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Summary 

The ability of a 'sequential' Kalman filter to predict a geostationary 

and an approximately geostationary orbit is assessed by comparison with the 

corresponding orbits predicted by a least-squares 'batch' estimator. Prior 

to performing this comparison, the perturbation models and observations 

assumed in each estimator are compared and shown to be essentially the same 

(except for atmospheric drag). An analytical expression for the state 

noise matrix, assuming a geostationary reference orbit, is given and used 

during numerical studies. Numerical results indicate that the Kalman 

Filter performs well for the case of a geostationary orbit (in the absence 

of orbital perturbations the true state is that of an ideally geostationary 

orbit). For an approximately geostationary orbit (in the absence of orbital 

perturbations the true state is only approximately that of a geostationary 

orbit) the performance of the Kalman filter degrades to the point of 'neutral' 

stability. A parameter study, in which the values of the initial error 

covariance matrix, the measurement noise matrix and the state noise matrix 

are individually varied, is conducted to assess the sensitivity of the Kalman 

filter's performance. It is observed that the nominal values assigned to 

each of the above matrices are very near their optimums. It is concluded, 

therefore, that to improve the Kalman Filter's performance it is the analyt-

ical forms assumed for the error and noise matrices (in particular, the . 

state noise matrix for the present study), and- not the values normally 

assigned to these matrices, that deserves further study. 
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1. INTRODUCTION  

It is the purpose of this study to compare the performance of. the 

Orbit Determination Prediction and Correction (ODPAC) Kalman filter. 	. 

estimator with that of the Goddard Trajectory Determination System (GTDS) 

Least-Squares estimator, in the application of.estimating the orbit of a 

géostationary satellite when only range measurements are  available. An , 

attempt will be made to determine and correct the factors which contribute 

to the relatively poor performance of the Kalman estimator. 

The use of a Kalman.filter in orbital estimation is a well-established 

practice [Brogan and Lemay, 1973]. Furthermore, the application of sequen-

tial filtering to the problem of estimating a geostatienary orbit is also 

a well developed field of study (see, for.example [Soop, 198 0]). The 

present complication is that only range observations are to be permitted. 

The literature in this area is somewhat limited. As a major literature 	. 

search is beyond the scope-of this work, much of what follows makes use 

of the pioneering work by [Brogan and Lemay, 1968] in the area of orbit - 

determination at geostationary altitude. In particular, the possibility, 

of implementing a state noise matrix; obtained by assuming a geostationary 

reference prbit for the linearizations implicit in the formulation of the 

extended Kalman filter, is studied. A recent publication [akker and 

Ambrosius, 1982], dedicated to orbit estimation using only laser ranging 

measurements, cites the importance to numerical performance of predicting 

the state transition matrix and the eate noise matrix. As will be shown, 

the choice of a geostationary reference:orbit also has implications for 

. the resultant form of the state transition matrix. 

Prior to undertaking this task, however, a comparison of the ODPAC 

and GTDS perturbation models will be undertaken to identify and remove any 

1 
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sources of discrepancy Which could bias the numerical comparison Of the. 

performance of the two routines. Also, simulatee and:actual range measure-

ments wili be compared in an effort to establish whether or not the use • of 

simulated rather than actual range measurements is valid for comparison 

purposes.  Thé use of the former would greatly facilitate the research 

process, while still permitting the option of using actual range measure-

ments in a final verification run. The theoretical implications of the 

• 'present study are then discussed within the context of the governing 

equations and the mathematical assumptions implicit in ODPAC C[Chodas, 

1981] and [Browne and McPherson, 1978]). Finally, a numerical assessment .  

of the ability of the ODPAC Kalman estimator to determine the orbit of a 

geostationary and'an approximately geostationary satellite is conducted. 

To guarantee valid comparisons, the parameters and initial estimated state 

used by GTDS to determine the true orbit are assumed. 

2. COMPARISON OF PERTURBATION MODELS  

Five sources of orbital perturbations are modeled in ODPAC. By appro-

priately setting a flag or defining a scalar to be nonzero, one can choose 

to include the effects of Earth's aspherical gravitational field, atmospheric 

drag, solar gravity, lunar gravity and solar radiation pressure on the 

orbital motion of a satellite. It is also possible to include a correction 

for the precession and nutation of Earth's polar axis caused by solar and 

lunar gravity. This permits a more accurate representation of the satellite's 

orbit in inertial coordinates. 

As ODPAC can both simulate and estimate a satellite's orbit, the same 

perturbation models are available to both the similation and estimation 



software. However, the simulator and estimator need not include the same 

. perturbation sources simultaneously. When solar and lunar gravitational 

effects  on the satellite and Earth are included in both, the constants . 

assumed in the perturbation models are identical. It is possible, -  however, 

to select different drag and solar radiation pressure coefficients for use 

in the simulator and estimator. Also., while the inimerical values for the 

gravitational harmonics caused by the Earth's oblateness are the same 

regardless of whether they are modeled in the simulator or the estimator, 

the number of harmonics included in each need not be the same. 

In what follows, the perturbation models used in ODPAC will be compared 

with their GTDS counterparts. The intent is to isolate and remove any 

differences prior to performing a numerical comparison of the estimated 

orbital state vectors obtained from each routine. 

2.1 Earth's Aspherical Gravitational Field  

The model for the gravitational potential of the Earth assumed in ODPAC 

is given in [Browne and McPherson, 1978 (pp. 3-7, 3-11)], while that assumed 

in GTDS can be found in [Cappellari, Velez and Fuchs, 1976 (pp. 4-9, 4-22)]. 

(Henceforth, page references for the above two document will be made without 

citing the reference directly.) Except for minor notational differences the 

governing equations are identical. Furthermore, the harmonic coefficients 

m m 
(in  - zonal . ; S

n
, C

n 
- sectorial when m = n and tesseral when m < n) 

. assumed in each model are numerically identical to seven significant digits 

for m n = (1, 2, 3, 4). Whi1e.higher harmonics are permitted in the GTDS 

software ODPAC is limited to the harmonics cited above, the values of which 

can be- found in [McPherson and Copeck, 1980]. It is necessary, therefore, 

to restrict numerical comparison of GTDS and ODPAC results to thèse in which 

3 
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n 4 .  GTDS also includes 'indirect oblation' effects absent in ODPAC.; 

however, these are of secondary importance for the present . study. 	- 

2.2 Atmospheric Drag  

The ODPAC (pp. 3-12, 3-16) and GTDS (pp. 4-22, 4-60) atmospheric drag 

models use the same defining relation to compute the deceleration of a 

spherical satellite moving through the atmosphere. However,-ODPAC uses a 

simpler model  for the atmosphere than that adopted in GTDS. (GTDS offers 

two different atmospheric density models, the - Modified Harris-Priester 

model and an analytical formulation of the Jacchia 1971 model.) This 

difference in atmospheric modeling implies that direct numerical comparison 

of the states generated by ODPAC and GTDS, when atmospheric drag is present, 

will reflect differences not only from the estimation technique employed • 

but also from .the different atmospheric density, profiles assumed in each 

.program. Happily,.for geostationary satellites, atmospheric drag can be 

neglected, thus avoiding this problem for the present study. . 

It is noteworthy that GTDS also has the capability to treat the drag 

coefficient and errors in the atmospheric density as extra state variables, 

to which.differential correction can be applied. Furthermore, GTDS can 

consider cylindrical satellites (with or without solar panels oriented at 

arbitrary angles to the axis of the cylinder) in drag calculations.: 

2.3 Solar and Lunar Gravity  

•The gravitational attractions of the sun and the moon (assumed to be 

point masses) and the subsequent accelerations experienced by the satellite 

are modeled identically (again, except for minor notational differences) in 

ODPAC (pp. 3-17) and GTDS (pp. 4-4, 4-8). Furthermore, the gravitational 



Constant Variable 	ODPAC Value 	GTDS Value 

Gravitational Constant 
(km 3 /sec 2 ) 

- Earth 	 p 	3.9860080 15* 	3.9860080
1.5 

- Sun 	 Ps 	1,3271545 11 	1.3271545 11  

- Moon 	 pm  . 	. 4.902778 3 	4.902778 3  

Astronomical Unit (km) 	' 	AU 	1.496 8 	1.4959789 8  

, 
Solar Constant (N/m2) 	P 	4.5-8  

Earth 

- Semi-Major Axis (km) 	ae 	6.37814 3 	6.37814 3  

- Angular Velocity 
(deg/sec) 	 we 	4.178074623 -3 	4.170746-3  

*AlS 	Ax1 015 .  

2 a 
a = v KP [ — 1s  

r 
(2.1) 

constants assumed for the sun and the moon are the-saMe in both routines 

(see Table 1). 

