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Executive Summary 

A good application of automatic speech recognition (ASR) would be the interface to in- 
formation technology in mobile environments. Vehicle operators cannot safely operate 
keyboards and watch visual displays while driving the vehicle. ASR as a component of 
the user interface offers a less intrusive means for such interaction. However, ASR 
technology will not become practical in vehicles until recognition is robust in a chang-
ing auditory environment. For example, noise from the vehicle engine, the wind, and 
the tires all vary over time, and cause considerable difficulty for most current speech 
recognizers that are trained in a constant auditory environment. 

This report summarizes a survey of the literature on speech recognition research that 
considers operating environments which may be different from the training environ-
ment. 

I .

The first author is a visiting scientist to CRC from CRIN/CNRS — INRIA-lorraine, 
France. His duties at CRC were to "initiate and perform research aimed at main-
taining the performance of state of the art speech recognition technology in the un- 8, predictable auditory environments found in automobiles". The work was performed 
under the general direction of W. C. Treurniet in the Broadcast Technologies Research 
Branch laboratory at CRC. 
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Abstract 

The performance levels of most current speech recognizers degrade signifi-
cantly when unpredictable noise occurs during use. Such performance degrada-
tion is caused by mismatches in training and operating environments. During 
recent years much effort has been directed to reducing this mismatch. This 
paper surveys research results in the area of single microphone noisy speech 
recognition classified in three categories: noise resistant features and similarity 
measurement, speech enhancement, and speech model compensation for noise. 
The survey indicates that the essential points in noisy speech recognition con-
sist of incorporating time and frequency correlations, giving more importance 
to high SNR portions of speech in decision making, exploiting task-specific a 
priori knowledge both of speech and of noise, and including auditory models in 
speech processing. 1  

1 Comments on several drafts of this paper by Mike Sablatash and Seymour Shlien of the Com-
munications Research Center improved its quality and are very much appreciated. 
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1 Introduction 

Speech recognition in controlled situations has reached very high levels of perfor-
mance. For example, less than 0.5% word error was obtained in speaker-independent 
connected digit recognition using the TIDIGITS database [12], less than 1% error was 
obtained in speaker-dependent, isolated word recognition using a 20 thousand word 
vocabulary [19], and about 5% error was obtained in speaker-independent continuous 
speech recognition of the 1000 word vocabulary in the DARPA Resource Management, 
task [5]. 

While most current speech recognizers give acceptable recognition accuracy for clean 
speech, performance degrades when they are applied to real situations, particularly 
in noisy environments. For example: 

• The performance of a conventional word recognizer, trained with clean speech 
and giving 100% accuracy, can typically drop to 30% accuracy in a car traveling 
at 90 Km per hour [74]. 

• The 1% error rate of a system trained under quiet conditions increases to more 
than 50% in a cafeteria environment [19]. 

Environmental noise, therefore, has become one of the major obstacles to commercial' 
use of speech recognition techniques. 

Three phenomena are observed in noisy environments: 

• Additive noise contaminates the speech signal and changes the data vectors 
representing frames of speech. For instance, white noise will tend to redUce the 
dynamic range, or variance, within the frame [7]. 

• Speaking in a noisy environment, where auditory feedback is obstructed by 
the noise, causes statistically significant articulation variability as the speaker 
attempts to increase the communication efficiency over the noisy medium. This 
phenomenon is known as the Lombard effect [41, 44, 61, 60]. 

• Spectral distortion occurs when the speech signal is convolved with an unknown 
linear system such as a different microphone or communication transmission 
line. 

These phenomena produce serious mismatches between the training and recognition 
conditions that result in degradation in accuracy. Experiments have shown that a 
system trained under a given SNR (signal-to-noise ratio) usually gives poor recogni-
tion performance even when tested in a better SNR environment [62, 19, 82, 90, 38], 
due to the mismatch. 
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Consequently, all efforts in the field of noisy speech recognition have been directed to 
reducing the mismatch between training and operating conditions. 
Some signal estimation techniques, such as basic, Wiener and Kalman filtering, have 
succeeded in improving the SNR of noisy speech, but not necessarily the quality or 
the intelligibility of the speech [93, 84]. It seems plausible that, in optimizing the 
SNR, the spectrum of the speech signal is altered and some distortion is introduced 
which does not necessarily improve recognition accuracy. 

A speech environment is characterized by a specific transmission line or noise con-
' dition, and a mismatching environment could be produced by either a microphone 
change or the introduction of a noisy background. Let 3 be the model of a recogni-
tion unit, e.g. a phoneme or word, e be an environment, and qe (s) be some quantity 
defined on s in the environment e. A transformation f is a mapping of quantities be-
tween two environments a and to be optimized to minimize operating environment 
error under some criterion: 

• qp(s) = f (qa(s)) 
• 

The problem of transformation is to find a function which decreases the mismatch 
between the training (reference) and operating (recognition) environments and thus 
improves the recognition accuracy in the operating environment. 

The transformation can be either from the training environment to the operating en-
vironment ( i3 operating environment and a = training environment) or inversely. 
Based on the choice of the quantity q, two categories of transformations can be dis-
tinguished: 

• Observation speech data transformation where, before recognition, speech data 
• are transformed from a noisy environment into the environment in which models 

were trained. 

• Speech model parameters transformation, where model parameters are trans-
formed to match the noisy speech environment. 

