
Communications Centre de recherches
Research Centre sur les communications
Canada Canada
An Agency of
Industry Canada

Un organisme
d'Industne Canada

LKC
TK
5102.5
.R48e
2 009-02

This information is provided with
the express understanding that

proprietary and patent rights will
be protected

Studying Malware in an Isolated
Network Sandbox

Mathieu Couture & Frédéric Massicotte

CRC Technical Note No. CRC-TN-2009-02
Ottawa, September25th 2009

I C
CAUTION

Canacr3 cic
H 	Ft4IttI (ANADA • 	FIJI IN- I ■ 1- ItFIIIt(III,`,111i I I, < I/MMUNIr n'IONS 	ANADA • WWW.0 	.0 A

Industry Canada.
Library - Queen

MAR 1 8 2013
Industrie Canada

Bibliothèque - Queen

Abstract

A sandbox is a software tool allowing the safe monitoring of the execution of malicious
software (malware), or more generally, programs that cannot be trusted. Most of the time,
a sandbox is implemented in a virtual machine or a simulated operating system and
allows to study the behavior of the program from the host's point of view. Over the years,
we have developed a suite of tools that we came to consider as a network sandbox, i.e. a
sandbox that allows us the study of a program's behavior from the network perspective.
In this paper, we present results from a specific experiment conducted in our network
sandbox using various malware samples. We believe that a network sandbox brings
helpful information which, combined with the information brought by a host sandbox,
provides a more complete view of the mechanisms that are taking place during the
execution of malware.

Résumé

Un bac à sable est un outil logiciel permettant d'observer de façon sécuritaire l'exécution
de logiciel malicieux (maliciel), ou plus généralement, de logiciel auquel on ne fait pas
confiance. La plupart du temps, un bac à sable est implémenté dans une machine virtuelle
ou un système d'exploitation simulé et permet d'étudier le comportement des logiciels du
point de vue du système d'exploitation hôte. Ces dernières années, nous avons développé
un ensemble d'outils que nous sommes venus à considérer comme un bac à sable réseau,
c'est-à-dire un bac à sable qui permet l'étude du comportement de logiciels du point de
vue du réseau. Dans ce document, nous présentons un sommaire des résultats d'analyse
obtenus suite à l'exécution de plusieurs lociciels malicieux dans notre bac à sable. Nous
croyons qu'un bac à sable réseau fourni de l'information qui, une fois combinée à celle
obtenue à l'aide d'un bac à sable traditionnel, procure un point de vue plus intelligible des
divers mécanismes mis en place durant l'exécution de logiciel malicieux.

3
4
5

Contents
1 Introduction 	 2

2 Background 	 2

3 System Architecture 	 3

4 Use Case Example 	 4
4.1 Network Topology 	 5
4.2 Experiment Snenario 	6

5 Traffic Traces Analysis 	 6
5.1 Polymorphic Worms 	 6
5.2 Botnets 	7
5.3 Propagation Mechanisms 	7
5.4 Successful and Failed Propagations 	7

6 Conclusion 	 8

List of Figures
1 	AVES Architecture. 	
2 	XML Experiment File Example. 	
3 	Network Topology and Typical Communication Pattern Involving DNS Traffic. 	

List of Tables
1 	Summary of observed TCP traffic. 	6

1

1 Introduction
The Network Security community constantly need recent malicious software (malware) and traffic traces
containing attack instances. Over the last years, the problem of automatically acquiring malware soon after
its creation has been addressed with an encouraging number of success stories by the emergence of more and
more sophisticated medium-interaction honeypot systems [1, 2].

Different approaches have been adopted to analyze those malware samples, each one falling into one of the
two following categories: the dynamic approach (where the code is being executed) and the static approach
(where the code is being analyzed without being executed). Each category of approach has its pros arid cons,
but an important advantage of the dynamic approach is that it reveals subtleties that could not be identified
by static analysis either because the executable is obfuscated using techniques such as self-extracting code,
because it exploits some unknown vulnerability of the operating system, or just because its structure is too
complex. On the other hand, dynamic analysis has the inconvenience of presenting a security risk since it
involves the execution of software that is designed to perform undesirable actions.

