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Abstract

The image transmission pvroblem is"i;nil;ro-duced as well
as the more important digital processing techrﬁques for image-
bandwidth compression given. These different rriethc;ds are then
examined as to their relative merits and disadvantages. A study
of pel amplitude frequency distributions and pel difference .
amplitude distributions is then made, using standard digitized
images. From these results, companded DPCM followed by
negacyclic coding is chosen as the source cod‘ing scheme to be

investigated. A companded DPCM image processing and trans-

- mission system is then simulated. The resulting pictures are

presented, along with a proposal for a system incorporatihg a

negacyclic codec.,
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1. Introductiorl :

As the complexity of a society increases, the armount of
information required for preservation of its existence increases.
This is in fact true of our highly technologic‘al society, where the
increase in information is truly explosive, whether it be in the

fields of commerce, law, sicence or even entertainment, This poses.

related problems of first storing this huge mass of data and secondly,
that of, whenever required, efficientlytransmitting parts ofthis infor-
mation to appropriate users. The word "efficiently" is very important

since if no effort is made to reduce the amount of non-essential information or

redundancy transmitted, communications channels will soon become
overtaxed nearly as fast as they can be e_stdblished. This appiies as
significantly to data storage channels: if the redundancy in & given
amount of data is reduced, then that amount of data willhave reduced
storage reciuirelnents; or equivalently; moredata canbe storeci

in ‘a given storage area, . In this report, the ﬁroblem'under
consideration is that of reducing information transmission require-

ments for certain classes of signals.

The process of reducing the redundancy in an arbitrary

signal will result in its bandwidth being decreased, or équivalently
to a reduction in its transmission rate or its sforage requirements. !
The phrase bandwidth compression (BWE) will be assumed hereon

to imply all of the above considerations.

Much of the information flow in to-day's communications is
in the form of visual data, the most obvious example being commer-  «
cial television systems; others are closed-circuit television, spacecré,fé
picture transmission systems and facsimile. The use of these facllitiesﬂ

{




would tend to increase if these communication systems weré more
efficient, énd hence transmission quicker and cheaper. Also, the
hierarchies of available systems would ptoiiferate; cleariy not
every user would be ;nterestéd in say a te‘lé_vision system transmit-
ting 30 frames/s, the standard commercial;‘rate, if the visual dat_a!
to be examined is sofne fixed image. To make this even clearer,
consider the difference in requirements for trénsmitting a sound
motion picture and a series of slides with a running commentary.
Obviously, the second case would require a much lower frame rate,

and so it would be a waste of money and channel bandwidth to use a

standard T V. channel,

The type of users who may be expected to exhibit interest
in such a "slow" TV system might be professionals needing to consult
graphical data during a telephone conversation, or commercial
" concerns requiring copies of charts, documents, etc. The availability
of reasonably quick transmission channels for visual' data would enable
for example branch offices to reduce the overhead required for
storing much of their visual information since it could be located

at a central office and easily accessed by all branch offices.

Visual signals are among the most information - rich and
highly redundant signals known [ 1] . This is conceptually clear
if we examine an arbitrary image: most of the informa tion resides
in the contours of objects rather than in theAactual grey level of the object.
Hence the areas ofa picture-exhibiting the least information, i. e;
the areas 'of oknly griadual change in grey level, which comprise the
major portion of most pictures,is highly redundant. This will be
more thoroughly explained in section 3.

Thus image signals are naturally of great interest from the



data compression viewpoint. Source éoding can usually be applied
to great advantage to image sources in order to reduce their
redundancy and so to reduce their transmission rate (or equiva-
lently, reduce the image ‘bandwidth, or compress the data:) . This
results in a much more‘e'f\ficient use of available channel ba:ndwidth,
and a reducti;)n in information transmission costs. For reasons of
convenience and cost, the actual redundancy reduction can be done

digitally, in a software environment.
In an earlier report [ 2] the more important digital image
processing techniques for ByC were examined from a- theoretical

rather than an engineering viewpoint., In this report, engineering

considerations will be stressed in comparing various processing methods.

From these comparisons and measurements of some basic image
statistics, a system is described which has been simulated on a
PDP-8 minicomputer at the University of Ottawa. Simulation was
used instead of a hardware implementation since changes in overall
configuration and in algorithms can more conveniently and cheaply

be effected using software rather than hardware.

The short-term goal of this project is to develop a practiéal_‘,
digital image processing-system which can be.used for BWC of slow-
scan television transmissioss(in an analog form) through a narrow-band
voice channel. This report includes a preliminary proposal for such
a system. What is to be developed is essentially a syétem which ,
using a slow-scan TV unit as an analog image source,will effect an

A/D conversion on the picture signal, digitally process the re sultingA

‘digital signal for redundancy reduction, then reconvert it to an.analog

signal for transmission through an analog channel in as short a time




as possible. Thié must be accompli.shed while retaining the
original image quality. The image reconstructed at the receiver
by accomplishing the reverse of the above operations can then be
compared subjectively to the same image transn.nitted without

any processing for bandwidth reduction. This subjective evalua-
tion can of course be supplemented by more analytical image

quality criteria,thoughno criterionhas as yet been found which

truly’ characterizes image quality.

The long-term goals involve taking an analog picture
signal, digitizing it and processing it digitally for bandwidth
compression, then transmitting the re sultivng digital image éignal
through a digital channel. This type of system should.be come
more important, especially since the availability of digital |
hardware and channels is continually increasing while their éo st
is decreasing [ 3 7. .In this project, all digital processing
will be implemented by programming in software on a mini-

computer,



2+ Image Coding for BWGC

2,1: Some Image Characteristics

A picture, as considered here, caﬁ be defined as a
monochrome continuous non—negé’cive fanction f(x, y) defined over
a finite region of a 2-D sPace* and in which the value of the function |
at any. point is given by the brightness level of the image, i,e. itis
a real-valued function of two real variables. In general this bright-
ness level varies from black to white, with a continuous disfﬁbﬁtion
.of grey levels in between. This definition applies as well to gré,phic,
two level (i.e. black and white only) images, such as maps, line-
draw-ings and printed matter, as to the more common half-tAone. image,
such as black and white photographs. For convenience; all discus-
sions are confined to images ofdimension N x N, where N is a power
of 2. |

Since all the processing cénsidered here is to be implemented
digitally, the continuous image must of neces sitsr be sampled in 2-D
space at the Nyquist rate, and quantized in amplitude. The samples
themselves are known as pels (from picture E}ement). Henceforth by
mention  of the word image, a digiti;ad image is impiied. '

Also, by image is implied a representative image of the
ensemble ofimages under consideration. It is possible to design an image
such that its statistics are very different from thé average. Examples of

such images would be intensity wedges, some checkerboard test patterns etc.

& .
Pictures requiring motion rendition (eg, television) can be described

as real-valued functions of 3 real variables: 2-D space and time.
These are beyond the scope of this paper.



Hence, since an image must be of finite size, f(x,y)

will be non-zero over only a finite range of values of x and y, Also,

since there exists a practical limit, say M, to the brightness of any

point in an image, f(x,y) is bounded by M.

To the observer, an image consists of many large,
low~detail or textured areasv, and relatively few sharp, high-detail
contours, which describe the edges of the low-contrast areas, Loss
of texture information results in Aa coar se image cont.aining abrupt
jumps in grey level instead of a quasi-continuous gradation in grey:
level. This leads to the appearance of a sharp discontinuity where
none . éxists: this is referred toas false. contouring or quantization
noise.. This is much more object'lo.na:ble than unstructured noise of
the same value, since the eAye is much more sensitive to structured
than to unstructured noise. On the other hand lacl.ciof edge rendition

results in a defocussed piéture, which is also quite objectionable,

Hence, to get a good quality digitized (or PCM) image, the
sampling must be done at least at the Nyquist rate, while the quantization -

must be fine enough to remove false contours and cofrectly reproduce

edges,

2.2:. The Bandwidth Problem:

The problems posed in the transmission of PCM images can

now be examined.

Given an analog image Signé,l of say, 4 MHz nominal band-
width, this can be sampled at § MHz, a-nd if 128 grey levels are allowed,
then 7 bits/sample (or pel) are needed. Hence, to transmit theA PCM



i

image in the same amount of time as the analog image, the bit rate

‘must be 8 x 106 x 7 bits per second, i.e. 56 Mbps, which requires

a minimum transmission channel bandwidth of 28 MHz . Hence 'by\
digitizing the image, we have increased its bandwidth réquirements
by a factor which is equal to the number of bits used to represent
each sample., Then, why digitize? The reasons are many~-fold,

but one of the more important ones is the 'Q_apability of implementing
practically any type of processing, whether lineér or nonlinear, on

a digital computer while for example, only linear operations could be

performed on an analog image by an optical system.
Digitized image signals thus take up a broad bandwidth,

several times the bandwidth required 'to‘tlzté,nsmit the same analog
image, while the greatest advantages to be gained, as far as trans-
mission is concerned, are ease of extraction of the digital signal
from noise, and the capability to regenerate the picture signal over and
over again on long distance communicatio links, while minimizing
the noise. Unfdrtunately, the price to be paid for this, a 7 to 9
times increase in bandwidth, is much too high. Hence, .we want to
transmit digitizéd images, but using a much narrower bandwidth;
what is then required is a digitized image transmission system
which is much more efficient than "straight" PCM, so that narrower
bandwidths can be used, or equivalently, so that the total number of
bits required to transmit the image will be minimized.