Therefore, the mismatch can be reduced in three basic ways: 

• Assume that the system is ,noise independent, and use the same system config-
uration for both noisy and clean speech recognition. In this case, emphasis is 
on the search for noise resistant features. 

• Transform noisy speech into a reference environment, and recognize it with 
a system trained in the reference environment. We call this scheme speech 
enhancement. 

• Transform speech models created in the reference environment in order to ac-
commodate the noisy environment and recognize noisy speech. This approach 
is called model compensation for noise. 



Noisy speech recognition has become an important topic in many specialized jour-
nals and international conferences such as ICASSP, EUROSPEECH, and ICSLP. 
Although many publications on noisy speech recognition are available, no compre-
hensive description of recent research results has been found. This paper gives a 
survey of different single microphone, noisy speech recognition techniques classified 
in three categories by considering their initial objectives: 

1. Identify noise resistant features and methods of similarity measurement, 

2. Enhance noisy speech, and 

3. Compensate speech models for noisy environments. 

Because of the complexity of modern noisy speech processing strategies, techniques 
classified to the different categories may have some similarities. That is, different 
objectives sometimes lead to similar solutions. 

Due to the wide coverage of theories involved in the field of noisy speech recogni-
tion, it is inappropriate to review in this paper the mathematical background of the 
methods described. For basic concepts, results, and references to other literature, 
the reader is referred to [78, 89, 21] for discussions of speech parameterization, to 
[98] for a discussion of HMM (hidden Markov modeling) of speech, to [72, 56] for 
discussions of ANNs (artificial neural networks) used as universal approximators, to 
[95] for a discussion of stochastic processes, and to [104] for a discussion of parameter 
estimation. 

2 Noise Resistant Features and Similarity Mea-
surement 

2.1 Introduction 

In a noisy environment, the distribution of parameters that give very good recognition 
results can be very sensitive to disturbances which introduce a mismatch between 
training and testing conditions. For example, it has been shown theoretically that 

• the norm of cepstrum coefficients decreases as SNR decreases [77, 75]. Thus, for noisy 
speech, recognition accuracy drops drastically [76]. 

Speech recognition techniques described in this category focus on the effect of noise 
rather than on removal of the noise. They attempt to derive noise resistant feature 
parameters. Since feature parameters can only make sense if associated with some 
shnilarity measurement, similarity measurements to compare these parameters are 
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also studied. Often, the similarity measure is not independent of the representations 
being compared [7]. 

One of the advantage of these techniques is that no assumptions are made about the 
noise. On the other hand, this could be a shortcoming since it is impossible to make 
use of characteristics specific to a particular noise type. 

2.2 Acoustic representation 

In the DFT (discrete Fourier transform) domain, the combination of speech signal 
and most noise àources is additive and, therefore, relatively easy to process. However, 
it is currently believed that recognition performance is poorer with an observation 
probability distribution defined in the DFT domain than in the cepstrum domain 
[28]. Further, mel-scaled cepstrum coefficients are reportedly more resistant to noise 

1 	
than conventional LPC (linear prediction coefficients) cepstrum coefficients [73]. 
White noise corruption to speech signals reduces the norm of cepstral vectors. To 
compensate for this, a scale factor is incorporated into the cepstral Euclidean distance 
between a noisy test vector and a noise-free reference vector. From the orthogonality 
principle, the optimum value of the factor is the projection of the test vector onto the 
reference vector. Spectral analysis reveals [13] that the projection measure emphasizes 
the energy peaks of the spectrum and the difference between high energy frames 
involved in the distance. 

Compared to Euclidean distance, the cepstral projection measure [77, 13, 14] has been 
shown to be noticeably less sensitive to noise. The lesser sensitivity is due to the fact 
that the angle between vectors is less affected by noise than their norms.. Different 
cepstral lifters [49, 59], grand variance techniques which use a unique variance for all 
HMM states for a model [80], and smoothed variance measures [74] have also been 
found to reduce sensitivity to noise. 

Also, a power or root operation can be applied to the spectrum of a noisy signal 
[68] instead of a logarithm operation. The resulting parameter is called a root com-
pressed spectral density function [2] and was shown to be more resistant to noise than 
parameters resulting from the logarithmic transformation. 

A SMC (short-terni modified coherence) representation [76] obtained from an all-pole 
modeling of the autocorrelation sequence of a noisy signal followed by a spectrum 
shaping, can improve SNR by about 10-12 dB for noisy speech with a SNR range of 
0-20 dB. When combined with a band-pass cepstral liftering technique, an improve-
ment equivalent to 13 dB SNR was reported on an alpha-digits recognition task. An 
independent test confirmed that a given recognition rate was obtained by this method 
at about 15 dB SNR lower than the standard LPC-cepstrum method [81]. 

An HMM framework with norm equalization for observation densities was introduced 
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[57] in order to compensate for the shrinkage in the cepstral norm as noise is added. 
A performance improvement equivalent to 15-20 dB gain in SNR was obtained on a 
digit recognition test. 

These feature representations and distortion measures are assumed independent of 
noise level and do not require specific training in the application environment. 

