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Summary

-The ability of a 'sequential' Kalman filter to predict a geostationary
and an approximately geostationary orbit is assessod by oomparisoﬁ with the
corresponding orbits predicted By a least%squares:'batch' estimator. Prior
to performing this comparison, the perturbation models and observations |
assumed in each estimator are compared and shown to.oe essentially the same
(except for atmospheric drag). An analytical expression for the state
noise matrix, assuming a geostatilonary reference orbit, is'giveo and ﬁsedi_
during numerical studies. Numerical results indicate that the Kalman
Filter performs well for the case of a geostationary orbit (in the abSence.
of orbital perturbations the true state is that of an ideally geostationary
orbit). For an approximately geostationary orbit (in the absence of orbitél
perturbations the true state is only approximately fhat of a geostationary
orbit) the pérformance of thé Kalman filter degrades to the point of 'neutral!
stability. A parameter study, in which the valuesvof the initial eiror
covariance matrix, the measurement noise matrix.and the state noise ﬁatrix
are individually varied, is conducted to assess'the.sensitivity.of the Kaimah
filter's performance. It is observed that the nominal values aésigned to
eacﬁ of the above matrices are very near their optimumsf It.ié concloded;
therefore, that to improve the Kalman Filter's performanco it is_the_analyt—.
ical‘forms_assumed for the error and noise métrices (in Pérticﬁlaf, the
state nolse matrix for tho presenf study), and not the valueS‘nofmally

assigned to these matrices, that deserves further study.
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1. INTRODUCTION-

It is the purpose of this study to compare the performapce of the
Orbit Determination PredictionAand Correction (dDPAC) Kdalman filter . -
estimator with that of the Goddard Trajectory Determinatién.System (GTDS)
Least-Squares estimator, in the application of estimating the orbi£ of.a
geostationary satellite when only range measﬁrementsﬁare avaiiable. An
attempt will Be made to determine and correct the factors which éontribute
to the relatively poor performance of the Kalman estimator.

The use of a Kalman filter in orbitai estimation is a_well;estaﬁlished
practice [Brogan and Lemay , 1973]. Furfhermore, the application of séquen—
tial filtering to the problem of estimating‘a.gebstatibnary orbit ié»aigo
a well developed field of study (see, for example [Soop, 19801). 1Th§
present complication is that only range observations are:to be permitted.
The literature in this area_is somewhat limited. As a major literature
search is beyond the scope of this ﬁork, much of what'foilows;makes'use-

. : . '
of the pioneering work by [Brogan and Lemay, 1968] in the area of orbit
determinatiqn-at gedstationafy'altitudé. In-particular, the poésibility:'.
" of implementing a state noise matrix, obtained by assuming a geostétionary
reference orbit for the linearizations implicit in the formulation of the
extended Kalman filtef, is studied. A recent publiéatioﬁ [Wakker ahd
Ambrosius, 1982], dedicated to orbit gstimation using only laser ranging
measurements, cites the importance to numerical performance of predicting
the state.transition matrix and the state noise matrix. Aé‘will be shown,
the choice of a geostationary reference: orbit also haé implications for
~ the resultant form of the state transition matrix..
Prior to undertaking this task, however, a'coﬁpafison of the ODPAC

and GTDS perturbation models will be undertaken to identify and remove any -




sources of discrépancy which could bias the numerical comparisbn of the .
performance of the two routines. Also,'simulated and -actual range measure- -

ments will be compared in an effort to establish whether or not the use of

" simulated rather than actual range measurements is valid for comparison

purposes: The use of the former would greatly facilitate the research
process, while still permitting the option of using actual range measure-

ments in a final verification run. The theoretical implications of the

‘present study are then discussed within the context of the governing

eqﬁations and the.mathematical assumptions implicit in ODPAC ([Chodas;
1981] and [Browne and McPherson, 1978]).' Finally, a numerical assessment
of the ability of the ODPAC Kalman estimator to determine the orbit of a '
geostationary and an approximately geostétionary satellite is conducted.

To guarantee valid comparisons, the paraméters and initial estimated state

used by GTDS to determine the true orbit are assumed.

2. COMPARISON OF -PERTURBATION MODELS

Five sources of orbital perturbations are modeled in ODPAC. By apprb—-

priately setting a flag or defining a scalar to be nonzero, one -can choose

to include the effects of Earth's aspherical gravitatibnal field, athoépheric:‘
drag, solar gravity, lunar gravity and solar radiation pressure on thef o
orbital motion of a satellite. It is aisd possible to include a correction
for the precession and nutation of Earthfs poiar éxis caused;by‘solér and

lunar gravity. This permits a more accurate representation of the satellite's

orbit in inertial coordinates.

As ODPAC can both simulate and estimate a satellite's orbit, the same

perturbation models are available to both the similation and estimation

2




software. However, the simulator and estimator need not include the same

_perturbation sources simultaneously. When solar and lunar gravitational

effects on the satellite and Earth are included in both; the constants. .
assumed in the perturbatibn models are identical. It is possible,'however,
to select different drag and solar radiation pressuie coefficieﬁts for usé
in the simulator and estimator. Also, while the numerical values for the
gravitatiohal hérmonics.caused by the Earth's oblateness aré'thé same

regardless of whether they are modeled in the simulator or the estimator,

'the number of harmonics included in each need not be the same.

In what follows, the perturbation models used in ODPAC will be compared
with their GTDS counterparts. The intent is to isolate and Temove any
differences prior to performing a numerical comparison of the estimated

orbitai state vectors obtained from each routine.

2.1 Earth's Aspherical Gravitational Field

The model for the gravitational potential of the Earth assumed in ODPAC

is given in [Browne and McPherson, 1978 (pp. 3-7, 3-11)], while that assumed

in GTDS can be found in [Cappellari, Velez and Fuchs, 1976 (pp. 4-9, 4-22)].

(Henceforth, page references for the abo?e two documents will be made without
citing_the.réference directly.) Except for minor notational differehceszthe

governing equations are identical. Furthermore, the harmonic coeffiqients

m .m . ‘
(Jn - zonal; Sy» Cn - sectorial when m = n and tesseral when m < n)

. assumed in each model are numerically identical to seven significant digits

form £n = (1, 2, 3, 4). While higher harmonics are permitted in the GIDS

software ODPAC is limited to the harmonics cited above, the values of which

"can be found in [McPherson and Copeck, 1980]. It is necessary, therefore,

to restrict numerical comparison of GTDS and ODPAC results to those in which




n.€ 4, GTDS also includes 'indirect oblation' effects absent in ODPAC;"

however, these are of secondary importance for the present study. -

2.2 Atmospheric Drag \

Tﬁe ODPAC (pp. 3—12, 3-16) .and GTDS (pp. 4-22, 4-60) atmosbheric drag
models use the same defining relation to compute fhe decelefation;of'a‘
spherical satéllite moving throughvthe atmosphere. However, - ODPAC usés a
simpler model for the atmosphere than that adopted in GTDS. (GTDS offers
two different atmospheric density models, the Modified Harris-Priester
model and an analytical formulation of the Jacchia 1971 model.).'This

difference in atmospheric modeling implies that direct numerical comparison .

-of the states generated by ODPAC and GTDS, when atmospheric drag is present,

will veflect differences not only from the estimation technique employed

but also from.the different atmospheric density: profiles assumed in each

-program. Happily,. for geostationary satellites, atmospheric drag can be

neglected, thus avoiding this problem for the present study.':

It is noteworthy that GTDS also.has the capability to treét the'drag>
coefficient and errors in the atmospheric density as extra state variables,
to which. differential correction can be applied. Furthérmore,'GTDS can
consider cylindrical satellites (with or without_éblar paneis oriented at

arbitrary angles to the axis of the cylinder) in drag calculations..

2.3 Solar and Lunar Gravity

‘The gravitational attractions of the sun and the moon (assuméd to be
point masses) and the subsequent accelerations experienced by the satellite -
are modeled identically (again, except for minor notational diffefenceé) in

ODPAC (pp. 3-17) and GTDS (pp. 4-4, 4-8). Furthermore, the gravitational




constants assumed for the sun and the moon are the same in both routines

(see Table 1).
Tabie 1

Comparison of Constants:

Constant - Variable ODPAC Value GIDS Value

‘Gravitational Constant

- (km®/sec?) o
~ Earth U 3.9860080%° 3.9860080"°
- Sun . Us 1.3271545%" 1.3271545*
- Moon C Yp - - 4.902778° 4.902778° -
Astronomical Unit (km) ' AU 1.496% . 1.4959789°
Solar Constant (N/m?) / p 4.5°° - 4.578
Earth
- Semi-Major Axis (km) ae 6.37814°% 6.378143
- Angular Velocity

(deg/sec) We 4.178074623° 2 4.170746 3

*ALS = AX101®.

