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MOTION 	EQ . UATIONS 	FOR 

-DUAL 	SPIN 	SATELLITES 

by 

F.R. Vigneron, T.W. Garrett, and L.R. Eisenhauer 

ABSTRACT 

Motion equations are developed for two 
configurations of dual spin satellites. Each 
configuration consists of an asymmetric platform, 
a motor driven symmetric rotor, a platform damper, 
and a rotor damper. The differences between the 
configurations lie in the asymmetries of the 
platform and the degree of complexity of the 
dampers. The equations describe the satellite 
behaviour in the 'earth-seeking' and 'earth-
pointing' modes of operation. Computer programs 
are listed for 

a) assessing the stability of the solution for 
the earth seeking mode. 

b) solving the motion equations for the 'free 
spin' mode, and 

c) solving the motion equations when pulsed, 
attitude correction torques are applied 
during the 'earth-pointing' mode. 

1. INTRODUCTION 

Presented herein is a development of the motion equations for dual-spin 
satellites of interest in the Canadian Telesat program. The equations describe 
satellite behaviour in the 'earth-pointing' mode and the 'earth-seeking' mode, 
in which the platform (i.e., the antenna) swings through large seeking angles. 
A computer method for assessing stability of the 'earth-pointing' mode of 
operation is described. 
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1 r = + r , (3- 2) 

Q=  1 fr' dm (3-3) 
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2. CONFIGURATIONS OF INTEREST 

The mathematical models of two configurations, a simple one and a 
more complex one, will be given for circular orbit flight. The first model, 
shown in Figure 1 and designated as Ml, consists of an asymmetric platform, 
a motor driven symmetric rotor, a platform damper, and a very simple 
spherical rotor-damper. The second model, shown in Figure 2 and designated 
as M2, consists.of an asymmetric platform, a motor driven symmetric rotor, 
a platform damper, which is modelled after one to be used in practice, and 
a rotor damper to simulate the first mode of fuel sloshing and structural 
damping. 

Model M2 has the generality required for preliminary model designs of 
interest in the Telesat program. Mpdel M1 is particularly useful in analytical 
work, since the equations of motion for it turn out to be relatively 
uncomplicated. 

3. MOTION EQUATIONS 

In section 3.1, general motion equations applicable to flexible 
satellites are developed from variational principles. They are then applied 
to derive linearized equations for the M1 and M2 configurations in sections 
3.2 and 3.3 !  

3.1 GENERAL MOTION EQUATIONS 

Consider a deformable body near the earth, as is shown in Figure 3. 
Moving axes (0'x'y'z') are affixed to some fibers of the body and remain so 
during deformation. Axes (Oxyz) are assigned to the body so that they always 
remain parallel to (0'x'y'z') and so that the point 0 always coincides with 
the instantaneous mass center of the body, i.e., for the vector r from 0 to 
any point within the body, 

f r dm = 0 , 	(3-1) 

where M is the total mass of the body, and dm is an increment of mass at r. 
The vector r' has components in (0'x'y'z') 

where .a is the distance to the mass center. Combining equations (3-2) with 
(3-1) leads to 
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Figure 2. 



The motion of the mass center, 0, will be assumed to follow a 
Keplerian circular orbit, as is the usual practice in satellite mechanics, 
Hence, the vector Ro from the center of the earth, E, to 0 has constant 
magnitude. The orbital angular rate is given by 

2  = GM /R13 
E 	' 

where GM
E 

is the earth's gravitational constant. 

The angular position of the axes (Oxyz) relative to the earth based 
inertial system (EXYZ) will he specified by the Euler angles (IP, e, cb,) and 

as shown in Figure 4. The orbit will be assumed to lie in the xy plane 
(without loss of generality) and the Euler angles will be defined relative 
to orbital axes (0 	2 3) by the right hand rotation scheme (i) 1P about 

(ii) 0 about B 2  (iii) CI) about C 3 , where B2 and C3 are shown  in, Figure 4. 

