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CORRECTIONS FOR FREQUENCY RESPONSE DIFFERENCES 

IN MULTIPLE RECEIVER ARRAYS 

by 

J.L. Robinson and R.W. Jenkins 

ABSTRACT 

In interference-cancelling antenna array systems where the 
signals are combined after passing through receivers, the differential 
frequency responses of the receivers act to limit the null depth and 
therefore the degree of interference rejection attainable for finite-
bandwidth interference. An experimental four-element HF antenna 
array is used as an illustration; the measured differential frequency-
dependent phase and amplitude responses of the receivers are pre-
sented and the corresponding limits to null-depth derived, for a 3 
KHz bandwidth. Correction techniques, including an exact software 
procedure and a hardware-implementable approach to linear phase 
correction are presented, and their requirements and anticipated 
performance considered. 

1. INTRODUCTION 

Interference-cancelling antenna arrays operate by placing nulls in 
the direction of unwanted signals while at the sanie  time maintaining non-zero 
gain in other directions. This is done by weighting i.e. adjusting the 
amplitude and phase of the signals received from the various array elements 
and then combining them. Unwanted signals are adjusted so as to cancel upon 
combination. 

In many arrays, the signals pass through receivers before they are 
weighted and combined. In such systems, differences in the frequency responses 
of the receivers cause a frequency variation of the relative signal amplitudes 
and phases between receivers. Frequency-independent weighting which allows a 
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signal component at one frequency to completely cancel itself upon combination 
will therefore not be effective for signal components at other frequencies, 
and a limit to the null depth obtainable for non zero-bandwidth signals is set. 

An estimate for this null depth is derived in the Appendix. The 
result is 

p ip =  a 2  a 2  N A 	p 	(1) 

where PN is the array gain in the direction of the interfering signal, PA is 
the average array gain, and ap 2  and ae are the variances in receiver gain 
(expressed as a dimensionless ratio) and phase delay (in radians 2 ), taken 
relative to the mean frequency response of the receivers. Some representative 
null depths for various values of ap  and a(1)  are given in Table 1. These 
values can also be considered as the limits to a and a 	must not be 
exceeded in order to achieve a certain level of interference cancellation. 

TABLE 1 

Achievable Null Depths, for Various Equal-Contribution Amplitude and Phase Variances 

PN'A 	(dB) 	 e P 	 u  fk (degrees) 

	

-20 	 .071 	 4.1 

	

-30 	 .022 	 1.3 

	

-40 	 .007 	 0.4 

	

-50 	 .002 	 0.1 

In this paper we consider the magnitude of the above described 
differential frequency response effect and techniques for reducing it: The 
case of an experimental four-element HF array using good quality commercially 
available receivers and employing adaptive interference cancelling at base-
band is used as an illustration. A series of measurements of the amplitude 
and phase response of the receivers in the experimental array is presented 
and the null depths achievable for broadband interference are calculated. Two 
correction techniques are described: a precise software-implementable 
correction technique that uses Fourier transforms, and an approximate 
correction technique involving a linear phase correction using time delays. 
Required processing times, expected corrections and some general conclusions 
are discussed. 

(1) 
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2. MEASUREMENTS 

2.1 DESCRIPTION 

The equipment configuration for the measurements is shown in Figure 1. 
The input RF signal was generated by a frequency synthesizer (Hewlett Packard 
3335A), suitably attenuated, split four ways, and routed through the four 
receivers. Each receiver (RACAL 6790) was tuned to the input RF and set for a 
6 kHz bandwidth. The receivers were driven by a common reference signal, so 
that the relative phases of the input signals were maintained. The 455 kHz IF 
outputs were mixed down to baseband and split into in-phase (I) and quadrature 
(Q) channels in the hybrid quadrature mixers. The 455 kHz mixing signal was 
provided externally by a frequency synthesizer (HP 3335A). The eight output 
signals were routed through low pass filters with an upper cut-off frequency 
of 1.5 kHz (Precision Instruments filter unit). One line was chosen as a 
reference and connected via the channel A input to the spectrum analyzer 
(HP 3582A). The remaining lines were connected in turn to the channel B input. 
The spectrum analyzer provided a digital readout of the amplitude for all 
eight lines and relative phase measurements of the last seven lines with 
respect to the first line. The receivers were tuned to a center frequency of 
11 MHz and the input signal was stepped in 100 Hz increments from 10.9985 MHz 
to 11.0015 MHz. 

