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ABSTRACT 

In. this technical note, the optimisation of OFDM transmission over a linear dispersive channel is considered. 
The optimum 'data and power assignments to the subcarriers are derived for both the conventional error 
probability criterion, and a new criterion based on the normalised mean-square error. The assignments and 

algorithm hold for channels where performance is degraded by additive noise, intersymbol and interchannel 
interference. Lower bounds on throughput are derived and are used to compare OFDIVI performance with 
conventional single carrier QAM with both linear and decision feedback equalisation. It is shown that OFDM 
transmission can provide a significant improvement at low and intermediate channel SNRs. The case of a 

multiuser multicarrier system is considered, in which interference from adjacent users affects the OFDM 
allocations. A sub-optimal, but more practical, approach to maximising OFDM performance is presented. 





RÉSUMÉ 

Dans cette note technique, l'optimisation de la transmission en multiplexage orthogonal de division de 
fréquence (MODF) pour un canal linéaire dispersif est considérée. Les affectations optimales de données et 
de puissance aux sous-porteuses sont dérivées pour le critère conventionnel de probabilité d'erreur ainsi que 
pour un nouveau critère basé sur l'erreur normalisée de moyenne au carré. Les affectations et l'algorithme sont 
valides pour des canaux dégradés par de l'interférence intersymbole et intercanaux ainsi que par l'addition 
de bruit. Des limites inférieures sur le débit sont derivées et sont utilisées pour comparer la performance du 
MODF avec la modulation d'amplitude à quadrature (MAQ) conventionnelle à onde porteuse unique utilisant 
une égalisation de type linéaire ou de type décision à rétroaction. Il est démontré que la transmission MODF 
peut présenter une amélioration significative pour des canaux à rapport signal sur bruit bas et intermédiaires. 
Le cas d'un système à utilisateurs multiples et à porteuses multiples est considéré, dans lequel l'interférence 
des utilisateurs des canaux adjacents affecte les allocations du MODF. Une approche suboptimale, mais un 
plus pratique, pour maximiser la performance du MODF est présentée. 





EXECUTIVE SUMMARY 

In order to achieve the maximum benefits from orthogonal frequency division multiplexing (OFDM) or 

multicarrier transmission, it is necessary to allocate the power and data symbols to the subchannels depending 
on the respective attenuation and noise characteristics. Subchannels with higher gain-noise ratios are assigned 
more power and larger signalling constellations. 

In this note, the conditions for optimising the assignments of power and data are derived. These conditions 

are applied to both the traditional criterion, in which an overall bit error probability is specified, and to 
a new criterion, the normalised mean square error criterion (NMSE). This criterion is based on the ratio 

of the squared separation of points in the signalling constellation to the mean-square error (MSE) at the 

system output. It enables a direct comparison of OFDM with single carrier transmission using minimum 

MSE-based equalisers. For both criteria, the optimal conditions can be achieved using an iterative approach, 
an example of which is presented here. 

Analytic lower bounds on OFDM performance are found for both criteria, and comparisons are made 
with equalised single carrier transmission. It is found that, using the error probability criterion, OFDM 
will always perform at least as well as decision feedback equalisation with a single carrier. For the NMSE 
criterion, the lower bound on OFDM throughput is lower than the upper bound on throughput for the 

decision feedback equalised single carrier. However, at low SNRs, both bounds are loose, hence it is expected 
that OFDM will outperform single carrier transmission at low and moderate SNRs, with performance being 
comparable at high SNRs. 

An AWGN. channel with a mid-band notch of 15 dB is used to demonstrate the optimal assignments of 

power and data among the subchannels, using continuously variable numbers of bits per symbol on each 
subchannel. It is shown that, as predicted, optimal OFDM outperforms equalised single carrier transmission 
at low and moderate SNRs for both criteria. As the SNR increases, the difference between the two systems 
decreases. The case of integer bit assignments is also considered, and it is seen again that higher throughput 
is achieved using OFDM compared to a single carrier. 

In the case of multiuser multicarrier systems, the lack of synchronisation between users means that there 
is inter-channel interference (ICI) between adjacent users on the uplink. Analysis of this interference for a 
slow fading, frequency selective channel shows that the levels of ICI is dependent on the timing offset. As a 
first approximation, this ICI can be treated as AWGN on each subchannel, hence the optimisation conditions 

derived can be applied. An example of a multiuser system demonstrates the effects of the timing offsets on 
the optimal allocations of power and data. 

The conditions derived for optimising OFDM require an iterative solution which can be slow to converge. 
An empirical relationship between the subchannel gain-noise characteristics and the power and data assigne-

• ments is derived, which leads to a more easily computed, nearly optimal solution of the OFDM resource 
allocation problem. This solution uses a modification to the water-pouring approach, associated with Shan-
non's theory of capacity, to achieve a power assignment that is very close to optimum. The associated data 
assignment is farther from optimum, but the allocations are much faster to achieve. 
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1 INTRODUCTION 

Multicarrier transmission, also known as multichannel transmission or orthogonal .frequency division multi-
plexing (OFDM), has seen application in recent years as an approach to the problem of transmitting data 
over channels which are severely distorted and may suffer from additive or impulsive noise, multipath fading 
or crosstalk [4, 9, 10, 18, 38]. 

1.1 GENERAL DESCRIPTION 

The principle of OFDIVI is to divide the channel into narrow subchannels each of which carries a subset of 
the data. At the transmitter, the data sequence is divided into sub-streams which are used to modulate or 
key the subcarriers separately. The modulated carriers are summed for transmission over the channel, and 
are separated again at the receiver. The demodulated signals are then reassembled in their original order. 
This process is illustrated in Fig. 1.1. 

Figure 1.1: Multicarrier system 

If each subchannel is sufficiently narrow and interference between adjacent channels is prevented, the 
system can be considered to be a set of parallel Nyquist I channels. Thus the effects of frequency dependent 
distortion across the channel bandwidth are limited and the subchannels with the worst gain-to-noise ratios 
can be used to a lesser extent or avoided altogether. The symbol period on each subchannel is far greater 
than for the equivalent data rate using a single carrier, thus the effects of impulsive noise and fading are 
spread over a large number of low bit-rate symbols in parallel, rather than completely destroying a few high 
bit-rate sequential symbols. 

In real applications it may be necessary to mitigate the effects of intersymbol interference (ISI) by-
introducing a "guard period" between transmitted symbols on each subchannel. If the guard period is at 
least as long as the subchannel impulse response, then the ISI can be completely eliminated at the cost of a 
reduction in the data rate. 

Interference between adjacent subchannels can be reduced or eliminated with suitable signal design. For 
example, if the spectrum of each subchannel QAM signal is band-limited to overlap only its immediate 
neighbours, the sub-streams can be made orthogonal by "staggering" or offsetting the modulations in time. 
Thus the in-phase signal on subchannel k, for example, is delayed by half a symbol period with respect to 
the quadrature signal on that subchannel. On the adjacent subchannels, k — 1 and k + 1, the quadrature 

1 



signals are delayed by half a symbol period with respect to the in-phase signals [3, sec.4.5.3]. This staggering 
does not affect the spectra of the transmitted signals. 

A good introduction to the concepts involved in multicarrier transmission can be found in [4] and [3, 
sec.4.5]. 

1.2 A BRIEF HISTORY 

Several modems in the 1950's and 60's transmitted high-speed serial data by modulating several low-speed, 
parallel carriers, including the ANDEFT© /SC-320 [24] and the AN/GSC-10 [37] which both used multi-
carrier phase shift keying (PSK) to transmit at 4800 bits/s over HF radio channels of bandwidth 3 kHz. 
The effects of interference caused by ionospheric distortions and sharp cut-off filters were reduced using 
guard intervals between transmitted symbols. The subcarrier spacing was increased to reduce interchannel 
interference. 

The need for guard intervals in the time and frequency domains was reduced when Chang showed that a 
wide range of band-limited orthogonal signals could be designed for transmitting amplitude modulated data 
over parallel subchannels [6, 7]. He specified conditions on the data timing and carrier phases which allowed 
the signal spectra to overlap the immediately adjacent sub-bands, thereby eliminating the need for filters 
with sharp cut-offs. Saltzberg [30] considered multicarrier QAM transmission in which the overlapping signal 
spectra met Chang's criteria for orthogonality. Interchannel interference was eliminated for a distortionless 
channel by staggering the timing on adjacent subchannels such that they were in phase quadrature. 

More recently, multicarrier modulation has been tried for a variety of applications, for example, the digital 
subscriber line (1.6 Mbps over the twisted copper pair) [8, 9], the groupband (60-108 kHz) [16], digital radio 
broadcasting [20, 22], cellular mobile [11] and mobile FM radio [5]. For a more detailed literature review, 
see [33]. 

1.3 VARIABLE ALLOCATION OF RESOURCES 

Trellis coding was used in [28] to increase the coding gain of the overall system at the cost of an increase in 
complexity at the receiver where a Viterbi decoder was implemented. To counteract the effects of nulls in 
the channel response, for example those caused by channel transformers that do not pass dc, the data rate 
was varied across the channel, and the power was allocated according to the "water-pouring" analogy [14, 
sec.8.3]. 

Kalet also considered the variable allocation of data and transmission power in [17] and [18]. He optimised 
the system to achieve maximum data throughput for a given transmission power and overall error probability, 
based on the assumption that each subchannel must achieve the same overall symbol error rate. In [4], 
Bingham suggested the alternate condition for optimality that the bit error rates must be equal across the 
subchannels used. 

No rigorous or mathematical justification has been given for the assumption that each subchannel must 
achieve the same performance standard. In [13], it was called the "no weak link" principle, which suggests 
that the authors believed that allowing some subchannels to operate below the standard while others achieved 
a superior performance would cause the overall system to be substantially degraded. However, intuitively 
one would expect situations where not all subchannels would be able to meet the given standard. 

Kalet [18] concluded that multicarrier transmission can demonstrate an apprecia,ble improvement only 
when a deep null exists in the transmission channel. In [36], Zervos and Kalet applied the multicarrier data 
and power assignments based on equal symbol error rates from [18] to the twisted copper pair channel. 
They found that the difference in performance between the multicarrier and optimised single carrier using a 
zero-forcing decision feedback equaliser was negligible. Feig [12] used an equal bit error criterion across the 
subchannels of a magnetic recording channel model, and quantised the data rates on each to fit one of a set 
of signalling constellations. This resulted in a "power-pruning" algorithm, in which the subchannels were 
initially allocated power according to the water-filling analogy. The power was then reduced to maintain the 
overall error rate when the subchannel data rates were quantised. Feig concluded that large gains over single 
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carrier transmission could be achieved for small error rates over channels whose frequency characteristics are 
far from uniform. In [32]—[35], a more theoretical approach to optimising OFDM was presented. 

The first commercial modem to have been designed using variable assignment multicarrier modulation 
was  the TelebitO Trailblazer which transmitted up to 18 kbps half duplex over leased voiceband telephone 
channels. The voiceband is divided into 512 subchannels of which only the best 400 are used. The modulation 
is QAM using 4, 16 or 64 point constellations, depending on the attenuation of the subchannel [15]. 

1.4 MULTIUSER MULTICARRIER SYSTEMS 

A multicarrier system for multiple users is configured so subsets of the available subcarriers are allotted to 
different users. On the uplink path (i.e. user to base-station) the time synchronisation may not be perfect, 
and signals from different users will not all arrive at the same instant in time. Additionally, unequal, offsets 
in the frequencies of the users' transmitters will cause all of the subcarriers associated with a given user to 
shift relative to all other users' frequencies. • The  consequence is that adjacent-user interference is experienced 
in the receiver, as orthogonality properties amongst the subcarriers are lost and the receiver is not able to 
separate the different subcarrier signals. Non-linearities in the transmission system (e.g. due to amplifier 
saturation) will also cause a loss of subcarrier orthogonality. 