• • 	• 

The kinematical relations between the velocities (11), e, (p) and the velocities 
(wx , wy' wz ) resolved in the axes (Oxyz) are 

• • 
wx 

= 1P cos  cb cose + esincP + S2(-cos4 sine cost,*  sin  çb sintP) 

w = Jsin cose + ecoe + SZ( sin(1) sine cosIP 	cbscP sin1P) 
Y 

• • 
wz 

= IPsine +  Q  cose costP + 

(3-4a) 

(3-4b) 

(3-4c) 

The kinetic energy of the body is 

T = 1 	• f(R + ;) 	ck + 7 —0 — 	_o — 

where the superscript dot denotes vector differentiation with respect to the 
• • 

inertial (EXYZ) frame. The term (Ro + r) may be expanded in the form, 

0 

RO "1- r -FWXr, 

where w denotes (wx , wy' wz ) resolved in (Oxyz), and the superscript (°) 

denotes differentiation with respect to the (Oxyz) frame. Combining the above 
two expressions yields, after some manipulation, 

a 0 
1 	• 	 (3-5a) 

M 
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Figure 3. 
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L =  
3(e  x I e l ) , -G - 
R 	

43 	- 
0 

GM 
(3-7) 
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where I = f (r 2 1 	r û 0 dm , 

0 
F = f (r x r) dm . 

(3-5b) 

(3-5c) 

The symbol (-) denotes a second order tensor, and 0 is defined by 

(u fiè v)w = u(v 	w) . 

I is called the inertia tensor, and r the angular momentum of deformation. 

The gravitational potential and torque are given by 

GM
E  VG = 	[tr I - 3  (3-6) 

where e is a unit vector along EO directed from the center of the earth. In 
terms of (1P, 0, (), the vector e4  has components - 

	

=  cos  q) cos0   (3-8a) 

	

2, 2  = -sin (1) cos°   (3-8h) 

	

2, 3  = sine   (3-8c) 

resolved in (Oxyz). 

To calculate the components of I and F (which are taken about point 0, 
the moving mass center), it is often convenient to work from a frame 
(0'x'y'z'), where 0' is fixed on some part of the body, but does not remain 
fixed on the mass center. For this purpose, one may derive the following 
parallel axes tranformations: 

- M (p  P; 	û 

0 
r = F' - M 	x p) 

0 	0 	 0 f 	01 	 0 	0 

fr 	r dm = 	f(r 	r ) dm - M (p 	p) , 

(3-9a) 

(3-9h) 

(3-9c) 

where the prime superscript denotes components taken about 0'. 

Motion equations applicable to all classes of flexible satellites may 
be deduced from the above T and appropriate V (of which V

G embodies only 



those forces due to gravity) by using Hamilton's Principle'. When the 
representation of T and V is expressed in terms of discrete coordinates, 
Hamilton's Principle reduces to Lagrange's equations. 

It is convenient in rotational problems to retain the Euler equations 
(in a generalized form) in the variables (w,x , wy' Wz ), 

rather than working 

directly in terms of coordinates (ip, o, (p), as is usual in the variational 
approach (i.e., it is usual to substitute equations (3-4) into (3-5) to 
eliminate w). The desired equations, which are the Lagrange equations 
corresponding to the variable (w, W ,  wz ) may be shown to be 2,3  

d -d7t- (1w + r) + wxwo + r) = L 

where L is the external  torque.  

Equations (3-4) may be inverted to obtain, 

• 

	 (3-10) 

ij= w
x 

cos(P sea - w  sin  g) sea + Shane coe 	(3-11a) 
Y 

6 = w  sin  g) + w  cos  cP - SZsing) 	(3-11b) 
Y 

= w -w  cos  g) tan6 + w
Y 
 sing) tan6 - S2sece   (3-11c) 

z x  

When the deformations of the body are represented by continuous 
coordinates, Hamilton's Principle will provide partial differential equations 
and appropriate boundary conditions to define the motion of the continuum. 
When the parts of the body may be described by discrete generalized 
coordinates, Lagrange's equations will provide the balance of the equations 
required to supplement (3-10) and (3-11). 

