
EOM Communications Centre de recherches
Research Centre sur les communications
Canada Canada
An Agency o, 	 orgardeme
Acker,. Careula 	 amlustne Canoga

• • • • • • •
•

•
•
•
•
•
•

Last Minute Traffic Forwarding for
•
• I 	Malware Analysis in a Honeynet
•
•
•
OM 	 Mathieu Couture, Frédéric Massicotte & Daniel Rea

•
• •

•
• LKC
• TK te 	5102.5

. R48e
• #2010-

•
001

•
• Canadà
•
•

CRC Technical Note No. CRC-TN-2010-001
Ottawa, June 11th 2010

CAUTION

This information is provided with the express understanding

that proprietary and patent rights will be protected

I

•••
••

••
••

••
••

••
••

••
••

••
••

••
••

• •
••

••
••

•••
••

••

Contents

1 Introduction 	 3

2 Related Work 	 4

3 Problem Description 	 6

4 Configuration Language 	 8

5 Implementation 	 10

6 Case Study 	 11
6.1 Total Size of Generated Raw Data 	 13
6.2 TCP Traffic on the LAN Network 	 13
6.3 TCP Traffic on the SIM-INTERNET Network 	 15
6.4 DNS Requests 	 16
6.5 IRC Traffic 	 16
6.6 Intrusion Detection System Alarms 	 17

6.6.1 Snort Alarms 	 18
6.6.2 Emerging Threats Alarms 	 19
6.6.3 Conclusion 	 20

7 Conclusion 	 20

Library - Queena

Industrie Canada i b_ Mo LAI 1 2
:3 auu 	

11

2

Sniffer
(Linux)

Malware
(VVindows)

Honeypot 	Target
(Linux) 	(VVindows)

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

••
••

Sniffer
(Linux)

LSIM-INTERNET 	I

Figure 1: Simple isolated network topology.

1 Introduction

Over the last years, efforts have been made to develop malware sample gathering techniques.
The samples potentially contain valuable information about the worldwide malware activity. For
example, the samples may help in determining what are the most popular infection vectors, what
malicious actions are generally being performed, what do the control mechanisms look like in the
case of botnets and what are the IP addresses/domain names being targeted. This information may
help answering, among others, the following questions: What are the trends in Internet threats?
Who is behind them? What parts of the world seem to be responsible for (or targeted by) these
threats? What can we do to detect and/or mitigate them?

Extracting this information from the malware samples is not a trivial process. Generally,
malware analysis techniques are grouped into two categories: the dynamic category, where the
samples are executed in a simulated, emulated, virtual or real environment, and the static category,
where the samples are not executed. The work presented here falls into the dynamic category.

In previous work [4], we presented a virtual framework that allows to study network-related
aspects of malware in an isolated environment. It is clear that, technically speaking, malware
execution in a network that is not connected to the Internet will most likely produce less information
than if an Internet connection was allowed. However, for ethical, political, or legal reasons many
organizations choose not to use the Internet or would only resolve to do so in case of extreme
necessity. Therefore, it is desirable to develop techniques that allow as much information as possible
to be extracted from malware without providing it with Internet access.

Prior to execution, the IP addresses a given malware sample may attempt to contact are un-
known. In [4], the strategy we devéloped to address this problem was to reduce the Internet IP
address space to the IP addresses of a small number of hosts that are in an isolated network. To
implement this strategy, we used the Destination Network Address Translation (DNAT) function-
ality of ipta blest to decide to which host each packet would be forwarded based on the destination
port (TOP or UDP). Basically, we forwarded DNS traffic to a Linux host running a custom DNS
emulation script and forwarded all the remaining traffic to a Window host in order to study worm

Ihttp://www.netfilter.org/

3

Router
(Linux)
_J L

propagation mechanisms (see Figure 1). Two of our conclusions were: (1) The generated traffic
traces, from which the desired information is extracted in a post-processing phase, contained a
great amount of redundant connections, mainly due to worms attempting to contact a high number
of IP addresses in order to propagate; and (2) When using such a simplistic packet forwarding
strategy, connections being attempted on ports that are closed on the Windows host are not being
established, thereby leading to a potential loss of valuable information.

Some of these ports correspond to standard protocols such as SMTP and a simple upgrade of the
Linux host (i.e., add more emulation scripts) may solve the problem. However, some connections
are also attempted on non-standard ports. In this case, an arbitrary decision has to be made.
Depending on the expected payload, one can decide to either forward these connections to a given
host by leaving the port unchanged or to a particular port of a particular host that is known to
be open. For example, if one believes that port 6767 will be used for IRC, then port 6767 should
be forwarded to port 6667 (the defacto IRC port) of a host running an IRC server on that port.
However, there are worms that propagate through a backdoor that is open by some exploit payload.
For example, that is the case of Blaster, that opens a backdoor on port 4444. In that case, port
4444 should be forwarded to the Windows host.

Since the configuration of the DNAT device is made prior to executing malware, a wrong choice
of DNAT rule may lead to some potential information not being revealed and the only way around
is to execute malware several times, testing a different DNAT strategy at each time. This process
can be costly in time, especially when physical hosts are being used to perform the investigation.

In this paper, we address the problem of forwarding TCP/IP traffic in an isolated network
that is used to observe malware execution. More specifically, we present a strategy that allows the
decision of which port of which host will handle a particular connection to be postponed until the
very moment that it is being established. We call this strategy Last Minute DNAT (LM-DNAT).
The contributions we make are the following: (1) We identify the features that an LM-DNAT
module should have. (2) We propose a configuration language that enables those features. (3) We
describe an implementation that allows LM-DNAT to be performed using a Linux host. (4) We
present a case study performed using a corpus of 25118 malware samples. These contributions are
respectively presented in Section 3, Section 4, Section 5 and Section 6. We conclude in Section 7.
We first present an overview of related work.

