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Abstract 

Network Intrusion Detection Systems (IDS) have the reputation of generating many false positives. 
Recent approaches, known as stateful IDS, utilize the state of communication sessions into account 
to address this issue. However, for IDS to be able to distinguish between a successful and failed 
attack attempt, it requires a correlation among the state of the multiple sessions, the reactions of the 
target system and other gathered of network context information. In this report, we present initial 
research that supports an IDS approach that attempts to confirm attack success or failure by 
collecting more network context and combining this information with the attack detected 
information provided by the IDS. The approach relies on capturing the related effects of an attack 
to be able to confirm the success or failure against a target system. This approach has been 
evaluated using existing attacks on real systems and the observed results are positive and further 
work is required to refine the algorithm. 

Résumé 

Les systèmes de détection d'intrusion réseau (SDI) ont la réputation de générer plusieurs faux 
positifs. Des approches récentes, connu sous le nom de SDI à états, utilisent l'état de la 
communication pour tenter de résoudre ce problème. Par contre, pour que ces SDI soient en mesure 
de distinguer entre une attaque réussite et une attaque qui a échoué, il faudrait aussi corréler l'état 
de plusieurs sessions, la réaction du système sous attaque ainsi que d'autres informations à propos 
de la situation réseautique. Dans ce rapport, nous présentons nos résultats de recherche initiaux sur 
un SDI qui est en mesure de confirmer la réussite ou l'échec d'une attaque en capturant plus 
d'information sur la situation réseautique tout en combinant cette information avec les attaques qui 
ont été détectées par un SDI. Cette approche est basée sur la capture des effets reliés à une attaque 
pour confirmer sa réussite ou son échec contre un système. Cette approche a été testée avec des 
attaques connues contre des vrais systèmes et les résultats sont très prometteurs et l'algorithme doit 
est raffiné dans un projet futur. 
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I 	Introduction 

Our belief is that much remains to be done to improve attack detection. In [I], we reported the 
results of an experiment during which we evaluated the response of Snort 2.3.2 [2] (a stateful IDS) 
and Bro 0.9a9 [3] (another stateful IDS), which are two of the most advanced and widely used open 
source IDS, to well-known attacks. We used 92 vulnerability exploitation programs (VEP), which 
implemented attacks against 85 vulnerabilities in commonly used software systems and 
applications. Results showed that Snort, in particular, is not able to confirm attack attempts. 
Moreover, Sno rt  is not able to distinguish between a successful and a failed attack attempt. This 
confirmed our belief that despite the adoption of stateful approaches, much remains to be done to 
improve attack detection. 

Specifically, we identified that: (1) the false positives problem partly lies in the inability of current 
IDS to incorporate intrusion alarms in an even larger network context l ; and (2) IDS mostly rely on 
a single packet within one session to identify attacks, whereas detecting modern attacks requires 
monitoring series of packets in multiple sessions to distinguish between successful and failed 
attacks based on the reaction of the target system. 

The Passive Network Monitoring Tool2  Extended (PNMT-X) approach described in this report 
attempts to address the second issue. PNMT-X was developed at the Communications Research 
Centre of Canada and it can monitor complex communication patterns that involve multiple packets 
in multiple sessions to capture the target system's reaction during an attack. 

The rest of this report is structured as follows: Section 2 describes the measures defined to compare 
PNMT-X with Snort and Bro. Section 3 describes the attack scenarios identified in the traffic traces 
of our data set. Section 4 describes our approach. Section 5 presents the results we obtained and a 
comparative analysis with Snort and Bro. Conclusions are drawn in Section 6. 

2 	Metrics 

In the literature, the techniques used to establish, compare and evaluate IDS accuracy are usually 
ad-hoc and the metrics that are used are poorly defined. Thus, we decided to develop our own IDS 
accuracy metrics to address this problem and be able to compare our PNMT-X accuracy with Snort 
and Bro. The measures we used a confusion matrix to measure the accuracy of IDS. Table 2.1 is an 
example of a confusion matrix for IDS testing. 

I  For instance, if a packet is recognized as being a threat to a Windows machine but is sent to a Unix machine (network 
context), a context-based IDS can be designed to be silent (if this is acceptable to the network administrator). 
2 PNMT is the result of previous related research at the Communications Research Centre of Canada, which was 
extended to include the proof of concept IDS 
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2 1 
3 4 

Attack 
No Attack 

Event No Event 

Table 2.1 Confusion Matrix Example 

The rows are associated with the known correct attribute of the data (e.g. Attack and No Attack) 
and the columns are associated with predicted value provided by the IDS (e.g. Event and No 
Event). Thus, the accuracy in a square confusion matrix is always obtained using the sum of the 
value in the diagonal from the top left  side to the right bottom side divided by the sum of all values 
in the matrix. These values represent the number of occurrences of a predicted value in relation to 
its real value. For example, the value in position (No Attack, Event) represents the total number of 
instances that an IDS has generated an attack event when there is no attack. In the example of 
Figure 2.1 we used 10 test cases. There are 2 times when the IDS has provided an event when there 
is an attack, 1 time it provided no event when there is an attack, 3 times it provided an event when 
there is no attack and 4 times it provided no event when there is no attack. Equation 2.1 defines this 
7measure. 

v n Accuracy = 	mP, ij 
-1 	 i-1 

Equation 2.1 

A value of zero (0) means that the IDS providing the result is never accurate and a value of one (1) 
means that the IDS is always accurate. In this example, the accuracy is 0.6 (e.g. (2+4)1(2+1+3+4)) 
for these test cases. 

In our project, we observed that most IDS events can be classified into three types: attack events, 
related attack events, unrelated attack events. The attack events are the events generated by IDS 
when the IDS is convinced that there is an attack in progress. The related attack events are events 
likely generated by an attack. For example, during a buffer overflow attack, a resulting command 
prompt event is a related attack event. The unrelated attack events provided by the IDS are not 
related to any part of the attack, and can be classified as noise generated by the IDS. For this first 
part of the project, we did focus on the ability of IDS to detect attacks, meaning only attack events 
were needed. We determined that an IDS is able to identify that an attack is occurring if one of the 
events in its log file has an association with the vulnerability exploited by the attack attempt 
currently generated by the test case. Contrarily, it is not able to identify an attack if there is no 
event logged for the attack attempt. 