To see how this can be accomplished, a closer look at
image characteristics must be taken, Information theory states that

most communication signals convey information at a rate well below




the capacity of their transmission channels. The excess capacity
is réquired to accomodate the redundancy, or reiaeated information,
which the signals contain in addition to the aétual information.
Removal of some of the 1~edundéncy would reduce the channel éapa;
city required for transmission, which is equivélen’c to bandwidth
reduction,
| Existence of redundancy is particularly evident in pictures.
Many areas of little or no détail exist in an image, where the péls
have the same or nearly the same grey level, and so the pel-to=-pel
correlation is very high. Hence a statistical correlation exists
between the various points in the 2-D plane of the imége, which gives
rise to a 2-D plénar redundancy. The elimination of this redundancy.
would reduce the amount of information that need be transmitted, .
with a corresponding decrease in bit rate, but not in non-repeated
information rate. ‘

From the preceding discussion, it is conceptually simple to
visualize a system in which all of the image redﬁndancy is removed,
At the XMTR it would consist of an irﬁage scanner, decorrelator and

rate-equalizing buffer, this last to match the variable bit rate of the

decorrelator output to the transmission channel rate, At the RCVR,.

a buffer would adjust the channel rate to the variable rate required by
the correlator. The output of the correlator would then be a recons-~
truction of the originél image signal from the scanner in the XMTR.

Qualitatively, if an image is again considered as consisting

of many large textured areas and relative\ly few sharp edges or contours,

it can be seen that there exists a high correlation among the pels in a
given textured area, a high correlation among the pels that "traé:e" a
contour, and low correlation bet:ween the area pels and the edge pels.
Hence, on the average, a high correlation among pels can be expected

to exist in images.
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" In effect, all BWC meﬁ:hods, no matter what they are
called, effect BWC by reducing image redundancy, the method used
being or not being information-preserving. Four basic methods
exist to accomplish BWC: parameter extraction, adaptive sampling,
redundancy reduction and encoding. In general, an image processing
technique for reducing imagé_ transmissién baﬁdwidth \ﬁill make use
of more than one method in an effort to optimize the digital image

transmission system.,

What follows is a brief look at some of the more important
approaches to BWC, with a view to stressing their relative advantages
and disadvantages., It should be noted that the classification s'ysfem
used has been chosen for convenience only and does not necessarily
correspond to any other system of nomenclature. Also, most of the
methods described here have already been ekamii‘led in much more
detail in [ 47 . They will be very briefly described here‘, the
emphasis being on their relative advantages and disadvantages.,

Another very important point to be covered is the increase in suscepti-

_bility of the processed picture signal to channel noise, since the large

amount of redundancy originally present served to immunize the

~ signal to channel noise to a certain extent. Certain techniques such

as PCM and especially DPCM will be covered much more extensively

than in [4] , as they apply more to the system to be discussed in
|

. section 4.
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2.3 : Methods of Achieving BWC:

2.3.1. Spatial Transform Coding:

2.3,1,1. Description: ~ Spatial transform coding of

images is an attempt to make use of the redundancy reduction offered by
both statistically-and viewer-oriented (psychovisual)coding. The
adjective spatial is applied here to transform coding to underline the
fact that, when transforming an image, we are transforming in

space, the 2-D ﬁlane of the image.

Transform coding consists essentially of two steps, the
fir st of which linearly transforms the original set of correlated pels
into another set of coefficients, which we would ideally want to be
independent of each other, but which can be, at best, completeiy
uncorrelated, The first step is the one which is dependent on the
image statistics. The second step consists in quantizing each, or a
subset of, the coefficients. Here, psychovisual coding comes in :
the number of bits required to code the coe_fficients and the portion
of the coefficients examined will be dictated by the subjective effect
on the human viewer, if that is the ultimate use which will be made of
the transmitted image. The ultimate use to which the encoded image

is to be put will largely determine the coding scheme for this step. .

‘The scheme that produces the "best" image as far as the viewer is

concerned will not necessarily- be the one that produces the best

image in the mse sense or for further processing, say for paftern
recognition. In other Words, optimizing a reconstructed image for
subjective viewing may degrade it from the point of view of information

content, making it unsuitable for anything except viewing .
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Spatial fransfor_rn coding (STC) can be  considered
esseuntially as a process of dimensionality reduction. The transfofrmation
merely changes the position of the frame of reference for the image
with re Spéct to the coordinate s; so that the fﬁp-st important informa-‘
tion occurs along one portion of these axes, making the points in |
the coordinate system more independent, i.e. reducing their redun-
dancy, so that some coordinates will become of négligible importance,
and so can be deleted. More practically, the bandwidth éom— |
pression occurs as follows: in the original image all pels have more
or 1ess.the same importance, with the redundancy appearing in the
form of interrelationships between individual pels. After transforma-
tion however, all points no longer have the same importance, with the
points carrying most of the "true" information tending to appear in a
different part of the transform domain from the points due mostly to
redundancy, If the transformation is chosen properly, the informa-
tion-bearing transform values are many orders of magnitude larger
than those caused by redundancy, and so these 1atter't§5rms can be
reduced by either zonal or threshold coding. All transformations
covered are information- preserving, since their Jacobian is unity.
Théy are-also linear and.reversible,.otherwise no image reconstruction
would be possible. Another advantage of the transfornﬁ_rhethod of
image coding is the inherent channel error imm‘unity, for low error
rates, which results from the averaging operation of the transform,
since each intensity sample of a reconstituted image is a weighted
function' of all transform samples. This is all the more remarkable

since most other methods actually decrease noise tolerance of the ..
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transmitted signal by reducing redundancy, that which givés

PCM signals part of their noise immunity,

'

In practice, STC is achieved by use of a digital computer,'
which accepts a digitized image for'process_ing and outputs the
image transform. The rule by which this ié accomplished will of
course depend on the partiéular transformation used. The next
step involves filtering in the transform domain, either threshold
or zone-wise. This is also accomplished by a digital computer, and
thle fewer the number of T~domain coefficients transmitted, the greater
the BWQ., and usually, the lower the quality of the reconstructed image.
At the receiver, the inverse transform is used to reconstruct the
image. A general STC image transmission systemAis jillustrated in

block form in fig. 2-1.

Each of the two steps described above can be implemented
in different ways: the first step can use either 1-D or 2-D trans-
formation, and there exists a very large number of possible transfor-
mations,as well as many different methods of T~domain filtering -

for the second step. \

2.3.1.2. Step ! : Spatial Transformation

The main advahtages of 1-D spatial transformation
as opposed to 2-D transformation are its compatibility with existing
line-by~line image scanning equipment, lessening of the high-—speed
memory requirementé, and the possibility of on-line prc;cessing of
the image, which cannot be done as yet with 2-D transforms. There
also exists special-purpose hardware for impleme nting certain 1-D

S

nfast" transformation algorithms,
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" Fig. 2-I : Block diagram of a general coding image transmission system,
- The dotted block labelled *

sampler and quantizer,

is an alternate location for the
In other figures, the filtering, scanning,

sampling and quantizing functions are considered to be included
in the scanner block. '
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Its main disadvantage is that, due to the fact it works
on a pel-to-pel basis on a line, it cannot take into account line -
to-line redundancy, and so less BWC can be expected than for
the 2-D case, This is because results indicate that line -to-
line redundancy (on a pel basis) is as important as pel-to-pel
redundancy: clearly, W‘hy should image redundancy be a

uniquely horizontal phenomenon ?

Some important {-D transformations used in image pro-
cessing can now be examined more closely as to their relative

merits,

2,3.1.3 : 1-D Spatial Transformations :

(a) 1-D Karhunen-Loeve Tr ansformation (KL'T)

This transformation is used principally as a yardstick
against which other transform methods for BWG may be compared.
This is because the KL'T can be derived mathematically as the
optimum transformation for a mean~square-~error (mse) criterion,
As will be explained further in section 2. 3.1.4 (a), if a threshold
is set in the transform domain, then the KL T is the optimum
transform for minimizing the numbef of transform samples lying

above the threshold while satisfying a mse criterion. The KLT is also

ate

" known 2as the principal component, eigenvector, or Hotellingﬂ~

transformation [ 5 ]

In an earlier report, the Hotelling and Karhunen-Logve trans-
forms were treated separately. This may unfortunately have
given the impression that they differ in some way. They

describe the same transformation, with the same characteristics,
but the KLT is usually defined on continuous variables, while the
Hotelling transform is defined on discrete variables.
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As for its drawbacks, even though it minimizes the mse
for a given threshold, the mse is not a valid error criterion for
many types of images, especially if they ar-é“destined to be viewed'
and not further processed. (Aétually no good analytical cﬂterion
for image fidelity as far as human viewing is .concerned is known
as yet). Secondly, this transform requires a great amount of compu-~
tation relative to other methods, and no "fast" transformation
algorithm exists for the KL'T. 'So the search continues for fast and
efficient transformations, even though they may be suboptimal in

the mse sense.