2.3 Linear discriminant analysis 

The IMELDA (Integrated ME1-scale Linear Discriminant Analysis) [55, 66, 54] was 
proposed for creating a noise resistant representation. IMELDA performs a linear 
transformation of a speech representation by minimizing within class differences and 
maximizing inter-class differences. The data are first transformed so that the average 
within-class covariance matrix is the identity matrix. Principal components analysis 
is then applied on the transformed between-class covariance matrix to select the 
direction of greatest variation. A subset of these principal components is used to form 
parameter vectors. Since the parameters maximize the average variation of phonemes 
between classes relative to the average within-class variation, IMELDA also improves 
clean speech recognition [99]. Since spectral contrast decreases as noise level increases, 
[7] further proposed norMalization of cepstrum coefficients with respect to the frame 
standard deviation before processing with the IMELDA technique. 

2.4 Spectrum model -based parameters 

A model that is specific to speech sounds will accept signals with the properties of 
speech and reject perturbing noise, and thus be noise robust. 

Assuming a certain spectrum structure of the speech signal, the LPC all-pole model 
has been used for improving the quality of the speech representation [67]. However, 
most LPC estimates degrade rapidly as the SNR decreases [92]. 

Under the constraint that the signal be an all-pole process, [45] proposed a maximum 
likelihood estimation of the speech waveform in additive noise. Although recognition 
accuracy was improved, the use of an LPC-based enhancement technique to bring the 
recognition performance to an acceptable level is questionable [40]. 

In constrained maximum a posteriori estimation of speech [43], some speech specific 
constraints such as the stability of an all-pole speech model, the relative position of 
poles, and the inertia of the vocal tract characteristics are exploited. The resulting 
speech has more reliable formant positions and reduced frame-to-frame pole jitter in 
noisy environments. 

For LPC coefficients, a frequency-weighted Itakura spectral distortion measure was 



proposed [103] which attempts to compensate for the bandwidth broadening effects 
due to the noise. 

In [39], higher order derivatives of LPC with respect to NSR (noise-to-signal energy 
ratio) was used to compute an estimate of clean LPC. An estimate of the clean LPC 
vector was expanded in a Taylor series near the noisy LPC vector with respect to 
NSR, using up to fourth-order noisy LPC vector derivatives. The only information 
needed was the SNR, and no assumptions about the noise probability .distribution 
were required. However, for an adequate approximation, the SNR must be large. 

2.5 Auditory system inspired models 

A number of authors have preprocessed speech data with computational models of the 
auditory system. These auditory models improve insensitivity to accompanying noise 
and, thus recognition accuracy [32]. However, severe performance degradation still 
remains for relatively intense noise environments (less than 10 dB SNR, for example). 

• Auditory models may incorporate lateral inhibition [100], which is a property of the 
auditory system. This phenomenon accounts for the observation that the perceived 
intensity of a test tone is a function of the frequency of an accompanying tone. When 
the two tones are similar in frequency, the perception of the test tone can be inhibited. 

From the signal processing point of view, lateral inhibition results in the narrow-band 
SNR around spectral peaks to be higher than in spectral valleys. In [16] this effect 
is emulated by attenuating spectral valleys and emphasizing peaks, thus obtaining a 
significant improvement in SNR. 

Auditory system models can be implemented as a wavelet transform followed by a 
compressive non-linearity [111]. The wavelet transform provides a multiresolution 
spectral representation of the signal, and spectral features were derived from locally 
averaged zero-crossing rates along the temporal axis. Lateral inhibition was obtained 
by computing the derivative with respect to the time and frequency axes of the 
transform. For speech degraded severely by noise, this representation preserved the 
spectrum structure of the speech signal significantly better then the power spectrum 
representation, 

In [35] a computational auditory model based on the temporal characteristics of the 
information in the auditory nerve fiber firing patterns was presented. The model 
consists of a set of cochlear filters each followed by a zero-crossing detector and 
calculation of an interval histogram. The cochlear filters are equally spaced on a 
log-frequency scale. The output of the model is a frequency domain representation of 
the input signal in ternis of the ensemble histogram of firing patterns. The output of 
the auditory model was converted to LPC coefficients which were input to a speech 
recognizer. Recognition experiments [36] showed that this representation was robust 
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with respect to noise contamination,  and  that the noise robustness was due to timing-
synchrony analysis and not to the shape of the cochlear filters. Other experiments 
also report the ability of auditory models to enhance noisy speech signals [37]. 

In [33], a feedback model was proposed to simulate the efferent-induced effect on the 
cochlear and auditory-nerve fiber system. Compared to auditory systems without 
such feedback, the new system gave better resistance to degradation of recognition 
rate as noise level increased. 

2.6 Discriminative similarity measures 

Ht  
A number of techniques exist to discriminate among different distributions of speech 
parameters vectors. The multilayer perceptron (MLP) classifier offers two important 
advantages over some other methods: no distribution is assumed for the probability 
density functions, and arbitrarily complex mappings can be created. In an experi-
ment to classify single frames of noisy vowel data obtained from multiple speakers 
[94], an MLP classifier using cepstrum coefficients gave significantly better accu-
racy at all SNRs than a multivariate Gaussian maximum likelihood classifier and a 
k-nearest-neighbor classifier. Furthermore, the degradation in recognition accuracy 
with decreasing SNR occurred at a slower rate ror the MLP than for the two other 
classifiers. 

In evaluating the similarity between two sequences of parameter vectors, some vectors 
should be given more importance then others in order to achieve optimum global dis-
criminability. For example, in E-set recognition, the dissimilarity at the /E/ part of 
the words is not discriminative and should.not contribute to the recognition decision. 
In an experiment with a vocabulary-specific recognizer [3], two frames in an utter-
ance were selected as discriminative parameter vectors, and were input to a MLP. 
The recognition rate was optimized for each sub-vocabulary by tuning the time po-
sition of one frame and the interval between the two frames. On a small vocabulary 
under clean, Lombard, and Lombard plus white noise conditions, the method gave 
substantially better recognition results than a continuous density HMM system. 