All events that represent attacks are grouped into four classes: the Attempt (A) event, the Likely-To-
Succeed (LS) event, the Likely-To-Fail (LF) event and the Silence (S) (absence of) event. The 
latter, (S), represents the case when the IDS does not provide an event related to an attack, 
regardless of reason. The Attempt event describes an attack attempt against a target system. The 
Likely-To-Succeed event confirms that an attack is likely to succeed. The Likely-To-Fail event 
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confirms that an attack attempt is likely to fail. All attack events that are raised by an IDS for a test 
case are classified into one of these four classes. The total number of events in each class is 
associated with its position in the matrix to determine the accuracy. 

We developed three metrics to determine accuracy: the detection level, the classification level, and 
the confirmation level. Each of these metrics represents a level of precision achieved by the IDS. 

2.1 Detection Level 
The detection level measures the capability of the IDS to detect attacks. The known attributes are 
Normal traffic and Attack traffic and the predicted values are classified into Detected and Not 
Detected. Thus, the test cases that have provided Attempt event, Likely-To-Succeed event or the 
Likely-To-Fail event are grouped into Detected and the test cases in which we have no event 
(Silence) are grouped in Not Detected. 

Under normal circumstances, a perfect IDS would only detect attacks when it sees attack traffic and 
would not detect attacks vvhen it only sees normal traffic. In our test environment data set, all the 
traffic traces contain attack traffic, and we do not have "normal" traffic. Therefore, we are not able 
to completely evaluate this aspect of the IDS accuracy. However, the attack traffic is sufficient to 
evaluate the accuracy of IDS to detect attacks. The accuracy for this modified metric is simply the 
number of Detected traffic traces divided by the total of number of attack traffic traces. In this case, 
we state that an IDS is able to detect an attack if for at least one of the test cases related to an attack 
it is able to provide one event associated with this attack attempt. 

2.2 Classification Level 

The classification level measures the ability to distinguish between successful and failed attack 
attempts against a target. The known attributes are Successful attack and Failed attack and the 
predicted values are classified into Positive event and Negative event. Thus, the events provided by 
the IDS are classified into two classes: the Positive events, the Attempt event and the Likely-To-
Succeed event and the Negative message, the Likely-To-Fail event and the Silence (absence of) 
event. The accuracy is measured by the sum of Positive events for Successful attacks and the sum 
of Negative events for the Failed attack attempts divided by the sum of all values. 

2.3 Confirmation Level 

The confirmation level measures the IDS ability to confirm the success or failure of attack attempts 
against a target. The known attributes are Successful attack and Failed attack and the predicted 
values are Attempt, Likely-To-Succeed, the Likely-To-Fail and Silence. This is not a square 
confusion matrix and the accuracy measures have to be modified. A perfect IDS is one able to 
confirm all successful attacks and confirm all failed attack attempts. Thus, the accuracy is the sum 
of Successful attacks that are Likely-To-Succeed and the number of Failed attack attempts that are 
Likely-To-Fail divided by the total of all attacks. 
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These three level metrics will have different results based on the unit of measurement used for the 
test case such as traffic traces, VEP and vulnerability. Our data set is a composition of traffic traces, 
in which each traffic trace is associated with a unique VEP. Each VEP is associated with a 
vulnerability or BID (Bugtraq identification number) in the Security Focus 3  database. Thus, the 
accuracy can be measured using traffic traces, VEP or vulnerability taken together as a unit or we 
can measure the accuracy by traffic traces, VEP or vulnerability taken individually. In the case of 
detection level, we measure the accuracy using a VEP as the unit of measurement for our data set. 
In this case, it is important to remember that some IDS such as Bro and Snort are silent when they 
detect failed attack attempts. Thus, it is not possible to measure the detection accuracy of IDS at the 
traffic traces level. It needs to be measured at the VEP level. 

3 	Multi-Session Attack Scenarios 
In this section, we examine the attack scenarios contained in our data set and the capability needed 
by IDS to be better able to detect, classify and confirm intrusion situations. One of the reasons that 
IDS are not able to provide better accuracy is their inability to see all the information related to an 
attack. Assuming that the IDS is properly positioned to gather the requisite traffic, it is the IDS's 
native capabilities that must be considered and measured. For an attack to be successful against a 
computer system, two elements are required: a known (by the attacker) vulnerability and the 
corresponding mechanism that attacks this vulnerability. 

In the case of our test data set, we need a vulnerable target system or service and the corresponding 
group of packets for exploiting this vulnerability for the attack to be successful. Through 
examination of the attacks included in our data set, we believe that two aspects of attacks could be 
used to improve IDS recognition of network based attacks: the attack context and the reaction of 
the target. It is important to note that the data set used in this project has been carefully constructed 
and examined to make the suppositions given in this section and draw the conclusions described 
later in this report. 

First, the context of the attack can be used to improve accuracy of IDS because vulnerabilities are 
associated with software versions and knowing whether this particular software version is installed 
and active on a system could improve IDS accuracy. 

Second, monitoring the reaction of a target system to an attack can also improve IDS accuracy for 
network attacks. Because a group of packets sent to a target system tries to exploit a particular 
vulnerability, the expected response from the target system can be different, depending on whether 
or not the attack is successful. Moreover, we  cari  expect that a vulnerable system and a non-
vulnerable system will behave differently when the same group of attack packets is sent to each 
target system. 

For the research activities described in this report, the focus will be on the reaction of the target 
because attack context information is difficult to capture as the attack context is usually not given 
in the attack traffic traces. From a detailed examination of all of the VEP used in our data set we 
identified four abstract attack scenarios. These four attack scenarios are: 

3 www. securityfocus.com  
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1. Direct Shell Attack Scenario, 
2. Reverse Shell Attack Scenario, 
3. Denial of Service Attack Scenario and 
4. Standard Message Reaction Attack Scenario. 

The basic premise of this research project is that a small number of "scenarios" can be identified 
that represents most, if not all of the attack cases currently seen on networks. If this premise is 
correct, then attack detection can be made to more accurate, and be used to identify (predict) the 
onset of new attacks without previous detailed knowledge of the new attack. 