LOW 
QUADRATURE 	PASS 

RECEIVER 	/MIXER 	FILTER 

4 

RA6790 
*3 

RA6790 

Figure 1. Measurement Equipment Configuration 
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2.2 RESULTS 

Figure 2 shows the amplitude response of the eight output channels 
across the frequency band. There is a difference in the absolute magnitude 
of the receiver outputs of at most 4.5 dB, and a much smaller variation with 
frequency in the ratios of amplitudes over the receiver bandwidth (at most 
0.2 dB). This latter feature is seen clearly in the bottom of Figure 2. In 
this figure the distribution about the mean of the amplitude of channel 3 
relative to the amplitude of channel 1 is shown. The variance for these 
results has been calculated to be ap 2  = 3.36x10-5 . The total variance for all 
channels relative to the average channel amplitude response was also calcu-
lated, giving op 2  = 1.051x10-4 . 
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Figure 2. Amplitude Responses of the Eight Outputs and the Ratio of Amplitudes for Output 3 Relative to Output 1. 
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Figures 3(a), (b), (c) and (d) show the relative phase response of 
channels 2 through 8 with respect to channel 1. Figure 3(a) shows the 
measured phase difference between the I and Q outputs of receiver 1, which as 
expected, is approximately 90 degrees and shows little variation across the 
pass band. Figures 3(b) - (d) show a characteristic  monotonie  decrease in 
relative phase across the ±1.5KHz frequency band. Least mean square straight 
line fits to the data have been calculated and are included in these figures. 
The fluctuations of the data about these straight line fits are approximately 
the same for the I and Q outputs from the same receiver. The straight line 
fits are further discussed in Section 3.2. The total variance of all phase 
data points with respect to the average frequency response was estimated from 
the phase data to be ae = 5.3x10-3  (radians 2 ). 

Figure 3. Relative phase response of the outputs with respect to output 1. M is the slope and B is the zero 
intercept of the least mean square straight line fit to the data. 
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2  It follows from Equation (1), using the value of c1 2  and a(p given 
above, that the differential frequency responses of the receivers will limit 
null depths to: 

GP
2 	2 

= 1.051x10-4 	5.3x10-3  = 5.4x10-3 , or -22.7dB 

with the largest contributing factor to the limit being the phase differences. 

3. CORRECTION TECHNIQUES 

Two techniques are described for making corrections to the differ-
ential frequency response to assure satisfactory null depths. First, a 
completely general computational approach that uses frequency domain amplitude 
and phase measurements is described in detail. This approach can be used if 
sufficient signal processing power is available. Second, a hardware approach 
is described that staggers the sampling times and can be used when a linear 
correction to the phase error is sufficiently accurate. 

3.1 FOURIER TRANSFORM TECHNIQUE 

A correction for the difference in the frequency response of one or 
more receivers relative to a standard receiver can be made by directly 
correcting the data in the frequency domain. This technique requires a 
processor that has a real time Fourier transform capability. A finite sequence 
digital compensation filter is constructed using frequency response measure-
ments of the receivers and is kept available in the signal processor memory. 
The correction is accomplished by a discrete linear convolution of the finite 
fitter sequence with the indefinite length incoming signal sequence [1]. This 
is best implemented by a multiplication in the frequency domain. The entire 
correction procedure is accomplished in software and should be designed to be 
as fully automated as possible for operator convenience. 

The construction of the frequency domain sequence representing the 
compensation filter is based on calibration data obtained using the experi-
mental configuration given in Figure 1 and following the measurement 
procedure given below: 

1. Set the synthesizer to an appropriate starting frequency 
(f ) 

2. Distribute the sine wave signal from the synthesizer 
equally to all receiver inputs. 

3. Allow sufficient time for steady state conditions to 
become established. 
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4. Perform A/D sampling and Fourier transformation of 
receiver output to obtain amplitude and phase measure-
ments at fo . 

