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Executive Summary 

A measure of the subjective quality of audio data is usually obtained by asking human  listeners 
to judge the degree of degradation in processed music or speech excerpts relative to the original 
audio signal. Since such ratings must be made under optimal listening conditions using careful 
experimental procedures, obtaining reliable subjective data is often expensive. Therefore, a 
method for objective assessment of audio quality is needed for situations where listening tests are 
impractical. 

According to ITU-R Recommendation BS-1116, listeners in listening tests rate the degraded 
audio items as well as the corresponding reference items using a continuous quality scale ranging 
from one to five. The difference between the ratings for the reference and processed items is 
defined as the subjective difference grade (SDG) for the item, and the mean SDG over a number 
of listeners represents its subjective quality. Different types of audio distortions may occur 
sequentially, so variations in quality must be integ-rated over time. Therefore, prediction of the 
SDG requires an accurate model of both the peripheral auditory system as well as cognitive 
aspects of audio quality judgements. This note describes s.  uch a model for objective measurement 
of audio quality. 

The model produces a number of variables based on differences between the reference and 
processed signals as well as the reference signal alone. These variables were mapped to an 
objective difference grade (ODG) using an optimization technique that minimizes the difference 
between the ODG distribution and the corresponding distribution of mean SDGs for the available 
data set. 

The calibrated model was used to measure the quality of items in a new data set that was created 
to statistically compare several state-of-the-art codec systems. The correlation of 0.76 between 
SDGs and ODGs for the individual items was smaller than expected. Qualities of codecs were 
also determined by averaging the ODGs of items processed by each codec at each available bit 
rate. The correlation between the subjective and measured qualities of the codec systems was 
0.91. The model successfully identified the best performing codecs in the test, and the pattern of 
results suggested directions for further work. 
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1 Introduction 
A measure of the subjective quality of audio data is usually obtained by asking human listeners 
to judge the degree of degradation in processed music or speech excerpts relative to the original 
audio signal. Since such ratings must be made under optimal listening conditions using careful 
experimental procedures, obtaining reliable subjective data is often expensive. Therefore, a 
method for objective assessment of audio quality is needed for situations where listening tests are 
impractical. 

According to ITU-R Recommendation BS-1116, listeners in listening tests rate the degraded 
audio items as well as the corresponding reference items using a continuous quality scale ranging 
from one to five. The difference between the ratings for the reference and processed items is 
defined as the subjective difference grade (SDG) for the item, and the mean SDG over a number 
of listeners represents its subjective quality. Different types of audio distortions may occur 
sequentially, so variations in quality must be integrated over time. Therefore, prediction of the 
SDG requires an accurate model of both the peripheral auditory system as well as cognitive 
aspects of audio quality judgements. 

This note describes Perceval, a computational model of audition developed to evaluate 
objectively the perceptual quality of audio signals [1]. The model simulates peripheral auditory 
processes and makes reasonable assumptions about higher level perceptual and cognitive 
processes in order to estimate the perceived quality of a test signal relative to a known reference 
signal. 

A number of variables are produced based on differences between the reference and processed 
signals as well as the reference signal alone. These variables are mapped to an objective 
difference grade (ODG) using an optimization technique that rninimizes the difference between 
the ODG distribution and the corresponding distribution of mean SDGs for the available data set. 

A high level representation of the model is shown in Figure 1. In general, it compares time-
aligned versions of a reference signal and a processed version of the same signal. The reference 
and possibly altered signals are each transformed to a basilar membrane (BM) representation, 
and the basilar degradation is defined as the difference between these representations. The 
basilar degradation, as well as other characteristics of the audio material, is analyzed further as a 
function of frequency and time by a cognitive model. The latter extracts perceptually relevant 
features that are used to compute a measure of quality. 
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Figure 1. High-level representation of Perceval 

2 Model Description 

2.1 Peripheral Ear Model 
Perceval' s ear model is a frequency domain model designed primarily to deal with simultaneous 
masking effects. That is, it does not attempt to explicitly model forward or backward maslcing. It 
accounts for simultaneous masking by modeling the transfer functions of underlying physical 
processes. The result is a BM representation that is assumed to reflect only the audible signal. 