Before giving more information on the definition of these attack scenarios, it is possible to make a 
few general observations from work to date. Snort and Bro do not have the capacity to detect the 
first three attack scenarios. These IDS are only able to correlate packets within a single session. 
They are not able to correlate packets in more than one session or to capture network context 
information such as port and host state. Snort and Bro have the capability or potential to be able to 
detect and classify attacks that are in the Standard Message Reaction Attack Scenario. However, 
based on our results presented in [1], only Bro has expressed this capability in its rule set. Even 
with this capability, we noticed that the verification of this scenario with Bro is often erroneous and 
incomplete. Snort may have the potential to detect this scenario by usingflowbit, but it is not used 
to detect this scenario. 

In the following sections, we will present each attack scenario. The attack scenarios are 
decomposed into a Likely-To-Succeed scenario and a Likely-To-Fail scenario, which distinguish 
between the successful attack and the failed attack attempt. 

3.1 Direct Shell Attack Scenario 
The Direct Shell Attack Scenario describes the case of an attacker trying to open a remote shell 
program on the target system. First, the attacker tries to attack the target system using a particular 
vulnerability in a network session. Usually the attacker adds code to be executed in the attack 
packet using that exploit buffer overflow vulnerability. The code to be executed contains a remote 
command shell server that the attacker can use to access the target system. After the attack, the 
attacker tries to connect to another selected port on the target system. If the attack failed, the port 
will be closed on the target system and there will be no session between the attacker and the target 
system on this port. This can be repeated 0 to N time until the attack is successful, thus that the 
predefined port is open and the attacker is able to connect to this port with the target system. Figure 
3.1 represents this attack scenario. From this scenario, a successful attack and a failed attack can be 
identified. 
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PortClose(A,P1,B,P2) 

Attack E Session(A,P3,B,P4) 

PortOpen (A,P5,B,P2) 

Strong 
Weak 

Attack(1) E Session(A,P1,B,P2) 
0 N 

PortClose(A,P3,B,P4) 

Attack(n)  E  Session(A,P5,B,P2) 

PortOpen (A,P6,B,P4) 

Figure 3.1 Direct Shell Attack Scenario 

In the case of an attack that succeeds, we can derive two sub-scenarios. Figure 3.2 represents these 
attack scenarios. The Strong scenario specifies that the attacker has tried to connect to a predefined 
port but was not able to get a connection from the target system on that port until an attack attempt 
was tried. In the case of the Weak scenario, we were not able to see that the port was closed before 
the attack attempt. The hash line indicates optional information that can be used to increase the 
level of confidence that this attack was successful such as shell command or shell code 
identification. 

Shell E Session(A,P5,B,P2) 

Figure 3.2 Successful Direct Shell Attack Scenario 

In the case of a failure, presented in Figure 3.3 the attacker is never able to connect to this 
predefined port after the attack attempt. 

Attack E Session(A,P1,B,P2) 

PortClose(A,P3,B,P4) 

Figure 3.3 Failed Direct Shell Attack Scenario 

3.2 Reverse Shell Attack Scenario 
The Reverse Shell Attack Scenario describes an attacker trying to open a shell connection from the 
target system to the attacking system, or even a third system. First, the attacker tries to attack the 
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target system in a session. After the attack, it waits for a cormection from the target system to 
connect to a predefined port on the attacking system. Usually, the attacker adds code to be executed 
in the attack packet that exploits a buffer overflow vulnerability in the target system. The code to be 
executed contains a remote command shell server that connects to the attacker and than can used to 
access the target system. The attack can be repeated 1 to N times. If the attack is successful, there 
will be a connection back from the target system to the attacker. Figure 3.4 represents this attack 
scenario. In this case, only a successful attack can be inferred. If the attack failed there will be no 
connection back from the target system to the attacker, thus a failure can not be observed by the 
IDS. 

Attack(1) E Session(A,P1,B,P2) 
1..N 

Attack(n) E Session(A,P3,V2) 

PortOpen (A,P4,B,P5) 
4 	  

Figure 3.4 reverse Shell Attack Scenario 

The success scenario, presented in Figure 3.5, shows that after the successful attack, there is 
connection back from the target to the attacker. The hash line indicates optional information that 
can be used to increase the level of confidence that this attack was successful such as shell 
command or shell code identification. 

Attack(1) E Session(A,P1,B,P2) 

PortOpen (A,P3,B,P4) 
4 

Shell E Session(A,P3,B,P4) 

Figure 3.5 Successful Reverse Shell Attack Scenario 

3.3 Denial of Service Attack Scenario 
The Denial of Service Attack Scenario describes an attacker trying to cause a denial of service on a 
target system. First, the attacker initiates a denial of service attack on the target. If the service 
remains available to the attacker or other clients, the attack failed. The attacker can then try this 
attack from 1 to N times against the target system. If the attack is successful, the targeted system or 
particular service will no longer be available to the attacker and the other clients of the target 
system. Figure 3.6 represents this attack scenario. From this scenario a successful attack and a 
failed attack can be determined. 
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Attack(1) E Service(A,B) 

ServiceOpen(A',B) 	 0..N 

Attack(n) E Session(A,B) 

ServiceClose  (A", B)  

Figure 3.6 Denial of Service Attack Scenario 

In the successful attack, presented in Figure 3.7, the service is no longer available to the attacker or 
any client of the target system after the denial of service attack. 

Attack(1) E Service(A,B) 

ServiceClose  (A', B)  

Figure 3.7 Successful Denial of Service Attack Scenario 

In the failed attack, presented in Figure 3.8, the service is still available after the denial of service 
attack to the attacker and the other clients of the target system. 

Attack(1)E Service(A,B) 

ServiceOpen(A' B) 

Figure 3.8 Failed Denial of Service Attack Scenario 

3.4 Standard Message Reaction Attack Scenario 
The Standard Message Reaction Attack Scenario describes the reaction of the attacked service to an 
attack attempt. First, the attacker sends an attack to the target system. In some situation such as 
HTTP, FTP and STMP the protocol provides standard success and/or error message to confirm the 
execution of a request by the client. Figure 3.9 represents this attack scenario. In many situations, 
this reaction from the server is a source of information concerning the success or failure of an 
attack. In the case of a failure of the attack, the target will respond with an error message. The 
attacker can try this attack from 1 to N times. If the attack is followed by a success message, we can 
say that the attacker has succeeded attacking the target system. 

