I

A SIMULATION MODEL OF BELL CANADA.

A SIMULATION MODEL OF BELL CANADA

PHASE II

V. Corbo, J. Breslaw, J.M. Dufour and J.M. Vr1jicak

IAER Special Study No. 79-002
Contract No. 02SU.36100-8-9515
DOC. File No. 5420-7
DGCE Document No. 116

March 1979 | COMMUNICATIONS GANADA |
| :---: |
| JAN 701984 |
| LIARARY - BIBLIOTHEQUE |

$$
\begin{array}{ll}
8 & D+497109 \\
91 & D 19985 \\
065 & \\
5549 \\
199
\end{array}
$$

A SIMULATION MODEL OF BELI CANADA:
PHASE II
V. Corbo, J. Breslaw, J.M. Dufour. and J.M. Vrljičak

The opinions and statements expressed in this paper represent views of the authors. These views are not necessarily those of the federal Department of Communications or of any other department or agency of the Government of Canada.

Contract \#: 02SU.36100-8-9515

The Institute of Applied Economic Research (IAER), successor institution of the International Institute of Quantitative Economics founded in 1969, has been active in its present form since April 1976. The IAER has firmly established itself as Concordia University's Institute for programmes of socio-economic research and training related to both the developing world and Canada.

The IAER envisages the most fundamental problems of economic and social development in the developing world to be:efficient use of scarce economic resources; creation of employment opportunities; overpopulation; food availability and the development of the rural sector; equitable distribution of income; development of an indigenous research capability and planning of educational systems; and, the social implications of alternative development strategies. These problems require new kinds of international collaboration between the developed and developing countries.

For the industrialized countries, such as Canada, the IAER sees some of the major problems of economic and social development to be: management of natural resources, especially energy; preservation of the environment; improvement and management of urban public services; regional economic disparities; inflation and unemployment; and the development of socially acceptable income policies. These problems require improved forms of collaboration at the national level among universities, the public, government institutions and the private sector.

The IAER, through international and Canadian collaboration, attempts to make a contribution to the solution of some of these problems. In order to begin effectively the task of conceptualizing, defining and analysing these fundamental problems, the IAER utilizes the most modern methods of scientific analysis available, as well as the services of recognized experts in the relevant fields, who participate as Senior Research Advisors and Research Associates.

The IAER's contribution to the solution of some of these major problems, referred to in the preceding statement, takes the form of:

1) initiating, organizing and implementing major economic research projects, at both international and Canadian levels, occasionally in collaboration with other research institutes and interested specialists;
2) organizing seminars and conferences on specific economic issues of particular international and Canadian interest; and
3) serving as a link between Concordia University and the Canadian private sector with the objective of increasing the latter's awareness of participation in, and support for applied economic research.
The IAER, Given its expertisc and experience, believes that it has a useful and necessary role to play both in the developing world and in Canada.
CHAPTER V
A FINANCIAL AND INCOME STATEMENT MODEL OF BEL工 CANADA 83
5.1 The Demand for Financial Instruments 83
A) The Demand for Real Long Term Debt and Real Equity 83
B) The Relation between RAVAK and K 85
5.2 Bell Income Statement Items 87
A) Operating Revenues 87
B) Operating Expenses 87
C) Interest Charges 88
D) Income Tax 89
E) Preferred Dividends 90
F) Other Income Statement Items 91
5.3 The Income Statement Model 91
A) The Exogenous Variables 93
B) The Endogenous Variables 94
5.4 Validation of the Financial and Income Statement Model 95
Simulation 116
CHAPTER VI
MODEL FORECASTS 132
1. Forecast with Constant 1979 Nominal Prices of Services 132
2. Forecast with Constant 1979 Real Prices of Services. 140
APPENDIX 149
REFERENCES 151

The Canadian Department of Communications (DOC), contracted the Institute of Applied Economic Research (IAER), of Concordia University under contract \# 02SU.36100-8-9515 to continue work on the building of a simulation model of Bell Canada. The models take into account the productive and financial characteristics of the carrier. The work was done at the IAER during the period from July lst, 1978 to March 3lst, 1979, by the following team of researchers:

PROJECT DIRECTOR: Professor Vittorio Corbo

RESEARCH ASSOCIATES:

RESEARCHER:
RESEARCH ADVISOR:

Professor Vittorio Corbo
Professor Jon Breslaw
Professor Jean-Marie Dufour
José M. Vrljicak
Professor Robert S. Pindyck

Professor B. Smith who undertook concurrently a project with Professor V. Corbo on "Economies of Scale and Economies of Scope in Bell Canada", also collaborated in this project. The multiple output cost model used in this study draws heavily on his research with Professor Corbo.

We would like to thank the members of the DOC for their cooperation, and for the beneficial discussions with us while carrying out this study. Also we would like to thank M. Daskalakis who assisted in the estimation of the demand model, I. Rakita. who was helpful in the initial estimation of the financial model, Melanie Neufield who provided secretarial assistance throughout this project and Esther Massa and Johanne Yelle for their typing.
in particular) may have objectives other than profit maximization, or at least objectives in addition to profit maximization. Even if the rate of return constraint still applies, alternative objectives of the firm may result in different inefficiencies or in no inefficiency at all. Second, regulatory agencies themselves usually have mixed objectives. While in the long run rate of return targets usually dominate in the determination of allowed prices, because of political constraints regulatory agencies in the short run may find themselves regulating prices, to some extent independently of the resulting rate of return. Furthermore, many regulated companies produce more than one product, and an objective of the regulatory agency may be to regulate the relative prices of these products, so as to cross-subsidize one product at the expense of another. As we will see, these alternative objectives of the regulatory agency may again lead to different kinds of inefficiencies, or to no inefficiency at all.

If one is interested in measuring the regulation-induced inefficiency for a firm such as Bell Canada, these issues become extremely important. Let us examine them in somewhat more detail.

Consider first the implications of alternative objectives for the firm. As mentioned above, objectives other than that of profit maximization can result in something quite different from the standard Averch-Johnson over-capitalization. As an example of this, if the objective of the firm is revenue maximization instead of profit maximization, then the rate of return constraint will result in under-capitalization rather than over-capitalization, i.e.

TABLE OF CONTENTS

FOREWORD i
CHAPTER I
INTRODUCTION 1
CHAPTER II
THE DEMAND MODEL 12
2.1 Introduction 12
2.2 The Models 14
A) Flexible Functional Forms 14
B) Double-Log Models and Box-Cox Transformation. 17
2.3 The Data 20
A) Quantity Demanded 20
B) The Price of Each Telephone Service 20
C) The Real Income Variable (YD_{t}) 21
D) Other Variables 21
2.4 The Empirical Results 23
CHAPTER III
THE TECHNOLOGICAL STRUCTURE OF BELI CANADA 46
3.1 Introduction. 46
3.2 The Profit Maximization Model with a Production Frontier 46
3.3 A Profit Maximization Model with a Cost Frontiè 57
CHAPTER IV
A SIMULATION MODEL OF BELL CANADA: THE REAL STRUCTURE 67
4.1 Validation of the Demand Model 68
4.2 Validation of the Factor Requirements Model 73
4.3 Validation of the Complete Real Model 73

Now let us consider the objectives of the regulatory agency. Most studies of regulation-induced inefficiency are based on the assumption that the regulatory objective is a rate of return for the firm that is in some sense "fair". Indeed, there is little doubt that in the long run a fair rate of return is the dominant objective in the regulation of monopolistic firms (although as we will see, even in the long run other objectives may also be important). However, even for a monopolistic firm that produces only a single output, in the short run there may be political or institutional constraints that prevent the application of rate of return objectives. Regulatory lag is of course one example of this, where the regulatory agency is simply not able to respond instantaneously to changing (increasing or decreasing) costs by adjusting price to keep the rate of return fixed. In some cases, however, even where the time required for a rate review is not a problem, political constraints on the regulatory agency may prevent the agency from adjusting prices in a way necessary to achieve a desired rate of return. In this case we could say that the objective of the regulatory agency is the price itself, rather than the rate of return. But all our observations on the behavior of the firm in which our estimations are based refer to short run points. Thus, in our empirical implementation of the model we assume price regulation for monopoly services. (Although we stress again that such an objective is likely to apply only over the short term). Many regulated firms, and Bell Canada in particular, produce more than one output, and regulatory objectives often involve the cross-subsidization of outputs. This means that in addition to

CHAPTER I

INTRODUCTION

One of the fundamental questions involved in the regulation of a monopoly is the inefficiency introduced by the regulatory constraint. In their classic paper, Averch and Johnson showed that for a two input case (labor and capital) a monopoly operating under rate of return regulation would tend to over-capitalize, i.e. would use a capital-labor ratio greater than the cost-minimizing capital-labor ratio. This Averch-Johnson result has become the basis for most of the analyses of regulation-induced inefficiency. A number of economist have dealt with ways of extending the AverchJohnson analysis and making it more applicable to realistic problems, but in general these have consisted of variations on the basic theme of determining the effect on a profit-maximizing monopoly of a rate of return constraint. ${ }^{1}$

Most attempts to measure the size of the inefficiency resulting from regulation have been based on this basic Averch-Johnson model. Typically, one attempts to measure the extent and cost of over-capitalization that should result if the firm tries to maximize profit under the rate of return constraint. There are a number of problems, however, with this basic framework for measuring inefficiency. First of all, the objective of the firm may not be profit maximization. There is now considerable evidence from the industrial organization literature that many firms (and large ones

[^0]constraint which depends on the parameters of the production frontier. But these same parameters are precisely the ones that we need to estimate.

From a comparison of the allowed and actual rate of return we concluded that a rate of return regulation was in effect only after 1966. Thus, we tried to estimate the production frontier parameterizing the Lagrangian multiplier of the regulatory constraint by imposing a value of zero up to 1966 and then allowing it to take two or three sets of values for the period 1967 to 1976. These values were taken as parameters to be estimated jointly with the other parameters of the production frontier. This procedure introduces some biases in our estimates because the multiplier of the constraint is indeed a variable but we treat it as a parameter in our estimations. Attempts of this sort were not successful with respect to stability of the estimated values of λ.

The second problem arises when the model is simulated; if we treat the multiplier (λ) as a variable in the simulation it is very difficult to obtain good tracking for the different variables involved due to the fact that in the estimations it is treated as a parameter. Thus, the values of the residuals in the estimation of the equations affect λ directly; λ capturing all the random errors. Hence, in our final model, short term regulation enters only through the price of local and telephone message toll services.

What is important here is to recognize that the regulation of prices can critically alter the nature and extent of regulationinduced inefficiency. The effect on inefficiency will depend on the structure of production of the firm.
the exact opposite of the standard Averch-Johnson effect. ${ }^{1}$ In fact, it appears that revenue maximization is at least one of the managerial objectives of a number of larger firms, and this is sometimes used to explain the fact that empirical studies often fail to show evidence of over-capitalization in the regulated firm operating under a rate of return constraint.

The firm might operate with still other objectives. In our work we have considered profit maximization to be the primary objective of the firm subject to regulated prices for the monopoly services, local service and telephone message toll, and a production frontier. However, it may be that the firm does not maximize or minimize at all, but rather satisfices. There is also considerable evidence for satisficing behavior in large firms, where managers operate under the restriction of some minimum acceptable level of profit (rather that maximize profit), and possibly miminum and maximum acceptable levels of other variables. We have not attempted to determine the effects of satisficing behavior on the efficiency of the firm (not to our knowledge has anyone else), but clearly we cannot be confident that overcapitalization will occur as it did before if the firm is engaging in some kind of satisficing behavior.

1
To see that the revenue maximizing firm under-capitalizes when faced with a rate of return constraint, just solve the constrained maximization problem

$$
\text { MAX PQ s.t. } P Q-w L \leq s K
$$

with s, the allowed rate of return, greater than the cost of capital r. It is easily shown that the solution to this problem yields $\mathrm{MP}_{\mathrm{K}} / \mathrm{s}=\mathrm{MP}_{\mathrm{L}} / \mathrm{w}$, where MP_{K} and MP_{L} are the marginal products of capital and labor. But cost is minimized when $\mathrm{MP}_{\mathrm{K}} / \mathrm{r}=$ $\mathrm{MP}_{\mathrm{L}} / \mathrm{w}$. Since $s>r$, the firm is therefore under-capitalized.
where f is an aggregator function for outputs and h is an aggregator function for inputs. The problem here is that the restriction of separability in outputs and inputs implies that there is no difference in the capital-intensities of the different outputs, so that a priori the relative price constraint would have no impact on the extent of inefficiency. Because of this problem, we have now estimated a production possibility frontier and a multiple output cost function for Bell Canada that is unrestricted, i.e. that is not a priori separable in outputs and inputs.

In Table l we summarize the effects of regulation for various objectives of the regulatory agency and for various objectives of the firm.
its rate of return objective, the regulatory agency might also wish to set relative prices, i.e. the ratio of the price of one output to the price of another output. Note that as long as the levels of the individual prices are not an objective of the regulatory agency, (but only the ratios of prices), then this is consistent with a rate of return target as an additional objective.

The regulation of Bell Canada is a good example of where relative prices are a regulatory objective in addition to the rate of return. In our work we have look at Bell Canada as a firm producing two major outputs, regulated telephone services, (local telephone services and telephone message toll) and other toll services. It has been argued that one of the objectives of the regulation of Bell Canada has been to subsidize local telephone service at the expense of long distance and other toll services. In our model this has been introduced by taking the price of local services and telephone message toll as fixed at the discretion of the regulatory authority. Then we assume that Bell can choose the price of other toll services as to maximize profits. Then the weighted price of local and message toll services can be compared to their marginal cost to analyze the extent of crosssubsidy. We have also experimented extensively with the introduction of a separate rate of return constraint but our results have not been successful. Two type of difficulties have arisen. The first is that to obtain accurate estimates of the coefficients of capital in a general translog production frontier as well as for the cost frontier, we need a side condition for capital. In the presence of a regulatory constraint, the side conditions for capital involve the Lagrangian multiplier (λ) of the regulatory

This report has six chapters and one Appendix. In Chapter II we estimate demand equations for telephone services. The demand equations that we estimate are of three types: Flexible functional forms, choice between linear in the logs and linear in the variables models and habit formation model. High price collinearity makes it very difficult to study crossprice effects. Also the lack of disaggregate data into business and residential does not allow the estimation of separate demand equations for these two types of services. A priori one would expect different demand functions for both types of users. For residential demand, one would use models of consumption and for business demand, models of demand for intermediate inputs.

In Chapter III we present the structure of a simulation of the real structure of Bell Canada. By real structure we mean the determination of factor inputs: Labor, Capital and Raw materials. Two alternative models of the real structure of Bell are presented. They differ in the specification of the underlying production technology. In the first model the production technology is characterized by a general two-output three-input translog production function. In the second, the technology is implicit in a general two-output, three-input translog cost function.

In Chapter IV, we validate the model of the real structure of Bell Canada. We validate first the demand model by itself, then the production model by itself and finally both models

Let us take Bell Canada as an example. Assuming that the firm's objective is to maximize its profits subject to the rate of return constraint, the resulting over-capitalization may be either exacerbated or eliminated by the price constraint. To see this, suppose first that regulated services are much more capital-intensive than other toll service. In this case, subsidizing the regulated service through the relative price constraint will reinforce the over-capitalization that results from the rate of return constraint, since the firm will produce more of the regulated service, and hence use more capital than it would have had it not faced the relative price constraint. If, on the other hand, non-regulated service is more capital-intensive than regulated service, the relative price constraint will work in just the opposite direction and will reduce the extent of over-capitalization. In fact, if the relative price constraint and the difference in capital-intensities are strong enough, the result could even be under-capitalization as the relative price effect overwhelms the rate of return effect.

We thus see that the determination of regulation-induced inefficiency depends critically on the structure of production, and this is exactly the reason that we have recently attempted to estimate unrestricted production and cost structures for Bell Canada. Recall that in the IAER report of March 31, 1978, production functions for Bell Canada were estimated that were a priori restricted to be separable in outputs and inputs, i.e. were of the form

$$
F\left(y_{1}, y_{2}, x_{1}, x_{2}, x_{3}\right)=f\left(y_{1}, y_{2}\right)-h\left(x_{1}, x_{2}, x_{3}\right)=0
$$

OBJECTIVE OF FIRM

		PROFIT MAX.	REVENUE MAX.	COST MIN.
	```Rate of Return```	Over-capitalization (standard AverchJohnson case)	Under-capitalization	Over-capitalization if cost is minimized subject to largest output satisfying rate-of-return constraint.
Objective of Regulatory Agency   (i.e. Constrained Variables)	Rate of Return and Relative Prices	Relative price constraint could reinforce over-capitalization, or could lead to less use of capital. Depends on the structure of production.	Relative price constraint could reinforce under-capitalization, or could lead to more use of capital. Depends on the structure of production:	Could lead to over-capitalization or under-capitalization. Depends on the structure of production.
	Prices	If price ceiling is not linked to a rate of return, no bias in single-product case. In multiproduct case can lead to over-or under-capitalization, depending on structure of production.	Same as under profit maximization.	Same as under profit maximization.

the study remained plagued by a high degree of collinearity among the price variables.

The main conclusions are the following. First, and not surprisingly, the flexible functional forms (Translog and Generalized Leontief) do not happen to be very useful in the present context. The likely reason for this is that such models are best fit to describe final demand systems (consumer or households), while we have here mixed Household-Business data. Second, the Box-Cox analysis suggests the double-log model after all remains here a good approximation. Third, a careful analysis of the error structure (considering autoregressive processes up to order 3 on the errors) suggests the errors follow an autoregressive process of order 1 (and not higher). Fourth, the "habit formation" model does not produce good results. Fifth, it still appears very difficult to estimate cross-price elasticities because of the multicollinearity between the price variables: Sixth, a quite satisfactory set of demand equations (Table 3.11) is obtained by suppressing the cross-price effects and taking into account (via dummy variables) certain discontinuities in the behaviour of prices (which may reflect differing regulatory behaviours). Seventh, there is no basis, from these results, for stating there is strong substitutability between Telephone Message Toll and Other Toll services (if anything, they rather suggest the existence of some form of complementarity between these two types of services).
together. From this validation exercise we find that both models predict the actual values of the demand levels and factor demand quite accurately.

In Chapter $V$, we present a financial model of Bell Canada which is also integrated with a model that reproduces the income statement of the company. The model is estimated and then validated within the sample period. Also we simulate the financial and income model taking as inputs the simulated values coming from the demand and cost functions.

In Chapter VI, we perform forecasts for the period 19771983 under the following two assumptions about price regimes. Firstly, we assume constant 1979 nominal prices; secondly, we assume constant 1979 real prices. Forecasts of the income and financial models are run under both price regimes.
(2.3) $\quad y_{i}(\underline{P} / E)=\frac{P_{i}^{-1} E\left[\alpha_{i}+\sum_{j=1}^{N} \gamma_{i j} \ln \left(P_{j} / E\right)\right]}{\sum_{k=1}^{N} \alpha_{k}+\sum_{k=1}^{N} \sum_{m=1}^{N} \gamma_{k m} \ln \left(P_{m} / E\right)}, i=1, \ldots, N$
where the restrictions $\sum_{i=1}^{N} \alpha_{i}=1, \sum_{i=1}^{N} \sum_{j=1}^{N} \gamma_{i j}=0$
are imposed in order to identify the parameters. Let us now assume all the consumers have the same utility functions and differ only via their incomes; then, the demands (per capita) may be conveniently reexpressed in budget share form:
 where $Y_{i}{ }^{*}$ is consumption (per capita) of good $i, E^{*}$ is income per capita, $\lambda \equiv\left\{\int E \ln E \phi(E)\right\} / E^{*} \ln E^{*}$ and $\phi(E)$ is the distribution of income (in probability density form). Note, furthermore, that these demands are homothetic if

$$
\begin{aligned}
& \stackrel{N}{N} \\
& { }_{j}{ }^{N} \underline{E}_{1} \gamma_{i j}=0, i=1, \ldots, N .
\end{aligned}
$$

The Generalized Leontief reciprocal indirect utility function is defined by:

where $b_{i j}=b_{j i} \quad \stackrel{N}{i} \underline{\underline{\Sigma}}_{1} b_{o i}=0$. The resulting system of demand functions has the form:

$$
\begin{equation*}
m_{i}=\frac{\sum_{j=1}^{N} b_{i j} P_{i}^{1 / 2} P_{j}^{1 / 2}+b_{o i} \alpha E^{*}}{k_{k}^{N} \underline{\underline{E}}_{1} \mathrm{~m}_{1}^{N} b_{k m} P_{k}^{1 / 2} P_{m}^{1 / 2}} \tag{2.6}
\end{equation*}
$$

where $\alpha \equiv \int E^{2} \phi(E) d E /\left(E^{*}\right)^{2}$ and the restriction

### 2.1 Introduction

In order to model the demand for the different telephone services (Local, Telephone Message Toll and Other Toll), we basically considered three different approaches. The first one consisted in using so-called "flexible functional forms" based on explicit assumptions concerning the utility functions of consumers. The second approach was a choice of functional form based on the Box-Cox transformation, the general form analyzed including as special cases the linear demand model and the double-log model. The third approach consisted in updating and trying to improve (in particular, via a more careful consideration of the error structure) the double-log model used in our previous study (IAER, 1978), in both its simple form and the "habit formation" version (with demands and income in per capita form).

As pointed out in the previous IAER(1978) study the main way to improve the results obtained at this stage would have been the access to disaggregate business-residential information on telephone services. There are good theoretical reasons for thinking these may have different behaviours and the difference is of great interest with respect to regulation issues. Unfortunately, such data did not become available for the present study. Nevertheless, and despite this problem, it is important to note the data we were using here had been appreciably revised (for the last 6 or 7 years) and an updating of the previous results was in order. Of course, as pointed out in IAER (1978),
as pointed out above, a separability assumption is needed; otherwise all we can hope is that the resulting functional forms will prove to be useful local approximations.
B) Double-Log Models and Box-Cox Transformation

In the double log formulation, the demand equations have the form:

where $\mathrm{SO}_{\text {it }}$ is the quantity demanded (per capita) of service in period $t, P_{i t}$ is the price of service $i$ in period $t, P_{t}$ is a price deflator for period $t, Y D_{t}$ is real income, $P O P_{t}$ is the population of Quebec and Ontario and $u_{i t}$ is a random disturbance. Regarding the disturbances, we will assume they are either independant (normal) or autocorrelated according to an autoregressive scheme. In the last case, the most standard model consists in assuming.the $u_{t}$ 's follow an $A R(1)$ process (autoregressive process of order 1 ) $: u_{t}=\rho u_{t-1}+\varepsilon_{t}$ where $\varepsilon_{t}$ ind $N\left[0, \sigma^{2}\right]$. We also consider the possibility that they follow autoregressive processes of higher order such as $A R(2)$, $A R(3)$, etc. A priori, we expect $\alpha_{i j}<0$ and $\alpha_{4 i}>0$ (for equation i).

The double-log model has the great advantage of being relatively easy to interpret and estimate. Nevertheless, it implies constant income and price elasticities which may seem too rigid. An elegant way of assessing whether the double-log model is appropriate is to consider the Box-Cox (1964) transformation:

### 2.2 The Models

## A) Flexible Functional Forms

An attractive way of modelling a demand system is to specify flexible functional forms for the indirect utility function of consumers and derive the corresponding demand functions. The functional forms are called "flexible" in the sense that the various (own and cross) price elasticities as well as the income elasticities can vary and are not constrained a priori at a base point. Such an approach is adopted, in particular, by Christensen, Jorgenson and Lau (1975), Christen-. sen and Manser (1977) and Berndt, Darrough and Diewert (1977).

More specifically, we consider here two different functional form for the (reciprocal) indirect utility functions: Translog and Generalized Leontief. Then, given $h(v)$ the reciprocal indirect utility function of a consumer, where $\underline{v}=\frac{P}{E}, \frac{P}{E}$ is the vector of prices and $E$ is income, the system of demand functions of this consumer is easily obtained via Roy's identity (1942, 1947):

$$
\begin{equation*}
\underline{y}(v)=\frac{\nabla_{i} h(\underline{v})}{\underline{v}^{\prime} \nabla \bar{\gamma}(\underline{v})} \tag{2.1}
\end{equation*}
$$

The translog reciprocal indirect utility function is defined by:
(2.2) $\quad \ln h(\underline{v})=\alpha_{0}+\sum_{i=1}^{N} \alpha_{i} \ln v_{i}+\frac{1}{2} \sum_{i=1}^{N} \sum_{i=1}^{N} \gamma_{i j} \ln v_{i} \ln v_{j}$
where $\gamma_{i j}=\gamma_{j i}$, for all $i, j$, and $N$ is the number of goods. Using Roy's identity, we obtain the following system of demand functions:
inconsistent estimates if the disturbances of this equation are auto-correlated. We therefore, in our estimation, begin by assuming a first-order autorregressive process for the disturbances, and use the maximum likelihood estimation procedure to estimate simultaneously the coefficient of the auto-regressive process and the coefficients of the equation by means of a non-linear algorithm.
$\sum_{i=1}^{N} \sum_{j=1}^{N} b_{i j}=1$ is imposed in order to identify the parameters.
Homotheticity will hold if $b_{o i}=0, i=1, \ldots, N$.
In order to estimate the systems (2.4) and (2.6), we interpret each budget share equation as the expectation of $m_{i}$ given $E^{*}, P_{1}, P_{2}, \ldots, P_{N}$. Let the vector of error terms at time $t$ be $\underline{\varepsilon}(t)=\left(\varepsilon_{1}(t), \varepsilon_{2}(t), \ldots, \varepsilon_{N}(t)\right)^{\prime}$. Then, assuming the error vectors are independent (across time) with covariance matrix $\Omega$, the parameters may be estimated by a nonlinear procedure (maximum likelihood). Furthermore, different hypotheses (like homotheticity) may be tested using likelihood ratio tests.

Now, in order to be able to apply this approach to our problem, we consider the three different telephone services under study constitute three goods while all other consumer goods can be aggregated. into one single good. (This, of course, involves an assumption of separability.) We are thus implicitly considering a system of four goods ( $\mathrm{N}=4$ ) and four demand equations. Nevertheless, since the shares must sum to 1 , it is sufficient to estimate only three of the four demand relationships. We thus do not need a measure of the output of the fourth (aggregate) good but only a price index for it.

From the above developments, it is easy to see that such an approach requires data at the level of final demand (consumer or households), in opposition to intermediate demand (e.g. business demand). Thus, in the case of demand for telephone services, disaggregated business-residential information is in principle necessary for the approach to be applicable. Furthermore,
of services and the normalized Divisia quantity index of this service. For Other Toll services, the data were taken directly from Bell Exhibit.
C) The Real Income Variable (YD $)$

The demand equations that we estimate are aggregated for Business and Household. This is caused by the non-existence, up to now, of disaggregated data in the public domain. Thus, the income variable that we require is a variable related to the overall level of economic activity in the Quebec-Ontario region. Indeed, for the income variable we used the sum of cross Provincial Products of Quebec and Ontario at 1.267 prices (deflating both Provincial Products with the consumer price index for Canada).

The price deflator used in our computations is the consumer price index for Canada (1967=1).
D) Other Variables

For the flexible functional forms (Translog and Generalized Leontief), we use as price index of the aggregate good (the fourth good) a Divisia price index of the consumer price indices of Montreal and Toronto, with arithmetic weights based on the Gross Provincial Products of Quebec and Ontario. For the $\lambda$ and $\alpha$ variables we employ the estimates obtained.by Berndt, Darrough and Diewert (1977) for Canada as a whole.* Note also that the variable

[^1]
where
\[

$$
\begin{aligned}
\left(\lambda_{i}\right) & =\left(\lambda_{i}\right) \\
S O_{i t} & =\left(S O_{i t}-1\right) / \lambda_{i} \cdot P_{i t}^{\left(\lambda_{i}\right)}=\left(P_{i t}-1\right) / \lambda_{i} \\
\mathrm{YD}_{t}(\lambda) & =\left[\left(\frac{Y D_{t}}{\operatorname{POP}_{t}}{ }^{\left(\lambda_{i}\right)}-1\right] / \lambda_{i}\right.
\end{aligned}
$$
\]

When $\lambda_{i}=0$, (8) reduces to the double-log model while $\lambda_{i}=1$ gives a linear demand model, and a wide variety of alternative functional forms may be considered by changing the value of $\lambda_{i}$. Clearly we can then assess whether the double-log model is consistent with the data by testing $\lambda_{i}=0$.

The "habit formation" model is a modification of the doublelog model based on the assumption that the demand for a type of telephone service is a function of income, prices and a state variable $S_{i t}$ proportional to last period's demand, and representing the stock of accumulated telephone habits. It is given by the following pair of equations:

$$
\begin{aligned}
& +\beta_{5 i} \operatorname{lnS}{ }_{i t}+u_{i t} \quad i=1,2,3
\end{aligned}
$$

with:

$$
\ln S_{i t}=\theta_{i} \ln S_{i, t-1}
$$

Replacing the second equation in the first, we obtain:


$$
+\beta_{5 i} \theta_{i} \operatorname{lnSO}_{j, t-1}+u_{i t} \quad i=1,2,3
$$

A priori, we expect $\beta_{i i}<0, \beta_{4 i}>0$, and $\beta_{5 i} 0_{i}>0$ (for equation $i$ ). Due to the presence of a lagged endorenous variable on the right hand side of this equation, ordinary least squares would yield

### 2.4 The Empirical Results

The results of our estimations relating to the flexible functional forms, based on Translog (TLOG) and Generalized Leontief (GL) reciprocal indirect utility functions, are reported in Tables 2.1 to 2.4 . More precisely, the results for the estimation of nonhomothetic, nonsymmetric versions of the TLOG and GL forms are in Table 2.l; then, in Table 2.2 , symmetry is imposed (a requirement which coming from the general theory of demand), and, in Table 2.3 , both symmetry and homotheticity are imposed. The likelihood ratio test statistics for comparing these three versions for the two functional forms considered are given in $T$ able 2.4. Quite noticeable is the fact that symmetry is rejected, a conclusion which is at odds wi.th the standard theory of demand. We can note also that the free (nonhomothetic, nonsymmetric) versions of both functional forms produce (despite 18 coefficients in each case) pretty bad fits $\left(R^{2}\right)$ for the demand of local telephone services and implied demand elasticities are in several cases very unreasonable (i.e. the demand for local telephone services appears to be very elastic). Such deceiving results are not, in fact, too surprising given that such an approach has a sound theoretical basis only when applied to final demands data (and not aggregate business-residential data like the ones we have here). Another important aspect is the strong non-linearity of the estimation problem which leads to very important computational costs. In view of these observations we decided to switch to a simpler and hopefully more robust approach.

Before proceeding to analyse the results of the estimations, we will describe the data used.
A) Quantity Demanded

We work with three outputs: Local, Telephone Message Toll and Other Toll services. For Local services the quantity demanded is measured as the revenue from these types of services at 1967 prices. In the case of Telephone Message Toll services, the quantity demanded is measured as a Divisia quantity index with arithmetic weights of the three types of toll services, that is: Intra-Bell Telephone Message Toll Services, Trans-Canada Telephone Message Toll Services, U.S. and Overseas Telephone Message Toll Services. Each of these services is measured as the revenue from them (including uncollectables) at 1967 prices.

The Other Toll category was measured as the revenue from this type of service at 1967 prices. The Telephone Message Toll Divisia quantity index was normalized to the 1967 dollar revenues from these services.*

To obtain the per capita quantities, the series above are divided by the population of Quebec and Ontario ( $\mathrm{POP}_{\mathrm{t}}$ ).
B) The Price of Each Telephone Service

For local services, the price index is taken directly from Bell data. For Telephone Message Toll services, the price index is defined as the ratio of the current dollar revenues from these

[^2]TABLE 2.2
PARAMETER ESTIMATES OF TVO PUNCTIONAL EOPAS

NON-HOMOTMETIC AND SYMETGRC *

${ }^{*}$ t-values must be divided by $\sqrt{ } 3$

E (income per capita) is simply measured by the sum of the Gross Provincial Products (in current dollars) of ouebec and Ontario divided by the population of the two provinces, while the shares $m_{i}(i=1,2,3)$ are obtained by dividing revenues (in current dollars) for each service by the sum of the Gross Provincial Products (in current dollars).

TABLE 2.4.

LIKELIHOOD RATIO TEST RESULTS FOR TWO FUNCTIONAL FORMS
TEST STATISTIC

TEST	TRANSLOG	GENERALIZED LEONTIEF	$\begin{gathered} \text { NO. OF } \\ \text { RESTRICTIONS } \end{gathered}$	. Ol CHI-SQUARE CRITICAL VALUE
Ho: Symmetry   Hl: Free	18.34	28.962	$18-12=6$	16.811
Ho: Symmetry and Homotheticity   Hl: Symmetry	27.914	16.760	$12-9=3$	11.344
```Ho: Symmetry and Homotheticity Hl: Free```	45.710	43.610	18-9=9	21.666