2.4 Solar Radiation Pressure

1

The form of the solar radiation.perfurbation model adopted in both

ODPAC (pp. 3-18) and GTDS (pp. 4-60, 4-65) is

2

o
N’

a=vKP [ e ] (2.1)

S

where 2 is the acceleration of the spacecraft caused by solar pfessure,

v is the eclipse factor (v = 0 if the spacecraft is in an eclipse region,

v = 1 otherwise), K is the solar radiation pressure coefficient, P is the




solar constant (4.5 X 10—6N/m2), a, is the.mean Earth-sun disténce (1 AU)
and §S (= gs/rs) is a unit vector in the direction of the inci&entvradiation.
In ODPAC is is assumed to be the vector from the sun to the Earth, while in
GTDS ﬁs is takeﬂ to be the vector from the sun to the spacecraft. Hence,
in ODPAC parallax is neglected. Also, the numerical value assigned_to‘l AU
is siightly diffgrent in the two routines\(sge Table 1). Furthermore, the
definition of whét constitutes eclipse is different in each program. GTDS
assumes a cylindrical shadow model, with v =.0_whenever the_spécecraft is
within this shadow. ODPAC assumes a more complica£ed shadow model (con-
taining both penumbral and umbral eclipse regions), with v = 0 whenever the
light intensity is £ 50%. |

The solar radiation pressure coefficient K.obeys the relation
K = Cr(A/m) , - (2.2)

where Cr is the coefficient of reflectivity (0 < Cr £ 2), A is the exposed

“area of the spacecraft and m is the spacecraft's mass. In ODPAC, K must

be specified, while in GTIDS, given A and m, Cr>can be treated as an extra

-state variable, to which differential correction can be applied.

2.5 Precession and Nutation of Earth's Polar Axis

To define the true equator relative to inertial space one must correct
for the precession and nutation of the Earth's poiai axis. Correction‘for
precession alone yields the- mean equator relative to inertial spage,.ﬁhile i
a subsequent cor:ection for nutation producés»the_tfue equator; ‘ODPAC and
GTDS use identical transformations from the mean equatof-and mean equinox

to the true equator and true equinox reference frames. -The precession of




the ecliptic plane relative to inertial space is neglected:in_ODPAC but
corrected for in GTDS. Furthermore, ODPAC ﬁeglectS‘the fact thatrfhe polar
axis (the normal to the true equatof) does not exactly coincide wifh the
spin axis of the Earth. This affects the transformation from the true
equator and true equinox frame to the Earth—fi*ed‘reference frame; As

noted in [Browne and-MéPherson, 19781, the first effect correspondS'to lgss :

than 50 arc seconds per century, while the second effect is less than 2 arc

seconds. (The spin axis in fact 'wanders' over a distance of approximately .

30m at the Earth's surféce.)

2.6 Evaluation of the Differences in the Perturbation Models

As highlighted in the brevious sections, the perturbation models
adopted in ODPAC, for the most part, are very similar to those used in
GTDS. For the purposes of the present study, étmospheric drag can be
neglected, hence the perturbation model which is most dissimilar.is_hot of
concern here. To assess the impottance of the other differences an ephemeris .
Tun was conducted using ODPAC and compared to an existing GTDS ephemeris run
for the Communications Technology Satellite (A = 1;9797X10_5/km2, m= 332.8
kg). Assuming the same initial state as‘that used in tHe GTDS run, and
including the folldwing»sources of orbital perturbafions;"

(1) Gravitational Harmonics (n < 4, all m < 4)

(2) No Atmosﬁheric Drag

‘tS) Solar Gravity

(4) Lunar Gravity

(5) Solar Radiation Pressure (K = 49.77:’>6107><10~8 km?/kg

- based on GTDS data)

the position and velocity errors obtained using ODPAC are as shown in Fig. 1
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FIGURE 1. ODPAC SIMULATOR ERRORS.
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" of the_Earth's polar axis.

remains less than 1 km, or 2.4%x107%% of the initial orbital radius, while

(i.e., the GTDS'run was assumed to be correct). A correction was also

applied during the ephemeris run to account for the precession and nutation

Both the position and velocity errors initially increase rapidly; however,

near the end of the run these errors change more slowly. The position error

the velocity error remains less than 10™* km/sec, or 3.3x1073% of the initial -

velocity. These errors may appear small; howéver, they must be considered_
within the context of this study. The iﬁtent is to ascertain why a Kalman
estimator COD?AC) performs poorly relative to a least-squares estimator
(GTDS) when the orbit of a geostationary sateliite is being predicted. Thé
least-squares -estimator begins with an a priori estimate (at.epoch) and
applies differential correction using observations in a 'batchi mode to
obtain the true state at epoch. The orbit can then be_predictéd fdfwafd

to some desired time. A Kalman estimator begins.with an estimated,étate
(the least-square a priori estimate) and an efror-éovariance'matfix (based
on the difference between the a priori estimated state and the true state
at epoch — here obtained directly from GTDS dafa). This estimator‘then
proceeds forward in time processing obsefvations‘in a sequential mode.- To
compare the two estimators it is necessafy to choose some time t3; > ty
(time at epoch) and obtain the state as predicted-forward in time using the
true state at epoch from the 1easﬁ—Squares estiﬁafor.~ This then becomes
the true state to which the Kalman estimator must converge over the period
(tx —'to). Therefore, ideally, the simulated true state fq.whiéh thé‘Kalﬁan
estimator is attempting to converge is that givén-by the GTDS.ephemefic Tun
(ty is just some time duriné this ruﬁ]} Unfortunately, ODPAC does not héve

a facility for reading the simulated true state from an external file,



hence it must produce its own simulated ‘true~stéte! trajeétéry; "Figure 1
suggests that the longer one simulates the orbif usiné ODPAC the poorerA
its simulated true -state becomes in comparison with the‘CTDS simulated
true state. That is, &irect numerical comparison i; notvtruly ppssible.
In fact, after approximately three days the ODPAC-simulated true staté
deviates from that given by GTDS by the same order of magnitﬁde as the

a priori estimated and true state .at evoch. Conséquently. the best‘that

can be échieved_without drastically modifying ODPAC is to accept its

simulated orbit as the 'true state' trajectory. One commences the simula-

‘tion with the true state at epoch determined using GTDS. and sets the

estimated state equal to the a priori estimate from GTDS. One then tries

+to minimize the difference between the estimated and trué state. PréVided

this process yields an acceptable minimum, it can be argued that had theV

'true' true state trajectory been available the Kalman estimator would

reproduce the GTDS results. Of course, there still remaiﬁs the issue of

real versus simulated observations. This is the subject of the next chapter.
One finél'cbmment with regard to Fig. 1 is appropriate.- ODPAC and GTDS:

use diffeient numerical integration schemés. ODPAC performs CowellPé

method using a fourth-order Runge-Kutta inteérator,.while GTDS-perfofms

the Same-methoa using a twelfth-order Adams predictor (partiéliy corrected) |

integrator. Thus some of the position and Qelocity errors in Fig. 1 may

be céused,by differences in these numerical integration schemes rather than

by differeﬁces in the perturbation modelﬁ. GTDS does offer other integration.

methods and numerical integrators; howéver, they areinot more similaf to

those used in ODPAC than the éombination cited above. Agaiﬁ, to achieve

a completely consistent numerical comparison, either ODPAC or GTDS would

have to be modified.

10




5. COMPARISON OF OBSERVATIONS

In an attempt to keep the numerical comparison between ODPAC and GTDS as
meaningful as possible it is desirable to replicate the observations used
by GTDS in ODPAC. To ensure this the same site locations must be used.

Furthermore, not only must the type of observations and their numerical

values be the same, but the scheduling and fréquency of the observations

must be reproduced. The numerical values for the observations can be either

‘numerically simulated by ODPAC or supplied directly in the form of real

observations through an external disk file. The first method is more.
conducive to a research effort where isolating the causes for differences
between the numerical performance of ODPAC and GTDS is the goal, as is the

case here. It permits a greater degree'of flexibility, unlike. the second

" method which, apart from supplying more realism, restricts the number of

parameters which can be varied. Also, initially simulating the obserﬁationé
does not preclude confirming the Kalman estimator's performance later with
real observations. For these reasons the first alternative is chosgn;'
however, in what follows a comparison of the simulated and real observations

is also supplied to confirm the acceptability of the observations used in

b

this study.