2 Related Work

Dynamic analysis of malware presents a security risk since it involves the execution of software that
is designed to perform undesirable actions. The efforts that have been deployed to circumvent that
problem led to the establishment of a research field known as Sandboxing. A sandbox is a software

4

•

tool that allows the safe monitoring of the execution of malware or other kinds of programs. Well-
known sandboxes include Norman Sandbox [7], CWSandbox [10], and Anubis [3]. These systems
mainly aim at describing what malware does inside the host.

When focusing on what happens outside the host (i.e., on the network) a honeypot may be
used to handle some of the generated traffic. A honeypot, as defined by Spitzner [9], is "a security

resource whose value lies in being probed, attacked or compromised" . Honeypots, according to
Bailey et al. [2], can be classified according to their breadth and depth, where the breadth refers to
geographic aspects and the depth refers to the level of interaction. Honeypots with high depth are
also called high-interaction honeypots. Typically, a high-interaction honeypot is deployed using
a computer with a real operating system installation that is made available on the Internet for
hackers and/or malware to attack. Attacks can thus be observed with a high degree of realism.
However, high-interaction honeypots have to be closely monitored in order to prevent them from
being used to cause further damage. Also, the operating system has to be re-installed or reverted to
some original state from tire to time. At the other end of the spectrum, low-interaction honeypots
like Honeyd [8] present attackers and malware with minimal network functionalities such as the
network stack. In between, medium-interaction honeypots such as Nepenthes [1] and SGNET [6],
aim to offer a compromise by emulating only the parts of the application layer that are necessary
for malware to conduct its malicious actions. This strategy allows live malware propagating on the
Internet to be studied without worrying too much about the host being infected or having to revert
the system to an original state every now and then. A computer network composed of more than
one honeypot is called a honeynet.

In this paper, we study the problem of forwarding IP traffic to a honeynet for the purpose
of analyzing malware samples in an isolated environment. The general idea is to favor high-
interaction honeypots for most traffic, thus offering a high degree of realism, while using medium
or low-interaction honeypots to simulate network protocols that are used by malware or to handle
traffic on ports that are not open on the high-interaction honeypot. We discuss the problem in the
context of an isolated environment, but we believe that the concepts we develop could also be used
in a semi-isolated environment where an Internet connection would be used to allow connection to
command and control (C&C) servers, test Internet connectivity, or download additional code. Our
main contribution is a mechanism called Last Minute Destination Network Address Translation

(LM-DNAT), that tests whether the destination port of the connection is open at the time the

connection is being established. This mechanism allows decisions, about which of the honeynet hosts
should handle a particular connection or group of connections, to be made at the last minute.

5

••
•0

0
0

0
0

0
0

0
0

0
0

0
0
0
0
0
0
0
0
0
0

0
0

1
10

0
0

0
0

1
1
0
0

0
0

0
0
0
4
1

0
0

0

3 Problem Description

Figure 1 (page 3) shows a simple network topology that can be used when studying malware from
a network point of view. It basically consists in two local area networks. One that we call LAN,
where we find a Windows host called Malware on which the malware is being introduced and
executed. The other network, that we call SIM-1NTERNET, aims to provide malware with as
many resources as possible in order for it to perform as many undesirable actions as possible (in
our case, we actually desire malware to perform these actions). In the setup that we used for our
study, it just consists of three hosts: one called Sniffer, which is there to record the generated traffic,
one called Target, that is used to study the propagation mechanisms, and one called Honeypot,
that provides or emulates useful network services such as a DNS server, an IRC server, an SMTP
server, a netcat2 server, etc.

The Router host forwards packets between the LAN and SIM-INTERNET networks. The
challenge in this research is about finding the best way of forwarding packets, in terms of the amount
of information that can be extracted from the analysis of the traffic traces that are being recorded
by the two Sniffer hosts during malware execution. Forwarding packets is done using a forwarding

module, a piece of software that receives packets on one interface and sends them on another after
relabeling of the IP addresses and TCP or UDP ports. A well-known example of a forwarding
module is Netfilter 3 , which is often configured through ipta bles. In previous experiments [4], we
found that the functionalities of iptables were useful although insufficient. For example, iptables
lacks the possibility of testing whether a given port is open before forwarding the packets of a
connection.

In this section, we give a list of requirements that we believe should be taken into account
when designing a forwarding module for purposes of malware analysis. The list we provide is not
meant to be exhaustive, it is simply a list of features that, based on our experience, we found were
desirable.

Upon execution of a given malware sample, some IF traffic going to a priori unknown IF ad-
dresses might be generated. Since these addresses are unknown, one cannot pre-configure a network
that contains all the right IF addresses. For that reason, Destination Network Address Transla-
tion (DNAT) is the de facto mechanism to be used when analyzing malware in an isolated network.
While Network Address Translation (NAT) allows multiple hosts to use the same IP address, DNAT
allows multiple IP addresses to be forwarded to the same host. This functionality, built into ipt-
a bles, allows one to statically decide, prior to executing malware, which host will receive which
traffic. The forwarding rules can be expressed in terms of any combination of source/destination
addresses and ports. Any port forwarding module should be able to do at least as much as ipta bles

2http:1/en.wikipedia.org/wiki/Netcat
3http://www.netfilter.org/

6

•••
•••

••
••

••
•••

• •
••

••
••

•••
••

•••
•••

••
••

••
••

••

in terms of DNAT. In fact, as we show in Section 5, it is sufficient to write a script that dynamically
reconfigures Net -filter through iptables.

Requirement 1 (DNAT) A forwarding module should support translation of destination IP ad-

dresses and TCP/UDP ports.

To decide to which port of which host a given connection should be forwarded is a relatively
simple matter when the destination port is known to be open on one of the hosts that is on the
SIM-INTERNET network. For example, all NetBIOS traffic naturally goes to the Target host and
all DNS traffic goes to the Honeypot host. However, when a connection request is being issued to
a port that is not known to be open, a decision has to be made depending on what it is assumed to
mean. For example, if that connection is being established after the payload of an exploit previously
sent to the Target host opened a socket on that port, then the connection should be forwarded to
the Target host. If the exploit failed and the port is not open, then one might consider to forward
it to a netcat port in order to receive the first few bytes of data (if there is any data). It could also
be the case that the connection simply carries IRC traffic, in which case it should be forwarded to
an IRC server. At the very least, we should be able to test whether a given port is listening before
forwarding any traffic to it.