Table 1 

Comparison of Constants 

2.4 Solar Radiation Pressure  

The form of the solar radiation perturbation model adopted in both 

ODPAC (pp. 3-18) and GTDS (pp. 4-60, 4-65) is 

where a is the acceleration of •the spacecraft caused by solar pressure, 

v is the eclipse factor (v = 0 if the spacecraft is in an eclipse region, 

v = 1 otherwise), K is the solar radiation pressure coefficient, P is the 

5 



1 

1 is the mean Earth-sun distance (1 AU) solar constant (4.5 x 10-6N/m 2
), 

1 

1 

1 

1 

a 

1 

1 

1 

1 

1 

1 

• 1 

1 

and 	(=r /r ) is a unit vector in the direction of the incident radiation. 4s 	s 

In ODPAC is. is assumed to be the vector from the sun to the Earth, while in 

GTDS Î. is taken to be the vector from the sun to the spacecraft. Hence, 

in ODPAC parallax is neglected. Also, the numerical value assigned to 1 AU 

is slightly different in the two routines (see Table 1). Furthermore, the 

definition of what constitutes eclipse is different in each program. GTDS 

assumes a cylindrical shadow model, with y = 0 whenever the spacecraft is 

within this shadow. ODPAC assumes a more complicated shadow model (con-

taining both penumbral and umbral eclipse regions), with  v  = 0 whenever the 

light intensity is 5 50%. 

The solar radiation pressure coefficient K obeys the relation 

K = Cr (A/m) 	 (2.2) 

where C
r 

is the coefficient of reflectivity (0 5 C
r 

2), A is the exposed 

area of the spacecraft and m is the spacecraft's mass. In ODPAC, K must 

be specified, while in GTDS, given A and m, C
r c

an be treated as an extra 

state variable, to which differential correction can be applied. 

2.5 Precession and Nutation of Earth's Polar Axis  

To define the true equator relative to inertial space one must correct 

for the precession and nutation of the Earth's polar axis. Correction for 

precession alone yields the-mean equator relative to inertial space, while 

a subsequent correction for nutation produces the true equator. ODPAC and 

GTDS use identical transformations from the mean equator and mean equinox 

to the true equator and true equinox reference frames. The precession of 



the ecliptic plane relative to inertial space is neglected in .COPAC  but  

corrected- for in  GTDS. Furthermore, ODPAC neglects the fact that the polar 

axis (the normal to the true equator) does not exactly coincide with the 

spin axis of the Earth. This affects the transformation  from the true 

equator and true equinox frame to the Earth-fixed reference frame. As ' 

noted in [Browne and-McPherson, 1978], the first effect corresponds to less 

than SO arc seconds per century, while the second effect is leSs than 2 arc 

seconds. (The spin axis in fact 'wanders' over a distance of approximately . 

30m at the Earth's surface.) 

•2.6 Evaluation of the Differences in the Perturbation Models  

As highlighted in the previous sections, the perturbation models 

adopted in ODPAC, for the most part, are very similar to those used in 

GTDS. For the purposes, of the present study, atmospheric drag can be 

neglected, hence the perturbation model which is most dissimilar is not of 

concern here. To assess the iffiportance of the other differences an ephemeris . 

run was conducted using ODPAC and compared to an existing GTDS ephemeris run 

for the Communications Technology Satellite (A  = 1.9797x10 -5/km 2 , m = 332.8 

kg). Assuming the same initial state as that used in the GTDS run, and 

including the following sources of orbital perturbations, 

(1) Gravitational Harmonics (n 5 4, all m 5 4) 

(2)No Atmospheric Drag 

'(3) Solar Gravity 

• (4) Lunar Gravity 

(5) Solar Radiation Pressure (K = 4.7736107x10 -8  km2/kg 

- based on GTDS data) 

the position and velocity errors obtained using ODPAC are as shown in Fig. 1 

7 



o 

o 

Initial [VI 3.072162075 km/sec 

1 	1  

I o  QC 
Cr 

.C5  

L--1  

u) 

10-4 

10-5  

10-6 

Epoch 	July 4, 1979 12 hr 0 min 0 sec 

Final Date: July 7, 1979 12 hr 0 min 0 sec 
Duration , 	3 Days 	12 hr 0 min 0 sec 

Initial Ittj :4221141667 km 

10 -3 	  

0 	12 	24 

TIME (hr) 

36 48 60 72 

24 	36 	48 	60 	72 

TIME (hr) 

FIGURE I. ODPAC SIMULATOR ERRORS. 
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(i.e., the GTDS run was assumed to be correct). A correction was also 	• 

applied during the ephemeris run to account for the precession and nutation 

of the Earth's polar axis. 

Both the position and velocity errors initially increase rapidly; however, 

near the end of the run these errors change more slowly. The position error 

remains less than 1 km, or 2.4x10 -3 % of the initial orbital radius, while 

the velocity error remains less than 10 -4  km/sec, or 3.3x10 -3 % of the initial 

velocity. These errors may appear small; however, they must be considered 

within the context of this study. The intent is to ascertain why a Kalman 

estimator (ODPAC) performs poorly relative to a least-squares estimator 

(GTDS) when the orbit of a geostationary satellite is being predicted. The 

least-squares estimator begins with an a priori estimate (at epoch) and 

applies differential correction using observations in a 'batch mode to 

obtain the true state at epoch. The orbit can then be predicted forward 

to some desired time. A Kalman estimator begins with an estimated state 

(the least-square a priori estimate) and an error covariance matrix (based 

on the difference between the a priori estimated state and the true state 

at epoch — here obtained directly from GTDS data). This estimator then 

proceeds forward in time processing observations in a sequential mode. To 

compare the two estimators it is necessary to choose some time t1 > to 

(time at epoch) and obtain the state as predicted forward in time using the 

true state at epoch from the least-squares estimator. This then becomes 

the true state to which the Kalman estimator must converge over the period 

(t 1  - t o ). Therefore, ideally, the simulated true state to which the Kalman 

estimator is attempting to converge is that given by the GTDS ephemeric run 

(t 1  is just some time during this run). Unfortunately, ODPAC does not have 

a facility for reading the simulated true state from an external file, 

9 
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I .  

hence it must produce its own simulated 'true state' trajectory. Figure 1 

suggests that the longer one simulates the orbit using ODPAC the poorer 

its simulated true.state becomes in comparison with the GTDS simulated 

true state. That is, direct numerical comparison is not truly possible. 

In fact, after approximately three days the ODPAC-simulated true state 

deviates from that given by GTDS by the same order of magnitude as the 

a Priori estimated and true state at epoch. Consequently. the best that 

can be achieved without drastically modifying ODPAC is to accept its 

simulated orbit as the 'true state' trajectory. One commences the simula-

tion with the true state at epoch determined using GTDS. and sets the 

estimated state equal to the a priori estimate from GTDS. One then tries 

•to minimize the difference between the estimated and true state. Provided 

this process yields an acceptable minimum, it can be argued that had the 

'true' true state trajectory been available the Kalman estimator would 

reproduce the GTDS results. Of course, there still remains the issue of 

real versus simulated observations. This is the subject of the next chapter. 

One final comment with regard to Fig. 1 is appropriate. ODPAC and GTDS 

use different numerical integration schemes. ODPAC performs Cowell's 

method using a fourth-order Runge-Kutta integrator, while GTDS performs 

the saine  method using a twelfth-order Adams predictor (partially corrected) 

integrator. Thus some of the position and velocity errors in Fig. I may 

be caused by differences in these numerical integration schemes rather than 

by differences in the perturbation models. GTDS does offer other integration 

methods and numerical integrators; however, they are not more similar to 

those used in ODPAC than the combination cited above. Again, to achieve 

a completely consistent numerical comparison, either ODPAC or GTDS would 

have to be modified. 

10 



3. COMPARISON OF OBSERVATIONS  

In an attempt to keep the numerical comparison between ODPAC and GTDS as 

meaningful as possible it is desirable to replicate the observations used 

by GTDS in ODPAC. To ensure this the same site locations must be used. 

Furthermore, not only must the type of observations and their numerical 

values be the same, but the scheduling and frequency of the observations 

must be reproduced. The numerical values for the observations  can be either 

numerically simulated by ODPAC or supplied directly in the form of real 

observations through an external disk file. The first method is more 

conducive to a research effort where isolating the causes for differences 

between the numerical performance of ODPAC and GTDS is the goal, as is the 

case here. It permits a greater degree of flexibility, unlike the second 

method which, apart from supplying more realism, restricts the number of 

parameters which can be varied. Also, initially simulating the observations 

does not preclude confirming the Kalman estimator's performance later with 

real observations. For these reasons the first alternative is chosen; 

however, in what follows a comparison of the simulated and real observations 

is alsd supplied to confirm the acceptability of the observations used in 

this study. 

3.1 Chosen Case Study  

In the previous chapter the results from a GTDS ephemeris run for the 

Communications Technology Satellite were compared with those from what was 

essentially an equivalent ODPAC ephemeris run. Here, we use the GTDS least-

squares estimation run which provided the initial true state for the ephemeris 

runs as the case chosen for study: reference number DC/0UT790705, 292357A 

dated July 5, 1979, 17:14 hrs. In fact, the GTDS ephemeris run is appended 

1 1 



Table 2 

I  

0.0 	0.0 Horizon Elevation  (de.)  

to the end of the GTDS estimation run. The site and observation data-Which 

follow are all taken . from, or related to, this particular run. 