3.1 Chosen Case Study

In the previous chapter the results from a GTDS eéhemeris Tun for the
Communications Technology Satellite were compared with those from what was
essentially an equivalent ODPAC ephemeris run. Here, Wé use the GTDS least-
squares\estimation run which provided the initial true.state‘for the ephemeris
runs as the case chosen for study: reference number DC/OUT790705, 292357A

dated July 5, 1979, 17:14 hrs. In fact, the GTDS ephemeris run is appended

- 11



to the end of the GIDS estimation run. The site and observation data which

follow are all taken from, or related to, this particular run.

3.2 Site Locations

Two site locations are given in the GTDS estimation run;,however,>on1y
the Ottawa site makes any observations. The locations.of both sites are.

given in Table 2. It should be noted that the adopted reference ellipsoid B

is that assumed in the GTDS run and not the default ellipsoid given in ODPAC. |

Table 2

Site Locations

Building 46

Namé Ottawa (OTT) . (BG46)
Geodetic Latitude (deg. North) 45.347206944 45.352763889
East Longitude (deg.) 284.10969806 284..09733611
Height Above Reference Ellipsoid (km) 0.0834506 ~0.082
Horizon'Elevation.(deg.) 0.0 ‘ 0.0

Reference Ellivsoid . .
- Semi-Maior Axis (km) 6378.166 6378.166
- Eccentricity - ' 0.081813333. 0.081813333

3.3 Observation Summary

The allowable observations in ODPAC are azimuth, eleﬁation,‘iange
and range rate. TFor the present study only range observations are con-
sidered. A.summary of the impor£ant time events governing the observations
and the frequency of the observations, as inferred from the GIDS estimation

run, is provided in Table 3. To aid in visualizing the positions of the .-




various observation spans (periods in which observations are taken) within

the time frame of the GIDS run, a line chart has been included invFig. 2.

Table 4 contains a list of the 96 observations taken during the first and

second observation spans.

" Observations End:

Table 3

Observation Summary

Epoch: | July 4, 1979
Observations Start: July 4, 1979
July 5, 1979

Numbef of

Observation

Observation  Commence* Halt
Span No. Observations Observations Duration Observations Interval
1 5180 . '
5650 470 48 10 . -
2 8900
9370 470 48 10
3 14470 : ‘ »
: - 14940 470 48 10
4 21610 :
22080 470 48 10
5 28810 '
29280 470 .48 10
6 36010
36480 . 470 48 10
7 43810 : N .
44280 - 470 48 10
8 51790
52260 470 48 10
9 57600 .
' : 58070 . 470 48 10
10 65410 o
65880 470 48 10
11 71970 ‘
72440 470 48 10
‘12 77020 _ '
77250 230 24 10
13 77300 '
77770 470 48 10
14 82820 . :
83290 470 48 10

*Time from Epoch in seconds.

13



July 4
Beginning of
Estimation ‘
Internal 13:26:20-13:34:10 14:28:20-14:36:10 16:01:10-16:08:60
i i == i —ET —1 :
12:00:00 113:00:00 14:00:00- 15:00:00 16:00:00 17:00:00
Span 1 Span 2 Span 3 o
_ 18:00:10-18:07:60 20:00:10-20:07:60
— —- ‘ : = f ;
17:00:00 18:00:00 19:00:00 20:00:00 21:00:00 22:00:00
Span 4 Span 5 ‘
July 5 :
22:00:10-22:07:60 00:10:10-00:17:60 02:23:10-02:30:60
=== — - e P ——t t % I
22:00:00 23:00:00 00:00:00 ) 01:00:00 02:00:00 03:00:00
Span 6 Span 7 Span 8
03:59:60-04:07:50 106:10:18-06:17:60 ,
i Loy f o — !
03:00:00 04:00:00 05:00:00 06:00:00 07:00:00 08:00:00
. : Span 9 ' Span 10
- _ 09:23:40-09:27:30 End of Estimation-Internal
07:59:30-08:07:20 09:28:20-09:36:10 11:00:20-11:08:10
. = t —i-n3 f ,
08:00:00 09:00:00 10:00:00 11:00:00"
Span 11 Span 12 Span 14
Span- 13 .

14}

FIGURE 2. LQCATIONS OF OBSERVATION'SPANS WiTHIN GTDS- ESTIMATION RUN.




Table 4

Comparison of Actual and Simulated Observations -

Span 1 Span 2
Observation Actual Simulated Observation Actual . Simulated
Number Range Range Number Range Range -
(+ 39269 km) (+ 39255 km) '
1 0.5752 0.6291 1 1.3034 - 1.3516
2 0.5512 0.5941 2 .1.2569 - '1.3016
3 0.5258 0.5684 3 1.2090 1.2467
4 0.5018 0.5538 4 1.1595 1.2009
5 0.4793 0.5235 5 1.1160 1.1650 -
6 0.4523 0.5167 6 1.0681 1.1057
7 0.4283 -0.4738 7 -1.0216 1.0700
8 0.4013 0.4375 8 0.9751 1.0168
9 0.3774 0.4209 9 0.9272 0.9599
-10 0.3534 0.4151 10 :0.8807 0.9321
11 0.3264 0.3600 11 0.8312 0.8668
12 0.3024 0.3513 12 0.7848 0.8451
13 0.2799 0.3390 13 0.7398 0.7757
14 0.2544 0.2872 14 0.6918 0.7380
15 0.2305 0.2729 15 0.6439 0.6906
16 0.2035 0.2352 16 0.5974 ..0.6300
17 0.1780 0.2271 17 0.5494 0.5908
18 0.1540 0.1979 18 0.5000 0.5486
19. 0.1270 0.1784 19 0.4550 0.5091
20 0.1015 0.1377 20 0.4085 0.4504 .
21 0.0746 0.1288 21 -~ 0.3606 0.4083
.22 0.0506 . 0.0883 22 - 0.3126 0.3558
23 0.0251 0.0739 23 0.2631 0.3263
24 -0.0004 0.0614 24 0.2152 0.2718
25 -0.0259 0.0164 25 0.1687 0.1946
26 -0.0513 -0.0037 26 . 0.1207 . 0.1621
27 -0.0768 -0.0478 27 0.0728 0.1196°
28 ~-0.1023 .~0.0632 28 .0.0248 - 0.0692
29 -0.1292 -0.0795 -29 -0.0262 0.0269
" 30 -0.1548 -0.0970 30 -0.0711 . -0.0210
31 -0.1818 -0.1381 31 -0.1191 -0.0721
32 -0.2087 . -0.1507 32 -0.1671 -0.1145
33 -0.2357 -0.1901 33 -0.2150 -0.1782
34 -0.2612 -0.2191 34 -0.2645 -0.2165
35 -0.2897 -0.2372 35 -0.3110 -0.2746
36 -0.3152 -0.2501 36 -0.3619  -0.3189
Continued. ..
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Table 4 - Continued

Comparison of Actual and Simulated Obsefvations>

Span 1 ’ R Span 2

Observation Actual Simulated Observation Actual  Simulated
Number " Range  ° Range Number - Range " Range
~ (+ 39269 km) : (+ 39255 km)
37 -0.3391 -0.2967 37 -0.4099 - -0.3626
38 ~0.3661 -0.3111 - 38 ) -0.4594 = -0.4170
39 ‘ -0.3931 -0.3367 -39 -0.5058 -0.4606
40 -0.4216 -0.3743 40 -0.5553 -0.5215
41 - -0.4471 -0.4091 41 -0.6048  -0.5586 "
42 -0.4726 -0.4265 42.  -0.6557 - -0.6057
43 -0.5010 -0.4549 43 -0.7007 - -0.6619
44 -0.5295 -0.4778 44 -0.7502 © -0.7028
45 -0.5550 -0.5015 45 . -0.7996 -0.7503 -
46 -0.5820 =0.5414 46 ~.-0.8491  -0.8088
47 .-0.6105 -0.5636 47" -0.8986 "-0.8482

148 -0.6359  -0.5869 48 -0.9465 - -0.9001

3.4 Comparison of Actual and Simulated Observations

As previously stated, in this study simulated rather than actual observa-

tions are used. The simulated observables are created by adding random

Gaussian noise to the 'true' observables determined using the true state from

» the ODPAC orbit simulator and the site coordinates. Thi$ noise can be

adjusted by specifying the random seed (MRS) used to generate the noise and
the standard deviation of the noise distribution (MNE). Letting MRS,¥ 1019
and MNE = 7.62X10—3km the simulated range observations obtained for the first
two obsérvatidn spans are as shown in Table 4. MRS was chosen by trial and
error, whilevMNE was taken frém [Brogan and Lemay, 1968]. While at:first

inspection the agreement between the actual and simulated range observations

may not appear to be exceptional, a linear regressibn analysis yields a line

16




. LT va

~for the first (second) observation span, relating the simulated range to -

the actual range, with a slope of'1.0028 (0.998i) and a bFintefcept of‘.