TABLE 2.1
PARAMETER ESTIMLATES CF TWO FUPCTIONAL FOKUS
FREE: NON-HOMOMYETIC NOE-SYMMERRIC *

*
t-values must be divided by $\sqrt{ } 3$

TABIE 2.5

BOX-COX MODEI

MAYIIUUM LIKELIHOOD EQUATION BY EQUATION*

	Constant	$\sim_{\text {P }}^{\text {it }}$ (λ)	$\sim_{2 t}(\lambda)$ $\underbrace{}_{2 t}$	\sim $\mathrm{P}_{3 t}(\lambda)$	$\mathrm{YD}_{\mathrm{t}}{ }^{(\lambda)}$	λ	D.W.	R^{2}
Local	$\begin{gathered} -1.213 \\ (-87.278) \end{gathered}$	$\begin{gathered} .0274 \\ (1.058) \end{gathered}$	$\begin{aligned} & .00140 \\ & (.070) \end{aligned}$	$\begin{array}{r} -.0788 \\ (-2.983) \end{array}$	$\frac{\because 203}{(3.216)}$. 8	. 50	. 9892
Telephone Message Toll	-2.695 (-33.355)	.0198 $(.147)$	-.106 $(-.960)$	-.335 (-2.395)	$\begin{gathered} .224 \\ (4.275) \end{gathered}$. 3	. 64	. 9944
Other Toll	$\begin{gathered} -1.673 \\ (-114.942) \end{gathered}$	$\begin{aligned} & .801 \\ & (.321) \end{aligned}$	-.0107 $(-.531)$	(-2.505)	.344 (4.501)	. 6	1.00	. 9941

$$
* \tilde{P}_{i t}=P_{i t} / P D_{t}, \tilde{P}_{i t}(\lambda)=\left(\tilde{P}_{i t}^{(\lambda)}-1\right) / \lambda, \quad i=1,2,3, \quad \text { and } \quad Y_{t}^{(\lambda)}=\left(Y D_{t}^{(\lambda)}-1\right) / \lambda
$$

D.W. is the Durlin-Watson statistic, R^{2} is the multiple determination coefficient and the terms in parentheses are the t-statistics for testing the null hypothesis that the time value of the respective coefficient is zero. In this table the t-statistics are computed conditionally on the obtained value of λ

TABLE 2.3

HOMOTHETIC AND SYMMETRIC *

DOUBIE-LOG MODEL

ORDINARY LEAST SQUARES: EQUATION BY EQUATION

Local

Telephone
Message Toll.

Other Toll

Constant	$\ell n^{P_{I_{t}}} \frac{D_{t}}{}$	$\ell \frac{n_{2 t}}{P_{t} D_{t}}$	$\ell n^{P_{3 t} 3 t}$	$\ln \frac{Y D_{t}}{\mathrm{PO}_{t}^{5}}$	D.W.	R^{2}	L^{*}
$\begin{gathered} -5.045 \\ (-11.967) \end{gathered}$	$\begin{gathered} 2.160 \\ (2.961) \end{gathered}$	$\begin{gathered} -.506 \\ (-.882) \end{gathered}$	$\begin{gathered} -1.678 \\ (-2.356) \end{gathered}$	$\begin{gathered} 1.288 \\ (3.858) \end{gathered}$. 68	. 9789	33.425
$\begin{gathered} -6.008 \\ (-17.279) \end{gathered}$	$\begin{gathered} 1.220 \\ (2.027) \end{gathered}$	$\begin{gathered} -.756 \\ (-1.597) \end{gathered}$	$\begin{gathered} -1.212 \\ (-2.063) \end{gathered}$	$\begin{gathered} 1.531 \\ (5.562) \end{gathered}$. 76	. 9926	38.238
$\begin{aligned} & -13.102 \\ & (-7.097) \end{aligned}$	$\begin{gathered} 9.331 \\ (2.920) \end{gathered}$	$\begin{gathered} -3.479 \\ (-1.384) \end{gathered}$	$\begin{gathered} -2.430 \\ (-.779) \end{gathered}$	$\begin{gathered} 6.002 \\ (4.107) \end{gathered}$. 8222	. 9550	-3.496

[^3]A natural choice here consists in using doubie-log demand functions. Now, since constant elasticities may seem too rigid, we tested this functional form using the classical approach of Box and Cox (1964). The results of the estimation of model (2.8) by non-linear least squares (maximum likelihood, non corrected for autocorrelation), using for λ a grid between -2.0 and 2.0 , are given in Table 2.5. Since there are clear signs of serial dependence in the residuals (and this could affect appreciably all significance tests) we corrected for autocorrelation (assuming the errors follow an autoregressive process of order I). The results are presented in mable 2.6. We see that, for the Telephone Message Toll and Other Toll equations, the hypothesis that $\lambda=0$ cannot be rejected (at level .05). In the Local equation, . λ appears significant; nevertheless, one can check easily that the relationship there obtained (with $\lambda=-8$), implies absurdiy big price and.income elasticities. Consequently, we retain the doublelog model $(\lambda=0)$ as a reasonable approximation in this context. In Table 2.7 we present the results for the estimation of the double-log model (equation (2.7)) without correction for autocorrelation. All the results from this table indicate strong evidence of autocorrelated disturbances. We thus proceed and correct for autocorrelation by first assuming the errors follow an $A R(1)$ process. In Table 2.8 , we find the results of the estimation equation by equation. One can note that the own price elasticity of the demand for Other Toll services is positive while the demand for Telephone Message Toll appears inelastic, two pretty unacceptable results. In Table 2.9 , Zellner's

$$
\begin{gathered}
\text { DOUBLE-LOG MODEL: } \cdots \text { AR (I) (I) ERRORS } \\
u_{t}=\rho u_{t-1}^{+\varepsilon} t \\
\text { ZELLNER'S }{ }_{\text {PROCEDURE }}
\end{gathered}
$$

Message Toll

Other Toll

Constant	$\ell n^{P} \frac{I t}{P D_{t}}$	$\ell n^{P_{2 t}} \frac{D_{t}}{}$	$\ln \frac{P_{3 t}}{P D_{t}}$	$\ln _{\overline{M D}_{t}}^{\overline{M D}_{t}}$	ρ	D.W.	R^{2}
$\begin{aligned} & \vdots .891 \\ & (-.548) \end{aligned}$	$\begin{gathered} -.0706 \\ (-.519) \end{gathered}$	$\begin{aligned} & : 00950 \\ & (.106) \end{aligned}$	$\begin{gathered} -.230 \\ (-1.773) \end{gathered}$	$\begin{array}{r} .166 \\ 2.690 \end{array}$	$\begin{array}{r} .985 \\ (127.359) \end{array}$	1.10	. 9995
$\begin{gathered} -5.121 \\ (-26.536) \end{gathered}$	$\begin{gathered} .559 \\ (1.482) \end{gathered}$	$\begin{gathered} -.504 \\ (-2.032) \end{gathered}$	$\begin{gathered} -1.666 \\ (-5.038) \end{gathered}$	$\begin{gathered} .810 \\ (5.311) \end{gathered}$	$\begin{array}{r} .614 \\ (7.773) \end{array}$	2.05	. 9983
$\begin{gathered} -7.770 \\ (-16.529) \end{gathered}$	$\begin{gathered} -1.049 \\ (-1.199) \end{gathered}$	$\begin{gathered} .487 \\ (.872) \end{gathered}$	$\begin{gathered} -1.181 \\ (-1.468) \end{gathered}$	$\begin{gathered} 1.735 \\ (5.096) \end{gathered}$	$\begin{gathered} .831 \\ (30.472) \end{gathered}$	1.70	. 9979

LOG OF LIKELIHOOD FUNCTION= 185.180

BOX-COX MODEL: CORRECTED FOR AUTO CORRELATION

MAXIMUM LIKELIHOOD: EQUATION BY EOUATION*

	Constant	$n(\lambda)$ $\mathrm{P}_{1 t}$	$\sim(\lambda)$ $\mathrm{P}_{2} \mathrm{t}$	$n(\lambda)$ $P_{3 t}$	$\mathrm{YD}_{\mathrm{t}}^{(\lambda)}$	λ	ρ	D.W.	\dot{R}^{2}	$\begin{aligned} & \operatorname{LR}^{* *} \\ & \lambda=0 \end{aligned}$
Local	$\begin{gathered} -23.906 \\ (-10.420) \end{gathered}$	$\begin{gathered} -.585 \\ (-.201) \end{gathered}$.943 $(.511)$	$\left(\begin{array}{c} -7.571 \\ (-3.137) \end{array}\right.$	$\begin{aligned} & 12.412 \\ & (4.605) \end{aligned}$	-. 8	$\begin{gathered} .907 \\ (10.535) \end{gathered}$	1.58	. 9995	7.5
Telephone Message Toll	$\begin{gathered} -16.264 \\ (-10.889) \end{gathered}$.995 $(.429)$	$\left(\begin{array}{l}-2.107 \\ (-1.401)\end{array}\right.$	-4.284 (-2.216)	$\begin{gathered} 6.609 \\ (4.662) \end{gathered}$	-. 4	$\begin{gathered} .890 \\ (9.540) \end{gathered}$	2.41	. 9983	1.0
Other roll	-10.730 (-12.189)	$\begin{gathered} -3.227 \\ (-2.074) \end{gathered}$	1.270 (1.240)	$\begin{aligned} & .526 \\ & (.404) \end{aligned}$	$\begin{gathered} 3.329 \\ (4.799) \end{gathered}$	-. 1	$\begin{gathered} .883 \\ (9.216) \end{gathered}$	2.21	. 9985	. 4

```
* t- Statistics (in parentheses) conditional on \lambda
    ** Likelihood ratio for testing \lambda=0. Critical value (.05) = 3.84
```

that the second autocorrelation coefficient comes out significant only in the Local equation (in both Tables 2.10 and 2.11

In Tables 2.12 and 2.13 we present the results for the estimation of the double-log model when the disturbances are assumed to follow an $A R(3)$ process. Again, estimating either equation by equation or with Zellner's procedure, we obtain implausible own price elasticities; the elasticity of the demand for Message Toll with respect to the price of Other Toll remains negative (and significant).

Thus, from the results in Tables 2.10 to 2.13 , we conclude there is no strong basis for including more than one autocorrelation coefficient in the error structure. On the other side, Table 2.9 suggests it is important to include one.

The results for the habit formation version of the doublelog model (with AR(1) errors) are given in Tables 2.14 (equation by equation) and 2,15 (Zellner's procedure). Both methods of estimation give pretty implausible results. The own price elasticities for Local and Other Toll services are positive (although not significant); the demand for Telephone Message Toll appears inelastic and its cross-price elasticity with respect to the price of Other Toll still is negative; furthermore, the coefficient of the lagged dependent variable in the Other Toll equation is negative (although not significant).

Therefore, none of the above systems of demand equations appear satisfactory, the most plausible one being probably in Table 2.9. Further, in this last Table, ałl the cross-price elasticities (except the elasticity of Telephone Message Toll with respect to the price of Other Toll) appear non-significant.

TABLE 2.8

DOUBLE-LOG MODEL: AR (1) ERRORS

$$
u_{t}=\rho u_{t-1}+\varepsilon_{t}
$$

MAYIMUM LIKELIHOOD: EQUATION BY EQUATION

	Constant	$\ell \mathrm{ln}^{\mathrm{P}} 1 \mathrm{t}$	$\ell \mathrm{n}^{\mathrm{P}} 2 \mathrm{l}$	$\frac{\ln ^{P} 3 t}{P D_{t}}$	${\frac{\ell n}{Y D}{ }_{t}}_{t}$	ρ	D.W.	R^{2}	L
Local	-1.137 $(-.700)$	$\begin{gathered} -.0833 \\ (-.609) \end{gathered}$	$\begin{aligned} & .0109 \\ & (.121) \end{aligned}$	$\begin{gathered} -.233 \\ (-1.674) \end{gathered}$	$\begin{gathered} .168 \\ (2.611) \end{gathered}$	(110.286)	1.11	. 9995	80.689
Telephone Message Toll	$\left(\begin{array}{c}-5.103 \\ (-26.715)\end{array}\right.$.339 $(.862)$	$\left(\begin{array}{c}-.459 \\ (-1.843)\end{array}\right.$	-1.500 (-4.356)	(5.780 ((8.076)	2.17	. 9984	58.228
Other Toll	$\begin{gathered} -6.735 \\ (-8.874) \end{gathered}$	$\begin{gathered} -1.750 \\ (-2.384) \end{gathered}$	$\begin{gathered} .660 \\ (1.392) \end{gathered}$	$\begin{aligned} & .287 \\ & (.357 .) \end{aligned}$	$\begin{gathered} 1.446 \\ (4.438) \end{gathered}$	$\begin{gathered} .910 \\ (36.931) \end{gathered}$	2.32	. 9985	41.502

LOG OF (JOINT) LIKELIHOOD FUNCTION= 180.419

$$
u_{t}=\rho_{1} u_{t-1}+\rho_{2} u_{t-2}+\varepsilon_{t}
$$

ZELLNER'S PROCEDURE

	Constant	$\ln ^{p} \frac{1 t}{P D}$	$\mathrm{g}_{2} \mathrm{n}^{\mathrm{P}} \mathrm{Pt} \mathrm{t}$	$\ell \mathrm{n}^{\mathrm{P}} \frac{3 t}{} \mathrm{PD}_{t}$	$\frac{\ell_{n} \underline{Y D}^{P O P}}{\text { POP }}$	ρ_{1}	ρ_{2}	D.W.	R^{2}
Local	$\begin{gathered} -.118 \\ (-.035) \end{gathered}$	$\begin{aligned} & .000484 \\ & (.005) \end{aligned}$	$\begin{array}{r} -.0651 \\ (-.994) \end{array}$	$\begin{gathered} -.197 \\ (-1.584) \end{gathered}$	$\begin{gathered} .138 \\ (2.701) \end{gathered}$	$\begin{gathered} 1.442 \\ (9.574) \end{gathered}$	$\begin{gathered} -.449 \\ (-3.016) \end{gathered}$	2.06	. 9995
Telephone Message Toll	.0746 $(.006)$	$\left(\begin{array}{c} -.229 \\ (-.684) \end{array}\right.$	$\left(\begin{array}{c}-.452 \\ (-2.022)\end{array}\right.$	-.134 $(-.400)$	$\left(\begin{array}{c} .522 \\ (3.297) \end{array}\right.$	($\begin{gathered}.665 \\ \text { (3.664) }\end{gathered}$	$\begin{gathered} .324 \\ \cdot(1.782) \end{gathered}$	2.14	. 9981
Other Toll	$\begin{gathered} -7.184 \\ (-11.000) \end{gathered}$	$\left(\begin{array}{l} -2.142 \\ (-3.075) \end{array}\right.$	$\begin{gathered} .701 \\ (1.576) \end{gathered}$	$\begin{gathered} .840 \\ (1.120) \end{gathered}$	$\begin{gathered} 1.735 \\ (4.935) \end{gathered}$	$\begin{gathered} .671 \\ (3.170) \end{gathered}$	$\begin{gathered} .209 \\ (1.074) \end{gathered}$	2.33	. 9984

log of likelinood function $\doteq 181.649$
procedure was used (assuming the ε_{t}^{\prime} 's across equations are contemporaneously correlated) and the three equations estimated jointly. We get, in this way, more efficient estimates. Now the own price elasticities all have the expected signs; nevertheless the own price elasticities for Local and Other Toll services do not come out significant (at level .05) and the demand for Telephone Message Toll services appears inelastic (which seems difficult to believe). All the cross-price elasticities came out non-significant except for the elasticity of Telephone Message Toll with respect to the price of Other Toll; this last number is negative indicating Telephone Message Toll is a complement to Other Toll (a somewhat surprising outcome). It may be noted also that the autocorrelation coefficients all come out highly significant.

We also considered the possibility that the disturbances follow higher order autoregressive processes. In Tables 2 . Ĭ 0 (equation by equation) and 2.11 (Zellner's procedure), we present the results of the estimation when the disturbances are assumed to follow an $A R(2)$ process. Again, the estimation equation by equation produces positive own price elasticities for the Local and Other Toll equations (although these are not significant) and the demand for Telephone Message Toll services appears inelastic. We observe the same sign pattern when using Zellner's procedure. The elasticity of the demand for Telephone Message Toll with respect to the price of Other Toll still comes out negative (although not significant). The results in Table 2.9-clearly appear more plausible. In this respect, we should note also

TABLE 2.13

DOUBLE - LOG MODEL: AR (3) MODEL

$$
u_{t}=\rho_{1} u_{t-1}+\rho_{2} u_{t-2}+\rho_{3} u_{t-3}+\varepsilon_{t}
$$

ZELLNER'S PROCEDURE

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Constant \& $\ln \frac{\mathrm{P}^{1} 1 t}{P D_{t}}$ \& $\frac{2 n}{} \frac{P_{2 t}}{P D_{t}}$ \& \& \& ρ_{1} \& ρ_{2} \& ρ_{3} \& D.W. \& R^{2}

\hline -1.062
$(-.373)$ \& .0182
$(.182)$ \& (-.0115 \& $$
\begin{gathered}
-.393 \\
(-3.117)
\end{gathered}
$$ \& $$
\begin{gathered}
.212 \\
(3.702)
\end{gathered}
$$ \& $$
\begin{gathered}
1.237 \\
(7.438)
\end{gathered}
$$ \& $$
\left(\begin{array}{l}
-.0338 \\
(-.121)
\end{array}\right.
$$ \& $$
\begin{gathered}
-.211 \\
(-1.189)
\end{gathered}
$$ \& 1.80 \& . 9995

\hline -5.283
(-25.275) \& (. C (372) \& $\left(\begin{array}{c}-.441 \\ (-1.951)\end{array}\right.$ \& $$
\begin{gathered}
-1.027 \\
(-3.436)
\end{gathered}
$$ \& (6.240) \& (3.295

(\& $\left(\begin{array}{c}-.251 \\ (-1.393)\end{array}\right.$ \& $$
\begin{gathered}
.362 \\
(2.408)
\end{gathered}
$$ \& 2.13 \& . 9983

\hline $$
\begin{gathered}
-7.458 \\
(-14.297)
\end{gathered}
$$ \& \[

\left\lvert\, $$
\begin{gathered}
-2.164 \\
(-3.083)
\end{gathered}
$$\right.

\] \& \[

$$
\begin{gathered}
.618 \\
(1.433)
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
.580 \\
(.869)
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1.753 \\
(5.274)
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
.561 \\
(2.866)
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& .0877 \\
& (.389)
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
.172 \\
(1.063)
\end{gathered}
$$
\] \& 2.11 \& . 9982.

\hline
\end{tabular}

LOG OF LIKELIHOOD FUNCTION $=178.763$

TABLE`2.10
θ

DOUBLE-LOG MODEL: AR(2) ERRORS
$u_{t}=\rho_{2} u_{t-1}+\rho_{2} u_{t-2}+\varepsilon_{t}$

MAXIMUM LIKELIHOOD EQUATION BY EQUATION

	Constant	$\ln ^{P} \frac{1 t}{P D_{t}}$	$\mathrm{ln}^{\mathrm{P}} \frac{2}{\mathrm{PD}_{2}}{ }_{t}$	$\mathrm{ln}^{\mathrm{P}^{\mathrm{P}} 3 t}{ }^{\text {PD }}$ t		ρ_{1}	ρ_{2}	D.w.	R^{2}	I
Local	-.567 $(-.192)$	$(.00290$	$\begin{array}{r} -.0300 \\ (-.414) \end{array}$	$\begin{gathered} (-.271) \\ (-2.014) \end{gathered}$	$\begin{gathered} .159 \\ (2.895) \end{gathered}$	$\begin{gathered} 1.462 \\ (7.830) \end{gathered}$	$\begin{gathered} -.469 \\ (-2.553) \end{gathered}$	2.15	. 9996	79.621
Telephone Message Toll	(-1.498) $(-.197)$	$\begin{gathered} -.316 \\ (-.823) \end{gathered}$	$\begin{gathered} -.342 \\ (-1.365) \end{gathered}$	$\begin{gathered} -.204 \\ (-.536) \end{gathered}$	$\begin{gathered} .575 \\ (3.340) \end{gathered}$	(3.067)	$\begin{gathered} .299 \\ (1.336) \end{gathered}$	2.17	. 9981	54.764
Other Toll	-7.060 (-10.285)	$\begin{gathered} -2.087 \\ (-3.010) \end{gathered}$	$\begin{gathered} .622 \\ (1.402) \end{gathered}$	$\begin{gathered} .934 \\ (1.238) \end{gathered}$	$\begin{gathered} 1.698 \\ (4.795) \end{gathered}$	$\begin{gathered} .630 \\ (2.816) \end{gathered}$	$\begin{gathered} .251 \\ (1.216) \end{gathered}$	2.28	. 9984	41.244

LOG OF JOINT LIKELIHOOD FUNCTION $=175.629$

TABLE 2:15

LOG OF LIKELIHOOD FUNCTION $=194.293$

TABLE 2.12

DOUBLE-LOG MODEI: $A R(3)$ ERRORS

$$
u_{t}=\rho_{1} u_{t-1}+\rho_{2} u_{t-2}+\rho_{3} u_{t-3}+\varepsilon_{t}
$$

	Constant	$9 \mathrm{n}^{\mathrm{P}} \frac{1 t}{\mathrm{PD}_{t}}$	$\ln ^{\mathrm{P}} \frac{2 t}{\mathrm{PD}_{t}}$	¢ $n^{P} \frac{3 t}{P D_{t}}$	$\ln _{\mathrm{P}_{\mathrm{OOP}}}^{\mathrm{YD}}$	${ }^{\rho} 1$	${ }^{\circ} 2$	ρ_{3}	D.W.	R^{2}	\boldsymbol{I}
nocal	$\begin{gathered} 12.325 \\ (.069) \end{gathered}$	$\begin{array}{r} .0266 \\ (.246) \end{array}$	$\begin{array}{r} -.0359 \\ (-.521) \end{array}$	$\begin{gathered} -: 343 \\ (-2.522) \end{gathered}$	$\begin{gathered} .222: \\ (3.953) \end{gathered}$	$\begin{gathered} 1.308 \\ (6.573) \end{gathered}$	$\begin{gathered} .0274 \\ (.078) \end{gathered}$	-.336 (-1.552)	1.96	. 9995	76.589
Telephone Message Toll	$\left(\begin{array}{c} -5.246 \\ (-23.109) \end{array}\right.$	$\begin{gathered} .483 \\ (1.148) \end{gathered}$	$\begin{gathered} -.542 \\ (-2.156) \end{gathered}$	$\begin{gathered} -1.424 \\ (-4.079) \end{gathered}$	$\begin{gathered} .914 \\ (5.060) \end{gathered}$	$\begin{gathered} .500 \\ (2.055) \end{gathered}$	$\begin{gathered} -.167 \\ (-.763) \end{gathered}$	$\begin{gathered} .160 \\ (.899) \end{gathered}$	2.04	. 9984	55.166
Other Toll	$\left(\begin{array}{c}-6.814 \\ (-11.667)\end{array}\right.$	$\begin{gathered} -2.422 \\ (-3.755) \end{gathered}$	$\begin{gathered} .499 \\ (1.288) \end{gathered}$	$\begin{gathered} 1.391 \\ (2.281) \end{gathered}$	$\begin{gathered} 1.570 \\ (5.338) \end{gathered}$	$\begin{gathered} .399 \\ (1.976) \end{gathered}$	$\begin{array}{r} .0546 \\ (.240) \end{array}$	$\begin{array}{r} .375 \\ (2.038) \end{array}$	2.27	. 9985	41.457

LOG OF JOINT LIKELIHOOD FUNCTION= 173.212

TABLE. 2.16

DIAGONAL DOUBLE-LOG MODEL WITH DUMMIES

MAXIMUM LIKELIHOOD: EQUATION BY EQUATION

	Constant	$\ell \mathrm{n}^{\mathrm{P}_{1}} \frac{\mathrm{PD}_{t}}{}$	$\ell^{\mathrm{P}^{\mathrm{P}} 2 \mathrm{t}} \mathrm{PD}_{t}$	$\ln ^{P} \frac{3 t}{P D_{t}}$	$2 n^{Y D_{t}}{ }_{\text {POP }}^{t}$	${ }_{\mathrm{D}}{ }_{\mathrm{l}}^{*}$	$\mathrm{D}_{2 \mathrm{t}}^{*}$	ρ	D.W.	R^{2}	L.
Local	$\begin{aligned} & 1.335 \\ & (.283) \end{aligned}$	$\begin{gathered} -.196 \\ (-2.093) \end{gathered}$			$\begin{gathered} .153 \\ (2.139) \end{gathered}$			(123.421)	1.22	. 9994	77.216
Telephone Message Toll	$\begin{gathered} -5.056 \\ (-26.453) \end{gathered}$		$\begin{gathered} -1.441 \\ (-9.850) \end{gathered}$		$\begin{gathered} .686 \\ (4.454) \end{gathered}$.0895 (3.441)	$\begin{gathered} .117 \\ (4.883) \end{gathered}$	$\begin{gathered} .703 \\ (6.745) \end{gathered}$	2.57	. 9988	58.075
Other Toll	$\begin{gathered} -6.915 \\ (-9.264) \end{gathered}$			$\left(\begin{array}{c}-.942 \\ (-1.630)\end{array}\right.$	$\begin{gathered} 1.413 \\ (3.781) \end{gathered}$			$\begin{gathered} .893 \\ (27.579) \end{gathered}$	2.07	. 9981	36.822

LOG OF (JOINT) LIKELIHOOD FUNCTION $=172.113$

* $D_{1 t}=1$, for $t=1959-1976$
$=0$, otherwise
** $D_{2 t}=1$, for $t=1970-1976$
0 , otherwise

TABLE 2.14

DOUBLE-LOG HABIT FORMATION MODEL: AR(1) ERRORS

$$
u_{t}=\rho u_{t-1}+\varepsilon_{t}
$$

MAXIMUM LIKELIHOOD: EOUATION BY EOUATION

		-	-							
Local	$\begin{gathered} -1.054 \\ (-4.626) \end{gathered}$	$\begin{gathered} .203 \\ (1.754) \end{gathered}$	$\begin{gathered} -.0104 \\ (-.147) \end{gathered}$	$\begin{gathered} -.319 \\ (-2.242) \end{gathered}$	$\begin{gathered} .233 \\ (4.911) \end{gathered}$	$\begin{gathered} .767 \\ (13.508) \end{gathered}$	$\begin{gathered} .416 \\ (2.635) \end{gathered}$	2.41	. 9997	84.779
Telephone Message Toll	$\begin{gathered} -3.551 \\ (-5.937) \end{gathered}$	(3.822 (3.394)	-.581 (-3.150)	-1.063 (-2.981)	.707 (5.233)	.341 $(2.770$	$\begin{aligned} & .189 \\ & (.988) \end{aligned}$	2.33	. 9989	60.704
Other Toll	$\begin{gathered} -8.767 \\ (-7.680) \end{gathered}$	$\begin{gathered} -2.494 \\ (-3.352) \end{gathered}$	$\begin{gathered} .866 \\ (1.950) \end{gathered}$	$\begin{aligned} & .676 \\ & (.905) \end{aligned}$	$\begin{aligned} & 1.874 \\ & (5.481) \end{aligned}$	$\begin{gathered} -.298 \\ (-1.893) \end{gathered}$	$\begin{gathered} .907 \\ (51.208) \end{gathered}$	2.25	. 9985	42.038

LOG OF (JOINT) LIKELIHOOD FUNCTION= 187.521
close to l). Then, using Zellner's procedure (Table 2.17), all the income and price elasticities appear significant and have the expected signs; furthermore, both Telephone Message Toll and Other Toll services appear to be price-elastic. The dummy variables in Telephone Message Toll equation are highly significant, showing the importance of taking into account the discontinuities observed. We thus incline to consider the demand system in Table 2.17 as being the most satisfactory with the existing aggregate data.