1.5 OUTLINE 

This technical note assembles the work published in [33]—[35], addressing the theoretical approach to op-
timising OFDM. This is enhanced by a section on multiuser multicarrier, which considers the impact of 
neighbouring users on optimal data and power assignment. A more practical approach to achieve nearly 
optimal OFDM is also presented. 

In Sec. 2 the problem of optimising the data and power assignments to each of the OFDM subchannels 
is carefully examined. The data and power allocation is optimised to achieve the maximum possible data 
rate for a given transmitter power and pre-specified performance without an assumption of equal reliability 
on each of the subchannels. An algorithm is presented for achieving this maximum throughput. 

In previous work, the reliability criterion has been the overall error probability. This allows direct 
comparison of OFDM transmission with single carrier transmission using equalisers designed using the zero-
forcing principle. It is proved here that optimum OFDM transmission will always perform at least as well 
as equalised single carrier transmission using either a linear or a decision feedback equaliser. The error 
probability criterion is considered in Sec. 3. 

A new criterion was introduced in [33] which allows comparison with single carrier systems using equalisers 
designed using the minimum mean-square error (MMSE) principle. With this criterion, it is seen that 
optimum OFD1VI will always achieve a data rate at least that of a single carrier using a linear MMSE 
equaliser. At low and intermediate SNRs, significant increases in data rate are also achieved compared to 
the decision feedback equalised single carrier. This new criterion is considered in Sec. 4. 

In Sec. 5, an AWGN channel example is used to demonstrate that significant improvements in data rate 
can be realised using optimum OFDM transmission over channels with poor signal-to-noise ratios and/or 
large variations in channel gain across the bandwidth. 

The case of a multi-user 'multicarrier system is considered in Sec. 6, where the effects of adjacent band 
interference on the allocation of power and data are evaluated. 

The algorithmic solution given in Sec. 2, while yielding the optimum allocations, may be slow to converge, 
and is not suggested for use in practical OFDM applications. A more practical approach to optimising OFDM 
is presented in Sec. 7. 
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2 MULTICARRIER TRANSMISSION 

Kalet [17, 18] stated that the symbol error rates must be uniform across the subchannels for optimum 
performance. In [17], he considered two subchannels and found, incorrectly, that the bandwidth efficiency 
was Maximised when the power was uniformly distributed, regardless of the relative attenuations of the two 
subchannels. In [18] this was revised, but the condition of equal symbol error rates was maintained. In 
considering more subchannels, [18],..Kalet used the constraint that all subchannels must transmit at least 
two bits per modulating symbol, but clearly there are circumstances in which not all subchannels are usable 
and no method of determining which subchannels fit this criterion was given. 

Bingham [4] stated that it was intuitively reasonable that the requirement for optimum performance was 
the equi-distribution of bit error rates among the subchannels. He said that the ideal power distribution 
should be determined using the "water-pouring" method that Gallager described for achieving channel 
capacity [14, sec.8.3]. 

In this study, the assumption of uniform performance (either bit or symbol error rate) is eliminated. The 
performance optimisation problem will be stated in the form of a constrained minimisation. The resulting 
solution yields conditions for the optimum distribution of power and data which are not met by either 
Kalet's or Bingham's requirements. These conditions can be achieved using an iterative algorithm to assign 
the transmission power and data among the subchannels. The algorithm can easily be constrained to allow 
at least two bits per modulating symbol on each subchannel without a priori specification of the number of 
subchannels to be used. 

A lower bound on maximum achievable transmission rate is found for Quadrature Amplitude Modulation 
(QAM) which facilitates comparison of the OFDM system with equalised single carrier QAM systems. The 
OFDM system is shown to outperform single carrier QAM using either a linear or a nonlinear (decision 
feedback) equaliser. 

Prior to the initialisation of this study, all previous work in the area of multicarrier performance opti-
misation used the error probability criterion. However, in the development and optimisation of equalisers 
for single carrier transmission, the mean-square error (MSE)  lias  proved valuable as a tractable design cri-
terion. In tins  work, a new criterion based on the MSE has been introduced which allows direct comparison 
with single carrier transmission systems using equalisers designed using the minimum mean-square error 
(MMSE) principle. Multicarrier transmission is shown to achieve higher data rates than linearly equalised 
single carrier QAM, but the analytical results for tins  criterion compared to a single carrier using a DFE are 
inconclusive. 

2.1 SYSTEM MODEL 

The linearly dispersive channel under consideration is modelled by a bandpass filter with transfer function 
X(f), where X(f) 0 over some frequency range spanning W Hz, corrupted by additive Gaussian noise. 
The noise  lias power spectral density N(f) and is modelled as the output of a linear filter HAr(f) excited by 
white Gaussian noise with zero mean and two-sided power spectral density.140-, W/Hz. The first stage of the 
receiver consists of a matched filter G(f) = X*(f). The channel model is shown in Fig. 2.1. 

The equivalent model is a filter H(f) = X(f)G(f) with coloured Gaussian noise, 7)(t), at the receiver. 
The noise variance is given by 

2  No  
— 	

IHN (fp(f)1 2  df. (2.1) 
2 	- 00 

The data is transmitted in blocks of Rb bits. Each block is divided into Z sub-blocks of bi bits, i = 
1, , Z, such that Rb which are used to modulate Z subcarriers at frequencies fi  separated by 
Wz Hz, Wz - .1/1/. At the receiver, the subcarriers are demodulated synchronously and the signals are 
sampled at intervals  T  = nt-. The Z received bit sequences are then reassembled in their original order 
(Fig. 1.1). In practice, this operation could be carried out using a discrete Fourier transform (DFT) or block 
demodulator. The overall system is transmitting an Rb-bit block of data every Tg seconds, thus the overall 
bit rate is - .RbT/1/ bits/s. 
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Wz 
4-> 

X (f) 

MATCHED 
FILTER 

Figure 2.1: Channel model 

Although it is more usual to consider attenuation-noise characteristics, in this case the gain-noise ratio 
is more tractable in the subsequent analysis. The channel gain-noise characteristics are assumed to be 
piece-wise constant, i.e. 

= 	for If fI< WZ  2 

as illustrated in Fig. 2.2. The received SNR for the bi-bit symbol transmitted on the ith subchannel with 
power Pi is therefore -yr ,i 

CHANNEL 

X(f)  
IIN(f) 

2 

X(f) 
 HN(f) 

-4-W • 

Figure 2.2: Channel response 

For the purposes of this analysis, it is assumed that no guard bands are used. This assumption does not 
affect the results if coherent detection over the whole symbol period is considered. 

2.2 PERFORMANCE CRITERIA 
The criterion of performance used in practice, and in earlier work [8, 9] is the error probability criterion. 
This criterion provides a basis for comparing multicarrier transmission with single carrier transmission using 
an equaliser designed according to the zero-forcing principle to minimise intersymbol interference (ISI). 
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(2.5) 

(2.6) 

A new criterion for measuring the performance of the multicarrier system, the normalised mean-square 
error (NMSE), was presented in [33, 35] where it was called the mean-square signal separation (MSSS) ratio. 
It is based on the 'VISE, and can be used to compare multicarrier transmission with single carrier transmission 
using equalisers designed using the MMSE principle. These equalisers have better noise properties than those 

"designed to minimise ISI and are therefore more frequently used in data communications. 

2.2.1 Error probability criterion 

The objective here, as in previous work, for example [4, 17, 18], is to maximise the data throughput, Rb, of 
the multicarrier system for a given total transmission power, Ef = P„ia„, such that the received data 
achieves a specified overall bit error probability, p e  = Prima; • 

Using Gray-coded symbols, for small error probabilities on each subchannel, the probability of more than 
one bit error resulting from a symbol detection error is negligible. Therefore, denoting the bit and symbol 
error probabilities on the ith subchannel as m and si respectively, the overall bit error probability is given 
by 

si  =  	 (2.2) Pe  
Rb 

In practice, not all the subchannels need be used. On those subchannels where bi := 0 and Pi = 0, the 
values of pi and si in (2.2) will be taken to be zero. 

2.2.2 NMSE criterion 

The normalised mean-square error (NMSE) criterion is the mean-square error of the received signal nor-
malised by the signal energy. In [19], where the transmitted signals were coset coded, the requirement that 
the minimum squared distance between adjacent points was equal across the subchannels was specified. It 
will be seen that on subchannels with different gain-to-noise characteristics, neither the data nor the power 
will be uniformly distributed for optimum performance. As both the error and the signal energies per bit are 
dependeht on the power and data rate, the ratio of these measures is a more useful measure of performance. 

On subchannel i, adjacent points r and y in the received signal constellation for ideal (i.e. noise-free) 
transmission are separated by a distance 2pi(x, y)  = 21x — yl. Over the Mi constellation points, the mean-
square modulation distance is then defined as 

dï 	E 	, y) 2 1 . 	 (2.3) 

The mean-square error at the system output on subchannel i is found from 

cr? = E {la„,i — 	 (2.4) 

where ar,,i is the actual transmitted data symbol at time nTz  and 	is the corresponding input to the 
threshold detector. 

The normalised mean-square error on subchannel i for bi  bits per sub-block is defined by 
2 U • 

E  = 

Over the Z subchannels, the average normalised mean-square error per bit is then 

Z 
Ei=l 	Ei21 1 Ei 

EZ 
i.l bi 

The optimisation objective is to maximise the number of bits per block, Rb, for a given transmitter 
power, Prna„, such that the average normalised mean-square error per bit at the receiver, e, is equal to some 
given value Enia„ As in Sec. 2.2.1, cr? and ei  will be given the value zero on subchannels for which bi = O. 

E = 
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maximise w.r.t. 	b, P E RN 	 (2.8) = 

I I 

00 
'‘2 Obi { b• ,P• } 

=0  
{b. ,P• } 

(2.14) 

00  
À2 	op, 

{ b.,P•} 	 { b• ,P* } 
= 0 	 (2.15) 

(2.16) 

(2.17) 
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2.3 TRANSMISSION OPTIMISATION 

In this section, the conditions for optimum transmission are derived for a general criterion which has the value 
Vi on subchannel i, and an average of G per bit across all the subchannels. The objective is to maximise 
the data throughput of the system, Rb, by optimising the allocation of power and data rates among the 
subchannels, such that the performance criterion, 0, satisfies the constraint 

=  1=1  = 
Rb 

where the parameter 1S'i is assigned the value zero for any subchannel i on which hi = O. For the error 
probability criterion 0 = /4 and ei  = si , while for the NMSE criterion 0 = E, 

The bi's are assumed to be continuously variable for the purposes of analysis. Define b to be the N-
dimensional vector of non-zero bi's and P to be the vector of corresponding Pi's. The optimisation problem 
can then be stated: 

(2.7) 

(2.9) 

(2.10) 

subject to 	h1 
i.1 

h 2  = 0 — °max = 0 

Using the Lagrange multiplier method [2, p.67], the Lagrangian function is defined as 

A L(b, P, 	= —Rb -I- A T  h 	 (2.11) 

where À = [,\ A 2 ] 7' is the vector of Lagrange multipliers and h = [h 1  h9]T is the constraint vector. 
The vectors b and P are optimum when 

L(b* , P* , = —V Rb À T  V h = 0 	 (2.12) 

where an asterix denotes an optimum value. The solution found is a strict global minimum if the Hessian 

V2 L(b,  P,  = —V 2  Rb XI' V 2  h 	 (2.13). 

is positive semi-definite [21, chap.10], i.e. the Lagrangian function is convex. 
Equation (2.12) yields 

ORb 	 0-Pmax  
Obi { b . , p.} 	Obi 

ORb 	 OPtnax  + aPi { b . .p. 	5P1 

over all i such that bi 0 O. Since Rb = 	bi is independent of the power distribution P and Pma, 
Pi is independent of the data allocation b, (2.14) and (2.15) give, for all  j  such that bi e 

Pi — Pmax = 

00 
+ À2 

00 
)n 1 	À2 

= 
{b• ,P* } 

=0  
{b• ,P.} 



. Therefore the optimum solution is found by solving the gradient conditions 

= 
00 
abi 

(2.18) 
{b• ,P•} 

00 
api = 

{b• ,P• } 

(2.19) 

for all  j  such that bi 	0, where  i  and  2  are constants, such that Rb = 	 Pma, = 	Pi and 
0 = °max • 

The conditions derived above for optimum transmission hold for systems distorted by additive noise, ISI 
and interchannel interference (ICI). 

