RAP 2

AN ASSOCIATIVE PROCESSOR
FOR
DATA BASES

S.A. SCHUSTER
H.B.NGUYEN
E.A. OZKARAHAN
K.C. SMITH

FINAL REPORT TO DOC - CONTRACT 0SU5-0205

UNIVERSITY OF TORONTO
JANUARY 1978

/RAP A 2

. . G
/ FAPT o u e I MA.:E_J.@
e s

‘fy‘/{m’&"’b“@y{) E{M sl j—&%w !
4 ok ‘,/LA@O'\:'!" Is DboC /

Industry Canada
‘Librarv Queen

3L 2 2 1998

Industrie Canada
Bibliothaque Queen

ML S s o ALK e

u

ARY -~ BiIBLIOY

"TABLE OF CONTENTS -
' ‘ e 0, ORI

1. INTRODUCTION .

" 1.1 DATA BASE MANAGEMENT SYSTEM nzoummrrs
1.2 PROBLEMS WITH CONVENTIONAL IMPLEMENTATIONS
1,3 THE ASSOCIATIVE/ARRAY PROCESSOR APPROACH
1.8 BASIC ARCHITECTURE OF RAP

2. THE ABSTRACT MACHINE
© 2.1 DATA STRUCTURE
2,2 'INSTRUCTION FORMAT . .
2.3 DESCRIPTION OF RAP INSTRUCTIONS
2.3.1 sELecrion
. . ’ - 2.3.2' RETRIEVAL .
' 2.3.3 STATISTICAL COMPUTATIONS .
2,3.4 upDate
2,3,5 INSERTION AND DELETION .
2.3.6 DATA DEFINITION .
+3.7 REGISTER MANIPULATION
2.3.8 DECISION AND .TRANSFER
2.4 SUMMARY OF PERFORMANCE

3. IMPLEMENTATION
3.1 wistory
3.2 PuySICAL DATA ORGANIZATION
. . 3.3 GLOBAL ARCHITECTURE AND COMMUNICATIONS
v 3.4 INSTRUCTION SET EXECUTION
: . ' : . 3.5 ceLL sTRUCTURE
;) . : 3.6 some sTATISTICS

J L. o 4§, DBMS UTILIZATION OF RAP

; 8.1 SYSTEM ORGANIZATION
4.1.1 RAP AS AN ACCESS PATH PROCESSOR
8,1.2 DATA BASE PARTITIONING |
4,1.3 PAGING AND VIRTUAL MEMORY

8,2 SUPPORTING MULTIPLE LOGICAL VIEWS

8.3 A NOTE ON PROTECTION, SECURITY AND INTEGRITY

5. RAP AND COMMUNICATIONS
5.1 COMMUNICATIONS PROBLEMS
$.2 THE INHERENT CONFLICT BETWEEN DBMS AND
© GENERAL-PURPOSE COMPUYING
5.3 RAP AND COMMUNICATIONS
s.n DATA BASE PROCESSORS AT THE NODES OF A COMMUNICATIONS NETWORK
:) 5.8.1 A socretay PRosLen
; . “ 5.4.2 a TECHNICAL PROBLEM
. . S.4.3 A ToTaL soLuTiON
S5 RAP IN A COMMUNICATIONS EHVIRONMENT
5.5.1 REMOTE DATA BASES
5.5.2 DISTRIBUTED DATA BASES
$.5.3 PRIVACY AND SECURITY

€. ACKNOWLEDGMENTS
7. REFERENCES

8. DESIGN/PERFORMANCE APPENDICES
. , 8.1 map 2 - czLL LosIc DESIAN
i ' 8.1.1 cEneraL
' 8.1.2 PUNCTIONAL DESCRIPTION

8.1.2.1 roarc piaram -1

8.1.2.2 Los1c DIAcRAM L-2
-LOGIC DIAGRAM L3
LOGIC DIAGRAM L-U
LOGIC DIAGRAM L=5
LOGIC DIAGRAM L-B
LOGIC DIAGRAM (-7
LOGIC DIAGRAM (~8
LOGIC DIAGRAM (-8
LoGIC DIAGRAM L-10
LOGIC DIAGRAM L-11 anp L-12
LOGIC DIAGRAM L-13
L08IC BIAGRAM L-14
LOGIC DIAGRAM L-15
LOGIC DIAGRAM L~16
LOGIC DIAGRAM L~17
LOGIC DIAGRAM L-13
LOGIC DIAGRAM L-19

