1i3,' = 2**(',12,') + ',13)
11 format(lh , 'Nonzero region : ',£9.6,' to ',

+£f9.6,' to ',£9.6)
12 format(1hO, 'Repeat ? '\)
13 format(al)
14 format (a54)
15 format(i3)
16 format(F1l2.5,',"'\)
17 format(2al\)
18 format(i4)
19 format(256(1i2)\)
21 format(256al\)
22 format(i4,F10.6\)
23 format (i2\)
c:======================================================================

c Begin by prompting user for the start and end values of nhaar.

c‘_‘:::::=================================================================
100 call clearscreen (SGCLEARSCREEN)

write(0,1)
write(0,2)
read (0,18) nhaarbeg
write(0,7)
read(0,18) nhaarend
haarfile='har___.bin'
axumfile='har___.fsc'
wpfile='har___ .wp'
measures='measures'
N=128
del=1.0/float (N}
delsg=del*del

c===============================================:=====================:=
c
c Begin the calculations of the Haar functions.
c
c:=======================::======================::=====================
do 2000 nhaar=nhaarbeg,nhaarend
ip=0
m=nhaar
200 m=m/2
if(m.eq.0) go to 250
ip=ip+1
go to 200

250 m=nhaar-2**ip
if (nhaar.eq.0) m=0

c========================::==========================================:==
c

c Now have nhaar defined as = 2**ip + m.

c Calculate the three "boundries" al, a2, a3 as below.

c Haar is +1 between al,a2 and -1 between a2,a3 (zero elsewhere) -
c

al=float(m)/float(2**ip)
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a2=(float (m)+0.5)/float (2**ip)
a3=(float(m)+1.0)/float(2**ip)
if (nhaar.eq.0) al=0.

if (nhaar.eqg.0) a2=1.

if (nhaar.eq.0) a3=1.
write(0,10) nhaar,ip,m
write(0,11) al,a2,a3
nhuns=nhaar/100
ntens=(nhaar-100*nhuns) /10
nunits=nhaar-100*nhuns-10*ntens
haarfile(4:4)=char (nhuns+48)

haarfile(5:5)=char (ntens+48)
haarfile(6:6)=char(nunits+48)
axumfile(4:4)=char (nhuns+48)
axumfile(5:5)=char (ntens+48)
axumfile (6:6)=char (nunits+48)
wpfile(4:4)=char (nhuns+48)
wpfile(5:5)=char (ntens+48)
)

wpfile(6:6)=char (nunits+48)

do 700 j=1,N

do 600 i=3j,N
rsg=delsqg*float (i* (i-1)+j*(j-1)+0.5)
ival=0

if(rsg.gt.l) go to 300

if(rsg.lt.al) go to 300

ival=1

if(rsg.lt.a2) go to 300
ival=-~1

if(rsg.lt.a3) go to 300
ival=0

Exploit the symmetry of these functions to assign 7 values
to each one calculated (4 if x=y). Thus it is necessary to
calculate only (2Nx2N)/8 points to complete the 2Nx2N grid.

300 haar(i,j)=ival
haar(i,-j+1)=ival
haar(-1+1,3j)=ival
haar(-i+1,-j+1)=ival
if(i.eqg.j) go to 600
haar(j,i)=1ival
haar (j,-i+1l)=ival
haar (-j+1,i)=ival
haar (-j+1,-1i+1)=ival

600 continue

700 continue

Calculate the "measure" of the Haar function, i.e., its
integral over the unit circle. Note that this value will
still tend to zero even in the undersampled case. A limit
for nhaar max is (N/2)*(2**0.5) or about 80 for N=128 (this

is a "soft" limit).

sum=0.

do 900 j=-N+1,N

do 800 i=-N+1,N
sum=sum+float (haar(i, j))
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800
900

continue

continue
sum=delsg*sum
write(0,6) nhaar,sum
order (nhaar)=nhaar
measure (nhaar)=sum

Now write the binary, FASCII, and WordPerfect files.
c==:=========:================================================:====:====
1000 open(2,file=haarfile, status='unknown', form='binary')
do 1010 j=N,-N+1,-1
write(2) (haar(i,j),i=-N+1,N)
1010 continue
endfile 2
1100 open(2, file=axumfile, status='unknown', form="'formatted’)
do 1120 j=N,-N+1,-1
do 1110 i=-N+1,N
rsqg=delsqg* ((float(i)-0.5)**2+(£float(j)-0.5)**2)
if(rsq.gt.1.0) then
write(2,17) 'ms'
else
write(2,23) haar(i,Jj)
end if
1110 continue
1120 continue
Note: If "missing values" are not required, then replace
the 2 loops above with:
do 1120 j=N,-N+1,-1
write(2,19) (haar(i,j),i=-N+1,N)
1120 continue
endfile 2
close(2)
1200 open(2, file=wpfile, status='unknown', form='formatted’)
do 1400 j=N,-N+1,-1
do 1300 i=-N+1,N
itemp=haar (i, 3j)
haar (i, j)=space
if (itemp.eq.1l) haar(i,j)=plus
if (itemp.eqg.-1) haar(i,j)=minus
1300 continue
1400 continue
do 1500 j=N,-N+1,-1
write(2,21) (haar(i,j),i=-N+1,6N)
write(2,17) cr,1f
1500 continue
close (2) o=
Write the "measures" file and then offer user option to rerun-
C=====================================================================’



000N

2000

2200

continue

open(2, file=measures, status="unknown', form='formatted')

do 2200 i=nhaarbeg,nhaarend
write(2,22) order(i),measure(i)
write(2,17) cr,1lf

continue

write(0,12)

read(0,13) answer

if (answer.eq. 'y'.or.answer.eq.'Y’') go to 100
end "

The Rademacher function.
rad(k,x) = sign(sin{(2**k) *pi*x}]

integer*1l function rad(k,x)
temp=x

x=x-aint (x)

if(x.1t.0.) x=1.+x

ir=NINT (AINT( (x*float (2**k))))
ir=ir~-2*(ir/2)

rad=1

if(ir.ne.0) rad=-1

xX=temp

return

end

(e e N L e e S S T o Y
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Program
Version
Author

Summary:

¢ ZERNRAD.FOR
: 5.0 November 17, 1995
: Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

ZERNRAD calculates either the Standard (itype=2) or Pseudo
(itype=1) Zernike polynomial V (r) along the real line

nm

segment r in [0,1] for n positive and n.LE.40 (with m.LE.n,

m.GE.

0, and, for itype=2, (n-m) even).

PROGRAMMING NOTES:

1. This

program offers three 'modes' of calculating the Zernike

polynomials:

imode = 1 corresponds to the calculation for one specific

n,m pair.

imode = 2 corresponds to the calculation for a single value
of n over a range of allowable values for m.
imode = 3 allows for the calculation over a range of the

principal index n. In this case, the calculations

are carried out for all possible values of the
secondary index m allowed for each value of n.

2. Double precision variables are used to calculate the
coefficients c(k) of the "radial" function part of V(x,v)
and subsequently for the calculation of the function itself.