Another interesting observation which comes out of this set of experiments is that there is no basis for considering that Telephone Message Toll services constitutes a strong substitute for Other Toll services. In the most satisfactory set of results (Table 2.17), the elasticity of the demand for Telephone Message Toll services is zero; in all other Tables, it comes out negative (suggesting complementarity, if one is prepared to believe this is possible ${ }^{l}$).

[^4]
TABLE 2.17

DIAGONAL DOUBLE-IJGG MODEL WITH DUMMIES

MAXIMUM LIKELIHOOD: ZELLNER'S PROCEDURE.

Local

'Fe lepinone thessage Toll

Other Moll

Constant	$\frac{3 n^{p} 1 t}{p^{2} D_{t}}$	$\sin ^{2} \frac{2 t}{P_{t}}$	$\sin ^{p} \frac{3 t}{P D}$	$\mathrm{in}^{\mathrm{P} \mathrm{C}_{t}} \mathrm{COF}_{t}$	$\mathrm{s}_{1 t}$	$\mathrm{E}_{2 t}$	ρ	D.V.	πr^{2}
2.412 $(.456)$	$\begin{gathered} -.155 \\ (-2.317) \end{gathered}$.167 (2.737)			. 992 (157.558)	1.17	. 9994
$\begin{array}{r} -5.190) \\ (-33.544) \end{array}$		$\begin{array}{r} -1.40 .1 \\ (-12.154) \end{array}$.775 (6.106)	.114 (7.285)	(6.239)	(7.576	2.43	. 9986
$\begin{gathered} -7.865 \\ (-18.193) \end{gathered}$			$\begin{gathered} -1.720 \\ (-4.789) \end{gathered}$	$\begin{gathered} 1.785 \\ (5.505) \end{gathered}$.812 (33.698)	1.70	. 9976

LOG OF LIKELIHOOD FUNC'IION $=190.890$.

We postulate that Bell canada maximizes profits subject to a translog production frontier and fixed regulated prices for local and telephone message toll. Given a demand equation, the assumption of fixed prices for regulated services is equivalent to the assumption of fixed quantity of regulated service.

The problem can be stated as:
Maximize
$\Pi=P_{1} Y_{1}\left(P_{1}\right)+P_{2} Y_{2}-w L-m M-v K$
subject to:

$$
\begin{align*}
& 0=\ln (F+1)=\ln A_{0}+B_{1} \ln \hat{L}+B_{2} \ln \hat{M}+B_{3} \ln \hat{\mathrm{~K}}+\mathrm{B}_{4} \ln \hat{T C} \tag{2}\\
& +\frac{1}{2} \mathrm{H}_{11}(\ell \operatorname{n} \hat{\mathrm{~L}})^{2}+\frac{1}{2} \mathrm{H}_{22}(\ell \mathrm{n} \hat{\mathrm{M}})^{2}+\frac{1}{2} \mathrm{H}_{33}(\ell \ln \hat{\mathrm{~K}})^{2} \\
& +\frac{1}{2} \mathrm{H}_{4}(\ell n \hat{\mathrm{TC}})^{2}+\mathrm{H}_{12} \ln \hat{\mathrm{~L}} \ell n \hat{M}+\mathrm{H}_{13} \ln \hat{\mathrm{~L}} \ln \hat{\mathrm{~K}} \\
& +\mathrm{H}_{14} \ln \hat{\mathrm{C}} \ell \ln \hat{\mathrm{~T}} \mathrm{C}+\mathrm{H}_{23} \ln \hat{M} \ell n \hat{\mathrm{~K}}+\mathrm{H}_{24} \ln \hat{M} \ell n \hat{T} \mathrm{C}+\mathrm{H}_{3} \ln \hat{\mathrm{~K}} \ell n \hat{T} \mathrm{C} \\
& +J_{11} \ln \hat{Y}_{1} \ln \hat{\mathrm{H}}+J_{12} \ln \hat{Y}_{1} \ell n \hat{M}+J_{13} \ln \hat{Y}_{1} \ln \hat{K} \\
& +J_{14} \ln \hat{Y}_{1} \ell n \hat{T C}+J_{21} \ln \hat{Y}_{2} \ln \hat{\mathrm{~L}}+\mathrm{J}_{22} \ln \hat{Y}_{2} \ln \hat{M} \\
& +\mathrm{J}_{2}{ }_{3} \ln \hat{Y}_{2} \ln \hat{\mathrm{~K}}+\mathrm{J}_{24} \ln \hat{y}_{2} \ln \hat{\mathrm{TC}}+\mathrm{A}_{1} \ln \hat{y}_{1} \\
& +\mathrm{A}_{2} \ln \hat{Y}_{2}+\frac{1}{2} \mathrm{G}_{11}\left(\ln \hat{Y}_{1}\right)^{2}+\frac{1}{2} \mathrm{G}_{22}\left(\ln \hat{Y}_{2}\right)^{2} \\
& +G_{12} \ln \hat{Y}_{1} \cdot \ln \hat{Y}_{2}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{y}_{1}=\overline{\mathrm{y}}_{1} \quad \text { or } \quad\left(\mathrm{P}_{1}=\overline{\mathrm{P}}_{1}\right) \tag{3}
\end{equation*}
$$

where
$y_{1}=$ Quantity of regulated services, divisia quantity index of local service, Intra-Bell message toll service, Trans Canada message toll service and U.S. and Overseas message toll service.
$P_{1}=$ Price of regulated services, revenues from regulated services, divided by Y_{1}, index $1967=1.00$
$Y_{2}=$ Other toll services in 1967 prices.
$P_{2}=$ Price of other toll services, Index $1967=1.00$
$\mathrm{L}=$ Labor in weighted man hours, with 1967 weights

CHAPTER III

THE TECHNOLOGICAL STRUCTURE OF BELL CANADA

3.1 Introduction

In our work we take the objective of the firm to be profit maximization subject to a regulatory constraint in the form of fixed prices for local services and for message toll services. As far as the objectives of the regulatory agency are concerned, we assume that in the short run they are to fix the prices of local and message toll services.

In this chapter two alternative characterization of technologies are developed. In the first one, the technology of Bell Canada is described through a multiple output production function. In the second, it is described by multiple output cost function.
3.2 The Profit Maximization Model with a Production Frontier We assume that Bell sells three outputs: local services, message toll services and other toll services. It uses in its production three factors of production: labor, raw materials and capital. In the production side we consider two outputs: regulated output $\left(y_{1}\right)$, which is a divisia quantity index of local services and message toll services; and other toll services $\left(y_{2}\right)$. These two outputs are produced by a general translog production frontier. ${ }^{1}$

[^5]The production possibility frontier, equation 2 , is a general translog function which does not restrict a priori the type of technical change.

To solve the problem of maximizing (1) subject to (2) and (3), we set up the following Lagrangian:

$$
\begin{aligned}
\Psi=P_{1} Y_{1}+ & P_{2} Y_{2}-w L-m M-v K-\mu_{1}\left[F\left(Y_{1}, Y_{2}, L, M, K, T C\right)\right] \\
& -\mu_{2}\left[Y_{1}-\bar{Y}_{1}\left(P_{1}\right)\right]
\end{aligned}
$$

First order conditions for the maximum of profits are given by (2) and (3) above and the following equations:

$$
\begin{array}{ll}
\frac{\partial \Psi}{\partial L}=-W-\mu_{1} \frac{\partial F}{\partial L} & =0 \\
\frac{\partial \Psi}{\partial M}=-m-\mu_{1} \frac{\partial F}{\partial M} & =0 \\
\frac{\partial \Psi}{\partial K}=-v-\mu_{1} \frac{\partial F}{\partial K} & =0 \\
\frac{\partial \Psi}{\partial Y_{2}}=P_{2}\left[1+\eta_{2}\right]-\mu_{1} \frac{\partial F}{\partial Y_{2}} & =0 \tag{7}
\end{array}
$$

Where η_{2}. is the reciprocal of the price elasticity of the demand for other toll services.

The system of equations (2) to (7) is a system of 6 equations in six unknowns: $Y_{1}, Y_{2}, L, M, K, \mu_{1}$.

To complete the specification of this model we need to specify the demand equations and the production frontier. The estimation of the demand equations was discussed in Chapter II above. Here we will discuss the estimation of the production possibility frontier. ${ }^{l}$

$$
\begin{aligned}
& \text { Dividing (5) by (4) we obtain: } \\
& \frac{\frac{\partial F}{\partial M}}{\frac{\partial F}{\partial L}}=\frac{m}{W}
\end{aligned}
$$

1 For further analysis on this production possibility frontier see B. Smith and V. Corbo "Economies of Scale and Economies of Scope in. Bell Canada". IAER, 1979. services, rent and supplies, uncollectables and indirect taxes not allocated to labor and capital, all of them in millions of 1967 dollars.

```
K = Net capital stock, in millions of 1967 dollars
```

$T C=$ Technology indicator. Throughout this report a considerable amount of effort was directed towards constructing a conceptually sound index of technical change from the available data. Although it is felt that a more representative index could not be constructed from the available data, it is quite likely true that more information on the technical aspects of the production process would lead to a better index.

In the index constructed an attempt was made to take account of improvements in the type of capital improved, the spread of these improvements throughout the Bell Canada System and the importance of the improvements for local and toll services. The formula for the index is: $T C=\operatorname{FNEW}[\tau \operatorname{PDPH}+(1-\tau)$ ACCESS $] ; \quad \tau=\frac{Q_{L}}{Q_{L}+Q_{T}} ;$ where FNEW is the factor of capital improvement defined as 1 plus the percent of main stations switched by crossbar, ESS and SPI;

ACCESS is the percentage of telephones with access to direct dialing;

PDPH is the percent of dial phones;
$Q_{L^{\prime}}, Q_{T}$ are respectively local and toll output aggregates.
$w=$ Wage rate
$\mathrm{m}=$ Unit cost of raw materials
$\mathrm{v}=$ Unit cost of capital services
$\hat{X}=\frac{X}{\bar{X}}$, where $\overline{\mathrm{X}}$ is the mean of $\mathrm{X}\left(\mathrm{X}=\mathrm{L}_{\mathrm{L}}, \mathrm{M}, \mathrm{K}, \mathrm{TC}, \mathrm{Y}_{1}\right.$ and $\left.\mathrm{Y}_{2}\right)$

For estimation purposes, we add a random error to each of the equations. We further assume that the random errors are contemporaneously correlated and thus the four equations are estimated as a multivariate equation system using Zellner's seemingly unrelated estimation method.

The results of the estimation appear in Tables 3.1 and 3.2.
From the results obtained, we see that most of the coefficients are statistically significant. Also, the estimated translog function is monotonic and quasi-concave on factor inputs for every data point. Also the output frontier has a negative slope. ${ }^{1}$

The model presented up to now does not include a regulatory constraint. We computed for the sampling period an allowed: rate of return on capital which was compared with the actual rate of return on capital. From the comparison of these two series we observe that up to 1967 the actual return on capital was substantially above the allowed rate of return. Thus, we conclude that the regulation of earnings for share was not enforced up to that year. From 1967 on, when an explicit rate of return regulation was introduced, the allowed rate and the actual rate were much closer. Thus, for the period 1967-1976 we introduced a separate regulatory constraint in our model.

When a regulatory constraint is added to our optimization problem, the only change introduced is in equation (9). The change is that the numerator in the right-hand side of the equation has to be multiplied by ($1-D R * \lambda$) and a new term has to be added which is equal to $\frac{K *(D R * \lambda * S)}{W * L}$ where the new symbols are:

[^6]we obtain:
$\frac{\mathrm{mM}}{\mathrm{wL}}=\frac{\mathrm{M}}{\frac{\partial \mathrm{F}}{\partial \mathrm{M}}} \frac{\mathrm{L}}{\frac{\partial \mathrm{F}}{\partial \mathrm{L}}}=\frac{\mathrm{B}_{2}+\mathrm{H}_{12} \ln \hat{\mathrm{~L}}+\mathrm{H}_{22} \ln \hat{M}+\mathrm{H}_{23} \ln \hat{\mathrm{~K}}+\mathrm{H}_{24} \ln \hat{\mathrm{TC}}+\mathrm{J}_{12} \ln \hat{\mathrm{Y}}_{1}+\mathrm{J}_{22} \ln \hat{\mathrm{Y}}_{2}}{\mathrm{~B}_{1}+\mathrm{H}_{11} \ln \hat{\mathrm{~L}}+\mathrm{H}_{12} \ln \hat{M}+\mathrm{H}_{13} \ln \hat{\mathrm{~K}}+\mathrm{H}_{14} \ln \hat{\mathrm{~T} C}+\mathrm{J}_{11} \ln \hat{Y}{ }_{1}+\mathrm{J}_{21} \ln \hat{Y} 2}$
similarly, dividing (6) by (4) we obtain:
$$
\frac{\frac{\partial F}{\partial K}}{\frac{\partial F}{\partial L}}=\frac{v}{W}
$$
therefore:
\[

$$
\begin{equation*}
\frac{v K}{w L}=\frac{\left[B_{3}+H_{13} \ln \hat{\mathrm{~L}}+\mathrm{H}_{23} \ln \hat{M}+\mathrm{H}_{33} \ln \hat{\mathrm{~K}}+\mathrm{H}_{34} \ln \hat{\mathrm{TC}}+\mathrm{J}_{13} \ln \hat{Y}_{1}+J_{23} \ln \hat{\mathrm{Y}}_{2}\right]}{\mathrm{B}_{1}+\mathrm{H}_{11} \ln \hat{\mathrm{~L}}+\mathrm{H}_{12} \ln \hat{M}+\mathrm{H}_{13} \ln \hat{\mathrm{~K}}+\mathrm{H}_{14} \ln \hat{\mathrm{TC}}+J_{11} \ln \hat{\mathrm{Y}}_{1}+J_{21} \ln \hat{Y}_{2}} \tag{9}
\end{equation*}
$$

\]

dividing (7) by (4) we obtain:

$$
\frac{\frac{\partial F}{\partial Y_{2}}}{\frac{\partial F}{\partial I}}=\frac{P_{2}\left[1+\eta_{2}\right]}{W}
$$

which can be written as:

$$
\begin{equation*}
\frac{-P_{2 Y_{2}}}{w L}=\frac{A_{2}+J_{21} \ln \hat{L}+J_{22} \ln \hat{M}+J_{23} \ln \hat{K}+J_{24} \ln \hat{T C}+G_{12} \ln \hat{Y}_{1}+G_{22} \ln \hat{Y}_{2}}{\left[B_{1}+H_{11} \ln \hat{\mathrm{H}}+\mathrm{H}_{12} \ln \hat{M}+\mathrm{H}_{13} \ln \hat{\mathrm{~K}}+\mathrm{H}_{14} \ln \hat{\mathrm{~T}}+J_{11} \ln \hat{Y}_{1}+J_{21} \ln \hat{Y}_{2}\right]\left(1+\eta_{2}\right)} \tag{10}
\end{equation*}
$$

We estimate our general translog production frontier by estimatingsimultaneously equations (2), (8), (9) and (10), using for η_{2} its value estimated in the previous chapter i.e. $\eta_{2}=.5815$ For the estimation, we use the following normalization: $\Sigma A_{i}=-1$. This normalization is needed to estimate an implicit production frontier.

GENERAL TRANSLOG PRODUCTION FRONTIER

PARAMETER
ESTIMATED
COEFFICIENT
T-STATISTIC

A_{0}	1.1336*	153.64
B_{1}	. 3290 *	10.61
B_{2}	. 1824 *	10.27
B_{3}	. 4738 *	10.07
B_{4}	. 9974 *	9.22
${ }^{\mathrm{H}} 11$	-.1661*	-2.60
H_{22}	.0890*	3.89
H_{33}	-.1944*	-2.93
H_{44}	-8.3065*	-3.93
H_{12}	-.0735*	-2.68
${ }^{\mathrm{H}} 13$	-.3011*	-4.47
H_{14}	. 0200	. 13
H_{23}	-.1499*	-4.54
H_{24}	. 1338	1.74
H_{34}	. 2731	1.72
J_{11}	. 2078*	2.88
J_{12}	-. 0157	-. 41
J_{13}	. 2369*	2.39
J_{14}	4.3912*	4.70
J_{21}	.0267*	4.82
J_{22}	.0188*	5.86
J_{23}	.0377*	5.56
J_{24}	-. 0099	-1.03
A_{1}	-.9654*	-266.62
${ }^{\text {A }}$	-.0346*	-19.11
G_{11}	-2.261.8*	-5.37
G_{22}	-.0258*	-7.89
G_{12}	-. 0116	-1.60

An asterisk next to a coefficient indicates that the coefficient is significant at a 5\% level or less.

- DR is a dummy variable that takes a value of zero up to 1966 and one from 1967 to 1976.
- λ is the Lagrangean multiplier of the regulatory constraint.
- S is the allowed price of capital services.

The Lagrangean multiplier (λ) is a variable which should be less than one. As a way of estimating its average value over the sample we introduced it as a parameter to be estimated jointly with the other parameters of the production frontier. When we performed the estimation the point estimate for λ was -. 013 and its t-value -.315 , and thus we cannot obtain a reliable average value of λ from our sample. As it was discussed in our introductory chapter, in the short run regulation takes the form of the fixing of a price structure. Thus, in the rest of the model no explicit rate of return regulation is introduced. Rather regulation is introduced through the price of the outputs.

Now we proceed with a further analysis of the estimated production frontier of Tables 3.1 and 3.2.

As a further property of the technology we can study if the translog frontier exhibits constant returns to scale.

Constant returns to scale implies, besides the normalization rule introduced above, the following additional parameter restrictions.

$$
\begin{array}{ll}
\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3} & =1 \\
\mathrm{G}_{11}+\mathrm{G}_{12}+\mathrm{J}_{11}+\mathrm{J}_{12}+\mathrm{J}_{13} & =0 \\
\mathrm{G}_{12}+\mathrm{G}_{22}+\mathrm{J}_{21}+\mathrm{J}_{22}+\mathrm{J}_{23} & =0 \\
J_{11}+\mathrm{J}_{21}+\mathrm{H}_{11}+\mathrm{H}_{12}+\mathrm{H}_{13} & =0 \\
\mathrm{~J}_{12}+\mathrm{J}_{22}+\mathrm{H}_{12}+\mathrm{H}_{22}+\mathrm{H}_{23} & =0 \\
\mathrm{~J}_{13}+\mathrm{J}_{23}+\mathrm{H}_{13}+\mathrm{H}_{23}+\mathrm{H}_{33} & =0 \\
\mathrm{~J}_{14}+\mathrm{J}_{24}+\mathrm{H}_{14}+\mathrm{H}_{24}+\mathrm{H}_{34} & =0 \\
\frac{1}{2} \mathrm{G}_{11}+\mathrm{G}_{12}+\mathrm{J}_{11}+\mathrm{J}_{12}+\mathrm{J}_{13}+\frac{1}{2} \mathrm{G}_{2}{ }_{2}+\mathrm{J}_{21}+\mathrm{J}_{22}+\mathrm{J}_{23}+\frac{1}{2} \mathrm{H}_{11} \\
+\mathrm{H}_{12}+\mathrm{H}_{13}+\frac{1}{2} \mathrm{H}_{22}+\mathrm{H}_{23}+\frac{1}{2} \mathrm{H}_{33} & =0
\end{array}
$$

The last restriction is implied by the second through sixth restriction.

We also can test for separability between outputs and inputs. If the function is separable in outputs and inputs, then we can work with an aggregate output index. Separability between outputs and inputs requires $J_{11}=J_{12}=J_{13}=J_{21}=J_{22}=J_{23}=0$.

Our testing indicated that both of these hypotheses are rejected. ${ }^{1}$

Using the estimated translog frontier, equations (2), (3), (8). (9) and (10) conform a system of 5 equations in five unknowns y_{1}, y_{2}, I, M and K.

1. For details of these tests see Smith and Corbo, op. cit., Part IV.

TABLE 3.2

Equation 8 (Materials)

$$
\begin{array}{ll}
\mathrm{R}^{2}=* & \mathrm{R}^{2}=.980 \\
\mathrm{D}-\mathrm{W}=1.475 & \mathrm{D}-\mathrm{W}=1.328 \\
\mathrm{SSe}=0.0142 & \mathrm{SSe}=.0128
\end{array}
$$

Equation 9 (Capital)
Equation 10 (Other Toll)

$$
\begin{aligned}
& \mathrm{R}^{2}=.994 \\
& \mathrm{D}-\mathrm{W}=1.398 \\
& \mathrm{SSe}=.0307
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{R}^{2}=.998 \\
& \mathrm{D}-\mathrm{W}=2.119 \\
& \mathrm{SSe}=.0048
\end{aligned}
$$

* R^{2} is not computed for this equation because the dependent variable and its mean are zero.

3. 3 A Profit Maximization Model with a Cost Frontier

In the model developed in the previous section the technology of Bell Canada was characterized by a multiple output production frontier. In this section we introduce an alternative characterization of technology. McFadden (1970) introduced the joint cost function which is dual to the production frontier. All the properties of the underlying technology can be studied from the joint cost function. In the previous section, the translog production frontier was used to describe input and output choices of Bell Canada. In this section, a translog cost function is introduced as an alternative characterization of technology. The results of the two approaches are then compared.

Before proceeding, it should be noted that translog cost and production functions are not self-dual and thus could yield different properties of the technology. Indeed, using aggregate macro data it was found by Burgess (1975) and Appelbaum (1978) that in the one output case the translog cost frontier and the translog production frontier did yield contradictory results with respect to the properties of the underlying technology. The introduction of the joint cost model allows a direct test of the extent to which the production results are so that in characterizing the Bell production process.

It is assumed that Bell Canada maximizes profits; given by equation (1) above, subject to a translog cost function and a fixed quantity of regulated services (equation (3)).

The joint cost function can be written in general form as: $C=C\left(w, m, V, T C, Y_{i}, Y_{2}\right)$. In the translog case of the cost function it takes the following form:

In this model it can be shown that the marginal cost of regulated services is given by $\mu_{1} \frac{\partial F}{\partial y_{1}}$ and the marginal cost of other toll services is given by $\mu^{\mu_{1}} \frac{\partial F}{\partial y_{2}}$. After we have found the values for Y_{1}, Y_{2}, L, M and K the value of μ_{1} can be obtained from any of the equations (4) to (7).
restrictions must be introduced.
The.joint cost function (11) is obtained from the problem of minimizing costs for a given output vector. Thus, some further relations can be derived based on this property of the cost function. Indeed, Hall (1973) suggested estimating the parameters of the joint cost function indirectly from behavioral relations implied by economic theory.

From cost minimization subject to a production frontier we can obtain the following behavioral relations based on Sheppard's lemma:

$$
\begin{align*}
& L=\frac{\partial C}{\partial W} \tag{13}\\
& M=\frac{\partial C}{\partial m} \tag{14}\\
& K=\frac{\partial C}{\partial v} \tag{15}
\end{align*}
$$

Diewert (1974) suggested that more efficient parameter estimates could be obtained from the simultaneous estimation of the joint cost function and the side conditions. In a fashion similar to the estimations of the joint production frontier, we estimate simultaneously the function and the side conditions taking (11), (12), (13), (14) and (15) as a multivariate system of equations We can rewrite equations (12) to (15) in terms of the parameters of the translog cost function as follows:

$$
\begin{align*}
\frac{P_{2} Y_{2}}{C}= & \frac{1}{1+\eta_{2}}\left[C_{2}+C_{2 W} \ln \hat{W}+C_{2 m} \ln \hat{m}+C_{v} \ln \hat{v}+C_{2 T} \ln \hat{T C}\right. \\
& \left.+C_{12} \ln \hat{Y}_{1}+C_{22} \ln \hat{Y}_{2}\right] \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \ln \hat{C}=C_{0}+C_{W} \ell n \hat{W}+C_{m} \ell n \hat{m}+C_{V} \ln \hat{\mathrm{~V}}+C_{T} \ell n \hat{T C} \\
& +\frac{1}{2} C_{w w}(\ell n \hat{w})^{2}+C_{w m} \ell n \hat{w} \ell n \hat{m}+C_{w V} \ell n \hat{w} \ln \hat{v}+C_{w T} \ell n \hat{w} \ln \hat{T C} \\
& +\frac{1}{2} C_{m m}(\ell n \hat{m})^{2}+C_{m v} \ell n \hat{m} \ell n \hat{v}+C_{m T} \ell n \hat{m} \ell n \hat{T C} \\
& +\frac{1}{2} C_{V V}(\ell \operatorname{n} \hat{v})^{2}+C_{V T} \ln \hat{\mathrm{~V}} \ln \hat{T C}+\frac{1}{2} C_{T T}(\ell n \hat{T C})^{2} \tag{11}\\
& +C_{1} \ln \hat{Y}_{1}+C_{2} \ln \hat{Y}_{2}+\frac{1}{2} C_{11}\left(\ell n \hat{Y}_{1}\right)^{2}+C_{12} \ln \hat{Y}_{1} \ell n \hat{Y}_{2} \\
& +\frac{1}{2} C_{22}\left(\ell n_{\hat{Y}_{2}}\right)^{2}+C_{1 W} \ln \hat{Y}_{1} \ell n \hat{W}+C_{1 m} \ln \hat{Y}_{1} \ell n \hat{m} \\
& +C_{1 V} \ln \hat{Y}_{1} \ell m \hat{V}+C_{1 T} \ell n \hat{Y}_{1} \ln \hat{T C}+C_{2 W} \ln \hat{Y}_{2} \ell n \hat{W} \\
& +\mathrm{C}_{2} \mathrm{~m} \ln \hat{Y}_{2} \ln \hat{m}+\mathrm{C}_{2} \mathrm{v} \ln \hat{Y}_{2} \ln \hat{\mathrm{~V}}+\mathrm{C}_{2} \mathrm{~T} \ln \hat{Y} 2 \ln \hat{\mathrm{TC}}
\end{align*}
$$

where the new symbols introduced are:

$$
\begin{aligned}
\mathrm{C}= & \text { Total cost in millions of current dollars, } \\
& \mathrm{C}=\mathrm{wL}+\mathrm{mM}+\mathrm{vK} \\
\hat{\mathrm{X}}= & \frac{\mathrm{X}}{\overline{\mathrm{X}}} \text { where } \overline{\mathrm{X}} \text { is the mean of } \mathrm{X} \text { and } \\
& \mathrm{X}=\mathrm{C}, \mathrm{w}, \mathrm{~m}, \mathrm{v}, \mathrm{TC}, \mathrm{Y}_{1} \text { and } \mathrm{Y}_{2}
\end{aligned}
$$

The profit maximizing problem can be stated in terms of the following Lagrangian

$$
\phi=P_{1} Y_{1}+P_{2} Y_{2}-C\left(w, m, v, T C, Y_{1}, Y_{2}\right)-\Theta\left[Y_{1}-\bar{Y}_{1}\left(P_{1}\right)\right]
$$

First order conditions for the maximization of profits are given by:

$$
\begin{equation*}
\frac{\partial \phi}{\partial Y_{2}}=P_{2}\left[1+\eta_{2}\right]-\frac{\partial C}{\partial Y_{2}}=0 \tag{12}
\end{equation*}
$$

and equation (2) :
From the inverse demand equations for Y_{2} we have $P_{2}=f\left(y_{2}\right)$. Thus, these two equations provide a system of two equations in two unknowns Y_{1}, Y_{2}. Given the large number of parameters, in order to estimate the cost function with more precision further

The last of these restrictions is implied by the $2 n d, 3$ rd and. 4 th. For estimation purposes, a disturbance is added to the equations. It is expected that the disturbances on the multivariate equation system to be contemporaneously correlated. Homogeneity of degree one in factor prices implies that the dependent variable for equations (13)', (14)' and (15)' sum identically to unity for every data point. This implies that disturbances for these equations add identically to zero for every data point. The fact that each dependent variable is expressed as a share implies that these restrictions are fulfilled in the éstimation. In this case, the covariance matrix of disturbances for the multivariate system will be singular. Thus, for this system of equations, zeliner's seemingly inrelated estimation procedure cannot be used to obtain efficient estimates. It is known that this problem can be solved by deleting one of the share equations and estimating the other two jointly with the cost function using Zellner's procedure. If the zellner procedure is iterated until convergence is achieved, then the resulting parameter estimates are independent of the cost share equation deleted before estimation (Berndt and Christensen (1973) , Oberhofer and Kmenta (1974) and Brown et al (1976)). Thus, homogeneity of degree one in factor prices is imposed and equations (11), 12)', (13)' and (15)' are estimated using the iterative-Zellner procedure. The parameters of equation (14)' are then retrieved, using the other parameter estimates and the homogeneity restrictions. The results of the estimation appear in Table 3.3.