0 N 
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Attack(1) E Session(A,P1,B,P2) 
0..N 

Error E Session(A,P1,B,P2) 
4 	  

Attack(n) E Session(A,P3,B,P4) 

Success E Session(A,P3,B,P4) 
4 	  

Figure 3.9 Standard Message Reaction Attack Scenario 

The successful attack scenario, presented in Figure 3.10, arises when an attack is followed in the 
same session by a success message from the target system. 

Attack(1) E Session(A,P1,B,P2) 

Success E Session(A,P1,B,P2) 

Figure 3.10 Successful Standard Message Reaction Attack Scenario 

The failed attack, presented in Figure 3.11, arises when an attack is followed in the same session by 
an error message from the target system. 

Attack(1) E Session(A,P1,B,P2) 

Error E Session(A,P1,B,P2) 

Figure 3.11 Failed Standard Message Reaction Attack Scenario 

However, the situation concerning success or failure determination is not always straight forward. 
The error message can represents a successful attack and the success message can represent a failed 
attack. These situations will be further described in the next sections. 

From the attacks contained in our data set, we developed a proof-of-concepf l  for an IDS that is able 
to detect, classify and confirm these attack attempts by using these four attack scenarios with our 
data set. The approach taken to implement the proof of concept is described in the next section. 

4  A proof-of-concept is a lab based system that embodies the basic research fmdings. It is the precursor to a prototype 
system, which will be field deployable. 
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) 

Sno rt  

GUI 

PNMT-X 

H Sno rt  

Prolog 

4 Proof of Concept Design 
The Passive Network Management Tool Extended (PNMT-X) is composed of two IDS engines and 
three IDS rule databases. Figure 4.1 represents the structure of the PNMT-X. 

Figure 4.1 PNMT-X 

There are three components: Snort5  , the PNMT-X engine and the user interface (GUI). In 
operation, the Snort engine provides events to the PNMT-X engine using two IDS rule databases: 
the default Snort rule database and the CRC Snort rule database. The default Snort rule database is 
the one that came with Snort 2.3.2. 

The CRC Snort rule database was developed at CRC to allow Snort to provide attack context 
information to PNMT-X. The CRC Snort rule database is composed of two rule sets: the protocol 
rule set and the attack reaction rule set. The protocol rule set is used by the Snort engine to generate 
the events needed by the PNMT-X engine to monitor the sessions, the port states and the host states 
for the computer systems in the network. The attack reaction rule set is used by the Snort engine to 
generate the events needed by the PNMT-X engine to monitor the target's reaction to an attack. All 
the events generated by the Snort engine are sent to the PNMT-X engine. 

In the proof-of-concept, the Snort generated events are stored in a file that is read after the entire 
traffic trace has been analyzed by the Snort engine. The PNMT-X engine reads the Snort events in 
order and verifies, using its rule database, whether or nit it can confirm that an attack attempt was 
successful or failed. The confirmed events are then sent to the GUI and stored in a file in XML 
format. The PNMT-X rule database is a Prolog rule set database that models two aspects of PNMT-
X: the monitored objects and the attack scenario rules presented in the previous section. 

To be able to identify the four types of attack scenarios, we need to model four objects: the Session, 
the PortState, the HostState and the AttackAttempt objects. We decided to use Prolog because it is 
a logic engine as well as a knowledge base. Thus, we could implement easily and it offer inference 
engine to verify if the Snort events with the gathered network context. 

The Prolog database transforms each Snort event object using a set of rules into one of these 
objects. In this case, the Prolog database becomes a knowledge base that keeps track of the network 

5  Snort version is 2.3.2 
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context. The Session objects are used to monitor sessions between two computers. The PortState 
objects are used to monitor the state of a TCP/UDP port on a particular computer. The Session and 
PortState objects are used in the first three attack scenarios. The HostState objects are used to keep 
track of the host state and are used in the Denial of Service Attack Scenario. The AttackAttempt 
objects are used to describe the attack attempts tried against a target. These are the objects that the 
attack scenarios rules, defined in Prolog, are 1rying to confirm using the network context modeled 
by the Prolog database. To associate network context such as Session, PortState and HostSate with 
the AttackAttempt, we used temporal logic (TL). The temporal logic operators were written in 
Prolog to be used in the Prolog rules. To simplify the analysis we associated each Snort class with 
only one of the attack scenarios. In this case, the Direct Shell Attack Scenario and Reverse Shell 
Attack Scenario were used to confirm the Administrative Attack Attempt Snort class of events. The 
Denial of Service Attack Scenario is used to confirm Denial of Service Attempt Snort class of 
events. The Standard Message Reaction Attack Scenario is used to confirm Web Attack Attempt 
Snort class of events. 

For example, successful the Direct Shell Attack Scenario can written in Prolog such as 

pnmtxEvent(Time, ID, "Direct Shell Attack", "LS", Classification, SIP, SP, DIP, 
DP) : 

snortEvent(Time, ID, Message, Classification, SIP, SP, DIP, DP), 
administrativeAttackAttempt(Classification), 
occur(previousConnection("closed", SIP, DIP, DP2), Timel, Time2), 
occur(connection("open", SIP, DIP, DP2), Time2, Time2), 
before(Timel, Time), 
before(Time, Time2). 

This Prolog rule specifies that we have a PNMT-X Likely-To-Succeed Direct Shell Attack event 
when there is a Snort event in the knowledge that is classified as Administrative-Attack-Attempt and 
this event occurs after a port DP2 on DIP was identified to be closed for SIP and before the same 
port DP2 one DIP has been identified to be open for the same SIP. If this rule is true, PNMT-X 
identifies that the attack detected by Snort has caused this port opening on the target system and 
thus that the attack described by the Snort event is successful for this target system. 

PNMT-X is not able to reclassify attack information when Snort is silent on test traffic traces 
because PNMT-X engine relies on Snort for events. 

