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THE ZOOM TRANSFORM 

by 

A.W.R. Gilchrist 

ABSTRACT 

The zoom transform is the discrete Fourier trans-
form of the discrete Fourier transforms of successive 
sections of a sampled signal. An analysis of the zoom 
transformation is presented, which shows that this pro-
cess is approximately equivalent to a single Fourier 
transformation of all the signal samples. The predic-
tions of the analysis have been verified by computer 
tests, which are described. Correction factors are 
derived for the phase and amplitude of the zoom trans-
form. In comparison with the large single transforma-
tion, the zoom technique offers important savings in 
storage capacity requirements, and, in applications 
where high-resolution analysis of only selected regions 
of the spectrum is required, the amount of computation 
needed may be greatly reduced. 

1. INTRODUCTION 

A technique has recently been proposed by Dr. E. Shaw l  for increasing 
the resolution of the Fast Fourier Transform (FFT) beyond that determined by 
the block size of the basic analyser. In principle, the resolution that can 
be obtained is limited only by the stationarity and duration of the signal. 
Other methods for achieving this result are known; for example, Gentleman and 
Sande 2  have described a technique for obtaining the Mm-point transform by per-
forming a certain sequence of M-point and m-point transformations. However, 
in the latter method the computer must store all Mm signal samples simulta-
neously, and when the product Mm is large, the storage capacity needed may be 
prohibitive, especially if the analysis must be conducted in real time without 
loss of data, so that double-buffering is called for. In the present method 
only M signal samples need be stored at one time, where M is the block size of 
the basic FFT analyser. The method described by Gentleman and Sande also re-
quires the complete Mm-point transform to be computed, even if only one or a 

1 



2 

few small regions of the spectrum are of interest. A novel feature of the 
technique proposed by Shaw is that the high resolution analysis can be per-
formed on any arbitrarily selected set of frequency cells. This feature ap-
pears to be of particular value in cases where the basic analyser is not suf-
ficiently fast to perform the full Mm-point transform in real time, provided 
that the cells of interest are known, or can be determined by inspecting the 
results of the M-point analysis. The ability of the proposed technique to 
reveal the detail of a limited region (of the spectrum) led Shaw to name his 
technique the 'zoom transform', by analogy with the somewhat similar charac-
teristics of the zoom camera. 

The zoom procedure is to compute the M-point transforms of m successive 
blocks of M signal samples, and then to carry out the m-point transformation 
of the elements of these transforms corresponding to the frequency cell or 
cells of interest. The result is claimed to be the Mm-point transform of the 
signal for the frequency interval covered by the selected cells. 

There are established methods for performing the high-resolution analysis 
of a selected region of the spectrum, as in the zoom transformation. In one, 
the selected region, of bandwidth W, is isolated by bandpass filtering of the 
input signal; the output of the filter is then heterodyned to baseband, sampled 
at the rate 2W, and transformed. The need for heterodyning can be avoided: 
after bandpass filtering, the signal is quadrature-sampled and transformed. 
Quadrature sampling may be carried out either directly on the bandpass signal 3 , 
or by sampling both the bandpass signal and its Hilbert transform 4 ; in either 
case the minimum sampling rate is W, half that of the first method, but of 
course each quadrature sample consists of a pair of values. 

The Fourier transform of the Hilbert transform has a very simple relation 
to the Fourier transform of the signal; it is the same but for a phase shift of 
u12, 5 . This observation shows the connection between the zoom transformation 
and the second method discussed above. The successive outputs in a given cell 
of the M-point transform may be regarded as the quadrature samples of a band- 

' pass signal. The basic FFT analyser serves as the bandpass filter, or rather 
as a comb of such filters, since each frequency cell represents one filter. 
While the definition of the zoom transform as the transform of a sequence of 
transforms is scarcely perspicuous, this analogy with a known technique makes 
the validity of the method almost obvious .. The present investigation was 
undertaken to supply an analytical basis for the zoom transformation, and to 
test it by means of computer experiments. 

2. DESCRIPTION OF THE ZOOM' TECHNIQUE  

The N-point discrete  Fourier  transform of a signal  x0  (t) sampled at the 
rate of S samples/sec is defined .  by: 	 - 

N-1 
X(a) = 	x(T) exp . (-2niTa/N)   (1) 

where T and a are time and frequency indices, respectively, which are related 
to the time t and frequency f by the relations: 

T = St , a = Nf/S,   (2) 
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and x (T) = x o (T/S). The time interval covered by the section of signal ana-

lysed (the block time) is tB = N/S 
secs, and the corresponding frequency reso- 

lution of the transform is Af = S/N Hz. For a real signal, the frequency range 
covered by the transform is  5/2 Hz. 