0.0450 km (0.0425'km). Hence, except for a positine bias of iess than 46

meters the simulated observations emulate the true onserVations very well:

This conclusion is further supported by the correlation coefficienfs obtained :
during the linear regression analysis: 0.9994 for thelranges in observation “

span 1 and 0.9998 for the ranges in observation span 2. Finally, the mean

and standard deviations (in km) for the actual and simulated ranges for

observation span 1 are (39268.9806, 0.3609) and (30269.0255; 0.3621),
re5pective1y. For observation span 2, the corresponding'valuee are (39255.1880,
0.6705) and (39255.2302, 0.6694). | | |
The non-zero bias in the simulated range meesurements is not unexpected
given the errors cited in Fig. 1. To reach the end of_observation span 2
ODPAC must simulate the orbit for ovef 2-1/2 hours. vIt is known from Fig. 1
that in this period of time, the spacecraft orbital radius vector predicted
by‘ODPAC is ~ 40 km in error compared to the accepted redius veetor‘ffom'the

GTDS orbit .simulator. It is not surprising, therefore, that the simulated

‘observations based on the true state from ODPAC should have a bias -of the

same ‘approximate magnitude.

4.  THEORETICAL CONSIDERATIONS

The equations governlno the extended Kalman filter are summarized in what -
follows, insofar as to highlight the quantities which can be varied to control
the performance of the filter. Whenever possible, special forms for the

various matrlces, as related to the present problem of estimating a geostatlonary

~orbit using only range observations, are cited. In this,regard‘the work of
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~time t

[Brogan and Lemay, 1968] is most useful.
As stated in [Chodas, 1981], the Kalman filter equations can be divided
into two sets. The first set is used to update the estimate and error

covariance from time t, to t, .:
' k k+1°

.
. k+1 . .
R(k+1]k) = R(k|k) + J‘g[g(t, ) t]dt S 4.1
L . o ‘
P(k+1]k) = @(k+1, k)P(ka)@T(k+1, k) Q Q(k+1) T (4.2)

Here, R(k|j), P(k|j) and ®(k|j) are the state estimate, the error covariance =
matrix and the state transition matrix at time tk’ given measurements to tj. ~
Q(k) 1is the state noise matrix at ty- The second set of equations improves

the estimated state and error covariance matrix, given an observation at

k+1:

K(k+1) = P(k+1|K)H' (k+1) [H(k+1)P(k+1]K)H (ko) + R(k+1)] ™" (4.3)
R (k+l|k+1) = R(k+1|k) + K(k+1)[gk;1 - h(Eﬁkéllk); t.p)] 4D

?(k+1|k+1) = [I - K(k+1)H(k+1)]P(k+1|k)[I - K(k+l)H(k+l)]T

& KOHDRKHDK (kel) | (4.5)

The Kalman gain matrix, the measurement matrix, the measurement noise matrix and

the measurement vector at time tk are denoted by X&), H(k), R(k) and 2y

respectively. To initialize the filter an a priori state estimate £ and

18.
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its error covariance Po’
2 Ty o - . (4.6)

must be known. The notation E{ } denotes expectation. Also, the initial
state noise matrix Q and the initial measurement noise matrix R, must be
specified; It is these three matrices which may most éasily be varied to

control the filter's performance.

4.1 The State Function and State Transition Matrix

The state function f forms the right-hand side of the state equation

and describes the dynamics of the system:

dx

T = £lx(©), t] | .7)

For a spacecraft orbiting a primary body under the influence of various

perturbing accelerations, f takes on the form [Chodas, 1981]

_ : T
- ' N S S S - Mg
f.‘ lyx, Vy’ vV, A X-a_, 7 Y2, 7 2 aé} (4.8)

when expressed in inertial coordinates. The state, in these same coordinates,

is

T |
X = [X: Ys .Z, VX, Vs Vz] ' : (4'9)

y

The first three elements of (4.9) are the components of the orbital radius

vector I, while the second three elements are the components of the spacecraft's
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velocity vector v. They play a key role in the state function f, as do ‘the

perturbing accelerations a, the components of which are given by

a = [ax, a_, az] \ ”(4.10)

y

in inertial coordinates. The variable p is the gravitational parameter of

the primary body
" . @)

where G is the universal gravitational constant and M is the mass of the

‘attracting primary. Inertial coordinates are chosen here for ease of com-
parison with the GTDS run results. (For the chosen GTDS run, the equations _

are integrated in inertial coordinates.) Other representations are possible,

however, and the interested reader is referred to [Chodas, 1981].
The state transition matrix ®(tk+1’ tk) used in ODPAC is approximated

by the matrix exponential:

FAt

k+1 k

erations a are neglected in (4.8). The result is

@(tk+1, tk) = e = | (4.12)
where
of _ :
ox = ' :
— —=3£
and At = t, . -t . For the purpose of computing F, the perturbing accel-

0 1

F=| - | - 4.14)




Equation (4.13) is based on a linearization of (4.8) abOuf some. reference

- state x = g, In general, this reference state is taken to be the current

best estimate of the true state. For the present problem, that of a space-

craft in 'geostationary' orbit, the most appropriate reference state-is an

‘ideal geostationary orbit. [In reality, disturbing forces (modeled by §) N

force the satellite from the ideal, hence the quotatlon marks.] A closed-form
transition matrix based on this realization is derived in Appendix A [Brogan'
and. Lemay, 1968]. While the state transition matrix used in ODPAC does not

have this form by design, it should still approximate the matrix given in

- Appendix A, provided the reference about which (4.8) is linearized is a

geostationary orbit. As stated above this is not, in fact, the case. However,
the state transition matrix from ODPAC was verified numericélly_to have a

form vefy_similar to that given .in Appendix A. In particular, elements.of A

¢ which should have been zero were typicélly'at-leaét an ofder 6f‘magnitude
less than elements which were expected to be nonzero. It is not'clear at this ‘

juncture whether modlfylng ODPAC to use the closed-form state transition

‘matrix to predict very nearly geostatlonary orbits would 1mprove the fllter s

performance. In any case, such a modlflcatlon to the program was considered -

" beyond the scope of the present study and not attempted.

4.2 The Measurement Function and Measurement Matrix

The measurement function h depends on the type of measurements to be
made, the coordinates of the observing sites, the model assumed for, the Earth.

and the equations required to compute predicted observations from the

position and velocity coordinates of the satellite. The permitted elements

for the measurement vector z,
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“Again, the chosen reference state is the best current estimate of the true

z=h[x(®), t] . L @as)

with regard to ODPAC, are azimuth, élevation, range and range rate. Here,-
we are interested only in range; however, the forﬁ of h is stiii relatively
complicated, even for this measurement. For details, the interested reéder
is referred to Chapter 5 of [Chodas, 1981].

In a manner analogous to the linearization of the state fuﬁction, the : . ~IA

measurement matrix H is obtained by linearizing h about some reference state

X = E,_ The result is

H = | 46

state. When only range measurements are considered H has the simple form

H = L% o', 0, 0, o} - 4.17)

where the range p, expressed in inertial coordinates, is

1

£ = [pys Py o, 1 . (4.a8)

As a point of clarification, E[ﬁ(k+l|k), tk+1] in (4.4) computes the predicted

measurements, while the elements of Zy .1 2T actual measurements, or, as is
Zx =

the case here, simulated measurements.

4.3 The State Noise and Measurement Noise Matrices

.Normally the choice of state noise and measurement noise matrices falls
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into the realm of a knowledgeable guess or a trial-and-error search to find
acceptable performance. For the present problem, where only range is observed,
the measurement noise matrix has only one scalar entry, the variance in the

range anticipated because of noisy measurements:

R(k) = 0p2 | o Cw@ae)

However, the value to assign to Op is still in question. A number of values

have been suggested~in'the literature, bgt a value .of Op = ZS'ft "(7.62><-10»3 kﬁ)
is typical. o
For a geostationary reference orbit, considerable‘prdgress can be made
in predicting the portion of Q(k) attributed to neglecting a in cbmputing
the state transition matrix [recall (4.12)]. Again, the work of [Brogan -
and Lemay, 1968] is of interest.  Appendix B highlights their derivation
and cuiminatés in the analytical prediction of.Q(k) Bésed-on unmodeled’
accelerations. Conceivably, Q(k) can also have a component ba§ed solely on

random noise. While this is a.useful area for future study, for the present,

the performance of the ODPAC Kalman filter will be assessed using the Q(k)

matrix giveﬁ in Appendix B alone. This matrix.is a function of the time
interval At, the angular velocity of an idgal'geostationary érbit w_aﬁd
the.variance in the unmodeled accelerations Oaz' As for the range variance,
a typical value of o, = 10 g (9.80650x10™ " km/sec”) is adopted, based on
the literature. Care must be exercised when using the Brogan Q matrix '

to recompute and enter a new Q each time the state update interval At is

‘changed.