2.3.1 Algorithmic solution 	 • 

The conditions found for optimum performance, (2.18) and (2.19), often cannot be solved explicitly but 
require an iterative solution. The number of subchannels on which transmission takes place in the optimum 
case, N, may not be known a priori. The optimisation of the .transmission is therefore performed using a 
steepest descent algorithm to assign the data and power among the subchannels. 

Considering (2.14) and (2.15), it is seen that the problem of maximising Rb for a given value of 9  is 
essentially the same as minimising  9 for a fixed value of Rb. This observation yields an algorithmic solution 
which, while it does not necessarily have the fastest possible convergence, is readily adaptable to different 
_criteria and additional constraints, for example setting a minimum number of bits per sub-block or requiring 
only integer-valued data rates. 

After the initialisation, during which all the transmitter power is assigned to the subchannels and the data 
rates are chosen such that  9  = Orna  , the optimisation can be broken into two sub-problems, i.e. minimise 0 
with  respect to (i) the sub-block size and (ii) the power distribution. The overall data rate is increased at 
each step to ensure the criterion constraint, (2.10), is met, i.e. that the solution is feasible. 

These sub-problems are solved using a modified reduced gradient method, the convex simplex technique 
[21, sec.11.8]. In this method, the change in 0 is calculated when a small value of the parameter, i.e. Ab or 
AP, is transferred from one subchannel to another. The change that results in the largest decrease in 0 is 
implemented, and the process is repeated. 

The function  9  may be nonlinear so to simplify the minimisation linear approximations are made to the 
change in 0 for unilateral increments and decrements of Ab or P.  Thus the following values are defined 

= 

• 
— 

= 	I 	— 19 i I {b,Pi,•••,p,--Ap,•••,pz}] 

= [ 19 i 1{b,P1,•••,Pi+AP,...,P2 } 	eii{b,P1,•••.Pi,•••,-P21] 

The optimisation algorithm can then be described as follows. 

Step 1 • Initialisation 
The system is initialised at a feasible solution, i.e. the number of bits per sub-block and the power 
assigned to each subchannel are chosen such that the constraints given by (2.9) and (2.10) are 
met. 

For example, this can be implemented by setting the value of ei = °max  across all the subchannels, 
and allocating power in such a way as to maximise the overall data rate. 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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(2.24) 

(2.25) 

00 	00 
0bi 	Obi 

00 	00 
api 0Pi and V  j, j  st.  bi, bi 0 0 	 (2.29) 

Step 2 • Sub-problem (i): minimise  9  w.r.t. 
For each subchannel, calculate the terms Aei  and AO-,i  for the current value of Ab. 

*Find the subchannels I and J such that 

Ae i  =In  Aei  and A0 b-,j  =In  A0b-,i  

where Ael  > 0, ABit j  < 0 and I 0 J. Then, if 

< 1A0 /7,j  

transferring Ab from subchannel J to I will result in the largest overall decrease in O. Therefore 
increment b1 by Ab and decrement bj by the same amount. Recalculate (le I , AB b-d-, Ae j  and 

Repeat from * until 1A19i 1, -/ 1 > 	i.e. no further transfer will reduce  O.  

Step 3 • Find nearest feasible solution of bi's 
The constraint 0 	°max  no longer holds, therefore the current solution is not feasible. This is 
corrected by increasing the overall data rate until the constraint is satisfied. 
*Find the subchannel I such that 

Aati =In  AO-bEi  

Then, if Aebfi  0,„„ — 0, increasing the number of bits in sub-block I will result in the smallest 
overall increase in 0. Increment bi- by Ab, and recalculate A0-g-1 . 

Repeat from* until 	> Omax  — 0, i.e. no further increases in the data rate can be made. 

Step 4 • Sub-problem (ii): minimise 0 w.r.t. Pi's 
For each subchannel, calculate the terms 	and A9p-, i for the current value of P.  
*Find the subchannels I and J such that 

At9+ —In 	i A0+ 	and A0- —mln  At9 - 	 (2.27) P,I - 	P, 	 P,J -  

where Ae j  < 0, AG p-,j  > 0 and I 0 J. Then, if 

(2.26) 

AO j 1 (2.28) 

transferring AP from subchannel J to I will result in the largest overall decrease in 0. Therefore 
increment Pi by AP and decrement Pj by the same amount. Recalculate AO / , 
and  

Repeat from* until 1A0 it,1 1 < A0 p- , i.e. no further transfer will reduce 0. 

Step 5 • Find nearest feasible solution of bi's 
Repeat step 3. 

These steps are repeated until no further changes are made to the bi's and Pi's. The usual modifications can 
be made to Ab and AP to speed up convergence while achieving a sufficiently accurate solution, for example 
by using large increments initially and reducing them at each iteration. 

It can be seen that as Ab, AP —› 0, the transfer of parameters among the subchannels ceases when 

9 



(2.30) 

(2.31) 

C= 

and 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

which are the optimum conditions derived using the Lagrange multiplier method, (2.18) and (2.19). There-
fore, if the requirement that 0 is convex with respect to all non-zero bi's and Pi's is met, the solution found 
using this algorithm tends to the optimum solution. 

Note that by including all subchannels in the sub-problems (steps 2 and 4), and subject to the obvious 
condition that 14, > 0, the problem of determining N, the number of subchannels used for transmission, 
a priori is avoided. 

I 2.4  c, .,„ 
From [14, sec.8.5], the capacity (in bits/s) of the additive Gaussian noise channel of Fig. 2.1, in which the 
power and bandwidth of the signal are constrained, is given by 

C L .1  [  IX(f)G(f)12B  
EFB 2 

log2 
 LIHNCOG(f)12Noi 

(If 
 

where Fg is the set of frequencies for which B > IN)M 12,N° and B is the solution to 

Pmax 	B IH N (f )1 2  NO1  df.  
LEFB L 	IX(f)1 2  J 

As in Sec. 2.1, H (f) 	f)G(f), and the channel and filter responses are piece-wise constant and two-sided. 
The gain-noise factor is 

k 	X( f)  2 

i =  
N( f) 

The capacity equations can therefore be rewritten 

, 	k i B 
upg2  [-----] vvz 

No 

lin a x == 	[B —  ki ie  la 

where Ig is the set of j  such that B  
The distribution of transmission power among the subchannels required to achieve capacity is found from 

Ez.  .1 Pc = Pni,„ where 2  
(.8 — 1*) Wz 	?E IB  
0 	 otherwise 

The capacity of each subchannel, 	can then be written 

P ki = log2  [1 -I- 	c'i 
 No W

Wz = log2  [1 + 
z 

where ryc,i is the received SNR on the ith subchannel, and the total channel capacity is given by G' = 
Equation (2.35) is the Shannon equation of capacity [14, sec.8.3] which applies because the assumption of 
piece-wise constant channel and filter characteristics ensures the noise on each subchannel is white. 

for 	If — fil < 

Pc,i =- 
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=  Ci  
,P•} 

= e2 
{b• ,P•} 

aPe 
Obi 

aPe 
OPi 

(3.1) 

(3.2) 

and 
aPe _ 
api  

(3.4) 

— 

Os 

OSi aSi 
and 

Obi OPi {12:,P:} 
=  Ci  

lb:,P:1 
= (2. 	 (3.7) 

Reta„,ilsi(t — nTz) cos 27rfit + hu{an ,i)-si(t — nTz) sin 27rfit si(t) = (3.8) 

3 ERROR PROBABILITY CRITERION 

APplying the error probability criterion, 0 = pe , from (2.18) and (2.19), the conditions for optimum distri-
bution of transmission power and data are 

Using (2.2), as  aRb  = 1, these give 

as ;  
aPe 	Rb  >j Obi — 	 Si - = 
Obi 	 R 2  

(3.3) 
Rb ib L-d Obi — Pe 

Therefore the conditions become 

Osj 
—Obi  = (1  and 

i=i 

where 	and (2  are constants. When the system is designed for no interchannel interference, 

Os • Os • 3 = 3 = 0 
Obi 	OPi 

therefore (3.5) can be simplified to 

(3.5) 

V j 	i s.t. bi,bi 0 0 	 (3.6) 

These conditions are not met by setting either the symbol (si = bipi) or the bit (pi) error probabilities 
equal across the subchannels used, except in the special case when the subchannel attenuations are equal 
(i.e. the overall Nyquist I channel). 

3.1 OPTIMUM QAM TRANSMISSION 
When N of the Z subchannels are used, the transmitted signal consists of N orthogonal Mi-ary QAi1/1 signals 
of the form 

CO 

'11=-03 

where the complex data points { a} are taken from the Mi  = 2bi point signal constellation, and fi  is the 
ith subcarrier frequency, as in Sec. 2.1. The baseband signal si(t) is assumed to be ISI-free at the sampling 
instant, and the subchannel is assumed to be fiat-topped across its bandwidth Wz. 

Without loss of generality, it will be assumed that the subchannels are ordered such that ki > ki for 
i < j. Thus bi 	0, Pi 0 0 for i= 1, ..., N. 
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For coherent detection of QAM in a practical digital communications system, the symbol error probability 
is given by [26, sec.4.2] 

si = Ki erfc ( ki 
2NoWz (Mi — 1) (3.9) 

where to simplify the optimisation, the dependence of Ki = 2 (1 	1 	) on bi will be neglected. As the 

signals are orthogonal and the subchannel model is  flat-topped, it is assumed that the N received QAM 
signals are free of ISI and ICI at the sampling instants. 

The results of the constrained optimisation can be applied to the problem of maximising the data through-
put for this system for a given overall bit error probability,  Pm,  provided that pe  is convex with respect to 
b and P,  defined in Sec. 2.3. It is shown in Appendix A.1 that the condition for convexity is that wi satisfies 

3P;  ki 	1 > 	 > 	 (3.10) _ 
2N0 	k  • 	3) 

Therefore, for practical values of SNR and error probability, the assumption of convexity is valid. 
The optimum conditions for this multicarrier QAIVI transmission with no ICI are therefore 

ôs 
= 

1 n 2 Mi  
= 	 (3.11) 

and 
asi 	1 wi _ . 2  = 	 = (2  OPi 	Vi 

for i = 1, 	, N, where wi = \/ 2Noi,v3Ptk i 	. Clearly the required parameters bi (or Mi) and Pi are not 
explicitly determinable from these conditions, and hence Rb cannot be calculated directly. The algorithm of 
Sec. 2.3.1 can be applied to calculate the optimum distribution of data and power iteratively. 

3.2 LOWER BOUND ON PERFORMANCE 

As discussed in Sec. 2.3.1, if the derivative conditions are violated but the constraints are not, the solution 
found will be feasible but not optimal. A lower bound on the maximum transmission rate can therefore 
be found by making two approximations. The first is to upper-bound Ki, i.e. set Ki = K = 2. As si is 
monotonically increasing with bi, any solution involving si will thereby underestimate the optimum solution 

The second approximation is to assume that the symbol error probabilities are constant across the 
subchannels, i.e. si = s for i = 1, ,  Z.  This violates the derivative conditions, (3.11) and (3.12), for 
optimising Rb, hence the solution found will be a lower bound if the constraints Ef_i  Pi = Pin,„ and 
pe  = pr„,„ are met. This condition was stated to be optimum in [17] and [18]. 

