
• • 11111111111 • • RCOT RE

	

ESMEMA RU CN HI C cAE INOTNESR 	RC EE NC TH E R CDHE
•

041 	

ES SUR
LES COMMUNICATIONS

:bo41
• Neural Network Classifier Architectures

• for Phoneme Recognition

• CRC Technical Note No. CRC-TN-92-001 	in

• Library .
•
113

•
•
•
a
a

a

a IC
•

• LKC
TK • 51 02 . 5 • . R48e

411/ #92-001

• c . 2

• 1+1
Communications
Canada 	 CariadU

-;1

COMMUNICATIONS 	 LE CENTRE DE
RESEARCH 	 RECHERCHES SUR
CENTRE 	 LES COMMUNICATIONS

BROADCAST 	 LA RECHERCHE
TECHNOLOGIES 	 EN TECHNOLOGIES
RESEARCH 	 DE RADIODIFFUSION

COMMUNICATIONS CA
C R C

/93

IARARY

Industn, Canada
Library - Queen

MAR 1 6 2013
Industrie Canada

Bibliothèque - Queen 1

e
a

a
a

a

• CanadU

ill '1
t 	I

Neural Network Classifier Architectures

for Phoneme Recognition

CRC Technical Note No. CRC-TN-92-001

by

William Treurniet

Broadcast Technologies Research Branch
Communications Research Centre
Department of Communications

Ottawa, March 26, 1992

Approved for issue as a CRC Teclmical Note by :

Department of Communications

Releasable

1+1 Communications
Canada

Government of Canada 	 Gouvernement du Canada
Ministère des Communications

Available from:

Communications Research Centre
3701 Carling Ave.
P.O. Box 11490
Station H
Ottawa, Ontario
K2H 8S2
Canada

Disponible de:

Centre de recherches sur les communications
3701, avenue Carling
Case postale 11490, Succursale H
Ottawa (Ontario)
K2H 8S2
Canada

O Copyright Communications Canada 1992

Caution
This report is fumished with the express understanding that

Propiertary and patent rights will be protected.

••
••

••
••

••
••

••
•1

11
11

10
111

18
80

88
11

11
•1

8
•0

11
8•

11
11

•8
11

88
11

111
11

18
11

•8
1 1

81
11

1

Abstract

Automatic recognition of words in continuous speech is difficult to do with whole-word
template models, especially when the vocabulary is reasonably large. Instead, the currently
preferred approaches for this task hypothesize the presence of words or sub-words, such as
syllables or phonemes, on the basis of likelihood estimates obtained from comparisons of the
acoustic data with statistical models derived from training data. This paper is concerned
with the application of artificial neural networks, trained with the back-propagation learn-
ing algorithm, to modelling phonemes extracted from the DARPA TIMIT multi-speaker,
continuous speech data base.

A number of proposed network architectures may be applied to the phoneme classification
task. These range from the simple feedforward multilayer network to more complex modular
architectures which attempt to assign classifier modules to different regions of the input
space. This paper describes experiments exploring the utility of some of these architectures
including Hampshire and Waibel's Meta-Pi network, NowIan and Hinton's system of experts,
and Smieja's Minos architecture.

In general, modular architectures that attempt to identify regions of input space could not
perform any better than a single network trained to handle the whole input space. The
failure to find a performance improvement might have been due to excessive overlaps in class
distributions in the training data. These would have hindered unambiguous identification
of region boundaries in the input space by the module dedicated to that task. Given highly
overlapping distributions, the simple network structure may already have performed as
well as could be expected. Also, the self-organizing modular architectures may have had
insufficient training data to counteract potentially large imbalances in class frequencies in
the regions of input space selected by individual modules.

Two network structures learned to dassify to some degree the total phoneme space: a
single multilayer network, trained to discriminate among 39 classes, achieved 47.7 percent
correct generalization performance, and a novel architecture trained to discriminate among
38 classes, achieved an accuracy of 52.4 percent. The latter employed a number of TDNN
modules to map the input space to a different representation of reduced dimensionality
which was used by a multilayer network to discriminate among the classes. When the
relatively high frequency silence class was ignored in generalization tests, accuracies of
48.2 percent and 45.8 percent were obtained from the multilayer network and the modular
network, respectively. Thus, the modular network performed somewhat better by making
fewer errors identifying the silence class.

a

a
a
a

a

a

a
a

a
a

a
a

Résumé

Il est difficile de réaliser la reconnaissance automatique des mots dans le discours continu à partir des
modèles à gabarits de mots complets, surtout quand le vocabulaire est relativement étendu. Les
approches favorisées pour l'instant posent plutôt comme hypothèse la présence de mots ou de sous-
mots, par exemple des syllabes ou des phonèmes, sur la base d'estimations de la probabilité obtenues
par comparaison entre les données acoustiques et les modèles statistiques produits à partir des données
de formation. Ce document traite de l'application de réseaux neuronaux artificiels, ayant suivi une
formation par l'algorithme d'apprentissage par propagation amont, à la modélisation de phonèmes
extraits de la base de données du discours continu multilocuteur DARPA TIMIT.

Un certain nombre d'architectures réseau proposées peuvent être appliquées à la classification des
phonèmes. Cette plage d'architectures s'étend du simple réseau multicouche à alimentation aval aux
architectures modulaires plus complexes, qui tentent d'assigner des modules classificateurs aux
diverses régions de l'espace d'entrée. Le document décrit des expériences explorant l'utilité de
certaines de ces architectures, y compris le réseau Méta-Pi de Hampshire et Waibel, le système
d'experts de Nowlan et Hinton, et l'architecture Minos de Smieja.

En général, la performance des architectures modulaires qui tentent d'identifier des régions de l'espace
d'entrée n'était pas meilleure que celle d'un réseau unique formé à la gestion de l'ensemble de
l'espace d'entrée. L'échec des tentatives d'amélioration de la performance peut avoir été dû à un
chevauchement excessif dans les distributions de classes des données de formation, ce qui aurait nui à
l'identification non ambiguë des limites des régions dans l'espace d'entrée par le module affecté à
cette tache. Il est possible qu'en raison du fort chevauchement des distributions, on ait déjà atteint la
performance maximale de la structure de réseau simple. De plus, les architectures modulaires à auto-
organisation peuvent avoir été utilisées avec des données de formation qui ne permettent pas de
compenser les déséquilibres potentiellement importants des fréquences des classes dans les régions de
l'espace d'entrée choisies par les modules individuels.

Deux structures de réseau ont appris à classifier dans une certaine mesure l'espace de phonèmes total:
un réseau multicouche unique, formé à la discrimination parmi 39 classes, a obtenu une exactitude de
généralisation de 47,7 pour cent, tandis qu'une architecture nouvelle formée à la discrimination parmi
38 classes, a obtenu une exactitude de 52,4 pour cent. La deuxième architecture a utilisé un certain
nombre de modules TDDN pour établir des correspondances entre l'espace d'entrée et une
représentation différente à dimensionnalité réduite, utilisée par un réseau multicouche pour la
discrimination entre les classes. Lorsque la classe silence de fréquence relativement élevée était
ignorée dans les tests de généralisation, on obtenait des exactitudes de 48,2 pour cent et de 45,8 pour
cent respectivement pour le réseau multicouche et pour le réseau modulaire. Par conséquent, la
performance du réseau modulaire a été quelque peu améliorée grâce à la réduction du nombre
d'erreurs lors de l'identification de la classe silence.

1

3

a

• Contents

• 1 Introduction

• 2 The Back-Propagation Model

3 Speech Data Preparation

a
a 3.3 Speech Signal Processing

a

a

• 5 Experiments with Modular Architectures 	 16

• 5.1 The Meta-Pi Network 	 16

• 5.2 The System of Experts 	 21

• 5.2.1 Extension to the System of Experts 	 24

5.3 The Minos Architecture 	 25

5.3.1 Extension to the Minos Architecture 	 27

5.4 Helper Networks 	 28

5.5 Input Space Transformation Architecture 	 30

111
6 Conclusions 	 34 • • •

•

6

3.1 The TIMIT Data Base 	6

3.2 The Data Extraction Software 	7

4 Experiments with Simple Network Architectures 	 9

4.1 The Multi-layer Network 	 10

4.2 A Recurrent Neural Network 	 11

4.3 The Time Delay Neural Network 	 11

List of Figures

1 	A multi-layer network structure 	4 	111
•

2 	A recurrent network structure 	 13 	•

3 The Time Delay Neural Network structure 	 15 	•

4 	A generic modular architecture 	 18

5 A Minos module 	 26
•

6 	The hierarchical organization of network domains 	 31

7 	The input space transformation architecture 	 33 	•

C

C

C
a
C

C

a

C

a
,

a
O

List of Tables

• 1 Phonemes in the TIMIT Data Base 	8 1111
• 2 	Generalization Performance of the Multi-Layer Network 	 12 •
• 3 Classifying phoneme subsets with a TDNN 	 14
1111
• 4 S, Z, R, ER Experiment 	 20 •
• 5 Experiment with Voiced and Unvoiced Stop Consonants 	 20 •
• 6 	Experiment Using Place of Articulation of Stop Consonants 	• 	21
O
• 7 Confusion Matrix for W Class 	 29 •
• 8 	Confusion Matrix for L Class 	 29
•
• 9 Confusion Matrix for OW Class 	 30
O
• 10 Domains of Network Modules 	 32

Ile 	 11 Generalization Test Results 	 34
O
• 12 Performance of the Input Space Transformation Architecture 	 35

O
11111

O

•
O
O

O
O
O

O

O
O 	 iii
O
O

1 Introduction

"In time, speech will become the primary means of making ourselves understood
• itno computers, 	vice versa. iPnrgovgereicses wthi cc ell eaniyelmereaatenederafmceamtimcally unicaas 	puticnogmwitth-

them." 1
•

The above quote points towards the emergence of a new mode of interaction between com-
! 	 puter systems and their users. Descriptions of people conversing with computer systems are

easily found in fiction, and the contexts are often quite realistic scenarios2 . However, some
• difficult technical problems need to be solved before people can converse as naturally with
• computers as they do with each other. These include machine recognition of speech units
• in continuous speech spoken by any speaker, and machine understanding of the meaning of

• the spoken words.