This

is necessary since the c(k) requires the calculation of

ratios of factorials (the function 'fact' listed at the end
of this program) and the numerators and denominators get very
large for even modest values of n. The range for double
precision means that this calculation is limited to values of
n .LE. 40. To extend this program beyond this value, it woul
necessary to calculate and store the c(k) values separately
using an infinite precision tool such as Mathematica and to
evaluate the polynomial terms with explicit retention of as

many

significant figures such as occur in the largest c(k)

coefficient.

a4 »e

3. The saved data files have names in the form TRADnnmm.ASC where®

T
nn
mm

S (Standard Zernike) or P (Pseudo Zernike)

value of principal index (0,1,2,3,.....)

value of secondary index (0,1,2,3,...) such that
(NN-MM) is even and .GE. 0

(Note that, in the case where more than one function is
calculated, imode=2 or 3, then nn and mm will be the values
corresponding to the last function calculated).
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c:======================================================================
include 'fgraph.fi’
include 'fgraph.fd’

c
c

real*8 c(86),top,bot, fact, r, rho,del, power

real*d poly(1001,100),theory(100),areas(100),dif£(100)

character*1l answer,response,cr,lf

character*12 fullname,measures, names(100)

data cr/13/,1£/10/
C=============='—._.========================================================
c
c All format statements and only format statements have labels
c in the range 1 - 99.
c
C===========================================:‘===========================

1 format(1h+,19(1h*),
+' Calculation of the Zernike Polynomials ',20(1h*))

2 format(lh ,23x, 'Version 5.00 : November 17, 1995')

3 format(lh ,29x, 'Segment Size : ',15)

4 format (1h0, 6x, 'Do you wish to calculate for a range',
+' of n,m values (default=no)? '\)

5 format(al)

6 format(1h0,18x, 'Principal Index Value (NO default) = '\)
7 format(i2)
8 format(lh ,18x, 'Secondary Index Value (NO default) = "\)

9 format(1h0,18x, 'Initial Principal Index Value (NO default)
10 format(lih ,18x,' Final Principal Index Value (NO default)
11 format (1h0,18x, 'Initial Secondary Index Value (NO default)
12 format(lh ,18x,' Final Secondary Index Value (NO default)
13 format (1h0,6x, 'Do you wish to calculate for all possible’,
+' m values (default=yes)? '\)

23 format (1hO, 6x,
+'Calculate Pseudo or Standard Zernike',
+' polynomials (default=P) ? '\)

~
— e~

nwun -~

27 format(ih+,3(1lh*),' Calculation of the Pseudo Zernike, '
+' Polynomials - Radial Dependence Only ', 4(1lh*))
28 format (lh+,2(1h*),' Calculation of the Standard Zernike, '

+' Polynomials - Radial Dependence Only ',2(1h*))
30 format (65536 (F10.5)\)
31 format (256 (F10.5)\)
32 format (128 (F10.5)\)
33 format(85(F10.5)\)
34 format(64(F10.5)\)
35 format(al2,3(F18.6)\)
36 format(2al\)
40 format(lh ,24x, 'Now writing datafile ',al2)
41 format(1lh )
42 format (1h0, 24x, 'Program completed successfully.')
43 format(lh ,20x, 'Total of ',i4,' functions were calculated.')
50 format(aliol\)
51 format (2001(F10.5)\)
52 format(F10.5,',"'\)
53 format(2al\)
90 format (1h0,
+'The index value is negative.')
91 format(1hO,
+'The final index value is less than the initial value.')

92 format(1hO,
+'The secondary index value exceeds the principal index value.')

93 format (1hO,
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+'The two indices must be the same parity.')
94 format (1hO,

+'Secondary index position is outside permissible range.')
99 format(1h0,25x, 'Hit <RET> to restart program.'\)

Begin by prompting user for the index values after first
offering the option to calculate over a range of index values or
for a specific n,m combination.
The values and the combinations they represent are:
imode=1 Calculate for one specific n,m pair
imode=2 Calculate for all allowable values of m for one
specific value of n
imode=3 Calculate over a range of n values supplied
by user via a prompt (and for all allowable values
of m)
%type=l The Pseudo Zernike polynomials
itvpe=2 The Standard Zernike polynomials
N=1001 T
itype=1

fullname(1:12)="PRADnnmm.ASC"
measures='measures.__ !
del=1.D0/dfloat (N-1)
pi=3.14159265
100 call clearscreen ($SGCLEARSCREEN)
mall=0
write(0,1)
write(0,2)
write(0,3) N
write(0,23)
read(0,5) response
if(response.eq.’'s’.or.response.eq.’'S') itype=2
if(itype.eq.2) fullname(l:1)='S"’
inangle=1 .
write(0,4)
read(0,5) answer
call clearscreen ($SGCLEARSCREEN)
if(itype.eq.l) write(0,27)
if(itype.eqg.2) write(0,28)
write(0,2)
write(0,3) N
if (answer.eq.'y'.or.answer.eq.'Y') go to 175
150 imode=1
write(0,6)
read(0,7) nstart
if(nstart.lt.0) go to 900
nfinish=nstart
write(0, 8)
read(0,7) mstart
if(mstart.1t.0) go to 900
if (mstart.gt.nstart) go to 920
mfinish=mstart
if(itype.eqg.l) go to 200
if( (nstart-mstart-2* ((nstart-mstart)/2)).ne.0) go to 930
go to 200
175 write(0,9)
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read(0,7) nstart
if (nstart.1t.0) go to 900
iparity=nstart-2* (nstart/2)
write(0,10)
read(0,7) nfinish
if((nfinish-nstart).1t.0) go to 910
if((nfinish-nstart).gt.0) go to 180
imode=2
write(0,11)
read(0,7) mstart
if(mstart.1lt.0) go to 900
if (mstart.gt.nstart) go to 920
if(itype.eqg.l) go to 177
if((nstart-mstart-2*((nstart-mstart)/2)).ne.0) go to 930

177 write(0,12)
read(0,7) mfinish
if ((mfinish-mstart).1t.0) go to 910
if (mfinish.gt.nstart) go to 920
if(itype.eq.l) go to 200
if((nstart-mfinish-2*((nstart-mfinish)/2)).ne.0) go to 930
go to 200

180 imode=3
mall=1
mstart=0
if (itype.eq.2) mstart=iparity
mfinish=nstart
go to 200

We now hgve specific starting values for n and m. Begin by
calculating the coefficients for the radial polynomial V (r)

nm
after initializing the nindex and mindex variables for the
n-loop (label 210 - applicable only when imode = 3) and the
m-loop (label 220 - applicable when imode = 2 or 3).

200 kk=0
write(0,41)
nindex=nstart-1
mindex=mstart-itype

210 nindex=nindex+1
iparity=nindex-2* (nindex/2)
if(nindex.gt.nfinish) go to 1000

220 mindex=mindex+itype
if (mindex.gt.mfinish) go to 210
kk=kk+1
if(itype.eq.l) iparity=mindex-2* (mindex/2)
nterms=nindex-mindex+1
if(itype-.eq.2) nterms=1+( (nindex-mindex)/2)
nl=nindex-mindex+1
n2=nindex+mindex+2
if(itype.eq.2) nl=1+((nindex-mindex) /2)
if(itype.eq.2) n2=1+((nindex+mindex)/2)
do 240 k=1,nterms
top=fact ((3-itype) *nindex+3-itype-k)
bot=fact (k-1) *fact (n2-k) *fact (nl-k)
c(k)=dfloat ((-1)**(k+1))*top/bot

240 continue
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We are now ready to proceed with the actual calculations of
V(r) over the line segment.

r = (i-1)/del ; 1 =1 to N

do 600 i=1,N
r=float (i-1)*del
rho=c (1)
if (nterms.le.1) go to 380
if(itype.eqg.2) go to 340
do 330 k=2,nterms
rho=rho*r+c (k)

330 continue
go to 380

340 do 350 k=2,nterms
rho=xrho* (r**2) +c (k)

350 continue

380 power=r**mindex
if (mindex.eq.0) power=1l.
rho=rho*power
poly (i, kk)=rho

600 continue

ntens=nindex/10
nunit=nindex-10*ntens
mtens=mindex/10
munit=mindex-10*mtens
fullname (5:5)=char (ntens+48)
fullname (6:6)=char (nunit+48)
fullname (7:7)=char (mtens+48)
fullname(8:8)=char (munit+48)

725 sumr=0.0
do 730 i=1,N
sumr=sumr+poly (i, kk)*float (i-1) *del

730 continue
names (kk)=fullname
areas (kk)=sumr*del

742 if(nindex.gt.0) go to 744
theory(kk)=1.
diff (kk)=1.-areas (kk)
go to 748

744 if(itype.eqg.l) go to 746
signt2=float ((-1) ** ( (nindex-mindex) /2))
top=signt2*float (mindex)
bot=£float (nindex* (nindex+2) )
theory (kk)=top/bot
diff (kk)=theory(kk)-areas (kk)
go to 748

746 signtl=float((-1)** (nindex-mindex))
top=signtl*float (mindex* (mindex+1))
bot=float (nindex* (nindex+1) * (nindex+2) )
theory (kk)=top/bot
diff (kk)=theory(kk)-areas (kk)

748 continue

For imode = 2 or 3, have to reassign the values of mstart and
mfinish and then return to either the m-loop (label 220) or the
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n-loop (label 210). If imode = 1, quit.