The efforts that have been deployed to circumvent that last problem led to the establishment of a research
field known as Sandboxing. A sandbox is a software tool allowing the safe monitoring of the execution of
malware or other kinds of programs. From a functional point of view, a sandbox is a process where the
input is an executable file and the output is a set of reports about the diffèrent actions taken by the prograrn
during the monitoring period. Those reports may contain information about modifications made to the
file system or the registry, the network activity, the information displayed on the screen, or anything else
considered relevant by the designer. A report cari consist of organized textual information or binary files
such as network traffic capture files.

Well-known sandboxes include Norrnan Sandbox [3], CWSandbox [4], and Anubis [5]. The approach of
Norman Sandbox is to execute the program in a simulated operating system, while the two other sandboxes
execute the program in the real operating system inside a virtual machine, i.e. only the hardware part is
simulated. To monitor the actions taken by the program, CWSandbox uses a technique called API hooking,
which consists in replacing the system DLLs of Windows by home-made DLLs that log all the system calls
being made before forwarding thern to the real DLLs. Anubis, on the other hand, monitors system calls
and API functions from outside the virtual machine. This technique lias the advantage of leaving Windows
unmodified. In addition, Anubis allows the monitored virtual machine to connect to the Internet [6]. To avoid
causing damage, some filtering is done about which traffic is actually routed on the Internet. Recording traffic
traces has the advantage of providing the analyst with an execution trace of the malware from a networking
point of view.

In this paper, we focus on the problem of generating traffic traces resulting from the execution of malware
in an environment that is completely isolated from the Internet. The purpose of those traces is to characterize
the behavior of malware sarnples from a network point of view. We describe the network sandbox that
has been developed, called AVES (Automatic Virtual Experiment System). AVES supports the execution
of malware in a customized virtual network. We used AVES to execute 7813 different nialware samples and
study their propagation mechanisms in presence of two different target operating systems.

2 Background
In 2005, we started a project whose objective WaS to produce labeled attack traffic: traces in an effort to
provide the security community with a new set of traces given that the ones provided by DAR,PA [7] were
already five years old. That led to the development of AVES, that we used initially to generate attack traffic:
traces capturing the execution of 124 exploits against 108 different target operating systems [8]. The same
year, AVES was used to generate malware execution traces that helped improve the ScriptGen project [9].
Later, AVES was used to create an Operating System Fingerprinting dataset [10]. Those multiple uses of
our controlled network environment motivated us to continue its development.

The first version of AVES uses desktop .computers as the hardware arid VMware Workstation as the virtu-
alization technology. To speed-up the process of generating the traces, we designed a simple synchronization

2

Management Network

Experiment & Dataset
Repository

Experiment
Manager 1

Experiment
Manager 2

Experiment
Manager N

Experiment
Viewer

Figure 1: AVES Architecture.

mechanism allowing multiple computers to parallelize their efforts. Over time, AVES used between 25 and 30
computers (typically, those machines have a Pentium 4 processor and 2 GB of RAM) in our laboratory. To
prevent the physical hosts from being infected during malware execution, the malware samples are executed
in a virtual network to which no physical machine was connected.

During 2008, we developed another version of AVES that uses VMware ESX as the virtualization tech-
nology and servers with two quad core processors and 32 GB of RAM as the hardware. The architecture of
that second version of AVES is outlined in the next section.

3 System Architecture
Figure 1 presents the architecture of our system in the case where a single server is used. When more than
one server is used, the architecture extends trivially. The system is designed so that several experiments
earl be performed simultaneously within one server. An experiment consists in a sequence of steps to be
performed by a set of virtual machines that are connected to each other according to a specific network
topology. In our current setup, we perform ten simultaneous experiments per server. The experiments
to be performed are specified in an XML format. That format is described in Section 4. The XML files
containing the experiment specifications are stored in a virtual machine called the Experiment & Dataset
(E&D) Repository. That machine also stores the malware samples as well as the files that are produced
during the execution of the experiments.