-
-
-

Py
° @
-

ENGhrtkEEweNansw

©0 60 50 00 09 00 00 00 £0 00 0O 0O 0O 0O 08 00
Puu—uwuuv—-rwu.—-o—-o—-up
Mo RBMBOROBNRBBRRDLS

8, 8.1 8.1.3 vLisT oF s1GNALS USED IN LOGIC DIAGRAMS L-1 o L-19
8.1.4 vocic pragrams L-1 THROUGH L-19
8.2 RAP 2 - 3YSTEM CHARACTFRIZATION AND MEASUREMENT
8.2.1 oveaview
8.2.2 SOFTWARE CHARACTERIZATION
8.2.2.1 DEFINITION OF CHARACTERISTIC TIMES

COMPILATION TIME
INPUT FORMATTING TIME
OUTPUT FORMATTING TIME
RESPONSE TIME

8.,2.2.2 MAJOR PROGRAM STEPS
8.2.2.3 'PROCEDURES FOR TIME ESTIMATION
8.2.2.9 SOFTWARE COMMUNICATION = BLOCK DIAGRAM
. 8.2.2.5 EXECUTION TIME ESTIMATES
. 8.2.2.h DEMONSTRATION QUERY STATISTICS
8.2.3 MARDWARE CHARACTER1ZATION
8.2.3.1 MODULE DEEINITION
UNIBUS
‘DMB INTERFACE
b CELL INTERFACE
: CELL I, I

8,2,3.2 HARDWARE COMMUNICATION - BLOCK DIAGRAM
8.2.3.3 .DMA RaTES
8.2.3.4 RELATIVE SPEEDS

8.2.84 Rpap DEMO

8.2.5 DATA MANAGEMENT BY RAP

‘9, MISCELLANEOUS . T
9.1 DOCUMENTATION CATALOGUING SYSTEM
9.2 INTEL PRODUCT PROSPECTUS “A DATA BASE COMPUTER”
9.3 rHoTOGRAPHS .

9,3.1 AP CELLS AND MEMORY
9.3.2 RAP cONTROLLER - PDP 11/0§
9.3.3 HOST MACHINE - PDP 11/45 . :
9.3.4 RAP 11 =~ CELL BOAPDB
ALY
oPcope 111
FORMATT 1
PORMATY 11
1/0 Burren
CONTROLLEP [
CONTROLLER 11
DATA MANIPULATOR

9.3.5 _RAP 11 - MEMORY BOARDS
CONTROLLER (FOR 1,5m B(TS)
nemory (320x BitTs)

9,3.6 mAP IT - [NTERFACES
CELL TO CONTROLLER
CONTROLLER TO HOST

9.3.7 SOME OF THE RAP TEAM (SROM THE LEST NGUYEN,
PEREIRA, PATKOW, HUDYMA, SMITH, SOONG, SCHUSTER,
RADACZ, HAWKINS, KLEBINOFF.

0, OVERVIEW ° S 0.0.0

0. OQVERVIEW

0.0.0. Overview

This report is intended to summarize, in a modest way, a jor effort
conducted at the University of Toronto by the Computer Systems Research Group *
with staff and students of the Department of Computer Science, the Department
of Electrical Engineering and staff and resources of the Computer Research
Facility (CRF). The project received direct support of $199,065 via the
Department of Supply and Services (DSS) and the Department of Communications
(DOC) of the Government of Canada. In addition it has benefitted by close
relationships with a variety of individuals and organizations who have
provided a great deal of assistance both motivational and tnagible. Very
high on the long 1ist of individuals and organizations are, Dr. A.R. Elliott
of the Department of Communications, Dr. R.F. Webb of R.F. Webb Corporation LTd.
and Gordon Moore of Intel Corporation.

. Direct costs of ;he RAP project from all sources including those
supported by National Research Council (NRC) operating grant funds are
estimated to be $218,000. Not included are expenditurés by DOC on market
studies through R.F. Webb Corporation Ltd. and by INTEL on various associated
studies (see Section 9.2).

