
CAUTION
This information is provided with the

express understanding that
proprietary and patent rights will

be protected Canadâ

10E Communications Centre de recherches
Research Centre sur les communications
Canada Canada
An Agency of
Ind,try Canada

Un organisme
o Induire Canada

Passive Network Monitoring
Tool-eXtended (PNMT-X):

Proof of Concept
Report on research progress to

November 1, 2006

Frederic Massicotte, Research Engineer

CRC Technical Note no: CRC-TN-2007-0002

Ottawa, March 2007

LKC
TX
5102.5
.R48e
*2007-
002

Passive Network Monitoring
Tool-eXtended (PNMT-X):

Proof of Concept

Report on research progress to

November 1, 2006
Frederic Massicotte, Research Engineer

CRC Technical Note CRC-TN-2007- 0002
Ottawa, March 2007

CAUTION
This information is provided with

the express understanding that
proprietary and patent rights will

be protected

Industry Canada
Library - Queen

MAR 18 2013
Industrie Canada

Bibliothèque - Queen

Abstract

Network Intrusion Detection Systems (IDS) have the reputation of generating many false positives.
Recent approaches, known as stateful IDS, utilize the state of communication sessions into account
to address this issue. However, for IDS to be able to distinguish between a successful and failed
attack attempt, it requires a correlation among the state of the multiple sessions, the reactions of the
target system and other gathered of network context information. In this report, we present initial
research that supports an IDS approach that attempts to confirm attack success or failure by
collecting more network context and combining this information with the attack detected
information provided by the IDS. The approach relies on capturing the related effects of an attack
to be able to confirm the success or failure against a target system. This approach has been
evaluated using existing attacks on real systems and the observed results are positive and further
work is required to refine the algorithm.

Résumé

Les systèmes de détection d'intrusion réseau (SDI) ont la réputation de générer plusieurs faux
positifs. Des approches récentes, connu sous le nom de SDI à états, utilisent l'état de la
communication pour tenter de résoudre ce problème. Par contre, pour que ces SDI soient en mesure
de distinguer entre une attaque réussite et une attaque qui a échoué, il faudrait aussi corréler l'état
de plusieurs sessions, la réaction du système sous attaque ainsi que d'autres informations à propos
de la situation réseautique. Dans ce rapport, nous présentons nos résultats de recherche initiaux sur
un SDI qui est en mesure de confirmer la réussite ou l'échec d'une attaque en capturant plus
d'information sur la situation réseautique tout en combinant cette information avec les attaques qui
ont été détectées par un SDI. Cette approche est basée sur la capture des effets reliés à une attaque
pour confirmer sa réussite ou son échec contre un système. Cette approche a été testée avec des
attaques connues contre des vrais systèmes et les résultats sont très prometteurs et l'algorithme doit
est raffiné dans un projet futur.

Table of Contents

Abstract 	
1 	Introduction 	 1
2 	Metrics 	 1

2.1 	Detection Level 	 3
2.2 	Classification Level 	 3
2.3 	Confirmation Level 	 3

3 	Multi-Session Attack Scenarios 	 4
3.1 	Direct Shell Attack Scenario 	 5
3.2 	Reverse Shell Attack Scenario 	 6
3.3 	Denial of Service Attack Scenario 	 7
3.4 	Standard Message Reaction Attack Scenario 	 8

4 Proof of Concept Design 	 10
5 	Results 	 11

5.1 	Snort Analysis 	 12
5.1.1 	Complete Accuracy Maximization Class 	 12
5.1.2 	Partial Accuracy Maximization Class 	 14
5.1.3 	No Improvement Class 	 16
5.1.4 	Misclassification Class 	 17

5.2 	Bro Analysis 	 18
5.2.1 	Improvement Class 	 19
5.2.2 	Perfect Enhancement Class 	 20
5.2.3 	Partial Enhancement Class 	 20
5.2.4 	No Improvement Class 	 21

6 Summary 	 21
7 	Conclusions 	 22
8 References 	 22

II

I 	Introduction

Our belief is that much remains to be done to improve attack detection. In [I], we reported the
results of an experiment during which we evaluated the response of Snort 2.3.2 [2] (a stateful IDS)
and Bro 0.9a9 [3] (another stateful IDS), which are two of the most advanced and widely used open
source IDS, to well-known attacks. We used 92 vulnerability exploitation programs (VEP), which
implemented attacks against 85 vulnerabilities in commonly used software systems and
applications. Results showed that Snort, in particular, is not able to confirm attack attempts.
Moreover, Sno rt is not able to distinguish between a successful and a failed attack attempt. This
confirmed our belief that despite the adoption of stateful approaches, much remains to be done to
improve attack detection.

Specifically, we identified that: (1) the false positives problem partly lies in the inability of current
IDS to incorporate intrusion alarms in an even larger network context l ; and (2) IDS mostly rely on
a single packet within one session to identify attacks, whereas detecting modern attacks requires
monitoring series of packets in multiple sessions to distinguish between successful and failed
attacks based on the reaction of the target system.

The Passive Network Monitoring Tool2 Extended (PNMT-X) approach described in this report
attempts to address the second issue. PNMT-X was developed at the Communications Research
Centre of Canada and it can monitor complex communication patterns that involve multiple packets
in multiple sessions to capture the target system's reaction during an attack.

The rest of this report is structured as follows: Section 2 describes the measures defined to compare
PNMT-X with Snort and Bro. Section 3 describes the attack scenarios identified in the traffic traces
of our data set. Section 4 describes our approach. Section 5 presents the results we obtained and a
comparative analysis with Snort and Bro. Conclusions are drawn in Section 6.

2 	Metrics

In the literature, the techniques used to establish, compare and evaluate IDS accuracy are usually
ad-hoc and the metrics that are used are poorly defined. Thus, we decided to develop our own IDS
accuracy metrics to address this problem and be able to compare our PNMT-X accuracy with Snort
and Bro. The measures we used a confusion matrix to measure the accuracy of IDS. Table 2.1 is an
example of a confusion matrix for IDS testing.