(b) : 1~D Fourier Transformation : (FT)

The main advantage of this transformation lies in the avai-
lability of special-purpose hardware which will very efficiently
compute the 1-D i«“ast FT (FFT), using say, the Cooley—-Tﬁkéy
algorithm, which can be implemented in 2 N 1ogz N complex

- operations, where N = 2" is the side dimensioﬂ.of the square image,.
This results in savings in hardware éosts. The fact that images
are usually scanned line~-by-line makes this a very tempting pro-
position for on-line image processing, even though to the author's

knowledge, no such implementation has yet been realized.

A modification of the Cooley-Tukey algorithm that implements

ail-D FFT using N 1ogz N complex additions and .SubtrAactions and only
g [ 1og2(N-2) ] + {1 complex mulﬁiplic’ations,has been developed.

Since for most computers, MULTIPLY time is longer than ADD time,

the time saving is significant.
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Its main diéadvantages 1ies‘in the fact that since the FT
consists of complex numbers, all rriultiplication‘ and additions
must conseqﬁently be complex, and so are much slower than the same
number of operations performed on real numbers. Hence it is
slower than, say, the Hadamard transformation, which operates only

on real numbers.

(c): 1-D Hadamard Transformation: (HT)

The main advantage of this transformation lies in the fact
that special-purpose hardware exists to efficiently compute the 1-D
Fast HT (FHT), us;lng N 1og‘2 N real additions, which is faster by
about one order of magnitude than the FFT. Only additions are

required since the HT consists only of + 1's,

2.3.1.41 2-D Spatial Transformations:

For 2-D transforms, if the forward transformation matrix
is constrained to be orthogonal, then the transforrnation can be inter-
preted as a decomposition of the image data into a generalized 2-D
spectrum; Then each spectral component in the transform domain
corresponds to the ainount of energy of tha,t spectral orthogonal
function contained in the original image. In other words, the
transform serves as an orthogonal basis for a decomposition into
some generalized spectral representation, Hence the "usual"
concept of frequency must be generalized fo include transformation
of orthogonal functions otherthan sine and cosine waveforms,

Also all of the 2-D orthogonal transforms which will be examined

will have the added requirements that their kernel be separable
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and symmetric . In practice, this means that the 2-D
transformation can be implemented in two steps: the first
step is accomplished by doing first a vertical row-by=-row.
transformation, then doing a line-by-line transformation of
the transitional 2-D data (or vice-versa)., This is an

important consideration in practice.

The main advantage of 2-D transformations for
image processing is that they take both vértical and hori-
zontal correlation into account, Their main drawbacks
are the low speed with which they are implementable, due
to the number and complexity of the required operations and
the large~-scale high-speed memozry requirements. Following

are the more important types of 2-D spatial transforms,

(a) 2-D Karhunen-Loeve Transformation:

This transform, which is neérly identical to the
1-D KLT, sﬁffers from the same problems : computational
complexity and lack of a fast computational algorithm. -
Since it is difficult to implement, but dptimum,it ie used
nearly exclusively as a standard of comparison with other
coding methods, and in particular, spatial transform éoding
methods. This transformation produces uncorrelated |
coefficients, minimizes the mse and packs the maximum
amount of variance into the first k coordinates, for aﬁy k.

(k >0, -k €l).
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(b) : 2=-D Fourier Transformation :

The main advantage of this transformation is with
respect to 2-D éigenvector transformationég';“ the FT has a fast
computational algorithm, while the others do-not. In block coding !
of images, the FT produces a smaller mse than. the Haar and .
Hadamard transform for block sizes larger ‘than 32x32, arici also pe'rforms ‘

better than the slant transf.orm"for' blocks gi‘eater than 64 x 64 ,

However, the FT still has .sc‘)me disadvantages; ‘for
example, compared to the 2-D‘HT_,' which can be implemented using
the same number of operations, but which consists of addition of
real numbers rather than multiplication of éomplex numbers, there
will be about an order of magnitude more time required for the

Fourier transformation than for the HT.

(C) : Good Transformations : (GT)

\

. This class of transformatiorsis a proper subset of Kronecker
Matrix Transforms(KMT) (i.e., so-called "powers of two KMT's"),
One of their characteristics is that they are all implementable in

ZN 1og2 N operations , i.e. they all possess "fast" computational
algorithms. Following is an examination of the most important

Good transforms .,

(a) ¢« . Hadamard Transformation ( or Discrete Walsh Transform)

This is one type of GT. Its advantage lies in the fact

that it can be implemented in N 1og2 N + N real additions , since

the HT consists exclusively of + 1's. Since for most computers,




- 19 -

ADD time is much less than MULTIPLY time, the time difference

in implementation for a FFT and a FHT is explained.

Hence the HT is faster in implementation than is the FT,
and is also faster than the slant transformation. |

Its main disadvantage is that the degradation due to the loss
of high-frequency (i.e. "edge " information caused by zonal sémpling
is greater than for the FT, since it uses a rectangular wave basis

instead of a sinusoidal one.

(e) :+ ~ Slant Transformation : (ST)

This is the only transformation used for image transformation
which was specifically designed to attempt to tailor itself to image
characteristics and to computational efficiency requirements. It is
an attempt to compact the image energy into as few transform
domain éamples as possible. It possesses a fast computational algo-
rithm, and in at least one implementation, the ST gave a mse only
slightly worse than that of the KL'I; and for some range of parameters,
also slightly worse than the FT, but better than all others. For
certain simulations, it.was found to give subjectively much less
degradation than the HT,and doonly Sligh‘tly‘vwrisé than the KLLT. No

information on the time required for implementation has been given.

C () Haar Transformation :

This is an orthogonal but nonorthonormal transformation
consisting of + 1's and 0's which is directly related to the Walsh

(or Hadamard) transformation. Its main advantage lies in that its
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. implementation requires 2(N-1) operations, which is much less

than 2 Nlog,N operations. Unfortunately the advantage of this

very efficient computational algofithm is offset by its relatively

' large coding error, and so the Haar transformation has not

generally been used for image coding,

More recently, [ 6] however, it has been found
that the Haar transformation could give  results which are sub-
jectively as good as those obtained from the Hadamard transform,
while the implementation is much quicker. The results are

slightly better if block cociing is used.

2.3.1.5:Basis Picture Interpretation of Image Coding:

Another way of referring to image transformation is to
consider the transform as a series expansion of the N x N image
onto say N x N basis pictures. Thus a piéture is described as a
weighted sum of "basis pictures". In préctic.e, ‘as when approxi-
mating a waveform by a Fourier series expansion, the series
expansion is truncated after say k terms. Then, since the basis
pictures are orthonormal, the mse of approxifnation by the

, :

truncated series is equal to the sum of the variances of the co-

efficients discarded by the truncation.

It has been shown that the Hotelling (or KL T) transfor-

mation in this respect

T (1) produces uncorrelated coefficients
(ii) " minimizes the mse of approximation
(iii) packs the maximum amount of variance into the

first k coordinates, for any k.
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Of course, for any practical-sized Aimage, the Nx N -
basis subpicture would require too much memory, so that a
more feasible approach is to express ah M x M subpicture
(M < N, M/N) as a linear combination of Mx M basis subpictures,
It was found that the set of basis pictures re-s:ﬁlting in the mini-
mum mse was the Hotelling transform, followed by the Fourier,
then Hadamard transform .

2.3.1,6: Step 2:Transform Domain Sampling

1

The technique s used for BWC in the T-domain can be

classified as either being based upon the unique structure of the
energy distribution in the T-plane ©or those that attempt to apply’
conventional spatial domain BWC methods to the T-domain rather
independently of the energy di st.ribution in the T-samples, The
latter type has a much poorer performance due to the large dyna-

mic range of the transform samples and their low (in one case,

zero) correlation as compared to the original imdge pels . which

generally have a high correlation.

Many transform BWC. techniques cAan be analyzed from
the viewpoint of 2-D sampling, in which the image transform is
multiplied by a 2-D sampling function which takes on the values
zero or one ("dropped" or '"retained ") according to some a
priori or adaptive rule. Then the reconstructed image consists
of the original image plus some additive interference that is
dependent upon the form of the original image and the sampling
function. Both deterministic and non-deterministic sampling

have been.-used,
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(a) : Zonal Sa;mplirhg

Since most images exhibit a high degree of correlation
between adjacent pels, in the T~domain the greatest part of the
energy tends to be clustered at certain spatial frequencies.
Hence in zonal sampling, only those areas (or zones) of the
T~-domain which are expected to contain a high proportion of t_’he
energy are quantized and transmitted. This does achieve a large
BWC but unfortunately, at the cost of defocussing: loss of high-
frequency but low~energy T-samples results in an incorrect

rendition of sharp edges.