• Automatic recognition of continuous speech from any speaker is a hard problem to solve by

• computers due to the variability in acoustic representations of utterances of the same word.

• However, the literature shows that a steady improvement in performance of laboratory

• systems has occurred since about 1975 [20]. Part of this improvement was due to better
modelling of speech sounds [21], but further remarkable improvement has recently been
shown using knowledge sources such as models of the task and users' goals to constrain •
the search space. For example, with no knowledge sources, one study showed 74 percent •
correct word recognition, but with the addition of knowledge sources such as the goals of
the task, the recognition accuracy improved to 95 percent [36]. These reports show that
speaker-independent recognition of continuous speech has been achieved and demonstrated
to be useful for limited domain vocabularies.

• Most commercially available speech recognizers typically are not "speaker-independent" in
111 	 that they require training by the intended user. Further, the spoken words to be recognized

must be dearly separated by gaps of silence to facilitate word end-point detection. These
• characteristics of speaker-dependence and discrete-word inputs severely limit the applicabil-
• ity of speech recognition technologies. Recent announcements of new products, such as the
• "Dragon-Dictate" speaker-adaptive recognizer from Dragon Systems, relaxes the speaker-
• dependence constraint somewhat by allowing the user to incrementally train the recognizer
• during use. However, this advance still does not provide the capability needed for conver-
ge 	 sational interactivity.

• The limitations of current speech recognizers arise, to a large extent, from the template
• matching methodology employed. During a training phase, recognizers use discrete word
• utterances to form templates that represent the words in a vocabulary. Following training,
• an utterance to be recognized is compared to each stored template, and is identified as

• the word represented by the most similar template. Because this approach usually requires
• prior identification of word end points in the unknown speech, it is not easily extended to

• 'excerpt from a MIT Media Laboratory brochure. • 2 see, for example, Clarke's "2001" [4] or Heinlein's "Number of the Beast" [14].

• 1
•

•

•
•
•
•
•

continuous speech recognition where word boundary detection is often inaccurate. 3 Further, 	•
speaker-independent recognition suffers since a template formed from multiple speakers' 	•
data usually results in poorer discrimination among vocabulary items than does one foimed 	•
from a single speaker's data4. 	 •

•
Since template matching methods are not particularly suited to speaker-independent, large 	•
vocabulary, continuous speech recognition, other methods have been devised and evaluated. 	•
In general, these attempt to deal with the variability among speakers and contexts by de- 	•
riving probability distributions describing the likelihood of a speech unit given the evidence 	•
in the input data stream.

The most developed method is the hidden Markov model (HMM) which is a finite state 	•
network where transitions among states are probabilistic [26, 6]. Further, given a state 	ID
transition in the network, emission of a particular symbol is also probabilistic. All proba- 	•
bility distributions for a given model are estimated from training data. Following training, 	•
the output of the model is the likelihood estimate that the input sequence is represented 	•
by the model. A HMM requires sufficient training data to reliably estimate the probability
distributions, and may be used to model speech units of any size (e.g., phonemes, words, or 	•
sentences). In fact, HMMs may be arranged hierarchica lly so that the likelihood of a word 	•
may be estimated given the likelihood of phonemes in the sequence of input data. 	 •

•
A related method is based on neural network models trained to behave as dassifiers [2]. For 	•
a given input, such networks generate an output decision based on network parameters that •
implicitly model the probability distributions inherent in training data [12]. Although the •
application of neural network models to speech recognition is relatively recent, a considerable • number of reports are already available that describe the performance of various types of • neural network models as phoneme or digit classifiers. Currently, one of the more promising • network models is the time-delay neural network [34, 33, 29] which will be discussed further,
as well as the feature map classifier [17, 31]. •

•
Very high levels of speaker-dependent recognition performance on phonemes are reported us- •

• ing neural network dassifiers, and Treurniet, Hunt, Lefebvre, and Jacobson were among the
first to report investigations on speaker-independent recognition [32]. In their experiments, 	•
network performance was tested with stop-consonant data spoken by people different from
those who provided the training data. Recognition accuracy of 76 percent was reported, 	•
but this was subsequently increased to about 90 percent with improved training techniques. 	•
Similarly, Leung and Zue reported 67 percent accuracy in discriminating among 16 vowels 	•
excised from continuous speech spoken by 155 different people [22]. 	 •

•
Neural network dassifiers appear to be superior to HMMs for recognition of small speech
units such as phonemes [18, 33], but methods for modelling larger units such as words are not 	•
yet well developed. Currently, word recognition is accomplished more effectively by passing 	•

3 But see [3] for a dynamic programming method that uses discrete-word templates to identify words in
continuous speech.

'The severity of this problem may be reduced somewhat by forming multiple reference templates for a
given word based on a cluster analysis of many utterances of the same word [35].

a
2 a

network outputs to word-level Hidden Markov Models where they are considered estimates
of phoneme probabilities [10, 9]. Such a hybrid approach gives better word recognition
results than one that uses neural networks alone.

A number of neural network architectures using the back-propagation learning algorithm
[28] have been proposed for the phoneme classification task. This paper reviews the deriva-
tion of the learning algorithm and its adaptation to the different architectures, and describes
experiments evaluating their performance in classifying phonemes extracted from the TIMIT
multi-speaker, continuous speech data base. New extensions to some of the models are also
described and evaluated wherever possible.

The Back-Propagation Model

In neural network models, biological neurons are represented as nodes in a network, and
synapses are simulated by connection weights that modify information transmitted between
neurons. Each simulated neuron has an activation function that determines how inputs are
combined to produce an output. Learning algorithms enable the network's "synapses" to
adapt in accordance with regularities in training data.

The back-propagation learning algorithm [28] is a procedure for automatically adjusting
weights on connections in a network model in order to associate patterns from the environ-
ment with a desired output vector. The "feedforward" form of the model, (as opposed to
<4recurrent") assumes a layered network topology where no restriction is placed on the num-
ber of layers or the number of nodes per layer. Connections are allowed between different
network layers but not among nodes within a layer. One layer is designated the input layer
where patterns from the environment are encoded, and another is identified as the output
layer where the results of processing the input patterns are obtained. The intervening lay-
ers contain "hidden" nodes in that their inputs and outputs are not directly set or read,
respectively, by the environment. A schematic of such a "multilayer" network is presented
in Figure 1. Relationships between input and desired output patterns are "learned" by the
network by iterative adjustments of the connection weights. In each iteration, the sizes of
the weight adjustments are directly related to the errors at the output nodes. The error for
a given pattern, p, is often considered to be the Euclidian distance between a target vector,
t, and an output vector, o.

1
Ep = —2 E(tp, — opi)2

The objective is to minimize Ep, and this is to be done by adjusting the connection weights,
so that

0E
AWji OC

(1)

owji

3

lnpu

Hidden
Units

Outputs

Figure 1: A multilayer network structure

Let node j's input, xj, and output, oi, be defined as

xi = E wiioi

and
1 o, — 	

- 1 +

The outputs of the nodes are computed in a forward pass through the network from the
input layer to the output layer. Nodes in the current layer are indexed by j and nodes in
the previous layer are indexed by i. Using the chain rule,

OEOE Oxi
Owii = axi owii

Since -1--ex = o 	. i, and if 6 is defined as --aE then 8x

awii

Thus, to do a gradient descent in E, the weights should be changed according to

=

where i is a learning rate parameter. The value of bi for each node of the network remains
to be determined.

Using the chain rule again,

From Equation 2,
001 — = oi(1 — oi) axi

and, from Equation 1,

,=
 001
—(t1 — og)

So, for the nodes in the output layer,

= (t1 — 01)01(1 — 03)

Deriving 5 's for nodes in hidden layers requires the 8's already computed for the adjacent
layer on the output side. That is, where k is the index for nodes in that adjacent layer,

OE =
e"-

 OE Oxk
3 00 • 	 'd eXk 001 k

(2)

OE = f5joi

OE 	OE Oo
Oxi

=
— aoi axi

OE

5

Since

and since

Wkj
axk

 00.

a
a
a

a

a
a

a
a
a

a
a

a

O
a
O

a
a

a
a
O

O
a
a
O
a

O
a

O

= —45k bY defi.nition, then axk

OE
— Ebkwki uoi

Therefore, 5 for the jth hidden layer node is

Si = o3(1 — oi)E8kWlej

When other definitions of the objective function(Equation 1) and the activation function
(Equation 2) are employed, the definitions of ge and elj: must be modified appropriately.

The learning algorithm wa,s implemented on a Mercury MC3200AT array processor installed
on an IBM-PC compatible host computer running the MS-DOS operating system. Some
heuristics were also included to accelerate learning. These induded Fahlman's suggestions
to add a constant of 0.1 to the derivative of the logistic to minimize the effect of the
"flat spot" at either end of the function, and to increase very small output errors using a
hyperbolic arctangent transform [8]. The learning rate adjustment heuristics known as the
delta-bar-delta method [15] were implemented as well to speed gradient descent. However,
when the delta-bar-delta heuristics were not used, the learning rate for connections entering
a node was reduced in proportion to the fan-in (i.e., the number of incoming connections)
at that node [25].

3 Speech Data Preparation

Before discussing the experiments, this section presents information regarding the speech
data base and the methods employed to prepare the data. Included is a description of the
TIMIT speech data base, the software developed to extract sets of balanced training and
test data from the data base, and the pre-processing method adopted to prepare the data
for presentation to the neural network models.