5 	Res u lts 

In this section, we provide a comparative analysis of PNMT-X with Snort and Bro. Snort and Bro 
are not able to confirm any attack attempts when used with our data set. They only generate attack 
attempt events or they stay silent if they do not recognize any legitimate attack traffic. In the case 
of classification, Snort is able to distinguish between a successful attack and a failed attack attempt 
using itsflowbit plug-in. This plug-in can be used to verify the reaction of the target to an attack. 
However, Snort did not provide useful results from our data set when compared to the approach 
used by Bro to classify attacks because Snort as opposed to Bro do not check for Standard Reaction 
Message to classify the attacks. 
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In this section we identify the accuracy improvements that PNMT-X provides by reclassifying the 
successful attacks, identified by Snort and Bro as attack attempts that are into Likely-To-Succeed 
and by reclassifying the failed attacks (attack attempts or by being silent) into Likely-To-Fail. We 
used 92 VEP in our data set for this analysis. 

5.1 Snort  Analysis 

5.1.1 Complete Accuracy Maximization Class 
This class regroups the VEP for which PNMT-X has provided perfect results to the limit of its 
design (limited to the Snort 2.3.2 engine detection level). In this case, there is no enhancement of 
PNMT-X rules possible or required. There are two cases, when this situation happens. First, no 
enhancement of PNMT-X rules is required, when the IDS has correctly classified all traffic traces. 
This situation happens when all successful attacks are classified as Likely-To-Succeed and when all 
failed attack attempts are classified as Likely-To-Fail by PNMT-X for all traffic traces generated by 
a VEP. Second, it is also not possible for PNMT-X to enhance Snort's detection mechanism when 
Snort is not able to detect the attack attempt because it does not provide an appropriate event to the 
PNMT-X engine. In this situation, more rules have to be added to the Snort rule database to detect 
these attacks. The class Complete Accuracy Maximization is thus subdivided into three classes: the 
Perfect Enhancement sub-class, the Perfect Restricted Enhancement sub-class and the Evasion sub-
class. There are 23 VEP in the Perfect Enhancement sub-class, 15 VEP in the Perfect Restricted 
Enhancement sub-class and 15 VEP in the Evasion sub-class. For 53 of the 92 VEP used in our 
data set, we were able to maximize accuracy with our first version of our proof-of-concept, PNMT-
X. 

The Perfect Enhancement sub-class is composed of all the VEP for which all successful attacks are 
classified as Likely-To-Succeed and for which all failed attack attempts are classified as Likely-To-
Fail for all traffic traces generated by a VEP. Table 5.1 presents a summary of the VEP in this sub-
class and the scenarios that were used to confirm all their attack attempts. 

Attack Scenario  
Standard 

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

Ox333hate.c 	 7294 	X  
0x82-Remote.54AAb4.xpl.c 	7294 	X  
decodecheck. pl 	 2708 	 HTTP  
execiis.c 	 2708 	 HTTP  
fpse2000ex. c 	 2906 	 HTTP  
ILS escape test.sh  	2708 	HTTP  
iis50_printer overflow.pm 	2674 	 HTTP  
I isenc. zip 	 2708 	 HTTP  
iisex.c 	 2708 	- 	 HTTP  
iisrules.pl 	 2708 	 HTTP  
iisrulessh. pl 	 2708 	 HTTP  
kod. c 	 514 	 IP 
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Attack Scenario  
Standard 

Exploit 	 BB) 	Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

kox.c 	 514 	 IP  
msadc.pl 	 529 	 HTTP  
msdtc_dos.nas1 	 4006 	 TCP  
msftp dos.pl 	 4482 	 TCP  
msftp_fuzz.pl 	 4482 	 TCP  
pimp.c 	 514 	 IP  
solaris sadmind exec.pm 	8615 	X  
solarissnmpxdmid.pm 	2417 	X  
unicodecheck.pl 	 1806 	 HTTP  
unicodexecute2.pl 	 1806 	 HTTP  
windows ssl_pct.pm 	10116 	X 

Table 5.1 Perfect Enhancement 

The Perfect Restricted Enhancement sub-class is composed of all the VEP for which all successful 
attacks are classified as Likely-To-Succeed and for which all detected failed attack attempts are 
classified as Likely-To-Fail for all traffic traces generated by a VEP. The difference between this 
sub-class and the Perfect Enhancement sub-class resides in the fact that Snort is not able to detect 
some of the failed attack attempts. A thorough analysis has indicated that these undetected attacks 
are not legitimated attack attempts. Snort does not detect these VEP executions as attacks and 
PNMT-X behaves the sarne way because it does receive any event to correlate from the Snort 
engine. Table 5.2 presents the VEP in this sub-class and the scenarios that were used to confirm all 
possible attack attempts. 

Attack Scenario  
Standard 

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

0x82-dcomrpc_usemgret.c 	8205 	X  
30.07.03.dcom.c 	 8205 	X  
apache2.pl 	 2503 	 HTTP  
dcom.c 	 8205 	X  
iisuni.c 	 1806 	 HTTP  
msasn 1 _ms04_007_kil !bill .pm 	9633 	X  
oc192-dcom.c 	 8205 	X  
RFParalyze.c 	 1163 	 IP  
rfpoison.py 	 754 	 IP  
rpc!exec.c 	 8205 	X  
samba nttrans.pm 	 7106 	X 
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Attack Scenario  
Standard 

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

servu_mdtm_overflow.pm 	9751 	X  
smbnuke.c 	 5556 	 TCP  
warftpd_165_pass.pm 	9751 	X  
warftpd_165_user.pm 	5556 	X 

Table 5.2 Perfect Restricted Enhancement 

The Evasion sub-class is composed of the VEP that were not detected by Snort. In this case, 
PNMT-X is not able to enhance detection accuracy. Table 5.3 presents a summary of the VEP in 
this sub-class and an estimated list of attacks that might have been used to increase the accuracy of 
Snort if it was able to detect these attack attempts. 