A translog cost frontier is not a priori restricted to be

$$
\begin{align*}
& \frac{w L}{C}=C_{w}+C_{w W} \ell n \hat{w}+C_{w m} \ell n \hat{m}+C_{w v} \ell n \hat{v}+C_{w T} \ell n T C \\
& +C_{1 w} \ln \hat{Y}_{1}+C_{2 W} \ln \hat{Y}_{2} \tag{13}\\
& \frac{m M}{C}=C_{m}+C_{w n} \ell n \hat{w}+C_{m m} \ell n \hat{m}+C_{m v} \ell n \hat{v}+C_{m T} \ell n \hat{T C} \\
& +C_{1_{1} m} \ln \hat{Y}_{1}+C_{2 m} \ln \hat{Y}_{2} \tag{14}\\
& \frac{\mathrm{vK}}{\mathrm{C}}=\mathrm{C}_{\mathrm{v}}+\mathrm{C}_{\mathrm{wv}} \ell \operatorname{nn} \hat{\mathrm{w}}+\mathrm{C}_{\mathrm{mv}} \operatorname{\ell n\hat {m}}+\mathrm{C}_{\mathrm{wv}} \operatorname{\ell n\hat {v}}+\mathrm{C}_{\mathrm{VT}} \ell \operatorname{nn\hat {T}} \\
& +C_{1 v} \ln \hat{y}_{1}+C_{2 v} \ln \hat{y}_{2} \tag{15}
\end{align*}
$$

Equations (11), (12)', (13)', (14)' and (15)' constitute a multivariate system of equations which can be used to estimate the joint cost function. Moreover, not all parameters in this system are free. The cost function must be homogeneous of degree one in factor prices. Necessary and sufficient conditions for homogeneity of degree one are given by the following restrictions on the parameters of the cost function:

$$
\begin{aligned}
& C_{w T}+C_{m}+C_{v}=I \\
& C_{w w}+C_{w m}+\dot{C}_{w v}=0 \\
& C_{w m}+C_{m m}+C_{m v}=0 \\
& c_{m v}+c_{m v}+c_{v v}=0 \\
& C_{w T}+c_{m T}+C_{v T}=0 . \\
& C_{1 w}+C_{1 m}+C_{1 v}=0 \\
& C_{2 w}+C_{2 m}+C_{2 v}=0 \\
& \frac{1}{2} C_{w w}+C_{w m}+C_{w v}+\frac{1}{2} C_{m m} \\
& +C_{m v}+\frac{1}{2} C_{v v}=0
\end{aligned}
$$

TABLE 3.3
GFNERAL TRANSLOG JOINT COST FUNCTION

PARAMETER	$\begin{gathered} \text { ESTIMATED } \\ \text { COFFFICIENT } \end{gathered}$	T-STATISTIC
C_{0}	.0148*	2.821
C_{w}	. $3205 *$	104.792
C_{m}	. 1900 *	93.930
C_{v}	. $4894 *$	147.142
C_{T}	-. $4889 *$	-6.360
$\mathrm{C}_{\text {ww }}$	-. 1068 *	-3.453
$\mathrm{C}_{\text {wm }}$. 0405	1.994
$\mathrm{C}_{\text {wv }}$. . 0663^{*}	2.691
C_{WT}	-. 1890*	-4.966
C_{mm}	. 04.96 *	2.220
$\mathrm{C}_{\text {mv }}$	-.0917*	-5.742
C_{mT}	-.0506*	-2.473
C_{VV}	. 0239	. 849
C_{VT}	. 2396 *	5.650
$\mathrm{C}_{\text {TT }}$	-. 4344	. 293
C_{1}	. 8537*	15.503
C_{2}	. 0292*	34.805
C_{11}	. 0395	. 049
C_{12}	-. 0234	-4.061
$\mathrm{C}_{2} 2$. $0144 *$	7.419
$\mathrm{C}_{1 . \mathrm{W}}$. 1342 *	5.307
C_{im}	. 0208	1.314
$\mathrm{C}_{1} \mathrm{~V}$	-. 1550*	-5.370
$\mathrm{C}_{1} \mathrm{~T}$	-. 1589	-. 146
$\mathrm{C}_{2} \mathrm{~W}$	-. 0321*	-5.652
$\mathrm{C}_{2} \mathrm{~m}$. 0023	. 526
$\mathrm{C}_{2} \mathrm{~V}$. 0298 *	4.714
$\mathrm{C}_{2 \mathrm{~T}}$.0269*	3.683

An asterisk next to a coefficient indicates that the coefficient is significant at a 5% level or less.
globally monotonic in factor inputs nor to be concave in input prices. For the cost minimization problem solution to be optimal the estimated cost function must be concave and positive monotone in factor prices (Diewert (1974).). Thus, as in the production case, these properties are locally verified at avery data point. The results from the estimation of the translog frontier are presented in Tables 3.3 and 3.4 below.

The estimated translog cost frontier of Table 3.3 is indeed monotone and concave in input prices. Also; the underlying output frontier is negatively sloped. ${ }^{\text {I. }}$

1 For details on all these properties and the respective tests see B. Smith and V. Corbo "Economies of Scale and Economies of Scope in Bell Canada", IAER, 1979.

Using the translog cost function it is possible to test if the underlying production frontier exhibits constant returns to scale.

Constant returns to scale implies the following additional restrictions in the parameters of the cost function. $C_{1}+C_{2}=1 ; \quad C_{1 W}+C_{2 W}=0 ; \quad C_{1 V}+C_{2 V}=0 ; \quad C_{1 T}+C_{2 T}=0 ;$ $C_{11}+C_{12}=0$ and $C_{12}+C_{22}=0$

When the translog cost model was tested for constant returns to scale, the null hypothesis was rejected in favor of increasing returns to scale. ${ }^{1}$

It is also possible to test whether the associated production frontier is group separable in inputs and outputs. This is equivalent to a test for the appropriatness of using an output aggregator for the analysis of technology. Group separability between inputs and outputs require:
$C_{1 w}=C_{2 W}=C_{1 m}=C_{2 m}=C_{1 v}=C_{2 v}=0$
Using the joint cost function, the test for group separability is also rejected. Thus, as in the previous section, the conclusion is drawn that the technology of Bell Canada is a non-separable and exhibits non-constant returns to scale.

The estimated translog joint cost function of eçuation (ㄹI) plus equations (12)', (13)', (14)' and (15)' form a system of five equations in five unknowns $\mathrm{Y}_{2}, \mathrm{~L}, \mathrm{M}, \mathrm{K}$ and C which can be used as an alternative model of the real structure of Bell Canada. The main advantage of using this model is that for fixed

[^7]
SUMMARY STATISTICS OF INDIVIDUAL EQUATIONS

Equation 11
$R^{2}=.9997$
$D-W=1.505$
SSe $=.0125$

Equation 13^{\prime}
$\mathrm{R}^{2}=.982$
$D-W=.937$
SSe $=.0081$

Equation 12'
$\mathrm{R}^{2}=.985$
$D-W=.993$
SSe $=.0014$
$\hat{\rho}=\begin{gathered}.123 \\ (1.420)\end{gathered}$

Equation 15'
$\mathrm{R}^{2}=.979$
$D-W=1.251$
SSe $=.0094$
output prices the system of equation is linear in the variables and thus the model can be simulated easily.

A further comparison between the results of these two models can be a complished by comparing the estimated marginal costs from both models. For the translog model the marginal cost of regulated services is given by $\frac{\partial C}{\partial y_{1}}$ and the one for other by $\frac{\partial C}{\partial y_{2}}$. When these marginal costs are compared to the ones obtained from the production frontier the results are very close again. In subsequent chapters the joint cost model is used as a characterization of the real structure of Bell Canada.

4.1 Validation of the Demand Model

For the validation of the demand model we perform a dynamic simulation of the demand model of Chapter II. In this simulation we take as given the value of the right hand side variables, with the exception of the lagged values of the endogenous variables which are solved from the equations.

The results of these simulations appear in Tables 4.1
to 4.3.

A SIMULATION MODEL OF BELL CANADA: THE REAL STRUCTURE

In this chapter we develop a model of the real structure of Bell Canada. For a given vector of prices, this model is block triangular. The first block is the demand block. The second block is the one formed by the conditions of profit maximization for a given vector of prices, which in this special case is the same as that for cost minimization for a given vector of output. For this purpose we use the multiple output cost model presented in Chapter III above. The advantage of:using the side order conditions'starting from a cost function instead of a production frontier is that the former are linear in the inputs and the latter are not.

We validate.first the demand equations by themselves and the factor requirements equations by themselves. Then, for the validation of the model of the real structure of Bell we use its block triangularity property and proceed in two stages. Initially, we simulate output levels for local services $\left(y_{11}\right)$, message toll services $\left(y_{12}\right)$ and other toll services $\left(y_{2}\right)$. Then, on the second stage, with the simulated values of $y_{1}=y_{11}+y_{12}$ and y_{2} we solve equations (11), (13)', (14)' and (15)' of Chapter III.

Demand for Telephone Message Toll Services

$$
Y_{12} \quad \dot{Y}_{\mathrm{I} 2}^{S}
$$

	Y_{12}	y_{12}^{S}
1950	53.4674	53．4674
1959	57.6434	60．5561
1954	6E． 1980	63.5914
1955	F1． 300 F	70.2055
1956	E0． 2994	F9．eces
195	97．637	日T－5日fe
1958	91.789	90.4590
1959	100. er 1	101．46こ
1960	105.489	$104.34 E$
1961	112．009	111.095
196 C	130.178	1 こ9．581
1965	137． 768	$13 \mathrm{E.441}$
1964	151.691	151.861
1965	170.413	16E．ア4E
1966	191.899	198.7 F
1967	E13．900	214．815
1968	ESE． 709	299.095
1969	26e．12\％	264． 2 Ec
1970	26e．e07	281．080
1971	E9E． 0 éo	300.708
1972	38． 37	391.990
1973	385.109	377．409
1974	440.917	451.05
1975	500.118	496.209
1976	596.891	591.768

CDMFARISOH DF FIGTIAL HHL FREIIGTEI TIAE SERIES
FCTUAL AHI FREIIDTEI URRIAELES．．． Y_{12} Y_{12}^{S}
COEFELHTIGN LOEFFIGIENT＝ 9997
GRIAFEL＝ 9994
FROT－MEAH－SQUAREII EFRGE＝ 3.541
MEFN AESRLITE EFRDE：$=$ E．517
MEAH ERELIR＝ 2014
FEGRESSIAH COEFFICIEHT DF ROTIAFL aH FREEICTEI＝ 1.008
THEIL＂S IAEGUALIT＇i GOEFFIEIEHT＝ － $7165 \mathrm{E}-\mathrm{GE}$
FRACTIDH DF EREGR IME TG EIHS＝ $.9 こ 5 E-0 ゙$
FEACTIGN DF EERGR IIIE TL IIFFERENT UREIATIOH＝ ．190EE－01
 977
COEFFICIEHT FFDM DHIT＇゙＝．．1575E－01

Demand for Local Services

		$Y_{11} 1$	$y_{1 .}^{S}$
1952	－	1EE． 4010	1こ6． 400
195	．	137．010	137．497
1954	－	148． 1010	148．473
1955	－	16E． 900	162． 30
1956	－	131． 700	1F7．Fir
1957	－	E00， 600	
1958	－	ごE． 600	こ10．FE1
1959	＊	23\％－600	2E5．974
1960	－	250． 900	243．56
1361	－	26．5．501	E®E．39
1360	＂	ごG． 000	293．580
196	＊	30E． 700	305，56
1964	＊	SE5．0n0	O1．EES
1965	－	S50， 80	35.795
196\％	．	380.700	36\％5．
196\％	－	410.000	420.170
1988	－	43 F －E00	451.764
1969	－	$471=400$	485 5es
1970	－	514.300	51E．5\％
1971	＊		5¢こ．656
19アコ	－	5ア9．800	591.098
1973	．	Eこ5 500	594.75
1974	．	EFG 400	
1975	．	734.300	F1．EEG
1马デも	．	アデヲ． 700	FアGATE

FLGTUAL HHI FRETIGTEI YHEIAELES．．
Y_{11}
YS．

darrelatian caefficient＝ SQUARET＝	$.9994$ $.9989$
ROLT－NEAH－SGUAREII EREDE＝	E． 181
MEAH Festlilte errar＝	E．E0e
MEAH ERRER＝	－E．P5S

FRHCTIDA GF ERRRE IULE TD EIFS $=\quad .1194$

COEFFIGIEMT FEDM UNITY＝
．E4ご

(1) Dynamic Simulation of Demand for Local Services

We start with demand for local services. The comparison of actual ($Y_{I I}$) and simulated $\left(Y_{I I}^{S}\right)$ values are presented in Table 4.1 below. From this table we observe that the equation tracks quite well the evolution of the dependent variable. Analyzing the summary statistics at the bottom of Table 4.3 we see that the regression coefficient of actual on predicted values is very close to one. Furthermore, over half of Theil's inequality coefficient is due to a residual variance.
(2) Dynamic Simulation of Demand for Message Telephone Toll Services

In Table 4.2 below, we compare the actual $\left(y_{12}\right)$ and simulated values $\left(Y_{12}^{S}\right)$ of message telephone toll services. The tracking of this equation is also quite good. The regression coefficient of actual on predicted values is .9997. Furthermore, 98.1\% of Theil's inequality coefficient is due just to a residual variance and therefore the fraction of error due to bias is close to zero.
(3) Dynamic Simulation of Demand for Other Toll Services

The actual and simulated values of Other Toll services, Y_{2} and y_{2}^{S} respectively appear in Table 4.3 below. Again, as for the other demand equations, it performs quite well. The regression coefficient of actual or predicted values is close to one. There is a small fraction of error due to bias and a large one due to residual variance. That is, there are no systematic differences between the actual and predicted series.

Thus, we conclude from these results that the demand system performs quite well during the sampling period.

Demand for Other Toll Services

		y_{2}	$\mathrm{y}_{2}^{\mathrm{S}}$
195こ	－	1． 70000	1． 70000
1959	．	E． 30000	E．5ETE1
1954	．	E． 90000	3．15445
1955	－	4.30000	4.49109
1950	－	E． 30000	6.51964
1957	－	7.80000	E．4E1E0
1958	－	9.80000	9．69E4
1959	＊	10.5000	11.5681
1960	＊	12． 5000	13.1983
1961	－	14.7000	15．Ufed
1962	－	19.0000	19.0059
196	－	21． 00000	20．50．43
1964	－	30.2000	E4．9204
1965	．	34.9000	E9．9570
1960	＊	40.0000	37．3461
1967	．	45.1000	43.265
1968	－	54.1000	50.5078
1969	－	63.4000	58.1551
1970	－	アこ． $\operatorname{sog0}$	65． 0982
1971	．	F． 30000	F3．055e
19Fe	－	90.9000	E6．1561
1973	－	108． 000	107 Ec 3
1974	－	119.000	134.305
1975		138.500	147.804
1976	－	156.700	161.067

CDIFFFISDH DF ALTUAL AHI FREDICTEI TIME SERIES

FIGTIAL FHD FREDICTEI WHRIAELES．．．
Y_{2}

COFPELATICH CDEFFIEIEHT＝．GGe

RODT－MEAH－SQUAREI ERRGE＝4．4E6
MEFH FESGLITE EFRDR＝e． EGE
MEFIN EFRER＝．SGE

REGEESIDN CQEFFIGIEHT DF HLTIAL DN FREMICTEI＝．9S91
THEIL＂S INEQUHLIT＇CDEFFICIENT＝．344 EE－01

FRACTIUH DF EREDR ILIE TD IIFFEREHIES DF FEGRESSIDH
CDEFFIGIENT FROM UNITY＝． 185

TABLE 4.4

LABOR AND CAPITAL REQUIREMENTS

ACTUAL VALUES FOR OUTPUTS

1．STM L．．K曰TM ド

I

1.952	，	46.9170	44.9000	608.121	626.600
1.9 ± 3	＋	46.4085	46.1000	695.676	690.400
1.954	－	47.71 .20	48.2000	770.85%	764．900
1.955	＊	50.4460	51.9000	980．02\％	871．300
1.956	＋	54.9936	5 E \％．7000	1.007 .04	989，900
1.957	＊	58.6197	57.8000	1122.03	1127．10
1.958	－	56．7741	57.6000	1279．99	1280.00
1.959	＊	58.2536	56.5000	1389.60	1429.60
1960	＊	$54+4.490$	54.6000	11560．93	1579.10
1.961	＊	52.6701	$5 \% .4000$	1.708 .69	1721.90
1962	＊	55.3104	52.8000	1860.95	1860.10
1963	＊	54.7731	53.5000	1982．38	2004.40
1.964	＋	52.2808	\％A．4000	2167．21	2150.40
1．96\％	－	54.8694	\％\％．8000	2992．28	2293．60
1966	＋	56．8123	57.5000	2449．40	2431．20
1.967	＊	59.3066	56.6000	2607.53	2585－60
1.968	＊	56.384 .1	55.5000	2741．76	2734．00
1.989	．	57 －W3\％	56.6000	299\％．98	2886．00
1970	＊	58．286\％	57．8000	3026．26	3054．80
1.971	＊	5.5 .6021	58.1000	31.81 .83	3190.40
1972	，	54.5513	57.5000	3368.28	3334．90
1973	＋	59．7096	60.4000	3929.38	3494．00
1974	＋	64.6732	63.9000	3639.92	3653．00
1.975	＊	66.2245	64．1000	3830．80	3808.90
1.976	＋	65.8168	67.3000	393\％+36	3978.90

4.2 Validation of the Factor Requirements Model

In this section we validate the factor requirements model presented in Section 3.3 of Chapter III. Given a vector of outpu'ts, equations (11), (13)', (14)' and (15)' of that chapter are solved for L, K, M, and.C. We start validating the model making the output levels equal to their historical values. The result of the simulations appear in Tables 4.4 to 4.7 . We see from these results that the factor requirements model tracks quite well. Indeed, for the three inputs the actual and predicted values are very close. This is especially so for capital, a variable which is of particular interest to the Telecommunication authorities.

Furthermore, the tracking for all the variables is especially good for the latter part of the sample. From the statistical comparison of actual and predicted values we find that for the four variables the correlation between actual and predicted values is over 95\%. In fact, the respective correlation coefficients are 95.22% for labor, 99.98% for capital, 99.52% for raw materials and 99.97\% for total cost. The tracking for labor is substantially better than the one obtained in IAER (1978). It is also seen that for the four variables most of the differences between actual and predicted series can be attributed to the residual variance.

4.3 Validation of the Complete Real Model

In this section we simulate the model used in the previous section with simulated instead of actual values for the demand variables. Thus, we simulate the factor requirements model conditional on the values obtained in Section 4.1 for the demand

ACTUAL VALUES OF OUTPUTS

MSTM
M
costsx
$\cos \mathrm{t}$
$175 \cdot 496$
189.063
206.761
231.105
262.056

29\%.383
300.120
350.012
$373+5$
39%-6\%2
424.319
458.487
484.499
525.065
590.788
628.030
$69 \% \cdot 652$
791.829
$900+246$
990.847

1. $1.22,67$
1293.03
1516.85
$1752+27$
2017.83

ACTUAL VALUES OF OUTPUT

variables. The results of the simulations appear in Tables 4.8 to 4.11 . We can see from these results that the complete real model also tracks very well the actual values of the real variables. For the three inputs, over 95\% of the differences between the actual and predicted series is due just to residual variance.

Thus, our model of the real structure of Bell Canada tracks extremely well the demand for outputs and the factor requirements. Now we move on to analyse the financial model in Chapter 5 and then in Chapter 6 the whole model is used for forecasting purposes.

ACTUAL VALUES OF OUTPUTS

ACTUAL ANI FFEEITCTET UARTAELES＊＊＊	
COFFEEATMON COEFFTCTENT	－9752
SSQUAMEO＝	＋9904
FOOT－MEAN－SQUAREX ERWOR＝	$4 \cdot 641$
MEAN ABSOLUUTE FRFOR＝	3.283
MEAN EFWOK＝	＋1．17\％

FFAACTLON OF ERROR MUE TO BTAS＝$\quad+6448 E \cdots 0.3$

ALTEWNATTUE 以ECOMFOSTTTON 《LAST 2 COMFONENTS
 COEFFICIENT FFOM UNTTY＝－ $148 \mathrm{EF}-03$
FFACTION OF ERFOK MUE TO RESIOUAL VARTANCE＝

COFFEEAATOM COFFFXCENT＝
（SQUAK゙：

MEAN ABSOLUTE EFROR＝$\quad 7,8 \% 3$
MEAN EFROF＝$\quad+29 \% 6$
FEGFEGGTON GOEFFICNENT OF ACTUAL ON FFEITCTEW——日
THETL ${ }^{n}$ G JNERUALITYY COEFFICIENT ：
FFACTTON OF FFWOR HUE TO ATAB ：
FRACTTON OF ERFOK IUE TO ITHFEFENT VAKTATTON：－


```
ALTEFNATTUE LECOMFOSTTGON (LAST 2 COMFONENTG)
```



```
        COEFFTCTENT FFOM NINTY =:
                            *5442E--02
    FRACTION OF ERKOK LUE TO RESTMUAL. UARTANCE= = .99A0
```


COMPARISON OF ACTUAL AND PREDICTED VALUES OF LABOR AND CAPITAL:
 ENDOGENOUS OUTPUTS

TABLE 4.8

LABOR AND CAPITAT REQUIREMENTS：

ENDOGENOUS OUTPUTS

LSIM
L
バSTM
k゙

1952
1953 1.954 1955 1.956 1957 1.958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 $1970 \quad+\quad 57.3690$ 1971 －55．0876 1972 －53．2076 1973 ＋ 58.1048 1974 1975 1976
47.0025
47.0738
$47+6023$
49.7772
$54 \cdot 0757$
58.3009
56.7353
$58+1739$
$54+4955$
$52+8456$
$55+7201$
$55+700.3$
$54+3588$
$54+543$
57－1475
59.235%
$57+4879$
56.9197
55.0876
53.2076
$64+0903$
64.0880
65.1868
44.9000
$46+1000$
48.2000
$51+5000$
55.7000
57.8000
57.6000
$56 \cdot 5000$
54.6000
52.4000
$52+3000$
$53+5000$
54.4000

55 ＋ 8000
$57+5000$
$56+6000$
55.5000
$56+6000$
57.8000
$58 \cdot 1000$
57.5000
60.4000
63.9000
64.1000
67.3000
608.515
$708+775$
$770+971$
$871+860$
999.365
$1127+68$
$1267+69$
$1402+50$
$1666+17$
$1707+5.4$
1861.22
$1981+62$
$3140+36$
$2298 \cdot 37$
2475．02
2611.71
$2748+62$
$2872+69$
$2988+82$
$3188+55$
$3341+96$
$3498+44$
$3693+07$
$3760+41$
3907.90
626.600
690.400
764.900
$871+300$
989.900
1127.10
1280.00
1.439 .50
$1579+10$
1721.90
$1860+10$
2004.40
2150.40
$2283+60$
$2431+20$
2585．60
27.34 .00
2886.00
3054.80
3190.40
3334.90

3494．00
3653.50
3808.90
3578.90

TABIE 4.10

MATERIAL REQUIREMENTS AND TOTAL COST:
ENDOGENOUS OUTPUTS
coststm
$\cos T$

MSTM

M

1972 + 168.967
1973 - 177.036
1974 - 183.952

1952
1953
1954
1955
1956
1957
1958 1959 1960
1961 1962 1963 1964 1965 1966 1967 1.968 1969 1970 1971 1975 1976
41.2526

- $\quad 47+6510$
- 51.4308
- 58.3138
- 64.3697
- 71.5151
- 75.7941
81.4007
- $\quad 84.8974$
- 90.6526
- 99.5980
- 103.272
- 105.202
- 108.841
- 118.413
- 127.583
- 132.983
$139+655$
147.442
157.767
42.4608 45.9759
$51+1042$
58.3350
67.9400
69.8111
$77+1386$
82.0536
86.2575
$91+1128$
98.0741
103.402
104.337
113.569
$118+468$
$116+547$
$122+307$
143.302
144.569
168.413
173.292
186.739
186.361
185.056
199.898
176.197
193.969
206.484
226.948
256.890
294.784
315.860
350.546
$369+750$
395.191
$435 \cdot 124$
$462+146$
$483+712$
517.508
584.690
$651+373$
712.055
786.242
$89 \%+245$
$963+250$
1094.40
$1267+11$
$1523+17$
1747.55
1972.75
175.496
189.063
206.761
231.105
262.056
292.383
320.120
350.012
373.553
395.652
$424+319$
$458+487$
484.498
525.065
580.788
620.030
$691+652$
$791+823$
900.246
990.847
1122.67
1293.03
1516.85
1752.27
$2017+83$
$\mathrm{AIB}=$ Average interest on bonds.
$\mathrm{ARE}=$ Average rate of return on equity.

Equations (1) and (2) have the same set of regressors, therefore, in this case Zellner's seemingly unrelated regression procedure coincides with ordinary least squares. Furthermore, by definition, for each observation RADEBT plus RAEQUI equals RAVAK and this imposes constraints on the parameters and random errors. (U_{t}^{1} and U_{t}^{2}) of equations (1) and (2).

The restrictions on the parameters are:

$$
a_{1}+a_{2}=0, b_{1}+b_{2}=0, c_{1}+c_{2}=1 \quad \text { and }
$$

The restriction in the random errors of both equations is $U_{t}^{1}+U_{t}^{2}=0$ for all t. These restrictions on the parameters and on the random errors of equations (1) and (2) are satisfied when the equations are estimated by ordinary least squares. Thus, we estimated these equations by non-linear least squares, correcting for auto-correlation, obtaining the following results:

$$
\begin{aligned}
& \text { RADEBT }_{t}=\begin{array}{c}
-67.76 \\
(-1.85)
\end{array}\left(\text { AIB }_{t} / A R E_{t}\right)+\underset{(11.05)}{.4764} \text { RAVAK }_{t} \\
& \text { RAEQUI }_{t}=\begin{array}{c}
67.76 \\
(1.85)
\end{array}\left(\text { AIB }_{t} / \text { ARE }_{t}\right)+\underset{(11.05)}{.5236} \text { RAVAK }_{t} \\
& \rho=1 \quad R^{2}=.996 \quad D W=1.31 \quad T=24
\end{aligned}
$$

The above equations are estimated as first differences, forcing ρ to be equal to one, since the estimated ρ was in fact very close to one when was free. In this case, a_{1} and a_{2} are each equal to zero.

A FINANCIAL AND INCOME STATEMENT MODEL OF BELL CANADA

5.1 The Demand for Financial Instruments

In this section we develop a model to link, the requirements of economic capital with the financing requirements for this capital. The model consists of two demand equations, one for real long term debt and one for real equity and one equation that links net economic capital with net book value of capital. Also, we have an equation to explain the number of preferred equity.
A. The Demand for Real Long Term Debt and Real Equity

We specify demand equations in which real long term debt and real equity are linear functions of the relative cost of debt and of equity and the sum of real debt and real equity.

The demand equations are written as:

$$
\begin{align*}
& \operatorname{RADEBT}_{t}=a_{1}+b_{1}\left(\text { AIB }_{t} / \operatorname{ARE}_{t}\right)+c_{1} \text { RAVAK }_{t}+U_{t}^{1} \tag{1}\\
& \operatorname{RAEQUI}_{t}=a_{2}+b_{2}\left(\text { AIB }_{t} / \text { ARE }_{t}\right)+c_{2} \text { RAVAK }_{t}+U_{t}^{2} \tag{2}
\end{align*}
$$

where

RADEBT $=$	Average long term debt in 1967 prices. The price
	deflator used is the price index of Telephone plant.
REQUI =	Average total equity (preferred plus common stock)
	in 1967 prices. Price deflator used was the same
	as for RADEBT.
RAVAK $=$	RADEBT + RAEQUI. That is Net Average Accounting
	Real Value of Plant and Equipment.

From the estimation of this equation we obtained the following results: -

$$
\begin{aligned}
& \text { RAVAK }_{t}=-306277 \underset{(1.627)}{+. .920648} \quad K_{t}+\underset{(.56)}{158.52} \cdot \mathrm{TIME} \\
& \rho=1.03926, \quad R^{2}=. .9956 \quad D W=2.05 \quad \mathrm{~T}=24
\end{aligned}
$$

and where TIME $=1952$, ...
This completes the section on Bell's demand for average long term debt and for average equity capital, as well as on the relationship between real average accounting value of plant and equipment (RAVAK) and economic capital (K). We go on to study in detail the relationships behind the firm's income statement.

From these regression estimates, we observe that all signs are in accordance with a priori expectations. In equation (2), we have estimated a demand function for the aggregation of common equity and preferred equity. This was done because Bell started to issue preferred equity only in 1970, thus, we have a limited number of data points to estimate the demand for average real preferred equity (RAPE). In our Income statement model we need a prediction of the dividend paid on preferred equity. For this we need to predict RAPE. We use an autoregressive relationship; for this purpose, where RAPE_{t} is related to RAPE_{t-1} as follows:

$$
\begin{equation*}
\operatorname{RAPE}_{t}=z_{1}+z_{2} \cdot \operatorname{RAPE}_{t-1} \tag{3}
\end{equation*}
$$

We obtained the following results when we estimated equation

$$
\begin{aligned}
& \mathrm{RAPE}_{t}=\frac{70.875}{(4.6)}+\underset{(5.77)}{.6266} \cdot \mathrm{RAPE}_{\mathrm{t}-1} \\
& \mathrm{R}^{2}=.8926 \quad \mathrm{DW}=2.4183 \quad \mathrm{~T}=6
\end{aligned}
$$

To close our financial model we need to link RAVAK with the net economic capital.

