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The relevant commercial product and research literature shows that many techniques may be used 
to test Intrusion Detection Systems (IDS) that protect computer networks. There are two main 
techniques for testing IDS detection accuracy: the vulnerability exploitation program approach and 
the IDS stimulator approach. In the vulnerability exploitation program approach, real attacks are 
used against real target systems to generate test cases. The currently available solutions are not 
scalable and they are limited. For instance, the number of vulnerability exploitation programs used 
in test data sets is often small and the variety of the targeted systems is limited. To overcome this 
problem an IDS stimulator can be used to generate test cases based on the IDS signature database 
and to launch the packets corresponding to those signatures against different IDS for testing. 
However, most current IDS stimulators were developed for attacking IDS and not for IDS testing 
and evaluation. In this report, we will investigate how an IDS stimulator could generate test cases 
to identify problems in the IDS configuration or engine and to identify new IDS evasion 
techniques. To prove this approach, we developed a new enhanced IDS stimulator that we used 
against Snort and we identified configuration problems and potential evasion techniques when used 
against intrusion detection systems. 

Résumé 

Les solutions commerciales et la littérature scientifique montrent que plusieurs techniques peuvent 
être utilisées pour tester les systèmes de détection d'intrusion (SDI) qui protègent les réseaux 
informatiques. Il existe deux techniques principales pour tester la précision de détection des SDI: 
l'utilisation de programmes d'exploitation de vulnérabilités et l'utilisation de stimulateurs de SDI. 
Dans le cas des programmes d'exploitation de vulnérabilités, on utilise des attaques connues qu'on 
exécute contre des systèmes fonctionnels pour générer des scénarios de tests. Les solutions 
actuellement disponibles ne peuvent être utilisées à large échelle et sont limitées. Par exemple, le 
nombre de programmes d'exploitation de vulnérabilités utilisés pour générer les scénarios de tests 
sont souvent petits et la variété des systèmes attaquées est limités. Pour résoudre ce problème, les 
stimulateurs de SDI peuvent être utilisés pour générer des scénarios de tests à partir des signatures 
de la base de données des SDI et utiliser les paquets correspondant à ces signatures contre le SDI 
comme vérification. Par contre, la plupart des stimulateurs de SDI actuellement disponibles ont été 
développés dans le but d'attaquer les SDI et non pour les tester et les évaluer. Dans ce rapport, nous 
avons enquêté sur la possibilité d'utiliser un stimulateur de SDI pour générer des scénarios de tests 
pour des SDI tel que Snort dans le but d'identifier les problèmes dans la configuration ou l'engin 
des SDI et d'identifier des nouvelles techniques pour éviter les algorithmes de détection des SD!.  
Pour prouver la pertinence que cette approche, nous avons construit un tout nouveau stimulateur de 
SDI amélioré que nous avons utilisé contre Snort et nous avons trouvé des problèmes de 
configuration ainsi que de techniques potentielles pour éviter les algorithmes de détection lorsque 
nous les utilisons contre ces systèmes de détection d 'intrusion. 
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2 Introduction 

2.1 Exploits and Stimulators for IDS Testing and Evaluation 
In [1] we reported on the results of an experiment during which we evaluated the response of Snort 
(version 2.3.2 [2]) [2] and Bro (version 0.9a9) [3] to well-known attacks on commonly used 
network based protocols, services and applications. Both Snort and Bro are advanced and widely 
used open source intrusion detection systems (IDS). The well-known attacks are actual exploit 
scripts and programs that run in a tightly controlled test environment whereby all the resulting 
network packet traffic is captured and examined. 

An IDS may also be tested using crafted packets generated by an IDS "stimulator". IDS stimulators 
such as Snot [4], Stick [5], IDSWakeup [6] and Mucus [7] have been developed for two purposes: 
IDS evasion' testing, and IDS attack detection testing and evaluation. An IDS stimulator generates 
these crafted packets based on knowledge or information about the nature of an attack rather than 
on scripts or programmed code. For instance, an IDS stimulator may analyze an attack signature in 
the form of a record in a database to craft the appropriate packets for the attack. This approach is 
especially effective when an attack exploit signature is known, but the exploit script or program is 
not available. 