The ear model assumes that the detectors on the basilar membrane are sensitive to the logarithm 
of the input energy and have low temporal resolution. Further, the mechanical phenomena of the 
inner ear are considered linear and invariant with respect to frequency and level of the input 
signal. This is an approximation since the response of the cochlear mechanism is somewhat 
sensitive to signal level. 

The successive stages of the ear model are shown in Figure 2. A Hann window is applied to 
2048 input data samples, and the Fast Fourier Transform (WI') is applied to form a time-
frequency representation. Successive windows of the input data overlap by 1024 samples. The 
energy spectrum is attenuated by a frequency dependent function that models the effect of the ear 
canal and the middle ear. The attenuated spectral energy values are mapped from the frequency 
scale to a pitch scale using an empirically derived frequency to pitch mapping function. The 
energy components are then convolved with a spreading function to simulate the dispersion of 
energy along the basilar membrane. Finally, an intrinsic frequency-dependent energy is added to 
each pitch component to simulate internal noise that is thought to account for the absolute 
threshold of hearing. Conversion of the energy to decibels results in the basilar membrane 
representation of the signal. 

Time Domain 
Altered Signal I\ Peripheral 

V Ear Model 

dc 
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Figure 2. Peripheral ear model in Pereeval 

The following computations are performed following the transformation to the frequency 
domain. 

• The energy spectrum is multiplied by the attenuation spectrum of a low pass 
filter that models the effect of the ear canal and the middle ear. The attenuation 
spectrum, described by the following equation (where f is in kHz), is slightly 
modified from that presented in [3] in order to extend the high frequency cutoff. 

65 (416(f-33)2)  10-4  f 3.6  A dn  = — . e 

• The attenuated spectral energy values are transformed using a non-linear 
mapping function from the frequency scale to a basilar membrane pitch scale. 
The mapping function is a modification of one proposed in [5] in order to 
improve resolution at higher frequencies: 

p = f 1(af +b) 

cqc 



4 

The frequency f is in Hz. The shape of the function is easily changed by 
choosing different values for a and b. We choose a= 9.0e-05, and b= 2.6. 

It is this mapping that determines the number of pitch units in the range up to 
the Nyquist frequency. 

• The basilar membrane components are convolved with a constant spreading 
function to simulate the dispersion of energy along the membrane. The 
spreading function applied to a pure tone results in an asymmetric triangular 
excitation pattern with slopes of 24 and -4 dB/Bark on the low and high 
frequency sides, respectively. Twenty-five Barks (a traditional unit of pitch) 
cover the total pitch range. The spreading function is implemented by 
sequentially applying two recursive filters, 

Hi(z) =  11(1-a/z) and H2(z) =1/(1-bz), 

where the a and b coefficients are the reciprocals of the slopes of the spreading 
function on the dB scale. 

• A small intrinsic frequency-dependent energy is added to each of the basilar 
membrane components to account for the absolute hearing threshold. The 
intrinsic energy for the ith pitch unit is as follows [3]: 

E = 3.65 fi --(18  

• The basilar sensation vector is obtained by converting the basilar membrane 
cornponent energies to decibels. Note that the energy is not converted to 
subjective loudness, or sones [9]. The compressive sone scale represents 
perceived loudness more accurately than the decibel scale. However, small 
differences in loudness between a reference and a test signal should not be 
affected dramatically by different forms of the non-linear energy transformation 
function. 

2.2 Cognitive Model 
Since the BM representation produced by the model is expected to represent only supraliminal 
aspects of the audio signal, this information should be sufficient to simulate results of listening 
experiments. However, the perceptual salience of audible basilar degradations can vary 
depending on a number of contextual factors. Therefore, the reference BM representation and the 
basilar degradation vectors are processed in various ways according to reasonable assumptions 
about human cognitive processing. The result is a number of variables, described below, that 
together produce a perceptual quality rating. A value for each variable is computed for each of 
three adjacent frequency ranges - 0 to 1000 Hz, 1000 to 5000 Hz, and 5000 to 18000 Hz. An 
exception is the measure of harmonic structure of spectmm error that is calculated using the 
entire audible range of frequencies. 