‘The RAP préject itself occupied an elapsed time of 23 months following
the original 15 month period of definition by E.A. Ozkarahan in preparing his
Ph.D. thesis entitled."An Associative Processor for Relational Data Bases RAP",

presented in Jaunary 1976. A total of 21 persons worked on the project at
the'University of Toronto praviding a total of more than 12 man years since
1975 and 1 1/2 (largely by EA) before than time.

The summary presented here is a very brief distillaion of a large
amount of documented concept, design, experiment, and interacion with others.
Estimates of its statistics include:

a) A 350 page thesis.

b) 6 CSRG reports of 225 pages in total.

c) A categorized documentation system estimated to hold 1,500 pages.

The cataglouging system and table of contents is included in
Section 9.1 for interest.
d) 8 conference/workshop presentations.

0. OVERVIEW . | 0.0.9

e) 6 papers published in journals/proceedings, of 60 pages in
total.

f) Visits by RAP staff to 18 organizations as part of an industrial
liason program leading to the study reported by R.F. Webb.

g) Visits by 30 individuals from 10 organizations to view the
RAP work.

h) 75 written enquiries and requests for RAP information.

i) 15 interim/progress reports to DOC.

~ §) 12 terminal demonstrations of RAP locally.

k) 1 terminal demonstration of RAP elsewhere.

1) 3 M.Sc. completed.

m) 1 Ph.D. completed.

The present status of RAP is a physical system demonstrable within the boards
of timescale and availability characteristic of a multiple user system of
the computer-hardware consisting of:

1) One communications-linked input terminal running SEQUEL or RAP
connected to a: A ,

2) PDP 11/45 well-equipped proceésor running UNIX, connected to a:

3) PDP 11/10 controller via a 100 foot, 3 byte-paralle link,
driving a:

4) CELLBUS with 250 cell capacity to which is attached:

5) Two CELLS each having: '

6) CCD Memory of 320K bits'capacity, all controllable also from

7) an input terminal to the PDP 11/10 controller communicating in
RAP ASSEMBLER.

Read on!

s b AT e i

1. INTRODUCTION - " 1.

1. INTRODUCTION

RAP - a Relational Assogiative Procéssor - is a back-end or peripheral’
device designed to augment a general purpose computer for implementing a data
base management system (DBMS). TIts architectur-e is dased on the fact that

data base operations are inherently set-oriented and data base addressing is best
| accomplished through associative reférence to achieve high'data independence. RAP
utilizes these characteristics by combining the features of associative and.array
processors. _
Previous publications on RAP'have dealt separately with the details of the first
version of its architecture (1,2,3,4), language interface (5,6,), and performance
evaluation (7,8,9,). Also, these topics were discussed strictly from the point of
view of the relational model of data. This reportprovides details on the recently
evolved, faster, and more flexible architecture‘and discusses RAP's applicability to
a wider rangeuof data base models and its various uses and roles within a complete
DBMS implementation. Further its role iﬁ communications is highlighted.
In this {introduction, we will try to motivate the need for a RAP-l1ike device in DBMS
~ implementations. First, we review some important requirements for these systems. A
discussion follows of the limitations of conventidnal-éomputers in meeting these require-
ments. The philosophy of using array/associative machines for data base management
{s then presented. The introduction concludes with the global organizatioh
of the RAP processor.
1.1 Data Base Management Systems Requirements

Data base management systems attempt to isolate the details of data storaée

ind'manipulation from the app1ic$tion programmers that use the data (10). This is
accomplished by providing users a logical view of a data base distinct from the
details of its physical realization, a query or data manipulation language by which

users can specify or program the retrievals and .updates of data,and a data definition

1§nguage to define and control access to data.

N

1. INTRODUCTION | 1.1

The success to which DBMS can realize the above goals depends heavily upon meeting

the following three important requirements. First, query languages must be sufficiently
high-level and powerful to permit non-procedural spccifications of complex data

‘manipulation. Such languages allow users to specify manipulations in a set-oriented

' fashioﬁ (e.qg., retrfeve or update all employees...) and addresses of the data

associatively by qﬁa]ifying jtems stored in the data base (e.g.,... employees who

work in the}furniture department). The higher the level of query language, the

faster and easier it is to code understandable and reliable application systems.

