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ON AVERAGING IN BURG MEM SPECTRAL ANALYSIS 

OF SINUSOIDAL SIGNALS — THEORY 

by 

R.W. Herring 

ABSTRACT 

When independent records of sampled data from a common source 
are available, one method for combining these data while using Burg MEM 
spectral analysis is, at each iteration of the Burg algorithm, to compute 
separately sets of numerator and denominator terms for the reflection 
coefficient, and then to compute the reflection coefficient as the quotient 
of the averaged numerator and denominator terms. The effect of this 
form of averaging for the case of multiple records comprising two noise-
free complex sinusoids is investigated analytically. It is shown that when 
the relative phase between the sinusoidal components varies randomly 
from record to record, bias terms in the first and second reflection 
coefficients are inversely proportional to the number of records 
processed. 

I. INTRODUCTION 

A recent paper [1] has indicated that line—splitting in Burg maximum-
entropy method (MEM) spectral estimation for the case of two complex sinu-
soids is caused by intrinsic biases in the estimated values of the first and 
second reflection coefficients. These biases were shown to be a function 
both of the relative phase between the complex sinusoids at the middle of the 
data record, and of the number of cycles of the difference frequency between 
the two sinusoids contained within the length of the data record. In [1] it 
was assumed that only one set of data was available and the phase difference 
between the complex sinusoide was fixed, but that any additive noise was 
stochastic. Therefore, the expected values of the Burg reflection coefficients 
were explicit functions of this phase difference. 
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In certain circumstances, independent records of sampled data derived 
from the same source and containing fixed-frequency sinusoidal components are 
available, and it is reasonable to assume that the phase differences between 
the sinusoidal components vary on a record-to-record basis. This topic has 
been considered in a theoretical and simulation study by Gabriel [2] for the 
case of sets of records of data from a sampled-aperture antenna array. In [2] 
the received signals were modelled as radar returns from two or more targets 
occurring at slightly different bearings and moving at different velocities, 
so that a variation in the relative phase of the signal components from record 
to record was induced by the relative motion of the targets, due to the doppler 
effect. It was shown that a form of averaging was effective in improving 
angular spectrum estimates based on direct evaluations of the aperture cor-
relation matrix. 

Here, the effects of a particular form of averaging on the biases 
described in [1] are shown analytically. Specifically, when K independent 
records, each comprising N samples of the sum of two complex sinusoids, are 
evailable, the reflection coefficient at each iteration of the Burg algorithm 
can be computed by averaging the K numerator and denominator terms computed 
from each independent set of data, and then computing the reflection coefficient 
as the quotient of these averages [3,4]. This averaging is shown to reduce 
the expected magnitudes of the biases which cause line splitting when the SNR 
is high, provided that the relative phase between the complex sinusoids varies 
from record to record in a uniformly distributed random manner (cf. [2]). 
However, the analysis also shows that subdividing K records of length N into 
2K records of length N/2 is counter-productive, at least when noise is absent. 

2. THEORY 

Assume that K records of complex data, each record of length N, are 
available. Let xk(n), n = 0,1,...,N-1 denote the kth record. Following the 
examples of Burg [3] and Moorcroft [4] and using a notation based on [1], the 
Burg algorithm can be written in a parallel lattice form: 

fM,k (n) = fM-1,k (n) - e(M,M)  M-1,k 

bM,k (n) = b 	(n-1) - e*(M,M) f 	(n) M-1,k 	 M-1,k 

n =  
M=  1,2,...,P < N-1 

f0,k (n)  = xk (n)  = b0,k(n) 	 (le)  

= 0,1,...,N-1 
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where 	 f3(M,M) = NUM(M,M)/DEN(M,M), 	 (2) 

KN-1 
1 	E  * 

NUM(M,M) -  
K(N-M)

E 	b 
M-1, (n-1)k 

k=1 n=M 

K N-1 

(n)121, 	(3b) DEN(M,M) = 2K(N-M) 
1 	E  E {1 bm_i,k  (n-1)12 'M-1,k  

k=1 n=M 

and P is the order of the lattices. 

Equations (la-c) indicate that a distinct lattice is required for each 
of the K data records, but, at each stage of each lattice, the same reflection 
coefficient (M,M) is used in all the lattices. The series fm,k(n) are 
respectively the forward and backward error signals in the kth lattice at the 
Mth stage. 

Equations (2) and (3a-b) state explicitly how each of the reflection 
coefficients 13(M,M) is to be computed: by separately averaging the numerator 
terms and denominator terms which can be calculated from each lattice, to 
yield the values of NUM(M,M) and DEN(M,M) respectively. The quotient of these 
averages is then computed to produce a single estimate of the Mth reflection 
coefficient, according to (2). Burg [3] has proven that, in general, the 
reflection coefficients thus computed satisfy the relation 

1f3 (11 ,M)1 2  < 1 	 (4) 

so that the corresponding covariance matrix is non-negative definite. 