Each individual experiment is performed by a virtual machine called Experiment Manager (EM). There
are as many EMs as there are simultaneous experiments to be performed. Each EM has its own set of
isolated virtual networks and virtual machines (called actors) to perform the experiments. The EMs and
the E&D Repository share a common network (called the Management Network) that is used to acquire the
list of experiments to be performed and to store the results of the experiments. The ESX server itself is also
connected to the Management Network. That connection allows the EMs to interact with the ESX API to
control the actors (e.g. starting and stopping the machines, reverting them to an initial snapshot, connecting
them to a given virtual network, connecting their CD-ROM drives to a given ISO image, connecting the
serial ports of two virtual machines together). Finally, there is one physical machine other than the ESX
server that is connected to the Management Network. It is used to visualize the current state of AVES. We
call it the Experiment Viewer.

The ESX API does not in itself allow the EMs to run processes on the actors. Since, for obvious security
reasons, the actors do not share any network connection with the EMs, a, regular SSH connection cannot
be used eitler. Therefore, we had to develop our own secured communication channels (depicted in (lotted
lines in Figure 1). To start and stop processes on the actors, we developed a custom-made protocol using
the serial port. Since the EMs are virtual machines, they cati use the ESX API to connect their own serial
port to the actors ports and control the actors from there. However, to transfer relatively large files such as
malware samples (having a size anywhere between a few KB and 10 MB) and network traffic traces (often
having a size near 100 MB) the serial port is inappropriate in terms of efficiency. To transfer the malware

3

<experiment executiongraph="S1.S2.S3.S4.S5.S6.S7">
<actor id="VMWin2KSP4Malware">

<flic interface="ethernet0" VMNet="3" />
<cdrom>

<file path="Mlmalware/samples/alb2c3.exe" />
</cdrom>

</actor>
<actor id="VMLinuxRH8ODNAT">

<flic interface="ethernet0" VMNet="2" />
<flic interface="ethernet1" VMNet="3" />

</actor>
<actor id="VMWin2KSP4Target">

<flic interface="ethernet0" VMNet="2" />
</actor>
<actor id="VMLinuxFC4SnifferVMNet2">

<flic interface="ethernet0" VMNet="2" />
</actor>
<actor id="VMLinuxFC4SnifferVMNet3">

<flic interface="ethernet0" VMNet="3" />
</actor>
<actor id="VMLinuxFedora9Honeypot">

<flic interface="ethernet0" VMNet="2" />
</actor>
<step id="Sl" actor="VMLinuxFC4SnifferVMNet2" cmd='
<step id="S2" actor="VMLinuxFC4SnifferVMNet3" crnd='
<step id=" S3" actor=" VMWin2KSP4Malware" cmd="crnd
<step id="S4" actor="MANAGER" cmd-"SCR.EENSHOT
<step id="S5" actor="MANAGER" cmd="SCREENSHOT
<step id="S6" actor="VMLinuxFC4SnifferVMNet2" cmd='
<step id="S7" actor="VMLinuxFC4SnifferVMNet3" crrid-='
</experiment>

'START_SNIFFER eth0" />
'START_SNIFFER ethl" />
/c D:\alb2c3.exe" />
VMWM2KSP4Malware" />
VMWin2KSP4Target" />

'STOP_SNIFFER eth0" />
'STOF'_SNIFFER ethl" />

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

Figure 2: XML Experiment File Example.

in the virtual machines, we use a virtual CD-ROM image that we connect to virtual machine before the
experiment execution. To get the traffic traces out of the virtual machines we use Winlinage 1 to extract
them directly from the virtual machine's liard drive images. To communicate through those custom-made
connnunication channels, we designed a software agent that needs to be installed on the actors (only the
ones on which we need to execute processes).