3.2 MOTION EQUATIONS FOR MODEL Ml 

Consider model Ml, depicted in figure 1, composed of a platform, a 
rotor, and two dampers. Axes (0 x' y' z') are assigned to the body so that 
when the damper springs are in their undeformed state, the axis O'z' is a 
common rotation axes of the two bodies and is also a principal axis. The 
point 0' coincides with the mass center of the composite body, and the axes 

O'x' and O'y' are fixed in the platform. The rotor rotates with respect to 

the platform about the O'z' axis by an angle y. The rotation rate y is 
supplied by an internal torquing motor. The platform damper is in static 
equilibrum with its mass in the position (0, 0, a) in (0'x'y'z'), and is 
constrained to oscillate in the O'x' direction with a displacement  X. The 
rotor damper is fixed in the rotor, but able to rotate about a transverse 
axis of the rotor through an angle 13. An additional set of axes (Oxyz) is 
assigned to be parallel to the (0'x'y'z') body fixed axes, so that 0 
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coincides with the instantaneous mass center of the configuration as the 
dampers oscillate. In the following development, it will be assumed that the 
satellite axis Oz remains oriented approximately normal to the orbit plane, 
and that the dampers execute small motions. Accordingly the equations of 
motion will be linearized in the variables 114 0, x and S. As a consequence, 
wx and wY 

 may also be regarded as being small, as seen by inspection of the 

linearized forms of equations (3-4a) and (3-4b). The resulting equations will 
then provide an approximate behaviour of the dual spin satellite in its 
earth-seeking' mode, in which cl) may be large, and also in its 'earth-

pointing' mode, in which (4,  is small, 

The platform damper of mass m has position vector 

r' = 	+ a  

where the primes shall henceforth represent quantities resolved in the 
(0'x'y'z') frame. Using the above relation in equation (3-3), and the fact 
that 0' coincides with the mass center when  X  is zero leads to 

m 	, 
-2-=Fx-qd 

The components of I shall be denoted by 

-E 	-D 	C 

From expressions (3-5b) and (3-9a), it is found that, 

A = A' - M(r) + p 23) 

F = F' - Mp l  p 2  

and so forth, where (p l , p 2 , p 3 ) are components of p . Utilizing the above 

expressions gives 

A = A o 

where A o  is the moment of inertia, calculated in the (0 1 x l y'z') frame, of the 
platform, rotor, and damper in its undeformed state. It will be assumed that 
the rotor is symmetric, so that A o  will always be constant as the rotor spins. 
Similarly, 

B = B + m(1-p)x2 
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C  = c o  + m(1-p)x 2  

=0  

E ='max 

. F = 0, 	, 

where p = m/M, and the axes (0'x'y'z') are principal axes of the platform and 
rotor combination when x = 0. Likewise, the components of r are found to be, 

F = -Is siny 

1' 2 = s
13 cosy + max 

• 
iI' 3 	CRY 

where I
s 

is the inertia of the sphérical dampet, and CR 
is the moment-of 

inertia of the rotor (which includes I s ). The last term of expression (3-5a) 

takes the form, after using equation (3-9c), 

1 	. 	 1 	. 	1 f r • r dm = —
2 
m x 2  (1 	+ --2- cRy 2  + —2  I 

The kinetic energy then becomes, 

• 1 T = i- {C 0  + m(1 - p)x 2
} 
 w2

z 
- maxw w - I w siny xz 	sx 

+ Iw(3 cosy + maw
y
x + wzCRy s y 

1 	, 	.2 	1 	1 	• 
'7 ma - p)x 	v 2  + 	0 2 

. 	 2 R' 	2s  

The above expression is linearized in 0 and 11), which also implies 
linearization in wx and w (see equation (3-4)). 

