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RADIO-WAVE REFLECTIONS FROM A SPHERICAL EARTH — PREDICTIONS AT VHF AND UHF 

by 

J.H. Whitteker 

ABSTRACT 

The field strength of radio waves at VHF and UHF can be 
affected by reflections from the ground or water. Except for the 
shortest paths, the reflecting surface must he considered to be 
spherical rather than flat. This report describes procedures that 
may be programmed into a computer for automatically finding the 
reflection point, for calculating the effective coefficient of 
reflection, and for estimating the effect of any obstructions in the 
path of the reflected ray. The description is intended to be 
complete enough to be used for writing a computer program to do 
the calculations. New formulas are derived, and references are 
given for formulas obtained elsewhere. A comparison of the results 
with CCI R curves for propagation around a spherical earth shows 
agreement within about 1 dB in the region for which reflection 
calculations are used. 

1. INTRODUCTION 

1.1 MOTIVATION 

For the prediction of field strength at VHF and UHF, one of the effects 
that may be taken into consideration is the reflection of radio waves from 

the ocean, lakes, or flat ground. At the point of reception, the reflected 

wave and the direct wave combine, and the resulting field strength depends 

on the amplitude of the reflected wave and on its phase relative to that of 

the direct wave. The object of the procedures described here is to find this 
amplitude and phase. The computer must find the point of reflection by 

exploring the path profile numerically. It also must examine the terrain 
near the reflection point for roughness and ground cover. Finally, it must 
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check for obstructions in the reflected path. These procedures have been 
incorporated into the CRC VHF/UHF propagation prediction program[ 1 ], which 
calculates field strength automatically, starting from a numerical representa-
tion of a path profile. 

1.2 RELATIONSHIP TO PREVIOUS WORK 

Many formulas relevant to this work are given in NBS Technical Note 
#101[ 2 ], hereinafter referred to as TN101. The relevant material is on pages 
5-1 to 5-9, and in the Annex, pages III-1 to III-16. Some formulas are also 
found in Hall[ 3 ], section 4.2. Various equations in this work are quoted 
from these references. Occasional errors are corrected. In addition, new 
equations are derived that are required for completely automatic calculation 
by computer. 

1.3 LIMITATIONS 

Reflections are taken into account only for line-of-sight paths. On a 
path obstructed by hills, a reflected wave may indeed reach the receiving 
antenna, but its contribution is unlikely to be important. This is because 
the reflected wave usually suffers much more diffraction attenuation than the 
more direct one, since it goes deeper into the shadow of the obstruction. In 
any case, calculating the phases of diffracted waves is difficult to do 
reliably. 

Only horizontal surfaces are assumed to reflect radio waves. This is 
partly because smooth horizontal surfaces (oceans and lakes and sedimentary 
basins) are much more common  than  smooth sloping surfaces. It is also partly 
because reflections from sloping surfaces are difficult to deal with in any 
case. This is because the calculation is done from a path profile, i.e. 
elevations along a line. The slope of the terrain perpendicular to the line 
is not known. The reflected ray may be deflected to the side, and miss the 
receiving antenna, or rays may reach the antenna from points on either side 
of the line. (The procedure does not demand an exactly horizontal surface, 
but any variation in height near the reflection point counts towards its 
calculated roughness.) 

In the derivations, it is assumed that the angle between the incident 
ray and the reflecting surface is small. That is, the height of the antennas 
above the ground is small compared to the distance between them. It is also 
assumed that all distances are small compared to the radius of the earth. 

The amplitude of the reflected wave is subject to some uncertainty due 
to our lack of detailed knowledge of the reflecting surface, in particular 
its roughness. So while the position and general appearance of maxima and 
minima may be expected to be correct, the amplitude may be only approximate. 
Even on paths over water, the surface roughness is not perfectly known, 
since it depends on the weather. 
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1.4 EFFECTIVE EARTH RADIUS 

In this report, no explicit attention is paid to the refractive 
properties of the atmosphere. It is assumed that the earth is always 
represented with its effective radius ae , defined as 

1 	1 	n t  = — 
ae  a n 

where a is the radius of the earth 

n is the refractive index of the air 

n' is the vertical gradient of n. 

(In the rest of this report the subscript is dropped from ae .) 

It is well known that ray trajectories become straight lines when the 
earth's radius is changed to its effective value, but it is also true that the 
lengths of these lines represent the phase paths. This assertion may be 
justified by examining the properties of the wave equation in spherical 
coordinates, as is done, for example, by Bremmer[ 4 ] (p. 147) and by Wait[ ] 

 (p.117). The wave equation with a linear vertical gradient of refractive 
index is equivalent to the saine  equation without a gradient, but with the 
earth's radius replaced by its effective value. The only restriction is that 
heights above the surface must be small compared with the earth's radius. 
Since the rays of geometric optics are specialized solutions of the wave 
equation, it follows that they are correctly transformed by using an 
effective earth radius. 