I For instance, if a packet is recognized as being a threat to a Windows machine but is sent to a Unix machine (network
context), a context-based IDS can be designed to be silent (if this is acceptable to the network administrator).
2 PNMT is the result of previous related research at the Communications Research Centre of Canada, which was
extended to include the proof of concept IDS

1

2 1
3 4

Attack
No Attack

Event No Event

Table 2.1 Confusion Matrix Example

The rows are associated with the known correct attribute of the data (e.g. Attack and No Attack)
and the columns are associated with predicted value provided by the IDS (e.g. Event and No
Event). Thus, the accuracy in a square confusion matrix is always obtained using the sum of the
value in the diagonal from the top left side to the right bottom side divided by the sum of all values
in the matrix. These values represent the number of occurrences of a predicted value in relation to
its real value. For example, the value in position (No Attack, Event) represents the total number of
instances that an IDS has generated an attack event when there is no attack. In the example of
Figure 2.1 we used 10 test cases. There are 2 times when the IDS has provided an event when there
is an attack, 1 time it provided no event when there is an attack, 3 times it provided an event when
there is no attack and 4 times it provided no event when there is no attack. Equation 2.1 defines this
7measure.

v n Accuracy = 	mP, ij
-1 	 i-1

Equation 2.1

A value of zero (0) means that the IDS providing the result is never accurate and a value of one (1)
means that the IDS is always accurate. In this example, the accuracy is 0.6 (e.g. (2+4)1(2+1+3+4))
for these test cases.

In our project, we observed that most IDS events can be classified into three types: attack events,
related attack events, unrelated attack events. The attack events are the events generated by IDS
when the IDS is convinced that there is an attack in progress. The related attack events are events
likely generated by an attack. For example, during a buffer overflow attack, a resulting command
prompt event is a related attack event. The unrelated attack events provided by the IDS are not
related to any part of the attack, and can be classified as noise generated by the IDS. For this first
part of the project, we did focus on the ability of IDS to detect attacks, meaning only attack events
were needed. We determined that an IDS is able to identify that an attack is occurring if one of the
events in its log file has an association with the vulnerability exploited by the attack attempt
currently generated by the test case. Contrarily, it is not able to identify an attack if there is no
event logged for the attack attempt.

All events that represent attacks are grouped into four classes: the Attempt (A) event, the Likely-To-
Succeed (LS) event, the Likely-To-Fail (LF) event and the Silence (S) (absence of) event. The
latter, (S), represents the case when the IDS does not provide an event related to an attack,
regardless of reason. The Attempt event describes an attack attempt against a target system. The
Likely-To-Succeed event confirms that an attack is likely to succeed. The Likely-To-Fail event

2

confirms that an attack attempt is likely to fail. All attack events that are raised by an IDS for a test
case are classified into one of these four classes. The total number of events in each class is
associated with its position in the matrix to determine the accuracy.

We developed three metrics to determine accuracy: the detection level, the classification level, and
the confirmation level. Each of these metrics represents a level of precision achieved by the IDS.

2.1 Detection Level
The detection level measures the capability of the IDS to detect attacks. The known attributes are
Normal traffic and Attack traffic and the predicted values are classified into Detected and Not
Detected. Thus, the test cases that have provided Attempt event, Likely-To-Succeed event or the
Likely-To-Fail event are grouped into Detected and the test cases in which we have no event
(Silence) are grouped in Not Detected.

Under normal circumstances, a perfect IDS would only detect attacks when it sees attack traffic and
would not detect attacks vvhen it only sees normal traffic. In our test environment data set, all the
traffic traces contain attack traffic, and we do not have "normal" traffic. Therefore, we are not able
to completely evaluate this aspect of the IDS accuracy. However, the attack traffic is sufficient to
evaluate the accuracy of IDS to detect attacks. The accuracy for this modified metric is simply the
number of Detected traffic traces divided by the total of number of attack traffic traces. In this case,
we state that an IDS is able to detect an attack if for at least one of the test cases related to an attack
it is able to provide one event associated with this attack attempt.

2.2 Classification Level

The classification level measures the ability to distinguish between successful and failed attack
attempts against a target. The known attributes are Successful attack and Failed attack and the
predicted values are classified into Positive event and Negative event. Thus, the events provided by
the IDS are classified into two classes: the Positive events, the Attempt event and the Likely-To-
Succeed event and the Negative message, the Likely-To-Fail event and the Silence (absence of)
event. The accuracy is measured by the sum of Positive events for Successful attacks and the sum
of Negative events for the Failed attack attempts divided by the sum of all values.

2.3 Confirmation Level

The confirmation level measures the IDS ability to confirm the success or failure of attack attempts
against a target. The known attributes are Successful attack and Failed attack and the predicted
values are Attempt, Likely-To-Succeed, the Likely-To-Fail and Silence. This is not a square
confusion matrix and the accuracy measures have to be modified. A perfect IDS is one able to
confirm all successful attacks and confirm all failed attack attempts. Thus, the accuracy is the sum
of Successful attacks that are Likely-To-Succeed and the number of Failed attack attempts that are
Likely-To-Fail divided by the total of all attacks.

3

These three level metrics will have different results based on the unit of measurement used for the
test case such as traffic traces, VEP and vulnerability. Our data set is a composition of traffic traces,
in which each traffic trace is associated with a unique VEP. Each VEP is associated with a
vulnerability or BID (Bugtraq identification number) in the Security Focus 3 database. Thus, the
accuracy can be measured using traffic traces, VEP or vulnerability taken together as a unit or we
can measure the accuracy by traffic traces, VEP or vulnerability taken individually. In the case of
detection level, we measure the accuracy using a VEP as the unit of measurement for our data set.
In this case, it is important to remember that some IDS such as Bro and Snort are silent when they
detect failed attack attempts. Thus, it is not possible to measure the detection accuracy of IDS at the
traffic traces level. It needs to be measured at the VEP level.

3 	Multi-Session Attack Scenarios
In this section, we examine the attack scenarios contained in our data set and the capability needed
by IDS to be better able to detect, classify and confirm intrusion situations. One of the reasons that
IDS are not able to provide better accuracy is their inability to see all the information related to an
attack. Assuming that the IDS is properly positioned to gather the requisite traffic, it is the IDS's
native capabilities that must be considered and measured. For an attack to be successful against a
computer system, two elements are required: a known (by the attacker) vulnerability and the
corresponding mechanism that attacks this vulnerability.

