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MOTION EQUATIONS FOR
DUAL SPIN SATELLITES

by

F.R. Vigneron, T.W. Garrett, and L.R. Eisenhauer

ABSTRACT

Motion equations are developed for two
configurations of dual spin satellites. Each
configuration consists of an asymmetric platform,
a motor driven symmetric rotor, a platform damper,
and a rotor damper. The differences between the
configurations lie in the asymmetries of the
platform and the degree of complexity of the
dampers. The equations describe the satellite
behaviour in the 'earth-seeking' and 'earth-
pointing' modes of operation. Computer programs
are listed for

a) assessing the stability of the solution for
the earth seeking mode.

b) solving the motion equations for the 'free
spin' mode, and

¢) solving the motion equations when pulsed,
attitude correction torques are applied
during the 'earth-pointing' mode.

1. INTRODUCTION

Presented herein is a development of the motion equations for dual-spin
satellites of interest in the Canadian Telesat program. The equations describe
satellite behaviour in the 'earth-pointing' mode and the 'earth-seeking' mode,
in which the platform (i.e., the antenna) swings through large seeking angles.
A computer method for assessing stability of the 'earth-pointing' mode of
operation is described. :




2. CONFIGURATIONS OF INTEREST

The mathematical models of two configurations, a simple one and a
more complex one, will be given for circular orbit flight. The first model,
shown in Figure 1 and designated as M1, consists of an asymmetric platform,
a motor driven symmetric rotor, a platform damper, and a very simple
spherical rotor—~damper. The second model, shown in Figure 2 and designated
as M2, consists. of an asymmetric platform, a motor driven symmetric rotor,
a platform damper, which is modelled after one to be used in practice, and
a rotor damper to simulate the first mode of fuel sloshing and structural
damping.

Model M2 has the generality required for preliminary model designs of
interest in the Telesat program. Model Ml is particularly useful in analytical
work, since the equations of motion for it turn out to be relatively
uncomplicated.

3. MOTION EQUATIONS

In section 3.1, general motion equations applicable to flexible
satellites are developed from variational principles. They are then applied
to derive linearized equations for the Ml and M2 configurations in sections
3.2 and 3.3,

3.1 GENERAL MOTION EQUATIONS

Consider a deformable body near the earth, as is shown in Figure 3.
Moving axes (0'x'y'z') are affixed to some fibers of the body and remain so
during deformation. Axes (Oxyz) are assigned to the body so that they always
remain parallel to (0'x'y'z') and so that the point 0 always coincides with
the instantaneous mass center of the body, i.e., for the vector r from 0 to
any point within the body,

f r dm =0, e o (3-1)

where M is the total mass of the body, and dm is an increment of mass at r.
The vector r' has components in (0'x'y'z')

=p+rzr., veeea(3-2)

where p is the distance to the mass center. Combining equations (3-2) with
(3-1) leads to

1
R:—ﬁ frv dm .p---(3_3)
M
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The motion of the mass center, 0, will be assumed to follow a
Keplerian circular orbit, as is the usual practice in satellite mechanics,
Hence, the vector Ry from the center of the earth, E, to O has constant
magnitude. The orbital angular rate is given by

where GME is the earth's gravitational constant.

The angular position of the axes (Oxyz) relative to the earth based.
inertial system (EXYZ) will be specified by the Euler angles (¢, 6, ¢,) and
Q as shown in Figure 4. The orbit will be assumed to lie in the XY plane
(without loss of generality) and the Euler angles will be defined relative
to orbital axes (0 &; £, £3) by the right hand rotation scheme (i) ¥ about

0,, (ii) © about B, (iii) ¢ about C_, where B, and C3 ave shown in Figure 4,

3’
The kinematical relations between the velocities (P, 6, ¢) and the velocities
(wx, wy, wz) resolved in the axes (Oxyz) are

w = Yeosd cos® + Bsind + Q(-cosd sin® cosY+ sind sinP) .....(3-4a)
wy = Psind cos® + Bcosp + Q( sind sin® cosyP + cosd siny) ...?~(3—4b)
w, = Psin® + Q cos® cosy + ¢. veeso(3~4e)

