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A REVIEW OF MAXIMUM-ENTROPY 

SPECTRAL ANALYSIS 

by 

R.W. Herring 

ABSTRACT 

The maximum-entropy method (MEM) of spectral 
analysis is a technique for estimating the power 
spectra of time-series data, The purpose of this 
note is to survey the literature of the MEM and 
to provide some insight into its derivation and 
usage. Fortran subroutines for computing the 
MEM power spectra of complex-valued data are 
included. 

I. INTRODUCTION 

The maximum-entropy method  (MEN) of spectral analysis is a technique 
for estimating the power spectra of time-series data. When the "true" 
spectrum of the process being investigated consists of discrete lines 
separated by at least the reciprocal of the length of the data record,* the 
MEN  yields a spectral estimate consisting of sharp, narrow spikes. This is 
in marked contrast to the performance of the classical Blackman and Tukey 
(1959) and periodogram techniques. These latter techniques estimate spectral 
lines as broad, smooth peaks which tend to merge if the lines are closely 
spaced in frequency. The discontinuous nature of the spectrum is thus masked. 

* The classical Rayleigh criterion. 
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The purpose of this report is to survey the literature of the MEN  
(Section 2) and to provide some insight into its derivation and usage 
(Sections 3 and 4). Section 3 includes a derivation of an MEN  algorithm 
suitable for analyzing complex-valued data records. The algorithm is not 
new (cf. Smylie et al., 1973), but the present derivation follows the more 
lucid approach taken by Andersen (1974) for real-valued data. Section 3 also 
includes a brief description of the criterion derived by Akaike (1969a,b; 
1970) for selecting the most appropriate of the many possible choices of the 
MEN  spectrum which can be derived from a particular set of data. Section 4 
refers to listings of Fortran subroutines for computing the MEM spectra of 
complex-valued data. These listings are included as appendices. 

MEM spectral analysis of complex-valued data is applicable to data 
derived from such systems as sampled-aperture antenna arrays, where the 
calculated spectra may be interpreted in terms of signal strength as a function 
of angle-of-arrival. The method should also be useful for the frequency 
analysis of tone-encoded data. In such applications the use of complex-
valued data allows the unambiguous distinction between positive and negative 
frequencies, which often is necessary. 

2. REVIEW 

The two classical methods of spectral analysis are the periodogram 
technique and the Blackman and Tukey (1959) power spectrum technique. In 
using the periodogram technique, the squared magnitude of the discrete 
Fourier transform (DFT) of the data is computed. Nowadays the DFT is usually 
computed by means of the fast Fourier transform (FFT) algorithm. The ampli-
tude (unsquared) spectrum is often smoothed (usually by the well-known 
technique of "windowing" the data before transformation) in order to reduce 
the excessive spreading or "leakage" of spectral lines caused by the finite 
length of the data record. Often the computed power (squared-magnitude) 
spectrum is also smoothed to improve its statistical reliability. Both types 
of smoothing reduce spectral resolution. 

The Blackman and Tukey technique consists of two stages. In the first 
stage, the autocorrelation function of the data is estimated by extending a 
finite-length data record with zeros and then computing the autocorrelation 
function of this extended data record. Usually lag distances of not more 
than 10% of the original record length are considered. In the second stage 
of the procedure the DFT of the estimated autocorrelation function is 
computed to obtain a smoothed power-spectrum estimate. This technique was 
developed before the FFT algorithm was known, when the direct computation of 
DFTs was very laborious. It was intended for use in analyzing noise-like 
data with smoothly varying spectra (i.e., having no spectral lines), and it 
avoided the costly and frustrating necessity of first computing a spectrum 
in far greater detail than was required, only to subsequently smooth it in 
order to obtain the desired statistical stability. 

The maximum-entropy method of spectral analysis was first proposed by 
Burg (1967, 1968) as a technique for improving spectral resolution in the 
sense of reducing the spectral smearing caused by the finite length of the 
data record. In the classical spectral analysis techniques described above, 
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the estimated autocorrelation function is tacitly extended either by zeros or 
by a cyclic repetition of itself. Burg proposed that a more appropriate 
extension of the autocorrelation function could be based on that extrapolation 
which gives rise to the statistically most random (i.e., maximum-entropy) 
power spectrum estimate consistent with the observed data. Burg (1968) showed 
how to calculate such a maximum-entropy spectrum from a real sampled data 
record. This technique and its extension to include complex-valued data is 
presented in Section 3 which follows. 