1.5 NOTE ON THE DIAGRAMS 

Diagrams of propagation paths, if drawn to scale, would be very long 
(horizontally) and thin (vertically). In order to make them easier to work 
with, they can be modified in wo ways: (1) The diagram can be drawn as if 
the length of the path were comparable to the radius of the earth. The 
advantage of this is that vertical and horizontal scales are equal, and 
right angles look like right angles. The disadvantage is that horizontal 
distances appear to depend on height above sea level, which for the shorter 
paths actually used, they do not. (2) The diagram can be drawn with a 
realistic path length, but with the vertical scale stretched. The advantage 
of this is that horizontal distances do not appear to depend on height. The 
disadvantage is that since the vertical and horizontal scales are different, 
angles are distorted. Both types of modification are used in this report. 

2. FINDING THE POINT OF REFLECTION 

2.1 GENERAL PROCEDURE 

If the terrain is entirely horizontal (the ocean, for example), finding 
the point of reflection is not difficult (Section 2.4). However, we might be 
faced with the sort of terrain illustrated in Figure 1, in which there are 
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Figure 1. The profile of a hypothetical propagation path which traverses two lakes and irregular ground 
in between. The antennas are at A1 and A2, and the reflection point is at P. 

lakes at different levels, and irregular terrain in between. Which lake is 
in the right place to reflect a ray from one antenna to the other? 

We can begin by finding points along the path between which the 
geometrical point of reflection must occur (Section 2.2). Then we find the 
average elevation between these limits, and obtain a reflection point for 
this elevation (Section 2.4). The position of this point is only approxi-
mate, because the average elevation on which it is based may be different 
from the elevation at the reflection point. Now the elevation "at" the 
reflection point is really the average elevation within all or part of the 
first Fresnel zone around it (Section 2.3). Therefore we next find the 
average elevation "at" the estimated reflection point, and use this new 
elevation to find a new point. After a few iterations, we have the correct 
reflection point. If the terrain profile is smooth enough in the appropriate 
region to support reflections, this procedure converges rapidly. The follow-
ing sub-sections describe the procedure in more detail. 

2.2 LIMITS ON POSSIBLE REFLECTION POINTS 

We are given a terrain profile and the elevation above sea level of the 
antenna at each end. To begin, assume we know nothing about the terrain 
profile. Some possible reflecting surfaces (curved lines) are illustrated in 
Figures 2 and 3. These surfaces are concentric about the centre of the earth, 



Figure 2. Antennas separated in height by 200 m, and a number of possible spherical reflecting surfaces. 
For each surface, the reflected ray is shown. The locus of all reflection points is shown as a broken line. 

Figure 3. The same diagram as Figure 2, except that the antennas are separated in height by 1000 m. 

5 
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and, to a sufficient approximation, they all have the same radius of curva-
ture, the effective earth's radius. For each of these, we can find the 
horizontal position of the point of reflection (Section 2.4). The diagrams 
show the locus of such points. What we must search for is the point at which 
the path profile intersects this locus. 

We can put limits on the region in which we must search. One limit is 
the mid-point of the path, since the reflection must occur in the half of the 
path occupied by the lower antenna. The other limit is illustrated in Figure 
2;it is the point at which the direct ray is tangent to one of the hypothetical 
reflecting surfaces. This particular surface is the highest one for which 
the propagation path can be considered line-of-sight. The horizontal 
coordinate of this limit, measured from A

1, 
is 

d a -- (h -  h1) 
x  = - Z d 2 	1 

where d is the distance from one antenna to the other, 

a is the effective radius of the earth 

hh
2 are the heights of the antennas above sea level. (Under the 

assumption that d << a, it makes no difference whether x and d are measured 
along a curved or straight line between the antennas.) This equation may be 
derived by noting that, apart from an additive constant, the equation of any 
of the horizontal curved surfaces is 

(1) 

and the slope of the surface is therefore - (x - d/2) / a. The result (1) 
follows by equating this slope with the slope of the line joining the antennas. 

If the difference in the antenna heights is greater than d
2 

/ 2a, then 
x, as given by equation 1, falls outside of the propagation path, and the end 
of the path must be taken as the limit. This situation is illustrated in 
Figure 3. We now know that the geometrical point of reflection lies between 
the centre of the propagation path and the point given by equation 1. This 
concludes the first procedure mentioned in Section 2.1. 