‘From the viewpoint of filter performance, once the state update schedule
has been specified, the quantities which can be varied to improve performance'
are Op and O,

23




4.4 The Error Covariance Matrix

| As stated earlier, the error covariance matrix correéponding tﬁ-the
initial estimated staté must be sbecified to initialize the»Kalmaﬁ.filter
(4.6). Unfortunately, the variances and covariances of the individual com-
ponents of the estimated state are not_kndwn iﬁ advance. As aiconséquence,:
once again the best that can be done is to esfimate'Po.v For equatiéns inte—.
grated in inertial c§ordinates, what is typicaliy done is to'predict the
position error DR and velocity error DV of the initial estimated state.

P0 is then chosen to‘be_diagonallwith DR? forming the first three‘elements
along the diagonal and DV? forming the remaining three. In préctice, the -

| problem is to determine DR and DV:
' 1 S »
DR = [(x-R)% + (y-?)* + (z-2)%]* . 4.20)
| & N2 o N2 R 2% ’ - ‘
DV = [Cvx—vx) + (vy—vy) + (YZMVZ) ] . -. (4.21)

We know the true state (x, y, z, Vo Vy’ VZ) from the GIDS results, as well

as the initial estimated state (X, ¥, 2,_QX, Qy’ 92). Hence DR and DV are

?

known exactly for our purposes. However, to add some of’the.uncer?dinty
present in a real system the exact values are not used, but xather DR? and
DVZ.are rounded to the nearest km? and (km/sec)?. The adopted values, based .-
on the chosen GIDS run. (Section 3.1), are DR? = 13 km? and DV® = 6x10""
(km/sec) 2. |

The frgedom to choose DR and DV initially, even though the 'trug' values
are known, provides yet -another parameter which can be.variéd to affect the -
filter's performance, at least in the initial stages of the estiﬁation.  Also,

the technique of diagonalizing P at the end of the first estimation step
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_interval be At and current estimation time be T, then for NDPK-At

during which observations were processed [Browne and McPherson, 1978(2)] -
can be employed to affect filter perfofmance. ODPAC [McPherson and Copeck,

1980] QCComplishes this by use of a scalar variable NDPK. Let the updafé‘

[i7AN

T
the off-diagonal elements of P.are set‘to'zero, while for NDPK-At.> T
p remains_unchgnged. To accomplish-the desired diégonalization at time Ti
(the T value at which the first observation is procéssed) one must set
NDPK = Ty immediately after time Ti1-At (i.e., just before the next update

step to T1). ODPAC's interactive mode facilitates this by use of an. ENT

~ command immediately after a RUN command to Tp-At and prior to -a RUN command

" to T,

5. NUMERICAL STUDIES

The performance of the Kalman filter is first established for an orbit

that has an initial true state which, in the absence of perturbative accel-

erations; describes an ideal geostationary orbit. The filter's performance
is thenvtested_using the initial true state from the chosen GTDS run, which
does not define an ideal geostationary.orbit. In all these studies the

state noise matrix is assumed to have the form given in Appendix B.. Further- .
mbre, the initial error covariance matrix Po'is always diagonal. The state

transition matrix is unchanged from that assumed in ODPAC.

5.1 Run Schedule and Baseline Values

To make cbmparison between the various numerical studies more meaningful
a standard run schedule was adopted for all the runs. This schedule was

designed to incorporate the period of time containing the first two
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observation spans from the GTDS run. While it was felt that the filter's
tendency to converge or diverge could adequately be assessed based on this
four-hour period, this choice was dictated more by the sim~file limitations
within ODPAC.l These files store a simulated true-state run rather than
re-generating it each time. Even after optimizing the space by choosing
non-uniform update times At, a run duration éf only a little better than four
hours could be.achieved. Initially, the tiﬁe required to interact with ODPAC.
was also prohibitive.because each time At was.Changed Q (6x6) also had to.be.
modifiéd and re-entered. This problem was later averted by running ODPAC
in a batch mode with an input file equivalent to all the interactive commands
necessary during an on-line run. In retrospécf, the batch mode offers a
convenient way to extend the four-hour run duratioﬁ by, in fact, re-generating
the true state trajectory each time. This.was:not attempted in thé intsr—
active mode where the problem of recomputing and ré—entering Q five times per  «V 
run consumed enough time, so that lqnger runs were totally imp?actical. ”
Table 5 contains the chosen run schedule and highlights the important events.
Baseline values: for PO, R and Q were given iﬂ Chafter 4; however, for |
ease of referral they have been collectedAand.summarized in Table 6. »Thé
initial error covariance and measurement noise matrices are input only once
at the beginning of each run, while the state noisé.matrix must be re-entered
each time At changes. As a consequence, there are, in'fact, four baseline
state noise matrices, one for each different update interval in Tablé 5.
These matrices must be computed externally from ODPAC, but need be computed
only once. Finally, ODPAC actually requires Q' (see Table 6) and not Q; as

the state noise matrix is multiplied by At within the program.
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Table 5

Run Schedule

Time Update Interval
(sec) (sec) : Events

0 - corresponds to T0=44,058.5, the Epoch
: 517 date from the GTDS run

- input true and estimated state

- input Py, R, Q' (see Appendix B)

5170 ' ‘ - step prior to first observation; when
10 diagonalizing P, NDPK = 518 entered
immediately after this time
- input a new Q' because At changes

5180 - first observation span encountered;
10 update interval chosen to match actual
GTDS observations :

5650 : : - first observation span terminated
10 ‘ ’ _
5660 - - for plotting purposes compute state
at first point after observation span
323 - input a new Q' because At changes

8890 - second observation span encountered;
10 again, update interval chosen to match
P GTDS observations
- input a new Q' because At changes

9370 » - second observation span terminated
- 10 g ' ‘
9380 - for plotting purposes compute state
at first point after observation span
509 ‘ - input a new Q' because At changes

‘14470 _ ' - terminate run at what would be the
' ‘beginning of the thlrd observation
span :
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Table 6
Baseline Values
Initial Error vaariance Matrix
—_ . 2 2 2 2 2 2
Po = dlag{DR s DRB, DRB’ DVB, DVB, DVB}
DRé = 13 km?; . DVé = 6x10° & (km/sec)?
Measurement Noise Matrix
_ 2
o . = 7.62x10 % km
State Noise Métrix
[T At"/4 0 0 At3/2  -wAt%/2 0
At"/4 0 wAt*/2 Atd/2 o3
b
- O'At = &2 . Att/4 0 0 At3/2
Q= Q'At = 0y CAt? (1+0%At?) 0 0
- (sym) . At? (1+w2At?) 0
L ' At?
o 5 = 9.806650x10 " km/sec; At = (10, 517, 323, 509)
28
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5.2 Filter Performance for an Ideal Geostatiomary Orbit

A series of runs was conducted to assess the ability of the ODPAC

Kalman estimator_ to determine the orbit of a spécecrart which, in the

absence of externmal disturbances, would move exactly in a geostatiomary

‘orbit. These runs were also used to assess the importance of selecting

different perturbations in the orbit (true-state) simulator and the

orbit estimator. Finally, the effect of diagomalizing P after prdcessing
the first observation was also studied. A total of eigﬁt TUNS was
conducted: one.set of four in which P was not diagonalized, and a second
set of four in which it was diagénalized; The baseline values for PO, R
and Q were assumed in all the runs. ~To assess the effect of neglecting
different perturbations in the simulator and the estimator, the extreme
point of view was taken. Simply, all the perturbations were neglected:

in either the simulator or the estimator...These two cases formed the‘
éecond éndithird run in each four-run set. The first run in each set
included all of the perturbations cited in Chapter 2 in both thé simulator
and the estimator. The fourth run neglected‘the perturbatioﬁs'in‘both the
simulator and the estimator. While this last run may appear somewhat useless
in that it should reproduce the results of the first ruﬂ (assuming the
perturbation models used in both the estimator and the simulator are
identicél~—ﬁnd they afe,.in fact, anéiyticallyj ﬁréiiﬁiﬁary.fﬁﬁ;-did'not
give this result. It was found by searching through the possible perturb~
ation models that the correction for precession and nutation was>no£
correctly implemented in the ODPAC estimator software. This situation
was corrected by W. B. Graham at the Communications Résearch Centrelso.
that this discrepancy no longer appears on the plots resulting from this

study.
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To ensure the ODPAC simulator produced a true-state trajectory
that was indeed geostationary a separate ephemeris run was conducted
without any estimation. The initial true state (TST) was entered to