If N = Mm, the N-point transform given in equation (1) can be written in 
the form: 

M-1 M-1 
X(cl) = 	x(rm + s) exp (-2Trisa/Mm) exp (-2nira/m)   (3) 

r=0 s=0 

m-I 
= 	y(r;a) exp (-2uira/m) 	(4) 

r=0 

M-1 
where 	y(r;a) = 	x(rM + s) exp (-2Trisa/Mm).   (5) 

s=o 

If we set y(r;a) = Yr (p )
,p = a/m, we observe that, for integral values of p, 

equation (5) has the form of an M-point Fourier transform: Y(p) is the trans- 

form of the (r + 1) th M-point subsection of the original N-point section of the 
signal. Similarly, equation (4) is the m-point transform of m successive M-
point transforms. It follows that if the signal is a sinusoid of frequency 
f o = Sa o /N, where a o /m, and therefore a o , are integers, the exact value of the 

Mm-point transform x(a) can be obtained by computing m successive smaller (14- 
point) transforms, and then computing the single m-point transform of the m 
outputs of the cell of frequency index a 0 /m. This is the basic concept of the 
zoom FFT. 

The exact equivalence just demonstrated has been established only under 
. extremely restrictive conditions. In the first place, the signal frequency 

must be equal to the centre frequency of one of the cells of the N-point trans-
form, and secondly, the signal frequency must be equal to the centre frequency 
of one of the cells of the M-point transform; 	a o /m must be an integer. 

Evidently the second condition implies the first, but not vice versa. Does the 
technique remain valid if these conditions are not met? Suppose that the first 
condition is satisfied but not the second. It is obvious without analysis that 
in this case the technique is not valid, in the sense that the result of the 
zoom procedure cannot be exactly equal to the result of performing a single N-
point transformation. In the latter operation all but two of the Fourier ex-
ponentials are orthogonal to the signal, and the output in the corresponding 
frequency cells is precisely zero. In the M-point transformation, on the other 
hand, none of the exponentials is orthogonal to the signal, so that the signal 
energy is distributed over all M cells according to the shape of the spectral 
window. The subsequent m-point transformation applied to the output of a single 
cell clearly cannot recover the energy that is not in that cell. 

The conclusion we have just reached is that the basic M-point FFT ana-
lyser, regarded as a bandpass filter, distorts the signal. But so does any 
other form of bandpass filter. As will shortly be seen, the errors introduced 

by the FFT filter can be approximately corrected. The quality of the approxi-
mation is examined in the following sections. 



M , 	 = Go' (8) 

..3..ANALYSIS 

The M-point transform of a signal x(t) is defined as in equation (1), 
with the time and frequency indices T,G given in terms of the sampling rate 
and the block size as in equation (2). The complex exponential signal  x 0  (t)= 

exp (21-rif 0 t) becomes x(T) = exp (2TriTa 0 /M) when expressed in terms of the 

indices; the index a o  is not restricted to integral values. The transform of 

this signal is: 
M-1 	- 

X(a) = 	exp (27riTà 0 /M) exp (-2TriTa/M) 
T=0 

M-1 
= 	exp (2TriT(a 0  - a)/M). 

T=0 

The result of performing the finite summation may be expressed in the following 
form: 

X(a) - 	exp (in (G o  - a) (M - 1)/M) [sin ( Tr (a o  - a)) /sin ( Tr (G o  - a)/14)1 , a 	o- 0  i 

The right-hand side of equation (8) can be,simplified; the upper expression in-
cludes the lower if its value at  a  = , (5 0  is understood to be the limit to which 
it tends as a approaches a ° . 

Now consider the real signal x(t) = A cos (2nf 0 t + a), which can be written 
as the sum of two exponential  signais:  

x(t) = 1 -A exp (ia) exp (27rif 0 t) +-1- A exp (-ict) exp (-21rif 0  t). 2 	 ,  

Making use of the result given in equation (8), and recalling that the principle 
of superposition applies, we can express the M-point transform of x(t) in terms 
of the frequency index a, as follows: 

X(a) = 7  A exp (ia).  ex  P (1.71-. (cs 0  - a) (M - 1)/M) [sin (Tr (G o  - a)) /sin (Tr (a 0  - G)/M)] 

+ 7  A exp (-ia) exp (-iTr (a o  + a) 	- 1)/M) -  [sin (îr(a o  + a)) /sin [Tr (a °  + cs)/14)] . 