Y 

The gravitational torque given by equation (3-7) (together with (3-6)) has 
the component form 

L 	=  3 2 [(C - B)£23 	p(£ 2  - Q 2 ) - E9 2 	FR, 13 ] 
1G 	 3 	2 

together with two additional expressions obtained by permuting symbols. These 
expressions become, after linearization in 0, 1P,x 0  and 

L1G = 3S-2 2 [-(C 0  - B )0  sin g!) + max coscb sin] 
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L20  = 1-22 [(A 0  - C 0 )0  cos  q) + max cos 2 cP] 

L30 	-3S-2 2 (B 0  - A 0 ) sit-4 cosq5 

The gravitational potential, VG , becoffies, after linearization in (0, tp), 

= - 2. [A 0  (1 - 3 cos 2 (P) + (B 0  + m(1 - P))( 2 ) (1 - 3 sih 2 (P) 2  

+ C o + m(1 - p)x 2  + 6 max coe] 

The potential for the damper springs is 

V -=  2 k X
2 
+ 2 k 2 

S 2 
S  

Employing the above relationships in .equations (3-1W, and linearizing 
in 0, tl) and x yields, 

. 	 • 	
99 

- maxwz ma)(w z - s sin)'  

	

- I s Sy cosy + (C o 	B o )wywz  + CRywy  

(I s f'3.  cosy +  mai)  wz  = 1-2 2 [-(C 0  - B o )e sincl) 

	

+ max  cos  q) 	+ L 1  

O 	 CO - 
B w + I S cosy - Sy  sin)'  + max + 	- C

0 ) ww 0 y 	s 	 s 	 o 	xz  

- maw2 X - I '.co 	sin)'  - CRywx s z 

= 1-2 2 [(A 0  - C 0 )0 COSCP max COSM 	L2 

d • [C o wz  + CRy] = M2 (B 0  - A 0 )  sin cl) cos q) + L 3  , 

(3-12a) 

(3-12b) 

(3-12c) 

where L 1 	2 
, L , and L are external torque components about axes (Oxyz) 

3  
excluding gravity torque, (e.g. gas jet torques). 
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The following equation for the rotor maY be obtained by using the above 
T and V in Lagrange's equations with y as a generalized coordinate. 

d r , 	 '„ 

	

Lups  t(4z  + Yrj 	+ 1. 0  + T, s in  (P + T 2 (1)± L. 	(3-13) 

where L, is the external torque applied to the rotor, the generalized force 
'R 	 • 

(in Lagrange's equation) is taken to be -cy, i.e., a bearing friction torque, 
plus, (T 0  + 'r i sing) + T 2 ,t1) a control system torque which is applied by the 

internal motor and which may be designed to make the platform seek the earth 
pointing direction, 

Equations of motion of the dampers are obtained by gaing  X  and P. as 
generalized coordinates with the preceeding T,V, and - V in Lagrange's s 	. 
equations: 

	

m(1 - 11)x + maw + maw w + c ly + [k 	mw2 (1 - 11) - Q 2 (1 -11)(2 - 3sin2(P)]x 
Y 	z x 	 1 

ma0 coe = 0 	(3-14) 

. 	 • 	• 	 . 
Is P. - Isy cosy wx - I

s 
siny wx - I

s
y siny w + I cosy w + c2 f; + k2 P = 0. 

Y 	s 	y 
	(3-15) 

In the above equatl.ons, generalized forces due to damping in the rotors are 
included (i.e. -c i x and - c 2 13) , 

•  The kinematical relations (3-11) become, 

à = wx sing) + wy 	q. cos - 

1.P = wx ços ,t,  - w 	+ SZO 
Y 

(I)  =  wx 
- 	, 

	(3-16a) 

.., 	(3-16b) 

	(3-16c) 

Equations (3-12), (3-13), (3-14), (3-15) and (3-16) form a set of 
equations which may be solved for the set of variables w w w,  0, (I),  4),  y, x y z 

and P. Since these linear equations have coefficients which are periodic in 
both y and (I), they are solvable by analytical means. These equations are also 
general enough to enable the study of the 'earth-seeking' performance where 
(I) is not necessarily small. 
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3.3 MOTION EQUATIONS FOR MODEL M2 

The motion  equations for the second more complex model are derived in 
exactly the same manner as that outlined in Section 3.2, subject_to the 
following limitations 	 • 

(a) linearization in 'I), 0, x and r (the rotor .damper radial deformation) 

(p) the rotor is,assumedto be symmetric when the damper is in its 
undeforined state (i.e,.AR . = It? D  R = ER  = FR  = 0 , Where the subsCript - 	'' 	. 	- 
"R". denotes phe rotor) 

(c) The mass center of the undeformed satellite is assumed to lie on the 
, 	principal O'z' axis, of the rotor. 