800 if(imode.eqg.l) go to 1000
if(imode.eqg.2) go to 220
if (mindex.lt.mfinish) go to 220
ip=(nindex+1)-2* ( (nindex+1) /2)
mstart=0
if(itype.eq.2) mstart=ip
mfinish=nindex+1
mindex=mstart-itype
go to 210

Error messages. The program restarts (from line 100) after each
message is displayed.

900 write(0,90)
write(0,99)
read(0,5) answer
go to 100

910 write(0,91)
write(0,99)
read(0,5) answer
go to 100

920 write(0,92)
write(0,99)
read(0,5) answer
go to 100

930 write(0,93)
write(0,99)
read(0,5) answer
go to 100

940 write(0,94)
write(0,99)
read(0,5) answer
go to 100

Now save the results as data files, assigning the filenames as
described in the comments at the start of this listing.

1000 write(0,40) fullname
open(z,f%le=fullname,status:'unknown‘,form='formatted')
do 1040 1=1,N
do 1020 j=1,kk
write(2,52) poly(i,Jj)

1020 continue
write(2,53) cr,1f

1040 continue
endfile 2
if(itype.eqg.2) measures(10:12)='SzC’
if(itype.eg.1l) measures(10:12)="'p2C"’
write (0, 41)
write(0,40) measures
open (2, file=measures, status="unknown', form="'formatted')
do 1200 i=1,kk
write(2,35) names (i), theory(i),areas(i),diff(i)
write(2,36) cr,1lf
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1200

50

80

continue
endfile 2
write(0,42)
write(0, 43) kk
end

This function calculates the factorial of integer 'ii' using
double precision floating point values. As such, the limit for
for ii is ii.LE.170.

The return of a value fact(ii).lt.0 should be interpreted by
the calling program as an error.

real*8 function fact(ii)
integer*4 ij
if(ii.eq.0.0r.ii.eq.1l) fact=l.
if(ii.1lt.0) fact=-1.
if(ii.le.l) go to 100
if(ii.gt.12) go to 80
ij=1

do 50 jj=2,ii
ij=ij*int4 (j3)

continue

fact=dfloat(ij)

go to 100
fact=479001600.D0

do 90 jj=13,ii
fact=fact*dfloat (j3J)
continue

continue

end
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C====
c
c

C====
c
c
c
c

C====

1

2

3

10

11

12

16

17

18

20
c
c
c

100

101

Program : WALSHID.FOR (calculate the 1-D WALSH functions with
either a r**2 dependence along the ‘normal’ r dependence
along the line segment [0,1]

Version : 3.0 November 18, 1995

Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e~mail sala@digame.dgcd.doc.ca

Summary:

WALSH1D calculates the radial Walsh function WAL(nwal,r**2) or
WAL(nwal,r) along the line interval [0,1] in "high resolution"
(2001 points). These functions are meant to serve as detailed
references for the 2-D radial Walsh functions calculated

on the unit circle by WALSH.

The functions are calculated via the Rademacher functions

and the graycode representation of the integer nwal.

NOTE:
This program is easily modified and recompiled to give
either one which calculates the "normal"” Walsh functions,
i.e., WAL(nwal,r) on [0,1] or the ‘radial’ walsh functions
WAL (nwal,r**2) by simply setting imode=0 for the ‘normal’
case and imode=1 for the ‘radial’ case ~ statement 101.

3ttt 1t 3t 3ttt 4t 4t 133 4t 1+ 3 1+ £ £ 4+ 1 1 5 SRS EES IR EEEEEEEE

include 'fgraph.fi:
include 'fgraph.fd’

integer*1l b(8),g(8),walsh(2001,128),rad
character*54 walshfile

character*l cr,1f

data c¢cr/13/,1f/10/

All format statements and only format statements have labels
in the range 1 - 99.

format (1h+, 'Calculation of Walsh Funtion - ',
+'Sequency Ordering')

format (1h0, 'Enter starting integer value : '\)
format (1h , 'Enter ending integer value "\)
format (1h0, 'nwal ',13,' ; graycode = ',i3,' ; maxbit = ',1i3)

',811)
',8i1)

nnn

format (1h , '‘nwal
format (1h , 'gray
format (12, ', '\)
format (2a1\) -
format (i4)

format (1h0, 24x, 'Program completed successfully.')

Begin by prompting user for values of nwalbeg and nwalend.

call clearscreen ($GCLEARSCREEN)
imode=1
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write(0,1)

write(0,2)

read (0, 18) nwalbeg
write(0,3)

read (o0, 18) nwalend
ntotal=nwalend-nwalbeg+1l

if (imode.eqg.0) walshfile='walln .asc'
if (imode.eq.l) walshfile='walild .asc’
N=2001

del=1l./float (N-1)
delsg=del*del

Begin calculations of Wal (nwal,r**2)

do 2000 nwal=nwalbeg,nwalend
index=nwal-nwalbeg+1

Convert nwal to graycode g(i) and then use g(i) plus the
Rademacher functions rad to calculate walsh(i,J)

b(l)=iand(nwal, 2#00000001)
b(2)=ishl((iand(nwal,2#00000010)),-1)
b(3)=ishl((iand(nwal, 2#00000100)),-2)
b(4)=1ishl((iand(nwal,2#00001000)),-3)
b(5)=1ishl((iand(nwal,2#00010000)), -4)
b(6)=ishl((iand(nwal,2#00100000)),-5)
b(7)=1ishl ((iand(nwal,2#01000000)),-6)
b(g):ishl((iand(nwal,Z#lOOOOOOO)), 7)
g(1l)=iabs(b(1)- 2))
g(2)=iabs(b(2)-
y=iabs(b(3)-
4)= 1abs(b 4)
5)=iabs (b(5)~
6)=iabs(b(6)
7)=iabs (b(7)-
(8)=b(8)
M=0
do 200 i=8,1,-1
M=2*M+g (i)
200 continue
maxbit=1
do 220 i=1,8
if(g(i) .eq.l) maxbit=i
220 continue
write(0,10) nwal,M, maxbit
write(0,11) (b(i),i=8,1,-1)
write(0,12) (g(i),i=8,1,-1)
do 600 i=1,N
r=del*float(i-1)
if (imode.eq.0) var=r
if(imode.eqg.l) var=r*r
walsh(i,index)=1.
do 300 j=1,maxbit
1000 if(g(j) .eq.l) walsh(i,index)=walsh(i, index) *rad(j,var)
300 continue
600 continue
2000 continue

))
g(3 b(4))
g( ~b(5))
gl ~-b(6))
gl -b(7))
g -b(8))
g

Write the ASCII (comma delimited) formatted files.