With regard to detection evasion, an attacker may use an IDS stimulator to create false attacks that 
force the IDS to generate many attack event notifications (herein called "events"). These events 
flood the network to hide the real event that is triggered when the attacker launches the real attack. 
A stimulator can also be used to cause a denial of service on the IDS. If too many attack packets 
have to be analyzed or when too many events have to be logged, the IDS may be overwhelmed and 
begin to ignore packets. 

In the case of Snort, there is an efficient denial of service presented in [8]. The authors provided 
well-crafted packets to Snort, based on Snort version 2.4.3 signatures that were similar enough to 
be analysed by a rule, but not similar enough to trigger an event. Only 4Kbps of traffic containing 
these packets is required to cause a denial of service on Snort (it looses packets). 

The other use of an IDS stimulator is for IDS testing and evaluation. In [7], the authors used this 
technique for IDS cross-evaluation. They attempted to determine by analysis if it was possible to 

I  In this context, an evasion may include certain kinds of denial of service attacks directly on the IDS as well as 
specially constructed packets that are not recognized by the IDS as an attack. 
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use Snort rules (which represent attack signatures) to generate packets and to use the generated 
packets as test cases to test other IDS. 

We believe that IDS stimulators can be used for three other IDS testing and evaluating aspects not 
addressed by existing IDS stimulators: 

1. testing the IDS engine with its own signature database; 
2. including testing strategies for the packet generation; and 
3. identifying and testing the packet (or sequence of packets) "space" 2  for each attack 

signature. 

These aspects can be used to automate the testing process and thus improve IDS technology. 

2.2 Project Purpose and Methodology 
Through this project, the concept of an IDS stimulator will be examined as a tool that would be 
effective in an engineering test and evaluation environment such as the Protocol Analysis Lab 
(PAL) operated by SITT. In conjunction with exploit driven testing, stimulator based testing has 
the potential to provide a comprehensive testing and evaluation facility. 

For this project, we will only address the use of IDS stimulators for IDS testing and evaluation. We 
developed our own IDS stimulator that is an improvement over the known IDS stimulators [4], [5], 
[6] and [7]. This improved stimulator addresses 2 of the 3 aspects mentioned above by adding 
testing strategies to generate packets and by automating the IDS engine testing with its own 
signature database. Even though the third aspect is not directly addressed by this report, we also 
explore the importance of identifying the packet space for each IDS signature. 

It is important to note that our IDS stimulator may also be used to identify IDS evasion or IDS 
denial of service techniques based on the problems (parameters) specified in the testing and 
evaluation phase. In particular, several problems were found using our IDS stimulator and the 
corresponding techniques could be used by attackers to evade detection by Snort. 

Note that Snort, being a freely available IDS, was ideal for this project. In particular, as the Snort 
source code is available, the source code could be checked to confirm Snort's processing behavior 
when anomalies were found during testing. Thus, the outcomes from this project can be used to 
improve commercial products. 

The remainder of this report is structured as follows. Section 2 describes the main functionality that 
must be included in an IDS stimulator to accomplish testing and evaluation of IDS. Section 3 
presents our IDS stimulator and its functionality. Section 4 describes the development process that 
still needs to be completed for this project. Section 5 presents the results we obtained by evaluating 
and testing five versions of Snort. Conclusions are drawn in Section 6. 

2  The term "space" means a packet or a group of packets that closely resemble or are related to a known packet or 
group of packets. 
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3 Test and Evaluation of Snort using IDS Stimulators 
Several existing IDS stimulators such as Snot, Stick and Mucus can generate packets from Snort 
rules. However, none of them is able to do this for each and every Snort rule. There are three 
common drawbacks to these existing tools: 

1. the number of Snort plug-ins3  that can be use by these stimulators is limited; 
2. the mapping of each signature within the packet space is undetermined or incomplete; and 
3. the incorporation of testing strategies is incomplete or missing entirely. 

The Snort rules are composed of plug-ins (modules) that examine certain aspects of a packet. The 
number of plug-ins that the exiting IDS stimulators are able to understand is limited because these 
stimulators were developed to generate packets from the Snort version 1.8 signature database. New 
plug-ins have since been developed for the more recent versions of Snort. However, Snot, Stick and 
Mucus were not updated to reflect the use of these new modules. Furthermore, it is not likely that 
these stimulators will ever be updated. 