3.1 The TIMIT Data Base

The Texas Instruments (TI) and MIT laboratories collaborated with DARPA assistance
to produce a corpus of continuous speech data spoken by multiple speakers. The result is
called the DARPA TIMIT Acoustic Phonetic Continuous Speech Data Base. A prototype
version made available by the National Institute of Standards [11], consists of speech from
420 male and female talkers from eight dialect regions, each speaking 10 different sentences.

6

•
•
111

•
The data for each sentence consists of three files; a 'txt' file contai 11, 	 ns the sentence in ASCII

a 	 format, a 'adc' file contains a talker's digitized speech sampled at 16 KHz, and a 'phn' file
contains a list of phonemes in the sentence accompanied by the starting and ending address

ID 	 of each phoneme in the 'adc' file. Thus, a phoneme may be extracted from the 'adc' file by
first consulting the 'phn' file for its location. Table 1 presents a list of the phonemes in the 11111 	 data base, including common words containing the phonemes. Note the subtle differences

• in pronunciation among some of the phonemes.
•
• The data base is valuable in that it enables speech laboratories to begin research on contin-
• uous speech recognition with a minimum of effort, and also enables comparisons of research
411I 	 results among laboratories when the same training and test data are used.

•
• 3.2 The Data Extraction Software

The strategy for training classifier networks with supervised learning algorithms requires a
set of tokens which represents equally all the classes to be discriminated. It is important,
therefore, that the training set be properly balanced with respect to variables such as sex, Ile dialect, and sentence origin (i.e., TI vs MIT). It is also necessary to be able to exclude or a include particular talkers in order to create a test set in which talkers are different from
those in the training set. •
To accomplish this, software was writtens which created a directory file for each phoneme.

• This file contained the following information about examples of the phoneme wherever they
• occurred in the data base: phoneme label, dialect, sex, speaker label, sentence label, 'adc'
• file start address, stop address, token length, left context phoneme label, left context token
• length, right context phoneme label, and right context token length.

• A second program scanned the directory files to select phonemes according to specified
• criteria, obtained the digitized phoneme data from the appropriate 'adc' file, and created
• the spectrogram representation starting at the beginning of the left context phoneme and
• ending at the end of the right context phoneme. The above header information and the
• spectrogram data were appended to a data file for a particular phoneme class .
4111
• One data file for each phoneme was used for training networks to recognize that phoneme
• dass. Two more data files for each phoneme were also created to test the generalization
• performance of trained networks. One set of phoneme data files (Test Set A) was used for
• periodic testing during training to identify deleterious effects of over-learning. The other
• (Test Set B) was used to provide an independent assessment of generalization performance.

• Each test set was obtained from an independent set of speakers.

•
• Each of the three data sets were obtained froni a different group of speakers to permit

• 5 The initial version of the software was written for the MacIntosh computer in collaboration with D. Graf
• at the Computing Research Lab, Bell Northern Research. The software was subsequently adapted at CRC
• to the MS-DOS platform.

• 7

Stops:

Affricates:

Fricatives:

Nasals:

Semivowels
Glides

Vowels:

Others:

Phoneme Pronunciation I 	Phoneme Pronunciation

Table 1: Phonemes in the TIMIT Data Base

8

a

a

a

a

a

a
a

a

a
a

a

a

a, a

a
a

bee
d 	,day

g 	gay
Rea
tea
keY

dx 	muddy
bat

ih 	joke
ch 	choke

sea
sh 	she

zone
zh 	azure

fln
th 	thin

van
dh 	then

mom
noon

ng 	sing
em 	bottom
en 	button
eng 	washington
nx 	winner

1 	lay
ray

Y 	yacht
hh 	kaY
hv 	ahead
el 	bottle

iy 	beet
ih 	bit
eh 	bet
ey 	bait
ae 	bat
aa 	bott
aw 	bout
ay 	bite
ah 	but
ao 	bought
oy 	boy
ow 	boat
uh 	book
uw 	boot
ux 	toot
er 	bird
ax 	about
ix 	debit
axr 	butter
ax-h 	suspect

pan 	pause
h# 	non-speech
cl 	closures

speaker-independent evaluations of performance. The labels for speakers in Test Set A were • mk1w0, mdwdO, madc0, fsjs0, mj1s, fgmb0, fpadO, mrcs0, fgwrO, and femhl, while those in
Test Set B were fsah0, fslbl, mjeb0, fgcs0, mjws0, fkdwO, fjsa0, mlihO, mjrk0, mses0,
and mr1k0. The remainder of the speakers made up the training set. The frequencies

• of phonemes in each set were distributed equally across either sex and across the eight
• dialects. For consistency with others[21, 27], only data from the si and sx sentence types
1111 	 were induded.

3.3 Speech Signal Processing • •
The time domain speech data sampled at 16 KHz was transformed to a frequency domain

• representation via a fast fourier transform routine6 following a procedure similar to that
• described by Lang, Waibel, and Hinton [19]. A sequence of 320 points (20 msec) was pre-
• emphasized with a 6 dB/octave filter and processed by a Hamming window. Then the last

111111 	 64 points from the 320 point window were folded into the first 64 points, resulting in a 256

• point vector. These 256 values were processed by a 128 point complex fourier transform
which treats even samples as real values and odd samples as imaginary. The resulting 128 • values obtained from the FFT were transformed by the function 20 * log10(r2 i2) . The 1111 next frame of data was obtained by sliding the Hamming window forward in time by 64

• points (4 msec) and repeating the process.

•
The output resulting from the above process was reduced to 16 values from 128 by forming
weighted sums of the 128 values. That is, a 16 channel, third octave filter bank [1] was
simulated by forming inner products of the output vector with each of 16 weights vectors7 .

• The center frequencies of the simulated filters were 125, 185, 283, 400, 500, 630, 800, 1000,
• 1250, 1600, 2000, 2500, 3150, 4000, 5000, and 6300 Hz, forming an approximate mel scale

filter bank. To reduce the amount of data even further, pairs of successive frames from the
simulated filter bank were, averaged to give a temporal resolution of eight msec.

4 Experiments with Simple Network Architectures

• Network architectures were compared with regard to their ability to generalize to test data
• not in the training set. Training continued until generalization performance failed to improve

or began to decline. The phonemes w, 1, and ow were often used in classification experiments,
since the pattern of confusions in early experiments indicated that these had some overlap

• in the input space.

Because the experiments were exploratory and because training times usually were exten-
ID

'Appreciation is extended to G. Gagnon and A. Vincent for discussions during an early stage of the
project concerning the application of fourier analysis.

7The shape of each filter was tri angular on a linear scale, with a bandwidth of .2316 times the center

ei 	 frequency, and 3 dB points at hall the bandwidth from the center frequency on each side.

• 9 • •

a

a

a
a

O

a

a

a

a

a

a

a
a

a
a
a

ai

sive, the values of more than one variable often were allowed to differ between experiments.
Therefore, comparisons among experiments should be made with caution. For example,
no attempt was made to control for the total number of weights in the different network
architectures, and often the sizes of the training sets differed due to limited training data
or limited memory for storing the training set 8 . However, the experiments are considered
adequate for discovering dear advantages or disadvantages in network architectures. Only
representative experiments are reported.

Each training token consisted of 14 frames (112 msec) of spectrogram data (unless otherwise
noted); these included 3 frames of the left context phoneme and 11 frames from the phoneme
to be classified. Data from the right context phoneme was also induded to complete the
token when necessary. If there were insufficient data in the phoneme and its left and right
context, the token was completed with zero values.

4.1 The Multilayer Network

The layered network structure (Figure 1) described in Section 2 has come to be called a
multilayer network to distinguish it from the perceptron model which has no hidden layers.
The perceptron is limited in that it can distinguish only sets of patterns that are linearly
separable. The hidden layer(s) in the multilayer network removes this restriction by allowing
hidden units to respond to different combinations of input values which the output units
can then combine to yield a non-linear segmentation of the input space.

A multilayer network with 224 input nodes (14 frames), 10 hidden nodes, and three output
nodes was trained to discriminate among w, 1, and ow. The training set consisted of 300
patterns per class. The best performance on the test set in terms of percent correct was
obtained after 1000 iterations through the training set with w (91.7%), 1 (67.3%), and ow
(80.0%). Overall, generalization performance was 75.5% correct (overall performance was
not the average of the class accuracy rates since the class frequencies in the test data were
not equal).

In a more ambitious experiment, a network with 240 input nodes (15 frames), 20 hidden
nodes, and 39 output nodes was trained to discriminate among 39 phoneme classes. This
number of classes was obtained "by merging some of the phonemes in Table 1 as indicated
by the brackets in the following list defining the classes: p, t, k, b, d, g, (m,em), (n,nx,en),
(ng,eng), s, z, ch, th, f, (sh,zh), jh, dh, y, (1,e1), r, y, (hh,hy), w, eh, (ao,aa), (uw,ux),
(er,axr), ay, ey, aw, (ax,ah,ax-h), ae, uh, oy, iy, ow, (pau,h#,c1). The maximum
training set size that could be accomodated in memory was 100 patterns per class. Best
generalization performance of 44.8% correct was achieved after 1200 passes through the
training set. Additional improvement was obtained by replacing the training set every 50
passes with a different set of training data that overlapped the preceding set by 80 percent.
After an additional 3200 iterations, overall generalization performance was increased to 47.1

'The array processor contained six Mbytes of memory which limited the number of examples that could
be used at one time for training the neural networks.

10

percent.

In 	 Because of the limited numbers of speakers in the test sets, the phoneme frequencies were
• not at all equal. Table 2 lists the 39 classes, with associated frequencies and proportions
• correct for each test set alone and for the combined test sets.