Requirement 2 (Test) A forwarding module should support TCP/UDP port testing.

Coming badc to the case where the payload of an exploit may or may not succeed in opening
a port on the Target host, one might prefer to let the malware know that the port is actually still
closed. For all we know, the malware could also simply be scanning the Target host in order to
determine what is the best thing to do next. Therefore, once a given IP address has been mapped
to one of the hosts in the SIM-INTERNET network (through the forwarding of a connection), one
should be able to decide whether or not subsequent connections made to that address on other
ports should also be forwarded to that same host. We call this concept vertical impersonation.

Similarly, if we want a particular host of the honeynet to impersonate all hosts offering a particular
service, then we talk about horizontal impersonation. More generally, one should be able to decide
which parts of the 5-tuple (protocol and source/destination addresses and ports) identifying a flow
should be used in order to forward traffic, which makes 25 different types of impersonation, of which
vertical and horizontal impersonation are just two specific cases.

Requirement 3 (Impersonation) A forwarding module should support the specification of any
type of impersonation.

The analysis of worms that are trying to massively propagate by infecting as many hosts as
possible may become difficult in a network where all traffic is in fact handled by just two hosts.

7

••
•
0
0

1
1
0
0
0

11
0
0
0
0

4
1
1
1
0
1
1
0
0
0
1
1
0
0
0
0
0
0
1

11
1

0
0

0
0

0
0

0
1
1
0
0
1

11
10

41

Therefore, it is useful to be able to specify some thresholds regarding how many connections are
handled by a given host, how many hosts a given host is allowed to impersonate, how many
connections a given port is allowed to receive, etc.

Requirement 4 (Thresholds) A forwarding module should support the specification of thresholds

about how many different addresses/ports a given address/port is being forwarded to.

A last requirement, that we did not address in this work but that we still think would be useful
for malware analysis, is payload inspection. For example, IRC connections are always initiated by
the client (i.e., the first packet containing payload is sent by the client). We could take advantage
of that in order to validate the forwarding of a given connection to an IRC server. In that case,
we would have to postpone the decision of which port and host to forward the connection to until
reception of that first packet carrying payload. This becomes tricky in cases where the application
layer connection is initiated by the server, in which case the client simply waits for the server to
send some payload once the TCP handshake has been completed. We decided to leave this issue
for future work.

Requirement 5 (Payload Inspection) A forwarding module should support the postponement

of address/port translation until the first packet containing payload is being sent.

4 Configuration Language

We developed a configuration language to specify how traffic should be forwarded. An LM-DNAT
configuration consists in a list of rules that we call LM-DNAT rules in order to distinguish them
from DNAT rules, which are written in the iptables configuration language. Although we did not
build our configuration language as an extension of the ipta bles configuration language, we believe
that it would be possible to do it if one wanted to implement LM-DNAT within iptables (rather
than as a wrapper of iptables, which is what we did).

As with ipta bles, the configuration file is read from top to bottom and the first LM-DNAT rule
that matches is the one that applies. Rule matching involves two criteria: (1) the arriving packet
must match some filter expressed in terms of addresses and ports (as with iptables), and (2) the
port to which the packet is to be forwarded must be validated (i.e., the rule does not match if the
port to which the packet is to be forwarded is not open). If no rule matches, the packet is dropped.

Consider, for example, the configuration shown in Figure 2 (page 9). The first rule means that
if a TCP connection whose destination port is 80 is being established, then it should be forwarded
to port 80 of 10.10.10.1. However, if port 80 of 10.10.10.1 was not open, then the second rule would
be tested. The second rule requires the destination port to be 25, so it does not apply. The third
rule says that any remaining TCP session (regardless of the destination port) should be forwarded

8

10.10.10.1 proto=tcp dport=80

10.10.10.2 proto=tcp dport=25

10.10.10.3:30 proto=tcp

Figure 2: LM-DNAT configuration example.

10.10.10.4 proto=udp dport=53 sport=0 dst=0 src=0

10.10.10.5 proto=udp dport=53 sport=0 dst=0 src=0

10.10.10.6 proto=udp dport=53 sport=0 dst=0 src=0

Figure 3: Horizontal impersonation example.

10.10.10.7 proto=0 sport=0 dport=0 src=0 matchNum=1

10.10.10.8 proto=0 sport=0 dport=0 src=0 matchNum=1

10.10.10.9 proto=0 sport=0 dport=0 src=0 matchNum=1

Figure 4: One-to-one impersonation example.

to port 30 of 10.10.10.3. Again, the session is only forwarded if port 30 of 10.10.10.3 is open.

Otherwise, the SYN packet is simply dropped.
This simple configuration language already meets Requirement 1 and Requirement 2. In some

applications, it might be useful that the matching of an LM-DNAT rule implies the forwarding of
more than just one session. For example, one might need to specify that once a session with a given
destination address has been forwarded to a particular host, then all subsequent sessions must also
be forwarded to that same host. Also, we could imagine a situation where all sessions with the
same destination port should be forwarded to the same host. For those reasons, we allow a rule
to ignore any of the five terms of the 5-tuple identifying a flow. This is simply done by writing
src=0, dst=0, sport=0, dport=0 or proto=0. For example, consider the configuration file shown
in Figure 3. It means that all DNS traffic (UDP port 53) should be forwarded to the first host that
is found to be running a DNS server among 10.10.10.4, 10.10.10.5 and 10.10.10.6 in that specific
order. Once a DNS server has been found, all other DNS requests, regardless of their source and
destination address and source port, will be forwarded to that host, even if the port eventually
became closed. This is how we addressed Requirement 3.