Van de Bos (1971) demonstrated that the Burg maximum-entropy equations 
were mathematically the same as those encountered in the least-squares fitting 
of an all-pole spectral model to time-series data. He also pointed out that 
such a model, in which the data are assumed to have been generated by a set 
of damped resonators, is invalid for many kinds of data. This restriction 
must be taken into account whenever the use of the maximum-entropy method 
is proposed. In many practical cases*, however, the data can be considered 
as the sum of one or more truncated series of complex exponentials plus noise, 
and the all-pole model is appropriate. 

Lacoss (1971) did a comprehensive analysis of both the MEM and the 
analytically somewhat similar maximum-likelihood method (MLM) of spectral 
analysis. The major result of this work was to obtain the shape and magnitude 
of the expected spectral-response function for the case where a mall number 
of exactly known samples of the autocorrelation functions of real sinusoidal 
signals plus uncorrelated additive noise have been given. The crucial 
problem of estimating the autocorrelation function was not considered. It 
was also shown that if the autocorrelation function were known exactly, 
sinusoids with frequencies separated by amounts greater than the reciprocal 
of the length of sampled autocorrelation function would be sharply resolved. 
This is in marked contrast to the blurred, broad spectral peaks which occur 
in this case for the classical Blackman-Tukey and periodogram methods. It is 
recommended that the prospective user of the MEM examine the results of 
Lacoss' work closely, particularly in regard to the shape and magnitude of 
the expected spectral peaks. 

Ulrych (1972) and Ulrych et al. (1973) devoted considerable effort 
to the problem of using the analysis techniques outlined by Burg (1968) to 
analyze short, real-data records containing one or more sinusoidal components. 
Their results included a comparison of the Fourier periodogram and maximum 
entropy spectra of the same records, and showed a dramatic sharpening of the 
spectral peaks estimated by the maximum entropy method relative to those 
estimated by the Fourier method. 

Smylie et al. (1973), in a very complete and rigorous exposition, 
generalized Burg's analysis technique to include the case of complex sampled 
data. The extended technique was then used to analyze irregularities in the 
earth's rotation. An incomplete extension to complex data, based on the 
elegant recursive formulas derived by Andersen (1974), was published by 
Haykin and Kesler (1976), who seemed unaware of the earlier and more compre-
hensive work of Smylie et al.. 

* e.g., short records of tone-encoded data; plane-wave data received by a linear sampled-aperture array of 
sensors. 
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The most comprehensive review to date of the subject of MEN and MLM 
spectral-analysis techniques is that of Ulrych and Bishop (1975), which showed 
the applicability of the criterion derived by Akaike (1971) for determining 
from the data the optimal length of the spectral estimator (see Section 3). 

Another excellent review of the subject was recently published by 
Kaveh and Cooper (1976). The relation between the MEM and the very similar 
autoregressive method is clearly brought out (cf. van den Bos, 1971) and a 
comparison is made between these methods and the classical Blackman and Tukey 
(1959) approach. 

The problem of estimating confidence intervals for MEM spectral 
estimates has been considered by Baggeroer (1976), who included the case of 
estimating the confidence limits for spectral estimates based on complex data. 
This highly mathematical paper included a comparison of the results of 
Akaike (1969b). 

Finally, the problem of estimating maximum-entropy spectra when a 
set of measured autocorrelation functions of unequal statistical weight are 
available has been investigated by Newman (1977). This extension to the MEN  
is particularly useful when estimated autocorrelation functions derived from 
long records of data have been produced by special-purpose digital processors. 
In this case a more efficient calculation of the maximum-entropy spectrum  cari 

 be made then by using the method of Burg. 

3. THE BURG MAXIMUM -ENTROPY METHOD* 

The Burg maximum-entropy method of spectral analysis is particularly 
suited to the analysis of short data records when estimates of the auto-
correlation function have not been given. For purposes of the derivation, 
however, it is easier at first to suppose that a series of M+1 equi-spaced 
complex autocorrelation function values (1)(k), k=0,1,... ,M are known. Here 
(1)(k) is the autocorrelation with lag kAt where At is the sampling interval. 
From the usual definition of the autocorrelation function, cp(-k) = 
where the asterisk denotes complex conjugation. 