Moreover, depending on the type of rules tested, these stimulators do not have facilities to execute 
nor evaluate Snort using different test strategies. For example, in the case of Snort rules with the 
flow plug-in with the parameter established, we would like to test the two possible directions of the 
packet flow for the attack. In the case of the flowbits plug-in, the different combinations of attack 
scenarios that influence the flowbits variables have to be tested. In the following sections, we will 
explore the importance of including testing strategies and packet space mapping to signature in 
these tools when they are used for IDS evaluation and testing. 

3.1 Developing a Testing Strategy 
There are three levels of testing that an IDS stimulator must address: the packet scenario level, the 
rule level and the plug-in level. Each of these testing strategies describes a testing level of 
abstraction that must be verified for each IDS signature. 

3.1.1 Packet Scenario Level 
At the packet scenario level, we want to test attacks that are modeled by the IDS as a sequence of 
packets that must occur before the IDS will provide an event message to the network administrator. 
With Snort, the packet scenario level is essential when several Snort signatures use the flowbits 
plug-in on a specific group of variables. These Snort rules, based on the value of the flowbits 
variables, can only be applied when these variables have certain values. Thus, we have a partial 
ordering of the Snort rules based on the variable values and we can generate all possible sequences 
of the Snort rules. These Snort rules can be used to construct a state machine where the states are 
the values of the variables and the events are the IDS events corresponding to these rules. This state 
machine can then be transformed into a tree. Each path from the root to each leaf corresponds to the 
packet scenario that has to be tested. A method to test state machines is described by transforming a 
state machine into a graph (tree) where each path from the root to the leaf correspond to a test case 
that must be conducted. Thus, for each packet scenario we generate a test case that corresponds to a 
possible sequence of Snort rules triggered based on theirflowbits variables. 

3  S'nort plug-ins (modules) are specific purpose additions to the basic IDS engine. 
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3.1.2 Rule Level 
The rule level corresponds to testing each rule independently. They can be viewed as a logical 
expression where all the predicates have to be true to raise an event. In the case of Snort, the header 
rule and the payload plug-ins in each rule are the predicates of the logical expression. In particular, 
all the plug-ins in the rules must be true for the rules to raise an event. Testing techniques that used 
logical expressions such as Variable Negation and Modified Condition Coverage can be used to 
properly test each Snort rule. 

3.1.3 Plug - in Level 
The plug-in level focuses only on testing each plug-in individually to find cases where the plug-in 
is not able to work based on its specification. For example, the plug-in pere that checks regular 
expressions in packets can be tested as a separate component. In this case, the regular expression 
can be transformed into a state machine and state machine testing techniques can be applied. The 
content plug-in that verifies whether or not a string is in a packet can be tested using different types 
of string sequences and illegal characters that are not allowed to be specified in a rule by the user. 

3.2 Packet Space versus IDS Signature Space 
In many situations, multiple packets can match an IDS signature. In the case of Snort a very large 
number of packets correspond to only one signature. It is important to investigate for flaws in the 
packet space represented by the signature. The Snort rule in Figure 1 states that an alarm will be 
raised if a packet that comes from the EXTERNAL NET to the HTTP_SERVERS on port 
HTTP PORTS and contains the text ".printer" in the URL. There are many TCP packets that could 
match this signature that are not attack packets nor are they even legal packets. 

alert tcp $EXTERNAL NET any -> $HTTP_SERVERS $HTTP_PORTS 
(msg:"WEB-IIS ISAPI .printer access"; flow:to_server,establlshed; 
uricontent:".printer"; nocase; reference:arachnids,533; 
reference:bugtrag,2674; reference:cve,2001-0241; reference:nessus,10661; 
reference:url,www.mlcrosoft.com/technet/security/bulletin/MS01-023.mspx;  
classtype:web-application-activity; sid:971; rev:10;) 

Figure 1 Snort Example 

Let P be the set of all IP packets that can be generated. This set is finite because IP packets have a 
length bound and a finite set of options fields. Suppose it is possible to create two subsets of P that 
describe the validity of a packet. Pp 010,0 1  represents the set of packets that can be understood by the 
transport protocol and the application protocol of a target system. We know that some packets will 
only be understood in some contexts, but to keep this explanation in two dimensions, let us say that 
this set contains all legal packets that can be understood. Pother  represents the packets that cannot be 
understood by any protocol. We assume, but it still needs to be verified, that Pprolocol U P - other — P 
and Pprotocor n Pother — 0. Let P - KnownAttack be the set of packets that represents known attacks in the 
IP packet space. We know that P - protocol n PKnownAiiack e 0 and Pother n PKnownAtiack e 0 because they 
are attacks that used well-defined protocol packets to exploit a vulnerability and some others that 
exploit a vulnerability using packets otitside the protocol speci fication. Let P - signature be the packets 
that correspond to the IDS signature i. A good IDS is one that P - signature l U ••• U Psignature n — 

PKnolinAttack where n is the number of signatures in the IDS signature database. When considering 
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Snort, some signatures correspond to packets outside P - KnownAttack that are in P - other. Thus, Snort is 
vulnerable to the false attack IDS evasion techniques described in the previous section. An 
evaluation of the IDS's rules is required to identify these problems. 