Let's now say that we have a collection of targets, and that we want each of them to impersonate
at most one Internet host (we call this one-to-one impersonation). This is done by simply adding
a threshold argument to each LM-DNAT rule. Consider the configuration shown in Figure 4. It
makes use of a mat chNum=k option, that allows a given rule to be matched at most a certain number
of times. Once it has been matched k times, then it is simply deleted from the rule list and will

9

••
••

••
••

••
• •

•••
•••

••
••

••
•••

••
•••

•••
••

•••
••

••
not be used to forward packets until the next execution (i.e., until the analysis of another malware
sample). In the case shown in Figure 4, the first session whose destination port is found to be open
on 10.10.10.7 binds its destination IP address to 10.10.10.7. Any other session whose destination
IP address is the same will be forwarded to 10.10.10.7. Moreover, no session with a different IP
address will ever be forwarded to 10.10.10.7 since the argument of the mat chNum option is 1. The
next session whose destination port is open on 10.10.10.8 and whose destination IF address is
different will be forwarded to 10.10.10.8. This is how we addressed Requirement 4. As we already
said, Requirement 5 is left for future work.

5 Implementation

Since the configuration language described in Section 4 simply specifies how to dynamically define
Destination Network Address Translation (DNAT) rules, which are already well implemented in
iptables, all we really had to do was to write a script intercepting packets in Netfilter before for-
warding them. We wrote a Python script that makes use of the ipqueue library4 to get incoming
packets from Netfilter, of Scapy 5 to perform the port testing, and of ipqueue again to give the packet
back to Netfilter. Figure 5 depicts the overall algorithm implemented by our script. When a packet
arrives, Netfilter first checks if a DNAT rule has already been defined for that packet. If yes, then
the packet is simply forwarded accordingly. Otherwise, it is passed on to our script, which traverses
the list of LM-DNAT rules from top to bottom in order to decide which port of which host the
packet should be forwarded to. Tests are performed using a Scapy script. We now described how
these tests are performed for TCP, UDP and ICMP packets.

For TOP SYN packets, we simply spoof a TCP SYN packet to the destination address of the
LM-DNAT rule using the IF address of the router's interface as source. If a SYN-ACK comes back,
then a call to iptables is made to define a new DNAT rule and the original packet is given back
to Netfiler, which forwards it according to that new DNAT rule. Subsequent packets on the same
session will not be seen by our script. Depending on the elements of the 5-tuple that have been
used to create the DNAT rule, some packets belonging to other sessions may also not be seen by
our script. Since Scapy bypasses the TCP/IP stack, the router responds to the SYN-ACK that
corresponds to the spoofed SYN packet with a RST, which prevents the destination host from being
congested with hanging connections. If, following the spoofed SYN, a RST comes back or, after
some definable timeout, nothing comes back, then the test fails and the next LM-DNAT rule (if
there is one) is tested. If all rules have been tested without any success, then the packet is dropped.

dlittp://woozle.org/-neale/src/ipqueue/
5http://www.secdev.org/projects/scapy/

10

Packet arrival

NO
I' r

	 ofnvarding
rule

l
No more rules 	For each

NO
Drop packet

Create DNAT rule
using iptables

Test rule
destination port
using spoofed IP

Figure 5: Implementation flow chart.

The strategy for UDP packets is similar, ex-
cept that the failure of a test is defined by the
reception of an ICMP Port Unreachable packet.
Since UDP is connectionless we decided to take
an optimistic approach to the interpretation of
a timeout. If nothing is sent back after some
definable timeout, then the test succeeds. If an
answer comes back, then the test succeeds as
well. For ICMP, only ECHO packets are sup-
ported for now. In that case, we perform the
test by spoofing an ECHO packet whose des-
tination IP address is the one specified by the
LM-DNAT rule and whose source IP address is
the one of the router's interface. A success is de-
termined by the reception of a REPLY packet.

6 Case Study

To evaluate the usefulness of LM-DNAT, we performed a comparative analysis. The questions
we were seeking to answer were the following: (1) Does using LM-DNAT to dynamically forward
TCP/IP traffic produce more information about network-related actions taken by malware than
using just static DNAT rules defined using iptables? and (2) Does using LM-DNAT reduce the
amount of redundant information with respect to using only iptables? We measured the performance
of each strategy in terms of total amount of generated raw data, successfully established TCP
connections, IRC traffic being observed, DNS traffic, and Intrusion Detection System alarms being
raised. The choice of our network metrics was mostly motivated by what we thought were standard
questions asked by security analysts in terms of network traffic generated by malware.

To perform our study, we used the 25118 malware samples corpus that the Ether team used
in a recent study [5]. We ran these samples using the Automated Experimentation System [4], a
controlled virtual environment allowing the mass analysis of malware within an isolated network.
Each sample was executed twice for a duration of one minute in an isolated network whose topology
was the one shown in Figure 1. The sole difference between the two executions resided in the
configuration of the Router machine: the first time, we used a static configuration of ipta bles, and
the second time, we used LM-DNAT.

We executed the malware samples on VMware ESX virtual machines. It is likely that this has
influenced malware behavior as VMware ESX is known to be detectable by malware. However, our

11

•
•
•
•
•
•
•
•

•0
0

01
1
0

0
0
0

0
0

4
1
0
0

0
0

00
01

11
1

41
11

0
0

0
11

4
1
0
0
0
0

01
1
0

0

objective was to compare the amount of information that can be gathered using LM-DNAT with
what can be gathered using straight DNAT. Consequently, since we used VMware ESX in both
cases, the comparison still holds.

The traffic that was recorded during the execution of malware samples contains a significant
amount of background noise due to connection attempts to various update sites. Unless stated
otherwise, this traffic has been filtered out to compute the results presented in this section. Specif-
ically, we removed all traffic issued to the following sites: windowsupdate.microsoft.com , wus-
tat.windows.com , time.windows.com and mirrors.fedoraproject.org .