The power spectrum P(f) estimated by the maximum-entropy method is 
given by 

The exposition which follows is an extension of the work of Andersen (1974), except that here the data 

are assumed to be complex rather than real. The present results are identical to those obtained by the 
more rigorous derivation by Smylie et al. (1973). 
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where the frequency f is limited to the Nyquist interval, -1/(2At) < f < 1/(2At), 
and the parameter P and the coefficients

mk  are 
determined by solving the 

matrix equation 

4( 0) 	(1)*(1) 

(1)(1) 	(P(0) 

• 	 cp*(1) 

(P(M)  	(PM (i)( 0 ) 

Equations (2) show that Pm  is the output power of the (M+1)-length prediction-
error filter (1, -ami,...,-amm). An (M+1)-length prediction-error filter 
gives as its output the difference between the kth datum and a linear estimate 
of its value based on the preceeding M data. 

The concept that P(f) as given by (1) is a spectral estimator can be 
understood as follows. Equation (2) shows that the output of the (14+1)- 
length prediction-error filter is a single pulse, which has a white power 
spectrum PmAt. This prediction-error filter is thus a filter which whitens 
the power spectrum of the input process. The reciprocal of the power 
spectrum of the whitening filter therefore gives an estimate of the power 
spectrum of the process. 

In general, after the solution of (2) for order M has been obtained, 
it is desired to extrapolate to order M+1. The solution for order M+1 in-
volves the determination of a set of M+3 unknowns (amn 1,...,am+1,m+1; 
(1)(M+1);Pm4.1) from the M+2 eqns. (2). Thus an additionai criterion is required 
in order to find a unique solution. Burg (1968) suggested that this criterion 
be based on that choice of amn ,m+1  which minimizes the output power Pmn, 
where Pmn  is the average of the output power of the prediction error filter 
operating on the data in both the forward and reverse directions. 

For the trivial case M=0, Po  is estimated by 

P
o 

= —1 E 	x
t

1 2  
t=1 

where P is an estimate of (KO) and N is the number of complex data samples 
xt . Ito is again assumed that the sampling interval is At. 

For the case M=1, the two-point prediction-error filter (1, -all ) is 
found by minimizing the average output power Hi  with respect to a

11
, wfiere 

n1 is given by 
N-1 

R 	= 	E 	lx 	- a 	x 1 2  + Ix -a*1 xt+1  1 2 1 	(4) 1 	2 N-1 	t+1 	11 t 	t 	1  t=1 

(3) 
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The first  terni in the summation is the forward-direction output power of the 
filter and the second is the reverse-direction output power. The use of the 
complex conjugate of the filter coefficients is a consequence of the require-
ment that the power spectra of the forward and reverse direction filters be 
identical. If the data were real, then x* = xt' 

and as a consequence the a's 
would be real as well (a*

1 
 = a11  ). 1  

Maximizing H1 as a function of a11 yields 

N-1 
2 E x*

t
xt+1 t=1 a11 - 	  

i xt 12 	I xt+1 11 
t=i 

(5) 

This step completes the first part of the inductive proof of 
procedure for obtaining the sets of a's and P's from a given 
data. Substitution of the value for a

11 
from (5) into eqn. 

H1 min = P1, which may then be used to make an estimate of (I) 
In'order to evaluate the a's, however, explicit estimates of 
required. This fact will become evident below. 

a recursive 
set of complex 

(4) yields, 
(1) from eqns. (2). 
the (P's are not 

A useful set of recursion relations between the filter coefficients 
am_l , k and am k and the output powers Pm_l and Pm will now be derived, follow-
ing Burg (196à) :  From eqn. (2) can be written recursive matrix relations to 
link the (M-1)th-order filter to the Mth-order filter, when M+1 values of 
(1)(k) are known: 

■ ■ 

(1)(0)  	4)*(m) 	1 

0 0 	 • 
. 	• 	 . 
• . 	 . 
. 	. 	 . 
' 	• 	 • 	• • • 	 • 
. 	 • 

• • 	• 	 am,m-i • • 	• 	_ 

(1)(14) 	q(o) 	-amm 
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M-1 

1 /%1-1 = (I)(M) 	E,1  aM-1,M-k (/)(k)  k   

Equations (6) and (7) lead immediately to the recursion equations 

aM,k = aM=1,k aMMaM -1,M -k' 1 k <L M-1 	 (9) 

and 

Pm  = (1 - lamm 1 2 )P 
M-1 

Additional useful definitions are 

-1 	 (11) 

and 

(8) 