It is a difficult task to evaluate the packet space of an IDS signature, but an IDS stimulator could be 
used to address part of this problem. For instance, a set of packets for P - sIgnature is generated (where 
the corresponding attack packets must meet the protocol specification to succeed) with packets that 
are outside the protocol specification and these packets are provided to the IDS to verify that the 
IDS does not generate any events or alarms. 

3.3 IDS Stimulator Missing Implementation 
it is difficult to find an algorithm that will generate the corresponding packet for all the Snort 2.x 
plug-ins. This method or algorithm is the opposite of the methodf(packets,signature) in an IDS that 
takes packets and checks whether or not they match a signature. The problem is to find an 
algorithm which, for each signature, is able to find the corresponding groups of packets. Thus, an 
IDS stimulator can be viewed as a system with two components. A parser component to create the 
object that will be used for generating the packets such as Snort rules and the packet generating 
component. There are mainly four IDS stimulators available: Stick, Snot, IDSWakeup and Mucus. 
We did a survey of the functionality and capability of these IDS stimulators and decided to not 
reuse these tools for this project, but to develop our own solution to the problem for several 
reasons. 

First, none of these tools seems to be in ongoing development and there is no plan that would 
indicate that the functionality and capability of these tools will be updated by their owner. In fact, 
three of them (Stick, Snot and Mucus) were developed to generate Snort rules for version 1.8 (2003) 
and earlier and are not able to generate packets for the Snort 2.x plug-ins such as byte_test, 
byte_jump, flow and flowInts. These IDS Stimulators have a limited number of Snort plug-ins that 
they are able to use, thus, they are not able to generate all packet sequences for all Snort rules. To 
test the plug-ins for rule and attack scenario levels, all plug-ins must be implemented in the IDS 
stimulator to generate the packets. In the case of IDSWakeup, it used simulated attacks already in 
its databases, thus is it not relevant to this project because it cannot be used to test the IDS engine 
within its signature databases. We cannot analyze the packet space for each of its IDS signatures 
because its IDS signatures are not the source of information needed to create its simulated attacks. 
Second, because the packet generation components of these tools rely on the Libnet 4  library and 
that we already have a Snort rules parser in our toolkit the reusability of one of these tools is 
minimal. In fact, the Libnet library is the only important component to reuse from these tools. 

4 Proof-of-concept Design 
For this first version of the proof-of-concept for the IDS stimulator, called Stimulator2, we decided 
to focus on rule level testing. By verifying when the logical expression described by the Snort rule 
is true, we can partially address the packet space problem by creating packets outside the protocol 
specification, if possible, and to implement all the plug-ins missing from the other IDS stimulators. 
We used the rule level testing strategy as a starting point because an IDS engine is as only good as 

4  http://www.packetfactory.netilibnet/ 
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its knowledge, in this case, its rule database. The proof-of-concept currently only works with Snort, 
but it is able to work with all versions before Snort 2.4.3. It was decided to only use Snort for this 
project because it is the only IDS with an open rules database with enough rules to evaluate this 
approach for IDS testing and to identify IDS evasion attacks. This proof-of-concept IDS stimulator 
is used to test whether Snort is able to detect the packets corresponding to a Snort rule for each 
Snort rule. The proof-of-concept was designed to generate, for each Snort rule, a corresponding 
group of test cases that will trigger the rules based on several testing strategies addressing different 
functional components of the IDS. We developed a framework in Java to allow easy incorporation 
into the framework of different testing strategies with a minimum of effort. The proof-of-concept 
IDS Stimulator works with an IDS evaluation framework to test the IDS. 