(9) 

This result can be applied to investigate the zoom transformation in the 
cases where one (or both) of the conditions"given 1:11 Section 2 is violated. 
With respect to the M-point transformatiOn, the signal A cos (27rf 0 t + (1), sampled 
at S samples/sec, has a frequency index 0. 0  = Mf o /S. Let the integer closest to 
G o be al' so that a o  may be expressed as a 1  + A where là1 < 1/2. The maximum ,  
amplitude of the M-point transform,of.this signal will then occur in cell al, 

(6)  

(7)  



and it is therefore on the contents of this cell that the subsequent zoom 
operations must be performed. The component of frequency index a l  of the 

(r + 1) th M-point transform, calculated from equation (9), is: 

1 y(r;a 1 ) = 7  A exp  (iŒ)  exp( iTrA(M - 1)/M) [sin (rrA)/sin (TrA/M)] exp (2Trirc 0 /m) 

+ 1-A exp (-1.04) exp (-iu(2al  + A)(M - 1)/M) [sin (TrA)/sin (n(2a, +A)/M )1 
2 

exp (-21-rircym). 	(10) 

y(r;a 1 ) is therefore a time-varying signal consisting of the sum of two complex 

exponentials with different complex amplitudes. The quantity 6 0  (= mA) is de-
fined and used in the exponentials in order to express them in the standard 
index notation. The time index r and the frequency index (3 are related to the 
true time and the incremental frequency f' by the equations: r = Rt, cS = mf'/R, 
where R is the sampling rate for the input to the m-point transformation, i.e., 
the reciprocal of the block time for the M-point transformation. 

The m-point transform of y(r;a 1 ) is the zoom transform of the signal: 

2 ( ) = A  exp 0_00 exp(iu6(M - 1)/Mm) exp(iu(S 0  - (5 )(Mm  - 1)/Mm) 

[sin (1TS 0 /m)/sin (TRS 0 /Mm)]. 

[sin (71- ( 	- cS))/sin (u(S o  - S)/m)] + A  exp (-ia) exp (incS(M - 1)/Mm). 

exp (-iu(2ma 1  + S o  + S )(Mm  - 1)/Mm) [sin (mym)/sin (u(2ma 1  +  

[sin (u(S 0  + (S)) /sin ['IT ( 	+ S)/m)].   (11) 

Consider, for comparison, the true value of the discrete transform, which is 
obtained by means of a single Mm-point transformation. This is given by an 
equation similar to (9), written in terms of the appropriate block size and 
frequency index. The frequency index of the signal in this case is y o  Mmf o /S. 

The true transform of the signal is: 

T(y) = 1  A exp 	exp(iu(Y 0 	Y) (Mm-1)/Mm) [sin (u(y o  - y))/sin ( u(y 0  - y)/mm)] 

+ 4 A  exp (-la) exp [-iu(y o  + y)(Mm-1)/Mm) [sin (u(y o  + y))/sin(u(y o  + Y)/Mm)]. 

• 
2 

	 (12) 

The comparison of equations (11) and (12) will be facilitated if both are 
expressed in terms of the same frequency indices. The cell sizes in the zoom 
and the Mm-point transforms are the same--i.e., unit increments in y and (3 
represent the same frequency increment M(=S/Mm)--while the cell size in the 
M-point transform is m times as great. The centre frequency of the zoom cell 
â = 0 is Sa /M The cell of index S in (11) therefore corresponds to the cell 
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of index y in (12) when (S and y satisfy the conditions y = ma l  + 6, and 
161 < m/2. In terms of the index 6, equation (12) takes the form: 

T(6) = -î A exp (la) exp (iu(6 0  - 6)(Mm - 1)/Mm) [sin «6 0  - 6))/sin (u(6 0  - 6)/Mm)] 

+ 7  A exp (-i(1) exp 	 + 6 0  + 6) (Mm - 1)/Mm ) [ sin Tr(cS o 	(S)/ 

sin(TI- (2m0- 1  + 6 0  -I-  6)/Mm)]. 