3000 nwal=nwal-1
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3100

3200

nhuns=nwal/100
ntens=(nwal-100*nhuns) /10
nunits=nwal-100*nhuns-10*ntens
walshfile(6:6)=char (nhuns+48)
walshfile(7:7)=char (ntens+48)
walshfile(8:8)=char (nunits+48)

open (2, file=walshfile, status='unknown', form='formatted')

do 3200 i=1,N

do 3100 j=1,ntotal
write(2,16) walsh(i,Jj)
continue

write(2,17) cr,1lf
continue

endfile 2

write(0,20)

end

The Rademacher function.
rad(k,x) = sign[sin{(2**k)*pi*x}]

integer*1l function rad(k, x)
temp=x

x=x-aint (x)

if(x.1t.0.) x=1.+x

1ir=NINT (AINT( (x*float (2**k))))
ir=ir-2*(ir/2)

rad=1

if(ir.ne.0) rad=-1

x=temp

return

end
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Program : HAARID.FOR (calculate the 1-D HAAR functions with either

a r**2 dependence or the ‘normal’ r dependence along the
line segment [0,1]

Version : 3.0 November 18, 1995
Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca
Summary:

HAARID calculates the 1-D Haar function HAR(nwal,r**2) or
HAR(nwal,r) along the line interval [0,1] in "high
resolution" (2001 points).

These functions are meant to serve as detailed refernences
for the 2-D radial Haar functions calculated on the unit
circle by HAAR.

The functions are calculated directly by the definition

of the Haar functions as local functions on specific
subintervals of the range [0,1].

NOTE:
This program is easily modified and recompiled to give
either one which calculates the "normal" Haar functionms,
i.e., HAR(nwal,r) on [0,1] or the ‘radial’ Haar functions
HAR (nwal,r**2) by simply setting imode=0 for the ‘normal’
case and imode=1 for the ‘radial’ case - statement 101.

EEEmRERnsE=E=TR ===—————————==========================================
include 'fgraph.fi'
include ®'fgraph.£fd'

integer*1 haar(2001,128)
character*54 haarfile
character*l c¢r,1lf

data cr/13/,1£/10/

All format statements and only format statements have labels
in the range 1 - 99.

1 format (1h+, 'Calculation of Haar Funtion - ',
+'Sequency Ordering’)

2 format (1h0, 'Enter starting integer value : '\)

3 format(lh ,'Enter ending integer value : '\)

4 format(1lhO,24x, 'Program completed successfully.')
10 format (1lh0, 'nhaar = ',13,' = 2**(',i2,') + ',1i3)
11 format(lh , 'Nonzero region : ',f9.6,' to ',

+£9.6,' to ',£9.6)
15 format (i4)
16 format (i2,','\)
17 format (2al\)
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c Begin by prompting user for start & end values of nhar

100 call clearscreen ($SGCLEARSCREEN)

101 imode=1
write(0,1)
write(0,2)
read(0,15) nharbeg
write (0, 3)
read(0,15) nharend
ntotal=nharend-nharbeg+1
if(imode.eq.0) haarfile='harln___ .asc’
if (imode.eq.l) haarfile='harld__ _.asc’
N=2001
del=1./float (N-1)
delsg=del*del

c
c
do 2000 nhar=nharbeg,nharend
index=nhar-nharbeg+1
ip=0
m=nhar
200 m=m/2
if(m.eq.0) go to 250
ip=ip+1
go to 200
250 m=nhar-2**ip
if (nhar.eq.0) m=0
(ol e L E eSS o e e Y T T

c
c Now have nhar defined as = 2**ip + m.

c Calculate the three "boundries" al, a2, a3 as below.

c Haar is +1 between al,a2 and -1 between a2,a3 (zero elsewhere) .
c

al=float (m)/float (2**ip)
a2=(float(m)+0.5) /float (2**ip)
a3=(float (m)+1.0)/float (2**ip)
if (nhar.eq.0) al=0.
if (nhar.eqg.0) a2=1.
if (nhar.eqg.0) a3=1l.
write(0,10) nhar,ip,m
write(0,11) al,a2,a3
do 600 i=1,N
r=del*float (i-1)
if (imode.eq.0) var=r
if(imode.eq.l) var=r*r
ival=0

1000 if(var.gt.1l) go to 300

1001 if(var.lt.al) go to 300

ival=1

1002 if(var.lt.a2) go to 300
ival=-1

1003 if(var.lt.a3) go to 300 -
ival=0

300 haar(i,index)=ival
600 continue
2000 continue
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c Write the ASCII (comma delimited) file.

3000 nhar=nhar-1
nhuns=nhaxr/100
ntens=(nhar-100*nhuns) /10
nunits=nhar-100*nhuns-10*ntens
haarfile(6:6)=char (nhuns+48)
haarfile(7:7)=char (ntens+48)
haarfile(8:8)=char (nunits+48)

3001 open(2,file=haarfile, status='unknown', form='formatted')
do 3200 i=1,N
do 3100 j=1,ntotal
write(2,16) haar(i,j)

3100 continue
write(2,17) cr,1f

3200 continue

close(2)
c
c

write(0,4)

end
c=======================:========================================:======
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Appendix C
Fortran Source Code for Utility Programs

This appendix contains the source code listings for the following programs:

CALNOISE.FOR

Calibrates the SNR for the Numerical Recipes routine “RAN2” for a given seed
variable and number of iterations. This calibration was the basis for the preparation of
the test subsets used to measure classifier performance.

FVASC.FOR

Calculates a series of feature vector files in various transposed versions and a fitted
version for convenience of graphical display. The files produced by this routine are
extremely useful for the display/plotting of individual and groups of feature vectors
since they can be imported directly as FASCII files in different orderings by a number
of different graphical software packages.

TORTHZER.FOR
Tests the orthogonality and normality for functions from the SZF, SZRP, PZF, or

PZRP bases.

TORTHWAL.FOR
Test the orthogonality and normality for the Walsh functions.

TORTHHAR.FOR
Tests the orthogonality and normality for the Haar functions.
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Program : CALNOISE.FOR
Version : 2.2 July 22, 1993
Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary: The purpose of this little program is to provide a
calibration of the random number subroutine "RAN2 (IDUM)"
from section 7.1 of "Numerical Recipes (Fotran)".

This program asks for :

NP = Number of iterations for the CALL RAN2 loop
Seed Integer = initial value of IDUM (first call of RAN2)

The program then runs the loop (NP times) and "measures"
the final number of changed pixels (keeping in mind that
the addition is done modula 2 for binary images) in order
to calculate the actual SNR generated by NP and ISEED.
The noise runs for the Zernike NN tests used ISEED = -7
in all cases.

The program, in addition to giving the measure SNR, gives
various other statistics such as percentage of changed
prixels, number of double, triple, ..... "hits", etc.