The IDS Stimulator is responsible for generating the group of packets for each Snort rule based on 
the current testing strategy. It is responsible for generating the data set that will be used for the IDS 
evaluation. The IDS evaluation framework is responsible for submitting the test cases (packets 
generated for each IDS rule) to the IDS and verifying if Snort is able to detect the attack using the 
corresponding rules for the packets in the test cases. Figure 2 presents our proof-of-concept IDS 
stimulator. 

Figure 2 IDS Stimulator Overview 

First, all the Snort rules from the version under test are analyzed and stored using SnortRule objects 
into memory by the SnortRuleParser module. The objects are given to each 
AbstractPacketGenerator that generates the packet corresponding to each SnortRule object using 
the corresponding testing strategy. There are more than 10 AbstractPacketGenerator classes that 
implement different testing strategies to identify problems within the Snort IDS engine in relation 
to its configuration and signature database. Each AbstractPacketGenerator uses the Libnet module 
to generate the packets corresponding to that signature in a tcpdump file format. If there are 
multiple groups of packets that have to be tested for this signature, a file is generated for each 
group of packets. Each of these files represents a test case that will be used to test the Snort IDS 
version. The files are then documented and integrated into the data set. 

The IDS evaluation framework is an erihanced version of the framework presented in the paper [1 ]  
that we used to evaluate Snort and Bro with real attack data. Figure 3 presents the IDS evaluation 
framework that we enhanced to test each Snort version. It consists of four components IDS 
Evaluator, the data sets, the IDS Results Analyzer and the IDS. 

CRC Report No. VPNT2007/03 	 6 



A 

I IDS V 

«Me 
Data 
Set 

Report 

IDS Evaluator 

LDS Result Anab,-zer 

Figure 3 IDS Evaluation Framework Overview 

First, the IDS Evaluator takes each test case from the data set and then provides it to the IDS. In the 
case of IDS stimulation testing, only the data set generated with an IDS signature database is 
submitted to that IDS. Thus, the data set generated with Snort 2.4.3 rules is submitted only to Snort 
2.4.3. The IDS Results Analyzer is responsible for automatically analyzing the events of the IDS. 
The system relies on the corresponding signature and documented success of the detection to know 
if the IDS has properly detected the attack or not. For example, a group of packets generated using 
signature i based on test strategy t is documented to be detectable by the IDS. Thus, if the IDS 
raises the event from signature i when this group of packets is submitted to the IDS, we know that 
the IDS has passed this test case. In the case of a test that is not supposed to be detected by the IDS, 
it is successful when the IDS did not provide any event notification from the corresponding 
signature that is evaluated in that test scenario. 

5 Missing Functionality 
In our IDS Stimulator, there are still minor improvements to be made before being able to generate 
all test cases for each Snort rule. However, the Snort versions tested in this project contain between 
2500 to 3200 rules and the missing functionality only affects a few rules. These improvements can 
be combined into two groups: the missing Libnet library interaction functionality and the missing 
Snort plug-ins. 

5.1 Missing Libnet Interaction Functionality 
In the case of Libnet library four tasks must be completed for our program to be able to process 
each Snort rule: 

1. IP Options interface implementation; 
2. RPC interface implementation; 
3. all ICMP types interface implementation; and 
4. the resolution of the destination broadcast address bug. 

5.1.1 IPOptions - 
There is a Snort plug- in ipoption that is used to check the IP Options in a packet. An interface must 
be developed between our proof-of-concept and the Libnet library function that sets the 1 P Options 
within a packet. This task has been left outside of this proof-of-concept because only a few Snort 
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rules (3 rules in all tested versions) use this plug-in. Also, the Libnet library interface for the IP 
Options would have been time consuming during the development process because the Libnet 
library relies on strings and not on IP Options objects to set the IP options in the packet structure. 

5.1.2 RPC 
There is a Snort plug-in RPC that is used to look at certain remote procedure calls (RPC) fields in a 
packet. Once again an interface between our proof-of-concept and the Libnet library must be 
developed for generating test cases using this functionality. This plug-in has been left aside like the 
IP Options based on the number of Snort rules using it (4 rules for only two Snort versions) and the 
level of specification of the function that set RPC packet in the Libnet library. 

5.1.3 ICMP 
To detect attacks, Snort decodes three protocols: TCP, UDP and ICMP. One of the Snort rule files 
(ICMF'sules) contains rules to detect each type of ICMP packet. In the Libnet library, there are 
only a limited number of ICMP types that have been implemented (echo, network mask and 
unreachable). It is not clear that we could use these methods to set other types of ICMP packets 
because some ICMP packets such as unreachable have the same field construction as many other 
types of ICMP packets. Thus, it was decided for the proof-of-concept to only generate echo, 
network mask and unreachable ICMP packets in the data set. 