3.2 Site Locations  

Two site locations are given in the GTDS estimation run; however, only 

the Ottawa site makes any observations. . The locations of  both sites are 	. 

given in Table 2. It should be - noted that the adopted reference ellipsoid 

is that assumed in the GTDS run and not the default ellipsoid given in ODPAC. 

Site Locations 

Building 46 
Ottawa (OTT) 	(BG46) Name 

Geodetic Latitude (deg. North) 	45.347206944 

East Longitude (deg.) 	284.10969806 

Height Above Reference Ellipsoid (km) 	0.0834506 

45.352763889 

284.09733611 

0.082 

Reference Ellipsoid 
- Semi-Major Axis (km) 	6378.166 	6378.166 

• - Eccentricity 	0.081813333 	0.081813333 

3.3 Observation  Summary  

The allowable observations in ODPAC are azimuth, elevation, range 

and range rate. For the present study only range observations are con- 

sidered. A summary of the important time events governing the observations 

and the frequency of the observations, as inferred from the GTDS estimation 

run, is provided in Table 3. To aid in visualizing the positions of the . 

12 - 



Table 3 

1 

13 

1 

various observation spans (periOds in which observations are taken) within 

the time frame of the GTDS run, a line chart has been included in Fig. 2. 

Table 4 contains a list of the 96 observations  taken during the first and 

second observation spans. 

Observation Summary  

Epoch: 	July 4, 1979 
Observations Start: July 4, 1979 
Observations End: 	July 5, 1979 

, . 	1 
Observation Commence* 	Halt 	Number of 	Observation 	- 1 

Span No. 	Observations  Observations Duration Observations Interval 	I 

1 	5180 

2 	8900 

	

1 II 	3  14470 

4 	21610 

5 	28810 

6 	36010 

7 	43810 

	

•

g 	8 	 51790 

37600 

1: 	65410 

11 	71970 

12 	77020 

	

I/ 	
13 	77300 

14 	82820  

	

5650 	470 	48 	10 . 

	

9370 	470 	48 	10 

	

14940 	470 	48 	10 

	

22080 	470 	48 	10 

	

29280 	470 	48 	10 

	

36480 	470 	48 	10 

	

44280 	470 	48 	10 

	

32260 	470 	48 	10 

	

58070 	. 	470 	48 	10 

	

65880 	470 	48 	10 

	

72440 	470 	48 	10 

	

77250 	230 	24 	10 

	

77770 	470 	48 	10 

	

83290 	470 	48 	10 

*Time from Epoch in seconds. 



13:26:20-13:34:10 

Span 1 

14:28:20-14:36:10 

Span 2 

16:01:10-16:08:60 

16:00:00 
Span 3 

July 4 
Beginning of 
Estimation 
Internal 

12:00:00 17:00:00 13:00:00 15:00:00 14:00:00 

18:00:10-18:07:60 20:00:10-20:07:60 
U2 

17:00:00 18:00:00 
Span 4 

19:00:00 20:00:00 
Span 5 

21:00:00 22:00:00 

22:00:10-22:07:60 

02:00:00 23:00:00 01:00:00 22:00:00 
Span 6 

July 5 
00:10:10-00:17:60 

—+-- 
00:00:00 

Span 7 

02:23:10-02:30:60 

03:00:00 
Span 8 

03:59:60-04:07:50 06:10:18-06:17:60 

08:00:00 
Span 11 

09:00:00 
Span 12 

Span 13 

10:00:00 11:00:00 
Span 14 

11111 MI 	11111 IMO 111111 	111111 11111 as am as as es es as MO UM 

03:00:00 

07:59:30-08:07:20 

04:00:00 
Span 9 

05:00:00 06:00:00 
Span 10 

End of Estimation-Internal 
11:00:20-11:08:10  

07:00:00 	08:00:00 
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Span 1 Span 2 

Observation 
NuMber 

Observation 
Number 

Actual 	Simulated 
Range 	Range 

(+ 39255 km) 

Actual 	Simulated 
Range 	Range 

(+ 39269 km) 

Table 4 

Comparison of Actual and Simulated Observations  

1 	0.5752 	0.6291 	1 	1.3034 	1.3516 
2 	0.5512 	0.5941 	2 	1.2569 	1.3016 
3 	0.5258 	0.5684 	3 	1.2090 	1.2467 
4 	0.5018 	0.5538 	4 	1.1595 	1.2009 
5 	0.4793 	0.5235 	5 	1.1160 	1.1650 
6 	0.4523 	0.5167 	6 	1.0681 	1.1057 

	

7 	0.4283 	0.4738 	7 	1.0216 	1.0700 

	

8 	0.4013 	0.4375 	8 	0.9751 	1.0168 

	

9 	0.3774 	0.4209 	9 	0.9272 	0.9599 

	

10 	0.3534 	0.4151 	10 	0.8807 	0.9321 

	

11 	0.3264 	0.3600 	11 	0.8312 	0.8668 

	

12 	0.3024 	0.3513 	12 	0.7848 	0.8451 

13 	0.2799 	0.3390 	13 	0.7398 	0.7757 
14 	0.2544 	0.2872 	14 	0.6918 	0.7380 
15 	0.2305 	0.2729 	15 	0.6439 	0.6906 
16 	0.2035 	0.2352 	16 	0.5974 	0.6300 
17 	0.1780 	0.2271 	17 	0.5494 	0.5908 
18 	0.1540 	0.1979 	18 	0.5000 	0.5486 

19 	0.1270 	0.1784 	19 	0.4550 	0.5091 
20 	0.1015 	0.1377 	20 	0.4085 	0.4504 
21 	0.0746 	0.1288 	21 	0.3606 	0.4083 
22 	0.0506 	0.0883 	22 	0.3126 	0.3558 
23 	0.0251 	0.0739 	23 	0.2631 	0.3263 
24 	-0.0004 	0.0614 	24 	0.2152 	0.2718 

25 	-0.0259 	0.0164 	25 	0.1687 	0.1946 
26 	-0.0513 	-0.0037 	26 	0.1207 	0.1621 
27 	-0.0768 	-0.0478 	27 	0.0728 	0.1196 
28 	-0.1023 	-0.0632 	' 	28 	0.0248 	0.0692 
29 	-0.1292 	-0.0795 	29 	-0.0262 	0.0269 
30 	-0.1548 	-0.0970 	30 	-0.0711 	-0.0210 

31 	-0.1818 	-0.1381 	31 	-0.1191 	-0.0721 
32 	-0.2087 . -0.1507 	32 	-0:1671 	-0.1145 
33 	-0.2357 	-0.1901 	33 	-0.2150 	-0.1782 
34 	-0.2612 	-0.2191 	34 	-0.2645 	-0.2165 
35 	-0.2897 	-0.2372 	35 	-0.3110 	-0.2746 
36 	-0.3152 	-0.2501 	36 	-0.3619 	-0.3189 

Continued... 
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Table 4 - Continued 

Comparison of Actual and Simulated Observations  

	

Actual 	Simulated 
Range 	Range 

(+ 39269 km)  

37 	-0.3391 	-0.2967 
38 	-0.3661 	-0.3111 
39 	-0.3931 	-0.3367 
40 	-0.4216 	-0.3743 
41 	-0.4471 	-0.4091 
42 	-0.4726 	-0.4265 

43 	-0.5010 	-0.4549 
44 	-0.5295 	-0.4778 
45 	-0.5550 	-0.5015 
46 	-0.5820 	-0.5414 
47 	-0.6105 	-0.5636 
48 	-0.6359 	-0.5869 

Observation 	Actual 	Simulated 
Number ' 	Range 	Range 

•
(+ 39255 km)  

37 	-0.4099 	-0.3626 
38 	-0.4594 	-0.4170 
39 	-0.5058 	-0.4606 
40 	-0.5553 	-0.5215 
41 	-0.6048 	-0.5586 ' 
42 	-0.6557 	-0.6057 

43 	-0.7007 	-0.6619 
44 	-0.7502 	-0.7028 
45 	-0.7996 	-0.7503 
46 	-0.8491 	-0.8088 
47 	-0.8986 	-0.8482 
48 	-0.9465 	-0.9001 

Observation 
Number 

3.4 Comparison of Actual and Simulated Observations 

. As previously stated, in this study sihulated rather than actual observa- 
. 

tions are used. The simulated observables are created by adding random 	• 

Gaussian noise to the 'true' observables determined using the true-state from 

the ODPAC orbit simulator and the site coordinates. ThiS noise can be 

adjusted by specifying the random seed (MRS) used to generate the noise and 

the standard deviation of the noise distribution (vINE). Letting MRS.= 1019 

and MNE = 7.62x10
-3
km the simulated.  range observations obtained for the first 

two observation spans are as shown in Table 4. MRS was chosen by trial and 

error, while MNE was taken from [Brogan and Lemay, 1968]. While at first 

inspection the agreement between the actual and simulated range observations 

may not appear to be exceptional, a linear regression analysis yields a line 
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for the first (second) observation span, relating the simulated range to 

the actual range, with a slope of 1.0028 (0.9981) and a b-intercept of 

0.0450 km (0.0425 km). Hence, except for a positive bias of less than 46 

meters the simulated observations emulate the true observations very well. 