4 Use Case Example
In this section, we describe a specific experiment that we recently performed with AVES. We also use that
experiment as an example to give an impression of the expressiveness of our XML format. The objective of
the experiment was to see how much information we cari obtain by executing malware in an isolated network
environment. We plan to perform several iterations of that experiment with more and more sophisticated
network architectures, but, as this paper is being written, only the first iteration is completed.

Through our participation in the WOMBAT project [1], we gained access to 7813 recent, malware samples
that have been collected using the SGNET platform [2]. Sonie of those malware samples were analyzed by
VirusTotal 2 , which gives us access to scan reports of various antivirus products. This, in turn, allows us to
obtain information about what kind of behavior we should expect to observe. We executed each malware
sample against two différent target machines. Therefore, a total of 15626 experiments were performed.

Figure 2 shows a simplified version of the XML file that was used to run the experiment corresponding
to a specific: malware sample against a specific target. Our XML format lias two main parts. The first
part (fines 2 to 23) consists of the description of the network topology to be used and sonie of the actors'
configurations. The second part (fines 24 to 30) consists of the description of the sequential steps to be
performed during the experiment. So nie steps are implicitly performed in every experiment and are thus
not specified in the XML file. Such steps include starting and stopping the virtual machines and reverting
them to an initial snapshot.

1 www.winimage.com
2www.virustotal.com

4

172.168.20.5:53 ircgalaxy.pl?

ircgalaxy.pl at 192.168.39.1
•

ircgalaxy.pl at 192.168.39.1 •
10.50.20.30:80 syn _10

syn-ack

192.168.39.1:80 syn

syn-ack •

10 50 20 ircgalaxy.tx

Target Sniffer

_J

	

DNAT 	 Honeypot

	 VMNet3 	 I I 	VMNet2

Figure 3: Network Topology and Typical Communication Pattern Involving DNS Traffic.

4.1 Network Topology
The experiment that we performed involved six actors and two networks. Figure 3 (lower part) shows the
network topology specified by the XML file shown in Figure 2. The actor called VMWin2KSP4Malware
is the one on which the malware actually executes. It is connected to the network called VMNet3 (line 3)
and receives the malware through its CD-ROM drive (lines 4 to 6 and 26). The execution of the malware
generates connections to IP addresses that are a priori unknown.

To solve that problem, we use a Destination Network Address Translator (DNAT) 3 . That role is fulfilled
by the actor called VMLinuxRH8ODNAT. It routes the traffic coming from VMNet3 to VMNet2 according to
the destination port rather than the destination IP address. VMNet3 and VMNet2 are two class B networks.
All traf-fic coming out of VMNet3 is routed to a machine on VMNet2, regardless of the actual destination IP
address. The appropriate IP address is changed (translated) when the packets go from one network to the
other to render the mechanism transparent on both networks. For our experiment, we configured the DNAT
so that DNS traffic (UDP port 53) is routed to the machine called VMLinincFedora9Honeypot arid all the
rest is routed to the target machine.

Figure 3 (upper part) shows a sequence diagram of a typical case involving DNS traffic. First, the Malware
machine issues a DNS request for ircgalaxy.pl . That request is re-routed by the DNAT to the Honeypot
machine, which provides an arbitrary IP address. Then, the Malware machine initiates a connection on
port 80 to that address, and the DNAT forwards it to the target machine.

In the case of the script shown on Figure 2, the target machine is VMWin2KSP4Target, a Windows 2000
Professional Service Pack 4 machine. The other machine that we used as a target was a Windows XP Home
Edition. The Windows 2000 machine was configured with the default ports opened as well as ports 21, 23
and 80. The Windows XP machine was only configured with the services that are typically available on a
home desktop.

The aim of the target machine is to capture the behavior of a potential propagation mechanism. The
malware executes on VMWin2KSP4Malware, arid all the traffic: it, generates to destination addresses outside
the range of IP addresses of VNINet3 (except for DNS) is directed to the target, machine. In particular,
propagation traffic should reach the target machine.