The error function can be upper-bounded [1] 

2 00 	2 erfc(x) = — f e -t2  dt < 	 (3.13) 

therefore 
K e — tu s =  s  = K erfc(wi) <  	 (3.14) 

The lower bound is then found when wi is constant across the subcha,nnels used,  i.e.
- 1 

 = cons, The 
derivative conditions for optimum transmission are then approximated by 

2  
(-1 	1112   	s = (>1 	 (3.15) 

Mj -1  1  \fiwi 
> 1 n 2 

Mi  — 1 

(3.12) 

4 
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(3.17) 

( 3.18) 

HN(f)  
(f) 

2 
df 

Ke — uq 
< 	s = littri 

As w = 9N0 	w3Pz 	(3.16) yields 	— const and consequently Pi 	const from (3.14). Therefore for 
the lower bound the power distribution is uniform across the subchannels, i.e. Pi = Pezaa..• 

From (3.9), 
iVIj — 1 	3P 

2N0 Wz 
	= 	 [erfc-1  

i 

hence substituting in the approximations and taking the geometric mean 

[ Tz_r  mi  — 1* ._____ 23Piymi/a;  [eifc-1  ( :1-",› ) ] 
il  1.1 	ki 

Using the inequality 

< 1-1 11-i*  — 1  = 21?'  —1 	 (3.19) 

a lower bound i)z = Rb on the optimum average number of bits per sub-block can be found by solving the 
equality in 

2 	
Z 	 — 2 z  ) * 9 SO 

m 
5Z  > 1 + (11 k• 	01-  ax  

2N0 W 	
—1 b zPrnax [erfc 	K 	. 	 (3.20) , 

i.i 
For a Nyquist I channel, i.e. ki = const, the approximations used in this derivation become exact, and 

the inequalities used in the development of the bound become equalities. Therefore, solving (3.20) for the 
Nyquist I case, and using K = 2(1 —  v'-7'  ) yields the exact solution. 

3.3 EQUALISED SINGLE CARRIER TRANSMISSION 
The lowpass equivalent of the channel model described in Sec. 2.1, X/ p (f), is bandlimited to  IfI < .4, where 
T = is the sampling interval. The corresponding lowpass matched filter is  G1 (f)  = Xtp (f). The linear 
receiver that eliminates ISI completely is the zero-forcing equaliser. This is known to perform badly on 
channels with poor spectral characteristics due to its noise-enhancing properties but is of general theoretical 
interest. The nonlinear equaliser considered is the decision feedback equaliser (DFE). The data rates of both 
the linear and nonlinear equalisers designed using the zero-forcing principle reduce to a form that can be 
readily compared to the lower bound on achievable multicarrier data rate found in Sec. 3.2. 

3.3.1 Linear equaliser 

The transfer function of the zero-forcing equaliser, C(f), is defined by [26, sec.6.4] 

1 H1(f)C(f) =1 	Ifl < -2T 
where  H1 (f)  = Xip (f)Gi p (f) = IXi p ( f)1 2 . The noise at the output of the equaliser has variance 

(2 "3  (3.16) 

—2  

(3.21) 

2Tr- 
e;2z = NO — IHN(f)Glp(f)C(f)1 2  df = No 

and the received signal power is P171CIX 

(3.22) 
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(3.26) 

(3.27) 

1 
1 

II 
 -E ai >_ 	ai) > 

72 
i=1 	i=1 

1 
mi 

 L-d.1Fti 
(3.29) 

	

Since Xi p  (f) and HN(f) are piece-wise constant and ki 	
2 

	

ixlP 	for I 	P",z-, define the equivalent 
gain-noise factor 

W 	 1 
z  f =  	 (3.23) f 	.ff df 	E =1 17 .1  m-7 	1 v‘z 1 • 

	

1 	z 	z 

The same assumptions are made as before, namely that the symbols are Gray-coded and the SNR is 
sufficiently large that a symbol error results in a single bit error. Then the overall bit error probability for 
QAM single-carrier transmission is 

K 
Pe= 	erfc 

3Pin a a; kz 	) 
2NoW(2 b 'f — 1) 

(3.24) 

where b., f is the number of bits per modulating symbol. 
When the channel contains deep notches, i.e. one or more of the ki is very small, the equivalent gain-noise 

factor k z  f approaches zero; this illustrates the noise-enhancing effects of the zero-forcing equaliser. 
The data throughput of the zero-forcing equalised single carrier transmission is bz  f W where  b1 	(3.24). 

Therefore, from the multicarrier bit rate found in Sec. 2.1, if 

1  
> b1  

Z 

multicarrier transmission outperforms this single carrier transmission. 
From (3.20) and (3.24), the condition for the multicarrier system to outperform the equalised single 

carrier system becomes 

(ll ki ) 0 ax  [erfc_i (bzPotax  )] 	kz  3Prnax 	 (bz f P 72a,r 
 —2 )] 

2N0  W 	 2No  W 	 A 

z 	
1 m 	

—2  

The error function, erfc(s), decreases monotonically with  n .  Therefore, if Gz >  b1, 

[erfc-1 	 
—2 

z  Pm" )] > [erfc-1  (1)21Pmae)] 
—2 

 • 

A sufficient condition for multicarrier QAM transmission to give a better overall data rate than zero-forcing 

	

equalised single carrier QAM transmission is therefore, using (3.23) 	 . 

z 
1  

	

(1-1 ki) > • 	 (3.28) 

From the inequality of means [1, sec.3], 

(3.25) 

condition (3.28) holds always. The equality holds only in the special case when the ki are constant for all i, 
i.e. the channel satisfies the Nyquist I criterion. 

Therefore, using the error probability criterion, multicarrier transmission always outperforms single car-
rier transmission using a zero-forcing linear equaliser. 
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(3.31) 

(3.32) 

3.3.2 Decision feedback equaliser 

The decisidin feedback equaliser (DFE) consists of a forward filter, F(f), placed after the matched filter, 
.Gip (f), and a feedback filter, B(f), operating on the data sequence at the output of the threshold detector. 
The ideal choice of F (f) to minimise the intersymbol interference has been shown [25] to be the anti-causal 
factor of the zero-forcing equaliser, C(f), of (3.21). This whitens the noise and removes the interference due 
to future transmitted symbols. The coefficients of the feedback filter B(f) are chosen to cancel the residual 
causal intersymbol interference. 

The DFE suffers from error propagation, i.e. incorrect decisions result in increased ISI at the input to 
the threshold detector. An upper bound on the maximum achievable data rate can therefore be achieved 
by assuming that the feedback sequence is error-free. In this case, the error sequence at the input to the 
threshold detector consists only of white Gaussian noise with variance [27] 

2 exp 	T 571-'1 
 1 (x1 	di 	p(f)Gi p (f) 	, } 	 (3.30) 

J  n  
2T 	I HN Cf 1

2 
No

) 

 
Since the channel and filter characteristics are assumed to be piece-wise constant as before, the noise variance 
becomes 

= exp {—T E In (—
ki 
No  i.1 

exp {- 1  ln C±--i 	= No  H ( = 
Z 	No - 

Therefore, using the same assumption as in the linear case, i.e. that a symbol error results in a single bit 
error, the overall bit error probability for QAM transmission using the DFE is given by (3.9) with gain-noise 
factor given by 

kdfe = (11 ki 
z 

) 
(3.33) 

K 
pe  = 	erfc 

Odf e 

3Pmaxkdfe  
2NoW(2 bdf — 1) 

i.e. 

(3.34) 

where be e  is the number of bits per modulating symbol. 
The maximum overall bit rate for a single carrier system using a zero-forcing DFE is therefore bdfe W 

bits/s where bdf, is found from 

2bdf 	1+  3 Prnaxkdf e 
 [erfc- (bdf ePtraax)] 

 —2 

2NeW 

Comparing (3.20) with (3.35), it is seen that upper bound on the performance of the single carrier 
system using the DFE is equal to the lower bound on the multicarrier system performance. Therefore, the 
multicarrier system will always outperform the single carrier system using the zero-forcing DFE. 

At low channel SNRs, the performance of the DFE is known to degrade as error propagation worsens. At 
these SNRs also, the lower bound on multicarrier performance is loose, as ideal transmission will use only the 
subchannels with the best characteristics. The improvement in performance achieved using the multicarrier 
system is therefore more significant at lower channel SNRs. 

(3.35) 
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s = K erfc (  3Pmaxk  

2N0W(2/7z — 1)) • 
(3.36) 

3.4 TRANSMISSION OVER A NYQUIST I CHANNEL 

For a channel meeting the Nyquist I criterion for zero intersymbol interference, and for no interchannel 
interference, the attenuation of the subchannels is uniform across the channel bandwidth, i.e. ki = k, 
i = 1, . . . ,  Z.  From the conditions found for optimal QAM multicarrier transmission, (3.11) and (3.12), 
the overall transmission rate for this channel is achieved when the transmitter power and the data 
block of Rb bits are both uniformly distributed among the Z subchannels. 

Each subchannel is transmitting a sub-block of bz bits at power P"r and the received symbol error 
probability on each subchannel is 

The overall data rate is then ZbzWz = bzW bits/s. 
For single carrier transmission over the same channel, the low-pass signal is sampled at intervals T = 

The symbol error probability at the receiver is 

(

seg  = K erfc  3Pma,k  
2N0 1/V(2bq — 1) (3.37) 

where there are b eg  bits per modulating symbol. Thus the overall data rate is beg  = beg rq bits/s. 
Since pe  = ez- = the number of bits per sub-block, bz , equals the number of bits per modulating 

symbol b eg . Therefore multicarrier transmission over a Nyquist I channel achieves the saine maximum data 
rate as single carrier transmission. 
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= 
lb",P*1 

(4.1) and 
Oc  

OPi 

P. 
9 	 Wz = 

1+ 	P1lx(h)12  
Illisr(fi)1 2 Nowz 

4 NMSE CRITERION 

In this section, the analysis for the normalised mean-square error criterion will follow closely that of Sec. 3. 
.Applying the NMSE criterion,  G = e, from (2.18) and (2.19), the optimum conditions for transmission are 

Oc 
= Obi { b . , p.} 

Once again, if there is no ICI, this  reduces to 

aEi 	 aEi  — 	= (i and —  • 	 O 814  lbP;} 	 P. i lb:,P:1 

for all i such that bi 0 0, where (1  and (9 are constants. 
These conditions can be achieved using the iterative process presented for a general criterion. 

4.1 OPTIMUM QAM TRANSMISSION 

The transmitted signal is the same as that in Sec. 3.1, given by (3.8). Once again, the ki will be assumed, 
without loss of generality, to be arranged in decreasing order. 

The received signals are passed through a matched filter, G(f), and a linear reCeiving filter before being 
sampled. The receiving filter gain on the ith subchannel is  l ,  chosen to minimise the mean-square error. 
The assumption is made that each subchannel is flat-topped, i.e. there is no ISI, thus the sampled received 
signal at time nTz is 

lx(fi)1 2 1i an,i + IX (fi)I lii 
where h is the subcarrier frequency, a„,i is the complex data symbol and 1.7„,i is the complex noise sample 
at time nTz, where the real and imaginary parts have two-sided power spectral densities 1491 .. 