The following features, described below, vvere found useful for predicting the quality of an audio 
sequence: average distortion level, maximum distortion level, average reference level, reference 
level at maximum distortion, coefficient of variation of distortion, correlation between reference 
and distortion patterns, and harmonic structure in the distortion. 

A total of 19 variables result from these seven features when the three pitch regions are taken 
into account. The variables are mapped to a mean quality rating of that audio sequence as 
measured in listening tests. Non-linear interactions among the variables are required because the 

C1C 



5 

average and maximum errors should be weighted differentially as a function of the coefficient of 
variation. A multilayer neural network with semi-linear activation functions was applied to allow 
this possibility. 

The feature calculations and the mapping process implemented by the neural network constitute 
a task-specific model of auditory cognition. 

2.2.1 Average Distortion Level 
For each analysis frame, the model provides a basilar error vector that describes the extent of 
degradation over the entire range of auditory frequencies. A positive error represents energy 
added to the reference signal, while a negative error represents energy taken awa.  y. A single 
scalar estimate of degradation for the entire sequence of frames could be obtained by integrating 
the vector elements over time and frequency. However, the perceptibility of distortions is likely 
modified by the characteristics of the current distortion as well as temporally adjacent 
distortions. The measured error was modified according to the following criteria. 

2.2.1.1 Perceptual Inertia 

A particular distortion is considered inaudible if it is not consistent with the immediate context 
provided by preceding distortions. This effect might be called perceptual inertia. That is, if the 
sign of the current error is opposite to the sign of the average error over a short time interval, the 
error is considered inaudible. The duration of this memory is close to 80 msec, which is the 
approximate time for the asymptotic integration of loudness of a constant energy stimulus by 
human listeners [6]. 

In practice, the energy is accumulated over time, and data from several successive frames 
determine the state of the memory. At each time step, the window is shifted one frame and each 
basilar degradation component is summed algebraically over the duration of the window. Clearly, 
the magnitudes of the window sums depend on the size of the distortions, and whether their signs 
change within the window. The signs of the sums indicate the state of the memory at that 
extended instant in time. 

The content of the memory is updated with the distortions obtained from processing the current 
frame. However, the distortion that is output at each time step is the rectified input, modified 
according to the relation of the input to the signs of the window sums. If the input distortion is 
positive and the same sign as the window sum, the output is the same as the input. If the sign is 
different, the corresponding output is set to zero since the input does not continue the trend in the 
memory at that position. In particular, the output distortion at the ith position, Di, is assigned a 
value depending on the sign of the ith window mean, Wi  and the ith input distortion, EL  

( SGN( Ei ) EQ SGN( Wi ) AND Ei  GT 0.0 ) D • = Ei  

( SGN( Ei ) NE SGN( Wi ) ) 	 D1 = 0.0  

2.2.1.2 Perceptual Asymmetry 

Negative distortions are treated somewhat differently. There are indications in the literature on 
perception [2][4] that information added to a visual or auditory display is more readily identified 
than information taken away. Accordingly, Perceval weighs less heavily the relatively small 
distortions resulting from energy removed from, rather than added to, the signal being processed. 
Because it is considered less noticeable, a small negative distortion receives less weight than a 
positive distortion of the same magnitude. As the magnitude of the error increases, however, the 
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importance of the sign of the error should decrease. The size of the error at which the weight 
approaches unity was somewhat arbitrarily chosen to be Pi, as shown in the following equation. 