(10) 

aNO  

aMk = 0 	(k > M) 	 (12) 

From eqn. (9), the average output power 11Mof the M
th order filter is then 

E E 
 k=0 
a
M-1,k xt+M-k a 

k=0 
lMM 	m-1,M-k xt+M-k 

2) 



N-M 
1  

" 2(N -M) E  (l bMt eMM?Mt 12 	I bMt aMMbMtl 
t=1 

(13) 

N-M N-M 
a 	2 E 	)( E 

t=1 	 t=1 
11);t 1) bm t  I 2  + (16) 

N-M ( 
E 	(1t 	1 2 + 	> 0 	(17) 

t =1 

1 
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Or 

where 

bMt = E aA 	x 	= E aA m-1 ,k t+k 	m-1,M-k 
x
t+M-k 

k=0 	 k=0 

= E a- m-1,M-k 
x
t+k h' ' E aM-1,k xt+M-k 

k Mt k=0 	 =0 

(14a) 

(14b) 

t = 

Since b
Mt 

and b' are independent of amm , the condition 
Mt 

a 
amm ilm  

gives 

(15) 

Furthermore 

so that the extremum of 	for amm  given by eqns. (14a) and (14b) is a 
minimum. 

Useful recursion formulas for the arrays b
Mt 

and b'
t  are.derived by M means of (9) and (14a) and (14b): 

bMt " bM-1,t ae -1,M -1 bM-1,t 	
(18a) 

= 
m 1,t+1 aM -1,M -1 bM-1,t+1 	 (18b) 

This completes the second part of the inductive proof. It has now been shown 
that the filter for any order M can be constructed from the filter of order 
M-1. 
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It can be seen that the arrays bmt  and belt are constructed from the 
arrays b

14-1,t 
and b' 

1 
 by a simple linear operation. The starting values 

M-,t 
are 

b
Ot 

= b' 	= x
t 

but in practice the iterative procedure is stated at M=1 and the following 
values are used instead: 

b
lt 

= x
t 	

(20a) 

b'lt = xt+1 	
(20b) 

t = 1,2,...,N-1. 

From eqn. (16) it is apparent that lamm l < 1; therefore, from eqn. (9), 
it follows that 0 < P < P 

— M— M-1 .  

The inverse of the autocorrelation matrix (1) can be expressed in terms 
of the filter coefficients and the output powers (Burg, 1968). If = 
then 

11'1.j == 	 14.-j,e4 i i 

= 	E e14-k,i-k • etle-k,j-k/PM-k k=0 

i,j = 0,1,...,M, 

where n is the smaller of the two indices i and j. This inverse may be 
required in certain applications. 

A criterion for the choice of the appropriate filter length M(<N) has 
been described by Akaike (1969a,  b ; 	and summarized by Ulrych and Bishop 
(1975). The criterion is known as4eAkaike final prediction error (FPE) 
and is defined as the mean-square prediction error. Numerically, the FPE of 
an Mth order filter is given by 

( 	-. N 	
(14+1) PPE) 

M 	N - (4+1) 'M 

if the sample mean has.been eliminated.from the data, or 

U9) 

(21) 

(22) 
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otherwise*. The appropriate choice of M is then that which yields the minimum 
FPE. There appears to be no easy way of determining this minimum short of 
direct evaluation for each value of M, and care must be taken to avoid local 
minima induced by statistical fluctuations. Most authors suggest that a 
restriction of M < N/2 be observed to prevent the use of excessively long 
filters, which  tend  to artificially split what ought to be single spectral 
peaks (Chen and Stegen, 1974).t 

A final observation (Andersen, 1974) is that eqn. (1) gives a detailed 
picture of the whole power spectrum, but if it is desired only to determine 
the frequency and magnitude of the principal peaks of the spectrum, it may be 
more appropriate to determine the positions of the complex roots of the 
polynomial 

p(z) =  1 -  E an  z 
k=1 

relative to the unit circle, and evaluate (1) only in those regions where 

p(ej2nfAt ) z O. 