Attack Scenario  
Standard 

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

DcomExpl UnixWin32.zip 	8205 	X  
HOD-ms04011-1sasrv-expl.c 	10108 	X  
HOD-ms04031-expl.c 	11372 	X  
Lsass ms04 011.pm 	 10108 	X  
msO5 039_pnp.pm 	 14513 	X  
msrpc dcom ms03 026.pm 	8205 	X  
mssq12000 preauthentication.pm 	5411 	X  
mssq12000 resolution.pm 	5311 	X  
MultiWinNuke.c 	 6005 	 IP  
Samba_exp2.tar.gz 	 ' 7294 	X  
THCIISSLame.c 	 10116 	X  
Winnuke._eci.c 	 2010 	 IP  
winnuke.c 	 6005 	 IP  
winnuke.pl 	 2010 	 IP  
zp-exp-telnetd.c 	 3064 	X 

Table 5.3 Evasion 

5.1.2 Partial Accuracy Maximization Class 
This class describes the VEP attacks that PNMT-X can partially confirm success or failure of the 
attack. There are two reasons why PNMT-X is not able to completely improve its confirmation 
accuracy when using Snort as a source of events: the attack classification and the missing reaction 
from the target. 
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Attack Classification by Snort 

To simply our proof-of-concept, PNMT-X, we associated each Snort class of attack with only one 
of our attack scenarios. Although this is not ideal for our research purposes, it did allow us to avoid 
some problems with how Snort classifies attacks. For instance, one problem occurs when a 
particular technique that exploits the vulnerability that is associated with a Snort class of attack, but 
in fact produces a behavior detected by another scenario. This occurs in the case of all attacks 
associated with BID 2674 because the attacks are associated in Snort with the Web Attack Attempt 
class, and thus with our Standard Message Reaction Attack Scenario. However, its exploitation 
technique is to execute code on the target and thus these attacks behave as an attack by the Direct 
Shell Attack Scenario or the Reverse Shell Attack Scenario. In this case, this particular attack 
signature should have been classified in the Administrative Attack Attempt Snort class. 

In a similar way, the Snort Administrative_Attack Attempt class of attack could also be included in 
the Denial of Service Attempt class because some VEP exploit the same vulnerability to cause a 
denial of service. PNMT-X is not able to confirm the success or failure of these attacks because the 
IDS events provided by Snort are not in the proper classification or they should have been included 
into more than one Snort class. 

Missing Reactions 

The PNMT-X is not able to confirm the success or failure of an attack attempt when there is no 
reaction from the target to that attack. This situation arises in the case of the Reverse Shell scenario 
when the attack failed because the expected reverse shell session is not initiated by the attacked 
target. In this case, PNMT-X is not able to confirm the failure of the attack with the current version 
for the scenarios. This is the case for the traffic traces generated by the wins.c and the 
wins_ms04 045.pm where PNMT-X is able to confirm all successful attacks because we correlate 
the reverse shell with the attack attempt, but we are not able to confirm the failure when there is no 
shell session initiation from the target for these particular VEP that used a reverse shell code an 
their attack attempt. 

It also happens in the case of the Standard Message Reaction Attack Scenario. Some of the attacks 
generated by some VEP do not trigger any respond message from the targeted server. In some of 
these cases, it is when the attack is successful, such as for jilLc and sol2k.c and in other of these 
cases it is when the attack failed. This missing information from the server does not trigger the 
Standard Message Reaction Scenario and PNMT-X is not able to confirm the success or failure. 
Table 5.4 presents a summary of the VEP and the scenarios that were used to confirm  some  of the 
attack attempt for this particular VEP in our data set. 

Attack Scenario 
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Standard 
Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

ALL UNIE XP.0 	 1806 	 HTTP  
Apache_chunked_win32.pm 	5033 	 HTTP  
DDK-IIS.c 	 4485 	 HTTP  
iis_nsiislog_post.pm 	8035 	 HTTP  
us  w3who overflow.pm 	11820 	 HTTP  
iis-zang.c 	 1806 	 HTTP  
jill.c 	 2674 	 HTTP  
lala.c 	 2708 	 HTTP  
linux-wb.c 	 7116 	 HTTP  
m00-apache-w00t.c 	3335 	 HTTP  
rs_iis.c 	 7116 	 HTTP  
sambal.c 	 7294 	X  
sambash.c 	 7106 	X  
sol2k.c 	 2674 	 HTTP  
win_msrpc_Isass_ms04-11_Ex.c 	10108 	 X  
wins.c 	 11763 	 X  
wins ms04 045.pm 	11763 	 X  
Xnuxer.c 	 7116 	 HTTP 

Table 5.4 Partial Accuracy Maximization 

5.1.3 No Improvement Class 
This class describes the VEP that PNMT-X is not able to confirm, for all their attack traffic traces, 
at least one successful attack or one failed attack attempt. Two reasons, the attack classification and 
the missing reaction from the target, described in the previous section also applies in this situation 
to explain the inability of PNMT-X to confirm successful attacks or failed attack attempts. In this 
case, these explanations can relate to all attack traffic traces of a VEP in this class. There is also 
two other explanations for this situation: unimplemented scenarios and unimplemented rules. 

Unimplemented Scenarios 

In the case of the unimplemented scenario, we decided, for this first version of the PNMT-X, to 
focus on the HTTP Standard Message Reaction alone to verify if the Standard Message Reaction 
Attack Scenario was possible to implement in our proof of concept IDS. Thus, FTP, POP, IMAP 
and STMP standard error message have not been implemented in the Standard Message Reaction 
Attack scenario. This explains why PNMT-X is not able to confirm the success or failure of attack 
that exploits FTP and SMTP vulnerabilities. In the case of POP and IMAP, we do not have any 
attacks that exploit a vulnerability related to these protocols. 

Unimplemented Rules 
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Unimplemented rules only affects the Denial of Service Attack Scenario. In our data set, we 
noticed that a denial of service mainly affects three different levels of the communication stack: the 
IP level, the TCP level, the Application level. In the case of the IP level, the computer is no longer 
able to communication using its IP stack. In the case of the TCP level, the port where the attacked 
service is running in no longer opened for communication. The effect at the application level shows 
that the port is still open but the targeted application is no longer able to communicate using this 
port. In our proof of concept, we only implemented the IP and TCP communication effect of a 
denial of service. Thus, the attacks that affect only the application aspects of the communication are 
not confirmed by PNMT-X. Table 5.5 presents a list of the VEP in this class, with the scenario that 
should have been used to confirm the attack attempt. 