This conclusion is further supported by the correlation coefficients obtained 

during the linear regression analysis: 0.9994 for the ranges in observation 

span 1 and 0.9998 for the ranges in observation span 2. Finally, the mean 

and standard deviations (in km) for the actual and simulated ranges  for-

observation span 1 are (39268.9806, 0.3609) and (30269.0255, 0.3621), 

respectively. For observation span 2, the corresponding values are (39255.1880, 

0.6705) and (39255.2302, 0.6694). 

The non-zero bias in the simulated range measurements is not unexpected 

given the errors cited in Fig. 1. To reach the end of observation span 2 

ODPAC must simulate the orbit for over 2-1/2 hours. It is known from Fig. 1 

that in this period of time, the spacecraft orbital radius vector predicted 

by ODPAC is rb 40 km in error compared to the accepted radius vector . from the 

GTDS orbit simulator. It is not surprising, therefore, that the simulated 

observations based on the true state from ODPAC should have a bias of the 

same approximate magnitude. 

4. THEORETICAL CONSIDERATIONS  

The equations governing the extended Kalman filter are summarized in what 

follows, insofar as to highlight the quantities which can be varied to control 

the performance of the filter. Whenever possible, special forms for the 

various matrices, as related to the present problem of estimating a geostationary 

orbit using only range observations, are cited. In this regard the work of 
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[Brogan and Lemay, 1968] is most useful. 

As stated in [Chodas, 1981], the Kalman filter equations can be divided 

into two sets.' The first set is used to update the estimate and error 

covariance from time tk 
to t 	• 

k+1.' 

t
k+1 

2(k+11k) = 2(k1k) + 	f[(t, tk), t]dt (4.1) 

t
k 

P(k+11k) = 0(k+1, k)P (k1k) (k+1, k) + Q(k+1) 	(4.2) 

Here, X(k1j), P(k1j) and ,1)(klj) are the state estimate, the error covariance 

matrix and the state transition matrix at time t k 
given measurements to t.. 

Q(k) is the state noise matrix at t . The second set of equations improves 

the estimated state and error covariance matrix, given an observation at 

time t 	• 
k+1' 

K(k+1) = P(k+11k)HT (k+1)[H(k+1)P(k+11k)HT (k+1) + R(k+1)] -1  

k'(k+11k+1) = 5(k+11k) + K(k+1)[zkil  - h(x(k+11k): tk+1)] 

P(k+11k+1) = [I - K(k+1)H(k+1)1P(k+11k)[I - K(k+1)H(k+1)] T  

+ K(k+1)R(k+1)K
T
(k+1) 

(4:3) 

(4.4) 

(4.5) 

The Kalman gain matrix, the measurement matrix, the measurement noise matrix and 

the measurement vector at time t k 
are denoted by K(k), H(k), R(k) and z 

—k' 

respectively. To initialize the filter an a priori state estimate 5_1('.0.  and 
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(4.7) 
dx 

= f[x(t), t] 
dt 

ZI  (4.8) 

(4.9) x = [x, y, z, v
x
, vy' 

vz ] 

19 

its error covariance P
o

, 

Po =E{ 	x 
T}  —o —o 

must be known. The notation E{ } denotes expectation. Also, the initial 

state noise matrix Q and the initial measurement noise matrix Ro  must be 

specified. It is these three matrices which may most easily be varied to 

control the filter's performance. 

.4.1 The State Function and State Transition Matrix  

The state function f forms the right-hand side of the state equation 

, and describes the dynamics of the system: 

(4.6) 

1 
For a spacecraft orbiting a primary body under the influence of various 

perturbing accelerations, f takes on the form [Chodas, 1981] 

- 
V.., 	.,-, P 	P 	a 	_ __ „,,,,. f = [n,r , v , v , 	3 	x, - --- - y- y , 	3  

— 	xyz - 
	x-a 
r 	r 	r 

when expressed in inertial coordinates. The state, In these same coordinates, 

is 

The first three elements of (4.9) are the components of the orbital radius 

vector r, while the second three elements are the components of the spacecraft's 



1 
1 

(4.10) a = [a , a , a ]
T 

x y z 

1 
1 
1 
1 

1 Df 
F 	• 

Dx
T  
x=x 

(4-.13) 

1 
1 

velocity vector 3>r_. They play a.key role in the State function f, as do - the 

-perturbing accelerations a, the components of which are given by 

in inertial coordinates. The variable p is the gravitational parameter of 

the primary body 

p = GM 	 (4.11) 

where G is the universal gravitational constant and M is the mass of the 

attracting primary. Inertial coordinates are chosen here for ease of com-

parison with the GTDS run results. (For the chosen GTDS run, the equations 

are integrated in inertial coordinates.) Other representations are possible, 

however, and the interested reader is referred to [Chodas, 1981]. 

The state transition matrix ,1)(tk+1' 
t
k

) used in ODPAC is approximated 

by the matrix exponential: 

Fit  
«t

1(41' 
t
k
) = e 

where 

(4.12) 

and At = t
k+1 

- t
k. 

For the purpose of computing F, the perturbing accel- 

erations a are neglected in (4.8). The result is 

(4.14) F=  

2 r  r 	0 
r 

0 

1 
20 
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Equation (4.13) is based on a linearization of (4.8) about some. reference 

.state x = x. In general, this reference state is taken to be the current 

best estimate of the true state. For the present problem, that of a space-

craft in 'geostationary' orbit, the most appropriate reference state is an 

ideal geostationary orbit. [In reality, disturbing forces (modeled by a) 

force the satellite from the ideal, hence the quotation marks.] A closed-form 

transition matrix based on this realization is derived in Appendix A [Brogan 

and Lemay, 1968]. While the state transition matrix used in ODPAC does not 

have this form by design, it should still approximate the matrix given in 

Appendix A, provided the reference about which (4.8) is linearized is a 

geostationary orbit. As stated above this is not, in fact, the case. However, 

the state transition matrix from ODPAC was verified numerically to have a 

form very similar to that given in Appendix A. In particular, elements of 

0 which should have been zero were typically at least an order of magnitude 

less than elements which were expected to be nonzero. It is not clear at this 

juncture whether modifying ODPAC to use the closed-form state transition 

matrix to predict very nearly geostationary orbits would improve the filter's 

performance. In any case, such a modification to the program was considered 

beyond the scope of the present study and not attempted. 

4.2 The Measurement Function and Measurement Matrix  

The measurement function h depends on the type of measurements to be 

made, the coordinates of the observing sites, the model assumed  for the  Earth 

and the equations required to compute predicted observations from the 

position and velocity coordinates of the satellite. The permitted elements 

for the measurement vector z, 



(4.16) 
-- 

X=X 

(4.18) P 	P 
Y z 

z = h[x(t), t] 	 (4.15) 

with regard to ODPAC, are azimuth, elevation, range and range rate. Here, 

we are interested only in range; however, the form of h is still relatively 

complicated, even for this measurement. For details, the interested reader 

is referred to Chapter 5 of [Chodas, 1981 1 . 

In a manner analogous to the linearization of the state function, the 

measurement matrix H is obtained by linearizing h about some reference state 

x = x. The result is 

Dh 
H = T 

x 

Again, the chosen reference state is the best current estimate of the true 

state. When only range measurements are considered H has the simple form 

[ 1 T 
H = — p , 0, 0, 0] (4.17) 

where the range p, expressed in inertial coordinates, is 

As a point of clarification, h[x(k+1 Ik) ,  tk+1] in (4.4) computes the predicted _ _ 

measurements, while the elements of 
zlç.+1 

are actual measurements, or, as is 

the case here, simulated measurements. 

4.3 The State Noise and Measurement Noise Matrices  

.Normally the choice of state noise and measurement noise matrices falls. 
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R(k) = a
2 

(4.19) 

into the realm'of a knowledgeable guess or a trial-and-ertor search to find 

acceptable performance. For the present problem, where only range is observed, 

the measurement noise matrix has only one *scalar entry,  the  variance in the 

range anticipated because of noisy measurements: 

However, the value to assign to a is still in question. A number of values 

have been suggested in the literature, but a value of an  = 25 ft (7.62X.10 -3  km). 

is typical. 