(b) : Threshold Sampling :

To reduce this problem, T—sal:lzlpling retains only those
T-domain samples which are above a given threshold 1evé1. '
Unfortunately, though this method gives good picture reproduction,
since we cannot predict which samples will be above the threshold,
the position as well as amplitude of reta,inéd T-domain samples
must be coded and transmitted. Hence the bit rate will be in-

éreased, thus decreasing the BWC,

2.3.1.7: Quantization Schemes for BW'_G_}_

_ This step is necessary to code the retained T-domain
samples (after step 2) for transmiséion. Originally uniform
quantization PCM was used to code the retained T-samples
after zonal sampling but more recently, much work has been

done on "matching" the quantization levels and quantum steps
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to the T-domain coefficient statistics, so as to achieve an even

lower bit rate.

In the technique known as bléck quantization, a sub-
section (i.e. a subpicture) of the image is spatially transformed,
a statistical parameter of the subsection pels is measured and
the T-domain samples are quantized accordingly : where there
is more detail, ’.che quantization will be finer, The idea here is
to achieve a high efficiency with respect to bit rate while maintain-
ing the system complexity to a minimum; the cost in complexity
for a very slight increase in BWC performance éan be extremely

high,

2.3.2: PCM Coding of Images:

Even though, as mentioned previously, PCM requires<

too large a BW for image transmission, it is still worth mention-

‘ning since it describes the basic or historical digital image trans-

mission techniques. Its use is usually confined to being a standard
of comparison for other image transmission systems.

PCM consists only of scanning, sampling and quantizing
the image. (see Fig., 2-II). If the quantized s‘alnples are then coded
and transmitted through a noiseless channel, an exact replica of the
quantized image will be received; clearly, if the quantization is not fine
enough, there will be some degradation in the received iﬁnage, But _

only as much as in the quantized original image.

Given a restricted channel capacity (restricted to less
than the Nyquist rate) and sampling the image  at the maximum

channel rate, the image will be undersampled,so a pattern of
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dots and/or lineswill appear in the reconstructed image. This
pattern is tﬁat of the sampling function used, and is often
referred to as an artifact, since itis a structﬁr‘e' which does not
appear in the original image. o

Another problem is that, if the grey scale is not quan-
tized finely enough, false contours ("quanti_zétion noise") will occur
in the reproduced image in the textured areas, i.e. where there
is a gradual blending from one level to the next. These false
contours are especially objectionable to a viewer since they are
structured, and the eye is much more sensiﬁx‘ze to structured than
it is to unstructured noise of the same rms value., Use of this -
fact has been made in one scheme wherein pseudo-random noise
is added to the analog picture before quantization, an identical noise
being subtracted af the receiver; this serves to "break up" the
false contours, permittiﬁg blending of grey levels in the recons~-
tructed image., Unfortunately, while this method may be promising
for images intended solely for viewing, it will of course degrade the
image with respect to any further pr0cessing,- such as for parameter
extraction, etc, -

Other attempts to arrive at breaking up false contours

have been to use either random or ordered dither, which.is a low

amplitude high~-frequency perturbation patitern: the penalty for this

is a slight increase in the background noise level of the image. o

- However, it does restore some of the information which a normal

coarse quantizer would remove, such as spatial details and
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intermediate shades of grey. Again, this method should be used

for viewer-oriented systems and not for information extraction.,

2.3.3: DPCM Coding of Images :

Since the human eye is much more sensitive to intensity
differences than it is to absolute intensity values in images; and
since there exists a strong correlation between nearby pels in
most images, it is natural to assume that the transmission of pel
differences as opposed to absolute pel values would afford a large
BWC.

‘ The bas;tc difference transmission technique is differential
PCM (DPCM), in Wthh effectively the derivative of the input is

transmitted rather than the instantaneous-ampl'itude, as in PCM.

DPCM [ 7] systems are based primarily on an
invention by Cutler. His original patent in 1952 was granj:ed for a
system which produced a quantized estimate of the next pel, given
the previous pel or some combination of the previous pels, then
transmitted the signed quantized difference between the estimate of the
next pel value and the actual next pel value., His implementation
to obtain the estimate,which he called a predictor, originally con-
tained integrators; this explains why integrators are mentioned

in the basic definition of DPCM.

Wiener [77 had derived the basic equation for linear
prediction as early as the 1940's. In 1955, Elias [ 7] applied
linear prediction to PCM coding, while in 1968 Graham [8 ] applied
linear prediction to Cutler's basic DPCM system. Today DPCM
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is usually considered as a type of prediction quantizing system

( see Fig. 2~III ). Incidentally, PCM can be considered as a

special (or degenerate) case of DPCM.,

While it has been determined [7 ] that nonlinear
prediction is superior to linear prediction in the signal-to-

quantization errvor sense, it has not been determined how much

‘better it would be, so that most DPCM image processing systems

have confined themselves to the inclusion of a linear predictor
in the quantization feedback loop. This makes analysis much

easier, since nonlinearities introduce .analytical  problems.

DPCM as used in image processing is a system which
gains a bit-rate Aadvan’cage by making us.e.of some statistical rela-
tionships of the image; it reduces the inherent redundancy in the
image so that the transmitted signal consists mostly of non--.
redundant information. However, the very redundancy of PCM
is what gives it such a large noise immunity ; a one-bit error in
a transmitted image sample will produce an error in one pel only
in the reconstructed imége, For the case of DPCM, however,
there is less redundancy to provide noise iinmunity, and so this

system is much more vulnerable to channel noise than PCM.,

This is qualitatively obvious if we consider the worst
case situation of one error occuring in the first transmitted
difference only; then the fir st and all subsequent pels in the
received image will beinerroreven if they are transmitted through
a noiseless channel, since the 2nd pel is linearly dependent on the

1st pel, the 3rd on the 2nd, and so on.
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Clearly, these errors could affect at most one line
of the reconstructed image if resets consisting of the actual
(PCM) pel value were transmitted say,as the first.pel on eachline.
Or, if the channelerrorrate is high, resets (or updates) could be

sent more often, say'three or four times perline. [ 9 ] _

Also, it has been shown that [ 10 ] if DPCM is
used to reduce the quantizing noise by say k db, then the error
rate in the digital channel required for satisfactory transmission
is reduced by a factor of (1. 26)k., However, this is of little
consequence if the digital channel has a low error rate, and if

the limiting degradation is that caused by quantizatiori noise,

then a decrease is quantization noise is desirable, even if this

means increasing the noise introduced in'the transmission medium.

In short, DPCM provides a reduction in bit rate as
compared to PCM, or equivalently, an increase in image quality
for a given bit rate, at the price of increased system complexity

(and therefore cost) and a reduction in channel noise immunity.

(\

Returning to the linear prediétor_as described above,
in most cases the estimate is simply taken to be the difference
between the current pel and the preceding pel multiplied by some

factor P (0 <p < 1). This can be implementéd very simply as

shown in Fig 2-IV. p of course is the pel correlation coefficient.

However, there is no reason to believe that the.above
scheme is the best linear prediction scheme., Since there exists
a high pel-to-pel correlation in images, the question is whether
or not to confine the estimate to be a function of the previous pelonly:

over how many consecutive pels does a high correlation exist ?
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Martin [11 ] made a study of the 2-D planar redun-
dancy of images as a function of the number of "neighbouring "
pels taken into account. He found that by far the greatest part of
the fedundancy is contributed by the first precediné point (on the
same scan line)., The only other pel offering any significant |
contribution to the redundancy for the pel under consideration is
the one immediately "above' it, on the preceding scan line,
Noting the relative importance of these two contributions, the
case for the pel on the preceding scan line is weak, since the
extl“& required memory would hardly be worth the expense, given

the very slight increase in performance,

This is in contrast to the prediction ﬁsed in DPCM speech
quantization [127] ,where from 3 to 8 previous samples are used
to predict the value of the next pel. It would obviously be a waste
of hardware in this case, except in exceptional circumstances.

| Unfortunately, Martin's results were for areas and did
not specifically apply to pel-to-pel correlation albng a scé,n line,
However, Habibi has shown that, theoretically the prediction error
from a nth—order predictor decreases with n up ton =3, with no
appreciable change in prediction error for n >3, .His results applied
to the (n~1) preceding pels ' along a scan line. Hence predictors
of order > 0 (i.e. utilizing more than the previous pel value in the
prediction scheme) are useful for image processing. Fig. 2-V

illustrates a generalized non-adaptive nlCh order predictor,

Rice and Plaunt [13 7] state that correlation studies on
Surveyor and Mariner pictures indicated that of all pels preceding

a current pel on a scan line, only the one immediately. preceding
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" the current pel contributed significantly fo the prediction process.

Obviously, there is no general'agreement about the order of pre-
dictor: required.

Of course, if the prediction scheme is to be near -optimum, :
it must adapt itself continuously to local image conditions, which

will substantially increase the predictor complexity. The adaptive

part would be in the settings of the various weights or gains asso-

ciated with each of the n previous pels to be considered.

So now, through the agency of some prediction and’
quantization scheme, a DPCM signal has been produced. Some of
its characteristics can now be examined.