, 
The equations will be quoted direct1y-without further development. 

• • 

The .Euler equations become 	• 

d 
dt [A n w 	F w - (E + m ax • x 	py 	p 

cosy) Wz 

(;» siny + 	cosy)] + (C 0 	B 0 
 )w w 
 y z 

+ (D -m
2
dr siny) w 2  +F ww +C

R  i(co P 	 Z 	p z x 	y 

- W
z 

{M
1
aX - M2d(r cosy - ry siny)} 

= 3Q2  [-(C 0 	B 0 )0  sin  cP - (D - m 2 dr siny)sin 2 4) 

+ (E + max - m 2 dr cosy)sincl) cos4 ,  

+  F0 cos]  + L 1  

d - [13 0 	pz 
wy - Dw.+ m drw siny - F w 2 . 	z 	 px 

0 0 
M 1 aX - M 2

d (r cosy - ry siny)] 

+ (A 0  - C dwzwx  - (E + m i ax -'m 2 dr cosy)w 2  

(3-17a) 



• 
- FWw +mdw (r siny + ry cosy) p z y 	2 

C y

▪ 

 w  32  [(a o 	C o )0 cosq) + (E + m ax 
R x 	 P 

- m 2  dr cosy)  cos 24) +  F0  sinlo 

- (d - m dr siny)  sin  cP cosilq + L 2    (3-1,7b) 
P 
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d r  
(Tt-  1C0Wz 2m2 ewzr -Ew -Dw 

Px 	PY 

• • 
+ CRy - ml

bx + 2m2 eyrj +Eww p z y 

- D w w = 	[-(B 0  - A 0 )  sin cj) cos 
p z x 

- (F 0  1- m i bx 	m2 er sin 2y) cos 2(1) 

- D o e cosq) - E 0 0  sin  l) 	+  143  . 	 (3-17c) 

These equations are sufficiently general to account for unbalance of the 
platform (i.e. D = E = F are non-zero), a feature which may be a 

characteristic of the Telesat design. 

The rotor equation becomes 

d 	 , 	• [CR (wz  + y) + 2m 2 ewzr + 2m2 eryj dt 

= -3R 2m2 er sin 2y - 	+ T o  + T1  sin  cp + T 2  (i) 	L oR 	 (3-18) 

For the platform damper, 

ml 	Lx 	-III) 	aw  
d 	r .  = bw + 	sinyr - p (r cosy 

Y 	z 	2 	 2 

- rysinY)] -M 1 w2z { (1 	p i )x - p 2r cosy} + m l awzwx  

+ m w p 2  (r siny + ry cosy) + c i x + k i x 
z   



+ 	{ 	pdx '14 2 	( 2 - . 3 sin 24) 
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+ 3p0 cosc:or 3(b 7p 2r siny) copcP,  sin]  = 	. 	(3-19) 

For the rotor damper, 

r° m2 	ir dt - p 2 ) 	p 1 ;( cosy + wxd siny - wyd cosy - wxp i x siny] 

- m2wxdz + y) cosy - mw d (wz + y) siny Y 

+ m 2X p 1 cosy (w 2  + w
z
'çe) 	m 	(w 2 	z + '\,() p l  siny 

- m 2 {e + r(1 	P
2 )} z + -}() 2  +0 2; +k2r 

+ 2 [{(e + r(1 - p 2 )1 {2 .1. 3sin2 (q) + y)} 

31-1 1)( cosy en211) -'3 de cps 	- Y) ] = 0 . 	..•.. (3-20 

Equation (3-17) to (3-20) are supplemented by'the kinematical relations, 
(3-16). 