The receiver gain is found by minimising the mean-square error, 	with respect to  l.  From (2.4) 

= E 	— 	 1 2 } 
= (1  _ ix(fi )124)2E {ian,i12} +IX(fi)11?E {17191,i1 2 } 

as E 	= 0. Using E {lan,i1 2 } =  L and E 	=- 111N(fi)1 2 /Vo, the optimum receiver gain is 

Pi  

li= 
IHN Ch)1 2 NoWz  

1+ 	PilX(f i)I 2  
Ill NU 01 2  NOW Z 

and hence the mean-square error is given by 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

.(4.6) 

Adjacent points in the ideal received signal constellation are uniformly separated by 2di where cri2 , the 
mean-square modulation distance, can be found from the average received signal energy 

— 1)d? 	P• 
= —2— (IX(fi)1 2 1i) 2 	 (4.7) 

3 	Wz 
Thus 

i 	
Pilx(fi)12  

3P 
dI 

 
= 	 IHNLMI2Nowz  

2147z  (Ili —1) 1 + 	Pilx(fi)1 2  
IHN(fi)12Nowz 

(4.8) 
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For the Z — N subchannels, j 	N + 1, 	Z,  with no transmission, the value of ei 	5_ is taken to 
be zero. Substituting in the gain-noise factors, 	the average ratio of mean-square error to 'mean-square 
modulation distance, the normalised mean-square error, across the Z subchannels is then 

Z cr? 	 P•k • 1 	2(11/1i — 1)  
R 	

NoWz  Ei=l d- 
C 	 ' 	= E 

b 	Rb 3 

It is shown in Appendix A.2 that the requirement for convexity in the Lagrangian function is satisfied at 
least for all ./ldi > 3, i.e. for all bi > 1.6. 

Therefore the conditions for e to have a local minimum with respect to b and P are met, and the optimum 
values, h* and P*,  are found by solving 

aei 21V0I'VZ [ 
1 NOWZ  1 RbMiln  2 — 	+ 1 

	

, 	 = 	 (4.10) Obi 	3Piki 	
+ 

ritei j 

and 
Oei 	2( Adi — 1) No  Wz  [

1 + 2 	iVo Wz 
= — = 	 (4.11) 

aPi 	3RbPi Piki  

These equations are not explicitly solvable, however the algorithm presented in Sec. 2.3.1 for the gener-
alised criterion can be readily applied to calculate the optimum distributions of data and power iteratively. 

4.2 LOWER BOUND ON PERFORMANCE 

As in Sec. 3.2, the derivation of a lower bound on maximum achievable transmission rate is based on the 
approximations that each subchannel used transmits using the same transmission power and achieves the 
same normalised mean-square error at the receiver. Because of the convexity of the Lagrangian function, 
this yields a feasible but suboptimal solution, i.e. a lower bound. 

The subchannels are assumed, without loss of generality, to be arranged such that the gain-noise factors, 
are in decreasing order. Set 

2(/1//i — 1) No Wz 
 r1+ 

No wz i  ei 	 = s 	i = 1, 	Z 	 (4.12) 
3 	Pki 

where E = 6 ZErnax) P = Pm ,„ and bz is the average number of bits per sub-block over the Z subchannels. 
Therefore, from (4.12), the approximate number of points in the ith signal constellation is given by 

= 4.  2....bzEm.  iL'Now, 	 (4.13) ..) lvii   = + b z e 
.  2  3- 

— m a x 	
Pki 	1  

No% 1+ Nei' 2 	 2 wz  

Using the inequality of means, (3.29), and the inequality of (3.19) 

25z —1 	3 	
z 	) 2  

- 	 > emax 	
NoWz 

bz — 2 	IT 1 +  i=1 	NoWz I 
A lower bound on the optimum average number of bits per sub-block is found by solving the equality for 

bz in (4.14). The number of bits per block, Rb is then given by Zbz. The overall transmission rate is bz W 
bits/s. 

(4.9) 

(4.14) 
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Wz 	P,,1,,  1 
J  1+ P'""'ki  = 	Z 2--/  1+ 	 • 1 	No W 	 i=  1 	No W 

PIlla  
Cr2  se = TV 

1 
(4.17) 

(4.19) 

(4.20) 

4.3 EQUALISED SINGLE CARRIER TRANSMISSION 

.The low pass equivalent channel model, as in Sec. 3.3, is X/ p (f) and the corresponding matched filter is 
G1 (f).  The linear and nonlinear (decision feedback) equalisers designed using the minimum mean-square 
error principle are widely used in data communications. In this section, upper bounds are found on the 
maximum achievable data rates for single carrier transmission using each of these equalisation techniques. 

4.3.1 Linear equaliser 

The received low pass single carrier QAM signal is sampled every T seconds before being passed through a 
MMSE linear equaliser. The equaliser has a transfer function [27] 

(f) CX/ p  (f)Gi p (f)+ NoIHN(f)P 

where C = E {la„1 2 } = 	 is the energy of the transmitted signal. 
The mean-square error at the sampler output is therefore 

54r, 	No IHN(f)I 2  
ixip ( f)1 2 + 	IHN(f)I 2  

Œ2  - CT nase 	 df 	 (4.16) 

for the stiictly band-limited channel. 

Since 1 174-7, 	ki for if - 	,4,1417z  where Wz eV, 

(4.15) 

The mean-square modulation distance, 42  „, at the receiver is found from 

3 
	 m-  „ = 	T 	1 pp  Pmax  — f 	Xi(f)Gi(f)C(f)1 2  df 	 (4.18) 

211'  2(Mtn„ - 1)
d 

 ., 

- 2+ 

where Mms , -= 2 I'm is the number of points in the signal constellation. Therefore 

1  
e  2 	1  2 ( /1//7.nse  - 1) 	1 	Pmax h 
s'"  ITISC 	 No 4V 

ernax = bn,„d,? 	
Nn  

7, s , 	bn„, 	3 	 2 

1— Pm ki n 

and the maximum achievable data rate is found from 

>--"‘ 
Z ( Pki  \2 

 1 _4_ Pm el x k i  

No W es ' = 	
Pmax  1  

2 (Mn„, - 1) W 	(1 + Pm"'ki  ) • 
3 	\--"\— 

i=1 	No TY 

O r. 

NO w  

Thus the normalised mean-square error per bit is 

Pmax j  
No IV  

2b-s. -1 	3ern. 
	 =- bm,„ 	2 

P  ivm  o« Tv  1=1 	.  1 +  Py-i; v;_tn Ti..1  

Z—r1=1 1 +  P  
N0 W 

(4.21) 

This equalised single carrier transmission is equivalent to multicarrier transmission using a uniform 
allocation of data and power across all Z subchannels. This will yield a feasible but suboptimal overall 
data rate. Therefore, the multicarrier system will outperform the single carrier system using a linear MMSE 
equaliser. 
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(4.23) 

(4.24) 

4.3.2 Decision feedback equaliser 

The decision feedback equaliser again consists of a feedforward filter, F(f), at the output of the matched 
filter, and a feedback filter, B(f), operating on the data sequence at the output of the threshold detector. 
Optimising F(f) to minimise the mean-square error at the input to the threshold detector yields the anti-
causal factor of the linear Mi\/ISE equaliser, given by (4.15) [31]. The coefficients of B(f) are chosen to cancel 
the intersymbol interference due to the previously detected data symbols. 

The DFE is prone to error propagation, i.e. incorrect detected symbols increase the mean-square error at 
the threshold detector input. To find an upper bound on the maximum throughput of the DFE, the feedback 
sequence is assumed to be error-free, as in Sec. 3.3.2. 

A lower bound on the overall mean-square error of this DFE is given by [31] 

UV' 	Xlp(f)Gip(f)  +1) df} • ln C No w N  (f)12 — 
r r,„ d2f  = C eXp —T 

Using the gain-noise factors as before, 

(4.22) 

df e = exp T E ln ( Pmaxlei  + 1) Wz} 
i=i 	No  W 

Prnax 

Ptnax 	{ 1 ( Pma,  ki  H exp 	ln 	+ i)}.  Z No  W i=i 

Therefore the mean-square error at the input to the threshold detector can be written 

2 	Prnax 	 1 
= 	

0  ..) 
i1 	

71 
Ce dfe 	w 	1 + P?1 .‘"r 17' = 

The mean-square modulation distance is the same as for the MMSE linear equaliser, i.e. 

3 	Pr...  1 	Fe' 	2  d2  

	

df e  — 2 (2bdi  —1)  W Z 	1+ Pm:vle ,  

The maximum data transmission rate is therefore found by solving for  bdf0  in 

(4.25) 

(4.26) 

2be' — 1 	3Ernax  
bdf e 	2  

P 	k • ) 2 
\--NZ (  No IV  
Z-4=1 1 _, 

No IV 

re- 1 (1+ 	Pnt1  •) 

(4.27) 

Since 26j 1  is monotonically increasing with b, (4.14) and (4.27) can be compared directly. Using the - 
inequality of means, (3.29), 

2 	

( 	

2 

1  P=1 (1+ 	NW 	ii 
1-1  1 	nr  

NoW 

therefore be e  > bz , i.e. the upper bound on the data throughput for the single carrier using a DFE is greater 
than the lower bound on the data rate for the multicarrier system. This is inconclusive. 

At low SNR, the assumption of an error-free feedback sequence in the single carrier case becomes unreal-
istic, i.e. the bound is loose. Also at these SNRs, not all of the subchannels will be used in the multicarrier 

(4.28) 

20 



transmission, thus this bound is also loose. Therefore it is expected that at low SNRs, the optimised mul-
ticarrier will outperform the nonlinearly equalised single carrier. At sufficiently high SNRs, it is expected 
thaÈ• the multicarrier system will use all the subchannels and that error propagation will have little effect on 
the 'DFE. Also at high SNRs the difference between the arithmetic and geometric means in inequality (4.28) 
is small, therefore the DFE may have a marginal improvement in performance compared to the optimised 
multicarrier, but this is somewhat speculative. 

4.4 TRANSMISSION OVER A NYQUIST I CHANNEL 

For multicarrier transmission over a Nyquist I channel, i.e. over Z subchannels with identical gain-noise 
factors k without interchannel interference, it is clear from (4.2) that the overall data rate is maximised 
when the transmission power Pr, a  is uniformly distributed among the subchannels, and that each sub-block 
contains the same number of bits bz. In this case, the equality in (4.14) holds and the overall data rate 
Rblez = bz W bits/s is found by solving for bz in 

, 2 
2b2  — 1 	3 ivo  w 

bz 	2 max  1 1 ,k  • rn a r  

No W 

For single carrier transmission, the overall data rate is beg W bits/s where beg  is found from (4.21) or (4.27) 
with ki  =k  for i = 1, . ,  Z,  i.e. 

P...k 
o IV 

b ,,,,„ 1 + P noVvk  ( 

N 	2 

( PZie 	) 2  2"  — 1 
=-- 

3e 	
= 

3 
2 

Emax beg 	2 	1 	 1 _t_ pynruc le  . 
1 + P  Z  k 	 ' N 0  W 

Therefore the multicarrier and single carrier transmission systems perform equally over the Nyquist I channel. 

(4.29) 

(4.30) 
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5 AWGN CHANNEL EXAMPLE 

In this section, the optimisation procedure will be applied to a linearly dispersive channel with severe 
frequency dependent characteristics and AWGN. 

The channel  lias  transfer function X(f), where X(f) is bandlimited to W Hz. For simplicity, the 
bandwidth is normalised such that W = 1, thus the sampling interval T =  1. The bandwidth is 
divided into Z = 256 subchannels, and as in Sec. 2.1, the characteristics are assumed to be piece-wise 
constant over each subchannel bandwidth Wz. 

The noise is white, thus HN(f) 	1 over the channel bandwidth. Therefore, over each subchannel 
centred at frequency  f ,  the channel gain is 

ki= IX(f)I 2 	for 
If fil  < W2z 

(5.1) 

The gain characteristics, 1X(f)1 2 , of the model used in this example are shown in Fig. 5.1. The attenuation 
at the channel extremities is greater than 15 dB, and there is a mid-band notch of approximately 10 dB. 

Figure 5.1: Gain of AWGN channel example, 1X(f)1 2  over normalised bandwidth Z = 256 subchannels. 

On subchannel i, the data is transmitted in bi-bit blocks with an average transmission power Pi. The 
modulation used is QAM and the subcarrier frequency is h. The transmitted signal is then given by equation 
(3.8) where the average total transmitter power is normalised to Z W. Additive white Gaussian noise of 
two-sided power spectral density -112.Q- corrupts the received signal, which is passed through a matched filter, 
G(f) = X* (f). 