17 significant digits to ensure the highest poésible accuracy:

[ 42164.182266336229 |
. 0 ‘
0 .
TST = 0 - (5.1)
3.0746610200852333 .
0

Based on»(5.1) the ODPAC orbit.simulator simulated very accurateiy a
geostationary orbit. _ | |

The initial estimated state (EST) was constructed byvaddiﬁg the
position and velocify error implied By the true state and estimatéd;
state from thé GTDS case run to the first-and second non-zero entries 

in (5.1):

" 42167.761761866179 |
0
0
0
3.0749065913490372
0

EST = - (5.2)

This ensufes that using the baseline PO is sensible in this cése.and
that the initial difference between the true and estimated stafeﬁ is
consistent for all the numerical étudies. The Qbservations used are
the simulated range measurements frop Chapter 3.

The results from the set of runs in which P was not diagonalized
are given in Fig. 3, while those in which P waé diagonalizéd are shown
in Fig. 4. The appearance of the letter E (S) signifies that the

estimator (simulator) includes orbital perturbations. Each observation
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span is indicated in the figures by two dotted lines forming a narrow
vertical column acroés the plot. The terminal run-time is indicated by
a single dotted vertical line.

Tﬁe most signifiéant feature about Figs. 3 and 4 is that the filter
is converging. The best performance (an order of magnitude better) occurs
when botﬁ the simulator and estimator have identical pérturbétion‘models
(either all_orAnQne.of the perturbations included). Surprisingly, the»runs
in which P is not diagonalized after processing the first obéervation, for
the most part, dutperform those in which it is_diagonalized.  Also,>it
appears from the plots that it is more crucial for the simulator to have the
better perturbation model because the~fi1ter performé better when only the-
simulator»includes perturbations. When only the estimator ihcludes the
perturbations, the performance degrades. This is to be -expected, since
the estimator essentially has a 'poorer' model for what the true.state (as
given by the similator) will be. The convergeﬁce evident in both figﬁres
is very encouraging and supports the belief that thé chosen Po’ R and Q |

matrices might be suitable for an 'almost' geostationary orbit.

5.3 Filter Performance for an Approximately Geostationary Orbit

The'approximate geostationary orbit chosen is that of the GTDS run

- cited in Section 3.1. The initial true state and estimated state (in

inertial coordinates) are inferred from that run:

T 40845.37213829510 | [ 40844 .60517000308 . |
~10615.73853774204 ‘ -10618 .58727000253
_ |-872.8259802956517 |, _ |-874.8531143380704 _
TST = | o.7722841035999041 |° ST =1 0.7720479004666814 (5.3
2.973490590000106 | 2.973554475773058
|-0.009800138752845655| -0.009779355762572144|
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. . _ 4 .
DR = 3.5794955300 km; DV = 2.4557126229x10 (5.4)

Ideally, the third (z) and sixth (vz) elements in the true stéte vector

~ should be identically zero for a geostationary orbit. The observations

used in this study afe the simuiated ranges given in Chapter 3.
Preliminary runs using the baseline values for PO, R and Q resultz
in a performance much differént than that shown in Figs. 3 and 4. The
filtér diverges very margiﬂally in velocity, achieving a value of |
DV = 2.526X10~“ km/sec at the end of the scheduled run. However,‘it
converges very marginally in position to a value of DR>= 3.277 km over
the same period. . Furthermore, fhe filter perfofms siightiy WOrse-than‘
when P is not diagonﬁlized aftei the first observation, giving values of
DR = 3.297 km énd DV = 2.S6SX1O~4 km/sec at run termination.
In an effort to determine if the filter performance could bg»improved
by simply varying the filter's parameters (the_eleménts iﬁ Po’ R and Qj‘ .

rather than the actual forms of the matrices themselves; an extensive

_parameter study was performed. The elements of R and Q were varied by

approximately 'six orders of magnitude (in increments of 10) about their

3

baseline values. DR and DV were varied by approximately four orders of

magnitude about their baseline values (in increments of 100). The varia-

tions in DR and DV may appear rather coarse initially; however, they are

' adequate to establish trends. Furthermore, as is shown in the parameter

variation summary given in Table 7, this choice generates a reasonably
large number of runs. The possibility of having zero measurement error,
zero state error, zero position error or zero velocity error was also

explored.
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Table 7

Parameter Variation Summary

(for NDPK = 0 and for NDPK = 518)

+Initial Error Covariance Matrix

DR ) =2 q
wn | O 10 10 1 10 10"
: - - ,
: : baseline
0 0 P1 P2 P3 | P4 § P5 P6 values
1078 1616 P7 P8 | P9 | P10Y{ P11 | P12
67|, =12 ~' I
10 10 P13 P14 | Pi5| Plef Pi7 | P18
B, - ‘
Approximately 10 10 p;g P20 | P21 | P22) P23 | P24
15 - - \
baseline value | =2 08T 00 | p26 | P27 | D28 | P29 | P30
1 1 P31 P32 | P33 | P34 | P35 | P36
‘Run Numbers
Measurement Noise Matrix
% o 1077 ]10°] 107107 10‘35 1074 107t 1 10 {102 | 10°
Run Rl { R2 | R% | R4 | Rs | Re § R7 | R8 | RO | R10 | RIl | R1Z
Number .
Approximately P and Q at baseline
baseline value values
State Noise Matrix
Jp o Jro7 107107 3 1074 07 107 % 1070 1078 | 1077 | 1070 [ 107>
km/sec? ;
Run -
vumber | & Q2 | Q3 Q4 Qs | Q6 Q7 E Q8 Q9 | Qio | Qi1 | Ql2
= (10, 517, 323, 509) Approximately P.and R at baseline

For At

baseline value

values
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The results of the parameter study éonductéd on the initial erroxr’
covariance matrix show some interesting trends. :Runs P4,.PiO, P16, -
P19, P20, P21 and P22 show results very similar tq‘ﬁhe.baseline run.
Runs (P1, P2, P3), (P7, P8, P9), (P13, P14, P15) and (PlQ, P20, P21) all .
yield results which are also essentially the same as the baseline run.

B

baseline .(DR, DV) .values, will not-change the filter performance sub-

Therefore, choosing [DR £ DR, and DV £ DVB]’ where (DRB, DVB) are the

stanfially from that observed when the baseline Po matrix is used.
These (DR, DV) values correspond to the upper left-hand po?tién of. the
covariance run summary in Table 7. Figure 5 is typical.of the fﬂn4
triplets cited above. The baseline run (square plotting‘symbols) and

three other runs (P13, P14, P15) are shown in the figure (round, triangle

_ aﬁd diamond plotting symbols, respectively). This plotting format,

showing the baseline plus three other runs, will be maintained for all
remaining plots. From thé figure it is apparent thgt each of the thfee
plottéd runs in fact outperforms the baseiine run, but only marginally.
The performance is not at all similar to that observed in Figs. 3 and 4.
1t was also noted that runs (P5, P6), (P11, P12),-(P17, P18) and

(P23, P24), corresponding to [DRV> DR, and DV £ DVé],'wére very similar

B

in character. Figure 6 is typical of -these runs. Both runs P17 and P18
show divergent behaviour, as did all runs in this region. The remaining

two regions of the covariance run éummary shown in Table 7, [DR £ DRB and

DV > DV_] and [DR > DR, and DV > DRB], show erratic behaviour, with

B] B
divergence always occurring in either the position or velocity error.
Figures 7 and 8 (P25, P26,.P27'and P28 in the former region, P29 and P30

in the latter) show typiéal results for these two regions.
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Figures 6 through 8 all repreéent Casés iﬁ.which P was not diagonél—
ized after procéssing the first observatioﬁ. -When this.diagoﬁalization
is performed no substantial difference is noted in the final position . .
and velocity errors for the region [DR £ DRB dnd.DVAé DVB]. However, for
the other regions the divergence is often more than an order.of magnitudé

greater. Also, the error histories, while similar in the respective

‘regions cited above, are often quite different from those in which P is

diagonalized. Regardless, the results of the initial-error-covariance
parameter study suggest that the filter performance cannot be imbroved
substantially by simply vérying PO through changes in DR and DVf' |
As for the covariance matrix parametérs, a clear division of the
filter performance is observed depending on whether the measureménf hoise

deviation Op is above or below the baseline value, © ~Figure 9 is

pB’
typical of the results obtained for Op < OpB' ‘The most interestihg>run

~is R6. It initially shows divergent behaviour, yet by the end of the run

it yields position and velocity errors marginally 1ess>than those using
the baseline parameters. . The remaining runs in this fegion show divergent
behaviour in either the position or the velocity error.