5.1.4 Broadcast Destination IP Address 
A problem was found in the Libnet library when we created an IP packet with a destination address 
of 255.255.255.255. The function in this situation returns an error. The rules using this type of IP 
address for a destination have been removed from the data set of test cases generated. 

5.2 Missing Snort Plug-ins 
Snort has 52 plug-ins (rule options) classified into five classes: 

1. the header plug-ins; 
2. the post-detection rule plug-ins; 
3. the non-payload plug-ins; and 
4. the payload plug-ins and the reference plug-ins. 

There are 6 "header" plug-ins that define the protocol, the source and destination IP and the 
protocol source and destination port that are used by a packet. There are 6 "reference" plug-ins that 
are used to describe the rules such as the message sent to the user and the reference to vulnerability 
databases. There are 15 "payload" plug-ins that describe the packet payload. There are 20 "non-
payload" plug-ins that describe the protocol fields in the packet. There are 5 "post-detection" plug-
ins that describe what needs to be done when an alarm is raised by a signature against a packet. 
Only the "reference" plug-ins are not relevant to packet generation. Most of the Snort plug-ins 
available up to and including Snort version 2.4.3 were implemented in our IDS stimulator. 

Four Snort plug-ins that were not implemented or were not working properly in our proof-of-
concept software were: fragbits, ANSI , ftpbounce andflowbils. 
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5.2.1 Fragbit 
The fragbits plug-in was implemented, but some of the packets generated with the Snort rules that 
contain this plug-in are not detected by all tested versions of Snort. It is unclear whether this is due 
to a problem in our proof-of-concept or in the Snort engine. More study is needed to find the source 
of the problem. This plug-in only represents a few Snort rules in the version we tested in this 
project (6 rules for 2 versions and 5 rules for 3 versions) and thus, this should not have an impact 
on the overall results. 

5.2.2 ASN1 
The plug-in ASN1 was not implemented in this proof-of-concept version. This plug-in allows us to 
look at problems in this encoding and identifies some problems in attack packets. This plug-in was 
not implemented because of the effort needed to implement it and potential results ratio. This plug-
in is only used in a few Snort rules in the version that we tested in this project (4 rules in one 
version and 10 rules in 4 versions). 

5.2.3 FTPBounce 
For the same reasons as for the previous plug-in, the ftpbounce plug-in was not implemented in the 
proof-of-concept. This plug-in is used in only a few Snort rules (1 rule in 1 version) and its impact 
on the results is limited to only one version. 

5.2.4 Flowbits 
The plug-in used for verifying multiple packets in one session, called flowbits, was implemented, 
but only one test strategy was developed for this plug-in. To test this plug-in, a series of attack 
packets must be included in the test cases. However, the proof-of-concept only creates one attack 
packet per test case so the f/owbits plug-in could not be completely tested in this project. The rule 
level testing abstraction can only test part of this plug-in. For example, the rules that use methods 
such as isset in flowbits on a variable are classified as not being able to be detected by Snort (this is 
the expected behavior for Snort) by the testing strategy. We are able to verify, using the rule level 
testing strategy that Snort should not detect these packets as attacks using the test cases generated 
with these rules. To be able to identify this packet as an attack, Snort must identify a packet that 
matches a rule that sets the same variable checked using isset in these rules before the rule is 
triggered. Thus, by only using the rule level testing strategy, the attack packet that raises the bit 
monitored in the rule by isset is not included in the test case. However, the single attack packet 
testing strategy for f/owbits was verified and implemented within the proof-of-concept. But, to 
accurately test this plug-in, a combination of attack packets follow the attack scenario specified by 
the rules using flowbits has to be included in the test case. To properly test this plug-in, our proof-
of-concept would have to construct test cases with complex attack scenarios that involve multiple 
packets that change the state of the variable values in a session. 

