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ADAPTIVE JAMMER SUPPRESSION BY ORTHONORMALIZATION 

by 

E.K.L. Hung and R.M. Turner 

ABSTRACT 

This jammer suppression algorithm is written specifically for 
array radars in which the number of array elements K is very large 
compared with the number of jammers L the radar is designed to 
suppress. It separates the quiescent weight vector into two 
components. The component orthogonal to a set of M noise 
sample vectors is renormalized to unit length and identified as the 
adapted weight vector. 

This algorithm is effective in the suppression of many types of 
jammers, including repeater and blinker jammers. The number of 
noise samples requirel in the construction of the adapted weight 
vector is usually very small. In the special case of L monotone 
jammers, for example, a choice M=L usually reduces output 
jammer power to a few dB above the white noise background. It is 
permissible to set M<L. In this case, the first M strongest jammers 
are given the most suppression. 

This algorithm requires (4M2 +6M+2)K real add, 
(4M2 +8M+4)K real multiply, (M+1) real square root, and (M+1) 
real divide operations. Almost all of these computer operations are 
in the form of vector operations. 

1. INTRODUCTION 

An adaptive jammer suppression algorithm based on the Gram—Schmidt 
orthonormalization method is described in this Technical Note. The deriva-
tion of this technique is given in Section 2. Computer simulations to study 
the properties of this algorithm can be found in Section 3. 
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2. ALGORITHM 

The assumptions in the derivation of the adaptive jammer suppression 
algorithm are written down. Vectors representing antenna output, noise 
jammers, and noise samples are introduced. From the relations among these 
vectors, a technique to construct an adaptive weight vector for the array 
elements is derived. The procedure for the computation of this weight vector 
is then presented. Finally, an estimation on the computation requirements of 
this algorithm is made. 

2.1 ASSUMPTIONS 

The assumptions are as follows: 

1. Noise jammers are mutually uncorrelated. 

2. The changes in jammer directions are negligible during adaptation 
and radar amplitude measurement. 

2.2 THEORY 

Let K denote the number of elements in the radar antenna. Each 
sampling of the environment by this radar produces a sampling vector ,h 

 r 	(ri,r2 ,...,rK), where rk is the quadrature sampled output of the lc' 
array element. Radar output power is constructed as 

P = 1(w$01 2 9 

where w = (w 1 ,w2,...,wK) is a vector of weighting coefficients for the array 
element outputs, and 

(w,r) = E w*r — k=1  k k 

is the scalar product of w and r. 

The value of P given by eqn. (1) is proportional to Iw1 2 . For the sake 
of convenience in the comparison of radar output power constructed with 
different weight vectors, it is useful to impose the condition 

lw1 2  = 
(3) 

=1. 

This normalization of w to unit length has a very useful property. In the 
presence of white noise only, the sampling vector is given by r = n = 

where the nilcs are mutually uncorrelated array element output 
amplitudes with zero mean and variance a2 . The expected value of P with 
white noise input is 

(1)  

(2) 



. a
2 (4) 

(5)  

(6) 

w ( 7 ) 
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K 	K 
, E(P1 =  E1 E w*n 	E w k1 k k k'=1 k k = 

This expected value is the expected value of white noise power at the array 
elements. 

In general, sampling vector r is a sum of three components, 

r = s 	n 

where s is the signal component, 	is the jammer component, and n is the 
white noise component. The quiescent weight vector is defined as 

w - 	. -44 

This vector maximizes the output signal power in P = 1(w r)1 2  by match 
filtering and is the optimal weight vector in the lbsence-clOf jammers (i.e., 
g=O). With jammers present, En  is not the optimal weight vector. It is 
possible to construct a weight'vector, denoted by w , such that 

. P  = I(w r)I2 has better signal detection proper -J2s than P . a 

The objective of the jammer suppression algorithm here is to construct 
a weight vector w by adaptation such that 

where w° is the component of w orthogonal to a subspace spanned by the 
-01 	 -401 jammer vectors. It can easily be verified that 

(w°,r) = (w ,r ° ) 	 (8) 

where r° is the component of r orthogonal to the same subspace spanned by the 
jammer vectors. 