, For Op > ODB’ the performance of the filter is virfually unchanged
from that using the baseline value. Figure 10 illustrates this finding.

Once again, it would appear that varying the measurement noise will not

greatly enhance the performance of the filter. Also once again, diagonal-

ization of P after processing the first observation actually yiéids poorer

results, except for runs Rl and R2 which are unstable (a diagonal element
of P becomes negative) when P is not diagonalized.
The results of the previous two parameter studies suggest that the

baseline values for DR, DV and Op are well chosen. ~The results from the
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state noise study suggest, however,‘that a slightly better choice for
oa'might be a value between 10 and 107~ km/sec2 (correspénding to rﬁns
Q9 and Q10). Above these values the filter diverges (Fig; 11);‘below‘
these values the filter performance is essentially. the same as for the

baseline o, value (Fig. 12). In fact, for Q1 through Q7, regardless'of

B

whether or not P is diagonalized after the first observation, the final

position and velocity errors are the same, to four significant digits, as

thosé_obtained using the baseline value of o, - In the divergent cases a

‘nondiagonalized P matrix produces better results.

Even after recognizipg that the'béseline value chosen fér o, is not
optimal, the improvemeht‘that can be expécted in the fiiter‘performénce
by readjusting o, is not staggering, as witnessed to by Figs. 11 -and 12,
Again, one would not expect to achieve the performance shown in Figs. 3
and 4 for an ideal geostationary orbit. At this.juncture it should be

mentioned that prior to adopting the form for the state noise matrix

given in Appendix B a number of trial and error runs were conducted

assuming a diagonal Q matrix. For some of these runs -the values along

1.

Typically, the filter diverged (the remaining parameters were withih'the

the diagonal fell within the range suggested by o, = [10—8, 10”7

tolerances.suggested by the above parametér studieé).' It would appear
that the choice of the form for the state noise matrix is important, at
least for geostationary orbits. | |

Given that the form for the .state noise matriﬁ.derived in ApﬁendiX-B
is for a reference orbit that is exactly geostationary, wheéreas iﬁ ODPAC
the reference orbi£ is based on .the current best estimate of the state,

two approaches suggest themselves for future work. One is to fix the
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" The other is to attempt to derive an analyticai expression for Q based

_accelerations when the state transition matrix is formulated. It may- be .

‘retaining the perturbing accelerations when computing the state transition

reference orbit to be geostationary in ODPAC whencestimating an orbit
that is approximatelyvgeostationary. This would also have the effect

of fixing the form of the state transition matrix @ (see Appendix A).

on a reference orbit that is only approximateiy geostationafy. Figuies
3 and 4 suggest this may be a reasonable approach.
Finally, as described in Appendix B, the chosen form for Q includes

only the state noise resulting from the practice of neglecting perturbing

possible to improve performance by retaining the present form for Q, and
arbitrarily introducing extra terms along the~diagona1 to model random
noise. >This method may not-appear to hold much promise:given.the problems
encountéred with a purely diagpnal Qs however; fhe off—diagonai_Q;tefms
may counter this effect. It should also be mentioned that GTDS dbes, in
fact;'include the partial derivatives of the perturbing accelerations

relative to the state in the variational equations. This is equivalent to

matrix. While normally this does.not appear to cause a problem, we note

that here, when a conscious effort is made to ré~introduce these unmodeled

- accelerations through Q, the Kalman filter performance can be made to be

neutrally stable rather than divergent. It is possible that some property

- of a geostationary orbit makes significant the perturbative accelerations

when finding the state transition matrix. For the present, this is

speculation until supported by factual results.
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6. CONCLUDING REMARKS

An attempt has been made to ascertain the contributing factors in

the relatively poor performance of the ODPAC Kalman Estimator vis-a-vis

the GIDS Least-Squares Estimator. ‘It can be argued that the perturbation

models gsed in' both programs are essentially the éame, however, a.notice—
able difference still results in the simulated true-state trajeétoiies.
This could be éaused by the small differences in the perturbation médels;
but moré likely it is a property of thé type and order of the numeiical
integrator used in each case,

| The Kalmaniestimator has been shown to perférm'well, using a sfate
noise matrix based on a geostationary reférence orbit, when the tiue—state
trajectory is, indeed, geostationary. For an approximately.geostatidnary
orbit the filter perfofmance degrades to the point of neutfal Stability.

In this regard it performs poorly in comparison to GTDS. Furthermore,

for the chosen initial error covariance, measurement noise and state noise

matrices an extensive parameter study has shown thaf the filter performance
cannot be imprbved substantially, in the presenf application, by simply
changing the numerical values within these matrices. It appearé_that

it may be useful to explore the possibility of deriving an_altérnéte
analytical form for the state noise matrix based on the aésumption of an

approximate, rather than an exact, geostationary orbit.
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APPENDIX A

A CLOSED-FORM TRANSITION MATRIX

FOR A SATELLITE NOMINALLY IN GEOSTATIONARY ORBIT

In theory, if a satellite is placed in circular orbit (constant radius

R) in the equatorial plane such that the angular velocity is directed along

the orbit normal with magnitude w = (u/R3)%, where U is the gravitatidnal
parameter for the Earth and w/2m is fhe fotational period.of the Earthi

(v 24 sid. hr.), then the satellite remains stationary reiative to the

Earth, in what is'denoted a geostationary orbit. In practice, envirqnmental
forces cause orbital perturbations, thus no sgtellité is truly géostatioﬁary.

However, these perturbations are usually small enough so that the actual

_position vector to the spacecraft r can be written as the sum of a reference

position.?ector'g'and a first-order (compared to R) change in position_&:
4

=R+ & : B (A1)

T
8

As shown in Fig. A-1, R (the radius vector of the geostationary reference

"orbit) is aligned with the x-axis of an orbiting frame Fb, while_& locates

!

the spécecraff-relative to R. Here, the angular velocity of F, with respect

" to an inertial frame FI is denoted W and has the components

w= 10,0, w’ @A)

expressed in Eb. As a consequence, FO is related to FI by the rotation

matrix
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cosn -sinn - 0
CIO = | sinn cosn 0 (A.3)
0 0 1

where n, the orbital anomaly of the geostationary reference orbit, obeys

the relation

ﬁ = W (A.4)
Now the orbital equation of motion for the spacecraft is
P L - oy
};+-—;_1;——0 ) (A.S)
T
where
y=rryxg B CX)
Feyryexy S (8

and perturbing accelerations have been neglected [d( )/dt with respect to-
EI is denoted ('), while d( )/dt with respect to FO is denoted (0)]. This
assumption echoes that made in determiniﬁg the transition matrix assumed
in ODPAC [Chodas, 1981]. Essentially, to update the estimate of thé state
a nonlinear state function including orbital perturbations is used, .while
to update the error covariance matrix'a state tranéition matrix obtained
neglecting orbital perturbations is applied.