First, given a ic—bit PCM input to a differential quantiéer,
the output will be a (k+1)~bit DPCM signal. At first glance, it
seems we are producing bandwidth expansion instead of BWC.

This is due to the fact that the absolute value of the pel difference -
can be the whole dynamic range of th(? gray scale, which requires
k bits to express; however, the difference also has a sign, which
requires an extra bit , hence the (k+1) bits required.

Fortunately, there is a way out of this [ 147 ~ this
is due to a factor inherent in human vision, The sensitivity of the
human visual system to sméll differences in luminance decréases
at boundaries between light and dark areas. Thus, to match to
this characteristic, small amplitude jumps are quantized finely
while large amplitude ones are quantized coarsely. In other
words, the DPCM quantizer must be a linear one followed by a
digital compressor with a characteristic such as shown in Fig. 2~VI

or the compression can be implemented in the quantizer itself. Whichever

{
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method is used, -t‘he compressed DPCM signal is much more
limited in dynamic range than with the original PCM or DPCM ;~;
signal, hence the DPCM éignal can be 1'ed'uged to k' bits (k'< k).
This will of course only produce an approximate reconstruction
of the corresponding pel at the receiver, but it is possible to
keep the reconstruction error to a low relative value, as will be
seen below.

Another point of interest can be mentioned helge; since
in a DPCM signal, the differences tend to occur in bursts of the
same sign, then the sign bit can be replaced by a sign difference
bit, In othe_r words the sign bit would normally be a 0 (say), and .
would be a 1 only if there were a change in sign from the pi‘evious _
sign. Clearly, this does not achieve any bit saving, but it does

on the average reduce the weight of the DPCM words, if the

.average length of a one-sign run is greater than 2.

Another practical pl'obiem is the following:PCM usually
conftains an even number of levels, if all bit patterns are to be
used for a given word length. Hence the DPCM words rnkﬁst
express an odd number of difference levels (i.e. 0, + 1, + 2,

... etc). To remédy this situation, usually the O-level, the odd ’
level, is combined with either the +1 or -1 level, so as to produce
an even number of differencelevels. This will of course add some
low ~amplitude noise to the 1'ec.0nstructed image but it make more
efficient use of the number of bits allowed for coding the DPCM

levels, C;leal?ly, . this argument does not necessarily apply if,

for k=bit DPCM words, not all possible Zk words are used for




- 35 -

coding the allowed DPCM levels. Then, of the left-over words,
one might be used for coding the 0~1evé1, and other words for
special purposes, such as START SCAN and STOP 5CAN

commands.

‘The DPCM system as described up to now would have

a configuration as illustrated in Fig. 2-VIL.

Referring to Fig 2~VII the output Qi(t)‘for an input

is entered, then x'i is transmi~-

'is received, giving

Xi(t) cah be considered. Say x

1

tted, and assuming a noiseless channel, Xi
a reconstruction 9:1. Now generally there will be a difference
between x, -_and Qi , and this difference will tend to increase oﬁ
the average as i increases, assuming that the difference for the
first image pel was 0. Thisis because of the nonlinearity in-
herent in the compression step after the quantization, sovthat

most levels will not be exactly reconstructed. Of course, if the
DPCM outputs a large jump, then the reconstruction error willbe
large, but the relative error will be nearly independent of the
magnitude of the jump.( However, since large jumps appear
relatively infrequently, these large reconstruction errors are rare.
Also, errors will be introduced if the 0-difference level is inclu-
ded in either the +1 or -1 difference level; these last errors are

of small amplitude (that of the smallest quantion level of the non-~-
uniform quantizer) but they Will‘ appear .very frequently. Hence,
the effect of these two systematic errors is that, as i increases,
even though the error in reconstrué_’cing‘ a given jump may be
unnoticeable, all these errors are being accumulated in the RCVR

adder, such that on the average, the magnitude of this error cangoon
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increasing, So the reconstructed inlé,ge will at first closely
approximate the original image, but as the number of trans-
mitted DPCM words increases, the reconétruction error will
on the average increase in magnitude,thén decrease again, but often
not without having caused long sequences of large amplitude
errors, since the system is not essentially self-correcting, This
effect can of course be limited to one line by resetting the first pel
of each line to its PCM value, but may still be large for some portions
of the line. |

This problem has of course a sirhple solution conceptually,
at the eicpense of more hardware. The DPCM coder must not use
the actual previous pel(s) to form an estimate of thé current pel, as
there is no knowledge of the reconstructed pel errors and so the
transmitted differences may tend to increase the reconstruction
errors. However, if the difference between the previous reconstructed
pel and the current pel are transmitted, then ecach new "jun'l‘p" helps
to compensate for the errors of previous jumps, |

This is because, by finding the difference between the

previous reconstructed pel and the current pel the next reconstructed

pel will tend to be closer to the current pel, so that the system is
essentially self-correcting, given a noiseless channel. Of course,
due to the conlpanding scheme used, this error will not always go to zero
but it will severely limit the magnitude and recurrence of erroré. |
This system then utilizes feedback from the RCVR, and
would have a configuration as illustrated in Fig 2-VIII. This system
would seem to imply the use of a separate feedback channel t.o
transmit the reconstructed values to the DPCM predictor. However,
if the part of the RCVR which p'roduc-es the reconstructed pel \}alues
is also incorporated in the XMTR, the reconstructed pel values will
be available at the XMTR for its lineaf predictor, The overall System

incorporating this feedback is illustrated in Fig., 2-IX,
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2.3.4: Delta Modulation :

This coding system can be considered as a speciali
case of DPCM, in which only 2 levels (+1, 'ﬁsually) are avlloweds
and the linear prediction is the difference be;éween the current
pel and the previous pel, Clearly, this system is extremely

simple to implement, and so, reliable and cheap.

t

' Refinements to this sysfem have been devised in Wﬁich
for instance, the step size depends on .a‘. weighting cir cuit; the
step size chosen being a function of the number of repetitions of
similar bits, such as would occur at an edge. The weigﬁﬁng
circuit can be a function of some local average of the
signal, or ' - a function of the instantaneous slope of the Signal.

Unfortunately, when using A M, for a given bit rate, -
the reconstructed image is nearly always inferior to 'straight
PCM. | |

The principal advantage of A M systems are thdir simpli-
city. However, as just seen, the complexity of the system can be in-
creased in such a way as to ré.duce the bit rate, and hence achieve
better BWC. However, some of these implementations are so
complex that the simplicity advantage of A M over say DPCM
is reduced or lost altogether.

The principal disadvantages of A M are the following :
at sharp edges, the delta modulator cannot correctly track the edge,
since it is restricted in step size; the solution to this is to increase
either the sampling rate or to devise a system where the step size

is ada'pted to local image conditions. The second problem is the
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presence of granular noise whenever the coder "sees" a
string of equal-valued pels, since then the coder outputs

alternate positive and negative steps. Also, for a given SNR,

“a higher sampling rate is required for A M than for DPCM,

2.3.5: Dual Mode Systems :

Nearly all of the systems previously considered suffer

from either or both of the following; if the system is designed

around proper edge rendition, reguiring high spatial frequencie S,
then usually the low spatial frequencies will be badly reﬁroduced

at the RCVR, and vice~versa, An optimum system would consider

“edges and textured areas separately: it would sample the lows:

less finely,but quantize them more finely, and vice-versa for
the edges. It may be possible to achieve this using adaptive
sampling, but this has not been done as yet, _

A dual-mode system is one which utilizes a different
quantization procedure for different spatial frequency bands,
usually separated into a "highs" and"lows" band. _

The different general approaches have been two-fold:
one is to directly transmit a low-definition, analog image for
textured areas and to superimpose on it an image consi sting
of the edges or contours (contours are connected edges). The
other is to code the "lows" and '"highs" using different schémes,
transmit them separately, and recombine them at the RCVR,

To transmit edge information, both the position and the ampli-
tude of the edges must be transmitted, usually using--runelength

coding. This results of course in a bit-rate increase,
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Another approach has been to transmit the edges by
locating and tracing all contours in an image. Edge points are
detected, using some appropriate property of edges, such as
the gradient, then finding other points of similar amplitude
which are connected to it, thus tracing a contour. Of course,
the positions of points in a contour must also be transmited.

In other implementations, curves are fittéd to some of the
contour points to approximate it. From a psychovisual view=
point, contours are very important since the human eye judges
the intensity level of an area by means of the contour surroﬁnding it
it,

The main disadvantages of these systems is first, the

fact that when only portions of an image are transmitted, the

. positions of these points must also be specified; secondly it has

been found that all the information contained in an image cannot
be reproduced using only a low definitién "lows" image and - a
"contour" (or "highs") image. This is becaﬁse edge information
not located on a contour is lostif it is of low contrast when

contours are drawn,
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3: Image Statistics of Interest : [15],[16]

Examination of a representative image, say an aerial j
photograph of a city, poses the problem as to fhe épeciﬂc lo-
cation of the actual - info rmatién and that of tfl_n'e rédundancy.
Eventually, an intuitive feeling is arrived at: the most impor-
tant parts of the images seem to be the shapes, rather than the
grey levels of objects in the image. | The shapes are definéd by
connected edges, or contours, which represent large juﬁlps in
pel amplitude. This is well illustrated in the work of cartoonists,
where the contoursof the drawings carry most of the information,
Since the information is mostly concentrated at the edges, the
redundancy must also be distributed non-uniforinly throughout
the image: it is very small in high-information rareas. and vice-versa.