Let {111 ,u2 ,...,mml be a set of M sampling vectors measured with the 
signal absent (i.e., s=0). In Section 2.3, it is shown that these vectors 
can be used to construct a set of mutually orthogonal vectors  
where each vector in this set is either a unit vector or a null vector 
0 = (0,0,...,0). The non-zero vectors in this set are now treated as basis - 
vectors in a subspace spanned by the jammer vectors. Vector 	can be 
constructed by removing the component of w in this subspace. Vector w can 
be calculated with w°  and eqn. (7). 



/11-31IP 	111_11 2 	A, 

lu 1 2  < A. 
-1 

(9) 

(10)  

(11)  

w 
—a (7`) 
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2.3 PROCEDURE 

The computation of adapted weight vector w is divided into eleven 
steps. The technique used to calculate {v 1 ,37....2 ,...,!W is modified from the 
Gram-Schmidt orthonormalization method. Here, a threshold A is introduced 
to decide whether a vector should be treated as a jammer vector or as a sum 
of a white noise vector plus errors introduced by quantization, finite word 
length of computer storages, etc.. The details in the calculation of w are 
given below: 

Step 1 

Step 2 

Calculate lu 1 2  

Calculate v as --1 

Step 3 	Set m=2. 

Step 4 	Calculate u °  as 

m-1 
u °  = u - 	E (u ,v ,)v 1  

-in 	 -In -in -in m°=1 

Step 5 

Step 6 

Calculate lu l l 2  -m 
Calculate v as 

118/luil 	 > A 
— 9  —m "-in. 

V = 
—m 

o, 	I u'1 2  <'à. —m 

Step 7 	If m=M, proceed directly to Step 10. 

Step 8 	Replace m by m-1-1. 

Step 9 Return to Step 4. 

Step 10 Calculate w° as 

w° = w - E (w ,v )v 
m=1 

Step 11 Calculate w as 

(12) 
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2.4 COMPUTATION COUNT 

A rough estimate on the.number of computer operations in each step of 
the algorithm procedure is given below 

Step 1 	2K add + 2K multiply to calculate lu1 1 2 . 

Step 2 One r to calculate lul l. 

One divide to calculate 1/1u I. 

2K multiply to calculate 

Step 3 Essentially zero 

Step 4 4(M-1)MK add + 4(M-1)MK multiply. 

Each (u ,v 1 ) requires 4K add + 4K multiply. 

Subtraction of (u ,v 1 )v , from u requires 4K add 

+ 4K multiply also. The ranges for m and m' are 

2  <m  < M and 1 < m' < m-1. 

Step 5 2(M-1)K add + 2(M-1)K multiply. 

Each Iu 1 1 2  requires 2K add + 2K multiply. 

Step 6 	(14-1) r + ( 4-1) divide + 2(M-1)K multiply. 

Step 7 	Essentially zero. 

Step 8 Essentially zero. 

Step 9 	Zero 

Step 10 8MK add + 8MK multiply 

Step 11 2K add + 2K multiply + one ir + one divide to calculate 

1/Iw°1. 
—0! 

2K multiply to calculate  

The sum total is (4M2+6M+2)K add + (4M2+8M+4)K multiply + (M+1) square 
root + (M+1) divide operations. Given M, the number of add and multiply 
operations are proportional to K only. 



(16)  

(17) 
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3. COMPUTER SIMULATIONS 

Three simulations were carried out to study the manner in which jammers 
were suppressed, the performance of the algorithm in the presence of a band 
jammer, and the performance in the presence of a cluster of jammers. 

3.1 EQUATIONS 

The array chosen for study was a linear array as shown in Figure 1. 
There were ten isotropic elements (i.e., K=10) spaced at a distance of half 
a wavelength. The quiescent beam pointing direction 0 was arbitrarily 
chosen to be the broadside direction  (i.e., , 0 q  =0). The quiescent weight 
vector w = (wql,wq2' wqK) was calculated as 

w 	/ pric sine 

qk 

1 = 	k = 1,2,...,K. 
1/17 

Each vector in {u 1 ,2v0 ... 94m1 was calculated as a sum of a jammer vector and 
a white noise vector: 

ritm  4' 	m = 	 (14) 