For a geostationary reference orbit, considerable . progress can be made 

in predicting the portion of Q(k) attributed to neglecting a in computing 

the state transition matrix [recall (4.12)]. Again, the work of [Brogan 

and Lemay, 1968] is of interest. Appendix B highlights their derivation 

and culminates in the analytical prediction of Q(k) based on unmodeled 

accelerations. Conceivably, Q(k) can also have a component based solely on 

random noise. While this is a useful area for future study, for the present, 

the performance of the ODPAC Kalman filter will be assessed using the Q(k) 

matrix given in Appendix B alone. This matrix is a function of the time 

interval At, the angular velocity of an ideal geostationary orbit w and 

the variance in the unmodeled accelerations aa
2

. As for the range variance, 

-1 

a typical value of aa 
= 10

-7
g (9.80650x10

0 
 kiesec

2
) is adopted; based on 

the literature. Care must be exercised when using the Brogan Q matrix 

to recompute and enter a new Q each time the state update interval At is 

• 'changed. 

From the viewpoint of filter performance, once the state update schedule 

has been specified, thé quantities which can be varied to improve performance 

are a and aa
. 
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4.4 The Error Covariance Matrix  

As stated earlier, the error covariance matrix corresponding to the 

initial estimated state must be specified to initialize the Kalman filter 

(4.6). Unfortunately, the variances and covariances of the individual com-

ponents of the estimated state are not known in advance. As a consequence, 

once again the best that can be done is to estimate  P. For equations inte-

grated in inertial coordinates, what is typically done is to predict the 

position error DR and velocity error DV of the initial estimated state. 

P
o 

is then chosen to be diagonal with DR 2  forming the first three elements 

along the diagonal and DV2  forming the remaining three. In practice, the 

problem is to determine DR and DV: 

DR = [(x-2 ) 2 	(Y4r) 2 	(z-2) 2 i 2 	• 	. 	(4- 20) 

DV = [(v 	) 2  
x x 	Y Y 	z z 

(4.21) 

We know the true state (x, y, z, vv v ) from the GTDS results', as well 
x' y' z 

as the initial estimated state (5e, 9, 2, 	, 	' 	
). Hence DR and DV are• x 	y 	z 

known exactly for our-purposes. However, to add some of the.uncertainty 

present in a real system.  the exact values are not used, but rather DR2  and 

DV 2  are rounded to the nearest km2  and (km/sec) 2 . The adopted values, based 

-8 
on the chose n GTDS run.(Section 3.1), are DR2  = 13 km 2  and DV 2  = 6><10 

(km/sec) 2 . 

The freedom to choose DR and DV initially,• even though the 'true' values 

are known, provides yet.another parameter which can be . varied to affect the • 

filter's performance, at least in the initial stages of the estimation. Also, 

the technique of diagonalizing P at the end of thefirst estimation  step 
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1 
1 
1 
1 

1 
1 

1 
1 

1 

1 
1 

1 

during which observations were processed [Browne and McPherson, 1978(2)] 

can be employed to affect filter performance. ODPAC [McPherson and Copeck, 

1980] accomplishes this by - use of a scalar variable NDPK. Let the update. 

interval be At and current estimation time be T, then for NDPK.At 5= T 

the off-diagonal elements of P are set to zero, while for NDPK•At > T 

P remains.unchanged. To accomplish.the desired diagonalizatioh at time Ti 

(the T value at which the first observation is processed) one must set 

NDPK.= T 1  immediately after time T 1 -At 	just before the next update 

step to T1). ODPAC's interactive mode facilitates this by use of an ENT 

command immediately after a RUN command to T 1 -At and prior to -a RUN command 

to T1. 

5. NUMERICAL STUDIES  

The performance of the Kalman filter is first established for an orbit . 

that has an initial true state which, in the absence of perturbative accel-

erations, describes an ideal geostationary orbit. The filter's performance 

is then tested using the initial true state from the chosen GTDS run, which 

does not define an ideal geostationary orbit. In - all these studies the 

state noise matrix is assumed to have the form given in Appendix B. Further-

more, the initial error covariance matrix Po 
is always diagonal. The state 

transition matrix is unchanged from that assumed in ODPAC. 

5.1 Run Schedule and Baseline Values  

To make comparison between the various numerical studies more meaningful 

a standard' run schedule was adopted for all the runs.* This schedule was 

designed to incorporate the period of time containing the first two 
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observation spans from the GTDS run. While it was felt that the filter's 

tendency to converge or diverge could adequately be assessed based on this 

four-hour period, this choice was dictated more by the sim-file limitations 

within ODPAC. These files store a simulated true-state run rather than 

re-generating it each time. Even after optimizing the space by choosing 

non-uniform update times At, a run duration of only a little better than four 

hours could be achieved. Initially, the time required to interact with ODPAC 

was also prohibitive because each time At was changed Q (6x6) also had to be 

modified and re-entered. This problem was later averted by running ODPAC 

in a batch mode with an input file equivalent to all the interactive commands 

necessary during an on-line run. In retrospect, the batch mode offers a 

convenient way to ektend the four-hour run duration by, in fact, re-generating 

the true state trajectory each time. This was not attempted in the inter-

active mode where the problem of recomputing and re-entering Q five times per 

run consumed enough time, so that longer runs were totally impractical. 

Table 5 contains the chosen run schedule and highlights the important events. 

Baseline values for Po
, R and Q were given in Chapter 4; however, for 

ease of referral they have been collected and summarized in Table 6. The 

Initial error covariance and measurement noise matrices are input only once 

at the beginning of each run, while the state noise matrix must be re-entered 

each time At changes. As a consequence, there are, in fact, four baseline 

state noise matrices, one for each different update interval in Table 5. 

These matrices must be computed externally from ODPAC, but need be computed 

only once. Finally, ODPAC actually requires Q' (see Table 6) and not Q, as 

the state noise matrix is multiplied by At within the program. 
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Table 5 

Run Schedule  

Time 	Update Interval 
(sec) 	(sec) 	 Events 

0 	 - corresponds to T0.44,058.5, the Epoch 

517 	date from the GTDS run 
- input true and estimated state 
- input Po , R, Q' (see Appendix $) 

- step prior to first observation; when 
diagonalizing P, NDPK . 518 entered 
immediately after this time 

- input a new Q' because At changes 

- first observation span encountered; 
10 	update interval chosen to match actual 

GTDS observations 

5650 	 - first observation span terminated 
10' 

5660 	 - for plotting purposes compute state 
at first point after observation span 

323 	- input a new Q' because At changes 

8890 	 - second observation span encountered; 
again, update interval chosen to match . 	a9 GTDS observations 

- input a new Q' because At changes 

9370 	 - second observation span terminated 
10 

9380 	 - for plotting purposes compute state 
at first point after observation span 

509 	- input a new Q' because At changes 

14470 	 - terminate rùn at what would be the 
'beginning of the third observation 
span 

10 
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Table 6 

Baseline Values 

Initial Error Covariance Matrix  

Po = diagIDR
2  DR2  DR2  DV 2  DV 2  DV2 1 
B' 	B' 	B' 	B' 	B' 	B 

DR2  = 13 km 2 ; 	DV2  = 6x10-8  (km/sec) 2  • 

Measurement Noise Matrix 

R = [a 2  ] 
PB 

a 	= 7.62x10 -3  km 
PB 

State Noise Matrix 

Q = Q'At = a2  
aB 

"m 4 /4 	o 	O 	At3/2 
At/4 	0 	wAt4/2 

At/4 	0 
At2 (1+w2At 2 ) 

(sYm)  

-wAt 4/2 
At 3 /2 

0 
0 

At 2 (1A-w 2At 2) 

0 
0 

At 3 /2 
0 
0 

At2 

-1 
a
aB 

= 9.806650x10
o 

 km/sec; 	At = (10,  517, 323, 509) 
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5.2 Filter Performance for an Ideal Geostationary Orbit  

A series of runs was conducted to assess the ability of the ODPAC 

Kalman estimator.to  determine the orbit of a spacecrart which, in the 

absence of external disturbances, would move exactly in a geostationary 

orbit. These runs were also used to assess the importance of selecting 

different perturbations in the orbit (true-state) simulator and the 

orbit estimator. Finally, the effect of diagonalizing P after processing 

the first observation was also studied. A total of eight runs was 

conducted: one set of four in which P was not diagonalized, and a second 

set of four in which it was diagonalized. The baseline values for Po , R 

and Q were assumed in all the runs. To assess the effect of neglecting 

different perturbations in the simulator and the estimator, the extreme 

point of view was taken. Simply, all the perturbations were neglected. 

in either the simulator or the estimator. These two cases formed the 

second and third run in each four-run set. The first run in each set 

included all of the perturbations cited in Chapter 2 in both the simulator 

and the estimator. The fourth run neglected the perturbations in both the 

simulator and the estimator. While this last run may appear somewhat useless 

in that it should reproduce the results of the first run (assuming the 

perturbation models used in both the estimator and the simulator are 

identical--and they are, in fact, analytically) preliminary runs did not 

give this result. It was found by searching through the possible perturb-

ation models that the correction for precession and nutation was not 

correctly implemented in the ODPAC estimator software. This situation 

was corrected by W. B. Graham at the Communications Research Centre so 

that this discrepancy no longer appears on the plots resulting from this 

. study. 
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To ensure the ODPAC simulator produced a true-state trajectory 

that was indeed geostationary a separate ephemeris run was conducted 

without any estimation. The initial true state (TST) was entered to 

17 significant digits to ensure the highest possible accuracy: 

TST= 

42164.182266336229 
0 
0 
0 

3.0746610200852333 
0 

(5.1) 

Based on (5.1) the ODPAC orbit.simulator simulated very accurately a 

geostationary orbit. 