Note that the size of the image grid is NOT a variable
but can be changed readily by altering the one line
defining "N= " below and changing the dimensioning of
array "ihits".

include 'fgraph.fi:
include 'fgraph.fd:

integer*2 ihits(-127:128,-127:128)
integer*4 nhits(0:20),np, k, nchange
character*l answer

1 format(lhO, 'NP = '\)

2 format(i7)

3 format(1lhO, 'Seed integer (.LT.0) = '\)

4 format(i3)

5 format(lhO, 'Rerun program (default=yes) ? '\)
6 format(al)

85 format(1lhO,2X,'NP =',17,' No. of changes =',1i7,
+' Percentage =',F7.2,' Measured db =',F9.4)
86 format(/2X,'NP =',17,"' No. of changes =',1i7,
+' Percentage =',F7.2,' Measured db =',6F9.4)

87 format (1h , 'Ratio nchange/NP = ',F7.4)

88 format (lh ,7i8)

N=128
100 call clearscreen (SGCLEARSCREEN)
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646

850

860

870

880
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do 646 i=-N+1,N
do 644 j=-N+1,N
ihits(i,3)=0
continue
continue
write(0,1)
read(0,2) np
write(0,3)
read(0,4) iseed
idum=-7
idum=iseed
do 850 k=1,np
ranval=2*ran2 (idum) -1.
i=int (float (N) *ranval+.5)
if(1.1t. (-N+1)) i=-N+1
if(i.gt.N) i=N
ranval=2*ran2 (idum)-~1.
j=int (float (N) *ranval+.5)
if(j.1t. (-N+1)) j=-N+1
if(j.gt.N) j=N
ihits (i, 3j)=ihits(i,3j)+1
continue
do 860 i=0,20
nhits(i)=0
continue
icount=0
nchange=0
do 890 i=-N+1,N
do 880 j=~N+1,N
k=ihits(i,3)
if(k.gt.20) go to 870
nhits (k)=nhits (k) +1
icount=k-2* (k/2)
nchange=nchange+icount
continue
continue
ratio=float (nchange)/float (np)
percent=100.*float (nchange) /float (4*N*N)
db=20.*alogl0 (-1+float (4*N*N) /float (nchange))
write(0,85) np,nchange,percent,db
write(0,87) ratio
write(0,88) (nhits(i)
( )
)

,1=0,6)
write(0,88) (nhits(i),i=7,13)
write(0, 88 (nhits(i),i=14,20)

write(0,5)

read(0,6) answer

if (answer.eq. 'n'.or.answer.eq. 'N') go to 1000
go to 100

Random number generator from section 7.1 of "Numerial Recipes
Fortran".

FUNCTION RAN2 (IDUM) :
PARAMETER (M=714025,IA=1366,IC=150889,RM=1.4005112E-6)
DIMENSION IR(97)
DATA IFF /0/
IF(IDUM.LT.0.0OR.IFF.EQ.0)THEN

IFF=1



IDUM=MOD (IC-IDUM, M)

DO 11 J=1,97
IDUM=MOD(IA*IDUM+IC,6 M)
IR(J)=IDUM

11 CONTINUE
IDUM=MOD (IA*IDUM+IC, M)
IY=IDUM
ENDIF
J=1+(97*1IY) /M
IF(J.GT.97.0R.J.LT.1) PAUSE
IY=IR(J)
RAN2=IY*RM
IDUM=MOD (IA*IDUM+IC,M)
IR(J)=IDUM
RETURN
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Program : FVASC.FOR
Version : 6.0 November 3, 1995
Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary:

FVASC (Feature Vector ASCII files) reads a CXkkllmm.NNA
(test) file or a CXkk.NNA (train) file and generates a
series of other ASCII files as below: (X = S, P, or B)

CXkkllmm.NNA = original file
AXkkllmm.ASC transposed averaged version of CXkkllmm.NNA
arranged as testsets 01, 02, ....

RXkkllmm.ASC = transposed averaged version of AXkkllmm.ASC
arranged as classes '0', '1', ..., '8'
FXkkllmm.ASC = Fitted version of RXkkllmm.ASC

The averaged versions are formed by replacing the fv's for
any given image by its average (e.g., a set of 23 sets
each consisting of 5 fv's for 9 classes will be reduced to
a collection of 23 sets consisting of 9 averaged fv's).

The "fitted" version using a linear transformation on each
of the averaged fv's representing a noisy image to give a
LMS best fit to its noiseless counterpart.

The .ASC files are written for convenience as column vectors
for direct import into graphing software such as AXUM.

In addition, the files RX... and FX... are written as 9
groups of 23 vectors, each group representing ONE image class
(contrast to CV... CP... CB... where the vectors are

arranged as 23 groups of 45 vectors and AX... which is
written as 23 groups of 9 (averaged) vectors).

If the original CX file represents a training set, then a
shortened filename as CXkk.NNA is assumed.

NOTE: All filenames are al2. This program must be run from
within the directory containing the original CX... file.

include 'fgraph.fi-
include 'fgraph.fd:

real*4 fv(1200,200),cv(1200,200)

integer*2 kchar (3)

character*1l answer,cr, lf, comma, dummyl, dummy?2
character*3 bufint

character*12 cvfile, fvfile

data cr/13/,1£/10/
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All format statements and only format statements have labels
in the range 1 - 99.

1 format(lh+,14(1h*),

+' Generation of Extended Feature Result Vector Files ', 14 (1h*)\)
2 format(lh ,24x,'Version 6.00 : November 03, 1995')
4 format(1hoO,

+'Enter filename for reading cv file : '\)
5 format(1hoO,
+'Training or test set (l=train, 2=test) (NO default) : '\)
6 format(1hoO,
+'Enter number of subfiles in cv file (NO default) :"\)
7 format (1hO,
+'Enter number of vectors in each subfile (NO default) : '\)
8 format (1hO,
+'Enter dimension of feature vectors (NO default) '\
S format (1hO,
+'Enter dimension of result vectors (NO default) "\

10 format (1hO0,24x, 'Program completed successfully.')
11 format (F12.5,al\)
12 format(2al)
13 format(al)
14 format(al2)
15 format (i4)
16 format (F12.5,','\)
17 format (2all)
18 format(i2)
90 format (1ho,
+'The number of vectors must be a positive integer.')
91 format(1hoO,
+'The feature vector dimension must be a positive integer.')
92 format (1hO,
+'The result vector dimension must be a positive integer.')
99 format(1hO, 'Hit <RET> to restart program. '\)

Begin by prompting or by reading the original cv filename, train
or test set status, fv dimension, rv dimension (no. of classes),
no. of subfiles, and feature vectors per subfile.

100 call clearscreen ($SGCLEARSCREEN)
write (0, 1)
write (0,2

Check at this point to see if the "prompts" have been passed
to this program as command line parameters. If so, skip the
prompts and proceed to the calculations.

Order and specification of the command line prompts are:

argl = cvfile (al2)

arg2 = itype (l=train, 2=test)

arg3 = nfvdim (dimension of feature vectors)

arg4 = nrvdim (dimension of result vector (no. of classes))
arg5 = nsub (no. of subfiles in cvfile)

arg6 = nfvsub (no. of fv's per subfile)

Note:

Total no. of feature vectors in cvfile = nsub*nfvsub
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c No. of vectors per class per subfile = nfvsub/nrvdim

ibatch=0
numargs=nargs ()
if (numargs.gt.l) ibatch=1
if(ibatch.eq.0) go to 160
call getarg(l,cvfile, istatus)
bufint="' '
call getarg(2,bufint,istatus)
nsf=3
do 102 i=1,3
kchar (i)=ichar (bufint(4-i:4-1i))-48
if(kchar(i) .ge.0.and.kchar(i).le.9) go to 102
kchar (i) =0
nsf=nsf-~-1
102 continue
itype=0
do 104 i=1,nsf
itype=10*itype+kchar (4-i)
104 continue
bufint=" !
call getarg(3,bufint, istatus)
nsf=3
do 106 i=1,3
kchar (i) =ichar (bufint (4-i:4-1i))-48
if (kchar(i).ge.0.and.kchar(i).le.9) go to 106
kchar (i)=0
nsf=nsf-1
106 continue
nfvdim=0
do 108 i=1,nsf
nfvdim=10*nfvdim+kchar (4-1i)
108 continue
bufint=" '
call getarg(4,bufint, istatus)
nsf=3
do 110 i=1,3
kchar (i) =ichar (bufint (4-i:4-i))-48
if(kchar(i).ge.0.and.kchar(i).le.9) go to 110
kchar (1)=0
nsf=nsf-1
110 continue
nrvdim=0
do 112 i=1,nsf
nrvdim=nrvdim*10+kchar (4-1i)
112 continue
bufint="' '
call getarg(5,bufint,istatus)
nsf=3
dO 114 i=1I3
kchar (i)=ichar (bufint (4-i:4-1))-48
if(kchar(i) .ge.0.and.kchar(i).le.8) go to 114
kchar(i)=0
nsf=nsf-1 .
114 continue
nsub=0
do 116 i=1,nsf
nsub=nsub*10+kchar(4-1i)
116 continue
bufint=" !
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call getarg(6,bufint,istatus)
nsf=3
do 118 i=1,3
kchar (i) =ichar (bufint(4-1:4-1))-48
if(kchar(i).ge.0.and.kchar(i).le.9) go to 118
kchar (i) =0
nsf=nsf-1