Equation (A.5) can be expanded by noting (A.1), gifen the components

of R and Q, -expressed in_FO, are

R=[R, 0, 0] N (XX )
..’Q_' - [X, Y Z]T (A.9)
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The result to first order in (2/R), expressed in Fo’ is [Steffan, 1963]

"X - 2wy - 3w?x o
Vo4 20k =lo (A.10)
7 + Wz 0
The approximation
T - 2R
izil(gﬂ»&)ms[l’—i]g] _ C (A1)
rd RS LR _ - B
based on the assumption
g<<R | O (A12)

is also required to obtain (A.10). Integration of (A.10) yields

— r ’ . _ . . . . .
X | (4xo+2yo/w) (3x0+2yo/w)coswt + (xo/w)51nwt
y (yo—Zxo/w) + 2(xo/w)coswt +.(6xo+4yo/w)51nwt -~ (6x0+3yo/w)wt
z z COSWt + (zo/w)51nwt
X (wao+2yo)51nwt + xocoswt
y —(6wxo+3yo) - 2x051nwt + (6wxo+4yo)cqswt
z z_coswt - wz_sinwt
| 4 ] L. o 0 -

(A.13)

+ e e T ; : .
where [XO’ Yor 20 Xgr Yoo zo] is the initial stgte (t ~~to)'f Equgtlon

- (A.13) gives the orbital state relative to a geostationary referencé orbit

from to to t.” As a consequence, the state transition matrix from time Ty

to~tk+1 (At = tk+1_tk) is, simply,
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o (k+l, k) @ (k+l, k) }

Hk+1l, k) = {_
Lo, (1, K)o (kel, K)

where

4-3coswAt . 0

¢rr(k+1, k) = 6 (sinwAt-wAt) 1
B 0 ' 0
(1/w) sinwAt (2/w) (1~coswAt)
¢, (k+l, k) = (2/w) (coswAt-1)  (4/w) (sinwAt-3At)
i 0 o 0
BwsinwAt 0
¢Vr(k+l"k) = 6w (coswAt-1) y 0
0 0
, éoswAt 2sinwAt
¢Vv(k+1, k) = -2sinwAt —3+4coswAt‘

0 ' 0

In the present study the state is expressed in inert

(A4

0
0 |@aasy

‘coswAt

(1/w)sinwt

0o |l;.an

~wsinwAt .

0
0 .18y

coSwAt

ial rather than

I

orbital coordinates, hence (A.14) must be transformed from FO to F_ using

(A.3). The desired state transition matrix is, therefore

' Cond C = Cond C,
o(k+1, k) = ( 10 "rr 01 I0 rv.OI }
‘ —CIO¢vrCOI CIO(?WCOI
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where

c.=cl o - (A.20)
For the sake of brevity (A.19) is not written out in full; however, it is

interesting to note that, for (i =1, 2, 4, 5; j = 3, 6) and for 1i=23, 6;

= 0] = .
j'= 1,2, 4,5), 0, =0
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-APPENDIX B

A STATE NOISE MATRIX

FOR A SATELLITE NOMINALLY IN GEOSTATIONARY ORBIT

In formulating the state noise matrix used in ODPAC [Chodas, 1981],
it is assumed that the linearized state obeys the equation

6--->5k+1 = Q(tk+l’ tk)65k1+ e+l (B.1)°

where Sék is the state at time tk’ ® is the state transition matrix and Y
is a sequence of random vectors called the state noise. It is assumed .
that the state noise behaves as white Gaussian noise and obeys the following

relations for all k and j:

4E{!vdk} = 0 S (8.2) e
E{lw, w.} = Q 6, . | (B.3)
-k —j k —kj . ‘

where E{ } denotes expectation, Qk is the state noise matrix at time t and

8, . is the Kronecker delta. Unfortunately, one source of state.noise,

kj
namely, the perturbative environmental accelerations.neglected;in deriving
® (see [Chodas, 1981] and Appendix A) are not random? nor, in general, will

their expected values be zero, as assumed in (B.2). As a consequence, one

should define a modified state noise ﬁatrix
1 u '
Qk - Qk + Qk , : (B4) :

where QE is the state noise matrix in the sense of (B.2) and (B.3) and QE

is ‘the state 'noise' from unmodeled. accelerations.
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[Brogan and Lemay, 1968] derive an eXpresSion for QE, when the -

reference orbit about which the state function f£(x, ¢, t) is linearized,

is geostationary. Paraphrasing, let T represent all of the parameters

affecting the original state function and let &z be the deviation of ¢

from the parameters affecting the reference geostationary orbit (in the

}

same sense as 0x is related to x). Then, the linearized -state equation

becomes
§x = F(t)8x + Z(t)6g | (B.5)."
where
£ = = - | |
P = S5 & L0 | (B.6)
ox ' ' _
2(t) = g—ff % L v N N0

and Qg, E)iare the reference values for (x, g). The solution to (B.5),

assuming ‘time is discretized, is

6_)_(_1(.,.1 = (I)(tk+1’ tk)é—)sk + qk+1 ’ o »‘ .(B.S)
where ' ' ‘
?k+1 ‘ _
41 © J o(t, > DZ(Dg(Ddr  ~ - (B.9)
tk o

In reality, all the ¢ may not be identifiable and there may even be &g

components of which the analyst is unaware (the unknown unknowns). In the

- first case, the best one can hope for, if all the perceived 8¢ cannot be

identified or modeled, is that their contribution Z(t)dg(t) to.the linear—‘
ized state equation can at least be determined. In the second case, the

best one can do is assume a noise term such as L in equation (B.1) to

-compensate -for totally unknown quantities.
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For the present situation, assuming the only paraméters not grouped in
a term such as W1 @re those which produce the perturbative unmodeled

accelerations da(t), then
2(8)85(t) = [0, 0, 0, Cg Sa(0)]' (8.10)

where the components of da(t) are expressed in the orbital frame FO, defined
in Appéndix‘A.> Hencg, the intfodugtion of the rotation matrix CiO which
\relates the frame Fo to inertial space-EI [(A.3) of Appendix A]. Presently,
(B.9) is assumed to be written in inertial coordinates.. This ié nece;éary
because, of the various coordinate systemé available within ODPAC, an

inertial one provides the most convenient mode for comparison with GTDS

run results. (The chosen GTDS case integrates in inertial coordinates.)

. Also, the orbital coordinate system FO, chosen for analytical reasons in

Appendix A, is not available within ODPAC. Unfortunately, the integrand
of (B.9) is most easily evaluated for ¢ expressed in Fou' The most useful

form [given (A.19)] is, therefore,

t .
k+l— I _
K+l . ~ o : |
tk CIO¢vr(tk+1’ T)Col CIO¢vv(tk+1’ T)COI : CIO da (1)
t .
k+1 A
Cind... (t, +, T)Sa(t) ‘ |
= I0"rv " k+l dt - A .11)
t Croyy (tas 02T ~

k

‘Now, for state update intervals At = (tk+1 - tk) which are small compared
to the 24-hour period of the reference geostationary orbit, da(t) can be
approximated by a constant average value da over each At. Fﬁrthermore,

it is reasonable to assume n to be quasi-static for small At, so that
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setting n equal to its average value over the inteirval enables C_. to be

10
taken outside the integral in (B.11). Finally, for small At, ¢rVI(A.16) :

and ¢vv (B.18) can be approximated by retaining only terms linear in

At. Given these three approximations, (B.11) becomes

B 2
SaXAt /2
Sa_At?/2
a, /
_ 2
CIO 0 GaZAt /2 .
Qg = 2 (B.12)
- Jk+1 0 Sa_At + wda_At
. CIO" X y » :
Sa_ At - wda_At?
y X
da_ At
z
The matrix Qu is then found by forming
k+1 -
E{q 'qT} =Q .8 ' | | (B.13)
“k+1 & k+1 "k+lj

where (B.2) no longer applies in general. Now, assuming E{éa#z} = E{ﬁayz} =
21 _ 2 _ - ) - ) . .
E{cSaZ } = 0,® and that E{GaX Gay} = E{da Gaz} E{cSax Saz} 0, substituting

(B.12) into (B.13) yields

Q Q _
Q§+1 ="Ga2 = TV : (B'14)
QVl‘ QVV )
where
At*/4 0 0
. — L
Q. = 0 At*/4 0 (B.15)
0 0 Att/4
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At3/2 o —wAth)2 0
: T
= 4 - 3 - .
Q. = wAt*/2 At3/2 0 = Q. (B.16)
N 0 0 Atd/2
T At? (1+w2At?) 0 4 0
Qy = .0 At (1+w2At?) 0 . (B.17)
0 0 T A2

One last observation must be made before (B.14) can be used as a state

'noise' model in ODPAC, where the state noise matrix is assumed proportional

to At. That is, ODPAC evaluates

Q = Q'At - , (B.18) .

where Q' is stored in SNC. Hence, to use (B.14) in ODPAC, Q§+1 must be

divided by At prior to being stored in SNC.
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In this appendix, some point-form comments on the problems, limitations.

APPENDIX C

SOME COMMENTS ON ODPAG

and advantages of ODPAC [McPherson and Copeck, 1980] are summarized.

The ODPAC simulator-file storage system was found to be limited.

It would be useful to have the capability of inputting the true

state trajectory from an external disk file or .tape.

The available integration schemes are limited.

The interactive feature is very helpful in learning the system

. and for runs of reasonably short duration; however, for long runs

" the batch facility was found very useful.

The commands are well designed, easily learned, and easy to use.
The user's manual deserves equal praise.

The inability to change or enter only selected elements in the true-

‘and estimated state vectors, and in the error covariance and state -

noise matrices, is a large inconvenience.
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