2.7 Slow variation removal 

Much additive noise as well as most channel distortions vary slowly compared to the 
variations in speech signals. Filters removing slow variations in the parameter feature 
vectors improve the recognition accuracy significantly [48]. The filtering may have 
different implementations and be in different parameter spaces, such as log-energy 
[51] or cepstrum [48]. 

RASTA (RelAtive SpecTrAl Processing) [51] consists of suppressing constant factors 
in each log spectral component of the short-term auditory-like spectrum. Each fre- 
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quency band is filtered by a filter with a sharp spectral zero at zero frequency. The 
average of each band is therefore zero. Since RASTA operates in the logarithmic 
domain, noise which is additive in the logarithmic domain such as slow-changing 
communication channel characteristics can be efficiently reduced. But noises that are 
additive in the time domain and therefore signal-dependent in the log domain cannot 
be removed efficiently [52]. RASTA has been shown to give good recognition accuracy 
with microphone variation [50]. 

Time derivatives (delta) of cepstra, also called dynamic features [29, 30] or first or-
der regression features [4], improve recognition accuracy in noisy environments by 
removing slow variations. This technique is currently widely used in noisy speech 
recognizers as well as clean speech recognizers [47, 46, 48, 4]. 

In a speaker independent test with a 21 confusable words vocabulary, [48] has shown 
that suitable high-pass and band-pass filtering of log subband energies improves recog-
nition of noisy Lombard speech, with little effect on recognition of clean speech. 

Finally, it was observed in [28] that the common practice of preemphasizing the speech 
waveform degrades recognition accuracy in a noisy environment . 

3  Speech  Enhancement 

3.1 Introduction 

As a preprocessing step for recognition, speech enhancement techniques are intended 
to recover either the waveform or the parameter vectors of the clean speech embedded 
in noise [69]. These techniques make different uses of a priori information about the 
speech and the noise. The criteria used in speech enhancement techniques are based 
either on the probability of clean speech, the distortion between clean and recovered 
speech or directly related to speech recognition accuracy. 

3.2 Spectral mapping 

This approach to recovering clean speech from noisy speech observations directly 
exploits the one-to-one relationship between vectors in a clean speech environment 
and those in a noisy speech environment. 

In [6, 84], linear multiple regression was proposed to map speech representations from 
a clean speech environment to a noisy environment. With this technique, transfor-
mation of reference tokens decreased the mismatch between training and operating 
conditions. It was shown that the transformation was superior to the spectrum sub-
traction technique [83]. 
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More generally, arbitrarily complex transformations can be achieved using an artificial 
neural networks (ANN) such as the multi-layer feed-forward perceptron. ANNs have 
been used for noise reduction [107], particularly for vector sequence mapping [53], 
and mapping of a noisy magnitude spectrum to a clean magnitude spectrum [83]. 
Compared to a linear transformation, ANNs gave better results [83]. Due to their 
universal function approximation capability, very simple ANNs can be used to obtain 
reasonable results. 

3.3 Noise subtraction 

The spectrum subtraction approach to minimizing the effect of noise [18, 11, 74, 83] 
estimates the magnitude spectrum of clean speech by explicitly subtracting the noise 
magnitude spectrum from the noisy speech magnitude spectrum. The noise magni-
tude is estimated during nonspeech intervals of the voice communication process. In 
non-linear spectrum subtraction [74], the maximum of the local noise mean is used 
for subtraction. 

The noise subtraction method assumes that the noise and speech are uncorrelated and 
additive. In that case, the magnitude spectrum of the noisy signal is the sum of the 
noise and the speech spectra. The method also assumes that the noise characteristics 
change slowly relative to those of speech signals, so that the noise spectrum estimated 
during a non-speech period can be used for suppressing the noise obtained during 
speech. 

Subtraction techniques cannot be performed in the logarithmic spectrum domain 
where noise, even uncorrelated with the signal in the time domain, becomes signal-
dependent. Also, negative spectral magnitudes can be obtained with subtraction, and 
usually ad hoc solutions to this problem are required. 

If the parameter analysis is performed in spaces other than spectrum, the parameter 
can be transformed into the linear spectrum space where noise subtraction is per-
formed. Spectral subtraction can also be performed on the inverse-transform of the 
LPC-cepstrum, as reported in [105]. 

3.4 Comb filtering 

If the period of noisy voiced speech can be determined, then comb filters can be 
applied in the frequency domain to reduce the noise level. Comb filtering consists of 
multiplying the observation signal by a sequence of Dirac functions whose interval is 
the period of the signal. In the time domain, this operation is equivalent to averaging 
the signal waveform over several periods. 

Comb filtering makes the assumption that noise is additive and short-time stationary. 
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Also, an accurate determination of the period of noisy speech is critical for the success 
of comb filtering. The filter is not applicable to speech segments with fast transitions, 
voiced fricatives, as well as unvoiced speech. 

In [70], the effect of comb filtering on the SNR of speech in white noise was evaluated. 