B. The Relation between RAVAK and K

What we need now is a link between RAVAK and net economic capital (K). For this purpose we introduce a simple relationship between RAVAK and economic capital and Time, as follows

$$
\begin{equation*}
\operatorname{RAVAK}_{t}=d_{0}+d_{1} \cdot K_{t}+d_{2} \cdot T I M E \tag{4}
\end{equation*}
$$

where:

RTOE $=$ Total operating expenses in 1967 dollars
RNKCAD $=$ Non capital costs and depreciation in 1967 dollars

The equation was estimated by using non-linear least squares and the following results were obtained:

$$
\begin{align*}
& \text { RTOE }_{t}=\frac{101.43}{(3.84)}+\underset{(19.34)}{ }+\begin{array}{l}
\text { RNKCAD } \\
t
\end{array} \\
& \rho=\underset{(12.3)}{.844} \mathrm{R}^{2}=.9982 \quad \mathrm{DW}=1.51 \quad \mathrm{~T}=24 \tag{12.3}
\end{align*}
$$

RTOE and RNKCAD are both expressed in millions of dollars.

C. Interest Charges:

The interest charges incurred, depend on the amount of shortand long-term debtoutstanding. For Bell, short-term debt represents on the average, something less than 1% of total debt and consequently, can be omitted from the succeeding regression equation without a significant reduction in the explanatory capabilities of the model.

The regression equation linking interest charges and long-term debt is deflated by using the consumer price index. We postulate a relation linking real interest charges and long-term debt as follows:

$$
\begin{equation*}
\operatorname{RINT}_{t}=r_{0}+r_{I} \operatorname{RADEBT}_{t}+U_{t} \tag{6}
\end{equation*}
$$

However, due to significant residual auto-correlation in the above equation, we modify equation (6) by including a lagged endogenous

5.2 Bell Income Statement Items

A natural extension of our modelling of Bell is to build a sub-model to reproduce the income statements of the Company. The model that we develop translates the economic variables of our financial and economic model into the accounting items included in the income statement of the Company.

Here we present the model according to each item that appears on the Company's income statement.

A. Operating Revenues:

Total operating revenues (TORE) are obtained as the sum of revenues for local services, toll message services, other toll services and miscellaneous revenues. All these with the exception of miscellaneous revenues are obtained from the demand module given the prices of the respective services. Miscellaneous revenues and uncollectables are treated as exogenous.

B. Operating Expenses:

The operating expenses in the income statement of the Company does not include the cost of equity and debt capital. We relate operating expenses to the aggregate of labour costs, raw materials costs and depreciation costs. Both variables are expressed in 1967 prices by using the consumer price index as deflator.

The equation to be estimated can be written as:

$$
\begin{equation*}
\operatorname{RTOE}_{t}=\beta_{0}+\beta_{1} \operatorname{RNKCAD}_{t}+U_{t} \tag{5}
\end{equation*}
$$

When equation (4) was estimated by using ordinary least squares, the following results were obtained:

$$
\begin{aligned}
& \text { RINCTAX }=\begin{array}{c}
-2.17 \\
(-.59)
\end{array}, \quad+\quad(22.37) \quad \text { RTXBASE } \\
& \rho=\begin{array}{r}
.4875 \\
(2.48)
\end{array} \quad R^{2}=.9913 \quad \mathrm{DW}=1.40 \quad T=24
\end{aligned}
$$

E. Preferred Dividends:

The preferred dividends paid by Bell to its shareholders depends, of course, on the amount of preferred equity that the Company holds. Bell started to use preferred equity as a financing instrument in 1970 and, therefore, estimating the regression equation for preferred dividends was done using only seven data points.

The relevant regression equation can be written in the following manner:

$$
\begin{equation*}
\operatorname{RDIVPR}_{t}=e_{o}+e_{1} \operatorname{RAPE}_{t}+U_{t} \tag{9}
\end{equation*}
$$

where:

$$
\begin{aligned}
\text { RDIVPR }= & \text { Preferred Dividends paid to shareholders, deflated by } \\
& \text { the consumer price index } \\
\text { RAPE }= & \text { The amount of average preferred equity deflated again } \\
& \text { by the consumer price index }
\end{aligned}
$$

When equation (9) was estimated using ordinary least squares, the following results were obtained:

$$
\begin{aligned}
& \operatorname{RDIVPR}_{t}=\frac{-2.58}{(-1.59)}+\frac{.0959}{(8.83)} \mathrm{RAPE}_{t} \\
& R^{2}=.9397 \quad \mathrm{DW}=.784 \quad \mathrm{~T}=7
\end{aligned}
$$

variable on the right hand side which results from the implementation of a partial adjustment model.

The resulting regression can then be written in the form:

$$
\begin{equation*}
\operatorname{RINT}_{t}=r_{0}+r_{1} \operatorname{RADEBT}_{t}+r_{2} \operatorname{RINT}_{t-1}+U_{t} \tag{7}
\end{equation*}
$$

When equation (7) is estimated by ordinary least squares, the results are given as:

$$
\begin{aligned}
& \text { RINT }_{\mathrm{t}}=\underset{(0.52)}{-.552}+\underset{(3.2)}{.01307} \quad \text { RADEBT }+\underset{(14.4)}{.8351} \mathrm{RINT}_{\mathrm{t}-1} \\
& \mathrm{R}^{2}=.996 \quad \mathrm{DW}=2.38 \quad \mathrm{~T}=24
\end{aligned}
$$

D. Income Tax:

The income tax paid by the Company depends on its tax base. The tax base is given by the difference between total operating revenues plus other income and total operating expenses and interest charges, that is:

$$
\begin{aligned}
\text { RTAXBASE }= & \text { Total operating revenue-Total operating expenses }+ \\
& \text { Other income - Interest charges, in } 1967 \text { dollars. }
\end{aligned}
$$

The relevant regression equation can then be written as:

$$
\begin{equation*}
\text { RIINCTAX }_{t}=\gamma_{0}+\gamma_{1} \text { RTAXBASE }_{t}+U_{t} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { RINCTAX }= & \text { Income tax paid by Bell and deflated by the consumer } \\
& \text { price index } \\
\text { RTAXBASE }= & \text { The net income before taking extraordinary items } \\
& \text { into account. The price deflator used was the same } \\
& \text { as for INCTAX. }
\end{aligned}
$$

The above constituted the income statement model in current (nominal) dollars. The model in constant (1967) dollars is as follows:
(SR.l) RTOREX = RSERVIX + RMISNETX
(SR.2) RTOES $=101.43+.7468$ RNKCADX - . 844 (101.43 +

$$
\left..7468 \text { RNKCADX }_{t-1}-\text { RTOES }_{t-1}\right)
$$

(SR.3) RNORS = RTOREX - RTOES
(SR.4) RIBUIS $=$ RNORS + ROTHIX
(SR.5) RINTS $=-.552+.0131$ RADEBTS +.8351 RINTS $_{\text {t-1 }}$
(SR.6) TAXBASES $=$ RIBUIS" - RINTS
(SR.7) RINCTAXS $=-2.17+.4712$ RŤBASES - . $4875(-2.17+$
.4712 RTXBASES $_{t-1}-$ RINCTAXS $_{t-1}$)
(SR. 8) RIBEIS = RTAXBASES - RINTXS
(SR.9) RNI9S = RIBEIS + REXTRIX
(SR.10) RDIVPRS $=-2.58+.0959 . \operatorname{RAPES}$
(SR.ll) RNI21S = RN19S - RDIVPRS

Both models ((SN.I) to (SN.ll) and (SR.l) to (SR.ll)) reproduce the income statement in current and constant dollars. Additionally, we need to following relationships:
(A.1) RAVAKS $=-306277+.920648 \mathrm{KX}+158.52$ TIMEX -1.03926

$$
\left(-306277+.920648 \mathrm{KX}_{\mathrm{t}-1}+158.52 \mathrm{TIMEX}_{\mathrm{t}-1}\right.
$$

- RAVAKS ${ }_{t-1}$)
(A.2) RADEBTS $=-67.76 .($ AIBX/AREX $)+.4764$ RAVAKS
(A.3) RAEQUIS $=67.76 .(\operatorname{AIBX} / \operatorname{AREX})+.5326$ RAVAKS
(A.4) RTAXBASES = TAXBASES/CPIX

F. Other Income Statement Items:

Two other income statement components that were not modelled are Extraordinary Items and Other Income. Due to its variability and insignificant effect on bottom line totals, Extraordinary Items can be regarded as being the noise inherent in the modelling of any large scale system. Älternatively, we can treat it as exogenous. Other income can also be regarded as exogenously determined.

5.3 The Income Statement Model

With the behavioural equations presented above and a set of exogenous variables (i.e. exogenous to the whole model or determined in other parts of our complete model of Bell Canada) we can solve for a set of endogenous variables to reproduce the income statement of the company. The income statement model is as follows, where variables ending in X are exogenous (except the tax variables) and the ones ending in S are endogenous (thus simulated).
(SN.1) TOREX $=$ SERVIX + MISNETX
(SN.2) TOES = RTOES • CPIX
(SN.3) NORS $=$ TOREX - TOES
(SN.4) IBUIS $=$ NORS + OTHIX
(SN.5) INTS $=$ RINTS • CPIX
(SN.6) TAXBASES $=$ IBUIS - INTS
(SN.7) INCTAXS = RINCTAXS • CPIX
(SN.8) IBEIS = TAXBASES - INCTAXS
(SN.9) N19S = IBEIS + EXTRIX
(SN.10) DIVPRS= RDIVPRS • CPIX
(SN.11) NI2IS = NI9S - DIVPRS
where MISNETX = MISCUR + DIRCUR - UNCOL

B. The Endogenous Variables.

There are four variables for each item; an R at the beginning means in constant dollars, while an S at the end means simulated values, for example:

TOE = total operating expenses
TOES = simulated value of TOE
RTOE = real TOE
RTOES = simulated RTOP

The other nominal variables are:

NOR = Net operating revenues
IBUI = Income before underlisted items (i.e. before interest charges)
INT = Interest charges
TAXBASE $=$ Income before income taxes and extraordinary item, equal to the tax base

INCTAX = Income taxes
IBEI = Income before extraordinary item
EXTRI = Extraordinary item
NII9 = Net income after extraordinary item
DIVPR = Dividends on Preferred Shares
NI2l $=$ Net income applicable to common shares after extraordinary item

A. The Exogenous Variables

The exogenous variables in the model are:

```
CPIX = consumer price index in canada, 1967 = 1
TOREX = SERVIX + MISNETX = צ % + Y % + Y % + MISCUR + UNCOLX + DIRCUR
        service revenue (local, toll and other toll) plus
        miscellaneous revenues in current dollars, plus
        directory assistance also in current dollars.
RTOREX = TOREX/CPIX
OTHIX = Other income
ROTHIX = OTHIX/CPIX
EXTRIX = Extraordinary items (from income statement), treated
    as income (i.e. extraordinary expenses are negative
    income)
```

$K X=$ economic capital required, this variable is determined by
other modules
LX = labour input, determined elsewhere
MX = raw materials input, determined elsewhere
RNKCADX $=M X+A A A \cdot L X+K X \cdot D E C X=$ Real non capital costs and
depreciation
coefficient of actual (RAVAK) on predicted (RAVAKS) is quite close to unity, being 1.033. We can see also that the bias of the simulated variable is small.

We go on now to see how well our income statement model predicts the variables. In this model, total operating revenues (TOE) are exogenous. The first endoqenous variable is total onerating expenses, which was analysed in equation (5) above. In Table 5.5 we have the actual and predicted values of the real and nominal series for total operating expenses (TOE). We can observe that the model predicts quite closely the variable in question, the regression coefficient being .9791. The bias is small, since 0.2 percent of the error is due to bias. In Table 5.6 we have the values.for Net Operating Revenues, which is the difference between Total Operating Expenses. We can see that this variable simulates quite well. The regression coefficient is 1.018 and the bias is also small, 0.2 percent.

The next endogenous variable in the Income statement model is Income Before Underlisted Items (IBUI) which is defined as follows IBUI - NOR - OTHIX where OTHIX is Other Income, treated here as, exogenous. In Table 5.7 we have the analysis of the variable Income Before Underlisted Items (IBUI), as usual in real and current dollars. The fitting is here also quite reasonable, the actual values being on the average 1.017 times the simulated values. Here also the bias small, being as before 0.2 percent of the error.

5.4 Validation of the Financial and Income Statement Model

As a validation of our financial and income statement model we have run simulations of the model, for both current and constant values; assuming that the values of the exogenous variables are equal to the historical values. The results of this validation are presented in the following tables.

In Table 5.1 we have the real value of long-term debt, its simulated value and the same variables in current dollars. All the comparisons in this chapter are done with the real variables, although the current dollars variables are also presented. We can observe that the tracking for real average long-term debt (RADEBTS) is quite good. Similar results can be observed in Table 5.2, where the equity (common and preferred) variables are presented.

In the debt series, actual values are on the average 1.136 times the simulated values, while for the equity, actual values are . 9464 times the simulated values. In both cases the fraction of error due to bias is quite small.

In Table 5.3 we present the validation of equation (3), the equation used to obtain the predicted value of preferred equity. Here also we can see that the predicted values follow quite closely the actual ones, both in real and in nominal terms; actual values are . 9877 times the simulated values, for the real variables.

In Table 5.4 we have the actual and oredicted values of AVAK, both in real and in nominal terms. This corresponds to equation (4) of this chapter. The simulated values are quite close to the actual ones and the correlation coefficient is high, as it is in all the comparisons made in this validation. The regression

In Table 5.12 we have the results of the item labelled N19, which is Net Income After Extraordinary Item. Extraodrinary item (EXTRIX) is taken as exogenous in our model and is a variable usually quite small and erratic. RN19 follows thus quite closely the endogenous variable that preceeded it, namely, Income Before Extraodrinary Item (IBEI) which was analysed in the previous paragraph.

Since 1970 Bell Canada issued Preferred Equity. Accordingly, we have next study Dividends on Preferred Shares (DIVPR). In Table 5.14 we have the actual and predicted values for DIVPR in real and nominal terms. This variable is endogenous and the equation to predict it is equation (9) of the text. We can see that the simulated values are relatively close to the actual values of the variable. The regression coefficient of actual values on predicted series is . 9662 and the fraction of error due to bias is small at a half percent.

The final item in Bell Canada's income statement is called Net Income Applicable to Common Shares After Extraodrinary Item. We have labelled this variable NI2l. In Table 5.14 we present the analysis of the behaviour of this item. We can see that the predicted values are reasonable close to the actual values of the variable, the regression coefficient being .9914. The bias is quite small, since the fraction of error due to bias is 0.3 percent.

In Table 5.15 we present the actual and simulated values of the return on average total capital for Bell Canada, where the actual rate is defined as:

$$
\text { RETURN }=\frac{\text { INT }+ \text { N19 }}{\text { AVAK }}
$$

Next; we have the Interest Charges (INT), which are generated within our model as we saw in equation (6). In Table 5.8 we have the analysis of the results on this variable. The prediction is also quite good, the regression coefficient of actual (RINT) on predicted (RINTS) is l.018. For this variable the fraction of error due to bias is 28.4 percent.

The Tax Base (TAXBASE) serves to predict the amount of income taxes paid by the company, and in our model is an endogenous variable. In Table 5.9 we analyse the results of the tax base. We can observe that the predicted values are reasonable close to the actual ones, the actual values being 99.2 percent of the simulated values. Here the percentage of error due to bias is quite small being 5.9 percent.

Having predicted the Tax Base, we go on to simulate the amount of income taxes paid (INCTAX). In Table 5.10 we have the results of the validation of equation (8) of our model. We can see that the results are reasonably good in general, although for some years (eg 1976) the behaviour is erratic. The actual values are on the average 99.8 percent of the simulated values and the bias here is also small, the fraction of error due to bias being 7.9 percent.

Next, we have Income Before Extraordinary Item (IBEI), for which the results are in Table 5.11. This variable is the result of the difference between TAXBASE and INCTAX, thus its behaviour is the result of the behaviour of the variables just named. Again, we can observe that IBEI is predicted by the model in a closed fashion, the bias being also small.

FADEAT
FADEETS
AXEBT
AdEETS

1952	+	$293+867$	233.867	194.940	194.640
$19 \% 3$	+	260.049	273.734	2×6.408	232.948
1.954	+	294.091.	$320+250$	247+919	269.970
1.950	+	318.174	370.886	$267+684$	311.915
1950	+	350.688	428.198	304,475	$365+681$
1.97\%	-	401.496	492. 186	344, 38 F	422.788
1.9\%8	+	$4.45 \cdot 487$	556. 843	384.901	480, 348
19759	*	50.498	608.671	451.438	$525+892$
1960	+	594. 539	684.632	\%16.6.\% 4	594.945
1961	*	$660 \cdot 266$	728.781	W7\% + H \%	630.395
1962	+	710.936	770.944	$630 \cdot 647$	673.034
1963	+	759.720	$836+548$	$670+833$	738.671
1964	*	810.106	$87 \mathrm{~L}+710$	712.083	$766+233$
1.96	+	8948.406	934.207	758 +475	826.341
1.966	*	740.6世77	$980+352$	8830.4 48	$917+609$
1.967	*	1020+47	1021.75	10% + 4%	1021.75
1968	*	1078.5	1056 - 21	1131-37	1107.97
1969	*	1159.27	$1086+56$	1. 279 + 20	1.1.950
1970	+	1. $1.45+90$	1111.10	1.344+1.4	1303.32
1971	*	A178, 0 令	1131.73	1464.30	1406.74
1.970	*	1229,88	1149.89	1630-82	1524.75
1.973	+	1267.79	11.69 .88	1.787.\%	1649.54
1.974	*	120509	1.181.3.4	1933.1.9	1864+16
1975	+	$1280 \cdot 00$	1185.81	2010, \%6	2047.90
1976	-	$1291+62$	1189.11	2371.41	$2183+20$

COMFAFTSON OF ACTUAL ANU FFEIICTEN TIME BEKIES

ACTUAL ANI FREMICTEM VARIAELEES... RADEET FALIEETS

CORRELATION COEFFICIENT $=$.9902
(SQUAREI $=$.9805
ROOTMEAN-GQUAREI ERROR $=$	68.22
MEAN ABGOLUTE ERROR $=$	60.53
MEAN ERROF =	-12.91

REGRESSION COEFFICIENT OF ACTUAL ON FREIICTED $=1.136$
THEIL*S INEQUALITY COEFFTCIENT =
$.3888 \mathrm{E}-01$
FRACTION OF ERROR LUE TO BIAS =
. 3583E-0.1
FRACTION OF ERROR DUE TO IIFFERENT UARIATION =
.4741
FFACTION OF ERROR RUE TO IIFFERENT CO-VARTATION =
.4901
ALTERNATIUE RECOMFOSITION (LAST 2 COMFONENTS)
FRACTION OF ERROR DUE TO ITFFERENCES OF FEGRESSION COEFFICTENT FROM UNITY $=$
and the simulated values of the rate of return is:

$$
\text { RETURNS }=\frac{\text { INTS }+ \text { N19S }}{\text { AVAKS }}
$$

We also compare the simulated values with the actual ones. As can be observed, the simulated values follow the actual ones in a satisfactory manner. The regression coefficient of actual return on predicted return is .9219, while the fraction of error due to bias is insignificant.

To complete the information on the validation of our financial and income statement model, we present as Table 5.16 the values of the exogenous variables that enter into it.

We close here the discussion of the validation of our financial and income statement model. It can be fairly said that, as a whole, the model tracks quite well. Next we go on to simulate our Income Statement model taking as exogenous the variables simulated previously in this study.

RAEQUIS AEQUA
AERUTS

1952	*	$332+673$	$332+673$	289.093	289.093
1953	+	384. 374	$375+439$	327.017	319.498
1.954	+	$452+924$	$426+513$	381.812	359.50
1.955	+	523.95\%	497 -75.	$440 \cdot 64$ 4	418.609
1956	*	494.13%	$568+262$	498.863	$489+296$
1957	*	$675+1.36$	643.730	579.942	552.964
1.958	-	723.273	728.275	$626+636$	6.29 .230
1.959	+	816.153	814.389	$705+156$	703.805
1960	*	85	871.698	$743+510$	757.906
1.961	*	947.358	947.952	819 + 466	819.979
196%	+	1009.82	10:15+30	881. 569	886.357
1.963	*	1.096 .93	1057.91.	968, 590	$934 \cdot 130$
1.964	+	1204.52	$1125+33$	10\%8.78	989.161
196\%	+	12\% +63	1156, 16	1116.96	1033.60
1966	+	1273.24	1183.83	Ad. it. 72	1.112.74
1.967	*	1354.29	1234.44	1354.29	$1234+44$
1.968	*	1337.12	1273.07	$1402+64$	$1335+45$
1.969	*	$1322+06$	1310.42	14\%4.27	1441.46
1.970	+	1357.26	1359 + 98	1052.06	1.595, 26
1971	*	$1369+46$	$1373+47$	$1702+24$	1707.2?
1972	,	1360.88	1387.85	1804+52	$1840+29$
1.973	+	1331.98	$1403+63$	1878.09	$1979+15$
1.974	,	$1264+70$	1417 . 80	1996,70	2237-29
1975	-	1274.42	$1424+18$	$2200 \cdot 93$	2459 +66
1976		1321.29	$1433+76$	$2423+89$	$2632+39$

COMFAFTSON OF ACTUAL AND FREATCTEA TTME SERTES **

ACTUAL ANI FBEHICTEM VABTABLEG...
RAEROUI
FAERUTS

FEGRESGTON COEFFICTENT OF ACTUAL ON FREITCTEI = $\quad .9464$
THETL"G INERUALTTY COEFFICIENT =
. 3095E:-01
FRACTION OF EREOR DUE TO EIAS =
$+1263 \mathrm{E}-02$
FFACTION OF ERROR MUE TO IIFFERENT VARIATION = $=4189 E-01$
FRACTION OF ERFOR RUE TO DIFFEFENT CO-UARTATTON = . 9569

ALTEFNATIUE RECOMPOSITION (LAST 2 COMFONENTG)
FFACTION OF ERROR DUE TO MTFFERENCES OF FEGRESSION
COEFFICIENT FROM UNTTY =
$.8546 E-0.1$
FFACTION OF EEFROR RUE TO RESIMUAI VAFIANCE =

VALIDATION: PREFERRED EQUITY
FAFE
PAPES
$A \mathrm{FE}$
$A F E S$

1.970	*	70.11185	70.1185	92.2490	92.2490
1971	+	113.969	114.81\%	1.41.664	142.71 .5
1972	,	149.316	1.42 .824	197.993	139.385
1.973	*	1.49 .364	160.377	210.603	226.131
1.974	-	16\%.086	171.376	2 W	270.431
1.975	,	181.864	178.269	31.4 .079	307.870
1.976	-	186.718	182.688	342.81 .4	33: 3 20

COMFARTSON OF ACTUAL ANG FREDCTEX TME EERTES **

ACTUAL ANO FREGTCTEG VARTABLES... RAPE RAFEG

FEGEESGTON COEFFTCTENT OF ACTUAL ON FFETRCTEA = $\quad .9977$
THETL"G TNEQUALITY COEFFTCTENT: $=\quad$. $21.08 E-0$.
FFACTION OF FRROR OUE TO BIAS = + 2AATE-O1
FFACTION OF EREOR OUE TO MTFERENT UAFTATION = $=696 E-O A$
FRACTTON OF ERFOR MUE TO GTFFERENT COMVARATION = . . 975

ALTENNATUE WECOMFOSTTRON (LAST 2 COMFONENTS)
FRACTION OF EREOR DUE TO OTHFEFNCES OF REGRESSTON COEFFCIENT FROM UNTYY = - $=$ B39AE-02
FRACTTON OF EFKOR RUE TO RESTMUAL VARTANCE = $=$. 9701

FAUAK
RAVAK゙S
AUAK
AUAK゙S

1952	*	$\cdots 556.540$	556.540°	$483 \cdot 633$	$483+633$
1953	*	650.323	649.172	553.425	552.445
1.954	-	747.012	746.762	$629+731$	629.521
1955	-	842.126	868.637	708.228	730.524
1956	-	$940+665$	996.460	803.328	850.977
1957	*	1076.63	1135.92	924.827	975.752
1958	*	1170.76	1284.12	1011.54	1109.48
1959	*	1338.65	1423.26	1156.59	1229.70
1950	+	1450.13	1556.33	1260.16	1352.45
196\%	*	1607.62	1676.73	1390.60	1450.37
1962	*	1720.75	1786.24	1502.22	1559.39
1963	+	1856.65	1894.45	$1639+42$	1672.80
1964	*	$201.4 \cdot 63$	1997.04	1770.86	1755.39
1964	+	2100.04	2080.36	1877.44	1859.84
1966	*	2213.87	2169.18	2072.18	2030.35
1.967	-	2377.76	2256.19	2377.76	2256.19
1.968	*	2415.65	2329.29	2534.01	2443.42
1969	-	2481.33	2396.98	2799.47	2636.68
1.970	-	2503. 1.6	2471.08	2936.20	2898.58
1.971.	*	2547. 50	2505.20	31.66 .55	3113.97
1.972	-	2590.75	2537.73	3435.34	3365.04
1973	+	2599.77	2573.54	3665.67	3629.69
1.974	*	2489.79	2599.14	3928.88	$4101+45$
1.976	-	2554.4\%	2609.99	4411.49	4507.46
1976	-	2612.90	2622.87	4797.29	4815.59

COMFARTSON OF ACTUAL ANG FFEETCTED TIME GERTES **

ACTUAL ANI FREITCTEII UAFTABLES... FAVAK RAVAKSS
CORRELATTON COEFFTCTENT $=$
SSQURELI $=$
ROOT-MEAN-SQUAREI ERROR $=$
MEAN ARSOLUTE ERROR $=$
MEAN ERROR =

REGRESGION COEFFICIENT OF ACTUAL ON FREIICTEX = 1.033
THETL"G INECUALTTY COEFFTCTENT = $.1642 \mathrm{E}-0.1$

FFACTION OF ERROR IUE TO ETAS = $.2712 \mathrm{E}-01$

FFACTION OF ERKOF IUE TO IITFFERENT VARTATION : $=$. 1531
FRACTION OF ERROR IUE TO LITFFERENT CO-VARTATTON $=-.8198$

AL TEFNATIUE IIECOMFOSTTION (LAST 2 COMFONENTG)
FFACTION OF EFROR IUE TO TIFFERENCES OF REGRESSION
COEFFFICTENT FROM UNITY $=$. 1244
FRACTION OF ERFOR IUE TO RESIIUAL UARIANCE $=\quad .8485$

1.952	*	224.616		$224+616$	$133+156$	133.156
1933	+	237.034		241.001	146.347	148.797
1754	+	253.786		$259+673$	161.456	1.65.201
1.95	+	278.729		283.076	182.033	184.972
1956	+	$306+308$		309.344	206.091	$208+133$
1957	*.	$332+496$		$330+221$	232.304	$230+714$
1958	+	$346+888$		$344+863$	$252+205$	250.733
1959	*	359.000		357.011	270.758	269+5\%
1.960	*	$365+3.36$		363.496	287.120	285.294
1961	*	$372+495$		369.687	301.350	299.079
1962	*	. 3877.378		$383+37 \%$	$320+017$	318.570
1963	*	$408 \cdot 106$		$400 \cdot 885$	$347+296$	34リ, L
1964	*	423.729		412.911	366 +487	$357+131$
1965	+	447.490		$432+980$	397.631	384.737
1966	+	464.943		$451+471$	$436+585$	423.935
1967	+	465.943		456.742	405.943	$456+742$
1968	+	$474+719$		468.461	$502+783$	$496+1.5$
1767	+	$512+398$		497.761	574.881	560.704
1970	*	516.891		514.039	63.932	620.489
1971	*	538.365		541.438	691.963	$695+267$
1972	*	547 , 54.3		663+043	763.736	785.356
1973	+	584.874		$597+6$	879.980	892 + 063
1974	+	$602+680$		$620+397$	1007.26	1040.09
1973	+	629+001		$641+927$	$1171+63$	1195.70
1976	+	678.599		680.414	1367.68	1371.41

COMFAFTSON OF ACTUAL AND FGETICTED TTME SEKTEG

ACTUAI. ANG FFELTCTEX UAKTABLEES + + FTOE FTGEG

CORTELATTON COEFFICTENT = 〔GQUARETI:	$\begin{aligned} & .9977 \\ & .9954 \end{aligned}$
FOOT - MEAN- GOUAFEX ERGOR =	8.813
MEAN AMSOLIUTE ERROF =	$7 \cdot 003$
MEAN ERKOR =	+40:14

FEGFEGGTON COEFFICTENT OF ACTUAL ON FRENTCTEA = $\quad \cdot 979$.
THEIIN S TNEQUALTTY COEFFICTENT = • $=\quad$ - $90 E-02$
FFACTION OF ERFOK LUE TO ETAS =
$.2075 E-02$
FRACTTON OF EFROF MUE TO MTFFEFENT UAFJATION = . $7023 E-01$
FFACTION OF FRFOR MUE TO MTFFEKENT CO-VAFTATION= $=\quad .9277$

AL TEFNATTUE MECOMFOSTTION (LAST 2 COMFONENTS)
FFACTION OF FFFOR TIUE TO RITFEFENCES OF REGRESSTON COEFFTCIENT FFOM UNJTY $=$. $8854 E-01$
FFACTION OF EFROR LIUE TO RESTIUAL VAFTANCE = $\quad .9094$

VALIDATION: NET. OPERATING REVENUES

COMFARTSON DF ACTUAL ANM FREGTCTEX TTME SERTES

ACTUAL ANI FREMICTEG VABTABLEG. RNORS
CORFELATTON COEFFCIENT = .998.
(SQUAREM = $=.9962$
FOOT-MEAN-SRUAFEL ERROR = $\quad 8.813$
MEAN ABGOLUTE ERFOR = 7.003
MEAN EFFOR = $-.4014$
FEGFRESTON COEFFICIENT OF ACTUAL ON FREXTCTEEI = 1.018
THETL"S TNEQUALTTY COEFFRCENT = -1860E-O1
FFiACTION OF EFFOK DUE TO ETAS = 2075E-02
FFACTION OF EREOR DUE TO MTFFERENT UAKTATION = $.91895-01$
FFACTION OF ERBOF RUE TO DIFFEFENT CO-VARTATION $=$. 9060
ALTERNATIUE RECOMFOSITION (LAST 2 COMFONENTS)
FRACTION OF ERROR DUE TO IIFFERENCEG OF REGRESSTON COEFFTCTENT FROM UNTTY = 7488E-01
FRACTION OF ERFOR IUE TO RESITUAL VARTANCE $=\quad .9230$
RIEUI
RIEUTS
IEUI
IBUIS