The kinetic energy of the body is

T = —-J(R + 1) ¢ (R, + r)dm,
M
where the superscript dot denotes vector differentiation with respect to the

inertial (EXYZ) frame. The term (Ro + r) may be expanded in the form,

. o o
Rop +r+wxx

H

where w denotes (wx, wy’ wz) resolved in (0Oxyz), and the superscript'(°)

denotes differentiation with respect to the (Oxyz) frame. Combining the above
two expressions yields, after some manipulation,

o

o
weIw+w I+ [rrdm, ... (3-5a)
M

T=%M§-R+

lvh~
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where I=[ (?l-r8&cx)dn, evvee (3-5b)
M

I'=1{ (£x ;) dm . voves (3-5¢)
M

The symbol (~) denotes a second order tensor, and R is defined by
(w8 Ww=uly - w .
I is called the inertia tensor, and I' the angular momentum of deformation.

The gravitational potential and torque are given by

GM

VG —- - ___E [tr I -3 El °<I.e_1)] .....(3"6)
2R3 ~ "
GME :
LG = 3 R3 (El X EE]_) ’ cc.n'<3_7>

where e, 1is a unit vector along EO directed from the center of the earth. In

terms of (Y, 6, ¢), the vector e, has components

1

21 = cos¢ cosd eeess {3-8a)
2, = -sin¢d cosb veeee (3-8D)
2, = sind veeae(3-8c)

resolved in (Oxyz).

To calculate the components of I and I' (which are taken about point O,
the moving mass center), it is often convenient to work from a frame
(0'x'y'z'), where 0' is fixed on some part of the body, but does not remain
fixed on the mass center. For this purpose, one may derive the following
parallel axes tranformations: '

I=1"-M(p°pl-pAap) veea(3-9a)

IT'=T"-M (pxp) eeees (3-9D)

LE ¥ dm = f(r'° r') dm - M (p ° p) , vesse (3-92)
M M '

where the prime superscript denotes components taken about 0O'.

Motion equations applicable to all classes of flexible satellites may
be deduced from the above T and appropriate V (of which VG embodies only




those forces due to gravity) by using Hamilton's Principle!. When the
representation of T and V is expressed in terms of discrete coordinates,
Hamilton's Principle reduces to Lagrange's equations.

It is convenient in rotational problems to retain the Euler equations
(in a generalized form) in the variables (QX, wy, wz), rather than working

directly in terms of coordinates (U, 6, ¢), as is usual in the variational
approach (i.e., it is usual to substitute equations (3-4) into (3-5) to.
eliminate w). The desired equations, which are the Lagrange equations
corresponding to the variable (wx, wy, wz) may be shown to be 2°3

S (qu+D +ox(+I) =L Ceee. (3-10)

where L is the external torque.

Equations (3-4) may be inverted to obtain,

Y = wx cosd sechb - wy sind secO® + Qtan@icosw L (3-11a)
o = w, sing + wy cos¢ - Qsiny el (3-11D)
¢. = W, ~w cos¢ tand + wy sind tand® - Qsechd cosyP. .....(3-1llc)

When the deformations of the body are represented by continuous
coordinates, Hamilton's Principle will provide partial differential equations
and appropriate boundary conditions to define the motion of the continuum.
When the parts of the body may be described by discrete generalized
coordinates, Lagrange's equations will provide the balance of the equations
required to supplement (3-10) and (3-11).

3.2 MOTION EQUATIONS FOR MODEL M1

Consider model M1, depicted in figure 1, composed of a platform, a
rotor, and two dampers, Axes (0 x' y' z') are assigned to the body so that
when the damper springs are in their undeformed state, the axis 0'z' is a
common rotation axes of the two bodles and is also a principal axis. The
point 0' coincides with the mass center of the composite body, and the axes
0'x" and 0'y' are fixed in the platform. The rotor rotates with respect to
the platform about the 0'z' axis by an angle y. The rotation rate Y 1s .
supplied by an internal torquing motor. The platform damper is in static
equilibrum with its mass in the position (0, 0, a) in (0'x'y'z'), and is-
constrained to oscillate in the 0'x' direction with a displacement X. The
rotor damper is fixed in the rotor, but able to rotate about a transverse
axis of the rotor through an angle 8. An additional set of axes (Oxyz) is
assigned to be parallel to the (0'x'y'z') body fixed axes, so that 0
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coincides with the instantaneous mass center of the configuration as the
dampers oscillate. In the following development, it will be assumed that the
satellite axis Oz remains oriented approximately normal to the orbit plane,
and that the dampers execute small motions. Accordingly the equations of
motion will be linearized in the variables ¥, 0, X and B. As a consequence,

wx and wy may also be regarded as being small, as seen by inspection of the

linearized forms. of equations (3-4a) and (3-4b). The resulting equations will
then provide an approximate behaviour of the dual spin satellite in its
'earth~seeking' mode, in which ¢ may be large, and also in its 'earth-
pointing' mode, in which ¢ is small,