Attack Scenario  
Standard 

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

0x82-WOOoou—Happy new.c 	8315 	 FTP  
0x82-wu262.c 	 8315 	 FTP  
7350oftpd.tar.gz 	 2124 	 FTP  
bid3581.txt 	 3581 	 FTP  
bysin2.c 	 7230 	 SMTP  
crash_winlogon.c 	 1331 	 IP  
ftpglob.nasl 	 3581 	 FTP  
iis_printer_bof.c 	 2674 	 HTTP  
IIS5.0_SSL.c 	 10115 	 Application  
iis5hack.pl 	 2674 	 HTTP  
iiswebexplt.pl 	 2674 	 FTP  
MS03-039-linux.c 	 8459 	X  
MS03-04.W2kFR.c 	 8459 	X  
ms03-043.c 	8826 	X  
MSO4-007-dos.c 	 9635 	 Application  
samba trans2open.pm 	7294 	X  
ssIbomb.c 	 10115 	 Application  
wd.pl 	 7116 	 HTTP 

Table 5.5 No Improvement 

5.1.4 Misclassification Class 
This class describes the VEP that PNMT-X misclassified some successful attacks as Likely-To-Fail 
or some failed attack attempts as Likely-To-Succeed. There are two reasons for this situation: the 
sub-attack success and the misleading success message from the target. 

Sub-attack Success 
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Sub-attack success arises when a VEP uses several different sub-attacks to exploit the same 
vulnerability within the course of the VEP attack. For example, decodexecute.pl  first verifies 
whether or not the exploited vulnerability is present on the target by executing a directory listing. If 
the system is vulnerable it will respond. If the first attempt is successful the VEP will try to execute 
a command on the target system. In some situations, the first command is successful, but not the 
second one. In this case, the VEP is not successful, but part of the attack was successful. The 
PNMT-X system is able to confirm that the traffic trace contains a successful attack. However, our 
VEP traffic traces classification system that relies on the VEP output is not able to make the 
distinction that part of the attack was successful and this attack was classified as failed by our 
system. 

Misleading Success Message 

In the case of lis  source_dumper.pm and iis40_htr.pm, it seems that some target systems respond 
with a success message for the attack command sent by the attacking program. Thus, the type of 
standard message can not be used in these cases to distinguish between a successful and failed 
attack attempt. It could be possible to improve the accuracy in the case of iis source_dumper.pm as 
the success message from the target contains information that the request was not executed 
successfully. This message contains contradictory information and this misclassification can be 
prevented by looking at the type of the message, and also at the part of the message containing the 
failed execution information. Table 5.6 presents a list of VEP in this class with the scenario that 
should be modified to accurately confirm the attack attempt. 

Attack Scenario  
Standard 

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message 
Shell 	Shell 	Service 	Reaction  

decodexecute.pl 	 2708 	 HTTP  
us source dumper.pm 	1578 	 HTTP  
iis40_htr.pm 	 307 	 HTTP 

Table 5.6 Misclassification 

5.2 Bro Analysis 
In this section we will provide a comparative analysis of PNMT-X with Bro. We know that Bro 
when compared to Snort, provides a better mechanism to improve detection accuracy especially in 
the case of the Standard Message Reaction Attack scenario. Because our previous analysis has 
shown that Bro is only better than Snort in the case of attacks that trigger standard protocol 
messages from the targets, we will only compare the results of PNMT-X for these VEP. This 
analysis includes 15 of the 92 VEP in our data set. 
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It is important to mention that for the three classes of results presented in this section PNMT-X 
always provides better results than Bro because Bro is not able to confirm attacks when compared 
to PNMT-X. However, Bro is able to classify the results by distinguishing successful attacks from 
failed attacks by providing an attack attempt message for a successful attack and being silent for a 
failed attack. This philosophy has some problems. It is not possible in this case to distinguish failed 
attack attempts from the attacks that could not be detected by the Bru.  To further examine this 
issue, we did a manual analysis of the silent results provided by  Bru  to list the VEP traffic traces 
that  Bru  has identified as failed attack attempts and the attacks that it is not able to detect. 

The accuracy improvement that PNMT-X provides is the reclassification of the successful attack 
identified by  Bru  as Likely-To-Succeed and the reclassification of the failed attack identified by 
Bru  as a failure by being silent or the attack attempt as Likely-To-Fail. In this section, we try to 
determine if our Standard Message Reaction Attack Scenario is better than the one implemented by 
Bru  for these VEP. We already know Bro has problems with its approach of looking at standard 
protocol messages from the target when it is attacked by a VEP. There are two main problems with 
Bru 's  approach for handling the VEP in this data set. First, they have assumed that for all the Bru 
rules using this functionality that if the attack sent to a target is successful, it will respond with a 
success message and if the attack failed it will respond with an error message. This assumption is 
not true because for some successful attacks the target will respond with an error message and for a 
failed attack attempt it will respond a success message. For m00-apache-w00t.c a response of 403 
Access Forbidden is a success because with this message it knows that a user is on the target 
system. In some cases, the target will not respond at all. Because of this, modifications had to be 
made to this concept for PNMT-X and exception rules had to be written to take these situations into 
account. The results provided by PNMT-X on these VEP are classified into four classes: the 
Improvement class, the Perfect Enhancement class, the Partially Enhancement class and the No 
Improvement class. 

5.2.1 Improvement Class 

The Improvement class presents the VEP that PNMT-X provided better expectations than 
anticipated based on the Bru  classification accuracy. These are all the VEP attacks that are not 
detected by  Bru  because of the problem with the standard protocol message discussed in the 
previous section. Table 5.7 presents a list of these VEP. 

Exploit 	 Bid  
apac he2 . pl 	 2503  
iis_printer_bof. c 	2674  
iis40 htr.pm 	 307  
iis50_printer overflow.pm 	2674  
iis5hack.pl 	 2674  
iiswebexplt.pl 	 2674  
jill.c 	 2674  
m00-apache-w00t.c 	3335  
sol2k. c 	 2674 
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Table 5.7 Improvement 

5.2.2 Perfect Enhancement Class 
The Perfect Enhancement class represents all the VEP attack traffic traces for which PNMT-X was 
able to confirm that all successful attacks detected as an attack attempt by Bro were Likely-To-
Succeed and for which PNMT-X was able to confirm that when Bro is silent, these attacks were 
Likely-To-Fail. Table 5.8 presents the list of VEP that PNMT-X is able to confirm. 