Also, high-level query languéges can easily be extended to provide stand-alone interactive

facilities to users, e.g. engineers, physicians, financial analysts, etc., who are not

computer specialists but who are technica]]y‘oriented‘and specialize in the semantics

of the data being processed.

Secondly, fast response is required~becadse the majority of DBMS wi]]lbe required

to operaté in on-line and concurrent useF environments which support users at terminals,

batch application programs running within multi-tasking systems, and communication and
networking systems providing access to distributed data bases.

| The third requirement concerns the tecﬁnica] adminigtration of data base systems.

The separation of the logical view of d.ata‘from its physical reality, as provided by

data base systems, forces the responsibility of providing efficient performénce to be
delegated to the data base administrator of the system. This responsibility was

| originally distributed over several users and distinct file processing systems. Now

the data base administrator must make decisions, often conflicting with 1ndividua1

user requirements, for all users. The complexity of this task is enormous in

current implementations. It is imperative that tuning of data base systems be

effectively and easily achieved.

1. INTRODUCTION | 1.2

1.2 Problems with Conventional Implementation

Using conventional computers and traditional secondary memories to implement
data base systems makes it difficult to realize the requirements of data base
. systems and contributes greatly to the high cost of using data bases. The

problems of conventional computers arise because of their processing and

addressing structure. Conventional machines are designed to process data serially ?
(i.e., the execution of one instruction on a single data item at a time) and ?
;hat accessing of the data te be processed is accomplished by specifying its ' v
(location or hardware address. Unfortunately, this is in direct conflict with
set-oriented processing and associative addressing in data base systems.
The lack of set-oriented and associative features in conventional 4]
architectufes force the implementors to achieve equivalent operations by J

'simulating them with software. Accordingly, to implement efficient access to
a data base, large complex programs must be written to provide mapping
mechanisms that map the users view info the struéture of the hardware and
- provide access paths to facilitate fast location of arbitrary portions of the
data base. Access paths refer to both indgxing data and software
designed to provide access to specific items of the data base. Additional .
software must also be provided to maintain access paths. Some of the problems caused
by the use of access paths and mapping mechanisms in conventional computer
jmplementations of DBMS are:
a) Unbalanced Performance: . '
Access paths provide fést retrieval of data at the expense of slower
updates because updates to the data base must also be reflected in the

access paths.

b) Poor Generalized Performance:
Generalized systems based on access paths rely on multi-level software

do not permit sufficiently tunable generalized systems that respond to

1. INTRODUCTION | L2

widely varying applications in dynamic user envircnments.
¢) Reduced Potential for Exploiting Concurrency:
Because access paths must be updated whenever the data base is modified,
- they become additional critical resources that require synchronization
to avoid ‘interference in a shared environment. The additional synchronization
adds'overhead to a data base system.
d) Reduced Reliability:
System failures, especially during updates, can cause the access paths
and mapping mechanismé to become inconsistent with the data base. Detectioh
and recovery can be very complex and time consuming.
e) Extra Storage Requirements:
Access paths are often implemented by "inverting" the values occurring
in the data base. This technique organizes the physical addresses of data
jtems into search data base creating a second data base requiring extra
storage.
f) Software Complexity:
As a consequence of added datd structures for implementiﬁg access paths
and mapping techniques, large complex software is required that is unreliable

and dificult to maintain and administer.

A major consequence of these problems is that only those queries whose formulatioh
were preconceived can be conveniently and efficiently processed. The result is that
general purpose data bése management systems, which must meet the requirements of
many applications over broad user environments, perform in a limited fashion in
practice.' The traditional approach to solving the performance problem has been

to acquire faster CPUs and larger primary memorigs at, of course, tremendous expense.
Clearly, this solution does not solve any data base administration problems.