1952	$\stackrel{-}{+}$	14．1071	14.1071	53.4070	53.4070
1.953	＋	27.0685	23．1016	58.2172	55.7680
1954	＋	33.1871	27．3005	61.81 .94	58.0745
1955	－	40.1407	35.7937	66.7967	6.3 .9578
1956	－	46.6268	43.5909	73．4010	71．3584
$19 \% 7$	＋	47.3214	49.5969	77.6972	79．2870
1958	．	53.5495	55.5748	83．4218	84.8943
1959	－	94．4804	96.4697	11.3 .521	115.021
1.960	－	114.256	116.595	124．704	126．540
1961	，	136.022	138.829	138.972	141.244
1962	－	158．585	162.732	156.411	1.59 .858
1.963	－	164．898	172.109	164.0973	170.238
1.964	－	183.969	154．787	185．71．0	1.95 .067
1965	－	200．084	214．594	205.025	217.918
1.966	－	215．709	229．180	220.460	233.110
1.967	．	256．135	265.336	256.135	$265+336$
1968	，	275．333	281.590	277．618	284．245
1.969	－	282．345	294．982	289．689	303.366
1970	＋	338.517	34．1．370	337．290	340， 733
1971	－	368.152	365.579	$356 \cdot 6.11$	$353+307$
1972	．	407．935	392．435	393.883	372， 263
1.973	－	424．023	411.244	441．503	422．429
1974	－	424．769	405．122	477.496	444.660
1975	＋	444.729	431.803	547.583	523.508
1976	－	465.5 .374	463.519	601.475	597.737

COMFARTSON OF ACTUAL ANQ FREGTCTED TME GERTES ＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊⿻⿰丿乛⿱丨又⿱丆贝：$* * * * * * * * * * * * * * * * * * * *$

REGRESSTON COEFFCIENT OF ACTUAL ON FREAICTEA＝ 1.017
THETIM TNEQUALITY COEFFICIENT＝－1727E…
FRACTION OF ERROR DUE TO ETAS＝ $.2075 E-02$
FRACTION OF EREOR RUE TO DIFFEFENT UAFTATION＝ $.9728 \mathrm{E}-01$
FRACTION OF ERROR RUE TO GIFFERENT CO－VARTATION＝ .9006
ALTEBNATIUE RECOMFOSTTION（LAST 2 COMFONENTS）
FRACTION OF ERROR DUE TO DTFFERENCES OF REGRESSTON COEFFICIENT FROM UNTTY＝

FINTS
INT
INTS

1952	-	11.9627	. $\therefore 11.9627$	7.09169	7.09169
1953	+	14.0158	13.01 .66	8.65349	8.03688
1954	-	15.0479	1.4 .5047	9.57331	9.22775
1955	*	15.6208	16.4095	10.2016	10.71 .67
1956	*	17.4872	18.7495	11.7658	$12+6.151$
1957	*	19.7361	21.5402	13.7890	15.0494
1958	-	21.1877	24.7029	15.4046	17.9603
1959	,	24.7692	28.03 .88	18.6809	21.1439
1960	*	29.6005	31.8103	23.1530	$24+9698$
1961	*	32.9553	35.5405	26.6610	29.7524
1.962	*	35.7106	39.2068	29.6893	$32+5915$
1963	*	38.1518	43.1262	32.4670	36.700 L
1964	,	40.5309	$46 \cdot 8590$	35.0555	40.6298
1965	*	42.4407	50.6626	37.7120	45.0178
1966	*	46.8253	54.5730	43.9694	51.2446
1967	*	52.7498	. 58.3799	52.7498	58.3799
1968	*	57.5662	62,0096	60.9693	$65 \cdot 6754$
1969	-	64.31 .47	65.4374	72.1574	73.4171
1.970	,	64.2015	68.6209	77.4968	82.8314
1971	*	67.9022	71.5492	87.1941	91.8773
1973	*	73.0459	74.2320	101.888	103.542
1973	-	78.2563	76.7339	$11.6 .80 \%$	114.532
1974	-	78.7935	78.9729	131.687	131.937
1975		86.3994	80.9012	1.60 .934	$150+693$
1976	*	87.9584	82.5546	177.285	166.394

COMFAFTSON OF ACTUAL ANO FREHTCTED TME SEFTEG **

ACTUAL ANI FREHTCTEI VAFIABLES...
FTNT
FINTG

FEGEESSION COEFFICIENT OF ACTUAL ON FFEOICTED = $1.0 I B$
THEIL"G INERUALTTY COEFFICIENT = -38A7E-OI
FRACTLON OF EFROR DUE TO ETAS = . 2839
FRACTION OF EFROR IUE TO ITFFERENT VARTATION = = .2783E-OI
FRACTION OF ERROR DUE TO IIFFEFENT CO-VAFTATION $=\quad .6883$

ALIEENATIUE DECOMFOSTTTON (LAST 2 COMFONENTS)
FFACTION OF EFROR DUE TO ITFFEFINCES OF REGRESSION
FRACTION OF EFROF: OUE TO FESTDUAL VARTANCE =

VALIDATION: TAX BASE

FTAXBASE
FTAXMASES
TAXMASE
taxenges

1952	-	78.1278	78.1.278	46.3154
1953	*	80.2766	77.3089	49.5637
1954	-	82.1237	76.7803	52.3461
195	-	86.6587	81.5230	56.5950
1956	+	91.6070	87.3088	61.6352
1957	*	91.4715	91.9430	63.9082
19:\%8	*	93.5524	92.0625	69.0173
1959	*	125.748	124.472	94.8396
1960	-	$129+392$	$129+421$	101.551
1.961	*	138.827	139.049	112.312
1962	*	152.4.48	153.3099	126.726
11963	*	154.673	156.919	131.626
1964	-	1.74.185	179.675	150.655
1965	-	188.29%	199.581	167.313
1966	-	197.954	193.678	176.490
1967	-	207, 395	206.956	$203+385$
1968	-	$204+55$	206.370	216.649
1969	+	193.888	205.402	217.631
1970	+	215.223	213.656	259.793
1971	-	209.808	203.588	269.417
1972	-	209.339	192.653	291.996
1973	-	217.540	206.283	324.698
1974	-	206.910	187.084	345.808
1975	+	207.579	200.1世1	$386 \cdot 651$
1976	*	210.458	214.007	424.190

ACTUAL AND FEETYCTER VABTABLES... FTAXBASE FTAXEAGES

COREELATHON COEFFCTENT =〔SQUAREX =	$\begin{aligned} & .9911 \\ & .9023 \end{aligned}$
ROOT - MEAN- SQUARED ERFOF =	7.0.43
MEAN ABSOLUTE ERWOR =	4.963
MEAN ERFOR :	1.717

REGRESSTON COEFFTCIENT OF ACTUAL ON PRETICTEX = $\quad .9921$
THETL"S INEQUALTTY COEFFTCTENT = \quad.2H3EE-OI

FFACTION OF ERROR RUE TO MTFFERENT UAFIATION = \quad AB7IE-OA
FFACTION OF ERROR DUE TO DTFFERENT CO-VAFTATTON =
.9405

ALTEFNATIUE RECOMFOSTTION (LAST 2 COMFONENTS).
FFACTION OF ERFOR DUE TO MFFERENCES OF REGRESSTON COEFFICIENT FROM UNTTY =
-3320E-02
FFACTION OF EREOR RUE TO REGTHLAL UARIANCE =

FINCTAX
RINCTAXS
INCTAX
INCTAXS
40.0546
36.8944
35.2925
36.8677
39.2723
$41+2991$
41.3789
56.5128
58.8268
$63+3543$
69.9702
71. 7683
82.0184
$89+5124$
89.0869
95.3432
95.0669
$94+6109$
98.5002
93.756
88.6039
95.0260
$85+9795$
92.1363
98.665
23.7450
22.7150
23.6970
24.6170
26.6860
27.8710
29.11180
44.5560
48.0390
54.6210
61.4410
63.3320
71.1600
$78.49 \% 0$
8.1 .6440
91.5640
98.3220
103.835
126.531
$122+126$
126.561
$149+468$
160.802
173.918
185.696
23.7450
22.7790
22.4527
24.0775
$26+4233$
28.8543
30.0119
42.6220
46.1692
51.2539
58.1643
61.0744
70.9385
79.5390
$83+6534$
$95 \cdot 3432$
100.687
106.1 .48
118.898
120.393
$123+589$
141.835
143.697
171.620
198.866

COMFAFTSON OF ACTUAL ANE FREETCTED TIME SERTES **

ACTUAL AND FRERTCTEL VAFTABLEG... RTNCTAX RTNCTAXG

CORRELATION COEFFICTENT = (SQUARELI =	$\begin{aligned} & .9898 \\ & .9797 \end{aligned}$
FOOT MEAN SRUAREI ERROR =	3.529
MEAN ABSOLUTE ERROR =	2.647
MEAN ERROR =	. 994.1

FEGRESSTON COEFFICTENT OF ACTUAL ON FFEDICTEA = .9977
THETL"G TNEQUALTTY COEFFTCIENT =
$.2326 \mathrm{E}-01$
FRACTION OF EFFOR RUE TO BIAS =
$.7935 \mathrm{EF}-01$
FFACTIGN OF ERROR MUE TO MTFFERENT VARIATION $=\quad: .286 G E-O 2$
FFACTION OF ERROR DUE TO RIFFEFENT CO-VARTATION =
.91 .78

ALTEFNATTUE DECOMFOSTTION (LAGT 2 COMFONENTG)
FRACTION OF ERGOR RUE TO LIFFERENCES OF FEGRESSION
COEFFICIENT FROM UNITY = $\quad .232 I E-03$
FRACTION OF ERFROR IUE TO RESTIUAL VAFTANCE $=\quad .9204$

FTEEI
RIEETS
IEET
IBEIS

1.952	-	38.0731	38.0731	22. 3704	$22+5704$
1953	+	43.4859	40.41 .45	26.8487	24,9524
1954	*	44.8753	41.4878	20.549 .1	26.3940
1955	,	48.9650	44.6553	31.9780	29.1635
1956	*	51.9442	48.0365	34.9492	32.3200
1957	+	51.5799	50.6439	36.0372	35.3832
1959	-	53.5029	50.7835	38.8993	36.9222
1954	*	66.6713	67.9592	50.2836	51.2549
1960	*	$68 \cdot 1825$	70.5947	53.6119	55.4051
1961	*	71.3105	75.6947	E7.6905	61.2373
1963	*	78.5360	83.1287	65.29848	69.1026
1.963	-	80.2519	85.1512	68.29394	72.4632
1964	*	91.9109	96.6567	79.4946	83.6993
1.965	*	99.9570	$105+063$	88.81988	93.3616
1966	+	101.007	104, 591	94.8463	98.2120
1.967	+	111.821	$111+61.3$	111+821	111.613
1968	*	111.722	111.303	$119+326$	117.893
1969	*	101.339	110.791	113.696	124.30.1.
1.970	+	110.400	115.156	133.262	1.39 .003
1971	*	114.702	109.833	$147+291$	1.41 .036
1972	*	118.604	104.050	$165+435$	1.45 .133
1973	-	117.400	$111+357$	176.230	166.061
1974	-	110.696	$1011+10.4$	185.007	1.68,975
197\%	*	114.309	103.014	212.733	201.195
1.976	-	118.326	115.341	2383.494	232.477

COMFARTSON OF ACTUAL AND FREDTETEM TIME GERTES **

ACTUAL AND FREMTCTEA UARTAELES

```
...
```

FTAET
.9817
SSQUAFEM = .9638
ROOT-MEAN-SQUAREM ERROR = 5.371

MEAN ABGOLUTE EREOR: $=\quad 4.341$
MEAN ERROR = .7229
COFPEATION COEFFTCTENT =

REGBESGTON COEFTRCTENT OF ACTUAL ON FREMTCTED = $\quad .9867$
THETL"G TNEQUALTTY COEFFTCIENT =
FBACTION OF EFFOR MUE TO BTAS =
FRACTION OF EREOR DUE TO MIFFERENT UARIATTON =
FRACTIUN OF ERNOF OUE TO OTFFERENT CO-UARIATION =
$+9812$

FTBETS $.3021 E-01$
$+1812 E-01$
$.6723 E-03$

ALTERNATIUE RECOMFOSTTION (LAST 2 COMFONENTS)
FFACTION OF EFROR DUE TO DTFFERENCES OF FEGRESSION COEFFTCIENT FROM UNTTY $=\quad .4750 E-02$
FFACTION OF ERROR RUE TO REGTRUAL UARIANCE $=. .9771$

RNI 9
FN:195
N19
$N 195$

1952	-	38.0731	38.0731	22.5704	$22+5704$
1953	+	$43+4859$	$40+41.45$	$26+8487$	29, 9524
1.954	-	44.8753	41.4878	28,5491	26.3940
1953	*	$48+9650$	$44+6553$	31.9780	29.1635
1956	*	51.9442	48.0365	34.9492	32.3200
1.957	*	51.4799	50.6439	36.0372	$35+3830$
1958	*	$53+5029$	50.7835	$38+8993$	$36+9292$
1959	+	$66+6713$	$67+9592$	$50+2836$	51. 2549
1960	*	$68+1895$	$70+5947$	53.5119	$55+4051$
1961	+	$71+3105$	$75+6947$	$57+6905$	$61+2373$
1.962	+	78, 360	83.1287	$65+2849$	$69+1026$
1.963	+	80, 2519	$85+1512$	68.2939	72.4632
1.964	+	91. 91.09	$96+6567$	79.4946	$83+5993$
196%	*	99.9570	105.068	$89+8196$	$73+3616$
1966	+	10.1 .007	104.591	94.8463	98.2120
1967	+	111.821	$111+61.3$	111.92\%	$111+613$
1968	*	111:722	1. 1. 1. 303	$118+326$	11.7.983
1969	*	101.339	110.79 l	$113+696$	124+301
1.970	+	11.0+400	11 W, 156	133.969	1139.003
1.97\%	+	114.702	109.832	147+291	141.036
197\%	+	$117+85$	103.300	164.526	1.44, 225
1973	*	12 H + 422	$115+399$	180.626	171.458
1974	*	110.696	101.104	$185+007$	168.975
1.979	+	$172+040$	$165+846$	$305+33$.	293+793
1.976	+	119.326	$115 \cdot 3 \times 1$	258.494	230.477

COMFAFESON OF ACTUAL ANE FREDTCTED TEME GEFTES **

ACTUAL ANG FFEETCTEG VARTAELEG
FiN:I?
RN195

FEGRESSION COEFFICIENT OF ACTUAL ON FREMICTED = 1.003
THETL" S TNEQUALITY COEFFICTENT = $\quad .2899 E-01$
FFACTION OF ERROR RUE TO BIAS = . $=$. $812 E-01$
FFACTION OF ERFOK IUE TO IIFFEFENT VARTATION = $\quad .9700 E-02$
FFACTION OF EFROR RUE TO MIFFERENT CO-VAFTATION = $\quad .9722$

ALTERNATIUE HECOMFOSITION 《LAST 2 COMFONENTS)
FFACTION OF ERROR OUE TO IIFFERENCES OF FEGREGSTON
COEFFICTENT FROM UNTTY =
FRACTION OF ERKOR RUE TO FESIMUAL VARTANCE =

RLIUFR	Farumis	ITUF゙R	miturrs

1970	*	5.07836	4.14822	5.7065	4.66135
1971	+	8.08767	8.43597	9.34979	9.75257
1972	+	10.7956	11.1229	13.0796	1.3.4761
1973	*	10.7607	12.8067	14.0300	16.6858
1974	+	12.1754	13.8619	17.5944	20.0316
1975	*	15.5166	14.5231	24.844:5	23.2538
1976	+	16.7590	14.9375	28.9470	25.7132

COMFARTSOM OF ACTUAL ANQ FREXTCTED TIME GERTES **

ACTUAL ANR FRERTCTEX VABTABIEE... FHTUFR FRTUFRS
CORFELATION COEFFTCRENT $=.9353$
(SQUAREI = .87A8
ROOT-任AN-SQUAREXERROR = 1.332
MEAN ABSOLUTE ERROR = $\quad 1.165$
MEAN ERFOR $=\quad-.9488 E-01$
FEGRESSTON COEFFCIENT OF ACTUAL OM FREGICTED = $\quad .9662$
THETL"G TMEOUALITY COEFFTCIENT = - G5GOE-OD
FFACTION OF EEROR RUE TO BTAS := $5072 \mathrm{E}-02$

FFACTTON OF EREOR MUE TO OTFFWWNT CO-VARTATTON - - $\quad .9869$

ALTERNATTUE RECOMPOSTYTON (LAST \therefore COMPONENTS)
FFACTION OF EFROR DUE TO ATFEEENGES OF REGRESGION
COEFFTCTENT FFOM UNATY = - GA6AE-02
FRACTION OF ERFOR IUE TO RESTMAAL VARTANCE = . 9865

FiNJ. 21
21

FNI21S
NI. 21

N21S
24.5849
26.9490
28.3995
31.1750
34.361 .3
$37+4871$
39.0827
53.4392
$57+6162$
63.4693
71.3615
74.7637
85.9416
95.7604
100.700
114.190
120.565
$127 \cdot 105$
134.341
131.284
130.749
154.772
148.944
270.5339
206.764

COMFAFTSON OF ACTUAL AND FREETCTEG TTME SEFTES

ACTUAL ANA PREDTCTEM VARTABLES...
FNT2
FNI2IS
CORRELATTON COEFFTCTENT = .9759
(SRUAFER = $\quad+9523$
FOOT-MEANGQUAFEG ERKOR = $=6.388$
MEAN ABSOLUTE EFROR = $\quad 5.142$
MEAN EFRKOR = - - $=1.106$
FEGREGGION COEFFICIENT OF ACTUAL ON FFERICTEM = $\quad .991 .4$
THETLES TNEQUALTTY COEFFICTENT =
. $3576 \mathrm{E}-0.1$
FRACTION OF ERROR DUE TO ETAS =
. $3000 \mathrm{E}-01$
FFACTION OF ERROR DUE TO IIFFEFENT UAFIATION =
. $4972 \mathrm{EFO2}$
FFACTION OF ERFOR DUE TO MTFFEFENT CO- VARTATION =
.9650

ALTEFNATIUE DECOMPOSITION (LAST 2 COMFONENTS)
FFACTIGN OF ERFOR DUE TO DTFFERENCES OF REGRESSION

FETUKN
RETUENS

1.959	*	. $613317 E-01$	- $613317 \mathrm{~F}-\mathrm{-}$ (1)
1.953	-	-64150()E---().	- 59\%1.45E-()1
1.9:34	*	-605377E--01.	- $658585 \mathrm{E}-0$.
1.98E		- 595566E-01	. $54.5912 \mathrm{E}-\mathrm{O}$
1.956		- W81518E--01	- 528041E-01
1.957		- $538762 \mathrm{E}-\mathrm{O}$)	. $516889 \mathrm{Em-O}$
1.958		- 036845 E- - 01	. $494669 \mathrm{E}-\mathrm{OL}$
1.959		+ $696272 \mathrm{EW-01}$	+ $689753 \mathrm{~F}-\mathrm{OL}$
1.960		-608372E-01	. $5982615-01$
1.96\%		. 6065855	+620459E-01
1962		.632201E-01	+659140E-01
1.963		+614612\%- - 01	. $652578 \mathrm{EF-01}$
1.964		+646862E- 01	. 707 LLAE
1963		.67396JE-01	. $744037 \mathrm{~F}=-01$
1.966		+689902\%- 0 (1)	+736111E-01
1.96%		+692.27E-01	. $7534506=0.01$
1.968		. 707 F W6E-0\%	. $7512345-01$
1969		+680915EM(-)1	. 7498976×01
1.970		+ 71779 E-0.01	+765322F-0.01
1.97\%		. 740307 F	. $747965 E \times 01$
1.97\%	-	+ $775110 \mathrm{E}-\mathrm{OL}$. $736298 \mathrm{Ec-0.1}$
1.973	+	+811396E-01	+ 788136E-0.
1974	+	. 806066 E	. 733795 FE -01
1.975		-105693	- 78611150.0
1976		. 86669680.01	-828292E-01