4. COMPUTING THE MAXIMUM ENTROPY SPECTRUM 

Appendix A contains the listing of a Fortran subroutine CMESA, which 
computes the residual powers Pl,P2,•••,Pm and the filter coefficients aink , 
k = 1,2,...,M from a given set of complex data. 

Appendix B contains the listing of a Fortran subroutine CMESAP, which 
computes the magnitude of the power spectrum at a particular frequency 
according to (1). 

The roots of the polynomial p(z) of eqn. (24) can be calculated using 
the subroutine CPOLY (Jenkins and Traub, 1972; Withers, 1974). A tested copy 
of this subroutine package is available from the author of this document. 

5. CONCLUSION 

The literature of the maximum-entropy method of spectral analysis has 
been briefly summarized, and the more significant references have been 
singled out as essential reading for the potential user. 

The Burg method (Section 3) appears to offer a way of resolving 
spectral peaks in short data records when such peaks are separated by at 
least the order of the reciprocal of the length of the data record. Limited 
simulation experimentation by the author, using two complex sinusoidal signals 

If the process being investigated has zero mean and can give rise to signals at frequencies near zero, then the 
sample mean should not be eliminated from the data and eqn. (23) is the appropriate formula to use. 

t 	But see also Jones (1976). 
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differing in frequency by about a half a cycle over the record length, has 
indicated that for such data the computed spectra were very sensitive to the 
relative phases of the sinusoids. In particular, good resolution was obtained 
when the sinusoids were in phase quadrature at the mid-point of the record, 
and spurious results were obtained in all other cases. This result apparently 
occurred because the cross-product terms in the short estimates of the auto-
correlation functions did not cancel. 

The development of the algorithm for the processing of the complex-
valued data has been given in detail and a Fortran version of its implementa-
tion has been included. It is hoped that this Technical Note will assist 
those involved in the evaluation of the applicability of MEM spectral analysis 
to their particular sets of data. 
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Subroutine CMESA 



	

1. 	 SUBROUTINE CMESA(X,N,M,A,P,AA,B1,B2) 
,-) 

	

._. 	C 
3. C 	HERRING 21 APRIL, 1976 ,  
4. C 

	

.J. 	C 	SUBROUTINE FOR CALCULATING COMPLEX MAXIMUM ENTROPY 
6. C 	 SPECTRAL ANALYSIS (CMESA) FILTER COEFFICIENTS 
7. C 	 OF ORDER M AND RESIDUAL POWERS P FROM ORDER 1 
8. C 	 TO ORDER M BASED ON THE N COMPLEX DATA X. 
9. C 
10. C 	ARGUMENTS: 
11. C 
12. C 	 INPUT: 
13. C 
14. C 	 X 	ARRAY OF COMPLEX DATA. 
15. C 	 N 	DIMENSION OF ARRAY X. 
16. C 	 M 	ORDER OF SET OF CMESA COEFFICIENTS 
17. C 	 TO BE COMPUTED. 
18. C 
19. C 	 OUTPUT: 
20. C 
21. C 	 A 	COMPLEX ARRAY OF DIMENSION (M) 
,,,, 

	

...._. 	C 	 CONTAINING CMESA FILTER 
23. C 	 COEFFICIENTS. 
24. C 	 P 	REAL ARRAY OF DIMENSION M CONTAINING 
,-,.. 

	

_,J. 	C 	 RESIDUAL POWERS P(1),P(2),...,P(M) 
26. C 
27. C 	 WORKING STORAGE: 
28. C 
29. C 	 AA 	COMPLEX ARRAY OF DIMENSION (M-1) 
30. C 	 OR GREATER. 
31. C 	 B1,B2 COMPLEX ARRAYS OF DIMENSION (N-1) 
32. C 	 OR GREATER. 
33. C 
34. C 	REFERENCE: ADAPTED FROM N. ANDERSEN, GEOPHYSICS: 
35. C 	 VOL.  39,  NO. 1 (FEBRUARY 1974) 
36. C 	 PP. 69-72. 
37. C 