If ( SGN( Ei ) EQ SGN( Wi ) AND Ei  LT 0.0 ) 

D = IE i l* arctan( 0.5 *lE i l) 

2.2.1.3 Adaptive Threshold for Averaging 

The distortion values obtained from the memory could be reduced to a scalar simply by 
averaging. However, if some pitch positions contain negligible values, the impact of significant 
adjacent narrow band distortions would be reduced. Such biasing of the average could be 
prevented by ignoring all values under a fixed threshold, but frames with all distortions under 
that threshold would then have an average distortion of zero. This also seems like an 
unsatisfactory bias. Instead, an adaptive threshold was chosen for ignoring relatively small 
values. That is, distortions in a particular pitch range are ignored if they are less than one-tenth 
of the maximum in that range. 

The average distortion over time for each pitch range is obtained by summing the mean distortion 
across successive non-zero frames. A frame is classified as non-zero when the sum of the 
squares of the most recent 1024 input samples exceeds 8000 (i.e., more than 9 dB per sample on 
average). 

2.2.2 Maximum Distortion Level 
The maximum distortion level is obtained independently for each pitch region by finding the 
frame with the maximum distortion in that range. The maximum value is emphasized for this 
calculation by defining the adaptive threshold as one-half of the maximum value in the given 
pitch range instead of one-tenth that is used above to calculate the average distortion. 

2.2.3 Average Reference Level 
The average reference level over time is obtained by averaging the mean level in each pitch range 
across successive non-zero frames. 

2.2.4 Reference Level at Maximum Distortion 
The value of this variable in each pitch region is the reference level that corresponds to the 
maximum distortion level calculated as described above. 

2.2.5 Coefficient of Variation of Distortion 
The coefficient of variation is a descriptive statistic that is defined as the ratio of the standard 
deviation to the mean [101 The coefficient of variation of the distortion over frames has a 
relatively large value when a brief, loud distortion occurs in an audio sequence that otherwise has 
a small average distortion. In this case, the standard deviation is large compared to the mean. 
Since listeners tend to base their quality judgments on this brief but loud event rather than the 
overall distortion, the coefficient of variation may be used to differentially weight the average 
distortion versus the maximum distortion in the audio sequence. It is calculated independently 
for each pitch region. 
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2.2.6 Similarity of reference and distortion spectra 
When the peak magnitudes of the distortion coincide in pitch with the peak magnitudes of the 
reference signal, perceptibility of the distortion may be differentially affected. The correlation 
between the distortion and reference vectors should reflect this coincidence, and this is found by 
calculating the cosine of the angle between the vectors for each pitch region as follows: 

É • É  
C = 

lÉlx1É1 

2.2.7 Harmonic structure in distortion 
Listeners may respond to some structure of the error within a frame, as well as to its magnitude. 
Harmonic structure in the error can result, for example, when the reference signal has strong 
harmonic structure, and the signal under test includes additional broadband noise. In that case, 
masking is more likely to be inadequate at frequencies where the level of the reference signal is 
low between the peaks of the harmonics. The result would be a periodic structure in the noise 
that corresponds to the structure in the original signal. The harmonic structure is measured as the 
magnitude of the largest peak in the spectrum of the log energy autocorrelation function. The 
correlation is calculated as the cosine between two vectors. 

3 Audio Quality Measurement 

3.1 Model Calibration 
The function relating the above features to listener quality ratings was calibrated using data from 
eight different listening tests conducted according to the ITU-R BS-1116 recommendation. These 
experiments are known in the ITU-R TG 10/4 as MPEG90, MPEG91, ITU92CO, ITU92DI, 
ITU93, EIA95, MPEG95 and DB2. The main features of these experiments are described in 
Appendix 1. Data from CRC97, a more recent experiment described in Appendix 2, was set 
aside to evaluate the generalization performance of the calibrated model. 

3.1.1 Network Training 
As indicated above, the variables computed by the cognitive model are mapped to the 
corresponding SDG by adapting the weights of a neural network. Informal tests indicated that a 
network with six hidden units was close to optimal. Therefore, the network architecture consisted 
of 19 input units, six hidden units, and one output unit. Outputs of the hidden and output units 
were generated using the asymmetric sigmoid activation function. Each input variable as well as 
the desired output value was scaled to span the range from zero to one. The training set 
consisted of all of the available data except those from the CRC97 experiment. Weight 
adaptation was performed using an accelerated form of the backpropagation learning algorithm 
[7]. 