2.3 FRESNEL ZONES - RELFECTION ZONE 

We must now take note of the fact that the specular reflection of waves 
does not take place at a point. Rather it takes place, and requires a smooth 
surface, over a finite region for which ray path lengths do not vary by more 
than some fraction of a wavelength. If this fraction is À/2, the region is 
known as the first Fresnel zone. For low ray angles, the first Fresnel zone 
is much longer along the propagation path than perpendicular to it (e.g. Hall, 
Section 4.3.2, p. 91). Therefore, it is reasonable to suppose that a smooth 
surface extends for a sufficient distance perpendicular to the path, and to 
be concerned only about its extent along the path. Imagine that the reflec- 
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ting surface has boundaries that are straight lines perpendicular to the 
propagation path. Then the curves of Figure 4 represent the amplitude of the 
reflected wave as a function of the distance of one or both boundaries from 
the geometrical point of reflection. 

From either curve, it may be concluded that the first Fresnel zone 
(dr/À < 0.5) is unnecessarily large for representing the reflecting region. 
A surface bounded at dr/À = 0.2 or 0.3 would reflect just as well. The choice 
is quite arbitrary, but for the prediction program, a 'reflection zone' has 
been defined to be one bounded at dr/À = 0.3. In any case, the chosen boundary 
should lie to the right of x = 0.6 (dr/À = 0.18), since otherwise there is a 
danger that in a later procedure (Section 3.3) the part of the reflecting 
surface just beyond the reflection zone will be incorrectly counted as an 
obstruction. 

Figure 4. Fresnel integrals. The factor multiplying t2  in the integrand has been chosen as ir in order to 
normalize the integrals in a way suitable for this diagram. The Fresnel zones are separated by vertical 

lines. When x = 1, the first Fresnel zone is clear, and when x = 2, the first four Fresnel zones are 
clear. The top scale gives the path length relative to that of the geometrically reflected ray (Sr) in 

units of wavelength l>1. 
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A method for finding Fresnel-zone or 'reflection-zone' limits is given 
in Appendix A3. Once a reflection zone has been defined, the average 
elevation within it may be found in order to continue with the search for the 
correct reflection point. Later, after the correct reflection point has been 
found, the zone may be examined for surface cover (Section 3.1) and for 
roughness (Section 3.2.3). 

2.4 POINT OF REFLECTION, GIVEN A HORIZONTAL REFLECTING SURFACE 

We are given the elevation of a reflecting surface. This elevation is 
an average over some part of the propagation path, either the initial region 
of Section 2.2, or a reflection zone of Section 2.3. We wish to find the 
geometrical reflection point. Let h1  and h2  be the heights of the antennas 
above the surface. The relevant geometry is illustrated in Figure 5. At 
point P, a plane touches the curved reflecting surface. The separation 
between this tangent plane and reflecting surface is (x-x ) 2 /2a (from equation P 2), where x is at P. Then the height of antenna A1 above the tangent plane P 
is 

2 
xl h' = h - — 1 1 2a 

and the angle between the incident ray and the tangent plane is 

h 	h 	x 1 	1 	1 tp . — = — _ _ 
1 x

1  x1 
 2a 

Similarly, 

	

h' 	h 	x 

	

2 	2 	2 lp = = — 
2 x2 x2 2a 

The geometrical point of reflection is found where 

h2  hl  x2  -x i _ 0  
" = tP2 - 	= --i-  - 7-) - ---2-a. - 2 	1 

with the constraint that xl  + x2  = d, the (constant) total path length. This 
may be solved for xl  (See Appendix A2). Once we know the reflection point, 
we can calculate the difference in path length between the direct and 
reflected ray (Appendix A2). This path difference, together with the 
reflection coefficient (Section 3.2.1), is required to find the phase of the 
reflected wave relative to that of the direct wave. 
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A2 

Figure 5. Reflection from a spherical earth. The antennas are at A i  and A2. P is any point chosen on 
the reflecting surface. The broken line represents the plane tangent at P. hi and h2 are the heights of 
the antennas above the spherical earth, while hi and h j are their heights above the tangent plane. In 

the important special case when angles VI 1 and Vi2 are equal, P is the geometrical point of 
reflection, and the distances x1 and x2 are designated  d1 and (12. 

3. AMPLITUDE OF THE REFLECTED WAVE 

3.1 TYPE OF GROUND COVER 

Trees and buildings are expected to be too rough to support reflections. 
Therefore the amplitude of the reflected wave is multiplied by the fraction 
of the reflection zone not covered by trees or buildings. 