(12a) 

4. PROPERTIES OF THE ZOOM TRANSFORM 

Each of the transforms Z and T is the sum of two . terms, and in each the 
first term is the direct contribution of the positive signal frequency; the 
second term represents the influence of the negative frequency component. For 
all but the lowest frequencies (i.e., unless G 1  is very small) the magnitude 

of the second term would therefore be expected to be much less than that of 
the first, and the equations confirm this expectation. If we ignore, for the 
present, the case of signals of very low frequency we may therefore confine our 
attention to the first term in equations (11) and (12a). 

Comparing the two equations, we observe that the zoom procedure introduces 
a phase error, represented by the factor exp 	- 1)/Mm). This is of no 
cOnsequence in applications where the purpose of the analysis is to find the 
power spectrum, or where only the relative phase of two signals of the same 
frequency is to be determined. In other cases this error can be eliminated 
completely by an obvious procedure. 

The zoom procedure also leads to amplitude errors. The equations agree 
only when 6 0  = 0; that is, when the signal frequency coincides with the centre 

frequency of a cell of the M-point transform (which implies that it also coin-
cides with the centre frequency of a cell of the zoom and Mm-point transforms). 
This result was predicted in Section 2. When 6 0  0, the zoom method gives 

amplitudes that are low, by an amount that increases with 16 0 1. The reduction 
is described by the first .square-bracketted factor in equation (11), which shows 
that, in the worst case, the amplitude is reduced to about two-thirds of the 
correct value, and the magnitude of the power spectrum to about 40%. It is 
possible to cancel this error, at least approximately. The indicated procedure 
is to multiply the contents of the zoom cells by the factors M [sin (u6/Mm)/ 
sin (11- 6/m)] for non-zero values of 6. These correction factors could be pre-
computed and stored. 

When 0 0  is not an integer, the second square-bracketted factor in equa-
tion (11) also leads to errors in amplitude, and these errors cannot be cancel-
led. There is a similar factor in equation (12a), but the two factors are not 
identical. The effect is to spread the spectrum: a single sine wave contributes 
to the output not only in the cell appropriate to the frequency of the wave, 
but in every other cell as well. This spreading is particularly undesirable 
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in the zoom transform, for two reasons. First, the amplitude in a given cell 
diminishes with the number of cells between that cell and the cell in which 
the signal frequency lies, and since the total number of zoom cells is likely, 
in practice, to be rather small, the amplitudes in all the zoom cells may be 
appreciable. In the second place, the discrete transform is cyclic, as is 
apparent from its definition, and therefore a signal whose frequency falls 
close to either boundary of a major cell (i.e., a cell of the M-point trans-
formation) may indicate significant amplitudes at frequencies near that of the 
other boundary. For most applications, however, exact agreement with the 
equivalent single transform is not required, and these difficulties can be 
largely overcome by avoiding very small values of m, and using a tapered data 
window in the second (zoom) transformation to reduce the spreading of the spec-
trum. It should be remembered that tapering introduces severe phase distortion, 
so that its use is not appropriate for absolute measurements of phase. 

A further property of the zoom transform can be deduced from equation (10): 
aliassing exists between certain frequencies. Suppose S o  = m/2; the phase of the 

signal exp (2uirS 0 /m) then advances by u between adjacent M-point blocks, a con-

dition indistinguishable from the case S o  = -m/2, when the phase is retarded by 

u between blocks. The impossibility of distinguishing these frequencies must 
be reflected in the transform, and so it is: the cells m/2 and -m/2 are, in fact, 
the same cell (see Fig. 1, and recall the cyclic nature of the discrete trans-
form). Thus signals of frequencies corresponding to S o  = ± m/2 both fall in the 

same cell of the zoom transform. Aliassing is not confined to signals of these 
exact frequencies--any value of S o  in the range m/2 -  1/2<  1601 < m 2 leads to 

a transform having its maximum in cell m/2, and so causes ambiguity. However, 
this ambiguity is easily resolved. If 6 0  is close to + m/2 the amplitude of the 

M-point transform will be large in cells al  and al  + 1, while if S o  is in the 

neighbourhood of - m/2 the large values will occur in cells 0' 1  - 1 and G.  The 

only case likely to be troublesome is when signals of both frequencies are 
present. If this situation is suspected the best procedure is to increase the 
value of m to obtain still finer resolution. 