At the output of the matched filter, the received signal-to-noise ratio on the ith subchannel is 

No Wz (5.2) 
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(5.4) 

(5.5) 

(5.6) 

- 1 

(5.7) 

5.1 ERROR PROBABILITY CRITERION 
In Sec. 2.2.1, the overall bit error probability was given by 

Ez  • 	 i-1P  i=l s 
Pe = 

	

Ei=1 	Rb 

where pi and si are, respectively, the bit and symbol error probabilities achieved on subchannel i, and 

(5.3) 

si = Kierfc (  
21V0 P1 z(M - 1)) 

3Piki  3Piki 

The optimum conditions for this multicarrier transmission were found in Sec. 3.1 to be 

asi 	„ ln 2  ildi 	2 - = 
Adi - 1 

Ai 	 wie — wi = (1  
Obi 	fi  

0.9i 1 wi 
— = „ —„ e • = 
OPi 	vr .t--i 

where wi = 2NoW3Pz/ — 1) . These equations are not solvable explicitly for bi or Pi, therefore the algorithm 
presented in Sec. 2.3.1 was used to determine the optimum distribution of data and power. 

The results of the iterative optimisation for transmitter signal power to noise ratios of 5 to 30 dB are 
shown in Fig. 5.2 where the overall error probability is pm ,„ =10-5  . The plot shows the data throughput in 
bits/s for optimum OFDM and also for quantised OFDM, where bi must be zero or an integer greater than 
two. The Shannon limit on capacity is also shown, as are the upper bounds on the maximum achievable 
data rate for single carrier transmission using linear and decision feedback equalisers designed using the 
zero-forcing principle, as derived in Sec. 3.3. Note that the upper bound on the DFE performance is equal 
to the lower bound derived for the OFDM transmission (Sec. 3.2) when the number of subchannels used is 
the same. In the results presented here, the lower bound has been tightened by optimising the number of 
subchannels included in its calculation. 

It can be seen from Fig. 5.2 that quantising the number of bits per sub-block reduces the overall OFDM 
performance by up to 2 dB at the lower SNRs, and by a much smaller amount at higher SNRs. 

At low bit rates, the OFDM system gives an improved performance of as much as 6.5 dB over the linear 
equaliser and 4 dB over the upper bound of the DFE. At higher data rates, the improvement of OFDM 
over the linearly equalised single carrier reduces to 3 dB. The upper bound on the DFE approaches the 
OFDM performance at higher rates. It was shown in [33] that the lower bound, and hence the upper bound 
on DFE performance, becomes tighter as the SNR increases. In addition, at these higher SNRs, the error 
propagation effects of the DFE are reduced, and its performance approaches the upper bound. 

This channel demonstrates the noise enhancing properties of the zero-forcing equaliser, which limit its 
use considerably. The overall gain-noise factor, k, f , of the linear equaliser was found in (3.23) 

and 

The variation in ki is about 15 dB, thus k z 1 is dominated by the effects of the worst subchannels. 
Figs. 5.3 and 5.4 show the optimum allocation of data among the subchannels at overall SNRs of 10 dB 

and 20 dB for an overall bit error probability of pe  = 10-5 . The optimisation was performed for both 
continuously variable and quantised data rates. It is seen that only the best 73 % of subchannels are used 
at 10 dB, whereas at 20,dB all but 3.2 % of the channel bandwidth is used. 

The distributions of data which achieve capacity are also shown. The difference between the assignment 
for optimum OFDM and capacity is discussed in Sec. 7. 
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Figure 5.2: Data throughput for AWGN channel example for OFDM and equalised single carrier transmission, 
Z = 256, pe  = 10-5  . 

The optimum power distributions at 10 dB and 20 dB are shown in Figs. 5.5 and 5.6. Note that the 
power scale is linear. In the continuously variable allocation of data, more power is concentrated in the 
subchannels with the best gain characteristics. The distribution for capacity is almost uniform over the 
bandwidth at higher SNRs. Using OFDM, the worst subchannels used are assigned only a fraction of the 
power for capacity. At higher SNRs, the best subchannels do receive an almost uniform power distribution, 
as was shown analytically in [33]. 

When the data allocation is quantised, this effect is overshadowed by the necessity to send only integer 
numbers of bits per sub-block. At 20 dB, the best subchannels transmitting at six bits per sub-block are 
allocated more power than the best of the subchannels transmitting at five bits. However, in order to 
transmit, for example, four bits on subchannels with worse gain characteristics, considerably more power 
is required. This is similar to the results found by Feig [12], although the performance in that system was 
suboptimal. The effects of this power allocation on the symbol and bit error probabilities can be seen in 
Figs. 5.7 and 5.8. 

Figs. 5.7 and 5.8 shows the bit and symbol error probabilities across the subchannels for optimised con-
tinuously variable and quantised multicarrier transmission at overall SNRs of 10 dB and 20 dB, respectively. 
The bit and symbol error rate distributions are also shown in Figs. 5.9 and 5.10 vs. gain for SNRs of 5, 10, 20 
and 30 dB. It is clear that the conditions stated by Kalet [17] and Bingham [4] of uniform bit or .symbol 
error probabilities across are, at best, approximate with the approximation not holding well at low SNRs. 
At higher SNRs, the best subchannels do achieve fairly uniform symbol error probabilities, but this is not 
constant across the channel bandwidth. 
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Figure 5.3: Optimum assignment of data at over-
all SNR 10 dB for pe  =10' . 

Figure 5.4: Optimum assignment of data at over-
all SNR 20 dB for pe  =10-5  . 

Figure 5.5: Optimum assignment of power at over-
all SNR 10 dB for pe  =10' . 

X  10' 

Figure 5.6: Optimum assignment of power at over-
all SNR 20 dB for pe  = 10' . 
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vs. gain Figure 5.9: Distributions of bit error rate 
for optimum OFDM at p, =10-5 . 

Figure 5.10: Distributions of symbol error rate vs. 
gain for optimum OFDM at pe  =- 10-5. 
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5.2 NMSE 

The normalised mean-square error (N'AISE) criterion was defined in Sec. 2.2.2 as 

cr?' 
= Li=1 d'? 	2_, • , ei 

E 	 
Ez b• 

where the normalised mean-square error, Ei , is the ratio of the mean-square error,  o ,  to the mean-square 
.modulation distance, dï. For QAM transmission, the normalised mean-square error is given by (Sec. 4.1) 

— 1)  1  +  
= 	 (5.9) 

)  2 3  
No Wz 

For optimum QAM transmission with no ISI or ICI, the constrained minimisation yields the gradient 
condition, (4.2), 

(5.8) 

This was solved using the algorithm presented in Sec. 2.3.1 for both continuously variable and quantised 
bi's. The results are shown in Fig. 5.11 for an overall average normalised mean-square error c = 0.05. This 
value was chosen as the resulting achievable data rates are similar to those in the previous section using 
pe  = 10 -5 . As for the error probability criterion, the reduction in achievable data rate using the quantised 
multicarrier is less than 1 dB. The lower bound on the maximum achievable data rate found in Sec. 4.2 is 
also shown. The bound has been tightened in this implementation by optimising the number of subchannels 
considered, which significantly improves its reliability, especially at at low SNRs where not all subchannels 
are used in the optimum allocation. 

10 

10 	 15 	 20 
SNR (c18) 

Figure 5.11: Data throughput for AWGN channel example for OFDM and equalised single carrier transmis-
sion, Z = 256, E = 0.05. 
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Figure 5.13: Optimum assignment of data at over-
all SNR 20 dB for e = 0.05. 

The data rate for the linear MMSE equaliser, the upper bound on decision feedback equalised single 
carrier transmission and the channel capacity are also shown in Fig. 5.11. At low SNRs, the multicarrier 
system shows a very significant improvement over both the equalised single carriers. At these SNRs, the 
assumption of error-free feedback sequences in the DFE is least valid. At higher SNRs, the upper bound 
on the data rate of the single carrier transmission using a DFE almost equals the multicarrier system. The 
multicarrier system shows an improvement of at least 4 dB over the linearly equalised single carrier at these 
higher SNRs. 

The data distributions for an overall SNR of 10 and 20 dB are shown in Figs. 5.12 and 5.13. For the 
continuously variable and the quantised multicarrier, the minimum number of bits per sub-block is at least 
2.6 and 2, respecitvely, and hence the convexity condition of Sec. 4.1 is met. Note that, at 10 dB, only 42 % 
of the subchannels are used, and at 20 dB, 86 % are assigned data. 

0.1 	0.2 	0.3 	0.4 	0.5 	0.6 
normalised frequency 

Figure 5.12: Optimum assignment of data at over-
all SNR 10 dB for e = 0.05. 

The corresponding power distributions for these two cases are shown in Figs. 5.14 and 5.15, respectively. 
Note that the power scale is again linear. At the higher SNR, it appears that the power distribution follows 
the capacity distribution quite closely. In the quantised case, as with the error probability criterion, the 
power required to support the integer number of sub-blocks dominates the allocation pattern. 

The relative NMSE per bit and per symbol on each subchannel is shown in Fig. 5.16 for 10 dB, and in 
Fig. 5.17 for 20 dB. Despite the inverse relationship of ei  and Pi, (5.9), the NMSE per symbol has the same 
type of distribution as the power, i.e. the best subchannels have a higher value NMSE than the worst. The 
variation is less than 5% over the subchannels used. For the quantised multicarrier the variation is about 
50% of the mean value. The NMSE per bit for the quantised case shows a fairly small deviation from that 
of the continuously variable data rate. 

At high SNRs, Pi and ei tend to a uniform value across the subchannels used, as was shown analytically 
in [33]. 
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Figure 5.16: NIVISE per bit and symbol (sub-
block) for optimum OFDM at overall SNR 10 dB 
for c = 0.05. 

Figure 5.17: NMSE per bit and symbol (sub-
block) for optimum OFDM at overall SNR 20 dB 
for e = 0.05. 
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6 MULTI-USER INTERFERENCE EXAMPLE 

In this section, the effect of adjacent user interference on the optimum data and power assignments will be 
considered. The channel is Rayleigh fading, and the interference will be modelled, as a first approximation, 
as additive Gaussian noise, allowing the optimisation  procedures presented previously to be applied. 

6.1 SCENARIO 

The scenario being considered is illustrated in Fig. 6.1. The channel is slow fading, and frequency selective 
over the individual multicarrier symbols. To mitigate the effects of ISI, a guard interval is used between 
sub-block transmissions. The user of interest is U1  and the interference is due to timing differences between 
U0 and U1. Only optimisation of U1  is considered; Uo is assumed to be un-optimised. For ease of notation, 
it is also assumed that the subcarriers of U0 have constant envelope signals. 

User Uo 	 User U, 

1 	1 	1 ••• I 	a l 	Ill 	• •• I 1\  

Figure 6.1: Multiuser multicarrier system 

The subcarrier assignments are as follows: 

U0 	: 	A 	i=1,...,Z 
: 	A 	i=z+1,..., 2Z 

As the purpose of this example is to investigate the effects of the interference on the data and power 
assignments of U1 , it will be assumed that the channel gains and AWGN characteristics across the frequency 
band of U1 , i.e.  k , i = Z 1, ..., 2Z, are constant over many symbol periods. Thus, without the interfering 
signal of U0, the data and power assignments would be uniform across the subcarriers of U1. 

In the following section, the problem will be analysed in order to determine the level of interference 
experienced at each subcarrier of U1 , as a function of the time offset of the two users. 

6.2 PROBLEM ANALYSIS 

Consider a multicarrier system in which the symbol period is T, and the guard intervals between adjacent 
symbols is r0 . On subchannel i with subcarrier frequency A= wi/27r and gain a , the allocated power is Pi 
and the data symbol in the time interval starting at 7nT is e)  . The group delay is r on all subcarriers. At 
time t, user U1  has the received signal 

2Z 	00 

Sd(t) = E E Pie)  si tu1(t—nc-7- ) p (t — rriT — r) 
i=z+i m.0 

where wi = 27rfi, and ai denotes the real channel gain. The time-gating function is 

(6.1) 

p(t) = { 

Also define T =7' Tg .  