A speech signal can be represehted as a sum of the harmonics of its fundamental 
frequency component. Under the assumption that the contaminating noise is Gaus-
sian with known variance and that the amplitudes of the harmonics are independent, 
[64] has shown that the optimum estimation of speech may be considered to be a 
combination of comb filtering and Wiener filtering. 

3.5 Bayesian estimation 

Most of the techniques presented in this subsection were originally developed for 
speech quality improvement rather than for recognition. However, they may also 
serve as a pre-processing step for recognition systems. 

If the clean speech is considered a function of random parameters of observed noisy 
speech, then the Bayesian approach can be applied to give an estimate of the param-
eters in order to obtain clean speech. Many cost functions can be used as criteria for 
the estimation. The most common ones are the squared error cost function which 
yields MMS (minimum mean square) estimation, and the uniform cost function which 
gives MAP (maximum a posteriori) estimation. The MMS estimate is the conditional 
mean of the parameter, given the observation. The MAP estimate is the value that 
gives the maximum conditional probability density function of the parameter, given 
the observation. In the case where observations and parameters are jointly Gaussian, 
the MMS and MAP estimates are identical. Minimum mean square error estima-
tion of clean spectral channel energy from noisy channel energy has been applied to 
functions of DFT coefficients [25, 96]. 

Since the energies of individual channels are correlated and the correlations are speech-
specific, a joint estimation of channel energies should be more robust than independent 
estimation. To partially incorporate the correlation, [27] conditioned the estimator 
on the total frame energy. Because more of the correlations between channels was 
incorporated, the new estimator significantly improved the quality of the estimate. 

The estimator can be further enhanced by conditioning the channel energy on mix-
ture models of the acoustic space [28]. This extension is based on the idea that the 
clean acoustic space can be divided into classes within which the correlation betWeen 
different channels is significantly smaller than in the space as a whole, The resulting 
algorithm is called MMLSD (minimum mean log spectral distance). A theoretically 
weak point of this method is the assumption that the channels are statistically inde-
pendent of each other. A Markov model was introduced to model time correlations 
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between adjacent frames by imposing continuity constraints on the estimate. Because 
of the complexity of speech compared to the simplicity of the model, the improvement 
was minor [28]. 

An HMM-based MMSE (minimum mean square error) estimator of clean speech was 
derived in [23]. The estimation introduces pairs of states of the models of the signal 
and of the noise. The estimator is a weighted sum of Wiener filters of noisy speech 
which are conditioned on the pairs of states. The weights are the probabilities of 
speech-noise composite HMM states given the noisy observations. Since HMMs are 
used in the selection of composite states, the estimate exploits information on the 
neighborhood of the analyzed vector. 

In a more general signal mapping framework, [15] proposed a system for cleaning up 
speech which takes an (noisy) observation vector as input and a (clean) target vector 
as output. • The relationship between input and output is, in general, a non-linear 
function. The input and output are each modeled as a set of random sources, with 
cross-correlations between them. A solution to the joint probability density function 
(Pdf) of input observation, output target, and parameters of input and output random 
sources was proposed in [22] using the EM (expectation-maximization) algorithm. 
Based on the pdf, the desired output vector is computed as the conditional expectation 
of the output, which is a minimum mean square estimate of clean speech. In [17], 
noisy speech as input sources was converted with this method to auditory spectra [16] 
to obtain resistance to noise and less dependence on noise level relative to conventional 
spectral mapping. 

Using the MAP approach, a sequence of speech-noise states via HMM was estimated, 
and the states were uàed to construct Wiener filters [26]. Clean speech was modeled 
as a hidden Markov process with mixtures of Gaussian AR (autoregressive) output 
processes. Noise was assumed to be additive and independent of the signal, and was 
modeled as a Gaussian AR vector. The enhancement of noisy speech was performed 
iteratively by alternating 

• Estimation by a Viterbi decoder of the most probable sequence of states and 
mixture components. 

• Estimation of clean speech by application of state-dependent, thus time-varying, 
Wiener filters. 

MAP estimation theory was also applied in [23]. 

Under a dynamical system framework, the alternate Viterbi decoding — Wiener filter-
ing of [26] is generalized to the alternate Viterbi decoding — Kalman filtering speech 
enhancement scheme [24]. 
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3.6 Template-based estimation 

Within-frame speech-specific frequency dependencies of speech can be explicitly ex-
ploited by the frame template-based approach. The processing involves finding the 
best sequence of clean speech templates given the noisy speech data. The basic prop-
erty of the template-based approach is the restriction of the signals to be estimated, 
to a parameter subspace defined by templates and the combination coefficients. The 
advantage of using templates is that the output is almost noise free insofar as the 
noise influence is converted into incorrect estimation of templates. 

Templates can be either phoneme-based [38], VQ (vector quantization)-based [58, 92], 
or a linear combination of sine-waves [97] for temporal signal estimation. The mostly 
linear combination of templates can be derived from the Gaussian assumption [97], 
from fuzzy vector quantization [38], from averaging several templates closest to the 
noisy vectors [58] or just taking the closest vector under some distance metric [92]. 
In [38], clean speech estimates were given by linear combinations of clean speech 
templates. The templates were extracted from a set of phonemes. The combination 
coefficients were based on the similarity between the noisy vector and noisy speech 
templates. The templates were obtained from labeled phonemes in pre-specified ut-
terances. On a 200-word vocabulary, under 10 dB SNR, a 90% recognition rate was 
obtained using a recognizer that gave 95% for clean speech. The recognition system 
used phonemes as basic recognition units. 