In the case of our test data set, we need a vulnerable target system or service and the corresponding
group of packets for exploiting this vulnerability for the attack to be successful. Through
examination of the attacks included in our data set, we believe that two aspects of attacks could be
used to improve IDS recognition of network based attacks: the attack context and the reaction of
the target. It is important to note that the data set used in this project has been carefully constructed
and examined to make the suppositions given in this section and draw the conclusions described
later in this report.

First, the context of the attack can be used to improve accuracy of IDS because vulnerabilities are
associated with software versions and knowing whether this particular software version is installed
and active on a system could improve IDS accuracy.

Second, monitoring the reaction of a target system to an attack can also improve IDS accuracy for
network attacks. Because a group of packets sent to a target system tries to exploit a particular
vulnerability, the expected response from the target system can be different, depending on whether
or not the attack is successful. Moreover, we cari expect that a vulnerable system and a non-
vulnerable system will behave differently when the same group of attack packets is sent to each
target system.

For the research activities described in this report, the focus will be on the reaction of the target
because attack context information is difficult to capture as the attack context is usually not given
in the attack traffic traces. From a detailed examination of all of the VEP used in our data set we
identified four abstract attack scenarios. These four attack scenarios are:

3 www. securityfocus.com

4

1. Direct Shell Attack Scenario,
2. Reverse Shell Attack Scenario,
3. Denial of Service Attack Scenario and
4. Standard Message Reaction Attack Scenario.

The basic premise of this research project is that a small number of "scenarios" can be identified
that represents most, if not all of the attack cases currently seen on networks. If this premise is
correct, then attack detection can be made to more accurate, and be used to identify (predict) the
onset of new attacks without previous detailed knowledge of the new attack.

Before giving more information on the definition of these attack scenarios, it is possible to make a
few general observations from work to date. Snort and Bro do not have the capacity to detect the
first three attack scenarios. These IDS are only able to correlate packets within a single session.
They are not able to correlate packets in more than one session or to capture network context
information such as port and host state. Snort and Bro have the capability or potential to be able to
detect and classify attacks that are in the Standard Message Reaction Attack Scenario. However,
based on our results presented in [1], only Bro has expressed this capability in its rule set. Even
with this capability, we noticed that the verification of this scenario with Bro is often erroneous and
incomplete. Snort may have the potential to detect this scenario by usingflowbit, but it is not used
to detect this scenario.

In the following sections, we will present each attack scenario. The attack scenarios are
decomposed into a Likely-To-Succeed scenario and a Likely-To-Fail scenario, which distinguish
between the successful attack and the failed attack attempt.

3.1 Direct Shell Attack Scenario
The Direct Shell Attack Scenario describes the case of an attacker trying to open a remote shell
program on the target system. First, the attacker tries to attack the target system using a particular
vulnerability in a network session. Usually the attacker adds code to be executed in the attack
packet using that exploit buffer overflow vulnerability. The code to be executed contains a remote
command shell server that the attacker can use to access the target system. After the attack, the
attacker tries to connect to another selected port on the target system. If the attack failed, the port
will be closed on the target system and there will be no session between the attacker and the target
system on this port. This can be repeated 0 to N time until the attack is successful, thus that the
predefined port is open and the attacker is able to connect to this port with the target system. Figure
3.1 represents this attack scenario. From this scenario, a successful attack and a failed attack can be
identified.

5

PortClose(A,P1,B,P2)

Attack E Session(A,P3,B,P4)

PortOpen (A,P5,B,P2)

Strong
Weak

Attack(1) E Session(A,P1,B,P2)
0 N

PortClose(A,P3,B,P4)

Attack(n) E Session(A,P5,B,P2)

PortOpen (A,P6,B,P4)

Figure 3.1 Direct Shell Attack Scenario

In the case of an attack that succeeds, we can derive two sub-scenarios. Figure 3.2 represents these
attack scenarios. The Strong scenario specifies that the attacker has tried to connect to a predefined
port but was not able to get a connection from the target system on that port until an attack attempt
was tried. In the case of the Weak scenario, we were not able to see that the port was closed before
the attack attempt. The hash line indicates optional information that can be used to increase the
level of confidence that this attack was successful such as shell command or shell code
identification.

Shell E Session(A,P5,B,P2)

Figure 3.2 Successful Direct Shell Attack Scenario

In the case of a failure, presented in Figure 3.3 the attacker is never able to connect to this
predefined port after the attack attempt.

Attack E Session(A,P1,B,P2)

PortClose(A,P3,B,P4)

Figure 3.3 Failed Direct Shell Attack Scenario

3.2 Reverse Shell Attack Scenario
The Reverse Shell Attack Scenario describes an attacker trying to open a shell connection from the
target system to the attacking system, or even a third system. First, the attacker tries to attack the

6

target system in a session. After the attack, it waits for a cormection from the target system to
connect to a predefined port on the attacking system. Usually, the attacker adds code to be executed
in the attack packet that exploits a buffer overflow vulnerability in the target system. The code to be
executed contains a remote command shell server that connects to the attacker and than can used to
access the target system. The attack can be repeated 1 to N times. If the attack is successful, there
will be a connection back from the target system to the attacker. Figure 3.4 represents this attack
scenario. In this case, only a successful attack can be inferred. If the attack failed there will be no
connection back from the target system to the attacker, thus a failure can not be observed by the
IDS.

Attack(1) E Session(A,P1,B,P2)
1..N

Attack(n) E Session(A,P3,V2)

PortOpen (A,P4,B,P5)
4 	

Figure 3.4 reverse Shell Attack Scenario

The success scenario, presented in Figure 3.5, shows that after the successful attack, there is
connection back from the target to the attacker. The hash line indicates optional information that
can be used to increase the level of confidence that this attack was successful such as shell
command or shell code identification.

Attack(1) E Session(A,P1,B,P2)

PortOpen (A,P3,B,P4)
4

Shell E Session(A,P3,B,P4)

Figure 3.5 Successful Reverse Shell Attack Scenario

3.3 Denial of Service Attack Scenario
The Denial of Service Attack Scenario describes an attacker trying to cause a denial of service on a
target system. First, the attacker initiates a denial of service attack on the target. If the service
remains available to the attacker or other clients, the attack failed. The attacker can then try this
attack from 1 to N times against the target system. If the attack is successful, the targeted system or
particular service will no longer be available to the attacker and the other clients of the target
system. Figure 3.6 represents this attack scenario. From this scenario a successful attack and a
failed attack can be determined.