Thus the redundancy at edges and coﬁtours will be small. Thus it

is to be expected that little BWC can be achieved at edges ,

but most of it will occur in areas of low information, such as
bia.nk or textured areas,

Since the most relevant information is located in areas
of abrupt changes in amplitude, it would seem normal to represent
edges by a differential function, such as the Liaplacian or gradient
function, or more simply, the derivative of the function. Noise
consideration of course preclude diffe:.rentiatir.lg the analog image
signal, but if the signal is digi'tized, the differences between
successive quantized samples (i.e. "jumps in amplitude") can
be considered, Clearly, large jumps or differences wili correspond
to sharply-defined edges, and in a typical image, these will be

relatively few in number .
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Hence the problem can be. restated as follows: what
is required is an efficient method of coding digitized images.
To find an effieie11t method, we need some knowledge of the
digitized image statistics. Clearly, if these statistics are
about the same for all or most images, then some coding scheme
adapted to the image statistics can be found.

One basic statistic would be the frequency distribution
of amplitude levels (i.e. pel values) for a given image. This
was done on a PDP-8 minicomputer for the three images avail-
able on perforated tape: MOON, GIRL and COUPLE. The
resulting distributions are illustrated in Fig. 3-I. The actual
numevrical values for the distribution plots are given in Appendix
A. Clearly from Fig. 3-I, these three images have very different
amplitude frequency distributions. Hence if a Huffman code were
designed to match to MOON, say, it would give a BWC for MOON,
but it might actually give a bandwidth increase for GIRL and
COUPLE. So this statistic is of no use for image coding.

1f the frequency distribution of pel values is of no help,
then some other statistic might be found to be nearly stationary,
i.e. independent of the image, or nearly so. Since, as previously
mentioned, most of the important information is in the pel diffe-
rences, it is natural to exe,lnine the frequency distribution of
differences between pel values, Here, for simplicity, only the
differences between adjacent pels is considered. Also, at this
time, it is convenient to introduce a parameter p , such that
the ith pel difference Ai_is given by '

by = peli- pxpeli_1 » 00 g p g1 (3'“A)

in which p is the correlation coefficient,"an estimate of ‘the correlation

3 h
between the iih and i- 1t pels.
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Fig. 3-I : Frequency distribution of pel amplitudes for
MOON (a), GIRL (b) and COUPLE (c).
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ﬁsing (3—A), the frequenc\y distributlions of the pel
difference‘s for MOON, GIRL and COUPLE were measured.
The gralﬁhical. results are presented in Fig 3—;1!, whilé the
numerical values are given in Apiaendix B. . |
It can be readily ascertained from an examination of

Fig, 3-11 that, for a given picture, the statistics are heavily

dependent on p . One limiting case is. for p = 0, which gives

the same distributions as in Fig. ‘3—1. . However, the most

interesting case occurs for p & 1; this gives a frequency
distril‘aution" which appears very nearly gaussian, ceritered at
the zero;dif_ference point, - This is consistent with previous
discussions of image properties and the high correlation which
has been found to exist between adjacent pels. It also agvrees
a;pproximately with the results obtained by Estournet [15].
Hence the probability of a zero pel difference is high,
while that of a large difference is small. But what is of utmost
importance is that, for P &g, all three images give about
the same pel difference distribution. So pel difference
étatistics are quite similar for all three images and this fact
can be used in the desigﬁ of an efficient image codirig scheme.

Obviously, this scheme will.l be some. type of DPCM system.
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4, Measurements and Simulations:

Work has begun at the University of Ottawa on
simulation of a companded DPCM* system which takes into
consideration the points discussed in section 2.3.3.

A DEC PDP-8 minicomputer was used for the actual imi)le—
mentation, with a high-speed paper tape reader (HSR) for
reading image tapes, while a D/A converter was used to

output images on a CRT display unit., All three sample images,
MOON, GIRL énd COUPLE were available with each pel |
stored as an 8-bit binary number on perforated paper tape.

Thus the pels exhibited a range of levels from ( 00 000 000)

to (11 111 111), or equivalently, frofn..OS‘ to 3778. This

results in 400 25610) possible grey levels for the pels.

g (=

The image dimensions were all 400, x 400_,resultingin 65, 53610 pels.

8 8 )
Thus the original images are described by (25610)3 = 16,

2 bits.
7717, 1610b1ts

The procedure arrived at was for an image processing
program to be loaded on the computer, _‘the_,n one of the image tapes
read in on the HSR. The pel values, after processing, were then
reconstructed and outputtelon the CRT display. The resulting
image was photographed using either a Polaroid Liand camera
or a 35 mm Praktika LTL camera fitted with a 1.8/50 lens,

In all cases, the original image was first displayed and photographed
as a control, then the image tapé re -read in and the actual pro- |
cessing carried out, the reconstructed image outi;utted on the CRT

and itself photographed.

% This is often referred to as non-uniform quantization DPCM

or non-uniform step DPCM.
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The measurement of the pel and pel difference
frequency distributions as outlined in section 3 was the
first item dealt with. This consisted in obtaining a fr_equéncy
distribu‘;ion of pel amplitudes for MOON, GIRL and COUPLE.
(See Fig 3 -1 ).

Next the distributi;)n of pel difference (A) amplitudes

(where Ay is defined as

Ai = peli - p xpeli“1 )
was obtained for different values of the correlation coefficient o -
This was also done for all three image, the reéults appearing
in figure 3 - I, Examination of these distributions clearly
demonstrates the close similarity of the pel difference \
statistics for values of  close to u-nity,.

A companding scheme applied to DPCM was then
arbitrarily devised and tested; it appears in ﬁgui‘e 4 -1 .
This scheme was then incorporated in the DPCM system as follows:
a pel value was read in from the HSR, the difference between
this and the previous pel was calculated, then this was "iuputted
to the compression subroutine, which outputted a compressed
difference. The compressed difference was then "transmitted"

through a noiseless channel, the compressed difference expan-
ded, and an estimate of the original pel reconstructed by addition
to the previous reconstructed pel (A block diagram of this |
system can be examined in figure 4-1II ).

As expected, this scheme produced reconstructed
images:in which on the average, the magnitude of the differences

between the original and reconstructed pels was found to be large
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Range of DPCM coder outputs Compressor output®* |Expander output
(octal, absolute value) (octal, absolute value) | (octal, absolute valu
0 0 0
1 ot 1
2 . 2 2
3,4,5 3 4
6,7,10 4 7
11,12, 13, 14, 15 5 13
16, 17,20,21,22‘ . 6 20
23,24,25,26,27,30,31 7 _ 26
32,33,34,35,36,37, 40 10 - 35
41,42,43,44,45,46,47,50,51 ot 45 .
52,53,54,55,56,57,60,61, 62 12 ' 56 -
63, 64,65,66,67,70,71,72,73,74, 75 13 70
76,717,100, 101,,.. 400 14 103

.
3%

Fig. 4~

Compressor output coded as 4-bit word, + sign bit, so transmitted

as b-bit word, Left-over words are i‘158, + 168, + 178. These

can be used as special symbols, such as a TEST sequence, START

SCAN, STOP SCAN, etc.

I: Companding scheme used for DPCM coder output in all
simulations.
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. Image HSR Compressor
Tape . f ' - p
i
Y
. Counter
Delay . -3 (controls
switch) Predictor
Y
L
2 - Scale
Reference
Channel
4
{ .
Expander Vit gizt’lay > Camera
o
. + N+ AR

Predictor (&

Fig. 4-II : Block diagram of image processing and transmission simulation
system that does not incorporate a feedback loop in the XMTR.
This was the original simulation system. The delay, counter

and % - scale reference blocks are used to generate the previous

pel value for the first pel of each scan line,
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and é,ppéar in bursts in the reconstructed image lines. The original image

and their reconstructed counterparts can be examined in
figure 4 -III . Since the scanning is from right to left and
top to bottom, near the right-hand margins the reconstructed

images are very good approximations to the original. How-

ever, the approximation deteriorates .in bursts along a scanline as the

left-hand margin is approached.

To improve the quality of the reconstructed image,
the original companded DPCM system was modified by
insertion of a feedback loop in the XM TR section. This feed-
back loop reconstructs the previous pel at the XMTR exactly
as it will be reconstructed at the RCVR, given a noiseless
channel, and so the difference between the previous reconstructed
pel and the current pel can be compressed and "transmitted".

The configuration of the RCVR itself remains unchanged.
Figure 4 -1V is a block diagram of this system.

Using this médified éompanded DPCM simulation scheme,
the image transmission simulations were repeated. The results
appear in Fig. 4 - V. A subjective comparison of the recons-
tructed images in Figures 4 - III and 4 -V clearly.
reveals the improvement in image quality provided by the modified -
system.