In [58], to achieve speech signal restoration, a given clean speech reference template 
was computed as the average of several clean speech templates. These templates were 
chosen from a set of templates so that their noisy correspondence gave the smallest 
distortion to the noisy observation. The set of templates was obtained by applying 
the Lloyd algorithm [71] to clean speech, and using a likelihood ratio or a truncated 
cepstral distance distortion measure. It was shown experimentally that, under 14 dB 
SNR, an improvement of 10 dB SNR was achieved. 

For the purpose of improving noisy speech intelligibility, it was proposed in [92] to 
resynthesize speech from VQ templates. Formant distance was used as the similarity 
measure. The output of such processing is noise-free speech, with the remaining 
degradation appearing as a spectrum mismatch. 

A least square error estimate of the desired speech waveform in the presence of noise 
was proposed in [97]. A speech waveform .was represented as a linear combination of 
sine wave templates. The combination coefficients were roughly inversely proportional 
to the distance of each scaled template to the observed speech data. The weighting 
scheme was similar to that used in fuzzy vector quantization [108]. 

Usually template-based estimation methods are not formulated on a probabilistic 
basis. However, under some assumptions about the signal and noise, the results are 
similar to those of some methods in subsection 3.5, since templates are equivalent to 
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parameters describing observation probabilities. 

4 Model Compensation for Noise 

4.1 Introduction 

Rather than attempting to derive a best estimate of the speech signal, approaches us-
ing model compensation for noise allow for the presence of the noise in the recognition 
process itself. 

HMMs provide a formal mathematical framework for modeling temporal and spec-
tral variability in speech signals. In this framework, solutions to parameter estimation 
and speech recognition are formulated as widely used and computationally attractive 
algorithms. Model-based recognition such as HMM offers the possibility to exploit a 
specific model of clean speech obtained from a training process, and then changing 
the model parameters to accommodate noisy speech. That is, noisy speech data is 
used to adapt speech model parameters such as the mean and variance of a Gaus-
sian distribution, in order to compensate for the discrepancy between training and 
recognition conditions. 

Such adaptive schemes are potentially able to deal with noisy environments which 
are not presented in the training phase and/or which are time varying. 

4.2 Decomposition of hidden Markov models 

This is a generalization of hidden Markov modeling to optimal decomposition of si-
multaneous processes [110]. With this technique, noisy speech signals can be modeled 
by an N x M state HMM, where N is the number of states for clean speech and M is 
for the noise process. The standard Viterbi algorithm searches for a best path among 
N (states) x T (observations), which can be extended to NxMx T, where M is the 
number of states of a noise HMM. The transition probabilities of the signal model 
and of the noise model are trained separately. The output probabilities of the two 
models are combined under some assumptions to give the probability of observing the 
input sequence. The combination is dependent on the feature parameter space of the 
signals. The decomposition allows simultaneous recognition of both signal and noise. 
A similar approach has been used in [23] where the purpose of introducing pairs of 
states was speech enhancement. 

Using a filter bank [110], under a simplified model of output probabilities and sim- 
ple models of noise, the signal decomposition model provided significant recognition 
performance improvement for both stationary and highly non-stationary noise. In 
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stationary pink noise, good recognition accuracy was obtained down to a SNR of -3 
dB. 

In the same framework, a mel-cepstrum model combination was studied in [31], where 
model parameters in the cepstral domain are transformed into the linear gpectral 
energy domain, adapted, and then transformed back to the cepstral domain. The 
recognition rate was shown to be better than that of [110]. In an evaluation using 
spoken digits, this technique outperformed a noise masking technique, especially for 
SNRs down to -3 dB [80]. 

Model decomposition provides a framework for accommodating independent concur-
rent processes. Potentially this approach can deal with non-stationary interfering sig-
nals, since the noise models can accommodate very complex noises with fast changing 
and impulsive statistical characteristics. 

4.3 State-dependent filtering in hidden Markov models 

Direct application of Wiener filtering to noise cancellation for noisy speech is limited 
by the non-stationarity of speech signals. HM1Vls automatically divide speech into 
quasi-stationary segments corresponding to the model state. This property of HMMs 
is exploited in [8] to implement noise cancelling filters within a speech recognition 
process. Under this scheme, in each state for each filter channel, an optimum FIR 
Wiener filter is attached as an additional parameter of the model. During recognition, 
a filtered estimate of clean speech is calculated on the basis of a sequence of noisy 
input vectors. The estimate is used to compute the output  probability of the state. 

In the frequency domain, Wiener filtering corresponds to a multiplication of the signal 
spectrum and the filter frequency response. In the cepstral domain, this is equivalent 
to an additive operation due to the logarithmic scaling involved. In [9], a HMM state-
dependent Wiener filter was implemented to additively correct cepstral observation 
vectors prior to the calculation of the output probability for that state. Cepstral cor-
rection by Wiener filtering was also used in a template-based dynamic programming 
recognition system [10], where the filters were frame-dependent. 

State-dependent Wiener filtering is similar to some of the methods described in sub-
section 3.5, where the purpose of Wiener filtering was speech enhancement rather 
than noise cancellation during recognition. 

4.4 Adaptation of duration models 

The Lombard effect produces changes of speech in both spectral .characteristics and 
timing structures of acouStic events. Both types of changes contribute to the mis- 
match between training and operating conditions and, thus, to the degradation of a 
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recognizer's performance. Most noisy speech recognizers deal only with the first type 
of mismatch but not with the second, which limits the improvement in performance. 