5. Repeat steps (1)-(4) for all frequencies across the 
response band of the receivers, in steps of width Af. 

In accordance with step #4, the digitized receiver outputs give a 
time sequence xn (ti);  1=1,.. .,N  at each input frequency for each output 
channel n. A discrete Fourier Transform (DFT) is computed at each input 
frequency with the N samples from each receiver output, thereby providing the 
complex frequency domain representation of the output. At an arbitrary 
frequency fk for example, 

xn (fk) = E xn (ti)exp(:j2irfkti) = An (fk)exp(_jci)n (fk)) 
i=1 

where  x(fi) is the output from channel n for the input signal at frequency 
fk and An (fk) and (Pn (fk) are the amplitude and phase respectively of the 
frequency domain representation of the channel n output signal. 

With one output, m, chosen as the standard, the filter coefficient 
at frequency fk for any other output n, is defined by 

A
m (fk) 

Kn (fk) - A (fk ) exp (-j(qt,m(fk)-chn (fk)j) 
n  

where Am/An  and cPm-cbn  are the relative amplitude ratio and phase difference 
of the nth output with respect to the mth output. It is essential that the 
sampling rate used during calibration is matched to the sampling rate of the 
implementation. This is ensured by the following procedure (the requirement 
for this matching procedure is discussed below): 

1. Begin with Kn (fk) obtained during the calibration at 
Q points with frequency spacing  tif.  

2. Expand to M=2Q-1 points using the symmetry relation: 
Kn (fk) = Kn (MAf-fk). 

3. Compute an M point inverse FFT; the impulse response 
has length M and spacing At = 1/MAf. 

4. Insert M zeroes onto the end of the impulse response. 

5. Compute a 2M point FFT; the new  K(f) has M-1-1 unique 
points with frequency spacing Af' = 1/2MAt = Af/2. 
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This filter coefficient is now the desired factor and the multiplication 

Xn (fk
)K
n
(f
k
) = X

m
(f
k

) 

makes the desired correction, where Kn(fk) is stored in the processor memory 
and Xn (fk) is the DFT component at frequency fk of the signal from receiver 
output n. This will correct the frequency response error relative to channel 
m. 

The discrete linear convolution procedure for correcting variations 
in the frequency response of the receivers involves the computation of DFTs 
on consecutive blocks of the incoming sampled time signal. These blocks are 
multiplied by Kn (fk) in the frequency domain and then an inverse DFT is 
computed giving a finite output sequence. The output blocks must be 
carefully assembled to give the correct indefinite length output time 
sequence. One iteration of this operation as it would be applied to each 
channel using the overlap and add procedure [2] involves the following steps: 

1. The input of M real time samples is augmented with 
M zeroes. 

2. A 2M point FFT of the time sequence is computed: this 
gives for output n, X(f) with M+1 unique points. 

3. Compute X' n (fk) = Xn (fk)Kn (fk) (for all M+1 frequency 
points; generate another M-1 points using symmetry). 

4. A 2M point inverse FFT of X' n (f) is computed to get 2M 
time domain points. 

5. The first M points of the time domain sequence are added 
to the last M points from the previous iteration; the 
second M points are saved. 

6. Repeat (1) - (5) with the next M time samples. 

Care most be taken in choosing the calibration frequency step size 
and the time sampling rate to avoid seriously distorted results due to 
spectral leakage. The step size in the filtering operation must be compatible 
with the step size in the calibration measurement [2]. This is ensured by 
the choice of compatible sampling rates and a zero padding procedure that is 
used in contructing the filter Kn(fk). When the time sampling rate is 1/At 
and the incoming time signal is being processed in groups of M samples the 
frequency spacing in the calibration measurement is Af = 1/MAt. 

Most of the processing time required by the correction algorithm is 
taken up with Fourier transforms and multiplication. The implementation of 
the correction for one channel at a sampling rate of 5K samples/second and 
block size of M=1024 samples, would require approximately 5 iterations per 
second. For eight channels this increases to 40 iterations per second or a 
time of 25 milliseconds per convolution. Tests [3] of the processing speed 
of one array processor (AP 400) have found that a 1024 point complex 
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convolution operation (FFT-Fmultiplication+IFFT) can be computed within a time 
of 20 milliseconds. Therefore it is concluded that a differential frequency 
response correction based on the Fourier convolution filtering technique can 
be implemented using available state-of-the-art high speed processors. 

3.2 LINEAR CORRECTION 

The results presented in this paper for a four-element array indicate 
that the extent to which signals can be nulled is limited more by variations 
in the phase response of the channels than variations in the amplitude 
response. Also the overall variation of phase as seen in Figure 3, is largely 
a linear function of frequency, at least over the 3 kHz bandwidths considered. 