The initial estimated state '(EST) was constructed by adding the 

position and velocity error implied by the true state and estimated 

state - from the GTDS case run to the first and second non-zero entries' 

in (5.1): 

n•n•• 

42167.761761866179 
0 
0 
0 

3.0749065913490372 
0 

(5.2) EST= 

•nnn•• 

This ensures that  usina the baseline Po  is sensible in this case and 

that the initial difference between the true and estimated states is 

consistent for all the numerical studies. The observations used are 

the simulated range measurements from Chapter 3. 

The results from the set of runs in which P was not diagonalized 

are given in Fig. 3, while those  in  which P was diagonalized are sh.own 

in Fig. 4. The appearance of the letter E (S) signifies that the 

estimator (simulator) includes orbital perturbations. Each observation 
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span is . indicated in the figures by two dotted lines Èorming a narrow . 

• vertical column acrosS the plot. The terminal run-time is indicated by 	• 

a single dotted vertical line. 	• 

• The most significant feature about Figs. 3 and 4 is that the filter 

is converging. The best performance (an order. of magnitude better) occurs 

when both the simulator and estimator have identical perturbation models 

(either all or none of the perturbations included). Surprisingly,  the  runs 

in which P is not diagonalized after processing the first observation, for 

the most part, outperform those in which it is diagonalized. Also, it 

appears from the plots that it is more crucial for the simulator to have the 

better perturbation•model because the . filter performs better when only the 

simulator includes perturbations. When only the estimator includes the 

perturbations, the performance degrades. This is to be .expected, Since 

the estimator essentially has a 'poorer' model for what the true state (as 

given by the simulator) will be. The convergence evident in both figures 

is very encouraging and supports the belief that the chosen Po
, R and Q 

matrices might be suitable for an 'almost' geostationary orbit. 	. 

5.3 Filter Performance for an Approximately Geostationary Orbit  

The approximate geostationary orbit chosen is that of the GTDS run 

cited in Section 3.1. The initial true state and estimated state (in 

inertial coordinates) are inferred from that run: 

40845.37213829510 
-10615.73853774204 
-872.8259802956517 
0.7722841035999041 
2.973490590000106 

-0.009800138752845655 
•nnn• 

40844.60517000308 
-10618.58727000253 
-874.8531143380704 
0.7720479004666814 
2.973554475773058 

_70.009779355762572144 

TST= ;  EST= (5.3) 
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DR = 3.5794955300 km; DV = 2.4557126229x10 -4 	(5.4) 

Ideally, the third (z) and sixth (v
z
) elements in the true state vectOr 

should be identically zero for a geostationary orbit. The observations . 

used in this study are the simulated ranges given in Chapter 3. 

Preliminary runs using the baseline values for P o
, R and Q result. 

in a performance much different than that shown in Figs. 3 and 4. The 

filter diverges very marginally in velocity, achieving a value.  of 

-4 
DV = 2.526x10 km/sec at the end of the scheduled run. However, it 

converges very marginally in position to a value of DR = 3.277 km over 

the same period. Furthermore, the filter performs slightly worse than 

when P is not diagonalized after the first observation, giving values of 

DR = 3.297 km and DV = 2.568x10
-4 

km/sec at run termination:. 

•  In an effort to determine if the filter performance could be improved 

by simply varying the filter's parameters (the elements in Po
, R and Q) 

rather than the actual forms of the matrices themselves, an extensive 

parameter study was performed. The elements of R and Q were varied by 

approximately six orders of magnitude (in increments of 10) about their 

baseline values. DR and DV were varied by approximately four orders of 

magnitude about their baseline values (in increments of 100). The varia-

tions in DR and DV may appear rather coarse initially; however, they are 

adequate to establish trends. Furthermore, as is shown in the parameter 

variation summary given in Table 7, this choice generates a reasonably 

large number of runs. The possibility of having zero measurement error, 

zero state error, zero position error or zero velocity error was also 

explored. 
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Table 7 

Parameter Variation Summary  

(for  NDPK = 0 and for NDPK = 518) 

- 
0 	10 	10-2  1 	10

2 	
104  

DLI  

 /sec 	
10

-8 	
10

-4 o 	 1 	10
4 

km 	De".., 

P1 	P2 	P3 	P4 	P5 	P6 

-8 	-16 10 	10 	P7 	P8 	P9 	P10 	Pli 	P12 

-6' 	=12 
10 	10 	P13 	P14 	P15 	P16 	P17 	P18 

i  
10 -4 	10-8 P19 	P20 	P21 	P22 	P23 	P24 

AmiteeigareCralliftefe4 	 /010M91111WaXiefflialln 	  

10 	10 	P25 	P26 	P27 	P28 	P29 	P30 

1 	1 	P31 	P32 	P33 	P34 	P35 	P36 

Run Numbers 

Q and R at 
baseline 
values 

Approximately 
baseline value 

For At = (10, 517, 323, 509) Approximately 
baseline value 

P and R at baseline 
values 

• Initial Error Covariance Matrix 

Measurement Noise Matrix  

a A -7 	-6 	-4 	- 	-1 0 	10 	10 	10- 	10 	10 	10-2 	10 	1 	10 	10
2 	

103  km 	 . 
Run 

R1 	R2 	R3 	R4 	R5 	R6 	R7 	R8 	. R9 	R10 	R11 	R12 
Number 

Approximately 
baseline value 

State Noise Matrix 

-15 	-14 	-13 	-12 	-11 	-101 	-9 	-8 	-7 	-6 	-5 ap 	0 	10 	10 	10 	10 	10 	10_10 	10 	10 	10 	10 
km/sec 2  

Run 
Number 	Qi 	Q2 	Q3 	Q4 	Q5 	Q6 . 
	

Q7 	1 Q8 	Q9 	Q10 	Q11 	Q12 

P and Q at baseline 
values',  
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•  The results of the parameter study conducted on the initial error 

covariance matrix show some interesting trends. Runs P4, P10, P16, 

P19, P20, P21 and P22 show results very similar to the baseline run. , 

Runs (P1, P2, P3), (P7, P8, .159), (P13, P14, P15) and (P19, P20, P21) . all . 

yield results which are also essentially the saine as the baseline run. 

Therefore, choosing [DR 5 DR
B 

and DV 5 DVB ' ] where 
(DRB' 

DV
B
) are the - 

baseline (DR, DV) •alues, will not change the filter performance sub-

stantially from that observed when the baseline Po 
matrix is used. 

These (DR, DV) values correspond to the upper left-hand portion of the 

covariance run summary in Table 7. Figure 5 is typical .of the run-.-- s - 

triplets cited above. The baseline run (square plotting symbols) and 

three other runs (P13, P14, P15) are shown in the figure (round, triangle 

and diamond plotting symbols, respectively). This plotting format, 	. 

showing the baseline plus three other runs, will be maintained for all 

remaining plots. From the figure it is apparent that each of the three 

plotted runs in fact outperforms the baseline run, but only marginally. 

The performance is not at all similar to that observed in Figs. 3 and 4. 

It was also noted that runs (PS, P6), (P11, P12), (P17, P18) and 

(P23, P24), corresponding to [DR > DR
B 

and DV 5 DVB' 
 I were very similar 

in character. Figure 6 is typical of.these runs. Both runs P17 and P18' 

show divergent behaviour, as did all runs in this region. The remaining 

two regions of the covariance run summary shown in Table 7, [DR 5 DR
B 
and 

DV > DV
B

] and [DR > DR
B 

and DV > DR]
' 
 show erratic behaviour, with 

B  

divergence always occurring in either the position or velocity error. 

Figures 7 and 8 (P2 5 , P26, P27 and P28 in the former region, P29 and P30 

in the latter) show typical results for these two regions. 
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Figures 6 through 8 all represent cases in which P was not diagonal-

ized after processing the first observation. When this diagonalization 

is performed no substantial difference is noted in the final position 

and velocity errors for the region {DR 5 DR
B 
and DV 5 DVB}.  However, for 

the other regions the divergence is often more than an order of magnitude 

greater. Also, the error histories, while similar in the respective 

regions cited above, are often quite different from those in which P is 

diagonalized. Regardless, the results of the initial-error-covariance 

parameter study suggest that the filter performance cannot be improved 

substantially by simply varying Po 
through changes in DR and DV. 