COMFPFTSON OF ACTUAL ANA FREDTCTEX TTME GERTEG

ACTUAL ANG FFEDLCTEM VARTABLEES. .
RETURN
RETUKNS

REGRESGTON COEFFTHENT OF ACTUAL ON FREITCTEN = $\quad .9219$

FBACTION OF ERROK RUE TO BTAS =
$.2855-03$

FRACTION OF EEROR DUE TO MIFFERENT CO-VARTATIGN =
.9995

```
AL TEFNATRUE MECOMFOGITTON (LAST 2 COMFONENTG)
FRACTION OF ERROR MUE TO UTFFEEENES OF REGRESSTON COEFFICIENT FROM UNTTY =
CFIX AIE ARE EXTRIX OTHIX FK
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1952 & . 781503 & - \(364536 \mathrm{E}-01\) & .100096 & 0. & 2,16508 & . 869000 \\
\hline 1.953 & . 777566 & -382208E-01 & +136716 & 0. & 2.60191 & . 851.000 \\
\hline 1954 & .778035 & - \(3861.47 \mathrm{E}-01\) & . 138269 & 0. & 3.90086 & . 843000 \\
\hline 195 & . 780347 & . \(381249 \mathrm{E}-01\) & . \(980272 \mathrm{E}-01\) & 0. & 3.92977 & .841000 \\
\hline 1.956 & . 791908 & . \(386429 \mathrm{F-01}\) & . \(974509 \mathrm{E}-01\) & 0. & 5.51659 & +851000 \\
\hline 1957 & +8161.85 & - \(399814 \mathrm{EF-01}\) & . \(836254 \mathrm{E}-0.1\) & 0. & 7.01565 & . 859000 \\
\hline 1959 & . 838150 & -400221E-01 & -689195E-01 & 0. & 6.80954 & - 864000 \\
\hline 1.959 & . 847399 & - \(413810 \mathrm{E}-01\) & +530910E-0.1 & 0. & 7.67412 & - 864000 \\
\hline 1960 & . 857803 & . \(448133 \mathrm{E}-0.1\) & - 75a369E-0.1 & 0. & 6.97594 & . 8869000 \\
\hline 1.961 & . 865896 & + 466811E-01 & - 59.5 EAE -01 & 0. & 6.66574 & -865000 \\
\hline 1962 & . 87630 L & . \(478296 \mathrm{E}-0.1\) & - GIOE28E--0. & 0. & 7,43304 & . 873000 \\
\hline 1963 & . 899486 & - 483980E-01 & . \(663416 \mathrm{E}-0 \mathrm{~J}\) & 0. & 8.41198 & . 883000 \\
\hline 1964 & . 908671. & + 492296E-0.01 &  & 0. & 9.42519 & . 979000 \\
\hline 1.965 & . 930636 & . \(497208 \mathrm{E}-01\) & . \(669158 \mathrm{E}-01\) & 0. & 9.69512 & +694000 \\
\hline 1966 & . 965318 & . \(499394 \mathrm{EF-0}\). & + \(926608 \mathrm{E}-0.1\) & 0. & 11.9980 & +894000
.936000 \\
\hline 1967 & 1.00000 & - E1590SE-01 & - 955757 - 0.1 & 0 & 20.0424 & .936000
1.00000 \\
\hline 1968 & 1.04046 & - \(538898 E-01\) & . 988582E-0.1 & 0. & 21.9225 & 1.04900 \\
\hline 1969 & 1.08786 & -565esex-01 & . \(987052 \mathrm{E}-0.1\) & 0. & 22.4798 & 1.10000 \\
\hline 1970 & 1.12370 & +576553E-01 & . \(797531 E-0.1\) & 0. & 24.5856 & 1. 17300 \\
\hline 1.971. & 1.15607 & -595465E-01 & +893037E゙-0.1 & 0. & 29.7866 & 1.24300 \\
\hline 1972 & 1.21156 & . \(624763 E-01\) & .994274E-01 & -.908062 & 32.2029 & 1. 1.32600 \\
\hline 1973 & 1.30289 & . \(65342 A E-01\) & +111699 & +5.39629 & 32.2029
39.2780 & 1.32800
\(1+41000\) \\
\hline 1974 & 1.44509 & .691193E-01 & -114310 & -0.39620 & 39.2780
44.6299 & 1.41000
1.57800 \\
\hline 1975 & 1.60116 & . 728023E-01 & -120085 & 92.5974 & 53.3394 & 1.72700 \\
\hline 1976 & 1.72139 & .747596E-01 & -115339 & O. & 65.2271 & 1. 1.83600 \\
\hline
\end{tabular}
MECX
MTSCUR
TOFEX
UNCOL
WM
WLCOF
\begin{tabular}{|c|c|c|}
\hline 1.952 & - 566550E-01 & 3.20000 \\
\hline 1953 & + \(56333 \mathrm{SE-01}\) & 3.80000 \\
\hline 1954 & +558243E-01 & 4.30000 \\
\hline 1.95 & + 532538E-01 & 3.50000 \\
\hline 1.956 & + \(529346 \mathrm{E}-0 \mathrm{l}\) & \(2+20000\) \\
\hline 1957 & +589913E-01 & 2.50000 \\
\hline 1.958 & +579688E-01 & 2.70000 \\
\hline 1.959 & . \(5981112-01\) & 2.90000 \\
\hline 1960 & . 590843 EWOL & 3.10000 \\
\hline 1961 & . \(590046 \mathrm{E}-01\) & 3.90000 \\
\hline 1.962 & . \(595667 \mathrm{E}-01\) & 4.50000 \\
\hline 1.963 & -613650ㅌ․-. 0.1 & 5.20000 \\
\hline 1.964 & -620350E-0.1 & 5.10000 \\
\hline 1.965 & - \(634087 E-01\) & 5.40000 \\
\hline 1966 & -643240F--0. & . 5.80000 \\
\hline 1.967 & - \(652460 E-01\) & \(6+40000\) \\
\hline 1.968 & -664298E-01 & 7.00000 \\
\hline 1969 & . 686071 Emon & 8.60000 \\
\hline 1970 & . \(651044 E \cdots 01\) & 9.60000 \\
\hline 1971 & . 69709 LE -01 & 28.3000 \\
\hline 1.572 & . \(7439506-01\) & 34.9000 \\
\hline 1.973 & . \(774471 \mathrm{E}-01\) & 29.6000 \\
\hline 1.974 & . \(798139 \mathrm{E}-01\) & 34.2000 \\
\hline 1.975 & + \(8304125-01\) & 43.0000 \\
\hline 1976 & + 86355:06-0. & [i4.8000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\(184+398\)
201.963} \\
\hline & 219.374 \\
\hline & 244.900 \\
\hline & 273.975 \\
\hline & 302.986 \\
\hline & 328.818 \\
\hline & 376.605 \\
\hline & 404.848 \\
\hline & 433.657 \\
\hline & 470.995 \\
\hline & 502.977 \\
\hline & 542.772 \\
\hline & 592.961 \\
\hline & \(645 \cdot 047\) \\
\hline & \(702+035\) \\
\hline & 768.478 \\
\hline & 842.090 \\
\hline & 936.636 \\
\hline & 1018.79 \\
\hline & 1125.42 \\
\hline & 1270 \\
\hline & 1440.12 \\
\hline & 1665.87 \\
\hline & 1903.92 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline .357890 & . 741074 & 1.69303 \\
\hline +386131 & +740074 & 1.81627 \\
\hline -509337 & . 752073 & 1.89562 \\
\hline +557241 & . 756074 & 1.976 .69 \\
\hline . 663928 & . 784081 & 2.02233 \\
\hline .904820 & . 801.046 & 2.11185 \\
\hline 1.12770 & +812045 & 2.20591 \\
\hline 1. 36030 & - 829044 & \(2+35527\) \\
\hline 1.59602 & + 839040 & \(2+48667\) \\
\hline \(1+66511\) & \(+843030\) & 2.63203 \\
\hline 1.92598 & . 855038 & 2.74388 \\
\hline 2.25200 & . 870037 & 2.83471 \\
\hline 2.24179 & .892038 & 2.90667 \\
\hline 2.80132 & +921037 & \(2+9950 \%\) \\
\hline \(3+1.537\) & . 962034 & 3.21050 \\
\hline 3.52003 & 1.00000 & 3.46077 \\
\hline 3.32 .413 & 1.03301. & 3.75600 \\
\hline 4.06018 & 1.07801 & 4.07078 \\
\hline 6.13177 & 1. 1.2788 & 4.50005 \\
\hline \(4 \cdot 62179\) & 1. 1.16413 & 4.94918 \\
\hline 3.96555 & 1-22215 & 5.64473 \\
\hline \(4+60584\) & 1. 3.3404 & 6.02375 \\
\hline 6.20400 & 1.53303 & 6.61296 \\
\hline 8.97532 & 1. 70504 & 7.67488 \\
\hline 8.80481 & 1. 86704 & 8, 33308 \\
\hline
\end{tabular}

\section*{VALIDATION OF THE COMPLETE MODEL}

The validation performed in this section consists of running our Income Statement model with the simulated values for the services coming from the demand equations and the simulated values for labour, capital and raw materials coming from the cost model: When compared with the validation done in the previous section, it can be observed that for Average Preferred Equity (APE) the simulated results are identical with the one of the validation section. This is so because in our model the variable does not depend on either the demand for services or the input levels.

In this validation the main variables that change are Total Operating Revenues which were taken before as exogenous and now are still exogenous to this Income Statement model but are the result of a simulation of the demand equations. We call this variable TORES and its real counterpart RTORES. (See Table 5.21). In general, and as can be expected, the simulations done in this section do not follow as closely the actual values. However, we believe the results to be quite satisfactory, especially taking into account that we are simulating over a 25 years period and due to the nature of the model and the way the simulation was run, the errors tend to accumulate. The results of this simulation appear in Tables 5.17 through 5.32.
FADEBT FAMEETS ADEET ALEETS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1952 & - & 223.867 & 223.867 & 194.540 & 194.540 \\
\hline 1953 & - & 266.049 & 290.038 & 226.408 & 246.822 \\
\hline 1954 & , & 294.091 & 331.480 & 247.919 & 279.437 \\
\hline 1955 & - & 318.174 & 380.034 & 267.594 & 319.609 \\
\hline 1956 & * & 356.528 & 441.599 & 304+475 & 377.127 \\
\hline 1957 & * & 401.496 & 502.052 & 344.885 & 431.264 \\
\hline 1958 & * & 445.487 & 560.430 & 384.901 & 484.214 \\
\hline 1959 & \% & 522.498 & 607.203 & 451.438 & 524.627 \\
\hline 1960 & + & 594.539 & \(685+35\) & 516.654 & 595.576 \\
\hline 196.1 & - & 660.266 & 733.693 & 571.130 & 634.640 \\
\hline 1962 & - & 710.936 & 783.073 & \(620 \cdot 647\) & 683.627 \\
\hline 1963 & - & \(759+720\) & 838.648 & 670.833 & 740.530 \\
\hline 1.964 & - & 810.106 & 879.869 & 712.083 & 773.410 \\
\hline 1960 & - & 848.406 & 939.353 & 759,475 & 839.786 \\
\hline 1966 & * & \(940 \cdot 657\) & 10.13 .14 & 880.455 & 948.299 \\
\hline 1967 & + & 1022.47. & 1047.29 & 1022.47 & 1047.30 \\
\hline 1968 & - & 1078.52 & 1077.27 & 1131.37 & 1130.06 \\
\hline 1969 & - & \(1159+27\) & 1095.93 & 1270.20 & 1205.53 \\
\hline 1970 & - & 1145.90 & 1097.96 & 1344.14 & 1287.91 \\
\hline 1971 & - & 1178.0.4 & 1147.34 & 1464.30 & 1426.15 \\
\hline 1972 & + & 1229.88 & 1170.04 & 1630.82 & 1551.48 \\
\hline 1973 & * & 1267.79 & 1189.85 & 1787.08 & 1677.27 \\
\hline 1974 & - & 1225.09 & 1217.11 & 1933.19 & 1920.60 \\
\hline 1975 & . & 1280.00 & 1183.66 & 2210.46 & 2044.19 \\
\hline 1976 & + & \(1291+62\) & 1177.83 & 2371.41 & 2162.50 \\
\hline
\end{tabular}
COMFARISON OF ACTUAL ANL FFEEITCTEI TIME SERTES
**********************************************

ACTUAL ANI FFEDICTEN VARIABLES... RADEET RALIEBTS
\begin{tabular}{rr} 
CORFELATION COEFFICIENT \(=\) & .9892 \\
(SRUARELI \(=\) & .9786 \\
ROOT-MEAN-GQUARED ERROR \(=\) & 71.24 \\
MEAN AESOLUTE ERROR \(=\) & 63.25 \\
MEAN ERROR =
\end{tabular}

FEGRESSION COEFFICIENT OF ACTUAL ON FREIICTEN = 1.128


ALTEFNATIUE RECOMFOSITION (LAST 2 COMFONENTS)
FRACTION OF ERROR NUE TO IIFFERENCES OF REGRESSION
RAERUI RAEQUIS AEQUI AERUIS
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1959 & - & \(332+673\) & \(332 \cdot 673\) & 289.093 & 289.083 \\
\hline 1953 & + & 384.274 & \(393+354\) & 327.017 & 334.744 \\
\hline 1954 & + & \(452+921\) & 438 +853 & \(381+812\) & \(369+953\) \\
\hline 1955 & + & 523 + 852 & \(507+804\) & 440.644 & 427.063 \\
\hline 1956 & + & 584.137 & \(582+990\) & 498.853 & 497.874 \\
\hline 1957 & + & \(675+136\) & \(654+573\) & 579.742 & \(562+278\) \\
\hline 1958 & - & 725.273 & 733+318 & \(626 \cdot 636\) & 633.586 \\
\hline 1959 & - & \(816 \cdot 153\) & 812.980 & \(705+156\) & \(702+414\) \\
\hline 1960 & + & 855. 593 & 872.496 & \(743+510\) & 758.199 \\
\hline 1.961 & + & 947.358 & 953.344 & \(819+465\) & 824.642 \\
\hline 1.962 & + & 1009.82 & \(1028+63\) & 881.569 & 897.997 \\
\hline 1963 & + & 1096. 93 & 1060.22 & 968,590 & 936.172 \\
\hline 1964 & + & \(1204+52\) & \(1134+30\) & 1058.78 & 977.047 \\
\hline 1965 & + & 125l +63 & 1172.80 & 1118.96 & 1048,48 \\
\hline 1966 & - & 1273+21 & 1224.86 & 1191.72 & 1146.47 \\
\hline 1967 & + & 1355.29 & 1262+51 & \(1359+29\) & \(1262+51\) \\
\hline 1968 & + & 1337-12 & \(1296+21\) & \(1.402 \cdot 64\) & 1359*72 \\
\hline 1969 & + & 1322+06 & 1320.72 & 1.454 .27 & \(1.452+80\) \\
\hline 1970 & + & 1357.26 & \(1345 \cdot 54\) & 1592.06 & \(1578+32\) \\
\hline 1971. & + & 1369 +46 & \(1390 \cdot 62\) & 1.702+24 & 1720, 54 \\
\hline 1972 & * & 1360.86 & \(1409+99\) & 1804+92 & \(1869 \cdot 65\) \\
\hline 1973 & + & 1331.98 & 1428027 & 1878.09 & 2000.63 \\
\hline 1974 & * & 1264.70 & \(1457 \cdot 10\) & 1995.70 & 2299.31 \\
\hline 1975 & * & 1274 +42 & 1421.82 & \(2200 \cdot 93\) & 2455.49 \\
\hline 1976 & + & 1321. 27 & \(1421+37\) & \(2425+89\) & \(2609+64\) \\
\hline
\end{tabular}

COMFAFISON GF ACTUAL ANI FFEITCTEI TIME SEFTES


ACTUAL. ANII FFEMTCTEM UAFTABLES +
FAERUI
RAEQUTS


FEGRESSION COEFFICIENT OF ACTUAL. ON FREMICTEI = 9422
THETL"S INEQUALITY COEFFICIENT = \(\quad 3027 E-O J\)
FFACTION OF EFROR IUUE TO ETAS = \(.1910 E-01\)

FFACTION OF EFFOK IUE: TO IIIFFEFENT UARIATION =
-5683E-01

FFAACTION OF EFKKOF DUE: TO IIIFFEFENT CO-UAFIATION =
.9241

ALTERNATIUE RECOMFOSITION (LAST 2 COMFONFNTS)
FRACTION OF EFROR IUE TO IITFFERENCES OF REGRESSION COEFFFICIENT FFOM UNITY \(=\)
.1033
FFACTION OF ERROF IUE TO FEEIMUAL UARIANCE =
.8776

\section*{SIMULATION: PREFERRED EQUITY}

FAFE RABES AFE AFES
\begin{tabular}{llllll}
1970 & & 70.1185 & 70.1185 & 82.2490 & 82.2490 \\
1971 & \(:\) & 113.969 & 114.815 & 141.664 & 142.715 \\
1972 & \(:\) & 149.316 & 142.824 & 197.993 & 189.385 \\
1973 & \(:\) & 149.364 & 160.377 & 210.603 & 226.131 \\
1974 & 162.086 & 171.376 & 255.772 & 270.431 \\
1975 & \(:\) & 181.864 & 178.269 & 314.079 & 307.870 \\
1976 & & 186.718 & 182.588 & 342.814 & 33.232
\end{tabular}

COMFARTSON OF ACTUAL ANG FREGTCTEX TIME SEREES **********************************************


RAUAK
RAVAKS

\section*{路}

AUAK゙
556.540
\(683+391\)
770.332
887.838
1024.59
1156.63
1293.75
1420.19
1557.85
1687.03
\(1811+71\)
1898.87
\(2014 \cdot 17\)
\(2112 \cdot 16\)
2238.00
2309.81
2373.48
2416.66
2443.51
2537.96
2580.04
\(2614+82\)
2674.21
2605.49
2599.20
\(483 \cdot 633\)
483.633
\(553+425\)
\(629+731\)
708.228
803.328
924.827
1011.54
1156.59
1260.16
1390.60
1502.22
1639.42
1770.86
1877.44 2072.18 2377.76 2534.01. 2729.47
2936.20
3166.55
\(3435 \cdot 34\)
\(3665 \cdot 67\)
3928.88
4411.49
4797.29
581.566
649.390
746.672
875.000
993.541
1117.80
1227.04
1353.78 1459.28
1581.62
1.676 .70
1770.46
\(1888+27\)
2094.77
2309.81
2489.78
2658.32
2866.24
3154.69
3421.13
3686.90
4219.91
4499.68
\(4772+13\)

AVAKS

COMFARISON OF ACTUAL ANG FREDTCTEI TIME SEFTEG ****** \({ }^{*} * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)

ACTUAL ANM FREMTCTEG VABTABLEE. .
FAMAB
FAUAKS


REGRESSION COEFFICIENT OF ACTUAL ON FREITCTEX = 1.027
THETL"S TNERUALITY COEFFTCIENT \(=\quad+1759 E-0.1\)
FFACTION OF EFRGR DUE TO ETAS = . \(\quad .2199\)
FFACTION OF ERROR DUE TO MTFFERENT UAFTATTON \(=\quad .9238 E-01\)
FFACTION OF ERKOR DUE TO DTFFERENT COMARTATION = \(=\quad .6878\)

ALTEFNATIUE DECOMFOSITION (LAST 2 COMFONENTS)
FBACTION OF ERROR RUE TO UIFFERENCES OF REGRESSTON
COEFFICIENT FROM UNITY =
-FRACTION OF ERROR DUUE TO RESTMUAL VABTANCE = \(\quad .7076\)

\section*{SIMULATION: TOTAL OPERATING REVENUES}
RTOREX
RTOFES
TOREX
TORES
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1952 & * & 235.953 & 236.064 & 184.398 & 184.485 \\
\hline 1953 & * & 260.743 & \(265.69 \%\) & \(201+963\) & 205.718 \\
\hline 19:54 & * & 281.960 & 284.745 & 219.374 & 221.642 \\
\hline 195 & * & 313.834 & 31.7.734 & 244.900 & 243.261 \\
\hline 1956 & * & 345.969 & 340.084 & 273.975 & 269+315 \\
\hline 1957 & * & 371.222 & 365.597 & 302.986 & 298.395 \\
\hline 1968 & * & 392.313 & 384.546 & 323.818 & 322.307 \\
\hline 1959 & * & 444.424 & 438.174 & 376.605 & 371.308 \\
\hline 1.960 & * & 471.959 & 462.973 & 404.848 & 397.140 \\
\hline 1.961 & * & \(500 \cdot 818\) & 49.1 .747 & 433.657 & 425.801 \\
\hline 1962 & + & \(537+481\) & 529.922 & 470.995 & 46.4 .371 \\
\hline 1963 & + & 563.569 & \(559+820\) & 502.977 & 499.364 \\
\hline 1964 & * & 597.325 & 598.373 & 542.772 & 543.724 \\
\hline 1.965 & - & 637.156 & \(636 \cdot 343\) & 592.961 & \(592+204\) \\
\hline 1966 & * & 668.233 & \(677+122\) & 645.047 & 653.639 \\
\hline 1967 & * & 702.035 & 711.330 & 702.035 & 711.330 \\
\hline 1968 & - & 720.982 & 745.180 & 758.478 & 775.332 \\
\hline 1969 & * & 774.079 & 780.68 .1 & 842.090 & 849.163 \\
\hline 1970 & , & 833+529 & 834.629 & 936.636 & 937.871 \\
\hline 1.97\% & . & 68J.25. & 893.088 & 1018.79 & 1032.47 \\
\hline 1.972 & , & 928.898 & 935.549 & 1125.42 & 1133.47 \\
\hline 1973 & * & 978.751 & 979.310 & 1275.20 & 1275.93 \\
\hline 1974 & , & 976.565 & 1.021.77 & 1440.12 & 1476.55 \\
\hline 1975 & - & 1040.42 & 1041. 52 & 1663.87 & 1.667 .64 \\
\hline 1976 & , & 1106.04 & \(1105+83\) & 1903.92 & \(1903+57\) \\
\hline
\end{tabular}

COMFARTGON OF ACTUAL ANI FREDTCTED TIME SEFTES **********************************************

ACTUAL AND FFEETCTEI VARTABLES...
RTOREX
Frowes


ALTEFNATTUE DECOMFOSITTON (LAST 2 COMFONENTS)
FRACTION OF ERROR TUE TO ITFFERENCES OF REGRESGION
.2568

FTOES
TOE
TOES
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1952 & * & 224.616 & 224.616 & 133.156 & 132.010 \\
\hline 1953 & - & 237.034 & 242.367 & 1.46 .347 & 149.772 \\
\hline 1954 & * & 253.786 & 255.942 & \(161+456\) & 163.11 .4 \\
\hline 1955 & * & 278.729 & 275.331 & 182.033 & 180.416 \\
\hline 1956 & - & 306.308 & \(300 \cdot 942\) & 206.091 & 202.659 \\
\hline 1957 & - & 332.496 & 331.125 & 232.304 & 231.362 \\
\hline 1958 & * & 346.888 & 339.729 & 252.205 & 247.039 \\
\hline 1959 & * & 359.000 & 358.494 & 270.758 & 269.706 \\
\hline 1960 & * & 365.836 & 360.229 & 287.120 & 282.558 \\
\hline 1961 & - & 372.495 & 369.302 & \(301+350\) & 298.615 \\
\hline 1962 & - & 387.378 & 392.568 & 322.0 .17 & 325.927 \\
\hline 1963 & + & 408.106 & 404.348 & 347.296 & 344.242 \\
\hline 1964 & - & 423.729 & 412.183 & 366.487 & 356.529 \\
\hline 1965 & - & 447.490 & 426.039 & 397.631 & 378.520 \\
\hline 1966 & * & 464.943 & 452.290 & 436.585 & 424.708 \\
\hline 1967 & * & 465.943 & 472.771 & 465.943 & 472.771 \\
\hline 1968 & - & 474.719 & 482.049 & \(502+783\) & 510.444 \\
\hline 1969 & - & 512.398 & 496.224 & 574.881. & 557.000 \\
\hline 1970 & * & 516.891 & 511.489 & 623.932 & 6.17 .217 \\
\hline 1971 & + & 538.865 & 525.454 & 691.963 & 674.522 \\
\hline 1972 & * & 547.543 & \(-548.983\) & 763.736 & \(763+193\) \\
\hline 1973 & * & 584.874 & 584.624 & 872.980 & 872.188 \\
\hline 1974 & - & 602.680 & 623.288 & 1007.26 & 1041.87 \\
\hline 1975 & + & 629.001 & 642.071 & 1171.62 & 1195.83 \\
\hline 1976 & + & 678.559 & 667 +056 & 1367.68 & 1343.51 \\
\hline
\end{tabular}

COMFARTSON OF ACTUAL AND FREMTCTEH TTME SERTES **********************************************
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ACTUAL ANX PREMICTEM VAFTABLES..*} \\
\hline COFEELATHON COEFFICTENT = & . 9972 \\
\hline (gQUAREEO \(=\) & . 9945 \\
\hline ROOT-MEAN-SQUAFEL ERFOR = & 9.509 \\
\hline MEAN AESOLUTE EFFOR = & \(7+368\) \\
\hline MEAN ERTOR = & 2.412 \\
\hline
\end{tabular}

REGRESSTON COEFFTCIENT OF ACTUAL ON FFEDICTEO = .9920

THETL"G INEQUALTTY COEFFTCIENT =
\(.1064 E-01\)
FRACTION OF EFROR DUE TO ETAS =
. \(6432 \mathrm{E}-01\)
FRACTION DF EFROR LIUE TO IIFFERENT VARIATION =
. 4665ET-02
FFACTION OF ERROR DUE TO IITFERENT CO-VAFTATION =
.9310

ALTEFNATIUE RECOMPOSTTION (LAST 2 COMFONENTS)
FRACTION OF ERROR IUE TO IIFFERENCES OF REGRESSION COEFFICIENT FROM UNITY =
FRACTION OF EFROR LUE TO FESIDUAL VAFTANCE =

NOF:
\begin{tabular}{lll}
11.3367 & 51.2420 & 52.3877 \\
18.3764 & 55.6153 & 52.1907 \\
26.0179 & 57.9186 & 56.2601 \\
38.5028 & 62.8669 & 64.4840 \\
45.0268 & 67.8844 & 71.3062 \\
40.0967 & 70.6815 & 71.6234 \\
52.5841 & 76.6123 & 81.7790 \\
85.9301 & 105.846 & 106.899 \\
111.731 & 117.729 & 122.290 \\
\(131+516\) & 132.307 & 135.042 \\
144.913 & 149.978 & 145.068 \\
158.721 & 155.681 & 158.735 \\
185.143 & 176.285 & 186.243 \\
211.117 & 195.330 & 214.440 \\
215.933 & 208.462 & 220.339 \\
229.264 & 236.093 & 229.264 \\
246.934 & 255.695 & 248.034 \\
277.855 & 267.209 & 285.090 \\
322.040 & 312.704 & 319.420 \\
355.797 & 326.824 & 344.266 \\
379.915 & 361.680 & 362.224 \\
394.126 & 402.225 & 403.017 \\
373.277 & 432.866 & 398.249 \\
398.345 & 494.246 & 470.038 \\
438.995 & 536.248 & 560.419
\end{tabular}

NORS
438.995
536.248

1952
1953
1954
1955
\(19: 56\)
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972 - \(381+355\)
1973 - 393.876
1974 • 393.885
1975 • \(411+416\)
1.976 • 427.482

COMFAFTGON OF ACTUAL ANA FREDTCTED TIME SEFTES **********************************************

ACTUAL ANI FFEEITCTEI VARTABLES... RNOF FNOFS
```

CORREIIATON COEFFTCIENT = .9978
(SQUAREO == .9956
FOOT-MEAN-WQUAREN ERROR == 9.5O9
MEAN ABSOLUTE EFROR = 7.368
MEAN ERFOR = -2.412
FEGRESGRON COEFFLCTENT OF ACTUAL ON FREDCTEL = 1.003
THETL"G TNEOUALITY COEFFICIENT =
.1995E-0.1
FRACTION OF ERROR IUE TO BIAS = .6432E-01
FFACTION OF ERROR DUE TO IIFFERENT UAETATION =
+642フEー02
FRACTION OF ERROR DUE TO LIFFERENT CO-VARTATION = . .9292

```

AL TERNATIUE RECOMFOSITION (LAST 2 COMFONENTS)
FRACTION OF ERFOR DUE TO OTFFERENCES OF FEGRESSION
RIEUI RIEUTS TEUI IEUIS


COMFARISON OF ACTUAL ANG FREMICTEM TIME SERTES **********************************************

ACTUAL ANI FRERTCTEI VARTABLEG.
FIBUT
FTBuTS
CORFELATION COEFFTCTENT \(=\)
(SGUAREI \(=\)
ROOT-MEAN-SQUARER ERFOR \(=\)
MEAN AESOLUTE ERROR \(=\)
MEAN ERROR \(=\)

FEGRESGION COEFFICIENT OF ACTUAL ON FFETICTEM = 1.004
THETLM INEQUALTTY COEFFTCTENT \(=\quad\) +1853E-OL
FFACTION OF EFROF RUE TO BTAS = \(\quad\) GA32E-OI
FFACTION OF EFROR RUE TO IIIFFERENT VAFIATTON = . \(7573 E-02\)
FFACTION OF ERROR DUE TO IIFFEFENT CO-UARTATION =
.9281

ALTERNATIUE DECOMFOETTION (LAST 2 COMFONENTG)
FFACTION OF ERROR RUE TO MRFERENCES OF FEGRESSION COEFFICJENT FFOM UNITY \(=\quad+3254 E-02\)
FRACTION OF ERROR LUE TO EESTRUAL VARTANCE \(=\quad .9324\)

RINT
FINTS
INT
INTS

1952
1953
1954
1955
1956
1957
1958
1959
1.960

1961
\(1962 \quad 3 \quad 3+7106\)
1963 - 38.151 .8
1964 • 40.5309
1963 . \(4 \%+4407\)
\(1966 \quad 46.8233\)
1967 • \(52+7498\)
1968 - 57.5662
1969 - 64.3147
1970 + 64.2015
\(1971+67.9023\)
\(1972 \quad+\quad 73.0459\)
\(1973 \quad-\quad 78+2663\)
1974 - \(78+7935\)
\(1975 \quad+\quad 86.3994\)
\(1976 \quad\) - 97.9584
COMFMETSON OF ACTUAL ANA FRETICTED TME SERTES **********************************************


FEGFESSTON COEFFICTENT OF ACTUAL ON FFERTCTER = \(\quad 1.006\)
THETL"G INEQUALTTY COEFFICTENT =
.4193E-01
FRACTION OF ERROR DUE TO ETAS =
FRACTIUN OF ERFOF DUE TO IIFFERENT UARIATION = \(\quad .7144 E-02\)
FFACTION OF ERFOR RUE TO LIFFERENT CO-VABTATTON =
- 5854

ALTERNATTUE RECOMFOSITION (LAST 2 COMFONENTS)
FRACTION OF EFROR DUE TO OTFFERENCES OF FEGFESSION
COEFFTCTENT FFOM UNTTY \(=\)
\(.9762 \mathrm{E}-03\)
FFACTION OF EREOR DUE TO. FESTMUAL VARIANCE =

TAXBASES


ACTUAL ANG FREDTCTEX UARTAELES... RTAXBASE RTAXBASES
COFRELATION COEFFICTENT \(=\quad .9863\)
〈SQUAFEI =: . 9729
ROOT MEAN GQUARED ERFOR = 8.E33
MEAN ABSOLUTE EFROR : \(\quad 6.19 \%\)
MEAN ERFOF: \(=\quad .8061 E-01\)


AL.TEFNATIUE DECOMFOSITIUN (LAST 2 COMFONENTS)
FRACTION OF ERFOR RUE TO MTFFEEENCES OF REGREGSAON
\begin{tabular}{|c|c|c|c|c|c|}
\hline 1952 & - & 40.0546 & 40.0546 & 23.7450 & 23.5407 \\
\hline 1953 & + & 36.7907 & 35.385 & 22.71 .50 & 21.8665 \\
\hline 1954 & - & 37.2484 & 36.3004 & \(23+6970\) & 23.1346 \\
\hline 195 & - & 37.6937 & 39.5846 & 24.6170 & 25.9385 \\
\hline 1.956 & - & 39.6628 & 42.7400 & 26.6860 & 28.7832 \\
\hline 1957 & * & 39.8917 & 40.5649 & 27.8710 & 28.3433 \\
\hline 1958 & * & 40.0495 & 43.403 I & 29.1180 & 31.6611 \\
\hline 1.959 & * & 59.0771 & 56.2081 & 44.5560 & 42.2870 \\
\hline 1960 & . & 61.2092 & 60.3367 & 48.0390 & 47.3272 \\
\hline 1961 & * & 67.5163 & 63.4950 & 54.6210 & 51.3415 \\
\hline 1962 & * & 73.9119 & \(65+6900\) & 6.1 .4410 & 54.5386 \\
\hline 1963 & * & 74.4212 & 69.9383 & 63.3330 & 59.4686 \\
\hline 1964 & * & 82, 2745 & 82.1258 & 71.1600 & 71.0369 \\
\hline 1963 & * & 88. 3353 & 92.5545 & 78.4930 & 82.2313 \\
\hline 1966 & - & 86.9470 & 88.2705 & 81.6440 & 82.9875 \\
\hline 1967 & , & 91.5640 & 87-2758 & 91. 5640 & 87.2758 \\
\hline 1968 & - & 92.8339 & 88.1746 & 98,3220 & 93.3687 \\
\hline 1969 & - & 92.5493 & 95.580.1 & 103.835 & 107.286 \\
\hline 1970 & - & 104.823 & 99.4628 & 126.531 & 120.022 \\
\hline 1971. & - & 95.1054 & 101.019 & 122.126 & 129.677 \\
\hline 1972 & - & 90.7349 & 96.0830 & 126.561 & 133.874 \\
\hline 1973 & - & 100.140 & 100.864 & 149.468 & 150.477 \\
\hline 1974 & + & 96.2140 & 84.8188 & 160.802 & 141.781 \\
\hline 1975 & * & 93.3701 & 91.5892 & 173.91 .18 & 170.600 \\
\hline 1976 & - & 92.1312 & 104.933 & 185.696 & \(211+343\) \\
\hline
\end{tabular}

COMFAETSON OF ACTUAL AND FBEDTCTED TME SERTES **********************************************

ACTUAL ANM FFEGICTED VAFTAELES + + RTNCTAX RTNCTAXS
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
CORFELATION COEFFICIENT = \\
(SQUAREI =
\end{tabular} & \[
\begin{aligned}
& +9790 \\
& +9585
\end{aligned}
\] \\
\hline ROOT-MEAN-SQUAREA ERROR = & 4.895 \\
\hline MEAN ABSOLUTE EFROE = & 3.712 \\
\hline MEAN EFRIOR = & +3235 \\
\hline
\end{tabular}

REGRESSTON COEFFICIENT OF ACTUAL ON FREMTCTEN = . .9706
THETL" S INEQUALITY COEFFICIENT \(=\quad\).321OE-OL
FFACTION OF ERFOR DUE TO BTAS = \(\quad 4368 \mathrm{E}-02\)
FFACTION OF EFIROR LUE TO IIFFEFENT VAFIATION \(=\quad .1802 E-02\)
FFACTION OF EFROR LUE TO LITFFERENT CO-VAFTATION \(=\quad .9938\)
```

ALTEFNATIUE RECOMFOSITION (LAST 2 COMFONENTS) FRACTION OF ERROR DUE TO UTFFERENCES OF FEGRESSTON

RIEEI
RIBEIS

TEEI
IBEIS

COMFARTSON OF ACTUAL ANI FFEIICTEI TIME SEFTES **

ACTUAL. ANN FFEEMICTEN UAFTTAELEG + +
FIBEI
FIEEIS

COFKELATION COEFFICTENT := (SQUAREK =	$\begin{aligned} & 9820 \\ & +9642 \end{aligned}$
FOOT MEAN-SQUAFEEM EFFROF	$5+305$
MEAN ABSOLUTE ERFOF =	$4+199$
MEAN EFFROF =	$+2429$

REGFESSTON COEFFICIENT OF ACTUAL ON FREMICTEN = $\quad 9828$
THEIL" G INERUALITY COEFFICIENT = \quad 2968E-0J.
FFACTION OF ERROR IUE: TO BIAS =

+ 2097E-O2
FFACTION OF EFROR IUUE TO IITFFEFENT VAKIATION = - - 2O75E-OA
FFACTION OF ERFOF IUE TO MTFFEFENT CO-VAFTATTON = $\quad .9979$

ALTEFNATIUE DECOMFOSTTION (LAST 2 COMFONENTS)
FRACTION OF ERROR LUE TO MTFFERENCES OF REGRESSTON

FiN19
KN19s
N19
N195

1952	-	38.0731	40.8045	22.5704	23.9814
1953	-	43.4859	40.0526	26.8487	24.7508
1954	,	44.8753	43.2682	28.5491	27.5753
1955	-	49.9650	48.0210	31.9780	31.4666
1956	-	51.9442	52.0826	34.949%	35.0750
1957	-	51.5799	49.9952	36.0372	34.8625
1958	*	53.5029	53.2041	38.8993	38.6881
1959	+	66.6713	67.6352	50.2836	50.8839
1960	,	68.1825	72.2981	53.511 .9	56.7095
1961	*	71.3105	75.8569	57.6905	61.3372
1962	-	78.6360	78.3272	65.28 .49	65.0305
1963	,	80.2519	83.0985	69.2939	70.6586
1964	-	91.9109	96.7779	79.4946	93.7106
1965	,	99.9570	108.483	80.81 .98	96.3828
1966	*	101.007	103.675	94.8463	97.3527
1967	*	111.821	$102+559$	111.821	102.559
1968	.	$111+722$	$103+568$	118.326	109.669
1769	-	101.339	111.879	113.696	125.581
1970	-	110.400	116.236	133.262	140.263
1971	,	114.702	117.982	147.291	151.453
1972	+	117 .855	111.694	164.526	155.410
1973	-	121.542	121.9\%1	180.626	181.153
1974	,	110.696	99.8017	185.007	166.826
1975	-	172.040	$165+243$	305.331	292.646
1976	*	118.326	122.375	238.494	246.474

COMFARISON OF ACTUAL ANA FREETCTEL TIME GERTES **

ACTUAL ANH FHEDICTEL VARTAEMEG.. F FNIG FNLSG

FEORESSION COEFFTCIENT OF ACTUAL ON FFEITCTED $=1.003$
THEIL"S TNERUALITY COEFFICIENT =
.2849E-0.
FFACTION OF ERROR DUE TO BTAS =
.2097E-02
FRACTION OF ERROR DUE TO IIFFERENT UARIATION =
. 9621 EWO
FRACTION OF ERROF DUE TO DIFFERENT CO-VARIATION =
.9883