Exploit 	 Bid  
AL L_UNIEXP . C 	1806  
Apache chunked win32.pm 	5033  
DDK-IIS.c 	 4485  
decodecheck.pl 	 2708  
decodexecute.pl 	 2708  
execiis. c 	 2708  
fpse2000ex. c 	 2906  
iis_escape_test.sh 	2708  
us  source_dumper.pm 	1578  
I isenc.zip 	 2708  
iisex.c 	 2708  
iisrules.pl 	 2708  
iisrulessh.pl 	 2708  
iisuni. c 	 1806  
iis-zang.c 	 1806  
lala.c 	 2708  
linux-wb. c 	 7116  
msadc.pl 	 529  
rs 	iis.c 	 7116  
unicodecheck.pl 	 1806  
unicodexecute2.pl 	1806 

Table 5.8 Perfect Enhancement 

5.2.3 Partial Enhancement Class 
The Partial Enhancement class describes the VEP that PNMT-X can only partially confirm the 
success or failure of a VEP against a target. There is mainly one reason for which PNMT-X is not 
able to completely enhance its confirmation accuracy compared to Bro. In some cases, the attacks 
do not trigger any response, thus we are not able to use the standard protocol message to confirm 
the success or failure of the attack. 

Furthermore, some Bro rules require the knowledge of the version and the product name of the 
target to raise an event to the IDS administrator. Bro captures this information in the banner sent by 
the target, but, it is not able to capture the banner and identify the version and the product name of 
the target when there is no response. This effect could favor Bro's accuracy when the attack failed 
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if the target did not respond as Bro will be silent, which is the same behavior when it detects no 
attack or a failed attack attempt. However, when the attack is successful Bro also waits for the 
banner to make a decision, thus if there is no response it does not detect the attack attempt. Table 
5.9 presents the list of VEP that PNMT-X is able to confirm their execution. 

Exploit 	 Bid  
iis nsiislog_post.pm 	8035  
Xnuxer.c 	 7116 

Table 5.9 Partial Enhancement 

5.2.4 No Improvement Class 
The No Improvement class describes the attacks that we were not able use to improve the accuracy 
of the PNMT-X compared to Bro. This result is associated with the absence of a reaction from the 
target for all traffic traces within a particular VEP. Table 5.10 presents the list of the VEP that 
cause the target to not generate a response for an attack. 

Exploit 	 Bid  
us  w3who overflow.pm 	11820  
wd.pl 	 7116 

Table 5.10 No Improvement 

6 Summary 
Herein, we will present the results, in Table 5.11, of this analysis using the metric presented in 
Section 2. We are able to see that PNMT-X is more accurate th an  Snort and Bro for the 
classification and for confirmation of attacks by group by VEP or traces. The difference between 
VEP and traces in the table is the unit used. In the case of VEP, we grouped all traffic traces by 
VEP and we measure the accuracy for each VEP and then we average all VEP results to get the 
accuracy of each tested IDS. In the case of using trace units, we simply measure the accuracy by 
using all traffic traces. The table shows the same detection accuracy as Snort because we rely on 
Snort for providing detection information that it is able to find in the traffic traces. The other two 
IDS are not able to confirm any of the attacks in the data set. However, one interesting aspect is 
that Snort is better than Bro for detecting attacks, but Bro is better than Snort for classifying 
attacks. Thus, one would think that both Snort and Bro working together could lead to better 
surveillance of a network. 

IDS 	 Detection Accuracy 	Classification 	Confirmation 
Accuracy VEP (trace) 	Accuracy VEP (trace)  

Snort 	84 % 	27 % (29 %) 	0 % (0 %) 	 
Bro 	 71% 	 60 % (50 %) 	0 % (0 %)  
PNMT-X 	 84 % 	 72 % (77 %) 	50 % (54 %) 

Table 5.11 IDS Accuracy Analysis 
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7 	Conclusions 

In this report, we presented a new set of metrics to compare results of IDS when used against our 
data set, a set of attack scenarios and a new IDS able to understand these scenarios. The metrics 
have been proven to be useful when comparing the accuracy of PNMT-X with Snort and Bro. We 
determined that Snort is better than Bro to detect attacks, but Bro is better than Snort to classify 
attacks. Moreover, Snort and Bro were not able to confirm attack attempts with our data set. 
However, the PNMT-X was able to use the attack scenarios to classify and confirm more attack 
attempt than Snort and Bro. 

We have identified several problems with our approach: the Snort class type problem, the exception 
problems, the missing scenario problem and the scenario identification problem. The used of Snort 
event types to associate the events with our attack scenarios is only a one to one relationship. Thus, 
some attack attempts were not classified or confirmed. Thus, a one to many relationship has to 
integrated in our IDS for the Snort class type or simply associate each Snort event with many 
scenarios. In this case, it will be problematic to measure the classification and confirmation. One 
attack could be associated as Likely-To-Fail for the denial of service scenario and as an Attempt for 
the code execution scenario. We know that the attack as only one intention to cause a denial of 
service and not execute code, but PNMT-X will classify this attack attempt as Attempt and not 
Likely-To-Fail because it do not know the intention of the attack. Some attack exceptionally do not 
exactly match to the attack scenario, a solution need to be found to identify these attack attempts to 
be able to classify and confirm them. Some attack scenarios are missing such as the Standard FTP 
message Attack Scenario and the Application Denial of Service Scenario. These attack scenarios 
need to be implemented in PNMT-X. It has been very difficult to identify all the scenarios, we 
believe that an automatic way to identify the scenarios in the data set is needed. This automatic way 
to identify scenarios could also be used to resolve the exception problems and the missing scenario 
problems. 

Based on the results obtained in this project, we plan to develop a prototype that will use these 
same attack scenarios. In addition, we will work to improve detection classification and 
confirmation rate for the attacks that were not able to classify and confirm with our data set. 
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