0 < t <T 
elsewhere (6.2) 
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(6.6) OM) = e-3  
O <t < T'  
elsewhere 

Note that the real channel gains, ce , are assumed to be uncorrelated slow-fading Rayleigh-distributed 
random variables. For user U1, it is assumed that the random gains on each subchannel are fixed for the 
duration of 'many' symbol periods. In frequency selective fading, these gains will not be identical across 
the subchannels. Hciwever, as the aim here is to demonstrate the effects of the interference on the optimal 
data and power assignments, for the purposes of this example the gains will be taken to be identical across 
the subchannels, Z 1 <  j  < 2Z. The assumption that these gains are fixed for many symbol periods 
permits the averaging of the effects of fading on the interfering user, U0 . In addition, it is assumed that each 
subchannel has fixed random phase. The phase is identified by the receiver and its effects are removed, and 
the use of timing recovery in the receiver allows the group delay r to be set to zero. 

It is assumed that the interfering user, U0, has random gains and phases on each subchannel which are 
constant over the length of a single multicarrier symbol, and the relative delay between the interval periods 
of U0  and U1 is  rj.  The received interference from user U0 is 

Z co 

si (i) =E E Bidri)fli ei i (e'T  p(t — InT —  ri)  
i=1 m=0 

where, on subchannel i, 1 < i < Z, with subcarrier frequency fi  = wi/27r, Bi is the power allocation and 
the data symbols are d.'n)  in time interval m. The channel gains A are complex Gaussian random variables, 
uncorrelated over the different subcarrier frequencies. 

For these two users, let the received signal be 

(t) = sd (t) 	8/ (t) 	'7(t) 

and ri(t) is the additive Gaussian receiver noise with two-sided spectral density 14Q.  -. 

6.2.1 Signal detection 

At the U1 receiver, the subcarrier at frequency fi  is correlated as 

(77-H-i)T 

r(t) q5i(t — rnT)dt 	 (6.5) 

mT 

where the frequency function,  j (t), defined over an interval that takes into account the guard interval rg , is 

(6.3) 

(6.4) 

Correlator output components due to the desired signal are free of interference due to the inherent 
orthogonality of the subcarriers, however components due to the interfering signal si(t) are present. 

The combined multiuser interference at subcarrier  j , Z 1 < i < 2Z, at time interval m is computed 
from 

( Interfering User U0 Rx Signal ) Oi(t — mT) dt 
mT 

z  

= 	EEP•B•3 d(n) eiwi ( '"T-TI) p(t — nT — ri)  (t — rnT) dt  3 
rriT  +Tr  j=1 m=0 

and the noise component of the correlator output is 

(6.7) 

TnT+1." 

imT  
77(t)çbi(t — mT) dt. 
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Cr  c2i E e {Pi PI} 
j=-1 

e {Pi PI} B'ildi1 2  f ej[(wi-tvi)(t-rriT 1 )-wird di  Œc2i  

mT 

17' 

2 

(6.10) 

2 

(6.11) 

This interference signal lias  mean zero, assuming the constellations of the data symbols Ce )  are sym-
metric about the real and imaginary axes, and that the symbols are equally probable. By the central limit 
theorem [23], the distribution of cr may approache Gaussian if the number of significant terms in (6.7) 
is large. This lias  yet to be validated by simulation. The variance of the interfering signal amplitude on 
subchannel i is then given by 

o j  = 	cr 	 (6.8) 

where E{•D} is the expected value. The independently faded channel gains 13i have cross-correlations zero, i.e. 
ign = 0 if k j. As the signals on the interfering subcarriers are assumed to have constant envelope, 

the variance of the interfering power is 

tilT 1-T co 
E f  cksti)ei,lij (t-nT-Tr) — nT — Ti)¢i(t — mT)  di  
n=°mT-I-Tr 

2 

. 	(6.9) 

The interfering signals are assumed to be constant envelope, so E{c4 n)dr} = daI2 = const. The guard 
interval is taken to be long enough to eliminate inter-symbol interference, hence  ternis  with n ni are 
dropped to yield 

Thus, writing  oJ = E {Pi 	(6.10) becomes LtnT 

Cfc2i 	E 	B 21I (  la 1 2  
i=1 T 

)71T-1-T 1  

cos[(wi — w) (i — mT) — wi Tr]  di  

+i f sin[(tvi — tvi)(t — 	— wiri]  dl  
mT -1-71 

Z 0.2 B2 Id ,I2 

E , 	2 Isin[(wi — wi)r — 	sin(wirr) 
i=1 01).1 —w i )  
—j Icos[(wi — wi)T — wiri] — cos(wiri)}1 2  • 	 (6.12) 

Define the real quantity of interference gain rii, the interference observed on subchannel i due to the signal 
on subchannel j, as 

1 
Fi•   isin[(wi — tui)r — 	sin(wirl) 

(Wi W i) 2  
• 

COS[S - Wel  - 	- cos (wi Tr) I
2 
 • 	 (6.13) 

The effect of the interference on the correlator output variance due to all interferers is the sum of all F3i• 
over 1 < j < Z, and is shown in Fig. 6.2 as a function of adjacent-user delay 71. Numerical values for relative 
contributions to the total interference variance from individual interfering tones are given in Tables 6.1 and 6.2 
for different adjacent channel interference delays. Note that the values given are normalised so that the total 
of interfering gains acrOss the bandwidth of user U1 is unity. 
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Figure 6.2: Total of interfering power versus adjacent user delay. 

6.2.2 Statistics of interference terms 

The correlator output corresponding to the interference signal at time interval m, cr, has an approximately 
Gaussian distribution. The variance of the correlator output due to the interfering terms on subchannel 
Z +I< i < 2Z, is 

o-L.131dij 2 r3i. 	 (6.14) 

where a-2 ;  is the variance of the complex Gaussian random variable J3j , the gain of subchannel j, and the R. 
means are zero. 

The interference will therefore be modelled as zero-mean Gaussian noise. The overall channel model is 
illustrated in Fig. 6.3. 

For each subcarrier, the combined effects of the noise and interference can be modelled as additive 
Gaussian noise, hence the equivalent channel model is that shown in Fig. 6.4. This is clearly equivalent to 
the channel model used in Sec. 2.1, hence the optimisation procedures developed previously may be applied 
to this scenario. 

6.3 EXAMPLE 
For orthogonal signalling, i.e. the separation between subcarriers, Wz = 	—  fi = 1/Ti, the amplitude of 
terms e are shown in Fig. 6.5 when  r  = 0.2 Tz and ri =0.5Tz• 3 

The data and power assignments for user U1  were optimised for an overall bit error rate of p  = 10-4 . 
The SNR due to the AWGN is taken to be 30 dB for each of the following cases. Note that, as the AWGN 
has a flat power spectrum, i.e. IHN(A)I 2  = const, the noise has no effect on the optimum resource allocation. 
It was seen in Tables 6.1 and 6.2 that 14 subchannels are significantly affected by interference from the 
adjacent user. In this example, only the first 20 subchannels of user Ui  are considered. 

cfc2i 
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Table 6.1: Normalised total interference gains, Ef_ i F»  on subcarrier i for ri = 0.1T to 0.5T. 

User U1 	 ri /T  
Subca,rrier i 	0.1 	0.2 	0.3 	0.4 	0.5  

Z+1 	0.234127 	0.456742 	0.654103 	0.785793 	0.834692 
Z+2 	0.21177 	0.298944 	0.22599 	0.0750386 	1.1262e-11 
Z-I-3 	0.178305 	0.132867 	0.0106047 	0.0333484 	0.0927436 
Z+4 	0.138608 	0.0285487 	0.0215788 	0.0491127 	1.1262e-11 
Z-1-5 	0.0980762 	4.56637e-11 	0.0399755 	1.68791e-11 	0.0333877 
Z+6 	0.0616063 	0.0126863 	0.00959192 	0.0218273 	1.1262e-11 
Z-I-7 	0.0327531 	0.0244031 	0.00194718 	0.00612597 	0.0170345 
Z+8 	0.0132381 	0.0186847 	0.0141239 	0.00468934 	1.1262e-11 
Z+9 	0.00289163 	0.0056397 	0.00807594 	0.00970142 	0.0103048 
Z+10 	1.07186e-10 	4.56637e-11 	2.6429e-11 	1.68791e-11 	1.1262e-11 
Z+11 	0.00193414 	0.00377412 	0.0054054 	0.00649397 	0.00689828 
Z+12 	0.00588144 	0.00830369 	0.00627771 	0.00208466 	1.1262e-11 
Z+13 	0.00949463 	0.00707601 	0.000564925 	0.00177574 	0.00493901 
Z+14 	0.0113145 	0.00233088 	0.00176128 	0.00400932 	1.1262e-11 

The optimum allocation of data for U1  is shown in Fig. 6.6 for the relative delays Tr = 0.2Tz and 
TI = 0.5 Tz for an SIR of 10 dB. The data distribution is shown in Fig. 6.7 for the an SIR of 20 dB. 
The effect of the interference is clearly seen in the data distribution. Where the gain of the equivalent 
noise transfer function, IHE(f)I 2 , is very small, the subchannels have essentially no interference, hence the 
number of bits per sub-block is the same as on the un-interfered subchannels. On the other hand, where the 
interference is more marked the number of assigned bits is reduced. The difference among the subchannels 
is more marked at an SIR of 10 dB than at 20 dB, as the subchannel SIRs are lower. 

The corresponding power distributions are plotted in Figs. 6.8 and 6.9. More power is assigned to the 
subchannels where the interference power is weak, and less where the subchannel SIR is low. At higher SIRs, 
the power assignment becomes more uniform. 

The bit and symbol error rates corresponding to the optimum multicarrier conditions for user U1 are 
shown in Figs. 6.10 and 6.11 for SIRs of 10 and 20 dB, respectively. The difference in ber is quite marked 
across the subchannels, varying from 10 -4  to 4 x 10 -4 , compared to the ser, which is more uniform. At the 
SIR increases, the ser becomes more uniform across the subchannels used. 
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Table 6.2: Normalised interference gains, E‘i. r»  on subcarrier i for 7/ = 0.6T to 0.9T. 

User U1 	 Tr/T 
Subcarrier i 	0.6 	0.7 	0.8 	0.9 

Z+1 	0.785795 	0.654107 	0.456747 	0.234131 
Z-I-2 	0.0750354 	0.225987 	0.298944 	0.211774 
Z+3 	0.0333504 	0.0106032 	0.132864 	0.178306 
Z+4 	0.0491117 	0.0215804 	0.0285461 	0.138607 
Z+5 	7.50181e-12 	0.0399753 	2.85396e-12 	0.0980738 
Z+6 	0.0218278 	0.00959071 	0.0126877 	0.061603 
Z+7 	0.00612509 	0.00194779 	0.0244037 	0.0327498 
Z+8 	0.00469009 	0.0141244 	0.0186838 	0.0132356 
Z+9 	0.00970099 	0.00807513 	0.00563863 	0.00289038 
Z+10 	7.50181e-12 	4.85428e-12 	2.85396e-12 	1.32325e-12 
Z+11 	0.0064943 	0.00540601 	0.00377492 	0.00193506 
Z+12 	0.00208415 	0.00627732 	0.0083.0409 	0.00588272 
Z+13 	0.0017762 	0.00056459 	0.00707551 	0.00949571 
Z+14 	0.00400904 	0.00176177 	0.0023302 	0.0113149 

Figure 6.3: Interference model for multiuser multicarrier system 

35 



X(f) s(t) .] 