We now return to consider the second term in equations (11) and (12a), 
which we have so far ignored. We observe that while the second term of (12a) is 
zero for every integral value of S o , the corresponding term of (11) is zero only 

if S o  = 0. The two expressions, therefore, are not equivalent, as is otherwise 

obvious. To simplify the discussion we define three ranges of frequency. 

First, let us consider the middle and upper frequencies (the imprecision 
of this definition will be removed shortly). In equation (11), the ratio of 
the first square-bracketted factor of the first term to the corresponding fac-
tor of the second term is of the order of M, for mid-range values of Y.  If M 

is 1000, say, the component of the power spectrum arising from the first term 
is about six orders of magnitude greater than that from the second. This, of 
course, was the justification for neglecting the second term in the preceding 
discussion. 
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Second, consider the range of frequencies covered by the 'zero' frequency 
cell a 1  = O. If the zoom transform for this cell is modified by the phase and 

amplitude correction factors discussed above (the factors are the same for both 
terms)' the result is a good approximation to the true transform: the phase error 
is nil and the amplitude error is small. The second term is as important as the 
first, but it is not an error term in this case. 

Finally, consider the low frequencies, where G 1  is small but not zero. 

For frequencies in this range, the magnitude of the second term in (11) may be 
of the same order as that of the first term. Moreover, the energy represented 
by the second term is lariely concentrated in a single cell, cS = - 	(where 

is the integer closest to (S o ), while the first term has its maximum in the 1 
cell as it should. This means that the zoom spectrum indicates false signal (S 1' 
components at the low frequency end. However, this conclusion is not quite so 
disastrous as it  ma  y appear. The reason becomes clear when we re-examine the 
amplitudes of the two terms. The worst case is when 0- 1  is small and S i  large and 

negative. When G I  = 1, i.e., when we are examining the first cell of the M-

point.transform, the amplitude of the false component cannot exceed 1/3 of the 
amplitude of the true component. When G 1  = 3, the maximum value of the ratio 

is 1/11. The squares of these ratios apply to the power spectrum, so that at 
frequencies as low as those of the third cell of the M-point transform, the 
energy associated with the false component is less than 1 per cent of the energy 
that appears at,the correct frequency. At higher frequencies the energy ratio 
decreases as 1/f 2 . This consideration enables us to define the low-frequency 
and high-frequency ranges more precisely: the former is the range in which the 
second term of equation (11) cannot be ignored, and the latter is the remainder 
of the range covered by the transform. What can or cannot be ignored is, of 
course, decided by the accuracy that is required (and significant) in the par- • 
ticular application. 

. .Since the false components are contributed by the second term in.  equation 
(11), they have their origin  in the negative-frequencY part of the spéctrum of 
the bandpass signal. The basic (M-point) FFT analyser represents a comb of 
band-pass filters with rather poor roll-off characteristics, and if the roll-
off could be'improved the mutual influence of each half of the spectrum on the 
other would be reduced. This is easily done: all that is necessary is to taper 
the data window of the M-point transformation. The effect of tapering on the 
phase should be remembered. Of course, if the low-frequency range is of primary 
concern,, a preferable procedure is to decimate the data (with appropriate low-
pass filtering) and perform the M-Point transformation on the resulting sequence 
of samples, without a subsequent zoom transformation. 

It is worth pointing out that the zoom technique requires the m blocks of 
M signal samples to be contiguous in time: no samples may be dropped between 
blocks. The effect of dropping samples is to change the apparent value of S o . 

If n samples are lost between successive blocks the apparent value of S o 

 becomes-1So 	n (111(S 0 /M)1. The error in S o  represents an error in the incremen- 

tal frequency, and this, of course, defeats the purpose of the zoom procedure. 
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5. COMPUTER TESTS OF THE ZOOM TECHNIQUE 

A series of computer experiments was carried out to test the predictions 
of the analysis of the previous sections. The computer used was the XDS Sigma-7. 
The FFT routine FASTFORM was used to obtain the transforms, and the computation 
was carried out in double-precision floating-point arithmetic. The experiments 
are described below. 