An important concern when training a neural network is to ensure that overfitting does not occur. 
When the training error is reduced too much, idiosyncratic variations in the training data begin to 
have undue influence, and generalization to a new data set usually suffers. Overtraining can be 
detected by periodically testing with a validation test set not used during training. Training 
should be stopped at the point where generalization error with the test set is at a minimum. The 
purpose of the preliminary training phase was to identify the critical mean square error for the 
training set when validation test set performance failed to improve. The final network could then 
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be trained with all the available data to this same level of performance with some assurance that 
significant overtraining did not occur. 

3.1.1.1 Preliminary Training 

This training phase was designed to discover when overtraining is expected to occur with this 
particular input distribution and output mapping, so that overtraining could be avoided when 
training a final network using all of the available data. The procedure uses validation test sets 
drawn from the same distribution as the training sets. The set of 610 available audio sequences 
was divided into five equivalent subsets in terms of distortion severity. All items were sorted by 
subjective quality rating and then divided into subsets by selecting every fifth item of the sorted 
sequence, each subset starting at a different offset from the beginning. Then five different 
training and validation test sets were created by choosing each subset as a validation test set, and 
combining the remaining subsets to form a corresponding training set. Each training and 
validation test set was used to train a different network. Training was stopped when test set 
performance ceased to improve. 

The overall generalization performance based on all 610 sequences was obtained by combining 
the validation test set performance from each of the five networks. Because the outcome of 
network learning is not predetermined due to random initialization of the network weights, this 
procedure was repeated five times to measure the average critical mean square error. Therefore, 
the procedure required training and evaluating 25 separate networks. 

A linear correlation between the system's quality prediction and the mean quality rating obtained 
from human listeners is used as a performance indicator. The usefulness of the present feature set 
was judged on the basis of overall training and validation test set performance. Table 1 shows the 
average correlation for each of the five training sets, as well as the validation test set 
performance for each network. The correlation for all the validation sets combined was 0.848. 
Figure 3 shows the predicted qualities versus the actual mean listener ratings for the combined 
set. Table 2 shows the corresponding critical mean square error. The overall average of 0.011 
was used as the stopping criterion for training the final network with all the training data. 

Table 1. Training and validation test set performance 

R-squared values  
Training Training Training Training Training Training 	Overall  

NetID 	Replicate 	set0123 	set0124 	set0134 	set0234 	set1234 	avg 	val_set  
Netl 	1 	0.843 	0.800 	0.842 	0.770 	0.844 	0.820 	0.721  
Net2 	2 	0.822 	0.829 	0.763 	0.785 	0.839 	0.808 	0.723  
Net3 	3 	0.829 	0.798 	0.805 	0.775 	0.844 	0.810 	0.712  
Net4 	4 	0.823 	0.794 	0.787 	0.757 	0.772 	0.787 	0.710  
Net5 	5 	0.825 	0.831 	0.816 	0.850 	0.826 	0.830 	0.731  
Mean 	 0.828 	0.810 	0.803 	0.787 	0.825 	0.811 	0.719 
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Table 2. Training set critical mean square error 

Training msqe at the minimum test msqe  
Training Training Training Training Training Training  

NetID 	Replicate 	set0123 	set0124 	set0134 	set0234 	set1234 	avg  
Netl 	1 	0.009 	0.012 	0.008 	0.015 	0.008 	0.010  
Net2 	2 	0.010 	0.009 	0.015 	0.014 	0.009 	0.011  
Net3 	3 	0.010 	0.012 	0.011 	0.014 	0.009 	0.011  
Net4 	4 	0.010 	0.013 	0.012 	0.016 	0.015 	0.013  
Net5 	5 	0.010 	0.009 	0.010 	0.008 	0.011 	0.010  
Mean 	 0.010 	0.011 	0.011 	0.013 	0.010 	0.011 

3.1.1.2 Final Network Training 

The final network was trained with all 610 sequences using the critical mean square error 
determined above (0.011) as the stopping criterion. The resulting correlation of predicted 
qualities of training items with subjective qualities was 0.914. 