• It is clear from the table that performance varied considerably among classes. Accuracies
• for the classes in the combined test sets ranged from 0.0 to 83.3 percent.

a
• 4.2 A Recurrent Neural Network

A recurrent network structure removes the restrictions on interconnectivity among nodes
within a layer, and the learning algorithm must usually be modified to enable node outputs
to settle to a stable state. However, a restricted form of the recurrent network model, often ID
attributed to Elman, may still be trained with the feedforward learning algorithm [7, 5]. It ID
is useful for encoding the trajectory of a pattern through time. Therefore, it seems a natural
candidate for representing temporally varying information such as speech. This network is a ID multilayer network in structure, but is distinguished by the nature of the data presented to
the input units (Figure 2). Part of the input array represents the input data at the current

• time step. The remaining input units, however, are used to represent the activation levels
• of the hidden units at the previous time step. Therefore, as learning proceeds, the states
• of the hidden units are affected by the external data applied to the input, as well as the
• previous activation levels of the hidden units. As a result, the states of the hidden units
• in a trained network are differentially affected by different pattern sequences, and different
• sequences can produce different output trajectories.
OD
011 	 The recurrent network described above was trained to discriminate among the 39 classes.
• The input layer of 36 nodes accomodated one frame of data and the state of 20 hidden
• nodes. Thirty-nine output units represented the classes. The training set consisted of 128
• patterns per class. Best generalization performance of 34.3% was obtained after 3800 passes
• through the training data.

•

• 4.3 The Time Delay Neural Network
C

A multilayer network typically represents the temporal dimension by mapping it onto a
spatial input array. A consequence of this is that the network becomes very sensitive to
the precise postioning of relevant features in the input array during training. That is, if
a feature in different patterns of the same class appears at different positions in the input
array, the effect is to smear the information presented to the network, and to reduce its

• sensitivity to the feature.

1111 	 The Time Delay Neural Network (TDNN) structure, schematically presented in Figure
• 3, was specifically developed to avoid this problem [18]. Each input node is presented

11 •
O

Set A
Freqency

Set A
% Correct

pau
clx

d
g

ng

ch
th

sh
jh
dh

1

Y
hh

eh
ao
uw
er
ay
ey
aw
ax
ix
ae
uh
oy
iy
ow

Class

OVERALL

Table 2: Generaliza,tion Performance of the Multilayer Network
a
O
O
O
O

O

O

O

a

O
O
O

O

O

O
O
O
O
O

O
O
O

O
O
O

O
O

	

50 	60.0

	

78 	48.7

	

94 	69.1

	

592 	46.8

	

30 	76.7

	

46 	63.0

	

42 	23.8

	

18 	55.6

	

86 	55.8

	

152 	27.6

	

25 	60.0

	

128 	65.6

	

66 	60.6

	

12 	75.0

	

14 	50.0

	

44 	72.7

	

25 	80.0

	

24 	70.8

	

52 	40.4

	

46 	54.3

	

110 	57.3

	

106 	54.7

	

14 	78.6

	

40 	65.0

	

48 	50.0

	

66 	25.8

	

66 	47.0

	

32 	25.0

	

72 	56.9

	

48 	70.8

	

34 	52.9

	

14 	50.0

	

106 	25.5

	

244 	31.1

	

50 	62.0

	

4 	25.0

	

10 	0.0

	

94 	56.4

	

30 	33.3
49.0

Set B 	Set B
Frequency % Correct

	

64 	70.3

	

72 	44.4

	

88 	68.2

	

572 	44.6

	

40 	65.0

	

44 	84.1

	

62 	37.1

	

6 	66.7

	

83 	56.6

	

172 	30.2

	

18 	66.7

	

102 	62.7

	

54 	66.7

	

6 	100.0

	

14 	64.3

	

42 	69.0

	

36 	77.8

	

30 	66.7

	

46 	45.7

	

42 	40.5

	

112 	44.6

	

98 	60.2

	

16 	56.3

	

22 	68.2

	

58 	58.6

	

66 	15.2

	

68 	41.2

	

32 	43.8

	

80 	51.3

	

42 	57.1

	

44 	52.3

	

4 	75.0

	

118 	19.5

	

278 	21.6

	

40 	37.5

	

14 	21.4

	

6 	0.0

	

100 	62.0

	

26 	46.2
46.4

12

Combined
% Correct

65.8
46.7
68.7
45.7
70.0
73.3
31.7
58.3
56.2
29.0
62.8
64.3
63.3
83.3
57.1
70.9
78.7
68.5
42.9
47.7
50.9
57.4
66.7
66.1
54.7
20.5
44.0
34.4
53.9
64.4
52.6
55.6
22.3
26.1
51.1
22.2

0.0
59.3
39.3
47.7

a

H(t-1)

/

Inputs 	X(t)

Hidden
Units

Outputs

a

a

a

H(t)

0(t)

Figure 2: A recurrent network structure

13

111
In
1111

•
Table 3: Classifying phoneme subsets with a TDNN

Classes 	Percent correct 	Overall percent correct

w, 1, ow 	90.9, 54.1, 85.3 	 69.4 	 •
y, uw, iy, ih 	75.6, 71.8, 71.2, 61.0 	68.2 111 ae, eh, ey 	59.0, 68.0, 76.2 	 68.3
a,o, ay, aw, oy 58.4, 68.9, 50.0, 55.6 	61.6
ah, ih, uh 	79.4, 75.3, 66.7 	 76.4
dh, y 	80.5, 86.7 	 83.3

• f, th 	 77.6, 82.6 	 78.7
ch, jh, sh 	67.4, 69.4, 80.7 	 73.3
s, z 	82.6, 71.0 	 78.0

• r, er 	89.3, 74.5 	 84.5
m, n 	71.1, 58.8 	 61.8

sequentially with the value of a pattern element at several sucessive points in time. Since
the same weights are adapted at each time step, they are trained to respond to the significant
event wherever it occurs in the sequence. The outputs of the first layer of the network form
the inputs to a second layer of weights. Here again, an input unit receives data from the
successive time steps in the first layer, and the same weights (different from the first layer) • are adapted at each time step. Finally, the outputs of the second layer's units are integrated
across time to yield a final classification decision.

An important advantage of the TDNN structure, compared to the simpler multilayer net-
work, is the stability of its outputs while a stream of data is passed through its input
window. The TDNN will signal the presence of a feature as it moves into the window until
it moves out again. The multilayer network, on the other hand, often responds erratically
until the feature is properly aligned within the input window.

•
The dimensions of the TDNN structure employed were similar to those recommended by
Waibel et al. [33], and differed only in the network input width at a given delay due to 	111
the difference in frame rates. Their network input spanned 30 msec which corresponded to
three spectrogram frames, while our network input spanned 32 msec or four frames. There
were eight output nodes per delay at the first layer of the TDNN, and the input for the
second processing layer spanned the result of five first layer time steps. 	 ID

Each of a number of TDNN networks learned to discriminate among a set of similar classes
using 200 patterns per class. Each network processed tokens consisting of 12 frames of data, 	•
and training was terminated after 5000 passes through the data. The test performance
results for each network are presented in Table 3.

ID 14

time 	-->

Input

Hidden layer 1

Hidden layer 2

D 	 Output Units

a

a

a

a

a

a

a

a
a
a
a

a

a
_a

a
a

a-

Figure 3: The Time Delay Neural Network structure

15

a

a
a

a

a
a

O

O

O

O
O
O

O

a
a

a

a

a

O
a

5 Experiments with Modular Architectures

A difficulty with the back propagation model is that it does not scale up well because of
cross-talk within a single network structure. Crosstalk occurs when a hidden unit receives
conflicting error information from different output units [16], and larger networks provide
more opportunities for this to occur. Another problem with large networks is that there
are more parameters to adjust, and the number of training examples required for accurate
adjustment increases proportionately with the number of parameters. Therefore, it would
seem advantageous to have smaller network modules learn to handle parts of the problem,
and then to combine the decisions of the individual modules.

However, simply observing the biggest output from all the modules trained with examples
from disjoint regions of the input space, cannot reliably determine the décision of the system
as a whole. By way of analogy, a function determined from a finite number of data points
by regression analysis may be used to predict a value from a new point drawn from the
same distribution as the original set. However, if the data point were drawn from a different
distribution where the function should have had a different form, the predicted value would
be quite incorrect. The function would extrapolate into a region where it did not apply.
Similarly, a back propagation network which uses a "semi-linear" activation function such
as the logistic (Equation 2), will also give an unreliable classification when presented with
examples from a region of the input space not sampled during training. That is, the
network will interpolate along the function learned, but may not extrapolate accurately
into unexplored regions.

Therefore, a way must be found to identify the part of the input space to which an unknown
sample belongs in order to attend to the network module which has meaningful output.
Several network architectures, described below, have been proposed to accomplish this.
Also described are new variations on some of the architectures which were developed in
hopes that these would improve learning and generalization performance. The rationale for
each modification is explained, the changes to the learning algorithms are described, and
the effects on performance noted.

5.1 The Meta-Pi Network

Hampshire and Waibel [13] presented an architecture consisting of a number of networks
each already trained to classify stimuli from a restricted region of the input space. They
proposed an additional network, called a "Meta-Pi" network, to modulate the output of each
sub-network to produce a global output. In the generic architecture shown in Figure 4, the
trained networks are the "subnets", and the Meta-Pi network is referred to as an "input
region identifier". To obtain a global output, the outputs of each subnet are multiplied
by an output of the Meta-Pi network and same-dass outputs are summed. The winning
classification is determined from the global outputs using a winner-take-all strategy. The
Meta-Pi network, in effect, learns which subnet or combination of subnets to use to classify
a particular input sample. The approach assumes that at least one of the subnets correctly

16

1
1
8
1
1
8
•1

11
1
8
8
•8

•8
1

1
8

••
••

••
••

••
••

••
8

1
11

11
10

11
11

11
81

19
88

11
11

11
88

•1
1
8
•

11
8

classifies the input, since the linear combining function which computes the global output
cannot invert the outputs of the individual subnets.