ALTERNATTUE DECOMPOSITION (LAST 2 COMFONENTG)
FRACTION OF ERROR DUE TO IIFFERENCES OF REGRESSION
COEFFICIENT FROM UNITY $=$
$.2545 E-03$
FRACTION OF ERROR DUE TO RESTRUAL VARTANCE = $\quad .9976$

SIMULATION: DIVIDENDS ON PREFERRED SHARES

	Finume	FWTVFRG	IIIUV:\%	aturns
	+ + + + + + + +	+ + +	* + + + +	
1.970	5.07836	$4+14820$	$5+706$	$4+66138$
1971.	8.0875	8.43597	9.34979	9.75257
1.97%	10.7956	11. 1299	13.0796	130.476\%
1.9\%3	10.7607	$12+8067$	14.0200	1.6.6858
1574	$12+1754$	13.8619	17.5944	20.0316
1.975	$15+51.66$	1.4. 5 \%	24.8445	23, 2536
1976	16.7580	1.49375	28.8470	2 3 -7132

COMFAFTSON OF ACTUAL ANA FFENTCTEM TTME GERTES

ACTUAL ANB FREMTCTEM VAFTABLES... RURUPR ROUFRG
COFRELATTON COEFTCTENT = .93. $=\quad .93$ (SNUAREG: $=\quad .8748$

FOOT-MEAN-SQUAREMERKOR = $\quad 1.332$
MEAN ABSOLUTE ERFOR = 1.16%
MEAN ERFOR = $\quad-.9480 E-0:$
REGFESSION COEFTCIENT OF ACTUAL ON FKEHICTEM = -9662
THETL"S TNEQUALTTY COEFFTCTENT = $\quad .5580 E-01$
FRACTTON OF ERKOR RUE TO ATAS = $\quad .5072 E-02$
FFACTTON OF ERTOR RUE TO MTFFEEENT VAFTATION = $\quad .8029 E-02$
FRACTION OF ERROR MUE TO MTFFEFENT CO-UARTATHON = $\quad .9869$

ALTEFNATTUE RECOMFOSITTOM (LAST 2 COMFONENTS)
FRACTICN OF EFFOH RUE TO WIFERENCES OF REGRESSTON COEFFTCTENT FROM UNTTY =
-846IE-O2
FFACTION OF EFROR DUE TO FESTDUAL VAFIANGE = $\quad .986 E$

FNT2I
FNTM1s
NT2L
NT21S

1952	－61331．7E－0．	－641232E－01
1953	＋641500E－01	． $566163 E-0.1$
1954	＋605377E－01	． $570.170 \mathrm{E-0}$.
1955	＋5955661：－01	． $568862 \mathrm{E}-\mathrm{O} 01$
1956	＋581518E－0．	－5A903AE－01
1957	＋538762F－0．	．506227E゙－01
1956	－ $536845 E-0.01$	＋ $5101755 \mathrm{E}-\mathrm{OL}$
1.959	＋596272E－01	． $589108 \mathrm{E}-01$
1960	． $608372 \mathrm{E}-0.1$	． $605263 \mathrm{E}-01$
1961	． $606585 \mathrm{EF-0.1}$	．619250\％－－01
1962	＋632201E－01	． $619382 \mathrm{E}-01$
1963	． $614612 \mathrm{E}-0.1$	－642203E－0．1
1964	－646862E－01	． $703952 \mathrm{E}-01$
1963	． $6739615 \cdots 01$	． $761503 E-01$
1966	＋669902E－01	． $713445 E-01$
1967	．692127E゙－0．1	＋ $70.1 .4895-01$
1968	－707556E－01	． 7092 ELE －01
1969	＋680915E－0．	． $75342 \mathrm{EF-01}$
1970	． $717795 E-0.1$	＋781454E－－01
1971	＋740507E－01	． $774642 \mathrm{E}-01$
1972	． 775510 EE －01	． $75982 \mathrm{EE-01}$
1973	－811396E－－01	． $806135 \mathrm{EW-01}$
1974	－806066E゙－0．0．	． $713519 \mathrm{EF-O1}$
1975	． 105693	． 989791 E－－ 01
1976	． $866696 \mathrm{E}-0.1$	＋868170E－－01

COMPARTSON OF ACTUAL ANG PREWTCTEO TIME GERTES

ACTUAL ANG FREDTCTEM VARTABLES．．．
RETURN
RETURNS

CORFELATION COEFFGTENT＝ （SQUAREM＝	$+9264$ $+8582$
ROUT MEAN－SQUAREM ERROR＝	＋ 43 E7FF－02
MEAN ABSOL UTE ERROR＝	＋3A47E－－ 02
MEAN EFROR＝	＋140JE－04

FEORESSTON COEFFTCTENT OF ACTUAL ON FFEDTCTEEM ：M ．9179

FRACTION OF ERROR DUE TO GTFFENENT COMVARATSON＝－． 9994

ALTERNATIUE DECOMFOSITRON（IAST 2 COMFONENTS）
FFACTION OF ERROR RUE TO MTFFEFNCES OF REGRESTON COEFFICIENT FROM UNITY＝
FRACTION OF ERROR DUF TO REGTLUAL．VARTANCE＝－9ESB

MODEI FORECASTS

In this chapter we produce forecasts for the period 19761983 with the real models of Chapter IV and the financial and income model of Chapter V. In these forecasts the main endogenous variables are forecasted under two alternative future price regimes for telephone services.

For the forecasts, we need besides the price of the outputs, forecasts for the price of factor inputs and the other exogenous variables of the real and financial model. The forecasts used for all these variables is discussed in the Appendix.

1. Forecast with Constant 1979 Nominal Prices of Services

In this simulation, we assume that the nominal 1979 estimated price of each telephone service does not change in the whole period. We have actual prices for 1978 and the 1979 prices are estimated using the allowed price increases of the last rate case. In this set of forecasts we have assumed a 10.5% price increase in Local Services, a 6.3% increase in the price of Toll services and a 15% increase in the price of Other Toll services. The lower increase in the price of Toll services reflects the fact that the authorized price increase affects only Intra-Bell Traffic.

In Tables 6.1 and 6.2 we present the demand forecasts with constant nominal prices. Actual values are used for demand for Toll services up to 1978 and for Local and Other Toll services up to 1977. Furthermore, the 1978 values for the latter two services were obtained using actual value of revenues and an estimate of the price index of these services. Thus, in effect the forecasts with the demand equations are done for the period 1978-1983. For purposes of comparison we present also the actual values of

	amoce $\left(\mathrm{y}_{11}\right)$	FLOC	FEVULOC
1.972	579.800	1.08600	629.663
1973	625.500	1.11600	698.058
1.974	679.400	1.1.4000	774.516
1.975	734.300	1.19600	878.223
1.976	779.700	1.27000	990.219
1977	820.500	1.35000	11.07 .68
1978 1979	900.300	1. 1.40300	$1263+12$
1980	954.387	1.49200	1423.94
1980 1981	10211.38 1092	1.49200	1523.89
1982	1092.95 1168.67	1.49200 1.49200	1630.68 1743
1983	1247.72	1.49200	1861.60

QTOL $\left(\mathrm{Y}_{12}\right)$ FTOL
1972
1.973

1974
1975
1976
1977
1.978

1979
1980
1.98.

1982
1.983
333.273
385.109
440.917
$500 \cdot 113$
536.231
579.637
644.922
697.868
774.268
863.539
963.212
1069.60
$1+11010$
$1+13243$
$1+14576$
$1+18689$
1.25437
1.28953
1.35489
1.36967
1.36967
1.36967
1.36967
1.36967

REUTOL
369.967
$436 \cdot 110$
$506 \cdot 185$
593.573
672.630
746.878
873.798
955.851
1060.49
1182.76
1319.28
1.46 E .00

	$\operatorname{arm}\left(\mathrm{y}_{2}\right)$	FOTH.	FEVOTH
	1		
197\%	90.9000	1.0.45\%	95.0541
1973	103.000	1.07360	115.949
1974	119.900	1. 1.0670	132.483
1.97%	138.800	1. 1 W以A0	1.60 .023
1976	156.700	1. 24470	1.9\%\% (0)4
1977	17.1 .300	1.305\%	223.681.
1978	202.200	1. 37860	278.753
1979	202.631	1.50:100	304.149
1.980	235.797	1.50100	353.934
1.981	$275+31 \mathrm{~L}$	1.501.00	413.241
1982	320.211	1. 40100	480.636
1983	368.004	1. 501.00	552.37\%

the variables for the period 1972-1976. From these demand forecasts we observe a substantial increase in Other Toll services, an increase in Toll services and a smaller increase in demand for Local services. The results for Other Toll services reflect the high price elasticity of the demand for Other Toll services and the forecasted decrease in real prices of the services. This decrease is implied by the constant nominal 1979 prices for the service and the increasing Consumer Price Index.

In Table 6.3 we present the forecast for labour, raw materials and capital requirements. Associated with the growth in output from Tables 6.1 to 6.2 and the evolution of input prices we forecast that labour requirements will be almost constant, and an increase in capital and material requirements.

With these forecasted values for the real variables and using the block triangular property of the complete model, we now forecast the financial variables.

In Tables 6.4, 6.5 and 6.6, we present the forecasts of the financial and income model for the variables in both real and in current dollars. In Table 6.4 we have the forecast of the (Average) Preferred Equity (APE), Total Equity (AEQUI), Long Term Debt (ADEBT), the sum of Equity and Debt (AVAK), Total Operating Revenues (TORE) and Total Operating Expenses (TOE). In Table 6.5 presented are the forecasts for Net Operating Revenues (NOR), Income Before Underlisted Items (IBUI), Interest Charges (INT), Tax Base (TAXBASES), Income Tax (INCTAX) and Income Before Extraodrinary Item (IBEI).

In Table 6.6 we have the forecasts for Net Income After Extraordinary Item (NIG), Dividends on Preferred Shares (DIVPR), Net

工

1972	+	53.2076
1.973	+	58.1048
1974	+	64.090%
1.97%	+	64.0880
1.976	+	$6!\mathrm{W}+1868$
1.977	+	63.207
1.978	+	66.4313
1.979	+	$66+3$ 394
1980	+	66.3121
1.981	+	$66+3493$
1982	+	66.1544
1983		6 w - 6063

M
1.68 .967 177.036 $183.9 \% 2$ 199.444 1. 97.6 $1.97+840$ $206+307$ $209+311$ 216.802 $222+938$ $230+126$ 236.690

K
3341.96 3498.44 3693.07 3760.4 L 3907.90 4030.76 $4185+11$ 423% •20 4381.77 $4 \% 44.68$ 4708.38 $48 \% 6.32$

RAFES
AFES
FTORES
TOFES

1976
1977
1978
1979
1980
1981
1982
1983

FAEGUTS
AEQUTS
RAVAKS
AUAKS

1976	+	1321.29	2425.89	2612.90	179\%.29
1.97%	*	1.539 .86	3167.12	3030.14	623.27
1978		159\%.81	3568.17	$313 \% .27$	7014.01
11979	-	1606.56	3915.54	3157.84	7695.61
1980		1660.27	4397.95	3260.1%	8636.86
1981	*	1716.15	4936.47	3366.85	9684.69
1988		1772.30	$55311+46$	3474.11	10942.9
1963		1823.05	6169.22	3571.03	12084.4

Fanmers
AnEBTS
FroEs
TOES

1976	-	1291.69	2371, 41	678.5	7-7 6
1977	-	1490.28	$3065 \cdot 15$	674.192	
1978	.	1538.46	3446.43	704.230	-1706.72
1979	+	1550.96	3780.07	$713+119$	$1883+13$
1980	+	1599,85	4237.91	$733+246$	2104.80
198\%	*	1650.70	4748.22	754.741	2352.81
1992	-	$1701+80$	5311.43	775.981	2624.29
1983	+	1747.98	5915.20	795.118	29114.70

FNORS
NORS
FTBUTS
TBUTS

1976
1977
1.978

1979
1.980
198%
1982 1.983
427.275
473.763 543.985 587.949 606.070 630.343 688.952
687.702
535.892
637.761
770.951
867.911
906.724
$952+177$
1003.69
1053.77
$465 \cdot 167$
503.253
572.595
618.509
639.005
665.768
$69 \% .01 .7$
728.673
601.119 690.723 827.739 932.430 980.779 1036.71 1099.93 1163.43

RINTS

INTS

RTAXBASES

TAXBASES
210.281
218.348
244.831
252.648
237.390
224.442
213.250
201.560
423.833
485.691
593.354
667.168
681.433
699.670
721.216
$738 \cdot 867$

BIMCTAXS
INCTAXS
RTBETS
TBETS

1.976	*	92.1312	185.696	118.149	239.137
1977	-	98.6163	218.861	120.231	266.830
1.978	+	112.053	271.565	132.777	321.790
1.979	*	116.319	307.164	136.399	360.004
1980	+	109.413	314.073	1.27 .977	367.360
1981	+	103.451	322.495	120.991	377.176
1982	,	98.2436	332.265	115.010	398.950
1983	+	92.7693	340.068	108.791	398.799

FNN 196
N195
RHIUFR
nIUFFS
N19

1976 1977 1979 1979 1980 1.981 1.982 1983
238.137
286.830
341.790 390.004 387.360 397.176 408.950 418.798

RNT2.S
130.990
142.833
145.788
136.871
129.373
122.920
116.264
130.890
142.853
145.788
136.871
129.373
122.920
116.264
(RNTM
. . \cdot 1.976
102.916

1977
1978
1.979

1980
1981 1982 1903
$115 \cdot 5.45$
$127+338$
130.229
121.294
113.769
107.305
100.642
211.742
258.118 310.992 $347+105$ 352.312 359.942 369.471 376.991

NT2IS
15.3336
15.4454
15.5154
15.5693
15.5868
$15+6040$
15.6148
15.6216
26.3951
28.7123
30.7976
32.8994
35.0478
37.233%
$39+4793$
41.8081

FETURNS

211.742	-665952E--01
258.118	. 7892 J (8E--01
310.992	. $82.1393 E-0.1$
$347+105$. $838617 \mathrm{E}-01$
352.312	
359.942	. 758 J 15E-01
369.471	. $726436 \mathrm{E}-01$
376.991	.697090E--01

Income Applicable to Common Shares After Extraordinary Item (NI21) and the Percent Return on Average Total Capital (RETURNS), where

$$
\text { RETURNS }=\frac{\text { INTS }+ \text { N19S }}{\text { AVAKS }}
$$

As expected, the rate of return on total capital achieves a peak in 1979 and then it decreases towards the end of the sample period but achieving a value close to the one in 1976.

It should be noted that for the forecast of RAVAKS we used a different relationship than the one described and used in Chapter V, the reason being that the forecasted values of RAVAKS obtained with the relationship of Chapter V were unreasonably low, and increasingly so, due to the unstable autoregressive process involved. Thus, in the forecasts we used the simple relationship:

$$
\operatorname{RAVAK}_{t}=d_{0}+d_{1} k_{t}
$$

which when estimated gave

$$
\begin{aligned}
& \text { RAVAK }_{t}=\underset{(4.3)}{389.256}+\underset{(17.3)}{.6552} \cdot K_{Y} \\
& R^{2}=.929
\end{aligned}
$$

2. Forecast with Constant 1979 Real Prices of Services

In this set of forecasts we keep the price of telephone services constant at their 1979 level.

In Tables 6.7 and 6.8 we present the demand forecasts. If we compare them with the ones from Tables 6.1 and 6.2 , we see that these values are lower. This is caused by the higher real prices used in this forecast. Thus, via the price elasticities we obtain a lower estimate for the quantity demanded. In Table

QLOC.

1972
1973
1.974

1975
1976
1.977
1.978
1.979

1980
1.981

1982
1983

QTOL..
FTol.
1.11010
$1+13243$
$1+14876$
1.18686

1. 2 E 437
1.28853
2. 35489
$1+36967$
1.456:34
3. 54665
4. +63776
1.73362

1972
1.973
1.974

1975
1976
1.977

1978
1979
1980
1981
1982
1983
579.800
625.500
679.400 $734+300$ 779.700 820.500 900.300 954.387 $1011+67$ 1072.64 1136.69 1202.92

FI. OC
1.08600
1.11600
1.14000
1.19600
$1+27000$
$1+35000$
1.40300
$1+49200$
1.58663
1.68370
1.78404
1.98843

REVL...OC
629.663 698.058 698.058
774.516 678.2.23 990.219 11.07 .68 $1263 \cdot 12$ 1423.94 $1605 \cdot 15$ 1806.00 2027.90 $2027+90$
$2271+65$

FEUTOL.

369.967
436.110
$505+185$
593.573
$672+630$
746.878
873.798
955.851
1034.65
1126.77
1227.97
1332.83

TABLE 6.8

SIMULATED VALUES OF OTHER TOLL SERVICES:

 CONSTANT 1979 REAL PRICESQOTH
90.9000
1.972
1.973
1.974

1975
1.976
1.977
1.979
1.979

1980
1981
1.982

1983

FOTH
1.04570
1.07360

1. 10670
1.15540
2. 24470
3. 30520
4. 37960
1.50100
5. 59620
6. 69.986
7. 79480
1.89984

REVOTH
95.0541
115.949
132.583
160.023
195.044
$223 \cdot 581$
278.753
304.149
338.611
378.810
$42 \% .611$
466.207
6.9 we present the forecasts for the factor inputs. As a consequence of lower output values of this set of simulations, we end up with smaller factor requirements.

The forecasts for the financial and income model under a regime of real 1979 prices are presented in Tables 6.10, 6.11 and 6.12, while in Table 6.13, we have the exogenous forecasted variables for this financial model. Under this regime, the rate of return increases to reach 10.6% in 1983, after a forecasted return in 1977 of 7.9%

		工	M	K
	:			
1972	+	53.2076	168.967	3341.96
1.973	*	49, 1048	177.036	3.499 .44
1974	-	64.0903	183.93\%	3693.0%
197%	+	64.0880	$189+444$	3760.41
1.976	-	$65 \cdot 1869$	1. $96+$ \% 4 A	$390 \% .90$
1.977	-	63.257	197,440	4030.76
1978	*	66.4313	$206 \cdot 887$	4185
1.979	+	66.3384	209.311	422\%-20
1980	*	63.3370	206.753	$4203+89$
1981	*	60.5956	204, 89 L	4231.45
1982	*	57.7805	203.030	4234.880
198%	*	可A.8675	200.612	420209

RAFES

1976
1.977

1978
1979
1980
1981 1982 1.983

AFES
342.814
386.430
422.527
460.806 501.595 548.199 591.907 642.014

FTOKES
TORES

RAERUTS
AEQUTS
RAUAK゙s
AVAK
AVAKS
1.976 1977 1978 1979 1980 1.981 1982 1.983

FAMEBTG
ADEBTS
2612.90
4797.29

- 1321.29
- 1539.86
- 1592+81
- 1606.56 1606.80 1608.70 1609.85 $1605 \cdot 49$
2425.89
3167.12
3568.17
$3915+54$
4256.30
4627.40
5024.44
5433.00
3030.1 .4
$3131+27$
3157.54
3157.99
3161.63
3163.82

3156 • 50
1903.47
2134.04
2477.67
2751.04
$3051 \mathrm{c}+60$
3389.88
3762.88
4160.19
6232.27
$7014+61$
7695.61
8365. 32
9094.37
9874.49
10678.2

1976 - 1291.62
1977 + 1490.28
1978 - $1539+46$
1979
1980
1.981
1.982

1983
2371.4.1
3065.15
3446.43
3780.07
41.09 .01
4466.97
4850.04
$5245+24$
678.559
674.192
.704 .230
713.120
$708 \cdot 10 \%$
704.578
700.686
694.951
1367.68
1496.24
1706.72
$1883+13$
2031.76
2194.51
2366.44
2542.80
FNORS
NORS
FIEUTS
TBUTS

1976
1.977
1.978

1979
1.980

1981
1982
1983

RTNTS
INTS
RTAXBASES
601.119
535.892
637.796
$770.9 \% 1$
867.909
1019.94
1195.36
1395.44
1617.39
469.167
502.27 l
572.595
618.509
681.972
751.508
825.668
900.477
690.757
827.739
930.329 1093.90
1279.89
1492.67
1727.04

TAXBASES

1976
1977
87.9584
177.285
205.032
234.385
265.362
297.393
331.105
366.575
403.782

TNCTAXG
FINCTAXS
FTBETS
IBEIS

1976	*	92.1312	185.696	118.149	$230 \cdot 137$
1977	*	98.6238	218.377	120.239	266.848
1.978	*	112.053	271.565	132.777	321.790
1979	-	116.319	307.163	136.329	360.004
1980	-	128.356	368.298	1.49 .238	428.208
1981	-	14.1.231	439.88 .4	1.63+391	508.905
1982	+	154.872	$523.0 \% 4$	178.557	603.046
1983	*	168.202	61.5 .445	193.447	707.816

FNI. 9 S
N1.9G
FTMUFF
muFFG

1976
1.97 1.978 1978 1980 1981 1982 1983
$118 \cdot 1.49$
130.998 $142+853$ $145+788$ 1.58.132 $171+773$ $186+468$ $200+920$
238.137
$286+848$ 341.790 $380+004$ 448.208 528.905 $623+046$
$727+316$
1.5.3336
$15+4454$
$15+5154$
15.5593
$15+5968$
$15+6040$
16.6148
15.6216
26.39 m
$28+7123$
30.7976
$32+8994$
$37+0478$
$37+2332$
39.4793
41.9081

FNVELS NI21S RETURNS

$19 \% 6 \quad+\quad 102+816$
1977 - $115+55$
$1978 \quad+\quad 127.338$
$1979 \quad+\quad 130.228$
$1980 \quad+\quad 142+546$
$1981 \quad 156+169$
$1982 \quad+\quad 170.853$
$1983 \quad+\quad 185+298$
$211+742$
$258 \cdot 136$
310.992
$347+104$
$413 \cdot 161$
491.672
$583+567$
686.008
$865992-01$
. 7893 9F-01
$+321393 E-01$
$.8386165-01$
$+891301 \mathrm{E}-01$
$+945651 \mathrm{E}-\mathrm{on}$
$+100290$
.105972

CFIX
ATBARE
ExTRTX
『゙ド

1976	＊	1.72139	． 648178	．181899E－ 11	1.83600
1977	＊	1.85896	． 61.2739	20.0000	2.05676
1978	＊	1．98897	． 612739	20.0000	2.24018
1979		2.11445	－61．2739	20.0000	2.43722
1.980		$2+24855$	＋61．2739	20.00000	2.64894
198.	＊	2.38613	＋612739	20.0000	2.87648
1982	＊	2． 2.932	－61．2739	20.0000	3＋12106
1983		2.67630	－61．2739	20.0000	3.38401

IEC：

MTSCUE
UNCOL
1.976
1.977

1978
1979
1.980
1.981

1982
1.983

－ $8635655 \mathrm{~F}-0.0$
＋977334E－0．1
． $09.112 \mathrm{E}-0.1$
． 90489 AF －01
． $918670 \mathrm{E}-\mathrm{-O}$.
．932448E－01
＋9462275－01
． $960006 E-0.1$

54.8000
64.9000 71.0000 77.1 .000 83．2000 89.3000 95.9000 101.600
8.80481
7.00000
9.00000
10.0000
10.0000 11.0000 11.0000
12.0000

APPENDIX

FORECASTING OF THE EXOGENEOUS VARIABLES

In order to perform the simulation, we had to forecast a number of exogeneous variables. The forecasts for Gross Provincial Products at constant prices for the period 1978-1983 were obtained from the Bureau de la Statistique de Québec (1979), and for Ontario from Sawyer, J.A. et al (1978). For the Population of Ontario, we also used Sawyer, J.A. et al (1978), while for the Population of Québec we used Office de Planification et de Développement du Quebec (1977).

For the other variables, we used mixed autoregressive integrated moving average (ARIMA) processes. Following the methodology of Box and Jenkins (1971), the processes were first identified using sample autocorrelations and partial autocorrelations, then estimated and finally forecasted (1977-86). The processes adopted for each variable are indicated in Table A with the sample period used for the estimation of each of them. Note that, for some of the series, which did not exhibit a homogeneous behaviour, we had to use shorter estimation periods.

TABLE A

Variables	Logarithm Taken	Process ${ }^{1}$	Estimation Period
Canadian Consumer Price Index (CPI)	x	ARIMA (0,1,0)	1952-76
Depreciation Rate (DEP)		ARIMA (0,1,0)	1952-76
Miscellaneous Revenue (MISCUR)		ARIMA ($0,1,0$)	1971-76
Other Income (OTHI)	x	ARIMA ($2,1,0)$	1952-76
Price of Capital Goods (PK)	.. x	ARIMA ($2,1,0$)	1952-76
Allowed Price of Capital Services (SK)	x	ARIMA ($2,1,0$)	1952-76
Technology Indicator (TC)	\mathbf{x}	ARIMA ($1,1,0$)	1952-76
Rental Price of Capital (v)	x	ARIMA ($1,1,0)$	1952-76
Wage Rate (w)	X	ARIMA ($1,1,0$)	1965-76
Price of Raw Materials (m)	x	ARIMA ($1,1,0$)	1952-76

1 In the description ARIMA (p, d, q), p indicates the degree of autoregressive part, d the degree of differentiating and q the degree of the moving average part.

REFERENCES

E.R. Berndt, M.N. Darrough and W.E. Diewert, (1977), "Flexible Functional Forms and Expenditure Distributions: An application to Canadian Demand Functions", International Economic Review, 18, 651-675.
E.R. Berndt and I.R. Christensen, (1975), The Translog Function and the Substitution of Equipment Structures, and Labour in U.S. Manufacturing .1929-68, Journal of Econometrics 1.
G.E.P: Box and D.R. Cox, (1964), "An Analysis of Transformations", Journal of The Royal Statistical Society, Series B, 26, 2ll-243.
G.E.P. Box, and G.M. Jenkins, (1971), Time Series Analysis Forecasting and Control, Holden-Day, New York
R.S. Brown, D.W. Caves and L.R. Christensen, (1976), Modelling the Structure of Production with a Joint Cost Function, mimeo.

Bureau de la Statistique du Québec, (1979). Service des études prévisionnelles. Prévision a moyen terms de l'emploi et du P.I.B. par secteurs au Québec. May.
L.R. Christensen, D.W. Jorgenson and L.J. Lau, (1972), Conjugate Duality and Transcendental Logarithmic Production Frontiers, Harvard Institute of Economic Research, Discussion Paper Series, Number 238, Revised April 23rd.
L.R. Christensen, D.W. Jorgenson and L.J. Lau, (1973), Transcendental Logarithmic Production Frontiers, The Review of Economics and Statistics, February.
L.R. Christensen, D.W. Jorgenson and L.J. Lau, (1975), "Transcendental Logarithmic Utility Functions", American Economic Review, 65, 367-383.
L.R. Christensen and M.E. Manser, (1977), "Estimating U.S. Consumer Preferences for Meat with a Flexible Utility Function", Journal of Econometrics, 5, 37-54.
W.E. Diewert, (1974), "Applications of Duality Theory", in M. Intriligator and D. Kendrick (eds), Frontiers of Quantitative Economics, Vol. II, Amsterdam: North Holland Publishing Company.
R.E. Hall, (1973), "The Specification of Technologies with Several Kinds of Outputs," Journal of Political Economy 81, 4 , July/August, pp. 878-892.

IAER (1976). Rate Adjustment Guidelines for Regulated.Industries: A Model for Bell Canada. A Report to the Canadian Department of Communications, May.

IAER (1978). A Simulation Model of Bell Canada. A Report to the Canadian Department of Communications, March 3lst.
D. McFadden, (1970), "Cost Revenue, and Profit Functions," in McFadden, ed., An Econometric Approach to Production Theory, unplublished manuscript.
W. Oberhofer and J. Kmenta, (1974), "A General Procedure for Obtaining Maximum Likelihood Estimates in Generalized Regression Models," Econometrica, Vol. 42, No. 3, May pp. 579-590.

Office de planification et de développement du Québec, (1979), (Hervé Gauthier) Evolution demographique du Québec, August.
R. Roy, (1942), "De 1'utilité". Paris, Hermann.
R. Roy, (1947), "La distribution du revenu entre les divers biens", Econometrica, 15, 205-225.
J.A. Sawyer, D.P. Dungan and J.W.I. Winder, (1978), The Ontario Economy. Ontario Economic Council, Toronto.
R.W. Shepard, (1953), The Theory of Cost and Production Functions, Princeton: Princeton University Press.
J.B. Smith and V. Corbo, (1979), "Economies of Scale and Economi of Scope in Bell Canada", Special Study 1979-001, Institute of Applied Economic Research.

QUEEN P $91 . \mathrm{C} 655 \mathrm{~S} 54921979$
Cordo, Vittorio A simulation model of Bell C

[^0]: ${ }^{l}$ As an example of a variation on this theme, a number of economists have attenpted to determine the effects of regulatory lag, i.e. the lags resulting between the time a price change is requested or the actual rate of return changes and the time that the price change is actually enacted by the Regulatory Commission. One can show that in some cases regulatory lag will diminish the extent of over-capitalization that would otherwise result.

[^1]: * For the period 1972-75, we had to extrapolate (setting the values for this period equal to the value of 1971). Since these two series were exhibiting very little variability, this approximation is not likely to have been of much importance.

[^2]: *

 That is, the scale of the computed quantity index was defined in such a way that the value of this index for 1967 was equal to the dollar revenue from this service in 1967.

[^3]: * $L=$ LOG OF LIKELIHOOD FUNCTION

[^4]: 1 The fact that residential and business demands are not separated may again be of importance in the interpretation of such a result.

[^5]: 1
 L.R. Christensen, D.W. Jorgenson and L.J. Lau "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, 55 (February 1973), pp. 28-45.

[^6]: ${ }^{1}$ For details see Smith and Corbo, op. cit., Appendix B.

[^7]: 1 for details of this test see Smith and Corbo (1979).
 2 For details see Smith and Corbo (1979).