As for the covariance matrix parameters, a clear division of the . 

filter performance is observed depending on whether the measurement noise 

deviation a
p 

is above or below the baseline value, a Figure 9 is 
pB .  

typical of the results obtained for a < a 
PB 
 . The most interesting run 

is R6. It initially shows divergent behaviour, yet by the end of the run 

it yields position and velocity errors marginally less than those using 

the baseline parameters. The remaining runs in this region show divergent 

behaviour in either the position or the velocity error. 

For a >the performance of the filter is virtually unchanged apB , 

from that using the baseline value. Figure 10 illustrates this finding. 

Once again, it would appear that varying the measurement noise will not 

greatly enhance the performance of the filter. Also once again, diagonal-

ization of P after processing the first observation actually yields poorer 

results, except for runs R1 and R2 which are unstable (a diagonal element 

of P becomes negative) when P is not diagonalized. 

The results of the previous two parameter studies suggest that the 

baseline values for DR, DV and a, are well chosen. The results from the 
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state noise study suggest, however, that a slightly better choice for 

a
a 
might be a value between 10 -8  and 10 -7  km/sec 2  (corresponding to runs 

Q9 and Q10). Above these values the filter diverges (Fig. 11); below 

these values the filter performance is essentially the same as for the 

baseline
aB 
 value (Fig. 12). In fact, for Ql through Q7, regardless of 

whether or not P is diagonalized after the first observation, the final 

position and velocity errors are the same, to four significant digits, as 

those obtained using the baseline value of a
a

. In the divergent cases a 

nondiagonalized P matrix produces better results. 

Even after recognizing that the baseline value chosen for aa 
is not 

optimal, the improvement that can be expected in the filter performance 

by readjusting a
a 

is not staggering, as witnessed to by Figs. 11 and 12. 

Again, one would not expect to achieve the performance shown in Figs. 3 

and 4 for an ideal geostationary orbit. At this juncture it should be 

mentioned that prior to adopting the form for the state noise matrix 

given in Appendix B a number of trial and error runs were conducted 

assuming a diagonal Q matrix. For some of these runs the values along 

the diagonal fell within the range suggested by Ga  = [10
-8

, 10
-7

1. 

Typically, the filter diverged (the remaining parameters were within the 

tolerances suggested by the above parameter studies). It would appear 

that the choice of the form for the state noise matrix is important, at 

least for geostationary orbits. 

Given that the form for the state noise matrix derived in Appendix B 

is for a reference orbit that is exactly geostationary, whereas in ODPAC 

the reference orbit is based on the current best estimate of the state, 

two approaches suggest themselves for future work. One is to fix the 
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reference orbit to be geostationary in ODPAC when estimating an orbit 

that is approximately geostationary. This would also have the effect 

of fixing the form of the state transition matrix -(5 (see Appendix A). 

The other is to attempt to derive an analytical expression for Q based 

on a reference orbit that is only approximately geostationary. Figures 

3 and 4 suggest this may be a reasonable approach. 

Finally, as described in Appendix B, the chosen form for Q includes 

only the state noise resulting from the practice of neglecting perturbing 

accelerations when the state transition matrix is formulated. It may be 

possible to improve performance by retaining the present form for Q, and 

arbitrarily introducing extra terms along the diagonal to model random 

noise. This method may not appear to hold much promise given the problems 

encountered with a purely diagonal Q; however, the off-diagonal Q-terms 

may counter this effect. It should also be mentioned that GTDS does, in 

fact, include the partial derivatives of the perturbing accelerations 

relative to the state in the variational equations. This is equivalent to 

retaining the perturbing accelerations•when computing the state transition 

matrix. While normally this does not appear to cause a problem, we note 

that here, when a conscious effort is made to re-introduce these unmodeled 

accelerations through Q, the Kalman filter performance can be made to be 

neutrally stable rather than divergent. It is possible that some property 

•  of a geostationary orbit makes significant the perturbative accelerations 

when finding the state transition matrix. For the present, this is 

speculation until supported by factual results. 
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6. CONCLUDING REMARKS  

An attempt has been made to ascertain the contributing factors in 

the relatively  pool:  performance of the ODPAC Kalman Estimator vis-a-vis 

the GTDS Least-Squares Estimator. It can be argued that the perturbation 

models used in both programs are essentially the same, however, a notice-

able difference still results in the simulated true-state trajectories. 

This could be caused by the small differences in the perturbation models, 

but more likely it is a property of the type and order of the numerical 

integrator used in each case. 

The Kalman estimator has been shown to perform well, using a state 

noise matrix based on a geostationary reference orbit, when the true-state 

trajectory is, indeed, geostationary. For an approximately geostationary 

orbit the filter performance degrades to the point of neutral stability. 

In this regard it performs poorly in comparison to GTDS. Furthermore, 

for the chosen initial error covariance, measurement noise and state noise 

matrices an extensive parameter study has shown that the filter performance 

cannot be improved substantially, in the present application, by simply 

changing the numerical values within these matrices. It appears that 

it may be useful to explore the possibility of deriving an alternate 

analytical form for the state noise matrix based on the assumption of an 

approximate, rather than an exact, geostationary orbit. 
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=  R+  2, 9- 	-4- 	9- 
(A. 1) 

T 
(A.2) w = [0, 
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APPENDIX A 

A CLOSED-FORM TRANSITION MATRIX 
• 

FOR A SATELLITE NOMINALLY IN GEOSTATIONARY ORBIT  

In theory, if a satellite is placed in circular orbit (constant radius 

,R). in the equatorial plane such that the angular velocity is directed along 

1 
the orbit normal with magnitude w = (u/R 3 ) 2 , where  p  is the gravitational 

parameter for the Earth and w/2u is the rotational period of the Earth 

(rb 24 sid. hr .), then the satellite remains stationary relative to the 

Earth, in what is denoted a geostationary orbit. In practice, environmental 

forces cause orbital perturbations, thus no satellite is truly geostationary. 

However, these perturbations are usually small enough so that the actual 

position vector to the spacecraft s_ can be written as the sum of a reference 

position vector R.  and a first-order (compared to e change in position Z: 

As shown in Fig. A-1, R (the radius vector of the geostationary reference 

'orbit) . is aligned with the •x-axis of an orbiting frame F
o

, while 2, locates 

the spacecraft relative to R. Here, the angular velocity of F0  with respect 

•to an inertial frame F
I 

'is deneted w and has the components 

expressed in Fo . As a consequence, Fo  is related to F1  by the rotation 

matrix 
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1 

(A.3) 

cosn -sinn 	0 

CIO = 	
sinn 	cosn 	0 

L 0 	0 	1 1 
1 • 

1 

1 
where 

(A.5) 

(A.6) 

(A.7) 

r = 0 
r 3 

0 
v =r-l-coxr + 

0 
r.=  

-az 	 -a- 

1 

1 

1 

where n, the orbital anomaly of the geostationary reference orbit, obeys 

the relation 

(A.4) 

Now the orbital equation of motion for the spacecraft is 

and perturbing accelerations have been neglected [d( )/dt with respect to 

F
I 

is denoted (*), while d( )/dt with respect to F
o 

is denoted  ( ° )]. This 

assumption echoes that made in determining the transition matrix assumed 

in ODPAC [Chodas, 1981]. Essentially, to update the estimate of the state 

a nonlinear state function including orbital perturbations is used, while 

to update the error covariance matrix a state transition matrix obtained 

neglecting orbital perturbations is applied. 

Equation ( A.5) can be expanded by noting ( A.1), given the components 

of R and p, expressed in F
o

, are 

R = [R, 0, 0
1 T 	 (A.8) 

= [x, y, z]
T (A.9) 
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y 4- 2wx 

L 	wz 

X - . 2wjr - 3w 2x 

(A.10) 

0 

z. R 
1 

[(R + 2,) - 3 
r 3 	

R3 

(A.11) 

.1•••n•n 

Y 

Y 

The result to first order in (2/R), expressed in F
o

, is [Steffan, 1963] 

The approximation 

based on the assumption 

9.  << R 	 (A.12) 

is also required to obtain (A.10). Integration of (A.10) yields 

(4x +2y /w) -(3x 
o
+2y /w)coswt + (x

o
/w)sinwt 

	

o o 		o 
• • 	• 

(y 
o 
 -2x /w) + 2(x

o
/w)coswt + (6x 

o 
 +4y 

 o 
 /w)sinwt - (6x 

o  +3o 
y /w)wt 

o  
• 

z
o
coswt + (z

o
/w)sinwt 

• • 
(3wx +2)r )sinwt + xo

coswt 
o o 

• • 
-(6wx

o
+3y

o
) - 2x

o
sinwt + (6wx +4y )coswt 

o o 

z
o
coswt - wzosinwt 

(A.13) 

• • 	• 
 where [x ,y

o' 
z
'' 	' 
x 	y 	z]

T 
 is the initial state (t =t). Equation 

o 	o o o o 

(A.13) gives the orbital state relative to a geostationary reference orbit 

from t
o 

to t. As a consequence, the state transition matrix from time t k 

 to t
k+1 

(At = t
k+1

-t
k

) is, simply, 
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A.15) 

0 coswAt 

(1/w)sinwAt 	(21w)(1-coswAt) 

(2/w)(coswAt-1) 	(4/w)(sinwAt-3At) 

0' " 0 

cprv (k+1, k) = 

0 

0 -wsinwAt 

15(k+1, k) = 

	

r 0- (k+1
' 
 k) 	0 (k+1

' 
 k) 

	

rr 	... 	TV  

	

 

0 (k+1, k) 	0 (k+1 klj 

	

- vr 	vv 	' - 

A.14) 

where 

(P rr (k+1,1) = 

4-3coswAt 

6(sinwAt-wAt) 

0 

3wsinwAt 

6w(coswAt-1) 

0 

dvr (k+1, k) = (A.17) 

coswAt 	2sinwAt 	0 . 