The platform damper of mass m has position vector

_ 1 1
"X.Ql'}'a..e;g 2

where the primes shall henceforth represent quantities resolved in the
(0'x'y'z') frame. Using the above relation in equation (3-3), and the fact
that 0' coincides with the mass center when ¥ is zero leads to

m 1
o = 7%l

The components of I shall be denoted by

A -F -E
I = ~F B -D
~E -D c

From expressions (3-5b) and (3-9a), it is found that,

M2
A= A" - M(ps + 0%

F=F"-Mp, p,

and so forth, where (pl, P,s P,) are components of p . Utilizing the above

expressions gives

where Ap is the moment of inertia, calculated in the (0'x'y'z') frame, of the
platform, rotor, and damper in its undeformed state. It will be assumed that
the rotor is symmetric, so that A; will always be constant as the rotor spins.
Slmllarly,

B =38, + m(1-u)x?
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C =Gy + m(l-uw)x?

E = may
F =0,

where Y| = m/M, and the axes (0'x'y'z') are principal axes of the platform and
rotor combination when X = 0. Likewise, the components of [ are found to be,

r, = —ISB siny

r, = ISB:cosY + may

r3=CRY’

where I is the inertia of the spherical damper, and CR 1s the moment~of

1nertia of the rotor (which includes I ) The last term of expresslon (3-5a)

takes the form, after uslng equatlon (3—9c),

. I Lot 1o 2
f rexrdm=-my A =p)+ 5 Cpy™ + 5 1 SB

m

The kinetic energy then becomes,

_ 1 _ 2 2 _- _ .
T = 5 {Cy + m{1 - WX} W = maxw w, ISwXB siny

+ IswyB_COSY + mawyx + wZCRY

1 N SN DR S SO P
+ m(l - WX° + 2Ry ZISB

The above expression is linearized in O and ¥, which also implies
linearization in w and wy (see equation (3-4)).

The gravitational torque given by equation (3-7) (together with (3-6)) has
the component form

— 2 . 2 _ 92y _ .
LlG = 3Q°[(C - B)R, A, + D(z3 25) - ER, 8, + F)zl)za]

together Wlth two additional expressions obtained by permuting symbols. These
expresslons become, after linearization in O, V¥, Xg and B, '

Lig= 3Q*[-(c, - B,)6 sind + may cosé sind]
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Lyg = 30%[ (A, - C,)0 cosd + may cos?¢]

Ly = —392(BD ~ A,) sing cos¢

.The gravitational potential, VG’ beconies, after linearization in (0, v),
) S | .
V= --% [4,(1 - 3 cos?d) + (B, + m(l - u)x?) (1 - 3 sin?¢)
+C, +m(l - wWx? + 6 may cos¢]
The potential for the damper springs is

1
V, = 2 k

2, 1
s X+ g kB

1

, Employing the above relationships in .equations (3-10), and linearizing
in €, Y and ¥ yields, , ‘ ' ‘

Awa,_ mayw, - maxmz‘— I_B8 siny
- ISBY cosy + (C, - Bo)wywz + CRywy
- (Isé cosy + mai) w, = 392[-(00 - BO)G sind
+ may cos¢ sind] + L, (3-12a)

Bowy + ISB cosy - ISBY siny + may + (A0 - Cy) ww,

_ 2 - ° . - ©
maw_ X ISsz siny CRwa

= 392[_(A0 - C,)0 cos¢ + may cos?¢] + L, (3-12b)
4. 21 = =302 _ A ~
ar [COU.)z + CRY] = ~30%(B, - A,) sin cosp + L, , (3-12c)
where.Ll, Lz’ and L are external to#que components about axes (0xyz)
3 ' -

excluding gravity tbrque, (e.g. gas jet torques).
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The following equation for the yotor may be obtained By using the above
T and V in‘Lagrange's equations with y as a generalized coordinate.