5.1 FALSE SPECTRAL LINES 

The theoretical prediction that the zoom transform indicates false signal 
components had not been anticipated. A computer test of this prediction  there-
f ore  provides a useful check on the validity of the analysis. The block sizes 
chosen were M = 256, m = 16. If the sampling rate S is taken to be 256 samples/ 
sec, the resolution of the M-point transform is'l Hz, and that of the m-point 
transform is 1/16 Hz. The signal frequency selected was 9/16 Hz. The choice 
of a non-integral value ensures that the false component is not zero; the value 
chosen is the centre frequency of one of the cells of the 4096-point transfor-
mation to which the zoom analysis is approximately equivalent. The 4096-point 
transform may be computed fromr equation (12a), and the square modulus of the 
result gives the power spectrum. Alternatively, the power spectrum may be found 
by use of the discrete analog of Parseval's Theorem, without the use of equation 
(12a). The theoretically correct transform gives the following power spectrum 

(to three significant figures):. 

IX(a)I 2  = 4.19 x 10 6  , 	a  = 9 (f = 9/16 Hz) 

otherwise   (13) 

Since the FFT routine FASTFORM has been thoroughly tested, and found to give 
results in accordance with the theory, a computer verification of equation (13) 
was not carried out. The computer values for a 9 would not be exactly zero, 
of course, because of round-off error, but they should be many orders of magni-

tude smaller than the main peak. 

The theoretical value of the power spectrum as given by the zoom method 
applied to the 1 Hz cell of the'256-point tran'sform was computed from equation 
(11). The parameter values are A = 1,  c.  = 0, a l  - 1, S o  = -7. The true signal 

component should therefore appear in the cell 6 = -7, corresponding to the fre-
quency 1-7/16 Hz (see Fig. 1). The output in all other cells should be zero. 
The power spectrum, calculated to slide-rule accuracy from the theoretical zoom 

transform, is: 

IX( 6)1 2  = 	2.13 x 10 6  , 	(5 = - 7 

1 

1.67 x 10 5  , 	(3 = 7 (f = 1 —16
7 Hz) 

0 	 , 	otherwise 

Equations (13) and (14) illustrate the amplitude error of the zoom transform 
as well as the presence of the false component. 

0 otherwise 	(14) 
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The results of the zoom transformation given by the Sigma-7 computer are: 

ix (01 2  = 9 2.14 x 10 6  , 6 = -7 (f = U" Hz) 

7 1.67 x 10 5  , 	= 7 (f = 1 -fè,-  Hz) 

- 10_ 16 	, otherwise   (15) 

The computer therefore yields values in exact agreement with the prédictions of 
equation (11). This quantitative agreetent confirms the validity of the analysis 
of Section 3, and demonstrates the existence of the false component. It should 
be noted that the signal frequency in this example was chosen to give a false 
component of almost the maximum possible magnitude. 

	one cell of 256-point transform: Af = 1 Hz 
1 	  1 	I AI 	 r 

-8 -7 -6 -5 -4 -3 -2 -1 0 	1 	2 	3 	4 	5 	6 	7 	8 

1.0 Hz 	 1.5 Hz 
1 tone cell of 16-point zoom transform: pf = 	H 16 -z  

0.5 Hz  1. 

Fig. 1. Location of zoom cells within a major cell. 

5.2 ALIASSING 

It was noted in Section 4 that the two half-cells labelled -8 and 8 in 
Figure 1 actually appear as the same cell in the zoom transform, so that signals 
of frequencies falling in these half-cells cannot be distinguished. This was 
demonstrated by applying the zoom technique to the 64 Hz cell, with input sig-
,nals of frequency 63.52 Hz and 64.48 Hz. Threp tests were made: one with each 
signal separately, and one with both signals together. In all cases the maxi-
mum output appearel in cell 8, as expected. 

5.3 AMPLITUDE AND PHASE CORRECTION 

It has been observed that the zoom transform gives incorrect values of 
the amplitude and phase except in special cases. Section 4 indicated the desir-
ability of using a tapered data window and of avoiding very small values of m 
(the number of points in the zoom transform), and factors were also introduced 
to cancel the phase error and part of the amplitude error. Computer experiments 
were carried out to demonstrate the effect of the correction factors and of 
tapering, using a small value of m. 

• 	In the first test a signal of frequency 60.375 Hz was used, with M = 256 
and m = 8; the sampling rate, as before, was assumed to be 256 samples/second. 
This signal frequency  15 the centre frequency of one of the zoom cells, so that 
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the second square-bracketted factor in equation (11) should contribute no error, 
and the amplitude correction factor, which in general is only approximate, should 
be exact. The transform was computed by the zoom method, with and without the 
use of the correction factors, and also by the exact 2048-point single-transform 
method. The results are presented in Table 1. As expected, the corrected zoom 
transform is exact, except for the presence of the small false component in 
cell -3. 