In [102], it was proposed to re-estimate the parameters of duration models of phonemes 
trained in a clean environment, using a few observations of Lombard speech. The pa-
rameters of the models were considered as random variables estimated under the 
MAP criterion. It was shown that the resulting mean of a phoneme duration model 
approaches the one from the clean environment if there are few adaptation data, and 
approaches the MLE (maximum likelihood estimation) of the mean of the adaptation 
data when the quantity of adaptation data is large. Experiments showed that when 
the mismatch in spectral characteristics was very great, duration adaptation was very 
efficient in improving recognition performance. 

4.5 Adaptation of hidden Markov models 

When HMM-based speech recognizers are trained with clean speech data, performance 
is degraded when test data is contaminated with noise. Some attempts have been 
made to use a small amount of the noisy speech to adapt the HMM model parameters 
to the noisy environment. 

For discrete HMM speech recognizers, instead of using a simple Euclidean distance 
measure, [86] introduced mixtures of label prototypes. The pdf of a prototype was 
based on a weighted sum of the pdfs of the noise vector and the clean speech vector. 
The energy of each frequency band was assumed to be the maximum of clean speech 
and noise energies. The parameters of the noise was estimated during, recognition by 
fitting a Gaussian distribution to the noise. 

In [83], a linear transformation diagonal matrix was proposed to directly adapt — 
rather than transforming the observation speech signal — the state output probability 
parameters of a HMM recognizer. The parameters included means and variances of 
Gaussian distributions. 

In [1], an iterative codeword-dependent additive normalization of cepstral parameters 
was proposed, which improved recognition rates for noisy speech. 

The Bayesian learning procedure has been used for 'adapting Gaussian state observa-
tion densities of a continuous density HMM [65]. Using two or three repetitions of 
each word, the method improved a severe mismatch between the training and testing 
recording conditions. Because the Bayesian procedure adapts a trained parameter set 
to a new environment, training data is used more efficiently than with conventional 
codebook mapping approaches. 

Since the nature of the adaptation problem is to find a mapping between two spaces, 
techniques originally proposed for , speaker-adaptation such as vector quantization 
codebook naapping [101, 87], fuzzy vector quantization-based spectral mapping which 
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has been shown to give better spectrum distortion than neural network based non-
linear mapping [88], vector field smoothing [91], observation distribution adaptation 
[106], mixture coefficients modification [79] and Bayesian learning for Gaussian mix-
ture HMM state observation densities [34], can be applied to noisy speech recognition. 

4.6 Minimum error training 

Conventional HMMs are trained using the maximum likelihood estimation (MLE) 
scheme, which maximizes the probability of the training data given a model. Since 
a model of a given class is trained independently of others, discrimination between 
different classes cannot be optimized during the training. Minimum error training, 
also called corrective training or discriminative training, was proposed to overcome 
this deficiency by maximizing the difference between the probability of the correct 
class and the probability of the most probable incorrect reference class. This leads 
to the minimization of misclassification. Generally the parameters of the models are 
initialized by MLE training before minimum error training begins. This technique 
has been shown to improve the recognition rate for clean speech. 

In [82], minimum error training with noisy speech was used to train HMMs initialized 
by MLE using clean speech. The minimum error training was performed on the mean 
vector of the Gaussian pdf of the most probable mixture component of each state. 
Significant improvement in recognition accuracy was reported. 

In [90], both the mixture coefficients and the mean vectors of a continuous density 
HMM system were adjusted by minimum error training. The results confirmed that 
the technique helps to maintain recognizer accuaracy as noise is added to the envi-
ronment. 

4.7 Noise masking 

Noise masking [63] is the psychological phenomenon of reduction of perceptibility of 
a signal in the presence of noise. The effect of this phenomenon can be emulated to 
improve noisy speech recognition performance. Masking was simulated in [109] by a 
masking algorithm for spectral energy. For both speech model pararneters and input 
speech, the value of each frequency band was replaced by the noise mean if the latter 
was greater than the former. For speaker-dependent digit recognition in pink noise, 
robust accuracy was reported for SNR down to 3 dB. 

A cepstral equivalent of this algorithm was also described [80], which maintains a log 
energy version of the models for the masking operation and transforms the masked 
models to the cepstral domain. 
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4.8  Training data contamination 

As a special case of model compensation, another strategy is to add noise to the 
training tokens [20, 85]. With this technique, the mismatch between training and 
operating environments will totally disappear. Use of noise contaminated data to train 
a system can dramatically improve recognition accuracy under that specific training 
condition. The reported results are better than those of other more sophisticated 
processing techniques such as Kalman filtering and spectral transformation [84]. 

Using a HMM-based recognizer, [82] compared MLE training using clean speech fol-
lowed by minimum error training using speech with 10 dB of noise on the one hand, 
and MLE training using both the clean speech and the noisy speech on the other 
hand. When tested with different SNRs and noise types, the recognition rates for 
the two training schemes were similar, with the first scheme giving slightly better 
performance. 

Evidently, however, the technique cannot cope with the Lombard effect. Another 
problem for this technique is that the noise to add to the training data is not always 
available. Moreover, since no noise model is incorporated and since the recognition 
accuracy is only optimized to the intensity characteristics of the training noise, recog-
nition performance could be sensitive to noise level [62]. 