3.4 SOLUTION OF EQUATIONS 

The equations of sections 3.2 and 1.3 are . solvable by Runge-Kutta or a 
related numerical procedure..To do this efficiently, the equations are 
expressed in matrix form. One defines a column matrix variable *, 

X 	(W 5 W ! W 5 11) ! 6 7 (1) , X! X! Ne N, y,  X y z 

and, with elementary operations, oasts the problem into the form 

Ax = Bx+L 

* x as defined here applies to equatiOns of section 3:2. In section 3.3, one . 
must replace "e" with "r". 
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where A and B are (12x12) matrices with periodic coefficients. The - 
equivalent form, 

x A-1 Bx + 

may be readily handled by matrix and integratiop subroutines. 

The procedure outlined above will be adopted in later sections. 

4. SPECIAL FORMS OF EQUATIONS 

4.1 MODEL M1 IN FREE—SPIN MODE 

In the recent literature much attention has been given to determining 
stability criteria for dual-spin satellites which are in 'free-spin', i.e., 
cases in which VG 

and L are neglected. For model Ml, the equations defining 
-G 

this situation are obtained by setting R equal to zero. An analytical 
treatment of the resulting equations by the Method of Averaging is presented 
in reference 4. 

4.2 EQUATIONS FOR MODEL M1 IN THE 'EARTH POINTING' MODE 

In this section the equations of section 3.2 will be specialized to 
describe satellite performance during the 'earth-pointing' mode of operation, 
which is hopefully the normal mode of operation. 

Consider equations (3-12c), (3-13) and (3-16c), involving only the 

variables wz
, y, and cl). An 'earth-pointing' solution to these is 

(4-1) = 0, wz  = 	= 0 , L 3  = L 3R  = 

which may be achieved when the control torque is selected so that T o  -= cy o . 

In practice, the torque components T 1  and T 2  are  selected's° as to make the 

above solution asymptotically stable. Assume that the perturbed solution 
about the stable one, (4-1), may be represented by 

w
z 

r + r 1 

• • • 
Y  = o  
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where (P I , r i , and y i  are small.  Substitution of these into equations (3-12a), 

(3:-12b) ., (3-14), and(3-1 5 )', and linearizaion in w,  w , 0, x, 	r 1 , yi  x y 
X , and 8 yields, 

A w 	2max0 -  113  sin)/ - Is0 
+ 0) cos y o  

x 

9 

1(C - B 0 )Q  + ÇR
y

0
lwy = L 1  

B w + I 8 cosy - I 8(y 0 + r) siny + max - 4mar 2x 
D y 	s 	 s  

(4-2a) 

P 

{(C A o )r + CRy o }wx  + 3r 2 (C 0 	Ade = L 2  	(4-2b) 

m(1 	p.)x + c 4 X + [k 1 	3mr 2 (1 - p )]x  - 3ma0 20 

' + maw + mew = 9 
Y 	'x 

113  - Isy 0 cosy 0  w - Is siny 0  w - Isy 0 siny o  w x 	 x 	y 

+.1 cosy W + c 2  +.k2 8 = 0 s 	0  y 

where y o  = • o t. 

1....(4-3) 

(4-4) 

Also, eqbations (3-16a) and (3-16b) become, 

O  = w - Qif 	(4-5a) 
Y 

	(4-5b) 

Introduce the dimensionless variables 

T = 

W 	w 
X  	

/0 

W = w /0 
Y 	Y 

= x/a 



= L I /A 0 S-2 2 , 

k 1 /m 2  U; = k2 /I& 

= L 2 /B 0 Q 2  

• '- e4  = Y /à 6  ,Y = (11.  0 

n = 	- X/4 

= 	= 

where the primes denote differentiation,with respect to T. Also, çiefine the 
dimènsionless parameters, 

	

:Au  = (C 0  - A0)/B0, 	 CB =(C 0  -, B 0 )/A 0 , 

	