For the DNAT experiment, we used a static configuration of ipta bles, forwarding SMTP (TCP
port 25), DNS (UDP port 53) and HTTP (TCP port 80) to the Honeypot machine. For IRC,
we installed an IRC server on the Honeypot machine. We forwarded all TOP traffic going to 20
different TCP ports on which we had observed IRC traffic in past experiments to this IRC server.
We forwarded all the other traffic to the Target machine: an unpatched Windows XP Service
Pack 2. Note that forwarding all remaining traffic to the Target machine (even the traffic going
to ports that are closed at the beginning of the experiment) introduces a bias in the analysis. It
supposes that malware will open backdoor ports on the Target machine. The alternative would
have been to forward all traffic going to ports that are not known to be open to a netcat listening
on a specific port of the Honeypot machine. This would have allowed for all TCP connections to
be successfully established and thus the recording of the first few bytes of data being sent at the
application level. However, we would not have learnt about new ports being open on the Target
machine. Among other things, LM-DNAT allows that compromise to be avoided.

For the LM-DNAT experiment, we used LM-DNAT to dynamically configure Netfilter through
ipta bles as malware was being executed. We used the configuration file shown in Figure 6. All DNS
traffic is sent to the Honeypot machine (Rule 1). All HTTP traffic was sent to the Honeypot machine
(Rule 2). However, HTTP traffic that was sent to an IP address that was previously impersonated
by the Target machine was also sent to the Target machine (because of Rule 4). Rule 3 says that
all SMTP traffic that was not already forwarded to the Target machine was to be forwarded to
the Honeypot machine. Rule 4 says that we wanted to use a one-to-one impersonation strategy for
traffic directed to the Target machine. This means that at most one IP address (mat chNum--1) was
to be mapped to the Target machine and that all traffic directed to that IP was to be forwarded
to the Target machine, even the connections that fail. The choice of address was determined by
the first connection whose destination port was open on the Target machine. The 20 TCP ports
on which we had previously observed IRC traffic were forwarded to the IRC server (Rule 5). This
allowed for a setup similar to the DNAT experiment and observation of the difference between IRC
traffic handled by a real IRC server and IRC traffic handled by netcat. All other TOP or UDP
traffic was forwarded to a netcat and all remaining traffic was sent to the Honeypot machine.

12

#DNS

10.92.36.1 proto=udp dport=53 sport=0 dst=0 src=0

#port 80 traffic to the HTTP Server

10.92.36.1 proto=tcp dport=80

#SMTP

10.92.36.1 proto=tcp dport=25 sport=0 src=0

#try to route back to the target machine

10.92.39.233 proto=0 dport=0 sport=0 src=0 matchNum=1

#irc traffic uses lots of ports

10.92.36.1:6667 proto=tcp dport=6564,6565,6656,6659,6660,6601,6665,6666,6667,6668,

6669,6714,6868,6968,6969,7000,7001,7007,7045,7475 dst=0 src=0 sport=0

#send any other traffic from 10.92.64.0/19 to netcat running on port 30 (tcp and udp)

10.92.36.1:30 proto=tcp src=10.92.64.0/19

10.92.36.1:30 proto=udp src=10.92.64.0/19

#we'll catch everything else here (icmp)

10.92.36.1 src=10.92.64.0/19 dst=0 proto=0

1

2

3

4

5

6

7

8

• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure 6: LM-DNAT Configuration file used for the case study.

6.1 Total Size of Generated Raw Data

The DNAT experiment produced 2.34 GB of raw data (traffic traces and various log files), while
the LM-DNAT experiment produced 577 MB on the same malware corpus. The reduction of the
amount of generated data was due to the high proportion of connections that were handled by
netcat rather than a real daemon (because of the matchNum=1 option in Rule 4). Since at least
one Internet host was completely impersonated by the Target host (because we used a one-to-one
impersonation strategy, which can only be made using LM-DNAT), we were still able to gather
all the relevant information. The connections to the other Internet hosts were mostly redundant
connections initiated by worms trying to infect as many hosts as possible. In the rest of this section,
we show that while producing less raw data, the LM-DNAT experiment allowed us to extract an
even greater amount of information from the malware samples than the DNAT experiment.

6.2 TCP Traffic on the LAN Network

Table la provides a summary of the TCP traffic observed on the LAN network. Firstly, more than
60% of the samples did not generate any TCP traffic. There are several possible explanations: the
sample was broken, one minute was not long enough, it was not intended to generate traffic, etc,
and to investigate these reasons is beyond the scope of this study. Nevertheless, the other samples
did generate traffic and that is enough for our case study.

The DNAT experiment generated connection attempts to a greater number of ports (621) than

13

LM-DNAT DNAT

Snort
57 56

Total

59 signatures
682 643 721 samples

Emerging T.
303 290 311 signatures

4938 5724 5610 samples

DNAT 	DNAT 	LM-DNAT
port 6667

samples doing IRC 	224 	571 	1017
IRC servers 	 149 	289 	400
IRC ports 	 1 	12 	127
IRC channels 	 145 	166 	170
samples doing a JOIN 	201 	265 	278
IRC nicks 	 75 	157 	244
samples doing a NICK 	59 	74 	159
IRC users 	 223 	6410 	2457
samples doing a USER 	209 	473 	741

(b) IDS alarms summary.

DNAT 	LM-DNAT
samples with TCP traffic
other than update sites 	9559 	9522
ports tentatively used 	621 	380
ports successfully used 	17 	377
attempted sessions 	36491 	19160
established sessions 	22224 	19073

(a) TOP activity on the LAN network.

dest host 	dest port 	DNAT 	LM-DNAT
Honeypot 	25 	786 	775
Honeypot 	30 	0 	1973
Honeypot 	80 	6911 	6876
Honeypot 	6667 	292 	289
Target 	21 	174 	161
Target 	23 	1 	1
Target 	80 	0 	24
Target 	135 	4 	3
Target 	139 	20 	10
Target 	443 	68 	71
Target 	445 	27 	11
Target 	1801 	12 	12

(b) TOP activity on the SIM-INTERNET network.

Table 1

(a) IRC analysis summary.