A differential phase response that varies linearly with frequency 
can be considered as a relative time delay between the receiver output lines. 
Suppose a signal exp(j2uft) is incident on the inputs to lines 1 and n, and 
the effect of the two lines is to introduce a time delay Ti, (1=1,n), plus an 
arbitrary amplitude gain and phase change. The output signals are then: 

A1exp(j(2uf(t-T1)+01)) for line 1 

Anexp(j(2uf(t-Tn)+8n)) for line n 

The differential phase-response is then given by: 

A
ln 

= - 

where AinT = T1  - Tn  is the time between lines. Relating this to the observed 
linear dependence Aid!) = Mlf "1" Bin where Min  is the slope and Bin  is the n  
zero intercept, we find the differential time delay to be ALIT = -141n/ 27r- 

Table 2 gives the differences in time delay between channels 2 to 8 
and reference channel 1, derived from the straight-line fits to the data in 
Figure 3. 

The maximum observed time delay is of the order of 20 microseconds, 
which is considerably less than the 333 microsecond Nyquist complex sampling 
interval required for 3 kHz bandwidth signals. For a digital receiving 
system, time delays of that magnitude can be readily corrected by making 
small adjustments to the sampling time for the analog-to-digital converter at 
each receiver output. A possible hardware implementation is shown in Figure 4. 

Once a time delay correction is made, the linearly dependent portion 
of the differential frequency phase-response will be removed. From the 
residual differential frequency responses, a new upper bound to the inter-
ference cancellation achievable can be found, by using Equation 1. We get, 
for the measured receivers after time delay correction 

2uf (T1-Tn)+81-On  = 2u(AinT)f+( 0 1- 8n ) 



-4 2 = 1.05x10 as before, so that and 

2 = 2.52x10 -4  
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PN/PA = 3.57x10
-4 , or -34.5dB. This is a considerable improvement over 

the previous limit of -22.7dB found for the uncorrected measurements in 
Section 2.2. 

TABLE 2 

Values Min  of the Slope of the Straight Line Fits to the Differential Phase Response Results of Figure 3, 
and the Corresponding Implied Differential Time Delays à T in 

Channel # 	 Min 	 AlnT  _ 

1 	 0 ° /KHz 	 0 microseconds 
2 	 -0.25 	 0.69 
3 	 -4.76 	 13.22 
4 	 -4.59 	 12.75 
5 	 -7.02 	 19.50 
6 	 -5.32 	 14.78 
7 	 -2.79 	 7.75 
8 	 -5.11 	 14.19 

1—SAMPLE 
I COMMAND 

ADJUSTABLE 
	  TIME DELAY 

Ati Ati 

INPUT #1  A/D 

ADJUSTABLE 
TIME DELAY 

b,t2 

INPUT e2 	Owl A/D 

• 
• 
• 

etc. 

Figure 4. Possible Hardware Implementation for Linear Correction by Staggered Sampling Times 
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4. DISCUSSION AND CONCLUSIONS 

Achievable null depths for an operational adaptive antenna are 
governed, according to Equation 1, by the differential frequency response of 
the receiving equipment located ahead of the signal-summing apparatus. This 
equipment includes the antennas and any feed lines, preamplifiers, filters 
and receivers which precede the circuit that does the summation. 

The measurements reported herein, on a set of four identical good 
commercial grade receivers, showed that without correction the null depth 
for a 3 kHz bandwidth signal in an array using these receiyers would be 
limited to 22.7 dB. It was observed that this limit was mostly due to the 
differences in phase response between receivers (17dB above the amplitude 
response limitation). Further, the phase differences in frequency response 
were mainly linear functions of frequency, which permitted their interpre- 
tation as frequency-independent differences in receiver time-delay. If these 
time delays were corrected for, the residual phase-response contributions 
would be about the same order of magnitude as the differential amplitude 
response contribution. The resulting null depth would be 34.5 dB for a 3 kHz 
bandwidth signal. A linear phase difference correction is easily implemented 
in a digitally sampled system by adjusting the relative sampling times. 