118 continue
nfvsub=0
do 120 i=1,nsf
nfvsub=nfvsub*10+kchar (4-1i)

120 continue
go to 180

We come here only if ibatch=0, i.e., no command line
parameters have been entered and the user must be prompted
for each of the filenames and variables.

160 write(0,4)
read(0,14) cvfile
write(0,5)
read(0,15) itype
write(0,8)
read(0,15) nfvdim
write(0,9)
read(0,15) nrvdim
write(0,6)
read(0,15) nsub
write(0,7)
read(0,15) nfvsub

180 if (nfvdim.le.0) go to 1010
if(nrvdim.le.0) go to 1020
nfv=nsub*nfvsub
nfvpi=nfvsub/nrvdim
nevdim=nfvdim+nrvdim
base=float (nfvpi)

Read the CXkkllmm.NNA file where X = S, P, or B.

Size check for this file:

Size = nfv*[13* (nfvdim+nrvdim) +2]

The CXkkllmm.NNA file contains nfv rows by (nfvdim+nrvdim)
columns. In the processes below, we will transpose this
(after 'discarding’ the rv portion of the cx... file) to .
* ASC files which contain nfvdim rows by nstep (= nfv/nfvpi)

averaged columns.

200 open(2,file=cvfile, status="'unknown', form="'formatted’')
do 220 i=1,nfv
do 210 j=1,nfvdim
read(2,11) cv(i,j),comma
210 continue
read(2,12) dummyl, dummy?2
220 continue
close(2)
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Now replace each nfvpi vectors (rows of cx...) with its average

value, reducing the total number of vectors from nfv to nstep =

nfv/nfvpi. Then reset the remaining cx... vectors (vectors from
[nstep+1] to nfv) to 0.

nstep=nfv/nfvpi

do 360 j=1,nfvdim

do 340 i=1,nstep
k=5*(i-1)+1
cev(i,j)=(cv(k,Jj)+cv(k+l,3)+cv(k+2,7J)+cv(k+3,]j)+cv(k+4,])) /base
continue

continue

do 390 i={(nstep+1l),nfv
do 380 j=1,nfvdim
cv(i,j)=0.

continue

continue

Write the AXkkllmm.ASC file.
Size check for this file:
Size = nfvdim*[13* (nstep)+2]

fvfile=cvfile

fvfile(l:1)="a"

if(itype.eqg.1l) fvfile(6:8)='asc’
if(itype.eqg.2) fvfile(10:12)='asc'
open(2,file=fvfile, status='unknown', form='formatted')
do 320 j=1,nfvdim

do 310 i=1,nstep

write(2,16) cv(i,j)

continue

write(2,17) cr,1f

continue

endfile 2

close(2)

The AXkkllmm.ASC file above is written as vector no. running
along the columns and vector component running along the rows.
The vectors are grouped as for CXkkllmm.NNA, i.e., in groups
corresponding to the testsets, each group containing the image
classes in sequence (45 = 9x5 for CX... and 9 = 9x1 for AX...).
Now want to rearrange the vectors into nrvdim (always=9) groups,
with each group containing nsub (usually = 23) vectors. Each
group of nsub vectors correspond to ONE image class '0', '1',
'8..

do 420 i=1,nstep

ndiv=(i~1)/nrvdim B
nclass=i-nrvdim*ndiv

nset=1+ndiv

k=nsub* (nclass-1) +nset

do 410 j=1,nfvdim

fv(k,j)=cv(i,J)

continue
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420 continue

Write the RXkkllmm.NNA file.
Size check for this file (same as AXkkllmm.ASC) :
Size = nfvdim*[13* (nstep)+2]

fvfile(l:1)="'xr"
500 open(2,file=fvfile, status='unknown', form='formatted"')
do 520 j=1,nfvdim
do 510 i=1,nstep
write(2,16) fv(i,j)
510 continue
write(2,17) cr,1f
520 continue
endfile 2
close(2)

Now calculate and write the "fitted" FXkkllmm.ASC file.
Size check for this file:
Size = nfvdim* [13* (nstep) +2]

600 do 700 i=1,nrvdim
sumx=0.0
do 620 j=1,nfvdim
sumx=sumx+cv (i, Jj)

620 continue
do 680 isub=2,nsub
k=9* (isub-1) +i
sumy=0.0
sumxy=0.0
sumysg=0.0
do 640 j=1,nfvdim
sumy=sumy+cv (k, j)
sumxy=sumxy+cv (i, j) *cv(k, j)
sumysg=sumysqg+ (cv(k,J) *cv(k,j))

640 continue
denom= (sumy*sumy ) -~sumysg*float (nfvdim)
a={sumx*sumy-sumxy*float (nfvdim) ) /denom
b= (sumy *sumxy-sumx*sumysq) /denom
do 660 j=1,nfvdim
cv(ik,j)=a*cv(k,j)+b

660 continue

680 continue

700 continue
do 720 i=1,nstep
ndiv=(i-1)/nrvdim
nclass=i-nrvdim*ndiv
nset=1+ndiv
k=nsub* (nclass-1) +nset
do 710 j=1,nfvdim
fv(k,j)=cv(i,])

710 continue

720 continue
fvfile(l:1)="£"

800 open (2, file=fvfile, status="'unknown', form='formatted"')
do 820 j=1,nfvdim
do 810 i=1,nstep
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write(2,16) fv(i,3J)
810 continue

write(2,17) cr,1f
820 continue

endfile 2

close(2)

go to 2000

Error messages. The program restarts (from line 100) after each
message is displayed.

1000 write(0,90)
write(0,99)
read(0,5) answer
go to 100

1010 write(0,91)
write(0,99)
read(0,5) answer
go to 100

1020 write(0,92)
write(0,99)
read(0,5) answer
go to 100

2000 write(0,10)
end
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Program : TORTHZER.FOR
Version : 5.2 March 10, 1993
Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary:

TORTHZER calculates the 'orthogonality product' for two
Standard or Pseudo Zernmike functions V (x,y) for x,v

nm
in the unit circle and for positive values of integer indices
n and m (with m .LE. n, m .GE. 0, and, for the Standard case,
(n-m) even).

PROGRAMMING NOTES:

1. The data files have names in the form TZXNNMM.BIN where:

T = P (Pseudo Zernike) or S (Standard Zernike)

X = R (real part) or I (imaginary part)

NN = value of principal index (0,1,2,3,.....)

MM = value of secondary index (0,1,2,3,...) such that

(NN-MM) is even and .GE. 0

2. The gridsize is NOT a variable for this program. However,
some care has been taken to allow the user to change this
parameter relatively easily. Only the dimensioning
assignments, initialization values, and some format
statements would have to be altered to allow for a different
gridsize.

include 'fgraph.fi'
include 'fgraph.fd’

real*4 v1(256,256),v2(256,256),sum(4)
character*l answer
character*28 fullnamel, fullname2

All format statements and only format statements have labels
in the range 1 - 99.