IrI vv (k+1 ' k)=. 	-2sinwAt 	-3+4coswAt 	0 	. ( A.18) 

0 	0 	coswAt 

In the present study the state is expressed in inertial rather than 

orbital coordinates, hence ( A.14) must be transformed from Fo  to F1  using 

(A.3). The desired state transition matrix is, therefore, 

C
IO

COI 

C
IO  COI 

C 	C 
IO rv OI 

C d C 
IO .vv OI - 

0(k+1, k) = (A.19) 
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where 

C 	= C 
OI 	IO 

(A.20) 

For the sake of brevity (A.19) is not written out in full; however, it is 

interesting to note that, for (i = 1, 2, 4, 5; j = 3, 6) and for fi = 3, 6; 

j'= 1, 2, 4, 5), (D. 	= O. 
. 	lj 
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E{wk• } = 0 
— 

E{wk 	= Qk 

(B.2) 

(B.3) 

Qk = 	Q111( 
(B.4) 

APPENDIX B 

. A STATE NOISE MATRIX  

FOR A SATELLITE NOMINALLY IN GEOSTATIONARY ORBIT' .  

In formulating the state noise matrix used in ODPAC [Chodas, 1981], 

it is assumed that the linearized state obeys the equation 	• 

(B .1) Sx 	= 0(t 	, t )6x.- w 
—1c4-1 	k —e 	—1(1-1 

where Sx
k 

is the state at time tk' 	
is the state transition matrix and w 

—k 

is a sequence of random vectors called the state noise. It is assumed 

that the state noise behaves as white Gaussian noise and obeys the following 

relations for all k and j: 

where E{ } denotes expectation, Qk  is the state noise matrix at time tk  and 

kj 
is the Kronecker delta. Unfortunately, one source of state noise, 

namely, the perturbative environmental accelerations neglected in deriving 

0 (see [Chodas, 1981] and Appendix  A) are  not random, nor, in general, will 

their expected values be zero, as assumed in (B.2). As a consequence, one 

should define a modified state noise matrix 

where Q
n is the state noise matrix in the sense of (B.2) and (B.3) and Q

u 

is the state 'noise from unmodeled accelerations. 
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where 

6; = F(t)Sx + Z(t)6C 

	

Df 	- - 
F(t) = 	T  (x, C,

•

Dx 

Z(t) = 	 (x, — — 

(B.5) 

(B .6) 

(B .7) 

[Brogan and Lemay, 1968] derive an expression for Qu , when the-

reference orbit - about which the state function f(x, c, t) is linearized, . 

is geostationary. Paraphrasing, let c represent all of the parameters 

affecting the original state function and let Sc be the deviation  of  c 

froM the parameters affecting the reference geostationary orbit (in the 

same sense as Sx is related to - x). Then, the linearized state equation 

becomes 

and (x c) .are the reference values for (x 	) 	The solution to (B.5 
— 	 — 

assuming  time  is discretized, 

(B.8) S.x
k+1 

= 0(t
k+1

, t
k
)62(2k 	a q(+1 

where 
t
k+1 

clk+1 = 
	0(tk, 1 , T)z(T)6(T)dT 

t
k 

(B..9) 

In reality, all the c may not be  identifiable and there may even be SC 

components of which the analyst is unaware (the unknown unknowns). In the 

first case, the best one can hope for, if all the perceived Sc cannot be 

identified or modeled, is that their contribution Z(t)Sc(t) to the linear-

ized state equation can at least be determined. In the second case, the 

best one can do is assume a noise term such as mk+1 
in equation (B.1) to 

compensate for totally unknown quantities. 
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dT 

For the present situation, assuming the only parameters not grouped in 

a term such as  k1 
are those which produce the perturbative unmodeled 

accelerations Sa(t), then 

Z(t)St(t) = [0, 0, 0, C I()  Sa(t)] T 	(B.10) 

where the components of Sa(t) are expressed in the orbital frame Fo
, defined 

in Appendix A. Hence, the introduction of the rotation matrix C IO 
which 

relates the frame F
o 

to inertial space F [(A.3) of Appendix A]. Presently, 

(B.9) is assumed to be written in inertial coordinates. This is necessary 

because, of the various coordinate systems available within ODPAC, an 

inertial one provides the most convenient mode for comparison with GTDS 

run results. (The chosen GTDS case integrates in inertial coordinates.) 

. Also, the orbital coordinate system F
o' 

chosen for analytical reasons in 

Appendix A, is not available within ODPAC. Unfortunately, the integrand 

of (B.9) is most easily evaluated for (I) expressed in Fo . The most useful 

form [given (A.19)] is, therefore, 

Sk 	

t
C
IO 

(1) (t 

	

rr k+1' 
T)C

OI 	
C
10rv

(t
k+1' 

T)C
OI 

+1 = 
 

t
k 	

C
10vr

(tk+1 
T)C

OI 	
C
IOvv

(t
k+1' 

T)C
OI

J L C
I 

t
k+1 	 - 

. 	
C
10rv

(tk+1' 
T)SA(T) 

Ci0(1)vv (tk+1' T)(3a(T)  tk  

dT  

Now, for state update intervals At = (tk+1 
- t ) which are small compared 

to the 24-hour period of the reference geostationary orbit, Sa(t) can be 

approximated by a constant average value Sa over each At. Furthermore, 

it is reasonable to assume n to be quasi-static for small At, so that 
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(8.12) 

The matrix Q
k+1 

is then found by forming 

T1 nü A  

E{clk+1 	= '-(k+1 - k+lj 

-- At 4 /4 	0 

0 

0 At/4 _ 

Q = rr 
At/4 (B.15) 

setting n equal to its average value over the interval enables C
IO 

to be 

taken outside the integral in (B.11). Finally, for small At, ,q) 	(A.16) 
rv 

and 41 	(B.18) can be approximated by retaining only terms linear in 
vv 

At. Given these three approximations, (B.11) becomes 

-91c+1 = 

Sa
x
At 2/2 

Sa At 2/2 
Y 

r0I0 	0  1 	Saz
At2/2 

L 	c 	SaxAt + coSayAt 2  
IQ- 

Sa At - w6a
x
At 2 

 Y 

Sa
z
At 

(B.13) 

where (B.2) no longer applies in general. Now, assuming E{5ax 2 } = E{Say 2 1 = 

E{Sa 2 } = a
a
2  and that E{Sa Sp_ } = E{Sa Sa 	= E{Sa. Sa } = 0, substituting 

z x y 	x z 	x z 

(B.12) into (B.13) yields 

,111 	= , 0. 2 

'*k+1 	a  
Qrr 	Qrv 

Qvv_ 

(B.14) 

where 
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At 3 /2 	-wAt4 /2 

	

wAt 4 /2 	At 3/2 

0 	0 

Q  rv = 

0 

B.16) 
nT 

= s'ç1r1" 

At 3 /2 j 

At  2 (1 41.0 2At  2) 

0 

0 

0 

At 2(1 .1.2At 2) 

o — 

o 

At 2  

Q = vv 
(B .17) 

. One last observation must be made before (B.14) can be used as a state 

'noise' model in ODPAC, where the state noise matrix is assumed proportional 

to At. That is, ODPAC evaluates 

Q = Q'At 	 (13 . 18 ) 

where Q' is stored in SNC. Hence, to use (B.14) in ODPAC, Q11,1_11  must be 

divided by At prior to being stored in SNC. 
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APPENDIX C 

SOME COMMENTS ON ODPAC 

In this appendix, some point-form comments on the problems, limitations 

and advantages of ODPAC [McPherson and Copeck, 19801 are summarized. 

- The ODPAC simulator-file storage system was found to be limited. 

- It would be useful to have the capability of inputting the true 

state trajectory from an external disk file or tape. 

- The available integration schemes are limited. 

- The interactive  •feature is very helpful in learning the system 

and for runs of reasonably short duration; however, for long runs 

the batch facility was found very useful. 

- The commands are well designed, easily learned, and easy to use. 

- The user's manual deserves equal praise. 

- The inability to change or enter only selected elements in the true 

and estimated state vectors, and in the error covariance and state 

noise matrices, is a large inconvenience. 
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