7

Attack(1) E Service(A,B)

ServiceOpen(A',B) 	 0..N

Attack(n) E Session(A,B)

ServiceClose (A", B)

Figure 3.6 Denial of Service Attack Scenario

In the successful attack, presented in Figure 3.7, the service is no longer available to the attacker or
any client of the target system after the denial of service attack.

Attack(1) E Service(A,B)

ServiceClose (A', B)

Figure 3.7 Successful Denial of Service Attack Scenario

In the failed attack, presented in Figure 3.8, the service is still available after the denial of service
attack to the attacker and the other clients of the target system.

Attack(1)E Service(A,B)

ServiceOpen(A' B)

Figure 3.8 Failed Denial of Service Attack Scenario

3.4 Standard Message Reaction Attack Scenario
The Standard Message Reaction Attack Scenario describes the reaction of the attacked service to an
attack attempt. First, the attacker sends an attack to the target system. In some situation such as
HTTP, FTP and STMP the protocol provides standard success and/or error message to confirm the
execution of a request by the client. Figure 3.9 represents this attack scenario. In many situations,
this reaction from the server is a source of information concerning the success or failure of an
attack. In the case of a failure of the attack, the target will respond with an error message. The
attacker can try this attack from 1 to N times. If the attack is followed by a success message, we can
say that the attacker has succeeded attacking the target system.

0 N

8

Attack(1) E Session(A,P1,B,P2)
0..N

Error E Session(A,P1,B,P2)
4 	

Attack(n) E Session(A,P3,B,P4)

Success E Session(A,P3,B,P4)
4 	

Figure 3.9 Standard Message Reaction Attack Scenario

The successful attack scenario, presented in Figure 3.10, arises when an attack is followed in the
same session by a success message from the target system.

Attack(1) E Session(A,P1,B,P2)

Success E Session(A,P1,B,P2)

Figure 3.10 Successful Standard Message Reaction Attack Scenario

The failed attack, presented in Figure 3.11, arises when an attack is followed in the same session by
an error message from the target system.

Attack(1) E Session(A,P1,B,P2)

Error E Session(A,P1,B,P2)

Figure 3.11 Failed Standard Message Reaction Attack Scenario

However, the situation concerning success or failure determination is not always straight forward.
The error message can represents a successful attack and the success message can represent a failed
attack. These situations will be further described in the next sections.

From the attacks contained in our data set, we developed a proof-of-concepf l for an IDS that is able
to detect, classify and confirm these attack attempts by using these four attack scenarios with our
data set. The approach taken to implement the proof of concept is described in the next section.

4 A proof-of-concept is a lab based system that embodies the basic research fmdings. It is the precursor to a prototype
system, which will be field deployable.

9

)

Sno rt

GUI

PNMT-X

H Sno rt

Prolog

4 Proof of Concept Design
The Passive Network Management Tool Extended (PNMT-X) is composed of two IDS engines and
three IDS rule databases. Figure 4.1 represents the structure of the PNMT-X.

Figure 4.1 PNMT-X

There are three components: Snort5 , the PNMT-X engine and the user interface (GUI). In
operation, the Snort engine provides events to the PNMT-X engine using two IDS rule databases:
the default Snort rule database and the CRC Snort rule database. The default Snort rule database is
the one that came with Snort 2.3.2.

The CRC Snort rule database was developed at CRC to allow Snort to provide attack context
information to PNMT-X. The CRC Snort rule database is composed of two rule sets: the protocol
rule set and the attack reaction rule set. The protocol rule set is used by the Snort engine to generate
the events needed by the PNMT-X engine to monitor the sessions, the port states and the host states
for the computer systems in the network. The attack reaction rule set is used by the Snort engine to
generate the events needed by the PNMT-X engine to monitor the target's reaction to an attack. All
the events generated by the Snort engine are sent to the PNMT-X engine.

In the proof-of-concept, the Snort generated events are stored in a file that is read after the entire
traffic trace has been analyzed by the Snort engine. The PNMT-X engine reads the Snort events in
order and verifies, using its rule database, whether or nit it can confirm that an attack attempt was
successful or failed. The confirmed events are then sent to the GUI and stored in a file in XML
format. The PNMT-X rule database is a Prolog rule set database that models two aspects of PNMT-
X: the monitored objects and the attack scenario rules presented in the previous section.

To be able to identify the four types of attack scenarios, we need to model four objects: the Session,
the PortState, the HostState and the AttackAttempt objects. We decided to use Prolog because it is
a logic engine as well as a knowledge base. Thus, we could implement easily and it offer inference
engine to verify if the Snort events with the gathered network context.

The Prolog database transforms each Snort event object using a set of rules into one of these
objects. In this case, the Prolog database becomes a knowledge base that keeps track of the network

5 Snort version is 2.3.2

10

context. The Session objects are used to monitor sessions between two computers. The PortState
objects are used to monitor the state of a TCP/UDP port on a particular computer. The Session and
PortState objects are used in the first three attack scenarios. The HostState objects are used to keep
track of the host state and are used in the Denial of Service Attack Scenario. The AttackAttempt
objects are used to describe the attack attempts tried against a target. These are the objects that the
attack scenarios rules, defined in Prolog, are 1rying to confirm using the network context modeled
by the Prolog database. To associate network context such as Session, PortState and HostSate with
the AttackAttempt, we used temporal logic (TL). The temporal logic operators were written in
Prolog to be used in the Prolog rules. To simplify the analysis we associated each Snort class with
only one of the attack scenarios. In this case, the Direct Shell Attack Scenario and Reverse Shell
Attack Scenario were used to confirm the Administrative Attack Attempt Snort class of events. The
Denial of Service Attack Scenario is used to confirm Denial of Service Attempt Snort class of
events. The Standard Message Reaction Attack Scenario is used to confirm Web Attack Attempt
Snort class of events.

For example, successful the Direct Shell Attack Scenario can written in Prolog such as

pnmtxEvent(Time, ID, "Direct Shell Attack", "LS", Classification, SIP, SP, DIP,
DP) :

snortEvent(Time, ID, Message, Classification, SIP, SP, DIP, DP),
administrativeAttackAttempt(Classification),
occur(previousConnection("closed", SIP, DIP, DP2), Timel, Time2),
occur(connection("open", SIP, DIP, DP2), Time2, Time2),
before(Timel, Time),
before(Time, Time2).