Figure 4 shows the predicted qualities versus the actual mean listener ratings for the items used 
to train this network. 

Overall Validation Test Set Performance 

-2 

Model Quality Measure 

-4 
,- , 

-1 o 

Figure 3. Model prediction vs subjective rating for validation test items 
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3.2 Generalization Test 

3.2.1 Predictions of mean item quality 
Because the validation test sets guarded against overtraining, they were still involved in the 
training process, and therefore, do not provide a true test of generalization performance. 
Fortunately, the ability of the final network to generalize to a truly independent data set could be 
evaluated by using the 136 items in the CRC97 database (Appendix 2). The correlation of 
predicted qualities of items in this database with subjective qualities was 0.764. This is a 
significant decrease compared to the correlation of 0.848 obtained from the validation test sets 
during the preliminary training phase. 

Figure 5 shows the predicted qualities versus the actual mean listener ratings for the CRC97 data 
set. 

Final Network Training Set Performance 

Figure 4. Model prediction vs subjective rating for training set items 
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CRC97 Generalization Performance 

Model Quality Measure 

Figure 5. Model prediction vs subjective rating for CRC97 items 

3.2.2 Predictions of codec performance 
The CRC97 listening test (Appendix 2) was conducted to compare the performance of six state-
of-the-art codecs. The perceived qualities of the codecs were compared as a function of bit rate, 

and the analysis permitted statements about the statistical significance of observed differences. 

Since the objective quality measurement system predicts only the mean quality of an item and 

not the associated variance, statistical sig,nificance testing of differences is not possible, 

Nevertheless, it is of interest to compare the rank order of the objective means with that of the 

subjective means. Could the objective means have given a similar impression of the relative 

merits of the codecs under test? 

The first comparison, shown in Figure 6, plots the 17 mean subjective ratings for the available 
codecs and bit rates versus the corresponding mean objective qualities. The correlation of 0.91 
indicates that the overall correspondence is quite good, although there are several noticeable 
deviations. 

The nature of these deviations becomes clearer from a more systematic comparison. Figure 7, 
taken from [8],  shows the subjective quality of each codec at the available bit rates. The overall 
confidence interval obtained from the highest order analysis of variance interaction is 
superimposed on each point of the graph. Figure 8 shows the corresponding mean objective 

quality measurements. 
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The model did well in identifying the best performing codecs as defined by the results of the 
subjective listening test. The highest quality codecs were correctly found to be the AAC codec at 
128 kbps and the AC3 codec at 192 kbps. 

The model's largest measurement error was the excessively low quality assigned to the Layer II 
 codec at the 160 kbps bit rate. The quality of the PAC codec at the same bit rate was also slightly 

lower than it should have been. Finally, the measured qualities of both the AC3 codec at 128 
kbps and the Layer III codec were too high. 

Codec Quality Averaged Over Items 

Figure 6. Model measurement of codec qualities 
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Subjective Quality Measurements 
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Figure 7. Subjective ratings of codecs x bit rates 
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4 Conclusions 
The model was assessed in terms of its ability to predict the perceived quality of an individual 
audio item, as well as its ability to judge the average performance of a codec system. 

4.1 Individual item quality measurement 
The correlation between predicted and actual qualities for individual items was 0.914 for the 
training data and 0.848 for the validation test set drawn from the same distribution. However, the 
correlation decreased to 0.764 for the true generalization test data. This drop in performance 
might be due to inadequacies in the ear model, the cognitive model, or even the quality of the 
subjective test data used to calibrate the model. On the other hand, the generalization test data 
may contain types of distortions not present in the training data. Further work should consider 
all of these possibilities. 