Table 2

the LM-DNAT experiment (380). However, this is meaningless since a small number of samples
exhibited a scan behavior that slightly differed between the two experiments. For example, a single
sample respectively used 255 and 16 ports in the DNAT and LM-DNAT experiments. Without this
sample, the number of ports having been used is respectively reduced to 376 and 365.

We also observe that the number of sessions being successfully established during the DNAT
experiment is lower than during the LM-DNAT experiment. However, there are also fewer connec-
tion attempts. This is most likely due to the fact that our implementation introduces a delay in

14

••
••

••
••

••
•••

•••
••

•••
••

•••
••

••
••

••
••

•••
••

•••

the establishment of a connection and that consequently, fewer connection attempts can be made

within one minute.

6.3 TCP Traffic on the SIM-INTERNET Network

Table lb shows the number of samples successfully establishing a TCP connection for each dataset,
per redirected destination host and port, on the SIM-INTERNET Network. The main observation
to be made is that, over both experiments, no TCP connection was successfully established on
a port that was not already open on the Target machine. However, this does not mean that no

malware sample attempted to open a backdoor port on the Target machine.

For example, the corpus we used contained 5 copies of diverse variants of the Allaple worm, which
uses an exploit against vulnerability MS06-0406 to open TOP port 9988 on the target machine. The
exploit simply did not work against the Target machine. Upon analysis of the LM-DNAT traffic
traces, we learned that there is enough intelligence in that worm to not attempt a connection
to port 9988 if the NetBIOS session did not complete normally, but not enough to determine if

the exploit was successful without attempting a connection. Indeed, as specified by Rule 4 of the
configuration shown in Figure 6, the Target machine was only allowed to impersonate one Internet
host, all other NetBIOS connections were handled by the netcat server of the Honeypot machine.
A connection attempt to port 9988 was only made to the host that was impersonated by the Target
machine. Since Rule 4 also specifies that all TCP connections made to this impersonated host
should be forwarded to the Target machine (because of the proto=0, dport=0, sport=0, and src=0

options), the connection was simply reset and no payload could be observed. Had we not used the
impersonation options, the connection to port 9988 would have been handled by the netcat server
of the Honeypot host.

We observe that although Rule 2 is before Rule 4, some HTTP traffic (port 80) has been
forwarded to the Target rather than the Honeypot. We identified two reasons for this. First, the
timeout we had set for the reception of a SYN-ACK was 0.2 seconds, after which the port was
qualified as closed by LM-DNAT. It turned out that this timeout was not always long enough,
an observation that we have to consider in the future. Second, and that is a direct consequence
of the impersonation features of LM-DNAT, there are some malware samples that connect to a
NetBIOS port (TCP 139 and 445) of seemingly randomly selected hosts and then perform some
HTTP requests on the same hosts. That was the case, for example, of a specific sample identified
as Unixon by most anti-virus products. The IDS alarms that were triggered, however, were too
generic for us to provide an explanation for that behavior. Also, at the time we are writing this
paper, there seem to be very few online analysis reports about Unixon.

The LM-DNAT experiment generated significantly less NetBIOS traffic (TCP ports 139 and

http://www.microsoft.com/technet/security/bulletinims06-040.mspx

15

re
•••

•••
• •

••
••

• •
••

••
••

••
••

••
••

••
••

••
■
••

• •
••

••

445) than the DNAT experiment, a fact that does not seem to be incidental since we re-performed
the LM-DNAT experiment for the 27 specific samples having generated traffic during the DNAT
experiment three times with similar results. Although we are able to explain a few cases, at the
time we are writing this paper, we still have no general explanation that accounts for all cases. In
particular, there were ten samples for which a NetBIOS connection was not even attempted.

6.4 DNS Requests

The DNAT dataset (the data generated during the DNAT experiment) contains 6655 different
queries done by 8975 samples, whereas the DNAT-WT dataset contains 5933 done by 8935 samples.
Globally, a total number of 9040 samples issued 7921 DNS queries in either of the datasets. This
means that, roughly, the same samples generated a significant number of different queries in both
datasets. In particular, 1988 queries were observed only in DNAT and 1266 queries were observed
only in DNAT-WT. Most of these differences seem to be explainable by the presence of fast-flux
botnets in the corpus. For example, respectively 1119 (1113) of the unique 1988 (1266) queries in
the DNAT (DNAT-WT) dataset are of the form XXXXX.nb.host-domain-lookup.com . The higher
number of unique queries in the DNAT dataset is mainly attributable to two specific samples,
which respectively generated 368 and 568 queries in the DNAT dataset and only generated 73 and
21 queries in the DNAT-WT dataset. Finally, 105 samples only generated queries in DNAT while
65 only generated queries in DNAT-WT. Consequently, the DNAT-WT strategy does not seem to
present any notable advantage over the DNAT strategy with respect to DNS traffic.

6.5 IRC Traffi.c

The Internet Relay Chat (IRC) protocol has been used by botnets for several years to allow commu-
nication between the bot herder and the infected hosts constituting the botnet. Often, bot herders
setup an IRC server that runs on an arbitrary port, 6667 being one of the most commonly used.
Our experiments showed that many botnets do not wait for any specific authentication from the
server before to send login information such as user names and nick names. In fact, they do not
seem to expect anything at all from the server once the TCP handshake is established. Therefore,
we could deduce IRC information not only from the traffic that we forwarded to the IRC server
that was running on the Honeypot machine (recall that we forwarded 20 different TCP ports to
port 6667 of the Honeypot machine), but also from some traffic that was forwarded to the netcat
port of the Honeypot.

For our case study, in order to determine which TCP sessions contained IRC traffic, we used
the following criteria:

1. The payload of the session contains one of the words: JOIN, USER or NICK.

16

••
••

••
• •

••
••

••
••

••
••

••
••

•••
••

•••
••

•••
••

••
••

n

2. The tshark7 command line utility properly decodes the session as IRC traffic (i.e., at least one
of the three above operations is properly decoded).