3.2 REFLECTION COEFFICIENT 

3.2.1 Reflection Coefficient for a Plane Surface 

The reflection coefficients for a plane surface having a given conduc-

tivity and dielectric constant are given by both Hall (his equations 4.10 and 

4.11) and TN101 (pages 111-3, 111-4). The complex reflection coefficient, 
as given by Hall, is 

2 )4 
P — 

p sin 	(n
2 

— cos
2

1P
)2 

where n is the refractive index of the ground. 

11) is the angle between the ray and the surface. 

p = n
2 for vertical polarization, and 

1 

(6) 
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p = 1 for horizontal polarization. The square of the refractive index 
is the complex number 

n2 = E
r 
+ i 60  ci A  

where E
r 

is the ratio of the permittivity of the ground to that of air 

a is the ground conductivity in Siemens/metre 

X is the wavelength in metres. 

60 represents 1/2uE0c, where e o  is the permittivity of free space, and 
c is the speed of light. 

(Although Hall gives a negative sign in this expression, appropriate for a 
wave of form exp i(wt - kx), it must be positive for a wave of the form 
exp i(kx - wt). See, for example, Panofsky and Phillips[ 6 ], equation 11-15.) 
TN101 gives the same coefficients expressed in terms of amplitude and phase. 
This avoids the use of complex numbers, but at the price of much more 
complicated expressions. Both TN101 and Hall display graphs of reflection 
coefficient for different types of ground. Those in TN101 are much more 
detailed. 

Conductivities for different types of surface, as recommended by 
CCIR[ 7 ], are displayed in Figure 6. Permittivities (relative to air) are 
almost independent of frequency at VHF and UHF, and are given in the table 
below: 

Sea water 	 75 

Fresh water 	 80 

Wet Ground 	 30 

Medium dry ground 15 

Very dry ground 	3 

These values are from CCIR [7] , except for sea water, which is from CCIR [8] . 

In most cases, the values used for the ground constants are not 
critical, since for small values of 	the absolute value of the reflection 
coefficient is close to unity, and the phase close to u, with only a weak 
dependence on the constants. Vertical polarization over seawater is the only 
exception to this. In the prediction program, the ground constants are 
averaged over the reflection zone. 

3.2.2 Divergence Factor 

The amplitude of the reflected wave is reduced by divergence due to 
reflection from a convex mirror. TN101 and Hall give the divergence factor 
as 

2 d
1 

d
2  

D = (1 + 
a d tan lp 

(7)  

(8) 



1n 111•11M111M111111n 111111MMIIIMIMIIIP n Mill 
MIIMMIIM1111•111111MIIIIIMIM111n 0 411M1 

MIMEO mammal 
M111111111111111/111111/M1111r 

3Ro uND 11111,0»21pr,e 
(..1.0 

hFRESH  VVATER 
çt 

VERY DRY GROUND 
1 	I 	I I Ill 

\NET GROUND 

10 

1 

>_ 	0.1 

5: 

C.) 
o 
o 
C.) 0.01 

0.001 

0.0001 

11 

SEA WATER 

10 	 100 	 1000 

FREQUENCY (MHz) 

Figure 6. The conductivity of various types of ground at VHF and UHF, adapted from CCIfir I. 

10000 



(9) 

12 

where dl and d2 are the distances from the antennas to the point of reflection. 
(In Hall, a misprint has deprived the exponent of its minus sign.) 

3.2.3 Terrain Roughness 

A rough surface reflects less well than a smooth one. Hall (his 
equation 4.8) gives the factor for the reduction in amplitude as 

exp 
 {

1 
- — [4 u a

h 
 sin 1P /X]

2 

 2  

where ah is the rms height variation, and X  is the wavelength. (TN101 and 
Hall do not agree on this. The expression quoted above is evidently the 
correct one, since it is obtained from Beckmann and Spizzichino[ 9] , who 
derive it from first principles.) In the prediction program, the height 
variation is obtained from the path profile within the reflection zone. For 
any part of the reflection zone not occupied by water, an rms height varia-
tion of 3.3 m is added to account for small-scale variations that may be 
concealed within the 7.6 m (25 ft) contour intervals of topographic maps. 
Water surfaces are assumed to have an ENS  height variation of 0.3 m. 

3.3 ATTENUATION DUE TO OBSTRUCTIONS 

Even if the direct ray clears all obstructions, this may not be so for 
the reflected ray, since it follows a lower trajectory. To obtain an estimate 
of the attenuation of the reflected wave, it is necessary to find the Fresnel-
zone penetration of any obstruction under consideration. Consider the 
reflected wave from the point of reflection P to antenna A2 (Figure 7): The 
wave here is approximately the same as if it came from the image Al. (It is 
exactly the same only very close to the ray, since a spherical mirror is not 
aberration-free.) Therefore the diffraction attenuation due to obstructions 
between P and A2  may be calculated as if the wave actually came from Ai. The 
attenuation between Al  and P may be similarly estimated, using image A2 . Of 
course, the part of the terrain surface that does the reflecting should not 
be counted as an obstruction. Therefore the search for obstructions begins 
beyond the edge of the reflection zone. The location of the image is derived 
in Appendix B. 