The Meta-Pi learning algorithm was derived for the case where the subnets all attempt to
make the same classification decision (the conjoint classification task), and for the case where
the subnets are trained to make different classification decisions (the disjoint classification
task).

For the conjoint task, the nth global output is the sum of the nth output (pn) from each
of the K sub-networks weighted by the kth output of the Meta-Pi module corresponding to
that sub-network. That is,

1 On = — 2_, PknIVIk
k

where

The error derivative for the kth output of the Meta-Pi module is defined as

8E DE DÔ
OMk = 0 5am,

From Equation 3

Don 	1,
am = — lPkrt — On)

k

If the error for the global output is defined as

1 E= 2 n

where Dn is the desired output, then

DE - = On — D n

Therefore,
8E 1,

en n

17

(3)

00 n

1 2 ...n

Input Region
Identifier

Figure 4: A generic modular architecture

18

•

An example of the conjoint task was analysed by Hampshire and Waibel [13]. Each of six
• subnets was trained with data from a different speaker to discriminate among the phonemes
• b, d, and g. Then, the Meta-Pi network was trained to weight the three outputs of the

• After training this architecture, a new sample could be classified without first identifying the
• speaker and the appropriate subnet. Instead, the Meta-Pi network took the responsibility ne of weighting the outputs of all the subnets on the basis of speech characteristics such as
4111 	 absolute position of the formants. •
• Hampshire and Waibel also proposed a variation of the learning algorithm for the case
• where each subnet is trained to make different rather than the same classifications. In this

• case, the above definition of the global output is modified to give k times n outputs instead
• of n outputs. •
•

Mk
okn = Pkn — 	 (4) •

• From this definition

• 00k,
aMk

1,
• = — U)kn — Okn) •
•

p

•
and the error gradient, -Mit, is modified accordingly.

• Their proposal to test the algorithm was to train one subnet to discriminate among b,

• d, and g, and a second subnet to discriminate among p, t, and k. These sets of stop

• consonants differ in the degree of voicing present. Therefore, the Meta-Pi network would
be expected to weight the subnet outputs in proportion to the amount of voicing present in
the input sample. In this case, the number of global outputs is the total number of subnet

• outputs. Hampshire and Waibel [13] did not empirically investigate this form of the Meta-Pi

• learning algorithm. Since combining disjoint classifiers is the problem of interest here, the

•
performance of this form of the Meta-Pi algorithm was investigated. Several experiments

• and between r and er, respectively. The latter two networks became part of the Meta-Pi

• six subnets so that the weighted sum of the subnet outputs correctly classified the sample.

were performed with this architecture to weight the outputs of separate networks each • trained to make different classification decisions. •

In the first experiment, a single TDNN was trained to discriminate among the phonemes
• s, z, r, and er. Then, two more networks were trained to discriminate between s and z,

• results of the generalization tests, displayed in Table 4, show that the Meta-Pi architecture's
• performance was roughly equivalent to the TDNN network that learned to classify all four
• categories. Therefore, the Meta-Pi module, itself a TDNN network, successfully learned to
• distinguish the part of the input spa,ce containing s and z from the part containing r and
• er.

• 19

structure and its classification accuracy may be compared with that of the first TDNN. The

TDNN 81.0 74.1 85.8 69.1 	79.1

TDNN 82.6 71.0 	 78.0
TDNN 	 89.3 74.5 	84.5

	

Meta-Pi Net 82.2 69.8 82.2 74.5 	78.3

Table 5: Experiment with Voiced and Unvoiced Stop Consonants

Table 4: 5, Z, R, ER Experiment
•

	

Architecture S 	Z 	R 	ER Overall

a

a

a
Architecture P 	T 	K 	B 	D 	G 	Overall

a ,

TDNN 75.0 78.1 71.0 	 74.7
TDNN 	 80.2 69.0 76.5 	73.4

	

Meta-Pi Net 36.6 40.8 26.6 61.3 39.4 49.0 	40.2

A potentially more difficult problem for the Meta-Pi network module was suggested by
Hampshire and Waibel; that is, discriminating between voiced and unvoiced stop conso-
nants. In this experiment, two TDNN networks were trained to discriminate among the
voiced and unvoiced stop consonants, respectively. Then the outputs from these networks 	•
were weighted by the Meta-Pi module to produce a global output. The results of the 	•
generalization tests, displayed in Table 5, show a quite drastic decline in classification ac- 	a
curacy based on the global output as compared to the performance of the two separate
TDNNs. Apparently, the regions of input space containing the voiced versus the unvoiced 	11111
stop consonants were difficult to discriminate. 	 •

Another way to decompose the stop consonants is in terms of place of articulation. Three
TDNNs were each trained to discriminate between two classes - p and b, t and d, and k and
g, respectively. As before, a Meta-Pi module weighted the outputs of the three networks 	•
to produce a global output. Table 6 shows results of generalization tests on the three
TDNNs and on the Meta-Pi system. The individual TDNNs did well, but it was clear
on doser examination that each disciiminated primarily on the basis of the voicing cue.
Consequently, the network trained with p and b would discriminate almost as well between
t and d. The Meta-Pi module, which had learned to weight the other networks' outputs on
the basis of place of articulation, did somewhat better than in the preceding experiment. a However, performance was still considerably lower than that of the individual TDNNs.

•
•
•

a
a

O

20

Table 6: Experiment Using Place of Articulation of Stop Consonants

Architecture P 	T 	K 	B 	D 	G 	Overall

TDNN 80.4 	 87.7 	 83.9
TDNN 	79.9 	 75.6 	78.0
TDNN 	 82.2 	 78.4 	81.8

	

Meta-Pi Net 49.1 65.7 49.7 70.8 52.0 52.9 	56.9

5.2 The System of Experts

Nowlan and Hinton [24, 23] proposed a learning procedure for a system consisting of a num-
ber of separate networks, each of which learns to classify a subset of the training cases. At
the same time, a "gating" network learns to weight the outputs of these "expert" networks,
and causes the expert networks to compete with each other for control of particular regions
of the input space. In the generic modular architecture shown in Figure 4, the expert net-
works are the "subnets" and the gating network is the "input region identifier". The gating
network of a trained system may be considered a manager who knows which of the experts
is best qualified to deal with the region of the input space from which a sample of interest
is drawn.

The expert networks learn via a supervised learning algorithm which requires that the de-
sired outputs be specified. However, the gating network's learning is unsupervised, and
adaptation depends on the relative performances of the expert networks. The expert net-
works all receive the same input data which may, however, be different from the data
presented to the gating network.

The model has been evaluated using a number of relatively small problems and performed as
desired [23]. However, when a large number of classes are to be discriminated and the input
space is large and complex, the model is computationally slow on current serial machines.
This is because many candidate networks must be available during training (even though
only a few may ultimately become experts), and because each candidate must have the
structural potential for dealing with all of the classes. Nevertheless, because of its elegance,
the model was considered an interesting candidate for decomposing a large task into smaller
sub-tasks.

The objective function to be maximized for the system of k experts is the log probability of
generating the desired output vector under the mixture of Gaussians model employed [23].

L = — log Dpke- ild-ykli2 /0.2)
(5)

21

98
91

1•
8

81
11

18
81

18
11

88
•1

1•
11

11
11

11
•

88
80

11
81

11
1•

11
8•

11
11

11
8

8•
11

11
9

•0
11

1
8

11
11

81
1

11

where d is the desired output vector, y is the output of the kth expert network, pk is the
gate network output correspondirig to the kth expert network, and

11 d Yk 11 2= Ddi — Yki) 2

For conveniencedet us define
L = — log U

and
U =E(PkeM.k)

where, for the kth expert net,

1
Mk = 	— yki)2/a2

2 .

Then the error gradient for the ith output unit of the kth expert with respect to its input is

OL 19L OU 0.1Wk Oyki
ex ki = au amk ayki axki

Since

	

OL 	1 = —
OU U

	

OU 	Af k
Pke

amk
- (di —Yki) u2 uYki

and, for the logistic activation function (Equation 2),

an:
= Yki(1 — Yki)

then
OL1 m

Oxki = —eke k (hi Yki)Yki(1 Yki)l 0' 2

The error gradient for the ith gating network output is derived after first choosing the
"softmax" activation function for the output units; that is, where xi is the input to the ith
output unit,

ex i
pi = 	 E5 91

The objective function then becomes

L = —log (e
V i

)emi Ei 91 .

22

Oxk i

•
IID 	 After some manipulations, keeping in mind that the index j includes i in the above softmax

definition9 ,

OD 	 OL 	1 m, = --pie + pi
• axi

• The error gradients with respect to the inputs for the gating network and all expert networks
• are now propagated back through the networks as before to derive the error gradients with

respect to all the weights.

• At the beginning of learning, the gating network should consider all experts equally probable
• for any input sample. This is obtained by initializing to zero all the weights leading to the
• output units.

A system of experts architecture with 10 multilayer "expert" networks and one multilayer
• gating network was trained to discriminate the s and z phonemes. All networks had 240

inputs and 10 hidden nodes. The expert networks each had two outputs while the gating
network had 10 outputs corresponding to the number of expert networks. The training set
consisted of 200 samples per class.

111
Best generalization performance of the system was obtained after 1500 passes through the
training set with s (81.0%) and z (72.2%). Overall performance was 77.5 percent correct.
This result is very similar to that obtained with a single TDNN network (Table 3).

A similar experiment was performed to discriminate among w, 1, and ow. After. 5550 training

•
epochs, generalization performance, which was still improving very slowly, was w (90.9%),
1(56.0%), and ow (75.0%). Overall performance was 67.5 percent correct, which is within Ile 	 one percent of that obtained with a single TDNN (Table 3), but seven percent less accurate
than the single multilayer network (Section 4.1).