i (3-13)

d . . . - . ‘
a0 [6g @, + )] = mcy + T + Ty sing + Ty + Lgp,

where L3R is the external torque applied to the rqtor; the generalized force

(in-Lagrange's equation) is taken to bev—c?, i.e., a bearing friction tbrque,
plus, (T0 + Tysin + T,$) a control system torque which is applied by the

internal motor and which may be designed to make the platform seek thé'éarth
pointing direction, ' _ o . : :

Equations of motion of the dampers are obtained by using X and B as
generalized coordinates with the preceeding T,V, and‘VS in Lagrange's

equations:
m(l - W)X + ma&y'+ maw , + c X + [k, - mw? (1 - p) = Q*(1 -u) (2 - 3sin®$)]x

~ 302 mab cosp = 0 : vee e o (3-14)

" . ' « . . : ' ‘A‘o‘ .
- - 1 - 1 ’ c =
ISB ISY cosy W IS siny w ISY siny wy + IS cosy wy + &8 + k,B = 0.
~ voenn(3-15)

In the above equations, generalized forces due to damping in the rotors are
included (i.e. -c,X and —C,B)

: The kinematical relations (3-11) become,

o = w, sind + w cosp - : vvv.(3-16a)
¢,= W cos¢p - wy sing + Q0O ' vese0(3-16Db)
b=u -0, Ce(3-160)

Equations (3-12), (3-13), (3-14), (3-15) and (3-16) form a set of
equations which may be solved for the set of variables W, wy W 8, ¢, ¥, v,

X and B. Since these linear equations have coefficients which are periodic in
both Y and ¢, they are solvable by analytical means. These equations are also
general enough to enable the study of the 'earth-seeking' performance where

¢ is not necessarily small. ‘




3.3 MOTION EQUATIONS FOR MODEL M2

The métion equatlons for the second more complex model are derived in
exactly the same manner as that outlined in Section 3.2, subject -to the
follow1ng llmltatlons

(a) 11nearlzatlon in w, 6 x and r (the rotor.damper radial deformation)”

t(b) the rotor is assumed to be symmetrlc when the’ damper is in 1ts”

,vundeformed state (1.e.;AR, _ R3 DR = ER FR, ‘Q‘, where-the subscript

”R" denotes the roter) .

(c¢) The mass center of the undeformed satelllte is assumed to lie on the
' pr1nc1pal 0'z' axis, of the rotor‘

The equations Wwill be quoted directly”without further development.
TheAEuler-equetions become

4
dt

.[Aow*'—vF§wy i-(EP ;'m1gX - mgar.eosY) W,
f_mzd (%'SinY +'?§ COSY)] +AKCQ'_ Bo}wywz
C+ (Db’~‘m2dr Si?Y)_wZ + Fg ézwx + CRwa
- Qz {mlai - mzd(f cosy *,??lSinX)}‘
= 30% [-(C, - B,)O sin$ - (Dp = m,dr siny)sinch

+'(Ep + may - mzdr'cosy)sin¢ cosd

+ Fpe cosp] + L, vieee (3-172)
w..-[Bou.)y - Dpwz'+ mzdrwz SlnY,_ ?wa

+mayx - m,d (r cosy - ry siny)]

+ (A

- — ; 2
0 " Co)wzmx ‘ (Ep‘+ myay = m,dr cosy)wz

(.

.




is

- przwy + mzdwz (r siny + ry cosy)
L] _ . 2
- CRywx = 3Q° [(a, - C,)0 cosd + (Ep + m,ay
- m,dr cosy) cos®¢ + Fpe‘sin¢
- (dp - mzdr siny) sing cos¢] + L, ceen  (3-171)

d

EE-[COwZ + 2mpew r - Epwx -Duw

PY
f »CRQ - m;b)} + 2mze{(r] + Epwzwy

- Dpwzwx = BQé [—(Bd - A,) sing C§S¢
f (F, + mle + mzer:éiﬁ 2#) cos 2¢

- D,6 cos¢p = E8 sind ] + L, . e (3-17¢)

These equations are sufficiently general to account for unbalance of the

platform (i.e. D_ = Ep = Fp are non-zero), a feature which may be a
characteristic of the Telesat design.