If there are K records of data, each comprising N samples of a signal 
consisting of two complex sinusoids with no additive noise (infinite SNR), 
then x

k
(n) can be written as [1] 

xk (n) •= Ao exp[j(nwo + (I)
k
)] 

• {r exP[i(nde+ 4k)] r 	[-i(nàw Min} 

One of the complex sinusoids has amplitude Aor, angular frequency wo  + àw and 
initial phase (Pk + AcPk ; the other has amplitude A0r-1, angular frequency 
wo  - Au) and initial phase (Pk - &Pk. 

(3a) 

(5) 



(6a) 

(6b) 

(7) 

(8) 
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Substitution of (5) into (3a) and (3h) for M = 1 yields 

NUM(1,1) = A(23 (r 2  + r-2 ) exp(jwo) 

2G(N-1,à0  
•lcosAw + j p(r) sinàw +  r2  + r-2 

SUM (emid,K) 

and 	 DEN(1,1) = A.  2o  (r 2  + r-2 ) 

G(N-1 àw)  + 2 r 2  +r 
cosàwSUM(emid,K) 

where p(r) is defined as 

p(r) = (r 2 -r-2 )/(r 2+r-2 ), 

G(N,àw) = sin(NAORN sin(Aw)] 

is the common grating-function frequency response of a normalized uniformly 

weighted discrete Fourier transform of N data, 

4mid,k = (N-1)w  + 24k 	 (9) 

is the phase difference between the two complex sinusoidal components, 
reckoned at the middle of the kth record, and 

1 
SUM(4mid,K) = 	cos(4mid,K) 

k-1 

is an estimate of the average value of the cosines of the phase differences. 
Examination of (10) shows that if Umid,k is uniformly and randomiy distri-
buted over the interval 0 to 27, then the statistically expected value for 
SUM(àePraid,K) is zero, with variance 1/2K. 

Applying (2) to (6a) and (6h) yields for the first reflection 
coefficient: 

f3(1,1) = exp(jwo) 

cosàw + jp(r) sindw + [2 G(N-1,Aw)/(r 2  + r-1 )] SUM (441111,K)  (11) • 
1 + [2G(N-1,Lw)/(r 2  + r-2 )] cos Aw SUM (boemid,K) 

(10) 
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Equation (11) should be compared with (43) of [1], which is the result for 
the single record case. 

If SUM(à(Pmid,K) is replaced in (11) by its statistically expected 
value of 0, the result is a perfect estimate of the first reflection coeffi-
cient as given by the known-autocorrelation (KA) case for infinite SNR, a(1,1) 
(cf. (30) of [1]): 

a(1,1) = exp(jwo) [cosàw + jp(r)sinàw]. 	 (12) 

It is more correct, however, to estimate the expectation of (11) after the 
quotient has been computed. When either of the conditions eif >> 1 or 
IG(N-1,àw)I << 1 is met, the approximation 1/(1+x) 	(1-x+x2 ) can be applied 
to (11) to get an expected value for t3(1,1) of 

= exp(jw0)1[1 - B1  (N,àw,r,K)sin 2 àw] cosAw 

+ jp(r)[1 + B1  (N,àw,r,K)cos 2 àw3 sinàwl 	(13) 

where 

B1 (N ' Aw ' r ' K) = 2[G(N-1,&)/(r
2+r-2 )] 2 /K  

is a small bias term which varies inversely with K. In (14), [S1JM(A4llid,K)] 2  
has been replaced by its expected value of 1/2K. 

Further analysis shows that, to the same degree of approximation, the 
variance of f3(1,1), VAR[13(1,1)] is given by 

VAR[$(1,1)] = B 1  (N,Aw,r,K) sin2Aw[sin 2 àw + p 2 (r)cos 2 Aw] 	(15) 

and the ratio of the squared magnitude of the difference <e(1,1)>-a(1,1) to 
the variance of f3(1,1) is given by 

- (1(1,1)1 2  
 VAR[e(1,1)] 	
B
1 
 (N,Aw,r,K) cos 2 Aw. 