The components of 	= (gml ,gm2 ,...,gmK) were calculated as 

g
mk 

= E 	
j(1)

9'm 
jukf sine

£  
9„ 

2.=1 	
e 	e 
	

9 

k = 1p 2 ,000pKe 	 (15) 

Here, L was the number of jammers, Peas the power of the £th  jammer at the 
array elements, qum  was a phase constant extracted from a population uniformly 
distributed in the range (-u,u], f st was the jammer frequency relative to the 
radar design frequency, and 02, was the jammer direction. The components of 
white noise vector n = (nmi ,nm2,...,nmK) were generated with the following 
properties: 

E {Re (nmk)} = E {Im(nmk)} = 0 

var{Re(nmk)} = var{Im(nmk)} = 0.5 a 2  

Here, Re{nmk} and Im{nmk } were the real and imaginary components of nmk 
respectively, and a ll was the white noise power at the array elements. 

(13) 
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Figure 1. Array configuration in computer simulations. The broadside direction is the zero degree direction. 
Angle 0 is measured clockwise from the broadside direction. 

Array gain G(6) was defined as 

G(6) = l(w,$)I 2 , 	 ( 18) 

where the components of s = (s i ,s 2 ,...,sK) were 

jukf sine 
s = e 	 k = 1,2,...,K 	 (19) 

and f was the relative frequency at which the gain was calculated. 

3.2 SIMULATION 1 

This simulation studied the manner in which the jammers were suppressed 
as the number of noise samples was increased. The parameters for the number 
of array elements, quiescent beam pointing direction, and frequency for the 
calculation of array gain were K=10, 0 (1=0 ° , and f=1.°. White noise power was 
arbitarily chosen as a,2, = 10-4 . Its actual value was of no importance here, 
because it was only uscl as a reference for power ratios. The jammer para-
meters were L=3, (p 1 ,p2 ,p3 ) - (1,0.1,0.01), (f 1 ,f2 ,f3) - (1,1,1), and 
(6 1, 6 2, 03 ) = (-17,30,65) degrees. These parameters corresponded to 

the 
presence of three jammers at the radar frequency. The jammer powers were 
40, 30, and 20 dB above a2 . Their directions were quite close to three of 

the sidelobe peaks of thenquiescent beam pattern. Threshold in eqn. (9) was 

calculated as 
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(20) A = 4Ka2 . 

Computer simulations were carried out with M=0,1,2, and 3 for the number of 
noise vectors. With these values of M, the dependence of array gain and 
jammer suppression on the number of noise vectors was studied. 

Presented in Figure 2 is the quiescent gain pattern G(0) calculated at 
0.5 °  intervals with M=0. Here, the beam pointing  direction ,  0q is marked 
with an arrow just above G(0) 9 and G(0 ) was 10.00 dB. The jammer positions 
are marked with arrows below the X-axis c.1  In Table 1, the gains in the direc- 
tions of the jammers were G(01) = -3.00 dB, G(02) = -6.99 dB and G(03) = -9.95 
dB. 

TABLE 1 

Simulation 1 output for array gain at jammer positions and the ratio of individual jammer power to white 
noise power at the radar output 

G(0 ) (dB) 	Q fQ 	0 £  (degree) 	PQ  (dB) 	G(00 (dB) 	PQG (001a2 n (dB) 

1 	1 	-17 	 o 	- 3.00 	 37.00 
0 	 10 	2 	1 	 30 	 -10 	 - 6.99 	 23.01 

3 	1 	 65 	 -20 	- 9.95 	 10.05 

1 	1 	-17 	 0 	 -12.80 	 27.20 
1 	9.88 	2 	1 	 30 	 -10 	- 4.58 	 25.42 

3 	1 	 65 	 -20 	- 8.56 	 11.44 

1 	1 	-17 	 0 	-29.50 	 10.50 
2 	9.70 	2 	1 	 30 	 -10 	 -29.72 	 0.28 

3 	1 	 65 	 -20 	 - 9.20 	 10.80 

1 	1 	-17 	 0 	 -38.17 	 1.83 
3 	9.66 	2 	1 	 30 	 -10 	 -44.49 	 <0  

3 	1 	 65 	 -20 	 -23.84 	 <0  

The ratio of individual jammer power to white noise power at the output of 
the radar was calculated as P G(09,  )/a 2 * These values were 37.00 dB, 23.01 dB 9, 	10 
and 10.05 dB for the three jammers. Array gain patterns calculated at 0.5 ° 