We estimate that these missing Libnet and Snort plug-in implementations are a minor factor for 
each tested version of Snort in this project. In fact, they represent at most only 5% of all the Snort 
plug-ins for each version of Snort tested. 
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6 Results and Outcomes 
Five versions of Snort were tested with our proof-of-concept program: versions 2.2.0, 2.3.0, 2.3.1, 
2.3.2 and 2.4.3. For each version problems were found in Snort using our IDS stimulator with 
different testing strategies. These problems can be classified into two classes: the configuration 
problems and the design problems. The configuration problems arise when a specific configuration 
of Snort disables certain rules that are not triggered based on the configuration. In this case, we also 
identified unexpected behavior that is probably related to the configuration problem. We also only 
used the default Snort configuration for testing all versions. The design problems are related to the 
design of the tools and not to its configuration. These problems can only be resolved by modifying 
the design and implementation of the Snort software. 

6.1 Configuration Problems 
In the case of configuration problems, all problems identified are related to the http inspect 
preprocessor. There are 8 different configuration problems identified by our proof-of-concept as 
shown in the following sub-sections. 

6.1.1 Uricontent Distance 
The Uricontent distance problem arises when a Snort rule contains the uricontent plug-in followed 
by the plug-in content and the distance plug-in. The packet generated by our proof-of-concept is 
not detected by the corresponding Snort rule. We were not able to determine in the time available 
why this problem occurs but it seems to be related to the configuration or behavior of the 
http inspect preprocessor. 

6.1.2 Special Character 
For an obscure reason, when the hexadecimal character  0x09 or Ox0a is used in the uricontent plug-
in of the Snort rules, the packet generated with this rule is not detected by the corresponding Snort 
rule. The value 0x09 corresponds to the horizontal tab and the value Oxa0 corresponds to the new 
line feed. Again, this problem seems to be related to the configuration or behavior of the 
http inspect preprocessor because a property setting can be activated that changes these characters 
to other values before giving the packet to the rule engine of Snort. 

6.1.3 Client Port 80 
When a client system (browser) requests a connection using port 80 or 8080 as a source port, which 
is normally used as a HTTP server port, the generated packet is not detected by its corresponding 
Snort rule. Once again this problem seems to be related to the configuration or behavior of the 
http _inspect preprocessor. 

6.1.4 HTTP GET 
The HTTP GET problem is also related to the http inspect plug-in. When there is a Snort rule with 
the word HTTP or GET in the uricontent Snort plug-in, the packet generated by our proof-of-
concept is not detected by Snort with its corresponding rule. The http _inspect Snort preprocessor 
normalizes the packet payload and removes the HTTP and GET keyword of the packet before 
submi tting it to the Snort rule engine. A discussion on this subject can be found in 
http://www.snort.org/archive-3-233.html.Further  studies must be conducted to check if there are 
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other Snort rules in the rule database that are there to replace these rules when they are used with 
this preprocessor. 

6.1.5 Port 80 
Some of the Snort rules use the uricontent plug-in but look at packets targeting ports other than 80 
and 8080. The default configuration of Snort for the http _inspect preprocessor is 80 and 8080. 
Thus, the packets generated with these rules are not detected by their corresponding Snort rule. 

6.1.6 Triple Slashes 
The triple slashes problem is similar to the HTTP GET problem. The packet generated with the 
Snort rules that has two consecutive slashes were not detected because the http inspect 
preprocessor normalizes the packet payload and automatically removes the slashes that are not 
needed. For more information about this, you may find a discussion on this subject at 
http://www.snort.org/archive-3-233.html.  

6.1.7 Traversal 
The traversal problem is also similar to the HTTP GET problem and the triple slashes problem. The 
packet generated with Snort rules that contain directory traversal (\..\ or \.\) were not detected by 
Snort. The http inspect preprocessor once again normalizes the packet payload by removing the 
directory traversal before providing it to the Snort rule engine. Discussion on this subject can be 
found in http://www.snort.org/archive-3-233.htfnl.  

6.1.8 Unicode 
The packets generated with Snort rules that contain Unicode encoding in the uricontent plug-in 
were not detected. In this case, we suspect that the http inspect plug-in is responsible for this 
situation and transformed the packet payload again. It is not clear if there are Snort rules that 
correspond to all the Snort rules not detected because of the problems noted above. 

6.2 Design Problems 
There are four design problems that were identified by our proof-of-concept: rule verification, rule 
ordering, packet space and the upper layer protocol unaware problems. 