Proceeding now to the sqtond reflection coefficient, the result (11) 
can be applied in (la-b) and (3a-b) to derive the following results for 
'NUM(2,2) and DEN(2,2): 

(14) 

(16) 
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NUM(2,2) =  {_4A 	exp(j2w0)/ 

[1 + 2 SUM(4mid,K) cosàw G(N-1,àw)/(r 2  + r-2 )] 

• /1 - 2 SUM(Mmid,K) G(N-2,àw)/(r 2  + r-2 ) 

-2 SUM(Umid,K) G(N-1,Aw) 

ISUM(Mmid,K) G(N-2,Aw) [cosàw + jp(r) sindw] 

-2 cosàw/(r 2  + r-2 )1 

+SUM2 (4mid,K) G 2 (N-1,Aw) l[cos2àw + jp(r)sin2àw1 

-2 SUM(à(Pmid,K) G(N-2,àw)/(r 2  + r-2 )q 

and 

DEN(2,2) = {4A(2)  sin 2 àw/ 

[1 + 2 SUM(Umid,K) cosàwG(N-1,àw)/(r 2  + r-2 )]} 

e l - 2 SUM(4mid,K) G(N-2,&)/(r 2  + r-2 ) 

-2 SUM(4mid,K) cosAw G(N- 1,,W) 

 [SUM(4mid,K) G(N-2,àw) - 2/(r2  + r-2 )] 

+SUM2 (à(pmid,K) G 2 (N-1,Aw) 

[1 - 2 SUM(Aeid,K) cos2àw G(N-2,)/(r 2  + r-2 )] 

(17a) 

(17b) 

Equations (17a) and (17b) can be combined using (2) to derive a result for 
8(2,2) which, for K = 1, is the same as (47) of [1]. 

If SUM(4mid,K) is replaced in (17a) and (17b) by its expected value 
of 0 and the quotient is then computed, the result again is a perfect 
estimate of the KA reflection coefficient for infinite SNR, a(2,2) (cf. (34) 
of [11]: 

Œ(2,2)  = -exp(j2w0 ). 	 (18) 
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By following the saine  approach as taken in deriving (13), the 
expected value for (3(2,2) when either ITF >> 1 or both IG(N-1,Aw)I << 1 and 
IG(N-2,Aw)I << 1 are valid is found to be 

< 13( 2,2)> = -exp(j2w0)11 - B2 (N,L1w,r,K)1 	 (19) 

where 

B2 (N ' Aw ' r ' K) = 1G 2 (N-1,Aw) sinàw[sin& - jp(r)cosàw] 

+jp(r)G(N-1,A0G(N-2,Aw)sin4/K 	 (20) 

is another small bias term. 

Similar to the case of the first reflection coefficient, further 
analysis shows that VAR[13(2,2)] is given by 

VAR[13(2,2)] = 20 2 (N-1,Aw)sinAw[l+p 2 (r)]/K 

and the ratio of the squared magnitude of the difference <3(2,2)>-a(2,2) to 
the variance of 13 (2,2) is given by 

= 202 (N -1,Aw)sin 2 A41 + p 2 (r)]/K 
VAR[(2,2)] 

3. DISCUSSION 

Consideration of (14) and (20) shows that, since  G(N-1,A01 is 
proportional to 1/(N-1), the bias terms are roughly proportional to 1/[(N-1) 2K]. 
This result is important because, for example, it shows that doubling K at the 
expense of halving N, by processing K records of length N as 2K disjoint 
records of length N/2, nearly doubles the expected magnitudes of the bias terms. 

Similarly, consideration of (15) and (21) shows that the variances of 
the first two reflection coefficients are also roughly proportional to 
1/[(N-1) 2K]. This means that not only the magnitudes of the biases, but also 
their variances increase when K is increased in a tradeoff with N. 

Finally, (16) and (22)  show  that the ratios of the squared magnitudes 
of the biases to the variances of the Burg estimates of the reflection 
coefficients have the same 1/[(N-1) K] dependence. This indicates that, 
subject to the constraint that the signal to noise ratio be very high, when-
ever it is possible to arrange a tadeoff between N and K the choice should 
be to make the record length N as great as possible at the expense of K. 
Equations (6a-b) and (17a-b) are consistent with this assertion, since it can 
be seen that the maximum magnitudes of the terms which give rise to the 
biases are inversely proportional to N when Aw is non-zero. 

(21) 

IB2(N,Aw,r,K)1 2  
(22) 
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In general, it appears to be best to process data records which are 
as long as possible when the signal to noise ratio is high and the Burg MEM 
is used. 

4. CONCLUSIONS 

It has been shown that the suggested form of averaging for multiple 
sets of noise-free sampled data comprised of two complex sinusoids yields 
expected values for the first and second Burg reflection coefficients with 
rather simple form when K, the number of sets of data, is large. In this 
case, the expected values of the first and second reflection coefficients 
are given by (13) and (19) respectively. These expected values are biased 
from the result for the known-autocorrelation case by additive terms propor-
tional to 1/K. 

For the suggested averaging technique to te effective, it is essential 
that the relative phases of the sinusoidal components vary from record to 
record in a uniformly distributed random manner. Such can be the case when 
successive frames of data from a linear sampled-aperture array are available 
[2], or when systematic constraints make only non-contiguous time domain 
records available [4]. 

It has been shown that segmenting long records with high signal to 
noise ratio in order to increase the number of records available for averaging 
is theoretically counter-productive. 
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