A simple algorithm is used to calculate the diffraction attenuation of 
the reflected wave, since great accuracy is not needed. (Since the nature 
of the reflecting surface, in particular its roughness, is usually not known 
precisely, an elaborate calculation of diffraction loss is not warranted 
here.) On each side of the reflection point, the obstruction with the 
greatest Fresnel-zone penetration is found, and the following formula is 
applied to it: 

h 	 h A(dB) = 16.66 ( + 0.6) > -  0, 6 

(10) 
h < - 0.6 A .= 0 
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Figure 7. The construction used for estimating the diffraction loss of the reflected wave. Ay and  A are 
the images of the antennas at Ai and A2. F1 and F2 are the reflection-zone boundaries, which, in 

this diagram, happen to coincide with the edges of a lake. For the path Ai to A2, the terrain is 
examined for obstructions between  F2 and  A2. 

Here, A is the attenuation, h is the height of the obstruction relative to 
the line of sight, and R is the radius of the first Fresnel zone for 
diffraction. This formula is an approximation to one of the curves given by 
de Assisf l q. To choose one of his curves, his parameter a has been 
arbitrarily assigned the value 0.5. The attenuation factor is given here in 
decibels, and must be changed to an amplitude factor before use. 

Note that this formula cuts off at h/R = -0.6, i.e. when the path 
difference becomes greater than 0.18 A. (Refer back to Section 2.3 and 
Figure 4.) Therefore any part of the reflecting surface beyond the 
reflection zone defined earlier will easily escape being considered an 
obstruction. 

The application of equation 10 to the reflected wave ignores any phase 
change that the obstruction might cause. An examination of Cornu t s spiral, 
found in many textbooks on physical optics, shows that the phase of a wave 
diffracted by a knife edge differs from that of an unobstructed wave by no 
more than 16 ° , provided h/R < 0.16. (For rounded obstructions the phase 
difference may be greater.) However, as h/R increases beyond 0.16, the 
phase difference becomes large. Now at h/R = 0.16, equation 10 gives 0.23 
as the attenuation factor. Therefore, the phase change due to diffraction 
is large only when the attenuation is severe. Nevertheless, phase 
considerations imply that the effect of an obstructed reflected wave can be 
calculated with only moderate accuracy. 

13 
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4. SUMMARY OF METHOD 

The objective of all the procedures described here is to find the phase 
and amplitude of the reflected wave, in each case relative to that of the 
direct wave. A prerequisite for finding these quantities is to find the 
geometrical point of reflection, by solving equation 5 for the appropriate 
reflecting height. Another is to find the extent of the reflection zone 
around this point, by solving equations A8 and A6. 

The phase is the sum of the phase lag due to reflection and the phase 
lag due to the excess path. The phase lag due to reflection is the argument 
of the complex reflection coefficient p, given in equation 6. The phase lag 
due to the excess path is 2uAr0 /X, where Aro  is given in equation A7. 

The amplitude is the absolute value of the reflection coefficient p, 
multiplied by a number of other factors, listed below: 

The fraction of the 'reflection zone' that is reflective (Section 3.1). 

The divergence factor, given in equation 8. 

The roughness factor, given in equation 9. 

The attenuation due to obstructions, given in equation 10 0  

5. VERIFICATION 

5.1 COMPARISON WITH CCIR CALCULATIONS 

Figure 8 shows a comparison between CCIR ground-wave propagation 
curves[ 11]  and the results of the procedures described here in the case of 
vertical polarization over sea water. The results are similar for horizontal 
polarization and for other ground constants. In the CRC prediction program, 
the methods of this Note are used up to the point where the curve crosses the 
free-space curve for the last time. 

The agreement between the two sets of curves is very close, except near 
the limit of use just mentioned, where they differ at most by about 1 dB. 
The discrepancy here is probably due to the interaction of the second Fresnel 
zone of the direct wave with the earth's surface, which is not taken into 
account in the reflection method. (If the reflection curves were extended 
farther to the right than shown here, they would approach the free-space 
curve. This is because of the increasing defocusing of the reflected ray, 
and the neglect of the attenuation of the direct wave as the earth penetrates 
its first Fresnel zone.) 