We most likely generated a few false positives and false negatives, but accurate IRC traffic detection
is beyond the scope of this study.

Table 2a provides a summary of the IRC information that was deduced from the analysis of the
traffic traces generated during each experiment. The second and third columns provide statistics
derived from the DNAT and LM-DNAT experiment, while the first column provide statistics derived
from the DNAT experiment when looking only at port 6667. In other words, it is an estimate of
the statistics we had obtained if, rather than forwarding 20 different ports to the IRC server, we
only forwarded port 6667.

Generally, we can conclude by looking at these three columns that having some a priori knowl-
edge of which ports might be used for IRC is useful, but that making sure that all TCP connections
are being handled allows even more information to be gathered. We observe that a greater number
of unique IRC users were identified during the DNAT experiment (6410) than during the LM-
DNAT experiment (2457). However, four samples generated IRC traffic containing 5339 and 1725
different users respectively during the DNAT and the LM-DNAT experiment. Without those four
samples, 472 different users were observed during the DNAT experiment, while 733 different users
were observed during the LM-DNAT experiment, which means about one user per sample doing a
user operation. Several users were observed during the execution of more than one sample.

6.6 Intrusion Detection System Alarms

We analyzed the generated traffic traces using the Snort8 signatures released on February 17 2010
and the Emerging Threats8 signatures released on April 17 2010. We used the Emerging Threat
signatures because they are specially written for malware detection. Table 2b shows a summary
of the analysis results. As expected, the number of signatures and the number of samples having
generated an alarm was higher during the LM-DNAT experiment. It is more interesting to look
at the number of exclusive signatures and samples, i.e. those that generated alarms in only one of
the two experiments. In Table 3 (page 18), we provide a list of the signatures that were triggered
on a number of exclusive samples greater than 20 for at least one of the two experiments. Table 3
also gives the total number of samples having triggered the signature, i.e. the number of exclusive
samples for each signature plus the number of samples having triggered the signatures during both
experiments.

7http://www.wireshark.org/
8http://www.snort.org/
9http://www.emergingthreats.net/

17

••
••

••
0•

••
••

••
••

••
••

••
••

• •
••

••
••

••
••

••
• •

0•
••

Sig. ID 	Message 	 DNAT 	LM-DNAT 	Total
only 	only

Snort
491 	INFO FTP Bad login 	 42 	2 	 158
1394 	SHELLCODE x86 inc ecx NOOP 	 26 	27 	77

Emerging Threats IRC
2000345 	Nick change on non-std port 	 4 	282 	344
2000347 	Private message on non-std port 	 0 	28 	59

Emerging Threats TROJAN
2008021 	Turkojan C&C Initial Checkin (ams) 	0 	113 	113
2008026 	Turkojan C&C Keepalive (BAGLANTI) 	0 	111 	111
2002974 	Hupigon Possible Control Cormection 	0 	261 	261
2002975 	Hupigon INFECTION - Reporting Host Type 	0 	261 	261
2008042 	Hupigon CnC Data Post (variant abb) 	0 	263 	263
2003555 	Bandook v1.35 Initial Connection and Report 	0 	24 	24
2007823 	Banker.OT Checldn 	 11 	27 	203

Emerging Threats Others
2009885 	SCAN Unusually Fast 404 Error Messages 	34 	44 	296
2003303 	POLICY FTP Login Attempt 	 42 	2 	 164

Table 3: Number of exclusive samples per signature, per experiment, and total number of samples
per signature, across both experiments (limited to signatures with number of exclusive samples in
one of the two experiments being greater than 20).

6.6.1 Snort Alarms

The first Snort signature, related to FTP, was triggered on more samples during the DNAT exper-
iment than during the LM-DNAT experiment, which was to be expected given that, as shown in
Table lb, there were more successful FTP connections during the DNAT experiment than during
the LM-DNAT experiment. The second Snort signature, related to shellcode, has mostly been
triggered over several different ports and there does not seem to be any general explanation for the
26 and 27 samples having exclusively triggered that signature during the DNAT and LM-DNAT
experiments respectively. Generally, the statistics we obtained using Snort signatures are insuffi-
cient to conclude that the LM-DNAT strategy generated traffic that contained significantly more
or less information. However, there were also very few samples that generated Snort alarms. For
that reason, we also analyzed the traffic traces using the Emerging Threats signatures.

18

••
••

••
••

••
••

••
••

••
••

••
••

••
00

00
00

00
00

00
00

00
00

6.6.2 Emerging Threats Alarms

The first two Emerging Threats signatures are related to IRC, which is not surprising (recall
Section 6.5). Only four samples have triggered signature 2000345 exclusively during the DNAT
experiment against 282 during the LM-DNAT experiment. All the samples having triggered sig-
nature 2000347 during the DNAT experiment also triggered it during the LM-DNAT experiment.
Therefore, LM-DNAT outperforms DNAT with respect to these two signatures.

The next two signatures are related to the Turkojan trojan. Turkojan, which was first seen in
200310 , is a backdoor that reportedly initiates a connection to TCP port 1596311 . While this was
the case for 101 samples, 12 other samples initiated connections to different ports. We also observed
that the 113 samples identified as generating Turkojan traffic initiated connections to 93 different
DNS names or hardcoded IF addresses, all of which appeared both during the LM-DNAT and
DNAT experiments, which makes it unlikely that the samples we tested use fast-flux techniques or
that they are polymorphic copies of the exact same threat (i.e., same issuing malicious individuals,
same release date, etc). The fact that 12 samples used a port other than 15963 (which is the
default), could lead to the belief that the issuing individuals are more experienced or have greater
will to be stealthy than the issuers of the 101 other samples. Even though this is all speculation,
we believe that this is potentially useful information that we could not deduce from the results of
the DNAT experiment. The DNAT experiment only provided us with the destination ports, but
since the TCP handshake did not complete, it did not allow us to identify the generated traffic as
being Turkojan traffic.