The rotor equation becomes
é—-[C w + Q) + 2m,ew r + 2m er?]
dt “"R 7z 277y 2

< ver. . (3-18)

= —Bszzer sin 2y - cQ + T, + T, sinp + T2$ + L,
For the platform damper,

d L _ .
m, It [x (1 -up) + aw = bw  + U, sinyr - p, (r cosy

* R 2 _ B )
= rysiny)] -mpw (1 = 1y)X = M, cosy} m, 30,0y

+ mw, U, (¥ siny + ry cgsy) + c.X * kX
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+ szi[_{(l;é-ul)xv—'ug_r'cosy} ( 2 - 3 sin%})

=

+ 3u8 cosd - 3(b U r siny) cosd sing] = 0 . veee. (3-19)

For the rotor damper,
: .mz'—— [r (1 -y, - uli cosy + mxd siny'— myd cosy - mzﬁlx siny]
- U?mxd (mz + ?) CQSY_~.m2myd (mz + &) siny
+ m,X W, eosy (mz f mZQ) - mzi (@z + %) W, siny
-m, {e+ ~r(l - 1,12)} (W, + \’(.)2 + o, + kv
+ Q*[{(e + x(1 - Hz)} {2 ~ 3;iné(¢‘+ 2

+ 3U,X cosy ﬁin2¢ —i3 dd cps (b -7v) ] =0. .,.,‘(3—20)'

1]

Eaquation (3-17) to (3-20) are supplemented by the kinematical relations,
(3-16).

3.4 SOLUTION OF EQUATIONS

The equations of sections 3.2 .and 3.3 are solvable by Runge-Kutta or a
related numerical procedure. To do this efficiently, the equations are
expressed in matrix form. One defjines a column matrix variable %,

_ ‘ : ° ° 3
= (mX, (ﬂya mza ¥, 8, ¢, Xs» Xs-Ba By Vs Y>

and, with elementary operations, casts the problem into the form

°

Ax = Bx+L

~

oa
v

' X as deflned here applles to equatlons of section 3.2. In section 3.3, one
must replace "B" with "r'".

(]



where A and B are (12x12) matrices with periodic coefficients. The )
equivalent form, .

= A'Bx + A 'L

~

!N R

may be readily handled by matrix and integration subroutines.

The procedure outlined above will be adopted in later sections.

4. SPECIAL FORMS OF EQUATIONS

4.1 MODEL M1 IN FREE-SPIN MODE

In the recent literature much attention has been given to determining
stability criteria for dual-spin satellites which are in 'free-spin', i.e.,

cases ‘in which VG and LG are neglected. For model M1, the equations defining

this situation are obtained by setting § equal to zero. An analytical
treatment of the resulting equations by the Method of Averaging is presented
in reference 4. '

4.2JEQUATIONS FOR MODEL M1 IN THE 'EARTH POINTING' MODE

In this section the equations of section 3.2 will be specialized to
describe satellite performance during the 'earth-pointing' mode of operatiom,
which is hopefully the normal mode of operatiomn.

Consider equations (3-12¢), (3-13) and (3-1l6c), involving only the
variables mz,'ﬁ, and ¢. An 'earth-pointing' solution to these is

¢ =0, wz=Q,‘Y=Y0,L3=L3R='O (4-1)
which may be achieved when the control torque is selected so that T, = C&o'
In practice, the torque components T, and T, are selected so as to make the

above solution asymptotically stable. Assume that the perturbed solution
about the stable one, (4-1), may be represented by
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where ¢1, r,, and ?1 are small. Substitution of these into equations (3‘1?3),
(3-12b), (3-14), and’ (3-15), and 1inearizatioh'in.wx, wy, O, X> 9,5 Ty ?1
X, and B yields, .

A.O(BX ~ 2maxf) - Isé 'siéwvt')‘— Isé(?o + Q) cos v,
+ 4, - B2+ CR%}wy = L, | BRERE (4-2a)
Bo&y + Isé COSY9‘T Isé(Qo +.r) sinyO + ma; - 4maréx
- {( - A;)r + cR«}o}wX + 31:2‘(400 - A0 =1, vor oo (4-2D)
m(l ~ u); + clﬁ + [k, - 3mré(l - wWIx - 3maN?0
+ ﬁa&y + maQ@% =0 | yore o (4-3)
Isé - I&jo cosy,w = I_ sinYOUJ; - I'SQO siny
+ I c;o_sYO(I)y + c,B + kB =0 oo (4m0)

where Yo = Qot.