5.2 EXAMPLES OVER SMOOTH AND IRREGULAR TERRAIN 

Figure 9 shows the signal strength over the ocean as a function of 
distance, as calculated by the CRC prediction program. The part of the curve 
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near 100 km corresponds to the curve for h2  = 200 m in Figure 8. Note the 
discontinuity as the program changes from the reflection procedure to the 
CCIR curve. At shorter distances, the interference between the direct and 
reflected waves produce a series of maxima and nulls. 

Figure 10 shows the signal strength on a irregular path obtained from 
a topographic data base. The path extends from CRC property, northward across 
the Ottawa River, onto farmland beyond, and finally into the Gatineau Hills. 
The receiving antenna is assumed to move at a constant height above the 
terrain. Very close to the transmitter, reflections are unimportant because 
the reflected wave is attenuated by ground roughness at the large values of 

One null appears as the receiving antenna crosses the river, and two more 
appear close together as it climbs the hill beyond. Beyond the crest of the 
hill, diffraction loss dominates, until the receiving antenna goes high 
enough on the final hill, where the signal regains its free-space value. 
Here, reflections from the river have no effect both because of roughness 
within the reflection zone and because the central hill is an obstruction to 
the reflected wave. 

Figure 8. Comparison of CCIR field-strength curves (solid lines) with the results of reflection calculations 
(dotted lines). The CCIR curves are from p. 118 of CCIR Atlas[ 11 1 . They correspond to one kilowatt at 
200 MHz, transmitted from a vertical dipole 500 m above the ocean. The field strength is calculated at 

height h2. The broken line represents the free-space field strength. 
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Figure 9. Results from the CRC prediction program, as plotted by the program, for the same conditions as in Figure 8, with h2 = 200 m. In this case, 
the reflection calculation is used for distances up to 118 km, at which point the diffraction calculation takes over. 
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Figure 10. A terain profile and the field strength along it, as calculated by the CRC prediction program (solid lines). An antenna transmitting at 500 
MHz is on a 64-metre tower, and the receiving antenna is 10 m above the terrain at each point (dotted line). The free-space field strength is represented 

by a broken line. 
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APPENDIX 	A 

The Reflection Point and Reflection Zone 

Al. SOLVING FOR THE REFLECTION POINT 

A rapid way of solving equation 5 is Newton's method. In general, to 
find the solution of y(x) = 0 by Newton's method, the n+l'th approximation is 
found from the n'th approximation by 

(n+1) = x (n) 	dy 
Vc (n)) 

To solve equation 5 this way, we require the derivative 

h1 	1 

	

d(A9) 	h2 
dx 	 2 a 

	

1 	x2
2 

xl 
 

Before relying on Newton's method, it is worthwhile to verify that it 
will converge to a unique solution. This will be so if the function to be 
solved has the form illustrated in Figure Al(a) on the domain of interest 
(0 < xl  < d). That the function given in equation 5 does indeed have this 
form may be seen by noting (1) that the first derivative is positive for all 
xl between 0 and d, provided that hl  and h2  are positive, i.e. provided that 
both antennas are above the reflecting surface, and (2) that the second 
derivative, 

d
2 (A9)  = 2h2  2h1  

	

3 	3 dx2 
	

x2 	xl 
 

is negative for small xl , positive for small x2  (x1  close to d), and changes 
sign exactly once in the range 0 to d. 

A convenient first trial value for x1 is 

h
1 d  

x1(1) - hl  + h2  

which is the reflection point for a flat  reflector. 

(A3) 

(A4) 
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Figure Al. The form of two types of function whose roots can be found by the use of Newton's method. 
The horizontal line represents zero. Trial values used in Newton's method are numbered consecutively. 

A2. PATH DIFFERENCE, DIRECT AND REFLECTED RAYS 

We require the path difference between the direct ray and a ray 
reflected from a horizontal surface. We want this difference not only for 
the vector addition of the two waves at the end of the calculation, but also 
in order to find Fresnel-zone or reflection-zone boundaries. With this 
second purpose in mind, we allow the angles of incidence and reflection to be 
different. 

Refer again to Figure 5. Consider triangle PA1  A2 . The angle at P is 
u 	11)1 - 11)20 We can find r in terms of r1  and r2  and the angle at P: 

r
2 
= r1

2 
 + r2

2 
- 2r1r2 cos (if  - II)

2 
- II) 

 2
) 

= r1
2 
 + r2

2 + 2r1r2 
cos (11)2 

+ 11)
2
) 

But assuming small angles, we can represent cos (11) 1  + 11) 2 ) as 1-(1P1  +  
which, with a little re-arrangement, leads to 

z 2 	rlr2 (4) 1 + 1P2

)21 

r 2 = (r1  + r„) 1 - 
(r

1 
+ r

2
) 2  

Again assuming 11) 1  + 11)2  to be small, we can extract the square root: 