The next three signatures are related to Hupigon, a trojan that was first seen in 200612 . Over
all sample executions, seven different Hupigon related Emerging Threats signatures were identified
across 315 samples. The four signatures not being displayed in Table 3 matched the same number
of samples in the DNAT and the LM-DNAT experiments (for a total of 50 alerts). A total of 267
samples were responsible for having triggered the three Hupigon signatures shown in Table 3. None
of those 267 samples triggered any of the four signatures not being displayed in Table 3.

During the LM-DNAT experiment, 261 out of these 267 samples generated traffic to port 8000
of 206 different DNS names or hardcoded IP addresses. A particular name was used by 14 samples,
which could lead us to believe that these particular samples are polymorphic copies of the same
threat, and that they may belong to a common, more recent or at least more sophisticated threat.
These facts could have been observed during the DNAT experiment if we had forwarded port 8000
to port 80 or a netcat port of the Honeypot, but again, the whole point of the LM-DNAT experiment
is that we cannot think about all these configuration requirements ahead of time. For example,

10http://www.symantec.com/security_response/writeup.jsp?docid=2003-032816-3726-99
11http://www.threatexpert.com/report.aspx?md5=e3bce7ee0e5fc54767c7b20400c273a3
12http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Win32/Hupigon

19

• • •
110 	the six samples not generating traffic on port 8000 generated traffic on port 2007. The captured

traffic only contained one session, which triggered signature 2008042. Possibly, these six samples
are variants that use a different port for command and control. There is no way we could have

• known in advance that traffic would be generated on port 2007.
Bandook is a remote administration tool that was first observed in 2005 13 . All the samples

• that triggered signature 2003555 generated traffic on port 1167, which was redirected to the Target

• machine in the DNAT experiment. Since that port was closed, traffic generated on that port could

1111 	not be captured, which explains why alarms were only generated while analyzing traffic traces

•
generated during the LM-DNAT experiment.

Banker.OT is a data-stealing Trojanm that was first observed in 2008 15 . The presence of • exclusive samples in each dataset seems to be mostly due to the fact that all samples did not
0 	generate traffic during both experiments. Having run each sample several times and/or for a longer
• period of time might have produced more uniform results across both experiments. The same

• comment applies to signature 2009885. Finally, the same comment that applied to Snort signature

• 491 applies to signature 2003303.

•
• 6.6.3 Conclusion

Globally, although the DNAT strategy allowed the identification of behaviors that the LM-DNAT

•
strategy could not, analyzing the LM-DNAT traffic traces with the Emerging Threats signatures
provided more information about more samples. Consequently, we believe that the LM-DNAT
strategy allows the generation of traffic traces that give a better description of malware behavior.

• 7 Conclusion •
• In this paper, we introduced LIVI-DNAT, a tool that helps studying network-related aspects of mal-

• ware behavior using an isolated honeynet. Our case study showed that using LM-DNAT generates

•
more information about malware than using static DNAT rules. Moreover, by reducing the number

•
of redundant connections, the total amount of generated raw data can be up to four times smaller,
thus reducing the amount of data that has to be analyzed in a post-processing phase.

The way we used LM-DNAT in our case study was meant to be both simple and generic in
• order to facilitate interpretation of the results. In particular, we made little use of low or medium-

interaction honeypot technologies. Future work will include integration of more sophisticated hon-
• eypot technologies and more diverse high-interaction honeypots. Another aspect that we left aside,

gl› 	13http://en.wikipedia.org/wiki/Bandook
Ile 14http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=TrojanSpy:

Win32/Banker.OT
15http://doc.emergingthreats.net/2007823

• 20

•
•
•

[3]

[4]

[5]

but plan to investigate further, is traffic forwarding based on application layer payload.
Although our case study showed that LM-DNAT is useful for malware analysis, to determine

the best way to use it remains a challenge. We see three inter-related aspects of the problem: (1)
find the best forwarding strategy (i.e., the best configuration file), (2) find the best hosts to place
in the honeynet, and (3) find the best topology to be used. Finally, all of our study was implicitly
performed with the client-server model in mind. It would be interesting to see how the concepts we
developed apply to peer-to-peer protocols. Given that those protocols are now used by botnets, we
believe that knowing how to study them in a contained environment would be beneficial for many
cyber security applications.

References

[1] Paul Baecher, Markus Koetter, Maximillian Dornseif, and Felix Freiling. The nepenthes plat-
form: An efficient approach to collect malware. In In Proceedings of the 9 th International

Symposium on Recent Advances in Intrusion Detection (RAID, pages 165-184. Springer, 2006.

[2] Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David Watson. The internet
motion sensor: A distributed blackhole monitoring system. In In Proceedings of Network and

Distributed System Security Symposium (NDSS 05), pages 167-179, 2005.

Ulrich Bayer, Andreas Moser, Christopher Krilgel, and Engin Kirda. Dynamic analysis of
malicious code. Journal in Computer Virology, 2(1):67-77, 2006.

Mathieu Couture and Frédéric Massicotte. Studying malware in an isolated network sandbox.
Technical note, Communications Research Centre Canada, September 2009.

Artem Dinaburg, Paul Royal, Monirul I. Sharif, and Wenke Lee. Ether: malware analysis via
hardware virtualization extensions. In Peng Ning, Paul F. Syverson, and Somesh Jha, editors,
ACM . Conference on Computer and Communications Security, pages 51-62. ACM, 2008.

[6] Corrado Leita. SGNET : automated protocol learning for the observation of malicious threats.

PhD thesis, EURECOM, December 2008.

Norman Solutions. Norman sandbox whitepaper. http://download.norman.no/ whitepa-
pers/whitepaper_Norman_SandBox.pdf, 2003.

[8] Niels Provos. A virtual honeypot framework. In SSYM'04: Proceedings of the 13th conference

on USENIX Security Symposium, pages 1-1, Berkeley, CA, USA, 2004. USENIX Association.

Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2002.

[7]

[9]

21

[10] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic malware
analysis using cwsandbox. IEEE Security and Privacy, 5(2):32-39, 2007.

22