This Prolog rule specifies that we have a PNMT-X Likely-To-Succeed Direct Shell Attack event
when there is a Snort event in the knowledge that is classified as Administrative-Attack-Attempt and
this event occurs after a port DP2 on DIP was identified to be closed for SIP and before the same
port DP2 one DIP has been identified to be open for the same SIP. If this rule is true, PNMT-X
identifies that the attack detected by Snort has caused this port opening on the target system and
thus that the attack described by the Snort event is successful for this target system.

PNMT-X is not able to reclassify attack information when Snort is silent on test traffic traces
because PNMT-X engine relies on Snort for events.

5 	Res u lts

In this section, we provide a comparative analysis of PNMT-X with Snort and Bro. Snort and Bro
are not able to confirm any attack attempts when used with our data set. They only generate attack
attempt events or they stay silent if they do not recognize any legitimate attack traffic. In the case
of classification, Snort is able to distinguish between a successful attack and a failed attack attempt
using itsflowbit plug-in. This plug-in can be used to verify the reaction of the target to an attack.
However, Snort did not provide useful results from our data set when compared to the approach
used by Bro to classify attacks because Snort as opposed to Bro do not check for Standard Reaction
Message to classify the attacks.

11

In this section we identify the accuracy improvements that PNMT-X provides by reclassifying the
successful attacks, identified by Snort and Bro as attack attempts that are into Likely-To-Succeed
and by reclassifying the failed attacks (attack attempts or by being silent) into Likely-To-Fail. We
used 92 VEP in our data set for this analysis.

5.1 Snort Analysis

5.1.1 Complete Accuracy Maximization Class
This class regroups the VEP for which PNMT-X has provided perfect results to the limit of its
design (limited to the Snort 2.3.2 engine detection level). In this case, there is no enhancement of
PNMT-X rules possible or required. There are two cases, when this situation happens. First, no
enhancement of PNMT-X rules is required, when the IDS has correctly classified all traffic traces.
This situation happens when all successful attacks are classified as Likely-To-Succeed and when all
failed attack attempts are classified as Likely-To-Fail by PNMT-X for all traffic traces generated by
a VEP. Second, it is also not possible for PNMT-X to enhance Snort's detection mechanism when
Snort is not able to detect the attack attempt because it does not provide an appropriate event to the
PNMT-X engine. In this situation, more rules have to be added to the Snort rule database to detect
these attacks. The class Complete Accuracy Maximization is thus subdivided into three classes: the
Perfect Enhancement sub-class, the Perfect Restricted Enhancement sub-class and the Evasion sub-
class. There are 23 VEP in the Perfect Enhancement sub-class, 15 VEP in the Perfect Restricted
Enhancement sub-class and 15 VEP in the Evasion sub-class. For 53 of the 92 VEP used in our
data set, we were able to maximize accuracy with our first version of our proof-of-concept, PNMT-
X.

The Perfect Enhancement sub-class is composed of all the VEP for which all successful attacks are
classified as Likely-To-Succeed and for which all failed attack attempts are classified as Likely-To-
Fail for all traffic traces generated by a VEP. Table 5.1 presents a summary of the VEP in this sub-
class and the scenarios that were used to confirm all their attack attempts.

Attack Scenario
Standard

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

Ox333hate.c 	 7294 	X
0x82-Remote.54AAb4.xpl.c 	7294 	X
decodecheck. pl 	 2708 	 HTTP
execiis.c 	 2708 	 HTTP
fpse2000ex. c 	 2906 	 HTTP
ILS escape test.sh 	2708 	HTTP
iis50_printer overflow.pm 	2674 	 HTTP
I isenc. zip 	 2708 	 HTTP
iisex.c 	 2708 	- 	 HTTP
iisrules.pl 	 2708 	 HTTP
iisrulessh. pl 	 2708 	 HTTP
kod. c 	 514 	 IP

12

Attack Scenario
Standard

Exploit 	 BB) 	Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

kox.c 	 514 	 IP
msadc.pl 	 529 	 HTTP
msdtc_dos.nas1 	 4006 	 TCP
msftp dos.pl 	 4482 	 TCP
msftp_fuzz.pl 	 4482 	 TCP
pimp.c 	 514 	 IP
solaris sadmind exec.pm 	8615 	X
solarissnmpxdmid.pm 	2417 	X
unicodecheck.pl 	 1806 	 HTTP
unicodexecute2.pl 	 1806 	 HTTP
windows ssl_pct.pm 	10116 	X

Table 5.1 Perfect Enhancement

The Perfect Restricted Enhancement sub-class is composed of all the VEP for which all successful
attacks are classified as Likely-To-Succeed and for which all detected failed attack attempts are
classified as Likely-To-Fail for all traffic traces generated by a VEP. The difference between this
sub-class and the Perfect Enhancement sub-class resides in the fact that Snort is not able to detect
some of the failed attack attempts. A thorough analysis has indicated that these undetected attacks
are not legitimated attack attempts. Snort does not detect these VEP executions as attacks and
PNMT-X behaves the sarne way because it does receive any event to correlate from the Snort
engine. Table 5.2 presents the VEP in this sub-class and the scenarios that were used to confirm all
possible attack attempts.

Attack Scenario
Standard

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

0x82-dcomrpc_usemgret.c 	8205 	X
30.07.03.dcom.c 	 8205 	X
apache2.pl 	 2503 	 HTTP
dcom.c 	 8205 	X
iisuni.c 	 1806 	 HTTP
msasn 1 _ms04_007_kil !bill .pm 	9633 	X
oc192-dcom.c 	 8205 	X
RFParalyze.c 	 1163 	 IP
rfpoison.py 	 754 	 IP
rpc!exec.c 	 8205 	X
samba nttrans.pm 	 7106 	X

13

Attack Scenario
Standard

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

servu_mdtm_overflow.pm 	9751 	X
smbnuke.c 	 5556 	 TCP
warftpd_165_pass.pm 	9751 	X
warftpd_165_user.pm 	5556 	X

Table 5.2 Perfect Restricted Enhancement

The Evasion sub-class is composed of the VEP that were not detected by Snort. In this case,
PNMT-X is not able to enhance detection accuracy. Table 5.3 presents a summary of the VEP in
this sub-class and an estimated list of attacks that might have been used to increase the accuracy of
Snort if it was able to detect these attack attempts.