4.2 System quality measurement 
Codec quality was measured by averaging the qualities of a number of individual items processed 
by the codec at a particular bit rate. The resulting data will have less variance, so the observed 
increase in the correlation with the subjective quality ratings should be expected. The pattern of 
results was consistent with that obtained from the subjective listening tests, and the model 
successfully identified the best performing codecs. 

Comparison of Figure 7 with Figure 8 is useful for uncovering systematic errors made by the 
measurement model. For example, Figure 8 indicates that the model is overly sensitive to the 
kind of distortion(s) made by the Layer II codec operating at 160 kbps. Conversely, it seems 
somewhat insensitive to a type of distortion inserted by the Layer Incodec and the AC3 codec at 
128 kbps. Investigation of these anomalies could provide useful clues for improving the model. 
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Appendix  1— Description of the Training Database 

Database I consists of audio files and corresponding observer ratings from five different listening 
tests. They are as follows: 
DataSet Name: MPEG90 

Ten stereo sequences: 
Suzanne Vega 
Tracy Chapman 
Glockenspiel 
Fireworks 
Omette Coleman 
Bass Synth 
Castanets 
Male speech 
Bass Guitar 
Trumpet (Haydn) 

Processed by two codecs at three bit rates (64, 96, and 128 kbit/sec/channel) 
The mean subjective difference grade (SDG) per item quite uniformly covered the range 
from 0.01 to —3.98. 

DataSet Name: MPEG91 
Nine stereo sequences: 

Suzanne Vega 
Carmen 
Male speech 
Omette Coleman 
Accordian/Triangle 
Tambourine 
Bass guitar 
Glockenspiel 
Percussion 
George Duke 

Three bit rates: 64, 96, and 128 kbits/sec/channel 
Seven codecs: 

MPEG Layer I 
MPEG Layer II 
MPEG Layer HE 
MUSICAM 
ASPEC 
NICAM 

At least 88 percent of the mean SDG per item were above —2.0, and the range was 0.09 to -3.75. 
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DataSet Name: ITU920I 
Twelve stereo sequences: 

Asa Jinder 
Dalarnas Spelmarsforbund Trettondagsmarchen 
Stravinsky: Wind Octet 
Triangles 
Solo harpsichord 
Castanets ' 
German male speech 
Omette Coleman 
Bass guitar 
Suzanne Vega 
Ravel: "Feria" (Spanish Suite) 
Dire Straits: "Ride Across the River" 

Five distribution codecs: (120 kbits/sec/channel) 
Each item was processed by the same codec three times in tandem, with a 0.1 de drop in level 
before each pass. Each channel of the stereo pair was coded independently. 

ISO Layer 2 
ISO Layer 3 
Dolby AC-2 
Aware 
NHK 

Eighty percent of the mean SDG per item were above —2.0, and the range was 0.13 to -3.43. 

DataSet Name: ITU92C0 
Ten stereo sequences: 

Asa Jinder 
Dalamas Spelmarsforbund Trettondagsmarchen 
Stravinsky: Wind Octet 
Triangles 
Solo harpsichord 
Castanets 
German male speech 
Omette Coleman 
Bass guitar 
Suzanne Vega 

Six contribution codecs: (180 kbits/sec/channel) 
Each item was processed by the same codec three times in tandem, with a 0.1 dB drop in 
level before each pass. Each channel of the stereo pair was coded independently. 
ISO Layer 2 

• ISO Layer 3 
Dolby AC-2 
Dolby Low-Delay 
Aware 
ATT DSQ 5TR620 

At least 96 percent of the mean SDG per item were above three, and the range was 0.22 to —2.41. 
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DataSet Name: ITU93 
Seven stereo sequences: 

German male speech 
Solo castanets 
Asa finder 
Bass clarinet arpeggio 
Solo harpsichord atpeggio 
"Vi salde vara henunan" (solo violin) 
Bagpipes 