Finally, to provide some immunity to channel noise, an
algorithm to replace' a pel difference by a PCM update value at
every k pels is being developed. (This is required since the

feedback loop at the XMTR is located entirely within the XM TR
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Fig. 4-III: (a) Original 8-bit/pel PCM version of MOON
and (b) 5-bit/pel reconstruction of MOON, using
a companded DPCM system without feedback in
the XMTR (Fig. 4-II ).

(2)

(b)



o |

Fig. 4-III:(c) Original 8-bit/pel PCM version of GIRL
and (d) 5-bit/pel reconstruction of GIRL,
using a companded DPCM system without
feedback in the XMTR. (Fig. 4-II)
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(e)

()

Fig. 4-III: (e) Original 8-bit/pel PCM version of COUPLE
and (f) 5-bit/pel reconstruction of COUPLE,
using a companded DPCM system without
feedback in the XMTR. (Fig. 4-II).
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. : N

¥ 2
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Y
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switch) A
-1 Predictor

1
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Reference

Channel <
v
Expander Display ! Camera
+ i Unit-
12
Predictor

Fig. 4-1IV: Block diagram of system used for digital image

processing and transmission simulations
at the University of Ottawa.
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Fig. 4-V: (a) Original 8-bit/pel PCM version of MOON
and (b) 5-bit/pel reconstruction of MOON, using
a companded DPCM system with feedback in
the XMTR. (Fig. 4-IV).

(a)

(b)



Fig. 4-V :

=BG -

(c) Original 8-bit/pel PCM version of GIRL
and (d) 5-bit/pel reconstruction of GIRL,
using a companded DPCM system with
feedback in the XMTR (Fig. 4-1V).

(c)



. 4-V :

W <

(e) Original 8-bit/pel PCM version of COUPLE

and (f) 5-bit/pel reconstruction of COUPLE,
using a companded DPCM system with feedback
in the XMTR (Fig. 4-IV).

()
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section and has no knowledge of channel errors. Hence whenever
a channel error occurs, the reconstructed pel at the RCVR and
the output of thé XMTR feedback loop will not be the same, so
that the feedback loop will not tend to reduce the effects of
channel noise.) However, transmission of an 8-bit PCM word
interleaved in a string of either 5 or 4-bit DPCM words requires
more complex hardware to implement, and by the fact that the
PCM word is twice as long as the DPCM word, it is twice as
likely to be affected by channel noise, Also, an error occuring
ina PCM updating word can cause a much larger error in the
reconstructed image than a DPCM word, since the DPCM word
will be companded and limited 1n amplitude by the expander
characteristic, while the PCM updating word, with its much greater.
dynamic range, would be transmitted directly. . The use of a . |
PCM update would also slightly decrease the BWC, by an amount
proportional to the BER of the channei, since the number of
updates used per picture would be 'proporti'onal to the channel BER to
achieve the same quality\ of reconstructed image, , -

*For these reasons, the updating word was chosen to be
a DPCM word, its value being the difference between the half-scale
grey level (2008) and the pel value in the original image. Thus the
update | while "only as exact as the companding scheme can make it,
wili be very close to what the PCM value would be, while 1'eqﬁiring
no more bits than any other DPCM word and reducing the prpbability
of error in the updating word by half, as compared to 8 -bit PCM,
since it is half the length. It also simplifies hardware requirements

slightly, since all words would have the same length, Figure 4 - V1

% TFor 1‘eas§hs of simplicity, in the remainder of this discussion,
a DPCM system utilizing 4-bit DPCM words will be assumed.
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is a block diagram of a system which could be used to simulate
the effects of channel noise on the system and the ability of the

system to recover from channel errors.

In a practical system, it should B'é;-possible to trans- ‘
mit a test sequence before an image is transmitted, get an
estimate on the current BER for the channel, then adjust the
value of k accordingly. This would require some feedback
from the RCVR. If 5-bit DPCM words were used, some of the
"eft-over " words (see Fig, 4-1 ) could be used to directly

transmit the value of k before transmission of the picture,

To simulate this latest system, an algorithm to
produce errors at random locationsin the 2-D image must be
implemented, then the error seqﬁence édded to the transmitted
words, the number of errors per image being proportional to
the BER. It seems conceptually possible to transmit reasonably
high-quality images for relatively large error rates at little or
no cost in BWC, the extra expenses occurring in the hardware .
Of course, for maximum efficiency, the value of k should
adapt itself to the changing BER of the channel.- However, imple-
mentation of this typé of system might cénceivably increase the
bit rate, since test sequences of some kind would ﬁrobably
have to be transmitted, say at every two lines of the image.
The impielnentation would definitely be awkward, and probably
not worth the expense, since the BER would not conceivably
change very much while one image is being transmitted . For the
case where a connection is made tlﬁougll a telephone voice cliannel,
once the connection is made, the channel would probably not change

appreciably until another connection was made,
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- Fig, 4-VI: Block diagram of companded DPCM image processing and
transmission system used for simulations, with added
capability of simulating channel errors, for a given BER.,
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Clearly, there would be at most one connection :made. per image ,
so the implementation of a SYS;"cem where k was adaptive would
probably be of very little help. _

In all of the DPCM simmulations, since the correlation
between the last pel of say the ith line of an ifnage and the first
pel of the (i+1)th line can be expected to be very low, the DPCM
word transmitted for the 1st pel of any line is actually the
difference between the actual pel value and half the grey scale
in this cage)., Hence a large error does not

8 : _
occur in the first few pels of a line of the reconstructed image.

range ( being 200

Another point which should be made clear at this time
is the inherent synchronization of this system . Since the received
and reconstructed images always have the same dimensions, and
since all transmitted words are of the same length, framing
should be perfect at the receiver as long as the framing circuit
gates at the correct time. This can be ensured by transmitting
a unique START word; the end can be determined at the receiver

when the next pel would overflow the standard image dimensions.

Hence it should be pos sible to reconstruct high-quality

images with a BWC of 8 11 with respect to 8-bit PCM, using
5

the above systeni, even in the presence of a relatively high BER.
However, the system is not optimized, and further work must be
done to find, for example, the optimum compression characteristic,
Optirﬁized compressioh schemes have been developed using a mse
criterion [177, but this criterion is 10t necessarily a  valid one
for image processing 8ys1;ernls. Hence some further experimental

work should give useful results,




A BWC of % :1 is not very impressive, but as

- will be seen in section 5, the addition of some more hardware

should provide a means of producing another large BWC factor
multiplying that achieved with the DPCM system described above.
The system comprising the DPCM system with added transforma -
tions will henceforth be referred to as the proposed system, to

be described in the next section . .

The BWC factor of -2— :1 could in all probability be

changed to a factor of % :1 if the 5-bit DPCM is coded as 4-bit

DPCM. The only disadvantage of this is the loss of the tunused "

words (see fig. 4-1) and probably of some image quality as well.

. These unused words could be used as a START command for the

DPCM receiver or for implementing changes, given adaptive
processes, Otherwise these words could be used simply to
represent DPCM levels, giving theorétically a slightly impro-
ved image quality, though it is doubtful that the change would be,
even noticed in a practical system. Clearly,thereis room for
improvement, even of the basic DPCM system as described
above, but a BWC greater than 2:1 could probably not 'be achieved

without a serious degradation in image quality.
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5. Proposed System:

As discussed in the previous section, the systém
could obviously be improved upon. It might::be possible to
find a method of coding the symbol stream emerging from the
DPCM coder before transmission in a very- efficient manner
such that BWC could again be achiéved, giving a larger overall
system BWC factor. One class of codes which have been
suggested are the negacyclic codes [ 18 ] ., They are nearly
unique in their ability to operate upon + ve and - ve multi-level
signals, instead of on binary data alone, and can be easily

generated since they are quasi-cyclic.

The system would operate as follows: the negacyclic coder

(NC) would examine the output of the DPCM coder, and when the
sum of the absolute values of the emerging multi-level signal
had reached a certain value, the NC would interpret fhis n?length'
sequence as being an error pattern,generate a éyndrome of length s,
and transmit the syndrome itself to the RCVR. At the RCVR, the s~
length syndrome would be decoded to produce the n-length "error
pattern™, and this inputted to a DPCM decoder as in the previously
mentioned system. If, on the average, n >> s, then a further BWC
of i;— ) will be achieved., '

It m.ay turn out that the type of output from the DPCM
coder is not suitable for immediate negacyclic coding. In this
case, intermediate processing on the DPCM output would transform
it to a form more amenable to negacyclic coding. Fig, 5 -1

is a block diagram of the proposed simulation system.
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Fig. 5-1 : Block diagram of proposed simulation system.
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The system will complelnént one at the image processingv
lab of CRC at Shirley Bay. The two systems will be linked so that
some of the conclusionsarrived at on an analyti‘éal basis can be
checked under real life conditions,.