• Clearly, performance levels for both sets were not improved over that obtained from a single
• network classifier. Closer examination of several training runs revealed that each expert

network selected by the gating network had learned to turn on only one of its outputs for
• any input sample. Therefore, the gating network was making all the decisions, and the

system's performance depended only on the relative values of the gating network's outputs.
• Since only one network was doing all the work, the equivalence of performance with that of
• a single network is not surprising.

• The reason for the lack of improvement with the system of experts is not clear. The
implementation is thought to be correct since it appeared to perform as expected on the
test problems described by Nowlan [23]. One possibility may be that the amount of training

• data, although adequate for a single network, was simply insufficient for training the several
• networks that eventually learned to specialize. Insufficient data might have led to grossly
• imbalanced class frequencies in a given expert's region of input space. Large differences in

'The assistance of D. Graham, Canadian Space Agency, in confirming this equation is appreciated.

23

a
prior probabilities for the classes would then have adversely biased the network's learning,
perhaps to the point of settling in a local minimum which only allowed one output to become 	•
activated. Increasing the training set size would help to reduce such an effect. It is also 	•
possible that any advantage from using the system of experts architecture might be obtained 	•
more easily if disjoint regions of the input space are to be placed in the same class, as was 	•
the case in the vowel classification experiments reported by NowIan. The distribution of
classes in the present experiments is difficult to determine due to the high dimensiona lity
of the input space. •

•
If a larger sample size is needed to enable the system of experts to perform properly, the 	•
architecture may be considered impractical since currently available computing equipment 	•
would take too long to handle all phoneme classes. 	 •

•
•

5.2.1 Extension to the System of Experts

Calculation of the a posteriori probabilities for each expert network requires an estimate
of the variance (i.e., noise) used by the formula for the multivariate Gaussian distribution. 	•
Nowlan (personal communication) recommends that training should begin with a variance 	•
of about 0.25, and that it should be lowered gradually to about 0.05 as training proceeds. 	•

•
Instead of using a fixed schedule for modifying the variance, adjusting it adaptively in
response to some cost function would enable it to be sensitive to the nature of the input 	•
data. In this way, the probability that a given output is generated by a particular expert
network could be influenced not only by the gating network output, but also by the variance 	•
associated with the input pattern. 	 •

•
Adaptation of the variance can be accomplished by a new network module analagous to 	•
the gating network that we will call the "noise" network. The noise network has one 	•
output corresponding to each expert network. During training, each output magnitude is 	•
an estimate of the variance to be used by a corresponding expert network. Initially, these 	•
are approximately . 0.5 (with the asymmetric logistic activation function) due to random 	•
weight initialization, but can become smaller or larger as learning proceeds. The noise 	•
network is adapted like the gating network, but with the error derivative proportional to
7r-,kaL , where Vk is the variance for the kth expert network. The derivative is obtained from 	•
the objective function. •

•
• L = — log U • •

where 	 •
U = E 	2vh •

	

Zk =ii d Yk II2 	 •
•

24 	 •
•
•
•

a

Ô

Vk 00
Ô

Then, Ô OL OL OU • OVk OU OVk
so

• aL 	2 Ilk zk — Vk

•

pke
W = 2 1/ 	Vk2

• In. tests using the noise network, its outputs tended to become negatively correlated with
• the outputs of the gating network, as expected. That is, after some training, a network
• assigned by the gating network to the region of the input space from which the current

• sample was drawn, was also given a small variance by the noise network.

No obvious improvement in the performance of the system of experts was gained with this
modification. Further investigation is required with controlled types of data distributions
to assess the benefit of adaptively controlling the variance in this way.

5.3 The Minos Architecture •
• The Minos architecture proposed by Smieja [30] is another approach for learning the region
• of input space that is relevant to a particular network module. In this sense, it is similar
• ta the system of experts described above, but the learning rules are somewhat less elegant.
• It consists of a number of Minos modules which, for our task decomposition problem, each
• receive the same input data. Each Minos module consists of a worker network and a monitor

• network (Figure 5). The worker network attempts to learn to dassify the input sample,
• and the monitor network learns how much confidence to have in the worker's decision about

• that particular input.

DI
• When learning to classify a given data sample, outputs are derived for both the worker

• and monitor of each Minos module. The performance of each worker is then assessed by

• comparing the similarity of the pattern of its outputs with the target pattern. Smieja
recommends normalizing the output and target values so that the respective minima and
maxima are equal, then measuring the similarity of output and target with the absolute
value metric. The worker with the highest similarity , score is chosen to learn the pattern,
while all other workers refrain from learning. However, all of the monitors learn. The
winning worker's monitor learns to raise its confidence in its partner, while each losing
worker's monitor learns to lower its confidence in its partner's performance for that input
sample. In this way, a Minos module learns to specialize on a particular region and to

• communicate that a sample belongs to that region.

To classify an unknown sample after training, outputs are generated by all the monitors,
as well as by the worker belonging to the monitor expressing the highest confidence. The
final classification decision is obtained from this worker module.

25

s-

sa.)

o

o
4-

-

o

classification
decision

confidence
rat ng

Input data

Figure 5: A Minos module

26

•
11

1 1
11

81
11

11
91

1
8

8
8

8
1

11
11

18
1 1

•8
11

11
11

88
8

11
81

11
18

11
1 1

8
8

8
•

11
8

8
1

11
11

11
11

18
11

81
11

11
1

8
8

1
1

A Minos architecture with 10 modules was trained to discriminate among w, I, and ow. Each
worker network had 224 input units, 10 hidden units and three output units. Each of the
monitor networks had the same number of input and hidden units, but had only one output
unit. A monitor's target during learning was 1.0 to indicate high confidence, and 0.0 for
low confidence. After 3200 epochs, the obtained generalization performance was w (81.3%),
1(61.8%), and ow (76.7%). Overall performance of 69.1 percent correct was similar to that
of the system of experts and about six percent less than that of a single multilayer network.
Unlike the system of experts, however, the Minos workers did not exhibit an apparent local
minimum that allowed only one output to turn on.

Again, there was no improvement in generalization performance over the single network.
Performance may have improved with a larger training set since parts of it were eventually
allocated to different Minos modules as they learned to specialize. However, as with the
system of experts, a much larger training set size would have produced an unacceptable
increase in training time.

5.3.1 Extension to the Minos Architecture

With the procedure described above, a worker module makes weight adjustments or "learns"
only if its output array is dosest to the target array. Perhaps non-winning workers should
be encouraged to increase their distance from the target as well. An objective function that
approaches its minimum as the winning worker module's error becomes smaller relative to
those of the other workers may be defined as follows.

J 	
V„, = 	,

Limow v m

where w is the index of the winning worker module, and Vm is the distance of the mth
worker's output vector from the target vector. Although many distance measures are pos-
sible, a useful one is the sum of the squared differences between output and target after
scaling both such that the mid-range of each is zero. That is, for the mth worker module,

17m = - E((ymi -
RO - MO) - (ti - -RT — M T)) 2

2 . 	2 	 2

where ymi is the ith output of the module, RO is the range of values in the output array,
MO is the minimum of the output array, ti is the ith target element, RT is the range of
values in the target array, and MT is the minimum of the target array.

The function may be rewritten as

v 1
m re —2 	— ti + /0 2

27

11
11

8
11

11
11

11
1

11
11

11
11

11
81

11
1

11
11

11
8

11
11

11
8

11•
11

11
11

11
8

11
11

11
81

1
11

8
11

11
11

8
8
1

11
11

8
0

11
11

11
88

111
1

11
\À

+ MT) (142 + MO).

The gradient with respect to the inputs of the ith output unit of the /nth worker module

may be defined as

DJ 	8J OV„, Oymi
Dxmi 8Vm oymi Oxmi

For the winning worker,

1

Eiow

For the remaining workers,

8J
axmi

= 	
(

Y(ti K)y mi(1 — ymi)
EjOw Vir

Monitor modules were treated as before; that is, the target was 1.0 for the winning worker's
monitor and 0.0 for each of the others, and all learned at every pattern presentation.

The experiment with w, 1, and ow classes was repeated using this training algorithm, and
the regults showed an improvement. Generalization performance was w (89.6%), 1(70.0%),
and ow (80.0%). Overall performance of 76.6 percent correct was now about one percent
better than that of the single multilayer network (Section 4.1). Although this result is
better than that obtained with the original Minos training procedure, it does not appear
to be a significant improvement over the performance of the simpler multilayer network.

5.4 Helper Networks

The deterministic, back-propagation learning algorithm used to train multilayer networks
is a gradient descent algorithm that may or may not arrive at a global minimum of the
objective function. If a local minimum is encountered, some training examples will not be
learned and generalization performance may suffer.

If one network is incapable of learning the complete training set, it seems reasonable to freeze
its weights and train a second "helper" network to make up for the errors of the first. This
may be done by setting the target of the helper equal to the first network's error (i.e., target
- output). The helper network should avoid the local minimum encountered by the first
network because of both the different initial weights and the different error signals arising
from the different target. If other local minima are encountered by the helper network,
additional helper networks may be added. The complete system output would be the sum
of the outputs of all the networks.

28

where K =

OJ
8x w i

O
O
O
O

• Table 7: Confusion Matrix for W Class
•

Input/Output W Not W Overall •

• W .88 .12
Not W .08 .92

.88 •

• Table 8: Confusion Matrix for L Class

•
• Input/Output L 	Not L Overall

1111 • L .89 .11
Not L .09 .91

.89 •

•
• For a system of K networks with each network having only one output unit, these consid-
11111 	 erations resulted in the following objective function and error derivative for each network.