The aim of the VMLimixFedora9Honeypot, machine is to provide or emulate services that might be needed
by the malware. In that first iteration of our experiment, the only emulated service was DNS. We wrote a
simple script that, for each new DNS request, provides an arbitrary IP address. We observed that numerous
malware samples need a DNS in order to go further in their execution. Thanks to our DNAT machine,
whichever DNS server the malware intends to reach, the request will be handled by our script. In future

31inux.die.net/man/8/iptables

Sniffer Malware

2K 	 XP 	 2K 	XP 	 2K 	XP 	 2K 	 XP
Port 	S 	A 	S 	A 	Port 	S 	AS 	A 	Port 	S 	AS 	A 	Port 	S 	A 	S 	A
21 	1 	0 	0 	0 	2010 	1 	0 	0 	0 	4444 	2 	0 	3 	3 	8998 	1 	0 	0 	0
25 	1 	0 	1 	0 	2234 	6 	0 	5 	0 	5190 	62 	0 	70 	0 	9283 	2 	0 	0 	0
80 	2334 	2193 	2175 	0 	2293 	4 	0 	8 	0 	6667 	8 	0 	6 	0 	9889 	1 	0 	1 	0
81 	1 	0 	0 	0 	2569 	4 	0 	2 	0 	6697 	1 	0 	1 	0 	9928 	3 	0 	2 	0
135 	2 	2 	3 	3 	2938 	2 	0 	0 	0 	7000 	1 	0 	1 	0 	9988 	2538 	2538 	2540 	2539
139 	2539 	2539 	2542 	2542 	3029 	3 	0 	3 	0 	7382 	2 	0 	1 	0 	10324 	67 	0 	69 	0
445 	2539 	2517 	2542 	2542 	3240 	1 	0 	4 	0 	7575 	1 	0 	1 	0 	23337 	1 	0 	1 	0
809 	1 	0 	1 	0 	3432 	5 	0 	2 	0 	7654 	0 	0 	1 	0 	29178 	2 	0 	2 	0
1167 	1 	0 	0 	0 	3460 	2 	0 	0 	0 	7763 	3 	0 	6 	0 	51115 	2 	0 	2 	0
1863 	25 	0 	30 	0 	3838 	5 	0 	3 	0 	8080 	68 	0 	74 	0 	54321 	1 	0 	0 	0
1866 	35 	0 	35 	0 	3938 	4 	0 	2 	0 	8181 	1 	0 	0 	0 	59928 	3 	0 	3 	0
1867 	32 	0 	33 	0 	4000 	1 	0 	1 	0 	8492 	3 	0 	3 	0 	65520 	283 	() 	283 	0

Table 1: Summary of observed TCP traffic.

iterations, we will add more emulated (or real if possible) services. For example, an IRC server would be a
good component to have.

4.2 Experiment Snenario

The second part of the XML file shown in Figure 2 consists of the list of sequential steps to be performed by
the actors (lines 24 to 30). The order in which the actions must be executed is specified in the executiongraph
property of the experiment (line 1). We plan to support parallel actions in a future version of our system if
it becomes required.

The sequence of actions to be perfbrrned in the case of the experiment depicted in Figure 2 is pretty
straightforward: start the sniffers (lines 24 and 25), execute the malware (line 26), take screenshots (lines 27
arid 28), and stop the sniffers (lines 29 and 30). Due to space constraints, sonne details have been omitted.

5 Traffic Traces Analysis
The experiment described in the preceding section is a first step in an iterative process. It aims to help us
decide what services (real or emulated) would be the most relevant to be added in that type of experiment.
It could also help us design a better network topology, with more VMNets and DNATs that would be
configured differently.

We extracted TCP, UDP, DNS arid HTTP statistics from the traffic traces generated during the experi-
ments. Those statistics are stored in a database. Table 1 gives a summary of the TCP statistics contained
in our database. It shows, for each target and each port, the number of malware samples that have gener-
ated SYN packets (S) toward that target and the number of samples for which a SYNACK (A) was sent
in response to those SYN. There are 4669 samples that did riot produce any TCP traffic. We now describe
sonne observations that we made in our dataset.