Attack Scenario
Standard

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

DcomExpl UnixWin32.zip 	8205 	X
HOD-ms04011-1sasrv-expl.c 	10108 	X
HOD-ms04031-expl.c 	11372 	X
Lsass ms04 011.pm 	 10108 	X
msO5 039_pnp.pm 	 14513 	X
msrpc dcom ms03 026.pm 	8205 	X
mssq12000 preauthentication.pm 	5411 	X
mssq12000 resolution.pm 	5311 	X
MultiWinNuke.c 	 6005 	 IP
Samba_exp2.tar.gz 	 ' 7294 	X
THCIISSLame.c 	 10116 	X
Winnuke._eci.c 	 2010 	 IP
winnuke.c 	 6005 	 IP
winnuke.pl 	 2010 	 IP
zp-exp-telnetd.c 	 3064 	X

Table 5.3 Evasion

5.1.2 Partial Accuracy Maximization Class
This class describes the VEP attacks that PNMT-X can partially confirm success or failure of the
attack. There are two reasons why PNMT-X is not able to completely improve its confirmation
accuracy when using Snort as a source of events: the attack classification and the missing reaction
from the target.

14

Attack Classification by Snort

To simply our proof-of-concept, PNMT-X, we associated each Snort class of attack with only one
of our attack scenarios. Although this is not ideal for our research purposes, it did allow us to avoid
some problems with how Snort classifies attacks. For instance, one problem occurs when a
particular technique that exploits the vulnerability that is associated with a Snort class of attack, but
in fact produces a behavior detected by another scenario. This occurs in the case of all attacks
associated with BID 2674 because the attacks are associated in Snort with the Web Attack Attempt
class, and thus with our Standard Message Reaction Attack Scenario. However, its exploitation
technique is to execute code on the target and thus these attacks behave as an attack by the Direct
Shell Attack Scenario or the Reverse Shell Attack Scenario. In this case, this particular attack
signature should have been classified in the Administrative Attack Attempt Snort class.

In a similar way, the Snort Administrative_Attack Attempt class of attack could also be included in
the Denial of Service Attempt class because some VEP exploit the same vulnerability to cause a
denial of service. PNMT-X is not able to confirm the success or failure of these attacks because the
IDS events provided by Snort are not in the proper classification or they should have been included
into more than one Snort class.

Missing Reactions

The PNMT-X is not able to confirm the success or failure of an attack attempt when there is no
reaction from the target to that attack. This situation arises in the case of the Reverse Shell scenario
when the attack failed because the expected reverse shell session is not initiated by the attacked
target. In this case, PNMT-X is not able to confirm the failure of the attack with the current version
for the scenarios. This is the case for the traffic traces generated by the wins.c and the
wins_ms04 045.pm where PNMT-X is able to confirm all successful attacks because we correlate
the reverse shell with the attack attempt, but we are not able to confirm the failure when there is no
shell session initiation from the target for these particular VEP that used a reverse shell code an
their attack attempt.

It also happens in the case of the Standard Message Reaction Attack Scenario. Some of the attacks
generated by some VEP do not trigger any respond message from the targeted server. In some of
these cases, it is when the attack is successful, such as for jilLc and sol2k.c and in other of these
cases it is when the attack failed. This missing information from the server does not trigger the
Standard Message Reaction Scenario and PNMT-X is not able to confirm the success or failure.
Table 5.4 presents a summary of the VEP and the scenarios that were used to confirm some of the
attack attempt for this particular VEP in our data set.

Attack Scenario

15

Standard
Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

ALL UNIE XP.0 	 1806 	 HTTP
Apache_chunked_win32.pm 	5033 	 HTTP
DDK-IIS.c 	 4485 	 HTTP
iis_nsiislog_post.pm 	8035 	 HTTP
us w3who overflow.pm 	11820 	 HTTP
iis-zang.c 	 1806 	 HTTP
jill.c 	 2674 	 HTTP
lala.c 	 2708 	 HTTP
linux-wb.c 	 7116 	 HTTP
m00-apache-w00t.c 	3335 	 HTTP
rs_iis.c 	 7116 	 HTTP
sambal.c 	 7294 	X
sambash.c 	 7106 	X
sol2k.c 	 2674 	 HTTP
win_msrpc_Isass_ms04-11_Ex.c 	10108 	 X
wins.c 	 11763 	 X
wins ms04 045.pm 	11763 	 X
Xnuxer.c 	 7116 	 HTTP

Table 5.4 Partial Accuracy Maximization

5.1.3 No Improvement Class
This class describes the VEP that PNMT-X is not able to confirm, for all their attack traffic traces,
at least one successful attack or one failed attack attempt. Two reasons, the attack classification and
the missing reaction from the target, described in the previous section also applies in this situation
to explain the inability of PNMT-X to confirm successful attacks or failed attack attempts. In this
case, these explanations can relate to all attack traffic traces of a VEP in this class. There is also
two other explanations for this situation: unimplemented scenarios and unimplemented rules.

Unimplemented Scenarios

In the case of the unimplemented scenario, we decided, for this first version of the PNMT-X, to
focus on the HTTP Standard Message Reaction alone to verify if the Standard Message Reaction
Attack Scenario was possible to implement in our proof of concept IDS. Thus, FTP, POP, IMAP
and STMP standard error message have not been implemented in the Standard Message Reaction
Attack scenario. This explains why PNMT-X is not able to confirm the success or failure of attack
that exploits FTP and SMTP vulnerabilities. In the case of POP and IMAP, we do not have any
attacks that exploit a vulnerability related to these protocols.

Unimplemented Rules

16

Unimplemented rules only affects the Denial of Service Attack Scenario. In our data set, we
noticed that a denial of service mainly affects three different levels of the communication stack: the
IP level, the TCP level, the Application level. In the case of the IP level, the computer is no longer
able to communication using its IP stack. In the case of the TCP level, the port where the attacked
service is running in no longer opened for communication. The effect at the application level shows
that the port is still open but the targeted application is no longer able to communicate using this
port. In our proof of concept, we only implemented the IP and TCP communication effect of a
denial of service. Thus, the attacks that affect only the application aspects of the communication are
not confirmed by PNMT-X. Table 5.5 presents a list of the VEP in this class, with the scenario that
should have been used to confirm the attack attempt.