ISO Layer II tandem codec configurations: (bit rate given for stereo pair) 
Emission codec alone at 256 kbit/sec (independent channel coding) 
Emission codec alone at 192 kbit/sec (joint stereo coding) 
Eight contribution codecs at 360 kbit/sec followed by one emission codec at 256 
kbit/sec 
Eight contribution codecs at 360 kbit/sec followed by one emission codec at 192 
kbit/sec 
Five contribution codecs at 360 kbit/sec followed by three distribution codecs at 
240 kbit/sec and one emission codec at 256 kbit/s 
Five contribution codecs at 360 kbit/sec followed by three distribution codecs at 
240 kbit/sec and one emission codec at 192 kbit/s 

Listening tests were performed by CRC (Canada) and RAI (Italy). Most of the mean 
SDG per item were above —2.0, and the range was -0.08 to -2.27. There was no 
significant difference between the data from the two labs. 

DataSet Name: EIA95 
in the IEEE Transactions on Broadcasting, Vol. 43, No. 3, Experimental results are published 

Sept. 1997. 
Nine stereo sequences: 

Bass clarinet arpeggio 
Dire Straits cut 
Glockenspiel 
Harpsichord arpeggio 
Music and rain 
Pearl Jam cut 
Muted trumpet 
Suzanne Vega with breaking glass 
Water sound 

Nine codecs: 
Eureka 147 #1 
Eureka 147 #2 
AT&T/Lucent 
AT&T/Lucent/Amati #1 
AT&T/Lucent/Amati #2 
VOALIPL 
US ADR-FM #1 
(variable bit rate) 

224 kbps/2 channels 
192 kbps/2 channels 
160 kbps/2 channels 
128 kbps/2 channels 
160 kbps/2 channels 
160 kbps/2 channels 
128-256 kbps/2 channels 
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At least 93 percent of the mean SDG per item were above —2.0, and the range was 0.14 to -3.73. 

DataSet Name: DB2 
Eighteen stereo sequences: 

Bass clarinet 
Clarinet 
Clarinet+horn 

• Horns 
Horn 
Strings 
Oboe 
Oboe+string bass 
Castanets 
Trumpet 
Tambourine 
Triangle 
Drum 
Glockenspiel 
Xylophone 
Tuba 
Speech (German, female) 
Singing (Suzanne Vega ) 

Types of distortions: 
Tandem Layer II, 256 kbit/s 
Tandem Dolby AC2 
Layer II, 256 kbit/s 
Layer II, 192 kbit/s js 
Layer II, 64 kbit/s mono 
Layer II, 384 kbit/s 
Layer  ifi (ASPEC3), 192 kbit/s 
Layer  ifi ASPEC3), 128 kbit/s 
Layer  ifi ASPEC3), 160 kbit/s 
MPEG2/L2 LSF 
APT-X, 256 kbit/s 
APT-X, 384 kbit/s 
Quantizing distortions 
Analogue distortion 
Digital errors 
Clipping 

1,3,5,7 and 9 stages 
1,3,5,7 and 9 stages 

The database consisted of 91 items. At least 83 percent of the items were given a mean SDG 
above —2.0, and the range was 0.0 to -3.98. 
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Appendix  2— Description of the Test Database 

DataSet Name: CRC97 

Experimental results are expected to appear in the Journal of the Audio Engineering Society, 
March, 1998. 
Eight stereo sequences: 

Bass clarinet 
Double Bass 
Dire Straits 
Harpsichord 
Music and rain 
Pitch pipe 
Trumpet 
Suzanne Vega 

Six codecs: (bit rate given for stereo pair) 
ATT PAC 
Dolby AC3 
MPEG Layer II software 
MPEG Layer II hardware (ITIS) 
MPEG AAC 
MPEG Layer DI 

The mean SDG per item quite uniformly covered the range from 0.13 to —3.60. 

64, 96, 128, and 160 kbit/sec 
128, 160, and 192 kbit/sec 
128, 160, and 192 kbit/sec 
96, 128, 160, 192 kbit/sec 
96 and 128 kbit/sec 
128 kbit/sec 
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