2 

1 r1r2 
(II)

1 
+) 

r = r + r2 2 1 	 r1 + r2 

(A5) 
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(A6) 

In the last term, we may replace r 1  by xl  and r2  by x2 . Therefore the 
difference between the indirect and direct paths is 

x1 
 x

2 
	

2 
 

Ar = r1 
+ r2 - r 
	(lb + ) 2d 	\ 2 	2 

Suppose, as a special case, that P is the geometrical point of reflec-

tion. Then II/ = 4)2, and (II/ + 11)2 ) 2  = 411) 1  t1)2 . Then recalling also (equation 

4) that xl  = hi and x2  11)2  = g, the path difference between the reflected 

and direct rays is 

2h' h' 
1 2 Ar - 

o 
 

d 

where hi  and h2 are given in equation 3. This is equation 5.9 of TN101 and 
equation 4.6 in Hall. Aro  is the path difference between the direct ray and 
the specularly reflected ray. 

A3. FRESNEL-ZONE AND REFLECTION-ZONE BOUNDARIES 

TN101 (page III-5) gives closed-form expressions for the Fresnel-zone 
boundaries. However, they are not quite correct, since their derivation 
assumes that reflection is from a plane tangent to the earth's surface, 
rather from the spherical earth itself. 

Reflection-zone boundaries for a spherical reflector may be found in 
the following way: At the edge of the reflection zone, as defined in this 
Note, the excess path length is 

Ar - Aro = 0.3 X 

(or 0.5 X at the edge of the first Fresnel zone). Therefore we want to find 
the roots of the equation 

Ar - Aro - 0.3 X = 0 

As shown below, we may solve equation A8 for xl (and for x2) by using Newton's 
method. The two roots thus found are the desired boundaries, illustrated in 
Figure A2. 

A3.1 Convergence of Newton's Method for Reflection-Zone Boundaries 

If the function on the left side of equation A8 has the form shown in 
Figure Al(b), there are two roots, and, as the diagram illustrates, Newton's 
method will always converge to the root on the same side of the minimum as 
the initial estimate. 

It remains to show that the function  tir  - Aro  - 0.3  X  does in fact 
have the form shown in Figure Al(b). We are going to need equations 4(a,b), 

(A7) 

(A8) 
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Figure A2. The (SrA = 0.3) reflection zone for À = 1 m. Also the first Fresnel zone for X = 0.6 m. 
Horizontal and vertical separations of the antennas are the same as in Figure 2. The broken line in 
the centre is the locus of reflection points, as in Figure 2. The solid lines are the reflection-zone 
boundaries, solutions of equation A8. The broken lines outside of these are from equation A14. 

The dotted lines are from equation A15. 

and two equations that follow from them: 

h 	h 
= 	± 	d 

1 	2 x1  x2  — 2a 
(A9) 

d / 

	

—dr-c UK) 	= 	2 

	

- 	2/ 
2 X1 

Now we can differentiate Ar (equation A6) to obtain 

(A10) 
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2 	x x 	 11) dAr 	x2 - xl 	 1 2  Ali 	\(.1 _ 
dx1 	2d 	(1P1 	1P2) 	d 	Y.1 	"2) x2 	xi  

Factoring out (Ip i  + 4)2), collecting terms in the other factor, and remembering 
that x1 + x2 = d ' we arrive at 

dAr 1 	2 	2) 
dx 1 = 

(A11) 

This first derivative is required in the application of Newton's method, as 
well as in the proof of its suitability. Note that it is negative on the left 
side of the reflection point, and positive on the right side. This is the 
behavior illustrated in Figure Al(b). 

In order to investigate the behavior of the curvature, we differentiate 
again, to obtain 

d2Ar (h, 1 	1 4. 	4.  h  

dx1 
	
x1

'2(
x2 

 

Since the angles  ij  and 11) 2  can be negative for some values of xl , 
depending on the path length, it is not yet obvious whether the secona 
derivative is always positive. Equations 4(a,b) can be used to express 
it in terms of x1 and x2. 

	

(h,22 	, 

2 dx1 	x1
3 

x2
3 	

4a2 

(Al2) 

By further differentiation, it may be discovered that this derivative is a 

minimum when x2 = 1472-T1E-  x1  . Remembering that xl + x2 = d e 
xl and x2 may be 1  

found in terms of h h2 and d, leading to 

4 
d2Ar > 1 (A--- + 1,47) 	d 

dx1
2 — d3 	1 	2 	4a2 

Now we must put some limit on the distance between the antennas. If 

we put hl  = 0 in equation 3, we see that the horizon distance as seen by 

antenna Al  is 12ah1, and similarly for antenna A2 . On any line-of-sight 

path, the sum of the horizon distances must exceed the total path length d, 

and we must have 

+ 	> 
- 



h
1 	

h
2  

x1 = d1 	
'1 d1

2 d22 a 
d2Ar  

dx1
2 (A13) 

11T7  x1(1) = dl "." 	a2 
(A14) 
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With this inequality and the one above, it finally becomes clear that the 
second derivative is everywhere positive. This completes the proof that 
Newton's method will converge to find the reflection-zone boundaries. 