Attack Scenario
Standard

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

0x82-WOOoou—Happy new.c 	8315 	 FTP
0x82-wu262.c 	 8315 	 FTP
7350oftpd.tar.gz 	 2124 	 FTP
bid3581.txt 	 3581 	 FTP
bysin2.c 	 7230 	 SMTP
crash_winlogon.c 	 1331 	 IP
ftpglob.nasl 	 3581 	 FTP
iis_printer_bof.c 	 2674 	 HTTP
IIS5.0_SSL.c 	 10115 	 Application
iis5hack.pl 	 2674 	 HTTP
iiswebexplt.pl 	 2674 	 FTP
MS03-039-linux.c 	 8459 	X
MS03-04.W2kFR.c 	 8459 	X
ms03-043.c 	8826 	X
MSO4-007-dos.c 	 9635 	 Application
samba trans2open.pm 	7294 	X
ssIbomb.c 	 10115 	 Application
wd.pl 	 7116 	 HTTP

Table 5.5 No Improvement

5.1.4 Misclassification Class
This class describes the VEP that PNMT-X misclassified some successful attacks as Likely-To-Fail
or some failed attack attempts as Likely-To-Succeed. There are two reasons for this situation: the
sub-attack success and the misleading success message from the target.

Sub-attack Success

17

Sub-attack success arises when a VEP uses several different sub-attacks to exploit the same
vulnerability within the course of the VEP attack. For example, decodexecute.pl first verifies
whether or not the exploited vulnerability is present on the target by executing a directory listing. If
the system is vulnerable it will respond. If the first attempt is successful the VEP will try to execute
a command on the target system. In some situations, the first command is successful, but not the
second one. In this case, the VEP is not successful, but part of the attack was successful. The
PNMT-X system is able to confirm that the traffic trace contains a successful attack. However, our
VEP traffic traces classification system that relies on the VEP output is not able to make the
distinction that part of the attack was successful and this attack was classified as failed by our
system.

Misleading Success Message

In the case of lis source_dumper.pm and iis40_htr.pm, it seems that some target systems respond
with a success message for the attack command sent by the attacking program. Thus, the type of
standard message can not be used in these cases to distinguish between a successful and failed
attack attempt. It could be possible to improve the accuracy in the case of iis source_dumper.pm as
the success message from the target contains information that the request was not executed
successfully. This message contains contradictory information and this misclassification can be
prevented by looking at the type of the message, and also at the part of the message containing the
failed execution information. Table 5.6 presents a list of VEP in this class with the scenario that
should be modified to accurately confirm the attack attempt.

Attack Scenario
Standard

Exploit 	 BID 	Direct 	Reverse 	Denial of 	Message
Shell 	Shell 	Service 	Reaction

decodexecute.pl 	 2708 	 HTTP
us source dumper.pm 	1578 	 HTTP
iis40_htr.pm 	 307 	 HTTP

Table 5.6 Misclassification

5.2 Bro Analysis
In this section we will provide a comparative analysis of PNMT-X with Bro. We know that Bro
when compared to Snort, provides a better mechanism to improve detection accuracy especially in
the case of the Standard Message Reaction Attack scenario. Because our previous analysis has
shown that Bro is only better than Snort in the case of attacks that trigger standard protocol
messages from the targets, we will only compare the results of PNMT-X for these VEP. This
analysis includes 15 of the 92 VEP in our data set.

18

It is important to mention that for the three classes of results presented in this section PNMT-X
always provides better results than Bro because Bro is not able to confirm attacks when compared
to PNMT-X. However, Bro is able to classify the results by distinguishing successful attacks from
failed attacks by providing an attack attempt message for a successful attack and being silent for a
failed attack. This philosophy has some problems. It is not possible in this case to distinguish failed
attack attempts from the attacks that could not be detected by the Bru. To further examine this
issue, we did a manual analysis of the silent results provided by Bru to list the VEP traffic traces
that Bru has identified as failed attack attempts and the attacks that it is not able to detect.

The accuracy improvement that PNMT-X provides is the reclassification of the successful attack
identified by Bru as Likely-To-Succeed and the reclassification of the failed attack identified by
Bru as a failure by being silent or the attack attempt as Likely-To-Fail. In this section, we try to
determine if our Standard Message Reaction Attack Scenario is better than the one implemented by
Bru for these VEP. We already know Bro has problems with its approach of looking at standard
protocol messages from the target when it is attacked by a VEP. There are two main problems with
Bru 's approach for handling the VEP in this data set. First, they have assumed that for all the Bru
rules using this functionality that if the attack sent to a target is successful, it will respond with a
success message and if the attack failed it will respond with an error message. This assumption is
not true because for some successful attacks the target will respond with an error message and for a
failed attack attempt it will respond a success message. For m00-apache-w00t.c a response of 403
Access Forbidden is a success because with this message it knows that a user is on the target
system. In some cases, the target will not respond at all. Because of this, modifications had to be
made to this concept for PNMT-X and exception rules had to be written to take these situations into
account. The results provided by PNMT-X on these VEP are classified into four classes: the
Improvement class, the Perfect Enhancement class, the Partially Enhancement class and the No
Improvement class.

5.2.1 Improvement Class

The Improvement class presents the VEP that PNMT-X provided better expectations than
anticipated based on the Bru classification accuracy. These are all the VEP attacks that are not
detected by Bru because of the problem with the standard protocol message discussed in the
previous section. Table 5.7 presents a list of these VEP.

Exploit 	 Bid
apac he2 . pl 	 2503
iis_printer_bof. c 	2674
iis40 htr.pm 	 307
iis50_printer overflow.pm 	2674
iis5hack.pl 	 2674
iiswebexplt.pl 	 2674
jill.c 	 2674
m00-apache-w00t.c 	3335
sol2k. c 	 2674

19

Table 5.7 Improvement

5.2.2 Perfect Enhancement Class
The Perfect Enhancement class represents all the VEP attack traffic traces for which PNMT-X was
able to confirm that all successful attacks detected as an attack attempt by Bro were Likely-To-
Succeed and for which PNMT-X was able to confirm that when Bro is silent, these attacks were
Likely-To-Fail. Table 5.8 presents the list of VEP that PNMT-X is able to confirm.