Since no mismatch is involved with the training data contamination method, many 
authors refer to recognition accuracy obtained using this technique as a performance 
reference to which to compare noisy speech recognizers. 

5 Conclusion 

Speech recognition in noise involves a large variety of knowledge at every level of 
processing. Due to the complex nature of noisy speech recognition, data for accurate 
comparative performance evaluation of the techniques are unavailable. Table 1 gives 
an incomplete overview of achieved performance improvement in recognition of speech 
signals corrupted by additive Gaussian noise. In the table, the recognition results are 
given, in percent correct, for system performance in 10 dB SNR. The column labeled 
comparison gives the recognition results for the same data when the same system was 
used without the proposed noise resistant feature. For each method, the recognition 
rate for clean speech is also given. The number in round brackets gives the perplexity 
of the grammar used, if applicable. For equal SNR, it was observed that for types of 
noise other than Gaussian, less degradation generally resulted [42, 10, 82]. 

Since the purpose of noisy speech recognition techniques is to reduce the mismatch 
between training and testing conditions, many authors aim at achieving the recog- 
nition accuracy comparable to that obtained by training the recognizer with noisy 
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method 	 vocabulary 	speaker 	clean 	10dB 	comparison  
HMM lpc-mel [57] 	 10 digits 	multi 	100. 	30.5  

HMM vector equalization [57] 	10 digits 	multi 	98.3 	77.3 	30.5  
modified EIH [36] 	 39 words 	single 	95 	70 	25  

SMC [76] 	 alphabet 	depend 	93.2 	73.2 	35.4  
SMC [76] 	 10 digits 	depend 	99.2 	98.3 	39.8  

IMELDA [7] 	 alphabet 	independ 	89.8 	39.0 	12.1 
.LC-MBCE-HMM [42] 	35 words 	multi 	96 	62 	8 -  
Constrained  MAP [43] 	20 words 	single 	88 	34.5 	5  

Projection [13] 	 34 words 	single 	95 	88 	40  
Projection [14 	 10 digits 	independ 	98 	83.6 	38.4  

ME training [82] 	 100 words 	independ 	99.1 	94.9 	66.3  
MMLSD-VQ [28] 	1K words (60) 	independ 	92 	78.9 	8  

base-transform [38] 	206 words (206) 	single 	95.0 	89.8 	20.4 

Table 1: Recognition accuracy in 10 dB Gaussian additive noise of some speech 
recognition systems. 

speech. Presently, the gap can be very small, about 1-2 percent. 

In general, if the statistical properties of the noise is known, it is easier to obtain 
an improvement in recognition accuracy using a transformation-based technique than 
a feature-similarity-based technique. However, feature-similarity-based techniques, 
described in Section 2, are usually more robust over varying SNR, with decreasing 
recognition accuracy as noise level increases. Unfortunately, there is no theoretical 
justification to claim that the Lombard effect, which involves changes in the articula-
tory system and speech rhythm, can be directly handled with the methods described 
in . Section 2. Techniques in Sections 3 and 4 usually give optimum recognition re-
sults for the noise variety and level to which the system was trained. When operating 
conditions change far enough from the training condition, the recognition rate will 
decrease. 

In speech recognition applications, methods described in Section 2 are computation-
ally efficient. Those in Section 3 and Section 4 usually require collecting noisy data 
and training the system. Combinations of different classes of techniques may further 
improve a recognition system's performance. 

Many methods assume the statistical independence of the speech signal and the noise. 
Although this assumption simplifies treatments and results in computationally at-
tractive algorithms, it inherently limits the performance for real applications. For 
instance, the Lombard effect, if it is considered as noise, is not signal independent. 

The key problem in noisy speech recognition is to define a mathematically attractive 
optimal criterion which takes into account the following: 
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• Incorporating inter-frame correlations including correlations across vector se- 
quences over time. The hidden Markov modeling provides a good framework. 

• Incorporating frequency correlations including the correlation across compo-
nents of representation vectors via LPC, AR, or other techniques such as templàte-
based approaches. 

• Giving more importance to high SNR portions of speech in decision making. 
The portion could be either a time interval or a narrow band frequency range. 

• Modeling explicitly a priori information about speech and noise by exploiting 
models of both speech and noise. State decômposition strategy is a promising 
approach. 

• Including auditory models in speech processing. 

Two major issues remain. The first is insensitivity to different noise levels, which 
requires the generalization of training results for one SNR to other SNR condi-
tions. Current transformations depend strongly on the noise levels for which they 
are trained. In most cases, when a speech recognizer performs well with noisy speech, 
performance drops when recognizing clean speech. The second problem is dealing 
with non-stationary noise environments. Algorithms which automatically optimize 
recognition accuracy while the recognizer is in use need to be developed further. 

The most appropriate algorithms for a given situation are dependent on the research 
objectives as well as assumptions about the statistical properties of relevant variables. 
Also, the outcomes of the various methods for dealing with noise may be different 
depending on the characteristics of the noise. It is therefore important to have a 
suitable database for validation of a given method, since the type of noise and criterion 
for optimization could influence the result. The validation criteria for noisy speech 
recognition systems can be very complex. However, they should provide information 
on the improvement in recognition accuracy as compared to a standard noise level 
(e.g., 10 dB SNR), and on the recognition accuracy as a function of SNR relative to 
the SNR under which the system was optimized. 
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