1 format (1lh+,15(1h*),

+' Test of Orthogonality of the’

+' Zernike Polynomials ',15(1h*)\)
2 format(lh ,25x, 'Version 5.20 : March 10, 1993')
3 format(lh ,19x, 'Grid Size : ',i4,' x ',bi4,

+! Precision : Real*',bil)
4 format (1ho0, 6x,

+'Calculate for Pseudo or Standard Zernike',
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+' polynomials (default=P) ? '\)

5 format(al)

7 format(i4)

8 format(lh+,11(1lh*),
+' Test of Orthogonality of the Pseudo’
+' Zernike Polynomials ',12(1h*)\)

9 format(lh+,10(1h*),
+' Test of Orthogonality of the Standard:'
+' Zernike Polynomials ‘,11(1lh*)\)

10 format (1h0,22x,

+'Enter n value for first file. nl = '\)
11 format(lh ,22x,

+'Enter m value for first file. ml = '\)
12 format(lh ,22x,

+'Enter n value for second file. n2 = '\)
13 format(lh ,22x,

+'Enter m value for second file. m2 = '\)

31 format (256 (F8.5)\)
40 format (lh )

41 format (1hO0)

42 format (1h0, 17x,

+'Theoretical result = (',F9.6,') + 1 ( 0.000000)")
43 format(lh ,17x,
+'Calculated result = (',F9.6,') + i (',F9.6,')")
44 format (1hO0,12x, "Sum(i) : ',4(E1l2.6))
45 format(lh ,25x%, 'R1-R2',67x%, 'I1-I2',7x%,'R2-I1',7%x, 'R1-I2")
60 format (1h0,24x, 'Rerun program (default=yes)? : '\)

Begin by prompting user for the index values after first
offering the option to calculate over a range of index values or
for a specific n,m combination

igridsize=256
N=128
ndata=256
pixelarea=1./(float (N*N))
ipower=8
iprecision=1
pi=3.141592654
fullnamel (1:28)='e:\zernike\PZ_nnmm.____'
fullname2 (1:28)='e:\zernike\PZ_nnmm.____'
fullnamel (20:20)=char(iprecision+48)
fullname2(20:20)=char(iprecision+48)
fullnamel (21:22)='08"
fullname2(21:22)="'08"

100 call clearscreen ($GCLEARSCREEN)
write(0,1)
write(0,2)
write(0,3) igridsize,igridsize, (4*iprecision)
itype=1
write(0,4)
read(0,5) answer
if(answer.eq.'s'.or.answer.eq.'S') itype=2
if(itype.eq.l) fullnamel(l2:12)='P°’
if(itype.eqg.1) fullname2(12:12)='P’
if(itype.eqg.2) fullnamel(12:12)='S"
if(itype.eqg.2) fullname2(12:12)='S"
iauto=0
theory=0.
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amplitude=1.

do 110 i=1,4

sum(i)=0.

continue

call clearscreen ($SGCLEARSCREEN)
if(itype.eq.1l) write(O0, 8)

if(itype.eqg.2) write(0,9)

write(0,2)

write(0,3) igridsize,igridsize, (4*iprecision)
write(0,10)

read(0,7) nl

write(0,11)

read(0,7) ml

write(0,12)

read(0,7) n2

write(0,13)

read(0,7) m2

if(nl.eg.n2.and.ml.eq.m2) iauto=1
if(iauto.eq.l) theory=1.

if (iauto.eqg.l) amplitude=(1l.+float(nl))/pi

ntens=nl/10

nunit=nl-l0*ntens

mtens=ml/10

munit=ml-10*mtens

fullnamel (15:15)=char (ntens+48
fullnamel (16:16)=char (nunit+48
fullnamel (17:17)=char (mtens+48
fullnamel (18:18)=char (munit+48
ntens=n2/10

nunit=n2-l0*ntens

mtens=m2/10

munit=m2-10*mtens

fullname2 (15:15)=char (ntens+48
fullname?2 (16:16)=char (nunit+48
fullname2 (17:17)=char (mtens+48
fullname2(18:18)=char (munit+48
fullnamel(14:14)="'R"
fullname2(14:14)="'R"

open(2, file=fullnamel, status="'unknown', form='binary")
do 254 j=1,ndata

read(2) (vl(i,j).,i=1,ndata)

continue

endfile 2

rewind 2

if(iauto.eqg.0) go to 260

do 258 i=1l,ndata

do 256 j=1,ndata

sum(l)=sum(l)+vl(i,J)*vl(i,])

)
)
)
)

continue

continue

if(ml.eqg.0) go to 600

go to 300

open (2, file=fullname2, status='unknown', form="'binary"')

do 264 j=1,ndata

read(2) (v2(i,3j),i=1,ndata)
continue

endfile 2

rewind 2



do 268 i=1,ndata
do 266 j=1,ndata
sum(1l)=sum(1l)+vl(i,j)*v2(i, 3)
266 continue
268 continue

300 if(m2.eq.0) go to 400
fullname2(14:14)="1"
350 open(2, file=fullname2, status='unknown', form='binary"')
do 354 j=1,ndata
read(2) (v2(i,3j),i=1,ndata)
354 continue
endfile 2
rewind 2
if(iauto.eg.l) go to 400
do 358 i=1,ndata
do 356 j=1,ndata
sum(4)=sum(4)+vl(i,j)*v2(i,J)
356 continue
358 continue

400 if(ml.eqg.0) go to 500
if(iauto.eqg.0) go to 440
do 430 i=1,ndata
do 420 j=1,ndata
sum(2)=sum(2)+v2(i,J) *v2(i,J)
420 continue
430 continue
go to 500
440 fullnamel(14:14)='T1"
450 open(2, file=fullnamel,status='unknown', form='binary"')
do 454 j=1,ndata
read(2) (v1(i,j),i=1,ndata)
454 continue
endfile 2
rewind 2
if(m2.eq.0) go to 555
do 458 i=1,ndata
do 456 j=1,ndata
sum(2)=sum(2)+vl(i,3j)*v2(i,J)
456 continue
458 continue

500 1f(ml.eqg.0.0or.iauto.eqg.1l) go to 600
fullname2(14:14)='R"'

550 open(2, file=fullname2, status='unknown', form='binary")
do 554 j=1,ndata
read(2) (v2(i,3j),i=1,ndata)

554 continue
endfile 2
rewind 2

555 do 558 i=1,ndata 3
do 556 j=1,ndata
sum(3)=sum(3)+vl(i,3j)*v2(i,7)

556 continue

558 continue



600 continue

sumr= (sum(1l)+sum(2)) *pixelarea*amplitude
sumi=(sum(3)-sum(4)) *pixelarea*amplitude
write(0,40)
write(0,44) sum(l),sum(2),sum(3),sum(4)
write (0, 45)
write(0, 40)
write(0,42) theory
write(0,43) sumr,sumi
write(0,60)
read(0,5) answer
if (answer.eqg. 'n’' .or.answer.eq. 'N') go to 1000
go to 100

1000 continue
end



Program : TORTHWAL.FOR
Version : 1.0 May 25, 1995
Author : Kenneth I.. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary:

TORTHWAL calculates the 'orthonormality product' for two
radial Walsh functions defined on the unit circle.

PROGRAMMING NOTES:

1. The data files have names in the form WALnnn.bin and MUST
reside in the same path as this program.

2. The gridsize is NOT a variable for this program. However,
some care has been taken to allow the user to change this
parameter relatively easily. Only the dimensioning
assignments, initialization values, and some format
statements would have to be altered to allow for a different
gridsize.