Exploit 	 Bid
AL L_UNIEXP . C 	1806
Apache chunked win32.pm 	5033
DDK-IIS.c 	 4485
decodecheck.pl 	 2708
decodexecute.pl 	 2708
execiis. c 	 2708
fpse2000ex. c 	 2906
iis_escape_test.sh 	2708
us source_dumper.pm 	1578
I isenc.zip 	 2708
iisex.c 	 2708
iisrules.pl 	 2708
iisrulessh.pl 	 2708
iisuni. c 	 1806
iis-zang.c 	 1806
lala.c 	 2708
linux-wb. c 	 7116
msadc.pl 	 529
rs 	iis.c 	 7116
unicodecheck.pl 	 1806
unicodexecute2.pl 	1806

Table 5.8 Perfect Enhancement

5.2.3 Partial Enhancement Class
The Partial Enhancement class describes the VEP that PNMT-X can only partially confirm the
success or failure of a VEP against a target. There is mainly one reason for which PNMT-X is not
able to completely enhance its confirmation accuracy compared to Bro. In some cases, the attacks
do not trigger any response, thus we are not able to use the standard protocol message to confirm
the success or failure of the attack.

Furthermore, some Bro rules require the knowledge of the version and the product name of the
target to raise an event to the IDS administrator. Bro captures this information in the banner sent by
the target, but, it is not able to capture the banner and identify the version and the product name of
the target when there is no response. This effect could favor Bro's accuracy when the attack failed

20

if the target did not respond as Bro will be silent, which is the same behavior when it detects no
attack or a failed attack attempt. However, when the attack is successful Bro also waits for the
banner to make a decision, thus if there is no response it does not detect the attack attempt. Table
5.9 presents the list of VEP that PNMT-X is able to confirm their execution.

Exploit 	 Bid
iis nsiislog_post.pm 	8035
Xnuxer.c 	 7116

Table 5.9 Partial Enhancement

5.2.4 No Improvement Class
The No Improvement class describes the attacks that we were not able use to improve the accuracy
of the PNMT-X compared to Bro. This result is associated with the absence of a reaction from the
target for all traffic traces within a particular VEP. Table 5.10 presents the list of the VEP that
cause the target to not generate a response for an attack.

Exploit 	 Bid
us w3who overflow.pm 	11820
wd.pl 	 7116

Table 5.10 No Improvement

6 Summary
Herein, we will present the results, in Table 5.11, of this analysis using the metric presented in
Section 2. We are able to see that PNMT-X is more accurate th an Snort and Bro for the
classification and for confirmation of attacks by group by VEP or traces. The difference between
VEP and traces in the table is the unit used. In the case of VEP, we grouped all traffic traces by
VEP and we measure the accuracy for each VEP and then we average all VEP results to get the
accuracy of each tested IDS. In the case of using trace units, we simply measure the accuracy by
using all traffic traces. The table shows the same detection accuracy as Snort because we rely on
Snort for providing detection information that it is able to find in the traffic traces. The other two
IDS are not able to confirm any of the attacks in the data set. However, one interesting aspect is
that Snort is better than Bro for detecting attacks, but Bro is better than Snort for classifying
attacks. Thus, one would think that both Snort and Bro working together could lead to better
surveillance of a network.

IDS 	 Detection Accuracy 	Classification 	Confirmation
Accuracy VEP (trace) 	Accuracy VEP (trace)

Snort 	84 % 	27 % (29 %) 	0 % (0 %) 	
Bro 	 71% 	 60 % (50 %) 	0 % (0 %)
PNMT-X 	 84 % 	 72 % (77 %) 	50 % (54 %)

Table 5.11 IDS Accuracy Analysis

21

7 	Conclusions

In this report, we presented a new set of metrics to compare results of IDS when used against our
data set, a set of attack scenarios and a new IDS able to understand these scenarios. The metrics
have been proven to be useful when comparing the accuracy of PNMT-X with Snort and Bro. We
determined that Snort is better than Bro to detect attacks, but Bro is better than Snort to classify
attacks. Moreover, Snort and Bro were not able to confirm attack attempts with our data set.
However, the PNMT-X was able to use the attack scenarios to classify and confirm more attack
attempt than Snort and Bro.

We have identified several problems with our approach: the Snort class type problem, the exception
problems, the missing scenario problem and the scenario identification problem. The used of Snort
event types to associate the events with our attack scenarios is only a one to one relationship. Thus,
some attack attempts were not classified or confirmed. Thus, a one to many relationship has to
integrated in our IDS for the Snort class type or simply associate each Snort event with many
scenarios. In this case, it will be problematic to measure the classification and confirmation. One
attack could be associated as Likely-To-Fail for the denial of service scenario and as an Attempt for
the code execution scenario. We know that the attack as only one intention to cause a denial of
service and not execute code, but PNMT-X will classify this attack attempt as Attempt and not
Likely-To-Fail because it do not know the intention of the attack. Some attack exceptionally do not
exactly match to the attack scenario, a solution need to be found to identify these attack attempts to
be able to classify and confirm them. Some attack scenarios are missing such as the Standard FTP
message Attack Scenario and the Application Denial of Service Scenario. These attack scenarios
need to be implemented in PNMT-X. It has been very difficult to identify all the scenarios, we
believe that an automatic way to identify the scenarios in the data set is needed. This automatic way
to identify scenarios could also be used to resolve the exception problems and the missing scenario
problems.

Based on the results obtained in this project, we plan to develop a prototype that will use these
same attack scenarios. In addition, we will work to improve detection classification and
confirmation rate for the attacks that were not able to classify and confirm with our data set.

8 References

[1] Massicotte, F., Gagnon F., Labiche, Y., Couture, M., Briand, L.: Automatic Evaluation
of Intrusion Detection System Proceedings of the Annual Computer Security Applications
Conference (ACSAC) Miami, Florida December 2006

[2] Green, C., Roesch M.: The Snort Project: version 2.3.2, User Manual, www.snortord,
 2005.

[3] Paxson, V.: The Bro Intrusion Detection System Project: version 0.9a9, User Manual,
ww.bri-ids.org , 2005.

22

APR r7P

MMI

LKC
TK5102.5 .R48e #2007-002
Passive network monitoring
tool-extended (PNMT-X) :
proof of concept : report on
research progress to
November 1, 2006

DATE DUE

INDUSTRY CANADA / INDUSTRIE CANADA

II 	M6 11.4111111

e