Aléo, equations (3-16a) and (3-16b) become,

0 =w"y—szlp e (4-5a)

J_):(J)Xrl-ﬂe' voe o (4=5Db)

‘Introduce the dimensionless variables

T = §t
W o=uw/Q
X X
W o=uw/Q
y -3y

£ =x/a

Ll

in

- ‘mo




where the primes denote differentiation with respect to T. Also, deflne the

dimensionless parameters,

A, = (C

CA - Ao)/Bo’

0

cy = cl/mlﬂ,.

= kl/mQ2

b2
—
!

Y — 2
%, = L, /A,Q0%,

= &/aQ

= B' = B/Q,

A = (C

o5 = (Co = B/Ay,
RB = maz/Bo
IB = IS/BQ
JB = CR/BO'
Ez := cz/ISQ
k, = k,/IQ?

Lo = L,/B,Q?

Then the preceding equations take the form

El

Bl

v _ . '
WX 2RAn IA81nY v' o+ IA(OL + 1)

1 . v . '
Wy + IBcosY Vv IB(O!. + 1)siny v + RBn

{

(1= wn' + W +en + {k -

v' - qcosy W - siny W}'( - asiny

) el = w
y

o=

=
cosy v + (A, + J,0) Wy =%,

CB

- (A, + JBOL) Wx - 4RB£ + _3ACAe =

CA

31 - Wl -30+W =0

W+ cosy w}; +c,v+k,B=0

19
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Define a column matrix by
Z , T
x = [0, ¥, WX_’ Wy, £, B, T.},_ vl

Then the above set of equations mgy,belég3t in the form

| B! = B g, L (408)
'i;'rliérévg’_; A'apd B are, - . EE
= By s 050, 0,0, 0,077
- - - ‘ o n
0. 0 1. 0 0 0o o -Ipsdny
T . 1 conr
0 0 0o 1 0 o 1-u 0
A=l 0 0 7BinY¢ césy , 0 0 0 ]
1 0 o o "o 0 0 0
0 1 0 0 o o 0 0
0 0 0 0 10 0 0
| o 0 0 0 o 1 0 0 ]
[ o 0 0 ~bgde 00 2R I, (o + 1cosy ]
S3hg, O AR 0 ARy O 0 I,(0 + 1)siny
3 0 -1 0 -k, +3(1-p) 0 -c 0
3=l 0 0 acosy ucosy o -k, 0 ~e2
0 -1 0 1 o 0 0 0
101 o 0o o 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 o0 0 1

=

™o -

[ B

e

()

{»




5. STABILITY ANALYSIS OF EQUATION 4-6

The coefficients of A and B of equation (4~6) are periodic with period

(2m/a). The stability of the solutions may be assessed by using Floqueﬁ Thebry,
when L, and L, the externally applied control torques are zero. As outlined in

reference 5, the'boundedness or otherwise of the solution depends on the
change over one period of the -(8x8) matrix W which is generated from the

differential equation.

W'=A B W e (5-1)
with initial condition W(Q) = L, the unif matrix. The solutidns are bounded
as T+ « if and only if the modulus of each of the eigenvalues of W(2m/a) is

less than or equal to unity, and if, for any eigenvalue A for whichﬁ]hk[ =1,

k
the multiplicity of A, is equal to the nullity of the matrix {W(2r/a) - W(0)}.

The stability of the solution of equations (4-6) may be assessed by
digital computer by solving W numerically from the sixty-four first order

equations embodied in (5-1), and then testing'thé eigenvalues of W(2m/a) in

accordance with the above stated criteria.

6. CONCLUDING REMARKS

The preceding work documents the equations of motion for dual spin
satellites of interest in the Telesat program. The equations are of sufficient
generality to efficiently provide preliminary engineering design information
on dynamic performance. '

At the date of writing (Oct./69) computer programs have been written
for various phases of the studv based on Model Ml. All may be readily
converted to Model M2 as required, Presentlv available are:

a) TELESAT 1 - a program which assesses stability according to the
procedure outlined in section 5,

b) TELESAT 2 - a program which solves the motion equations for the
'free spin' mode, outlined in section 4.1, ‘

c) TELESAT 3 - a program which solves motion equations when pulsed,
attitude correction torques are applied during the 'earth-pointing'
mode of operation.

Computer listings, descriptions, and card decks for the above programs. are on
file. These may be made available by authors on request,
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