(o T o T o T o T o o T o T o o T o T N o T o T o DO o B ¢ B 0 B R o B O P N P DY D Dt D I )

-t i i - P Rttt 1ttt 1t rititiit}
include 'fgraph.fi'
include 'fgraph.fd’

Q

o]

integer*l wall(-127:128,-127:128),wal2(-127:128,~-127:128)
character*l answer
character*28 fullnamel, fullname?2

9]

All format statements and only format statements have labels
in the range 1 - 99.

0000

1 format (lh+,12(1h*),
+' Test of Orthonormality of the'
+' Radial Walsh Functions ',12(1h*))
5 format(al)
7 format(i4)
10 format(1hoO,
+'Enter n value for first file. nl = '\)
11 format (lh ,
+'Enter n value for second file. n2 = '\)
40 format(lh )
42 format(lh ,
+'Theoretical result = ',F9.6)

43 format (1hO, -

+'Calculated result = ',F9.6)

60 format (1hO0, 24x, 'Rerun program (default=yes)? : '\)
c:::::::::::::::::::::::::::::======:::::::===:=========================
c
c Begin by prompting user for the index values after first
c offering the option to calculate over a range of index values or
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for a specific n,m combination

igridsize=256

N=128

ndata=256

del=1./float (N)
pixelarea=1l./(float (N*N))
fullnamel (1:28)='wal___ .bin'
fullname2 (1:28)='wal___ .bin'
call clearscreen ($SGCLEARSCREEN)
write(0,1)

iauto=0

theory=0.

write(0,10)

read(0,7) nl

write(0,11)

read(0,7) n2

if(nl.eg.n2) iauto=1
if(iauto.eq.l) theory=3.1415927

nlhuns=nl/100
niltens=(nl1l-100*nlhuns) /10
nlunit=nl-100*nlhuns-10*nltens
nz2huns=n2/100
n2tens=(n2-100*n2huns) /10
n2unit=n2-100*n2huns-10*n2tens
fullnamel (4:4)=char (nlhuns+48)
fullnamel (5:5)=char(nltens+48)
fullnamel (6:6)=char (n1unit+48)
fullname2 (4:4)=char (n2huns+48)
fullname2 (5:5)=char (n2tens+48)
fullname2 (6:6)=char (n2unit+48)
open(2, file=fullnamel, status="'unknown', form="'binary"')
do 254 j=-N+1,N

read(2) (wall(i,j),i=-N+1,N)
continue

endfile 2

rewind 2

if(iauto.eq.0) go to 260

sum=0.

do 258 j=-N+1,N

do 256 i=-N+1,N

sum=sum+float (wall(i,j)*wall(i,3j))
continue

continue

go to 600

open (2, file=fullname2, status="'unknown', form='binary"')
do 264 j=-N+1,N

read(2) (wal2(i,j),i=-N+1,N)
continue

endfile 2

rewind2

sum=0.

do 268 j=-N+1,N

do 266 1=-N+1,N
sum=sum+float (wall(i, j)*wal2(1i,3))
continue

continue



c
c
600 continue
sum=sum*pixelarea
write(0,40)
write(0,43) sum
write(0,42) theory
write(0,60)
read(0,5) answer
if(answer.eq.'n’'.or.answer.eq.'N') go to 1000
go to 100 :
1000 continue
end
C===:=======================================:=:=======:=================
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Program : TORTHHAR.FOR
Version : 1.0 June 2, 1995
Author : Kenneth L. Sala
Communications Research Center
Ottawa, Ontario, Canada
(613) 998-2823
e-mail sala@digame.dgcd.doc.ca

Summary :

TORTHHAR calculates the 'orthonormality product' for two
radial Haar functions defined on the unit circle.

PROGRAMMING NOTES:

1. The data files have names in the form HARnnn.BIN and MUST
reside in the same path as this program.

2. The gridsize is NOT a variable for this program. However,
some care has been taken to allow the user to change this
parameter relatively easily. Only the dimensioning
assignments, initialization values, and some format
statements would have to be altered to allow for a different
gridsize.

include ‘'€fgraph.fi'
include 'fgraph.fd’

integer*1 haarl(-127:128,-127:128) ,haar2(-127:128,-127:128)
character*l answer

character*28 fullnamel, fullname2

data root2/1.41421356/

All format statements and only format statements have labels
in the range 1 - 99.

1 format(lh+,12 (1h*),
+' Test of Orthonormality of the'
+' Radial Haar Functions ',12(1h*))
5 format(al)
7 format (i4)
10 format (1ho,

+'Enter n value for first file. nl = '\)
11 format(lh ,
+'Enter n value for second file. n2 = '\)

40 format (1lh )
42 format(1lh ,

+'Theoretical result = ',F9.6)
43 format (1hO,
+'Calculated result = ',F9.6)
60 format(1h0,24x, 'Rerun program {(default=yes)? : '\)

Begin by prompting user for the index values after first
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offering the option to calculate over a range of index values or
for a specific n,m combination

igridsize=256
N=128
ndata=256
del=1./float (N)
pixelarea=1./ (float (N*N))
fullnamel(1:28)='har___.bin"
fullname2(1:28)='har. _ .bin’
100 call clearscreen (S$SGCLEARSCREEN)
write(0,1)
iauto=0
theory=0.
write(0,10)
read(0,7) nl
write(0,11)
read(0,7) n2
if(nl.eqg.n2) iauto=1
if(iauto.eqg.l) theory=3.1415927
ipl=0
m=nl
140 m=m/2
if(m.eqg.0) go to 150
ipl=ipl+1
go to 140
150 ml=nl-2**ipl
ampl=root2**ipl
if(nl.le.1l) ampl=l.
ip2=0
m=n2
160 m=m/2
if(m.eqg.0) go to 170
ip2=ip2+1
go to 160
170 m2=n2-2**ip2
amp2=root2**ip2
if(n2.le.1) amp2=1.

nlhuns=nl1/100
nltens=(nl-100*nlhuns) /10
nlunit=nl1-100*nlhuns-10*nltens
n2huns=n2/100
n2tens=(n2-100*n2huns) /10
n2unit=n2-100*n2huns-10*n2tens
fullnamel (4:4)=char (nlhuns+48)
fullnamel (5:5)=char (nltens+48)
fullnamel (6:6)=char (nlunit+48)
fullname2 (4:4)=char (n2huns+48)
fullname2 (5:5)=char (n2tens+48)
fullname2 (6:6)=char (n2unit+48)
250 open (2, file=fullnamel, status='unknown', form='binary"')
do 254 j=-N+1,N
read(2) (haarl(i,j),i=-N+1,N)
254 continue
endfile 2
rewind 2
if (iauto.eqg.0) go to 260
sum=0.
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do 258 j=-N+1,N
do 256 i=-N+1,N
sum=sum+float (haarl (i, j)*haarl(i,3))
256 continue
258 continue
go to 600
260 open(2, file=fullname2, status='unknown', form="'binary")
do 264 j=-N+1,N
read(2) (haar2(i,3j).,i=-N+1,N)
264 continue
endfile 2
rewind2
sum=0.
do 268 j=-N+1,N
do 266 i=-N+1,N
sum=sum+float (haarl (i, j)*haar2(i,3j))
266 continue
268 continue

600 continue
sum=sum*pixelarea*ampl*amp2
write (0, 40)
write(0,43) sum
write(0,42) theory
write(0,60)
read(0,5) answer
if (answer.eq.'n'.or.answer.eqg. 'N') go to 1000
go to 100
1000 continue
end
C=========:==:==========================================================
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