Another factor which limits the attainable null depth is the siting 
of antenna elements. A previous set of measurements [4] in one instance 
indicated worst-case null depths due to antenna element siting limited to 
35 dB. Therefore, the presently considered receivers, together with a time 
delay correction, would not greatly decrease the attainable null depths for 
that array. 

When factors other than receiver frequency response do not limit the 
null depth, the general, more direct approach using the FFT considered herein 
for receiver frequency response correction would allow deeper nulls to be 
achieved. Such an approach is more difficult to implement, but with state-
of-the-art technology it can be done fdr 3 kHz bandwidths and a four-element 
adaptive array. It should therefore be considered when other limitations do 
not already restrict the null depth, and greater null depths are desired. 
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APPENDIX A 

Tolerance Calculation 

With an antenna array of N/2 elements which uses of quadrature 
splitting in the receivers there are N output lines on which the output 
weighted voltages are summed to produce a total output voltage, i.e., 

Vout - fr. V (f)df , 
n=1 n  

where Vn (f) = Sn
(f)Wn

R(f) 
fl  

Here Sn (f) is the complex input signal to the nth channel, Wn  is the applied 
complex frequency independent weight and Rn (f) is the complex response of the 
nth channel to the signal. For a narrow band signal Sn (f) = SnS(f) (i.e. the 
input signal can be shown to have a separable channel dependence and frequency 
dependence over the signal bandwidth). When all channels are "ideal", they 
will have the same frequency response, at least to within a multiplicative 
constant: i.e., Rn (f) = CnR(f), Cn  a complex number. We can then write 

for the ideal case  V(f) = SnenwnS(f)R(f) (Vno (f) represents  V(f) for the 

for the ideal case), and find non-zero values of Wn  such that 

E wnSnCn  = 0 and therefore Vo (f) = E Vn  (f) = 0 and Vo (out) = 0 
n=1 	 n=1 ° 

(a perfect null). Assume that the weights Wn  are so selected. Consider now 
a departure from the ideal case, where the differential frequency responses, 
i.e., departures from the "average" frequency response are uncorrelated between 
the receiver output lines so that  V(f) =" (f) + Un (f). The output power 
is then given by 	 o 

PN (out) - flE V (01 2 df = flE Vn  (f) + E SV
no

(f)I 2 df = IIE SV (f)I 2 df 
n=1 n 	 n=1 ° 	n=1 	 n=1 n  

The SVn (f) are uncorrelated between channels, the terms in cross-
products are zero, and so the expression for output power reduces to 

PN = flE SVn (f)1 2 df =  JE  16V  (f) 1 2d
n=1 	 n=1 n  



	

2 	2 

	

ap 	ag5  P /P N A 
fE 	1V11 (f)1 2 df 
n=1 

IVn (f)1 2  tepn (f) + 6 2 (1)n (f)1df 
n=1 

14 

Writing the frequency response of the receivers as 
Rn (f) = rn (f)exp(j n (f)) and considering only random differential frequency 
responses in the amplitude  r(f) and phase MO response of the receiver, 
we get 

dr (f) 
Un(f) = 6(sn(f)WnRn (f),)= V(f) ( 	r(f)  +  

= Vn (f)(SPn (f) + Pcbn(f)) 

where Spn (f) is the normalized difference 6r,(f)/rn (f) in the amplitude 
response from the mean at that frequency, ana ô(f) the difference in phase 
response from the mean at that frequency. The power received in the null 
direction then becomes 

PN = fE 1Vn (f)1 2 (6 2 pn (f) + 6 2 (I)n (q)df. n=1 

For completely uncorrelated signals of similar amplitude in the output 
channels, the output power would have been the average array gain 

PA = f1V(f)1 2 df = fE IV (01 2 df. 
n=1 n  

Using this as a reference level, the null depth is given by 

where 
N 	 N 
fE Ivn (01 2 epn (f)df 	 JE  IVn (f)1 2 d 2 n (f)df 

2 _  n=1 	 2 	n=1  cp 	
N 	 and aq)  - 	 N  

JE  Iv,(01 2 df 	 JE  1Vn (f)1 2 df 
n=1 	 n=1 

2 a can be thought of as the variance in normalized relative amplitude 
response expressed as the square of a dimensionless ratio and 42 as the 
variance in relative phase respnse (I), expressed in (radians 2

),
rdistributed 

according to the power 1V(f) 	in the receiver output lines. 