 intervals with M=1,2 and 3 are plotted in Figures 3 to 5. After adaptation 
with one noise vector, the gain in the direction of the strongest jammer was 
reduced by 9.80 dB to G(01) = -12.80 dB. At the same time, G(02) and G(03) 
were increased slightly. With two noise vectors, the gains in the directions 
of the first two strongest jammers were reduced by 26.50 dB and 22.73 dB 
respectively to G(01) = -29.50 dB and G(02) = -29.72 dB. Gain G(03) was 
slightly above the value calculated with M=0. When the number of noise 
vectors was equal to the number of jammers, the output power of the strongest 
jammer was reduced to 1.83 dB above the white noise background. Those of the 
other jammers were below this background. 
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Figure 2. Quiescent gain pattern in Simulation 1. The beam pointing direction 0q is marked with an arrow 
above the gain at 0.7=0. Jammer positions are marked with arrows below the x-axis. 
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Figure 3. Simulation 1 gain pattern calculated with one noise vector. Jammer powers from left to right are 
40 dB, 30 dB, and 20 dB above the white noise background. 
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3.3 SIMULATION 2 

This simulation studied the performance of the jammer suppression 
algorithm in the presence of a band jammer. The simulation parameters x,,Tre 
K=10, 0Q=0 ° , f=1.0, L=21, P 2,=1,  f = 0.989 + 0.0012.,  O ,  = -17 ° ,  a  = 10-4 , 
A = 4Ka '  l and M=0 and 1. Here, the band jammer was positioned at -17° and was n 
constructed as a sum of 21 jammers ranging in frequencies from 99% to 101% of 
the radar design frequency. Array gains were calculated at the radar design 
frequency, using M=0 and 1. 

The results of this simulation are summarized in Table 2 which contains 
the values of 13 2,G(0 2,)/q for Q. = 1,2..., and 21, and for M=0 and 1, using the 
G(00's calculated with f = fg, in (19). The sum of these values for a given 
M was the ratio of total jammer power to white noise power at the radar out-
put. This ratio was 50.2 dB before adaptation. After adaptation with only 
one noise vector, it was reduced by 45.6 dB to 4.6 dB. The array gain 
pattern, calculated with M=1 and f=1.0, is presented in Figure 6. The gain 
is below -40 dB at the jammer position. Gain patterns had also been 
calculated with (M=1, f=0.99) and (M=1, f=1.01). These patterns are not 
presented here, because they were almost indistinguishable from the pattern 
in Figure 6. 

TABLE 2 

Simulation 2 output for the ratio of jammer power to white noise power before and after adaptation with 
one noise vector 

PQG(0 Q)10.7  
fQ 	 M=0 	 M=1 

	

1 	0.990 	 5043 	0.3526 

	

2 	0.991 	 5042 	0.3280 

	

3 	0.992 	 5040 	0.3031 

	

4 	0.993 	 5037 	0.2781 

	

5 	0.994 	 5035 	0.2533 

	

6 	0.995 	 5032 	0.2286 

	

7 	0.996 	 5029 	0.2044 

	

8 	0.997 	 5026 	0.1806 

	

9 	0.998 	 5023 	0.1577 

	

10 	0.999 	 5020 	0.1355 

	

11 	1.000 	 5016 	0.1144 

	

12 	1.001 	 5012 	0.0945 

	

13 	1.002 	 5008 	0.0760 

	

14 	1.003 	 5004 	0.0590 

	

15 	1.004 	 4999 	0.0439 

	

16 	1.005 	 4995 	0.0306 

	

17 	1.006 	 4990 	0.0196 

	

18 	1.007 	 4985 	0.0109 

	

19 	1.008 	 4979 	0.0047 

	

20 	1.009 	 4974 	0.0013 

	

21 	1.010 	 4968 	0.0010 

21 	 105257 	2.8778 
Pe(0i2)/a127 	(50.2 dB) 	(4.6 dB) 

Q=1 
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Figure 6. Simulation 2 gain pattern calculated vvith one noise vector. There are 21 jammers at 0=-17° . Jammer 
frequencies range from 99% to 101% of design frequency. Quiescent gain pattern is given by Figure 2. 