R
A 

= ma 2 /A 0' 	 R = ma2 /B 0 

= I = I /B B 	s 0 I S/A 

J
B =C R/B 0 A 	R 0 

cl = C /111 	 C = c2/11 	1 ' 

3.9 

Then the preceding equations take the form 

E' = n 

13' =v  

W'  - 2RAn - IA
siny V' + IA (a + 1) cosy v + 	+ J a) W  = i  

CB 	A 	y 

W' +  I Cosy v l  - I (c  + 1)siny + RBn' 	( 	j 	4RJ 	3AcAe Y 	B 	 CA 	e) Wx 

(1 - p)n ?  + W' + -C.  1n + -(17. - 3(1 - 11)} - 38 + W = 0 y 	 sr 

V' - qcosy Wx - siny W' -asiny WY 
 + cosy W' + -C-2v + 1( 2 13  = 0 x 	. 	Y 

O' = W - 
Y 

= Wx + e  



, 0, Q 

4  -IA q1.41Y. 

• 	

- 

Bofflf.  

0 

7•81.ny 	cosy 

0 

A 
■••■• 

,n 

0 

0 

0 0 

0 9 

0 0 

1 

o 

o 

1-11 

O P 

o 

0 

1 

RB  

0 

0 	1 0 

0 

0 

0 	0 	1 

2 0 

Define a column matrix by 	 . 

y 

Then the above et of eqgatiops rpy.  beCaSt in the forM 

W 	T35 +W.,4 	 • e•! (4i , e>) 
, 	. 	. 

wherek, A apd B are, 

0 	0 	0 	-J a 	0 	0 •2RA 	IA (a + 1)cosy 
Cb A  

0 	ACA+JB 	0 	4RB 0 	0 	I (a + 1)siny -3ACA 

3 	0 	- 1 	0 1 +3(1 -11) 0 	-c 	 0 

B = 	0 	O 	acosy acosy 	Q -1-2 	 ,c2 

o 	i 	 0 	 0 

1 	0 	0 	0 	0 

1 0 	0 	0 



W I  = 	B W 	 (5-1 
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5. STABILITY ANALYSIS OF EQUATION 4-6 

The coefficients of A and B of equation (4-6) are periodic with period 

(2ff/u). The stability of the solutions may be assessed by using Floquet Theory, 
when L 1  and L 2 the externally applied control torques are zero. As outlined in 

reference 5, the boundedness or otherwise of the solution depends on the 
change over one period of the (8x8) matrix W which is generated from the 

differential equation. 

a 

with initial condition w(o) = 1, the unit matrix. The solutions are bounded 
as T co if and only if the modulus of each of the eigenvalues of W(2u/a) is 

less than or equal to unity, and if, for any eigenvalue Âiç  for which IXk l = 1, 
the multiplicity  of 1k is equal to the nullity of the matrix {W(2711(1) - W(0)1. 

The stability of the solution of equations (4-6) may be assessed by 
digital computer by solving W numerically from the sixty-four first order - 
equations embodied in (5-1), and then testing the eigenvalues of W(211- /a) in 

accordance with the above stated criteria. 

6. CONCLUDING REMARKS 

The preceding work documents the equations of motion for dual spin 
satellites of interest in the Telesat program. The equations are of sufficient 
generality to efficiently provide preliminary engineering design information 
on dynamic performance. 

At the date of writing (Oct./69) computer programs have been written 
for various phases of the study based on Model Ml. All may be readily 
converted to Model M2 as required, Presently available are: 

a) TELESAT 1 - a program which assesses stability according to the 
procedure outlined in section 5, 

b) TELESAT 2 - a program which solves the motion equations for the 
'free spin' mode, outlined in section 4.1, 

c) TELESAT 3 - a program which solves motion equations when pulsed, 
attitude correction torques are applied during the 'earth-pointing' 
mode of operation. 

Computer listings, descriptions, and card decks for the above programs are on 
file. These may be made available by authors on request. 
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