5.1 Polymorphic Worms
The first problem for which we believe our network sandbox complements the information brought by a host
sandbox is that of deciding wether or not a given worm is polymorphic:.

For example, in our dataset, there is a strong correlation between the uses of ports 139, 445 and 9988.
The use of ports 139 and 445 is to be expected in a Windows environment, but what is surprising is its
strong correlation with port 9988, which was not opened on either of the target machines. Manual inspection
of sonne of the traces revealed that port 9988 is only used after ports 139 and/or 445, and that it is used
to transfer a Windows executable. This . fact suggests that a polymorphic worm using a vulnerability of
NetBIOS to open port 9988 and propagate through that port might constitute a large part of the dataset

6

(about half of the sample having produced traffic). However, a deeper analysis revealed that apart from the
propagation mechanism, the 2540 samples using ports 139, 445 and 9988 behave differently enough from
each other to rule out the hypothesis of a single polymorphic worm. There might be, however, several such
worms that could be grouped together. Further analysis of the executable binaries transferred on port 9988
will help investigate that hypothesis.

5.2 Botnets

It is well-known that IRC is a communication protocol that is extensively used by botnet herders to send
commands to zombie computers. We believe that our network sandbox cari help identify the chat rooms
that are used as command and control centers.

For example, the port 65520 is used by 283 malware samples of our dataset. One of the samples using
that port was identified as W32.Virut.A by Norton Antivirus. According to Symantec, "it opens a back
door on TCP port 65520 by connecting to the Proxirna.ircgalaxy.pl IRC server." In our dataset, 276 and
15 samples generated traffic respectively destined to Proxirn and Proxima, both in the ircgalaxy.pl domain.
All traffic directed to Proxima was on port 65520, while 8 out of 276 the samples that communicated with
Proxim used port 80 rather than port 65520. The traffic seen on port 80 looked like regular IRC traffic. For
example, here is what the payload looked like in one of the established sessions 4 :

NICK johndoe
USER u123456 .
JOIN &virtu

1.729fe9a3c Service Pack 4

We could not characterize the traffic on port 65520 because we did not have any host listening on that port.
In the next iteration of our experiment, we should consider running an IRC server on both ports 65520 and
80 of the lioneypot machine.

5.3 Propagation Mechanisms
For the purpose of Intrusion detection, it is important to gather information about malware propagation
mechanisms. We already described a case where we observed malware propagating on port 9988. E-mail
constitutes another propagation mechanism that is used by malware.

For example, out of the 283 samples generating traffic on port 65520, 128 were analyzed by Norton
Antivirus through VirusTotal. Among those 128, only 31 were identified as being part of the W32.Virtit
family. There were 87 samples that were identified as Backdoor.Trojan, a mass mailer that sends e-mails to
all contacts listed in the Outlook address book. Since we did not have any contact in our Outlook address
book, we could not observe such behavior. Again, this suggests a modification that we should make to our
virtual machines before performing another iteration of our experiment.

However, what we did observe is that all 87 samples also generated traffic on port 9988. If the Norton
Antivirus signature for Backdoor.Trojan is correct, then what we have is malware that uses more than one
propagation mechanism. The design of an intrusion detection signature for such malware should be done
carefully in order to identify all different behaviors.

5.4 Successful and Failed Propagations
As shown in [11], traffic traces containing both attack attempts that have succeeded and attack attempts
that have failed can be used to automatically generate intrusion detection rules that can verify the success
of an attack. Such a rule is called a verification rule.

Our dataset contains three different variants of the Blaster worm, which propagates using port 4444.
We can see that they successfully infected Windows XP but not Windows 2000. This observation makes us
believe that our network sandbox can generate traffic traces that eau be useful to generate verification rules.