• K-1

• P

	

k = - 	 Opi) 2

	

2 	 (6)
i=0

O
O
• K-1

•
k E (t,, - E ovi) 80 k m=k 	i=0

• Since the helper networks' targets can be either positive or negative, their outputs were
• generated with either the linear activation function or the symmetric logistic (-1.0 to 1.0)
• activation function.

• In an experiment with this architecture, three separate systems of two networks each were
• trained to respond to the presence of w, 1, and ow classes, respectively. Each network had
• 224 inputs units, 10 hidden units, and 1 output unit. The desired output of each system
• was 1.0 to signal the presence of the class, and 0.0 to signal its absence (i.e., the presence
• of any other class). In tests of the systems, 0.5 was chosen as the criterion to separate "on"

• versus "off" responses. Tables 7, 8 and 9 show the confusion matrices that resulted.

• The tables show that the systems of networks discriminate quite highly. However, roughly
the same performance was obtained by using only one of the networks (i.e., no helper),

• and a slight but consistent improvement was obtained using a single larger network with as

•
29

Table 9: Confusion Matrix for OW Class

Input/Output OW Not OW Overall

OW .84 .16
Not OW .07 .93

.84

many weights as the two networks combined. Apparently, no advantage was gained with
this data set from using the helper architecture.

It can be argued that no local minima were encountered during training, so the task was not
difficult enough to properly test the helper architecture. Further experiments using data
with known characteristics would be of interest. For example, the exclusive-OR problem
can not be solved by a network with one layer of weights. However, two such networks,
cooperating as described above, may be able to solve it.

5.5 Input Space Transformation Architecture

Table 3 shows that TDNNs are able to map limited regions of the spectrogram space to a
phoneme space with greater or lesser degrees of accuracy. It is reasonable to assume that
intra-dass variability present in the original spectrogram data may be somewhat reduced
in the new phoneme space resulting from the transformations. A reduction may be ex-
pected because multilayer networks are able to map disjoint regions of input space to the
same target. Such reduced variability may enable a single network to classify the complete
phoneme set more easily using input data from the various phoneme subspaces rather than
from the original spectrogram space. This section describes an experiment which tests this
conjecture.

The experiment described in Section 4.1 used a single multilayer network to discriminate
among 39 phoneme classes. The confusion matrix provided by that network gave an indi-
cation of the similarity among the classes. These observed similarities were used to crudely
partition the phoneme space into a number of subspaces so that a given TDNN network
module would discriminate only among similar classes. Table 10 lists the discriminations
learned by each network, and the domain from which the training set was drawn. Figure 6
shows more clearly that the assignment of input regions to modules was organized somewhat
hierarchically. Each network was trained with 300 patterns per dass. The word "rest" in
the table and the figure refers to a dass which groups together the remaining classes in the
indicated training set domain.

During training, each network was tested periodically to ensure that generalization accuracy
was not decreasing due to overlearning. Training stopped when a decrease was observed.

30

p,t,k 	b,d,g 	s,sh,ch,th,f 	ze,dh,v9

LStops (st)

UVst 	Vst rest f,s

I I 	

Sonorants (s) 	Rest Fricatives (f)

,
m,n,ng, rests 	w,l,r,y,hh, rests re,a,u,diph, rest

1

eh,er,ih,iy, rest v
aa,ah,ae, rest v,

uw,uh,ow, rest 	ay,ey,aw,oy, rest v, v,

Note: Subscript 'V refers to vowels

Figure 6: The hierarchical organization of network domains

31

•

a

a
a
a

a

a

a

a

a
a

a

Table 10: Domains of Network Modules

Training Set Domain

Stops, Fricatives, Sonorant, Rest
Unvoiced, Voiced Stops, Rest
Unvoiced, Voiced Fricatives, Rest
P, T, K
B, D, G
S, SH, CH, TH, F
Z, JH, DH, V
M, N, NG, Rest
W, L, R, Y, HH, Rest
E, A, U, Diphthongs, Rest
EH, ER, IH, IY, Rest
AA, AH, AE, Rest
UW, UH, OW, Rest
AY, EY, AW, OY, Rest

Then a different, validation test set was used to again measure generalization performance,
and these results are reported in Table 11.

The outputs of the 14 TDNN modules identified in Table 10 map the voice spectrogram
space into a phoneme space. These outputs (except for some of the "rest" categories)
became training patterns for a single multilayer network with 51 inputs, 30 hidden units,
and 38 output unitsl° That is, each pattern in the spectrogram space was transformed
by all the TDNN modules into a new input pattern in phoneme space. Figure 7 shows
the structure of the complete classifier architecture. The multilayer network was trained
with 150 patterns per classli. After 8500 passes through the training set, a generalization
accuracy of 52.4 percent correct classifications over both test sets was achieved. Table 12
lists the 38 classes, with associated frequencies and proportions correct for each test set
alone and for the combined test sets.

At first glance, the above results appear to be an improvement over those obtained in Section
4.1 with the simple multilayer network structure. Notably, however, the largest improvement
is for the silence class which is also associated with the highest frequency. When this class
is ignored in the generalization tests, accuracies of 48.2 percent and 45.8 percent were
obtained from the multilayer network and the above modular network, respectively. Thus,
the modular network appears to make fewer errors than the multilayer network in identifying
the silence class, but has slightly more difficulty identifying the other classes.

l 'The number of classes was reduced by one from the earlier experiment (Section 4.1) by merging classes
d and dz Also, ao was merged with au, instead of aa.

the maximum number allowed by the available memory

32

Output Dimensions

(unlimited)
Stops, Fricatives, Sonorants
Fricatives, Stops, Sonorants
Unvoiced Stops
Voiced Stops
Unvoiced Fricatives
Voiced Fricatives
Sonorants
Sonorants
Sonorants
Vowels
Vowels
Vowels
Vowels

ay,ey,aw,oy

eh,er,ih,iy

V

w,l,r,y,hh,

Stops (st) Fricatives (f) Sonorants (s) Rest

UVst 	Vst rUV f
e,a,u,diph, rests,

V f

Multi-layer network for classifying phonemes

(51 inputs and 38 outputs)

Figure 7: The input space transformation architecture

33

a
a

a
a
a
a
a

a

a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a
a

a
a

a
a
a
a
a
a

a
a
a

a
a

Table 11: Generalization Test Results

Percent Correct Generalization

Stops, Fricatives, Sonorant, Rest
Unvoiced, Voiced Stops, Rest
Unvoiced and Voiced Fricatives
P, T, K
B, D, G
S, SH, CH, TH, F
Z, JH, DH, V
M, N, NG, Rest
W, L, R, Y, HH, Rest
E, A, U, Diphthongs, Rest
EH, ER, III, IY, Rest
AA, AH, AE, Rest
UW, UH, OW, Rest
AY, EY, AW, OY, Rest
Mean Percent Correct

6 Conclusions

The problems with scaling up the size of back-propagation networks has resulted in a number
of proposals for the design of modular network systems. The objective of this program of
research was to evaluate some of these ideas in the context of the real-world problem of
speaker-independent speech recognition.

Although labelling of the data in the TIMIT data base appears to be accurate, intra-class
variability is still very large. In particular, both spectral shape and duration is known
to vary widely among members of a given phoneme class. In contrast, many interesting
theoretical ideas are often tested only with well understood and controlled problems. A
solution that appears promising under those conditions may not be very useful under much
more variable conditions. Usually, the best way to determine the utility of new theoretical
insights is by empirical testing. The exploratory work described in this paper was conducted
for this purpose.

The Meta-Pi, system of experts, and Minos architectures all basically attempt to do the
same thing; that is, to form criteria useful for identifying regions of the input space. Under
the conditions tested here, however, these modular systems could not perform any better
than a single network trained to handle the whole input space. This may suggest that the
overlap in class distributions was such that dear region boundaries could not be identified
by the Meta-Pi module, the system of experts gating module, or Minos monitor modules.
Alternatively, the simple network was able to perform optimally with the given data, and

34

Output Dimensions

78.7, 78.0, 87.6
88.4, 73.7, 69.0
94.9, 75.0
82.2, 86.1, 80.7
79.5, 81.4, 83.3
82.4, 80.6, 100.0, 78.6, 81.0
74.1, 83.3 80.4, 78.6
61.4, 74.4, 61.1, 65.1
74.1, 61.6, 82.7, 87.5, 86.4, 46.0
51.1, 43.6, 62.5, 55.2, 68.0
56.1, 82.5, 55.0, 82.0, 52.8
83.8, 71.6, 77.5 49.9
84.4, 85.7, 69.2, 43.8
69.0, 86.4, 100.0, 50.0, 55.2
77.7

Table 12: Performance of the Input Space Transformation Architecture

Class

sh
ch
th

jh
dh

ng

1

Y
hh
eh
er
ix
iy
aa
ax
ae
uw
ow
uh
ay
ey
aw
oy
pan

 OVERALL

Set A
Freqency

	

50 	50.0

	

78 	67.9

	

94 	55.3

	

46 	56.5

	

72 	36.1

	

18 	44.4

	

128 	75.8

	

25 	68.0

	

12 	75.0

	

14 	35.7

	

44 	81.8

	

66 	60.6

	

24 	62.5

	

52 	36.5

	

46 	32.6

	

86 	33.7

	

152 	30.9

	

25 	60.0

	

48 	47.9

	

110 	50.9

	

106 	44.3

	

14 	50.0

	

40 	65.0

	

66 	15.2

	

72 	65.3

	

244 	24.6

	

94 	60.6

	

34 	41.2

	

104 	24.0

	

50 	68.0

	

32 	46.9

	

30 	26.7

	

4 	0.0

	

48 	47.9

	

34 	61.8

	

46 	6.5

	

10 	100.0

	

594 	78.6
52.9

	

64 	70.3

	

72 	65.3

	

88 	73.9

	

44 	70.5

	

102 	43.1

	

6 	83.3

	

102 	70.6

	

36 	72.2

	

6 	100.0

	

14 	50.0

	

42 	• 76.2

	

54 	46.3

	

30 	60.0

	

46 	47.8

	

42 	45.2

	

83 	39.8

	

172 	28.5

	

18 	66.7

	

58 	56.9

	

112 	43.8

	

98 	34.7

	

16 	68.8

	

22 	54.5

	

66 	7.6

	

80 	61.3

	

278 	20.5

	

100 	63.0

	

48 	54.2

	

116 	14.7

	

40 	47.5

	

32 	59.4

	

26 	34.6

	

14 	50.0

	

42 	45.2

	

44 	65.9

	

24 	12.5

	

6 	33.3

	

574 	76.5
51.8

61.4
66.7
64.3
63.3
40.2
54.2
73.5
70.5
83.3
42.9
79.1
54.2
61.1
41.8
38.6
36.7
29.6
62.8
52.8
47.3
39.7
60.0
61.3
11.4
63.2
22.4
61.9
48.8
19.1
58.9
53.1
30.4
38.9
46.7
64.1
8.6

75.0
77.6
52.4

Set A 	Set B 	Set B Combined
% Correct Frequency % Correct % Correct

35

a
a

a
a

a

a

a
a

a

a
a

a

a

a
a

a

a
a
a
a

a
a

O
13„

no advantage could be gained by using the more complex architectures.