For the second test the signal frequency was changed to 59.72 Hz, a value 
that is eccentrically located in its cell; the cell boundaries are 59.6875 and 
59.8125 Hz. The small value of m and the absence of tapering aggravate the 
spectral spreading effects discussed in Section 4. The test was otherwise the 
same as the first one, and the results are given in Table 2. The corrected 
zoom transform gives the phase very accurately, but the amplitude is less satis-
factory. The main peak occurs in the correct cell, with an amplitude only 2-3% 
low, but the spreading is worse than in the true transform. The reason, clearly, 
is that the signal frequency is less than two cell-widths removed from the 59.5 
Hz lower boundary of the 60 Hz major cell, so that the spreading continues cyc-
lically into the neighbourhood of the 60.5 Hz upper boundary. The spreading com-
pletely conceals the presence of the small false component, which should appear 
in cell 2. While the amplitudes given by the zoom transform are not in very close 
agreement with the exact values, the discrepancies should not be over-emphasized: 
in the power spectrum the amplitudes are squared, and the main peak in cell -2 
dominates the spectrum, as it should. 

TABLE 1 - Transform Values for Signal Frequency 60.375 Hz 

Cell 	 Zoom Method 
Exact Method 

	

Centre 	Cell 	 Uncorrected 	 Correc ed 
Frequency 	Number 	  

(Hz) 	 Amplitude 	Phase 	Amplitude 	Phase 	Amplitude 	Phase 

	

59.500 	-4 	 l0 	10-6 	4.703 	10-6 	10-2 

	

59.625 	-3* 	10-6 	10 	0.299 	4.73 	1.473 

	

59.750 	-2 	 10 	10-6 	5.504 	10-6 	10-5  

	

59.875 	-1 	10-6 	10-4 	10-6 	5.892 	10-6 	10-4  

	

60.000 	0 	10-6 	10-5 	10-6 	10-5 	10-6 	10-5  

	

60.125 	1 	10-6 	10-5 	10-6 	0.391 	10-6 	10-4  

	

60.250 	2 	10-6 	10-5 	10-6 	0.783 	10-6 	10-4  

	

60.375 	3 	1024.0 	10-6 	803.04 	1.174 	1024.0 	10-6  

	

60.500 	4 	10-6 	3.142 	10-6 	4.703 	10-6 	3.139 

* Cell occupied hy false signal (zoom method only). 

The second test points to the need for controlling the spreading of the 
spectrum. A tapered data window is indicated, and for the third test a trian-
gular taper was applied, with other conditions the same as in the second test. 
The results are exhibited in Table 3. As regards the amplitude, the tapering 
is very effective; significant amplitudes occur only in the correct cell and 
its nearest neighbour on either side. The phase, however, is heavily distorted. 
Both the amplitude and phase effects of the triangular data window can be pre-
dicted from the corresponding spectral window, which is given in reference 6 

for a data window centred on zero. (The lag and (power) spectral windows of the 

reference are identical to our data window and (complex) spectral window, apart 
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from the translation of the data window, which introduces a phase modification 
of the spectral window, and must be taken into account.) The phase distortion 
due to the use of a tapered data window cannot be corrected unless the exact 
frequency of the signal is known. 

TABLE 2 - Transform Values for Signal Frequency 59.72 Hz 

Zoom Method 
Cell 

Exact Method 
Centre 	Cell 

Uncorrected 	 Correc ed Frequency 	Number 	  
(Hz) 

Amplitude 	Phase 	Amplitude 	Phase 	Amplitude 	Phase 

59.500 	-4 	126.44 	2.385 	120.00 	0.821 	188.49 	2.385 
59.625 	-3 	293.25 	2.387 	260.73 	1.213 	332.47 	2.387 
59.750 	-2 	930.04 	5.530 	815.83 	4.747 	906.15 	5.530 
•59.875 	-1 	180.28 	5.531 	164.30 	5.140 	168.60 	5.531 
60.000 	0 	99.95 	5.532 	99.95 	5.532 	99.95 	5.532 
60.125 	1 	69.21 	5.533 	80.86 	5.924 	82.98 	5.533 
60.250 	2* 	52.96 	5.535 	79.87 	0.029 	88.72 	5.530 

•60.375 	3 	42.92 	5.536 	85.96 	0.429 	109.61 	5.539 
60.500 	4 	36.10 	5.537 	120.00 	0.821 	188.49 	5.539 

* Cell occupied by false signal (zoom method only). 