4 The actual nick, user and channel names have been obfuscated to respect a non-disclosure agreement.

7

[7]

[8]

6 Conclusion
The experiments that we performed demonstrated the feasibility of setting up and executing several network
experiments in parallel within a single physical server. In each of our servers (which had two quad core
processors, 32 GB of RAM and ESX 3.5 update 2 as operating system), we executed ten experiments in
parallel. This allowed us to run 35 experiments an hour. We observed that with seven parallel experiments,
the number of hourly experiments stayed the same, and with fewer than seven, each EM could execute five
experiments an hour. This suggests the existence of some bottleneck, possibly in the ESX API, that needs to
be investigated. Nevertheless, the current combination of software and hardware supported the generation
of some interesting data.

The next step in our research is to see how far the approach of running malware in an isolated environment
can go. Mainly, we need to provide the malware with more (real or emulated) network services. We also
need to see whether a different DNAT configuration (where, for example, the same machine would not be
attacked 2000 times within 30 seconds) would provide more information about malware activity.

References
[1] Leit a, C., Pharn, V.H., Thonnard, O., Rarnirez Silva, E., Pouget, F., Kirda, E., Dacier, M.: The

leurre.com project: collecting internet threats information using a worldwide distributed honeynet. In:
1st WOMBAT workshop, April 21st-22nd, Amsterdam, The Netherlands. (Apr 2008)

[2] Leita, C., Dacier, M.: SGNET: a worldwide deployable framework to support the analysis of malware
threat models. In: EDCC 2008, 7th European Dependable Cornputing Conference, May 7-9, 2008,
Kaunas, Lituania. (May 2008)

[3] Norman Solutions: 	Norman sandbox whitepaper. 	http://download.norman.no/ whitepa-
pers/whitepaper_Norrnan_SandBox.pclf (2003)

[4] Willems, C., Holz, T., Freiling, F.: Toward automated dynamic malware analysis using cwsandbox.
IEEE Security and Privacy 5(2) (2007) 32-39

Bayer, U., Moser, A., Krügel, C., Kirda, E.: Dynamic analysis of malicious code. Journal in Computer
Virology 2(1) (2006) 67-77

[6] Bayer, U., Milani Comparetti, P., Hlauscheck, C., Kruegel, C., Kirda, E.: Scalable, Behavior-Based
Malware Clustering. In: 16th Symposium on Network and Distributed System Security (NDSS). (2009)

Lincoln Laboratory Massachusetts Institute of Technology: Darpa intrusion detection evaluation. http:
//www.11.mit edu/IST/ideval/data/data_index .html

Massicotte, F., Gagnon, F., Labiche, Y., Briand, L.C., Couture, M.: Automatic evaluation of intrusion
detection systems. In: ACSAC, IEEE Computer Society (2006) 361 370

[9] Leita, C., Dacier, M., Massicotte, F.: Automatic handling of protocol dependencies and reaction to
0-day attacks with scriptgen based honeypots. In Zamboni, D., Kriigel, C., eds.: RAID. Volume 4219
of Lecture Notes in Computer Science., Spring(-11. (2006) 185 205

[10] Gagnon, F., Esfandiari, B., Bertossi, L.E.: A hybrid approach to operating system discovery using
answer set programming. In: Integrated Network Management, IEEE (2007) 391-400

[11] Massicotte, F., Labiche, Y., Briand, L.: Toward automatic generation of intrusion detection system
verification rules. In: ACSAC, IEEE Computer Society (2008) 279- 288

[5]

8

LKC
TK5102.5 .R48e #2009-02
Studying malware in an
isolated network sandbox

DATE DUE
DATE DE RETOUR

1

CARR McLEAN 	 38-296

INDUS TR y CANADA / IN DUSTRIE CANA DA
 III 111111111 1 1/1 II lill II

' j.

' jr-
&

' t • t
' t
' t t

j• r

&
&
&

&

Il-

t.

r
4> 1 ,

1
1

bé,

4" 1 , n 1 f