A new modular architecture was developed which did not have a component for identifying
the module in which one should have the greatest confidence. Rather, the modules were
used to map the input space to a different representation of reduced dimensionality and,
presumably, variability. This new representation enabled improved recognition of silence in-
tervals, and performed almost as well as a simple multilayer network classifier at recognizing
tokens from the other classes. Because of their similar abilities to identify phoneme tokens,
the choice of network to use depends on other factors. The current preference is for the
modular network which is composed mostly of TDNN modules, since the TDNN is known
to produce less variable output when speech data is passed through its input window.

References

[1] American standard specification for octave, half-octave, and third-octave band filter
sets. American National Standards Institute, New York, NY, s1.11-1971 edition, 1971.

[2] H. Bourlard and C.J. Wellekens. Links between Markov models and multilayer percep-
trons. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12:1167-1178,
1990.

[3] J.S. Bridle, M.D. Brown, and R.M. Chamberlain. An algorithm for connected word
recognition. In International Conference on Acoustics, Speech, and Signal Processing,
pages 899-902, IEEE, New York, Paris 1982,1988.

[4] A.C. Clarke. 2001: a space odyssey. New American Library of Canada, Ltd., Toronto,
1968.

[5] A. Cleeremans, D. Servan-Schreiber, and J.L. McClelland. Finite state automata and
simple recurrent networks. Neural Computation, 1:372-381,1989.

[6] S.J. Cox. Hidden Markov models for automatic speech recognition: theory and appli-
cation. British Telecom Technical Journal, 6:105-115,1988.

[7] J.L. Elman. Finding structure in time. Cognitive Science, 14:179-211,1990.

[8] S.E. Fahlman. Fast-learning variations on back-propagation: an empirical study. In D.
Touretzky, G. Hinton, and T. Sejnowski, editors, Proceedings of the 1988 Connectionist
Models Summer School, pages 38-51, Morgan Kaufmann, San Mateo, Pittsburg 1988,
1988.

[9] M.A. Franzini, K-F. Lee, and A. Waibel. Connectionist Viterbi training: a new hybrid
method for continuous speech recognition. In International Conference on Acoustics,
Speech, and Signal Processing, pages 425-428, IEEE, New York, Albuquerque 1990,
1990.

[10] M.A. Franzini, M.J. Witbrock, and K-F. Lee. Speaker-independent recognition of
connected utterances using recurrent and non-recurrent neural networks. In IEEE

36

ai
•
•

International Conference on Neural Networks, pages 1-6, IEEE, New York, Washington
1111 	 1989, 1989.

• [11] J.S. Garofolo. The structure and format of the DARPA TIMIT CD-ROM prototype.
• National Institute of Standards and Technology, Gaithersburg, MD, 1988.
• [12] J.B. Hampshire and B. Pearlmuter. Equivalence proofs for multi-layer perceptron

classifiers and the Bayesian discriminant function. In D.S. Touretzky, J.L. Elman,
T.J. Sejnowski, and G. Hinton, editors, Proceedings of the 1990 Connectionist Models • • Summer School, pages 159-172, Morgan Kaufmann, San Mateo, La Jolla, 1990, 1988.

• [13] J.B. Hampshire and A.H. Waibel. The Meta-Pi network: Building distributed know1-
1111 	 edge representations for robust pattern recognition. Technical Report CMU-CS-89-166,
• Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1989.

[14] R.A. Heinlein. The Number of the Beast. Fawcett Columbine, New York, 1980. •
• [15] R.A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
• Networks, 1:295-307, 1988.

[16] R.A. Jacobs, Md. Jordan, and A.G. Barto. Task decomposition through competition
in a modular connectionist architecture: the what and where vision tasks. Cognitive
Science, 15:219-249, 1991.

• [17] T. Kohonen. The "neural" phonetic typewriter. Computer, 21:11-22, 1988.
•
• [18] K.J. Lang and G.E. Hinton. The development of the time-delay neural network ar-

chitecture for speech recognition. Technical Report CMU-CS-88-152, Department of •
• Computer Science, Carnegie-Mellon University, Pittsburgh, PA, 1988.

• [19] K.J. Lang, A.H. Waibel, and G.E. Hinton. A time-delay neural network architecture
• for isolated word recognition. Neural Networks, 3:23-43, 1990. •
• [20] K-F Lee. On large-vocabulary speaker-independent continuous speech recognition.
• Speech Communication, 7:375-379, 1988.

• [21] K-F Lee, H-S Hon, and R. Reddy. An overview of the SPHINX speech recognition
• system. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38:35-45,
• 1990.
•
• [22] H.C. Leung and V.W. Zue. Some phonetic recognition experiments using artificial neu-
• ral networks. In International Conference on Acoustics, Speech, and Signal Processing, • • 	pages 422-425, IEEE, New York, New York 1988, 1988.
11111 	 [23] S.J. Nowlan. Competing experts: An experimental investigation of associative mixture
• models. Technical Report CRG-TR-90-5, Department of Computer Science, University
• of Toronto, Toronto, Canada, 1990. •
• [24] S.J. Nowlan and G.E. Hinton. Evaluation of adaptive mixtures of competing experts. In
• D.S. Touretzky, editor, Advances in Neural Information Processing Systems, pages 550-
• 557, Morgan Kaufmann, San Mateo, Denver 1991, 1991.
•

• 37

a
O
O
O

[25] D.C. Plaut and G.E. Hinton. Learning sets of filters using back-propagation. Computer
Speech and Language, 2:35-61, 1987.

•
[26] L.R. Rabiner and B.H. Juang. An introduction to hidden Markov models. IEEE ASSP

Magazine, January:4-16, 1986.

[27] A.J. Robinson and F. Fallside. Phoneme recognition from the TIMIT database using
recurrent error propagation networks. Technical Report CUED/F-INFENG/TR.42,

•
University of Cambridge, Cambridge, England, 1990.

[28] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations by
error propagation. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed
Processing, chapter 8, pages 318-362, MIT Press, Cambridge, 1986.

[29] H. Sawai, A. Waibel, M. Miyatake, and K. Shikano. Spotting Japanese CV-syllables and
phonemes using time-delay neural networks. In International Conference on Acoustics, • Speech, and Signal Processing, pages 25-28, IEEE, New York, Glasgow 1989, 1989.

[30] F.J. Smieja. Multiple network systems (Minos) modules: Task division and module 	•
discrimination. In Proceedings of the 8th AISB90 Conference on Artificial Intelligence,
Leeds 1991, 1991. 	 •

[31] K. Torkkola. Automatic alignment of speech with phonetic transcriptions in real time. 	
OP

In International Conference on Acoustics, Speech, and Signal Processing, pages 611—
•

614, IEEE, New York, New York 1988, 1988.
•

[32] W.C. Treurniet, M.J. Hunt, C. Lefevbre, and Z. Jacobson. Phoneme recognition with
a neural network: comparisons of acoustic representations including those produced by 	•
an auditory model. In IEEE International Conference on Neural Networks, page 320,
IEEE, New York, San Diego 1988, 1988.

[33] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme recognition
using time-delay neural networks. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 37:328-339, 1989.

•
[34] A. Waibel, H. Sawai, and K. Shikano. Modularity and scaling in large phonemic neural

networks. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37:1888— 	•
1898, 1989. 	 •

•
[35] J.G. Wilpon, L.R. Rabiner, and A. Bergh. Speaker-independent isolated words recogni- •

tion using a 129-word airline vocabulary. Journal of the Acoustical Society of America,
72:390-396, 1982.

[36] S.R. Young, A.G. Hauptmann, W.H. Ward, E.T. Smith, and P. Werner. High level
knowledge sources in usable speech recognition systems. Communications of the ACM, 	•
32:183-194, 1989.

O
•
O
O
O
• 38
O
•
O

• ce
ce
em

el

IO

ID
• LKC

•
TK5102.5 .R48e #92-001

ià 	
c.2
Neural network classifier

IR 	
architectures for phoneme 	-es

recognition

• •

a
a

• Communications 	 Centre de recherches
• Research Center 	 sur les communications
• Shi rleys Bay 	 Shirleys Bay
• 3701 Carling Avenue 	3701, avenue Carling

• P.O. Box 11490 	Case postale 11490
Station H 	 Succursale H

• Ottawa, Ontario 	 Ottawa (Ontario)
• K2H 8S2 	 K2H 852
•
•
•
•
• •

INDusTRy CANADA / INDUSTRIE CANADA

11111111111 III 	14 1111 II II