CHANNEL MATCHED 
FILTER 

EQUIVALENT 
WGN 

Lye  w/Hz 

Figure 6.4: Equivalent channel model for multiuser multicarrier system 

subchannel index 

Figure 6.5: Relative gain of interference from adjacent user. 
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Figure 6.6: Optimum data distribution in the 	Figure 6.7: Optimum data distribution in the 
presence of multi-user interference at SIR 10 dB. 	presence of multi-user interference at SIR 20 dB. 
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Figure 6.8: Optimum power distribution in the 	Figure 6.9: Optimum power distribution in the 
presence of multi-user interference at SIR 10 dB. 	presence of multi-user interference at SIR 20 dB. 
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Figure 6.10: Bit and symbol error rate distri-
butions for optimised multicarrier transmission 
in the presence of multi-user interference at SIR 
10 dB. 

Figure 6.11: Bit and symbol error rate distri-
butions for optimised multicarrier transmission 
in the presence of multi-user interference at SIR 
20 dB. 
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7 NEARLY OPTIMAL ALLOCATIONS 

The conditions for optimal allocation of data and power, presented in Sec. 2, can be satisfied only using an 
iterative approach. When the channel is varying, and the OFDM allocations must be adapted continuously, 
a more practical approach would trade-off the small increases in data rate obtained with the truly optimal 
solution against the speed with which a solution is found. 

In this section, the results of the example of Sec. 5 will be examined to determine a nearly optimal 
approach to OFDM resource allocation. The optimisation criterion of interest here is the error probability, 
pe . Recall that in the expression for symbol error probability on subchannel i, (3.9), 

si = Kierfc ( 
3Piki 

 2NoWz(ildi —1) 
(7.1) 

the approximation Ki = 2 was made for the purposes of deriving a lower bound and comparing OFDM with 
single carrier equalised transmission in Sec. 2. In the implementation of the algorithmic solution used to 
generate the results in Sec. 5, this approximation was omitted, and the more precise term, Ki = 2(1-1/-\  
was used. 

Figs. 7.1 and 7.2 show the distributions of Mi — 1, where Mi = 2bi is the number of data points per 
constellation, and received SNR, -yi = PikilNo Wz, plotted against the normalised channel gain-noise factors, 
ki, for a range of overall SNRs. I3oth these distributions are very close to straight lines, where the nonlinearity 
in the slop.  e is attributable to the e — wi2  term in (3.11) and (3.12). 

Figure 7.1: Distributions of number of points per 
constellation for optimum OFDM vs. channel gain 
(dashed lines). 

Figure 7.2: Distributions of received SNR for op-
timum OFDM vs. channel gain. 

The values of Piki/(Mi — 1), plotted against the ordered gain-noise factors k, are shown in Fig. 7.3. It is 
seen that this factor is nearly constant across the whole range of ki for which data and power are assigned. 

From the section on capacity, Sec. 2.4, (2.35) gives the expression 

Piki 
fiez — 1 

where Ci/Wz is the capacity normalised by subchannel bandwidth, and Nc /2 is the two-sided power spectral 
density. Thus, a nearly optimal solution to the OFDIVI resource allocation would follow the distributions for 
ca.pacity at a suitably modified noise level Nc . 
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Figure 7.3: Distributions of Piki/(iV/i — 1) for optimum OFDM vs. channel gain. 

The aim is to find the value of the SNR -yc = Pmax INNcW z , where N is the number of subchannels 
used which gives the closest fit to optimal QAM-OFDM with an overall SNR of 7g = Prnax /ZNO WZ 

To find the equivalent noisè, Nc, for the distribution using capacity, consider the relative bandwidth 
efficiencies of QAM and capacity, which are shown in Fig. 7.4 for a bit error probability of pe  = 10 -5 , and 
SNR measured in bandwidth W = ZWz. For more detail on bandwidth efficiencies, see [26, chap. 5]. Note 
that here the bit error probability is considered, whereas in [26], the symbol error probability is used. 

For the same bandwidth efficiency, the difference in SNRs between QAM and capacity is seen to be about 
7.8  dB. •  This value can also be obtained by equating the terms Pikil(Nli — 1)  from the QAM error probability 
and capacity expressions, (7.1) and (7.2) which yields 

6NoWz NcWz 

and 10 logio  6 = 7.8dB. 
The value of -yc which gives the nearly optimal data and power distributions is then given by 

10 logio  1c  = 10 logio  -yQ — 7.8 — 10 log io  N/Z 	 (7.4) 

Although the true value of N will not be known in advance of the solution, an estimate can be found, 
for example based on the number of subchannels used for achieving capacity distributions at an SNR of 
10 logio  -yQ  — 7.8 dB. 

7.1 AWGN EXAMPLE 
In this section, the nearly-optimal allocation is applied to the example considered in Sec. 5. The channel 
characteristics are shown in Fig. 5.1, and the noise spectrum is uniform across the channel bandwidth. The 
number of subchannels used in the capacity allocations is shown in Fig. 7.5. 

The aim is to find the nearly-optimal allocation for an overall SNR of 15 dB. From Fig. 7.5, at an SNR of 
15  —7.8  = 7.2 dB, there are approximately N = 227 subchannels used of the Z = 256. Thus, from (7.4), the 
nearly-optimal OFDM allocation is obtained using the capacity allocation at 15-7.2-10 logio  N/Z = 8.3 dB. 

Figs. 7.6 and 7.7 show the distributions of data for optimal OFDM and for the nearly-optimal OFDM 
described in this section. It is clear that the power allocations are very similar, while the number of bits 

(7.3) 
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Figure 7.4: Bandwidth efficiencies for capacity and for QAM at I), = 10-5  . 

per sub-block is slightly lower on every subchannel for the nearly-optimal OFDM. Overall, the normalised 
throughput for the optimum OFDM is 2.38 bits/s, while  for  the nearly-optimal OFDM, it is 2.22 bits/s. 

The "water-pouring" solution to OFDM power allocation was suggested in [4] and [28]. No details were 
given there regarding how to implement such an allocation, but it  lias  been seen that the intuition was 
good, and that this water-pouring solution, when properly adjusted to account for SNR and the number of 
subchannels used, can provide a nearly-optimal OFDIVI solution for power allocation. The resulting data 
allocation also provides a distribution that is fairly close to that for OFDM. 
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Figure 7.5: Number of subchannels used in capacity distributions for AWGN example. 
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Figure 7.6: Distributions of data for optimal and 
nearly optimal OFDM at 15 dB, pe  = 10-5 . 
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Figure 7.7: Distributions of power for optimal and 
nearly optimal OFDM at 15 dB, pe  = 10-5  . 
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8 CONCLUSIONS 

The optimum conditions for maximising the data rate using OFDM transmission have been presented. It 
has been shown that these conditions are not met, in general, by subchannels achieving the same level of 
reliability as was previously assumed. An algorithm for achieving the conditions was presented and applied 
in two examples. 

A lower bound on the transmission rate was found for the OFDM system which was identical to the 
upper bound found for the zero-forcing equalised single carrier transmission. It was therefore concluded 
that optimum OFDM transmission will achieve greater data rates than are possible using equalised single 
carrier transmission for all channels except one meeting the Nyquist I criterion. Using a notched channel 
with additive white Gaussian noise example transmitting orthogonally multiplexed QAM, it was seen that 
the largest gains over single carrier transmission are made at low and intermediate channel SNRs when not 
all subchannels are used for transmission. It is concluded that the assumption of uniform error probability 
across the subchannels results in only a small reduction in data throughput at high signal-to-noise ratios. 
However, at low and intermediate SNRs the optimum conditions found achieve a significantly higher data 
rate. 

The distributions of the data and power across the channel bandwidth were examined and compared 
to the capacity distribution. In the optimised system, the subchannels with the best gain characteristics 
achieve the worst symbol error probabilities. This does not create a "weak link" effect, but in fact enhances 
the system performance. When the data rates on the subchannels are quantised, the overall performance 
is reduced by up to 1 dB. The distribution of power is changed significantly to assign more to the worst 
subchannels at each quantisation level, and these subchannels have the highest error probabilities. 

The normalised mean-square error (NMSE) criterion was considered which enables a comparison to 
be made between OFDIVI transmission and single carrier transmission using equalisers designed using the 
minimum mean-square error principle. It was shown that OFDM transmission will always outperform a linear 
MMSE equaliser. The analytic comparison with a decision feedback equaliser was inconclusive, however it 
was demonstrated using the AWGN channel example that the multicarrier system does indeed outperform 
the single carrier using a DFE for a large range of SNRs. 

The distributions of data and power across the subchannels were examined for the NMSE criterion. It 
was shown that for this criterion also, the optimum throughput was achieved when the subchannels with the 
best transmission characteristics have a worse than average normalised mean-square error. 

The example of multi-user multicarrier transmission was considered, in which timing differences between 
adjacent users cause interference. This was modelled as additive Gaussian noise, and the effects of the 
interference on the optimal multicarrier distributions were considered. Further work is needed to validate 
the Gaussian noise model of interference. 

. A more practical approach to optimising the distributions of data and power was given in Sec. 7. It was 
seen that there are similar properties between the optimal OFDM allocation and the capacity distribution. 
Using the AWGN example of Sec. 5, it was seen that the "water-pouring" solution can be used to obtain a 
close approximation to the ideal allocation of power, while the data allocation is farther from optimum. 
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(A.2) 

(A.3) 
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A CONVEXITY CONDITIONS 

In order for the constrained optimisation results to be applied, it must be confirmed that the criterion pe  or 
C  is convex with respect to b and P. The conditions for this to hold are derived in this appendix. 

A.1 ERROR PROBABILITY CRITERION 

For the Hessian to be positive semi-definite, it must be shown that -8211, 	 > 0 for j = 1, ..., N. 06 .2  OP'2 	8b,C)P, 	— 
For the stationary point to be a minimum with respect to bi and Pi, it is also necessary tha.t Çt > 0 and 

n.  

'Differentiating si with respect to Pi 
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3P,k,  where w? = 2NoWz(Mi-1) Also, differentiating si with respect' to bi, assuming that Ki is constant, 
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The second order derivative of si with respect to bi and Pi is 
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After some manipulation, it is seen that 
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Hence the Hessian is positive semi-definite if 

(A.5) 

For example, if the symbol error probability on the ith subchannel is si < 10-4 , then wi > 2.75 and a 
sufficient condition for convexity is Mi > 1.14 or bi > 0.19. 

For the solution to be a minimum, it is necessary that  Ç.  > 0 and 	> 0. For the first condition, it op;  
is seen from (A.1) that si is convex with respect to Pi if 

1 
+ —

2 
> 0 	 (A.6) 

which holds for all real values of wi > O. 
Similarly, from (A.2), the stationary point is a minimum with respect to bi if 
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1> 0 • 	 2N0 I/Vz 	— 1 	2 

As 	> 1, a sufficient condition for Mi = 2bi  to satisfy this condition is m i -1 
Mi 	3Piki  — < 	 1 	 (A.8) 
2 — 2NoWz 

If 	> 1, i.e. the received SNR on the ith subchannel, -y r ,i, is greater than 0 dB, then for convexity, the No  wz  
parameter wi is bounded by 

3Piki 
>
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2N01/liz (Zit" 3) 	2  
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A.2 NIVISE CRITERION 

Since Rb and the constraint function h 1  given by (2.9) are linear with respect to the minimisation parameters, 
b and P, the Lagrangian function is convex if and only if the second constraint function h., 	• 

h2 = 	 emax  =  O 	 (A.10) 
Rb  

is convex. This requirement is satisfied if .9 2,  • a2 = •  
-e- Te ab i api  — 

_y > 0 and if the second order derivatives satisfy 
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Differentiating with respect to bi 
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The second order derivative with respect to bi and Pi is 
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After some manipulation, the Hessian is given by 
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Thus it can be seen that the Hessian is positive semi-definite at least for ail Mi >3, i.e. for ail  bi > 1.6. 
From ,(A.11) and (A.12), ail values of Mi satisfying this condition also satisfy e. > 0 and Q.5 «. ' > O. 
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