A3.2 Initial Estimate for Reflection-Zone Boundary 

There is another use for the second derivative, namely to construct an 
initial estimate for a reflection-zone boundary. If Ar is expanded in a 
Taylor series about the reflection point at d/ , and if we ignore terms of 
order higher than 2, we have 

2 
Ar = Aro + a2 (x1 - d1) 

where 

1 d2Ar  
a2 - 2 	 2 dx1 

 
xl = dl 

At the reflection point, where xl  = dl , the angles 1P1  and tii 2  are equal, and 
from equation Al2 we obtain 

Then if we specify Ar - Aro  = Sr, where Sr might be 0.3 A for example, the 
initial estimates of the reflection-zone boundaries may be taken to be 

This approximation to the reflection-zone boundary is shown in Figure 
A2. It is very close to the exact value when the line-of-sight between the 
antennas is well clear of the earth, but diverges from it for grazing 
incidence. This need not cause any trouble, since the starting value for 
Newton's method can simply be constrained to lie between the end points of 
the path, and the method will find the correct solution anyway. 

Nevertheless, the starting value of xl may be improved by an arbitrary 
modification to equation A14, in which the two values of x1(1) 

become: 

1/  Sr  
x1(1) = d1 	, dr 

-r - a 
2 d1

2 

(A15) 

dr  
x1(1) = dl 	, L. -r a2  

d2
2 

These modified values are also shown in Figure A2. 



25 

APPENDIX 	B 

Focal Properties of a Convex Mirror 

Bi. FOCAL LENGTH 

The focal length depends on the radius of curvature 'a' of the mirror 
and on the angle of incidence. Consider Figure Bl. Rays incident normally 
(downward in the diagram) diverge after reflection because the direction of 
the tangent to the surface is different for the two rays. From elementary 
optics, the focal length of the mirror in this case is a/2. Rays incident 
obliquely at the same points diverge by the same relative angle, because the 
surface tangents are the same as for the normal rays. However, for oblique 
incidence, the perpendicular distance between the rays is smaller than for 
normal incidence, by a factor of sin ip , where 1P is defined in the diagram. 
Therefore, if the reflected rays are projected backward, they meet at a 
point which is closer by the same factor. Therefore the focal length of the 
mirror for oblique incidence is 

a . f = —sin ;I) 2 

The sign is negative because the image is a virtual one. From the lens 
formula, the distance di of the (virtual) image of antenna Al  from the point 
of reflection is given by 

1 	1 	2 _ 
d 	d1  a» 1  

where sin IP has been approximated by 1P. 

To see how the image distance is used, refer back to Figure 7. The 
virtual path for finding the diffraction attenuation between P and A2  is the 
line A1 to A2 . Its length is d1  + d2 . Similarly, the other virtual path is 
the line Al  to  A. 

B2. IMAGE HEIGHTS 

There remains one more detail to take care of, namely to find the 
height of the images in a rectilinear coordinate system in which height is 
zero on the reflection surface at the ends of the path. (The coordinate 
system used in the prediction program is one easy step removed from this one; 
there, the height is zero at sea level at the ends of the path.) For this, 
we require the angle a between the tangent plane at the point of reflection 
and the base line of the coordinate system. Refer to Figure B2. This angle 
may be obtained from the slope of the reflecting surface at distance x from 

(B1) 

(B2)  
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Ale which is -(x - d/2) / a (See Section 2.2). Since, at the point of 
reflection, x =  

Œ - 

d
2 

- d
l 

2a 

The height of Al may then be found by projecting backwards along the 
reflected ray: 

h" = h
2 
 - (I) + a) (d

2 
 + d') 

1 	I 

Similarly, the height of A T2  is 

h" = h - (11) - a) (d + d' 2 	1 	 1 	2
) 

 

Figure Bi. The focal length of a convex mirror having radius of curvature 'a'. Rays are shown for 
vertical and oblique incidence, and in both cases, the reflected rays are projected bacicward to 

meet at a virtual focal point. 
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Figure 82. The relationship between the coordinates used for finding the reflection point, and those 
used in describing the terrain profile. The required parameter is the angle a between the plane 

tangent at the reflection point and the line joining two points at the same elevation at the 
ends of the path. 
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