38. COMPLEX X(N),A(M),AA(1),B1(1),B2(1),AMM,NUM 
39. INTEGER T 
40. REAL P(M) 
41. 
42. PLAST = 0. 
43. DO 110 T = 1,N 
44. PLAST = PLAST+REAL(X(T))*REAL(X(T))+AIMAG(X(T))*AIMAG(X(T)) 
45. 110 	CONTINUE 
46. PLAST = PLAST/FLOAT(N) 
47. MM = 1 
48. B1(1) = X(1) 
49. 82(N-1) = X(N) 
50. DO 120 T = 2,N-1 
51. 81(T) = 82(T-1) = X(T) 

120 CONTINUE 
53. GO TO 300 
54. 
55. 200 	MLAST = MM 
56. MM = MM+1 
57. DO 210 T = 1,MLAST 
58. AA(T) = A(T) 
59. 210 	CONTINUE 
60. DO 220 T = 1,N-MM 
61. 81(T) = B1(T)-CONJG(AMM)*B2(T) 
62. 82(T) = 82(T4.1)-AMM*81(T4-1) 
63. 220 CONTINUE 
64. 
65. 300 	NUM = (0.,0.) 
66. DEN = 0. 
67. DO 310 T = 1,N-MM 
68. NUM = NUM+CONJG(B1(T))*B2(T) 
69. DEN = DEN+REAL(81(T))**2+AIMAG(81(T))**2 
70. 1 	 +REAL(82(T))**24-AIMAG(82(T))**2 



71. 310 	CONTINUE 
72. A(MM) = AMM = 2.*NUM/DEN 
73. P(MM) = PLAST*(1.-REAL(AMM)*REAL(AMM)-AIMAG(AMM)*AIMAG(AMM)) 
74. PLAST = P(MM) 
75. 
76. IF (MM  •E0. 1) GO TO 200 
77. 
78. DO 410 T = 1,MLAST 
79. A(T) = AA(T)-AMM*CONJG(AA(MM-T)) 
80. 410 	CONTINUE 
81. 
82. IF (MM  • LT. M) GO TO 200 
83. 
84. RETURN 
85. END 
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APPENDIX 	B 

Subroutine CMESAP 



	

1. 	 SUBROUTINE CMESAP(MrA,PM,DELT,FrPF) 

3. C 	HERRING 22 APRILr 1976. 
4. 
5. C 	SUBROUTINE FOR EVALUATING THE MAGNITUDE PF OF THE 
6. C 	 MAXIMUM ENTROPY SPECTRUM AT ANY FREQUENCY F 
7. C 	 USING A SET OF COMPLEX FILTER COEFFICIENTS A 
8. C 	GENERATED BY THE SUBROUTINE CMESA. 
9. 
10. C 	ARGUMENTS: 
11. 
12. C 	 INPUT: 
13. 
14. C 	 M 	ORDER OF THE SET OF CMESA 
15. C 	 COEFFICIENTS TO BE USED. 
16. C 	 A 	COMPLEX ARRAY OF DIMENSION M CONTAINING 
17. C 	 THE CMESA FILTER COEFFICIENTS. 
18. C 	 PM 	THE REAL RESIDUAL POWER P(M) AS 
19. C 	 COMPUTED BY CMESA. 
20. C 	 DELT THE REAL TEMPORAL OR SPATIAL INCREMENT 
21. C 	 BETWEEN THE COMPLEX DATA SAMPLES 
22. C 	 INPUT TO CMESA. 
23. C 	 F 	THE REAL TEMPORAL OR SPATIAL FREQUENCY 
24. C 	 AT WHICH PF IS TO BE EVALUATED. 

26. C 	 OUTPUT: 
27. 
28. C 	 PF 	THE DESIRED REAL ESTIMATE OF THE 
29. C 	 CMESA SPECTRUM AT THE FREQUENCY F. 
30. 
31. COMPLEX A(M),CSUM 
32. DATA TWOPI/6.283185307179586/ 
33. OMEGA = -TWOPI*F*DELT 
34. CSUM = (0.r0.) 
35. DO 110 N = 1rM 
36. ARG = OMEGA*FLOAT(N) 
37. CSUM = CSUM+A(N)*CMPLX(COS(ARG),SIN(ARG)) 
38. 110 	CONTINUE 
39. PF = PM*DELTM(1. -REAL(CSUM))**24-AIMAG(CSUM)*AIMAG(CSUM)) 

	

AO. 	 RETURN 

	

AI. 	 VA,lb 
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