TABLE 3 - Transform Values for Signal Frequency 59.72 Hz 

Zoom Method with Taper 
Cell 	 Exact Method 

Centre 	Cell 	 Uncorrected 	 Corrected 
Frequency 	Number 	  

(Hz) 	 Amplitude 	Phase 	Amplitude 	Phase 	Amplitude 	Phase 

59.500 	-4 	126.44 	2.385 	14.36 	3.962 	22.56 	5.526 
59.625 	-3 	293.25 	2.387 	535.64 	1.213 	683.04 	2.387 
59.750 	-2 	930.04 	5.530 	854.00 	4.747 	948.54 	5.530 
59.875 	-1 	180.28 	5.531 	195.66 	1.998 	200.78 	2.390 
60.000 	0 	99.95 	5.532 	8.18 	5.532 	8.18 	5.532 
60.125 	1 	69.21 	5.533 	16.26 	2.777 	16.70 	2.386 
60.250 	2 	52.96 	5.535 	2.24 	6.096 	2.48 	5.314 
60.375 	3 	42.92 	5.536 	27.22 	0.439 	34.70 	5.549 
60.500 	4 	36.10 	5.537 	14.36 	3.962 	22.56 	2.398 

5.4 RESOLUTION OF DOUBLETS 

One of the principal uses anticipated for the zoom technique is to exa-
mine the fine structure of the power spectrum. A computer experiment  'was  per-
formed to demonstrate this use. A signal consisting of two sine waves was 
generated by the computer and its Fourier transform computed by the zoom method. 
The frequencies were chosen such that the waves should not be resolved by the 
first (256-point) transformation, but should be resolved by the zoom (16-point) 
transformation. The sampling rate was taken to be 256 samples/sec, as before, 
and on this basis the signal frequencies were 99.8 and 100.05 Hz. Both 
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frequencies lie in the 100 Hz cell of the 256-point transform, the boundaries 
of which are 99.5 and 100.5 Hz. In the zoom transform, however, the two fre-
quencies lie in different cells; the 99.8 Hz wave occupies cell number -3, 
which is bounded by the frequencies 99.78125 and 99.84375 Hz, and the 100.05 
Hz wave occupies cell number 1, which covers the range 100.03125-100.09375 Hz. 
The predicted outcome of the experiment, therefore, was that the power spectrum 
computed from the first transform should exhibit a strong signal in only one 
cell, the 100 Hz cell, but the zoom spectrum should show that the signal actually 
consists of two components of estimated frequencies 99.8125 and 100.0625 Hz (the 
centre frequencies of cells -3 and 1). The results of the computer experiment 
confirmed the prediction exactly: the doublet was not resolved by the first 
transformation, but was correctly analysed by the zoom transformation. 

6. SUMMARY 

The results of the analysis and the computer tests presented in this 
report show that the zoom procedure gives an approximation to the true Fourier 
transform that is good enough to permit the use of the unmodified zoom transform 
in many applications. By the introduction of correction factors that are derived 
in this report, the phase error can be eliminated and the estimate of amplitude 
improved. If the phase is not of interest, or if only the relative phase of two 
signals of the same frequency is required, it is advisable to use a tapered data 
window, together with the amplitude correction factor. 

The zoom transform indicates the presence of false signal components, which 
are large at very low frequencies, although of negligible magnitude throughout 
most of the frequency range of the transform. A method for reducing the magni-
tude of the false components has been indicated. 

An inconvenience of the zoom technique is the aliassing of signal com-
ponents whose frequencies lie close to either boundary of the cell selected for 
high-resolution analysis. The consequent ambiguity in the frequency can be 
removed, in many cases, by a very simple check, and in other cases by the use 
of higher resolution. 

The outstanding merit of the zoom technique is that it provides very high 
resolution at a cost in data storage capacity that is only a fraction of the 
capacity required for the equivalent single transform. In applications where 
only a few cells of the initial transform contain information of interest, the 
zoom method also yields large savings in the amount of computation required. 
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