3.4 SIMULATION 3 

This simulation studied the performance of the algorithm in the presence 
of a cluster of jammers. The simulation parameters were K=10, 6 = 0°, f=1, 
L=21, Prl, fe1, 6£ = -15.9-0.1£ degree, cs il  = 10-4 , A=4Ka121-, and M=0,1,2, and 
3. Here, the cluster was centred at -17° and was construced as a sum of 21 
jammers ranging in positions -16.0 to -18.0 0 . Array gains were calculated 
with up to three noise vectors. 

The results of this simulation are summarized in Table 3. The ratio 
of total jammer power to white noise power at the radar output was 50.1 dB 
before adaptation. This ratio was reduced by 27.2 dB to 22.9 dB after 
adaptation with one noise vector. The ratios were 15.3 dB and 9.0 dB with 
M=2 and M=3 respectively. The array gain pattern, calculated with M=1, is 
presented in Figure 7. 

4. CONCLUSIONS 

The derivation of an adaptive jammer suppression algorithm using the 
Gram-Schmidt orthonormalization method has been presented. The number of 
add and multiply operations in this algorithm is proportional to the number 
of elements in the array. Computer simulations also show that very few noise 
samples are needed in order to reduce the powers of individual jammers to 



TABLE 3 

Simulation 3 output for the ratio of jammer power to white noise power. Calculations were made with 
up to three noise vectors. 

PQG (O Q)/4 

0 Q 	 M=0 	M=1 	 M=2 

	

1 	 -16.0 	 4888 	18.66 	 5.280 	 0.508 

	

2 	 -16.1 	 4932 	18.87 	 3.939 	 0.482 

	

3 	 -16.2 	 4970 	18.78 	 2.899 	 0.476 

	

4 	 -16.3 	 5000 	18.38 	 2.101 	 0.476 

	

5 	 -16.4 	 5023 	17.60 	 1.494 	 0.473 

	

6 	 -16.5 	 5039 	16.73 	 1.039 	 0.459 

	

7 	 -16.6 	 5048 	15.52 	 0.700 	 0.433 

	

8 	 -16.7 	 5050 	14.11 	 0.451 	 0.391 

	

9 	 -16.8 	 5046 	12.53 	 0.273 	 0.336 

	

10 	 -16.9 	 5034 	10.82 	 0.153 	 0.271 

	

11 	 -17.0 	 5016 	9.05 	 0.086 	 0.201 

	

12 	 -17.1 	 4991 	 7.27 	 0.071 	 0.132 

	

13 	 -17.2 	 4960 	5.54 	 0.115 	 0.073 

	

14 	 -17.3 	 4923 	3.92 	 0.227 	 0.034 

	

15 	 -17.4 	 4879 	2.49 	 0.425 	 0.024 

	

16 	 -17.5 	 4830 	1.32 	 0.728 	 0.055 

	

17 	 -17.6 	 4775 	0.48 	 1.161 	 0.139 

	

18 	 -17.7 	 4714 	0.05 	 1.754 	 0.290 

	

19 	 -17.8 	 4648 	0.11 	 2.537 	 0.519 

	

20 	 -17.9 	 4577 	0.74 	 3.545 	 0.840 

	

21 	 -18.0 	 4502 	2.01 	 4.817 	 1.267 

21 	 102845 	195.07 	33.795 	 7.879 
E PQG WO/a; 	 (50.1 dB) 	(22.9 dB) 	(15.3 dB) 	(9.0 dB) 

Q=1 
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Figure 7. Simulation 3 gain pattern calculated with one noise vector. There are 21 jammers in the range 

0=-16°  to -18°. Quiescent gain pattern is given by Figure 2. 
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less than 10 dB above the power of the white noise background. Further 
studies of this algorithm should include the use of vectors in the covariance 
matrix instead of noise vectors in the algorithm procedure. 
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