6.2.1 Rule Verification 
The Snort rules verification problem is related to the Snort configuration, but when we realized the 
impact of this problem for the Snort engine, we classified it as a design problem. Snort does not 
check each packet with all the rules in certain scenarios. For instance, if a packet has triggered three 
rules (Snort default configuration), no more rules will be checked using this packet and the three 
events will be logged. This default value can be changed to another number in the Snort 
configuration file to examine more rules in this type of scenario. This behavior was enabled by the 
developers of Snort to optimize (minimize) event logging for the Snort rule engine. However, this 
technique could lead to IDS evasion. For instance, for each Snort version, the proper value for this 
parameter is related to the signatures contained in the Snort signature database and should be the 
number of rules that could intersect a particular attack scenario. Based on this design specification 
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of looking at only the first n rules that match a packet, we see at least two problems with this 
approach. 

First, if the value in the configuration is very high (near 100) and if the Snort signature database 
allows it, an attacker could, based on the Snort rule specification, create a packet that would 
intersect a large number of rules (around 100). If we were to send this packet on a netvvork 
monitored by Snort at a certain interval, it could cause the Snort engine to drop packets because 
Snort will use processor/system resources to log a large number of events even if these packets do 
not represent a real attack. 

Second, if the value in the configuration is low (near 3) it could be possible, based on the Snort 
rules, to initiate an attack that would trigger three rules, none of which correctly identify the attack. 

Based on the current state of the Snort rules, we believe that there is potential for these two types of 
attack to be conducted successfully against Snort. In fact, the limit of three rules seems insufficient 
because some of the proof-of-concept generated packets with Snort rules triggered more than three 
rules. 

6.2.2 Rule Ordering 
The order of the packets is also important because some of the packets that triggered many Snort 
rules could have an effect on the events raised by Snort. In one case, the order of two rules changed 
the events raised by Snort because the first rule changed the state of aflowbits required by the other 
rule. If the rules were inverted, the results would have been different because the effect of the first 
rule required by the second rule could not have been propagated and none of the rules would have 
been triggered. It is not clear whether the Snort developers carefully ordered the rules to ensure no 
logic error in the Snort rule database. However, this could be an easy mistake to make when 
someone is using flowbits to write Snort rules. Further study must be made of this subject to check 
whether this is a good design or whether it could lead to new IDS evasion techniques against Snort. 

6.2.3 Signature versus Packet Space 
We were able to determine that Snort signatures represent packets that are not attack packets. The 
packet space identified from a Snort signature contains packets that do not meet the protocol 
specification and that do not represent valid attack attempts. Many Snort signatures are not built to 
distinguish among packets meeting the protocol specification. In fact, most of the packets 
generated with the Snort rules do not meet the protocol specification, but are still detected by Snort 
as attack packets that could affect a target. This leads to another problem, described in the next 
section, we found with Snort being protocol unaware of certain transport, session and application 
protocols. 

6.2.4 Upper Layer Protocol Unaware 
In most cases, Snort is not able to verify the validity of transport, session and application protocols. 
The protocol layer above the protocol specified in the Snort rule header has to be specified using 
the payload plug-ins. In the case where the plug-ins are not used to check certain aspects of the 
upper layer protocols any packet that matches the rule header and the payload plug-ins will match 
the rule even if the encoding of the protocol above the one specified in the header is not correct 
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based on its specification. In fact, the Snort plug-ins implementations seem to be deficient when 
decoding the session and the application protocol monitored by the rule. 

7 Conclusion 
In this report, we presented a proof-of-concept of a new enhanced IDS stimulator and a data set of 
false attacks that can be used to test and evaluate the Snort IDS as well as identify vulnerabilities in 
the system. We found that Snort has configuration and design problems that could lead to IDS 
evasion techniques that attackers may be able to use. In the case of Snort configuration problems, 
some rules could never be triggered in the default configuration and it is not clear whether there are 
other rules that are in the Snort signature database that detect the corresponding attacks in the 
default configuration. The design problems in Snort allow attackers to use an IDS stimulator for 
IDS evasion and denial of service because the packet space of certain Snort signatures contains 
non-attack packets. Moreover, the rule order and the number of triggered rules can be used by an 
attacker to evade detection by Snort using crafted packets. 

Some improvements are still needed for this IDS stimulator to be used to its full potential. For now, 
we identified three improvements that need to be completed: the missing plug-ins and interfaces to 
Libnet, developing an algorithm to determine the packet space of each Snort rule and adding more 
testing strategies. 

Based on the results obtained in this project, we plan to develop a prototype that will be able to 
implement what is missing in the proof-of-concept to create more test cases and that will help to 
find other issues with Snort IDS. 
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