One practical aspect of the system that will be of great
interest will undoubtedly be its sensitivity to channel noise. A

little thought immediately shows that the updating scheme used in

the systém without negacyclic coding will be of no help here. If an

error occurs in a transmitted syndrome , then of course it will be
decoded incorrectly at the RCVR, thus producing an incorre.ct input
to the RCVR DPCM decoder. Thus the outputs of the XMTR DPCM
decoder and RCVR DPCM decoder will not be identical, and so the
updating scheme will fail. |

This problem may be alleviated provided an appropriate
error - correcting code can be fognd such that the loss in BWC will
be small compared to the channel noise immunity provided,
This can be most siinply studied by simulation, using a random

number generating algorithm to produce errors in random locations

in transmitted code words and viewing the effect‘ on the reconstructed

image for various BER.
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6. Concluding Remarks

This report introduced the image transmission
problem with some of the more important attempts which
have been made to date to solve it. These have been briefly

examined as to their relative merits and disadvantages.

Next, using the three standard digitized images,
MOON, GIRL and COUPLE, a study of pel value as well as
pel difference frequency distributions was made. It was
concluded that in the second case the statistics were very
similar , while the pel value frequency distributions were

definitely not,being different for all three images.

Using these facts, companded”DPCM foilowed by
negacyclic coding was chosen as the "best" source coding
scheme for thé case under investigation. I-Iowevver, the system
as proposed may still possibly turn out to require.too
complex an implementation and so be too ex‘pensi\}e to have any

practical applications.

A simulation of the companded DPCM portion of the

system (see Fig., 4-1II ) was implemented on a PDP-8 mini-

computer, and the results indicated that some control was required

o_nthe reconstructionerror otherwise it could become relatively
large. This error control was then implemented in the form of
a feedback loop producing a reconstructed pel at the transmitter

itself, Then a method was suggested to reduce the effects of

channel noise on the reconstructed image and was found to be effective.
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The BWC of slightly less than 2:1 produced by this
system was judged to be too small to justify the sysfem cost
in hardware, so a negacyclic ,codAerA wa.s iﬂse_r_ted between the
DPCM coder and the .channel. This coder éonsiders DPCM :
sequences és representing error patterns and outputs a short
syndrome which uniquely describes the "error pattern". The.
DPCM portion of the RCVR is then preceded by a negacyclic
decoder which will output DPCM sequences, given a Syndrome.‘
Larger overall bandwidth reduction factors could be expected to

result from this system.

Clearly, while the results to date are promising, only

preliminary work has been done. However a library of image

Aprocessing and display routines has been developed to run on the

PDP-8, so the simulation system exists in its basic form, and
could easily be altered or added to by using appropriate sub-
routines., Of course, the use of different input devices will
necessitate additional A/D &LyA converters, interfacing hardware,

etc.

Another point that must be stressed is that the final
system configuration will not necessarily be as outlined in the
report. For'eiamplé it might be found Wo‘rthwhile to use pre-and
post-emphasis. on the analog image signal before A/D and D/A
conversions., Ifit is found that the approach taken is-either not
feasible for some reason(s), or gives unsatisfactory results,

alternatives will be tried. Again since the requirements are for



S 4 WNg BN EE AR an e an

-71 -

a physically-realizable system, little time will be spent on a
system which may be excellent in theory but is found to be un-
workable in practice, as these systems are only of academic

interest.

The most interesting aspect of this proposal lies of
course in the use of negacyclic codes to achieve BWC.
The code itself can be simply generated using cyclic techniques,
even though the code is not strictly cyclic 3 the greater part of
the work will consist in making a judicious choice of a proper
negacyclic code. V.C. Chau [197] of the University of Ottawa,
in a thesis to be published soon, has derived many generator
polynomials for negacyclic codes of different lengths, and the

choice of code will conveivably be made from these. Appendix

C contains some background on negacyclic codes while Appendix

D gives lists of Galois field elements for some ofthese codes

as well as the corresponding generator polynomials,



Appendix A: Pel Distributions




Pel Distribution, MOON:*
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% In all distributions, only non-zero occurences are indicated.
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+0000 . 9876 T T kpeas  Teest ol +0B90 0206
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Appendix B: Difference Distributions
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Pel Difference Distributions, MOON*; -p= 0. 98 '
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(i)

-’:Appendix C: Negacyclic Codes [ 18]

A negacyclic (NC) code V of block length n over GF (p)
(p prime > 2 and n a nonmultiple of p) is the set of all
multiples of a generator polynomial é(X) which divides x* + 1
X" 41

over GF(p). The quotient h(X) =
(p) q (X) 2(X)

is called the parity

check polynomial.

.In the discussion of NC codes we require the Lee metric

rather than the Hamming metric.

The L.ee weight of the n-tuple N R over GF(p)

is the sum of the Lee weights of a, .

The Lee weight of a, = \ai‘ = 47 a, modulo p and
-1
0= ol = 5.

For example, the sequence 1 2 -2 -1 0 -1 over GF(5) was

the Lee weight = [1] + | 2| + |-2] + |-t} + 0 | + |-1] = 7.

By a t-random-error-correcting NC code V, we mean that V
can correct any combination of t or fewer errors as long as the Lee

weight of the error pattern is t or less.

For example, if t = 2 and p =5, then the error polynomial
B(X) canbe a X' with [a| = 0,1, 2; a X 4 2, %) with

la‘il + ]’a,jl < 2.

It is of interest to note that, since in the correction of burst
errors it is the length of the burst that is involved and not the weight
of the burst, NC codes do not have any advantage over cyclic codes in

regard to burst-error correction.




(ii)

Expressing V(X), an element of V, in the form

2 n-1
V(X)) = ao+ a1X+a2X +....+an_1X ,
let us consider
2 n-1
! = -
V Y(X) an”1+aOX+ a1X toeot a5 X ,

where V!(X) is said to be an NC shift of V(X). We note that

S
E
I

X V(X)) - I X Ay

or

\ B n
V(X)) = X V(X)) - an-—i(X‘_H)'

Since g(X) divides V(X) and Xn-l—I, it follows that g(X) divides -

V{X)., Thus we can make the following

Comment: For .every word of V, the NC shift of the word

also belongs to B. A
This indicates why NC codes are called what they are. The

analogy between NC codes and cyclic codes is obvious,

Analogous to the class of cyclic BCH codes we have the known

following
. 3 5
Theorem 1f the roots of g(X) of V include a, a , a0 ,...
2t - -
a 1, where 2t -1 < p, then V ist-random-error-correcting.

From the theorem it is clear that the main restriction is that,
for a given p, t has to be less than p+i. We recall that there is no

such restriction in the case of BCH codes,




v

.

(i)

Since g(X) divides x™ 4 1, this also means that g(X)ﬂ

- 2
divides X“"-1, Therefore 2n = pr-i or n = - Er—l . .
4 > y
In view of this we have the following

: p -1 _
Comment: With reference to the theorem, V hasn =" 1

r ’ ‘ !

).

and a is the primiti‘ve element of GF (p

For example, if p ='5 and r =2 . and t =2, then we have

r 5 r '
GF(p') =GF(27), n. = ETZ:—L = 12. If we construct GF(25) using

T

2
X 4+ X + 2 which is a primitive polynomial with degree r = 2, then

3 2t-1
a

we find that ™ = is a root of X2 - 2, Therefore g(X) =

2 S 2 \ 4 3 ‘
(X +X+2) (X -2) = X"+2X +X+1. Thus this g(X) generates

a (12,8) Zférrol;—correcting NC code.

Since g(X) divides X +1, where n=B-§-—l , the knowledge of

the irreducible factors of X +1 is vital to the design of NC codes,

o
Negacyclic Codes With n £ pz—i .

T

p -1

The NC codes discussed previously have all lengths n = 5
r
Now we discuss the NC codes with lengths n £ p_i:_i_

To find g(X) for such codes we proceed as follows: for a

given n and a given p, let u be the smallest odd po'AsitiVe integer such

-oT
that nu = })_2:_1_ . Then g(X) can be found from the following
3 2t -
Theorem: If the roots of g(X)linclude o,u, a U‘, .. .o,( t 1)\1,

where 2t - 1 <p, then the NC code of length n can correct any error

pattern of Lee weight t or less and a is a primitive element of GF(pr).

This theorem follows directly from the theorem given previously



for NC codes with length n = P—E—i . The restriction that u

n
is odd is necessary since if u is not odd then X +1 will not

divide X +1

, r
Example : For p=5and r =2, we have v = E—E———i—z i2.

‘ 2
If n =4, then 43 = {2 so that u = 3. The polynomial -2 + X
has o = a3 as a root., Therefore, if we make g(X) = -2 + X_,
then this g(X) generates a (4,2) NC code witht =1,
We conclude this appendix with a list of generator polynomials

for NC codes of certain lengths .
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Axx 3 = - 1A ¢ 4
Axx 4 = 1A 4 2

Axx S 4A + 2

Ax+a & = WA ¢ 3

Arx 7 = 3N ¢ “

Axx g = LY. 2

Axa ¥ = KT 1

Axx 12 = dh + 4
l Arx 13‘= 4A + @
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| Axx 15 4A 4 1
Axx 16 = 4A + 3
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Axx 1g = BA 4 2:

Caxx 19 = 2A 4 0
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o ‘ ] b ey et ot s T =,
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