1.3 The Associative/Array Processor Approach

A solutiaq to the limitations of conventional computers for implementing

1. INTRODUCTION ‘ - 1.3

and administrating a DBMS would be to establish a computer architecture
that eliminates, or, at least, reduces the dependency on complex software. The new
architecture should close the gap between the users logical view and processing

* requirements and the way the data is represented and processed physically. This
can be partially accompliished by utilizing a high degree of parallelism for both
processing and addressing. If the parallelism is achieved by repeated ceflular logic
each operating on its own memory, then the data base system requirement of performing
the same operation on many data item operands can be efficiently accomplished.
Iﬁexpensive associative memories can be achieved by using block addressable
serial memories and searching their contents at high speed 1n.para11e1.

Furthgrmore. if such device were designed to augment, rather than replace, a
conventional computer, it would have a greater chance of overcoming the natural resistanc:
to a radically new technology by providing a evolutionary approach to total DBMS
architecture. Other benefits of moving the majority of data base processing to a
back-end organization can be found in (11). We will discuss them with respect to RAP
shérfly. Designs other than RAP, that preséribe to this approach in various degrees,
can also be found in the literature (12-16). ‘ |
1.4 Basic Architecture of RAP

The basic architecture of a RAP device consists of a "chain" of parallel
components called cells, a statistical arithmetic unit, and central controller.

Tﬁis organization 1s‘shown.in Figure 1. Each cell is composed of a processor.

and block addressableimemory. The processor is specifically constructed for data

base definition, insertion, deletion, update, and retrieval primitives. Logfc for

each pfocassor has been designed to be compatible with LSI circuit implementation
technology. The mgmory can be 1mp1ementeq by a rotatiné magnetié dgVice such

as the track of a disk or drum, semiconductor CCD, or bubble memory. The statistical:
arithmetic unit is designed for coﬁputing summary statistics (e.g. totals, averages, etc.

over the combined contents of the cell memories. The controller is responsible for

7.v

1. INTRODUCTION o © L

receiving instructions in RAP machine format from a general purpose front-end,
>£omputer'. decoding them, broadcaéting control sequencés to initiate cell execution,
~and passingretrieved or inserted items between the front-end and RAP. Each RAP
instruction is execute& within the cells whi.h operate in parallel directly on the
data; Simple intercell communication for priority polling is implemented along
the chain. Each memory contains data formated into a sequence of records containing
values of data items. The details will be given shortly.
A cell is composed of several logic units. The most important being involved
with searching. Several coqparitor elements . form. the basis of the associative
"addressing architecture of a cell. The comparitors can independently test the contents
of one item 15 the data base again;t seQera1'1iterals or several items each against
different 1iterals. The true or false results of comparison tests on a record can be
combined into a disjunctive or conjuctive result to determine if the‘recoéd associatively
‘qua]ifies for further manipulation.
The front-end computer supports high-level user functibns. It interfaces users to
to RAP by supporting communications via interactive terminals or through programming
language CALL and 1/0 statements for qpp]itation programs running in batch multi-

programming operating systems. The trgnslation of various query languages into RAP

programs will also be accomplished in the front-end. Data base system software responsib”
for coordinating multiple and diverse secondary storage devices other than RAP, schedulinc
of queries, and maintaining protection, security, and integrity must also be supported

in the front-end but can be afded by the data processing capabilaties of RAP.

(Ko

L 4
L J
L 4 - ®

TERMINALS

N

FRONT-END
CONVENTIONAL
COMPUTER

R.A.P.

- CELL 1

micro
processor

CONTROLLER

EXECUTING
PROGRAMS

STATISTICAL
ARITHMETIC
UNIT

[

CELL N

‘T

NOTLINCQOYLNI

'l

2. THE ABSTRACT MACHINE 2.

2. THE ABSTRACT MACHINE

The RAP system has a machine-brignted yet high-level and complete instruction
set for manipulating its data base. Mogt macro-assembler instructions correspond to
one machine instruction which involves severa! cell micro-code instructions. "In this
secfion, an explanation of the RAP macro-assembler instructions will be presented.

A programmers view of the RAP data structure will be given first. Then the basic
structure of a RAP instruction will be given followed by the description of each
individual instruction.

2.1 Data Structure

From a programmer's vieh, RAP stores data as unordered occurrences of
records defined by a RAP relation as shown in Figure 2. A relation can be
envisioned as a formatted table of data where rows of the table represent a set of
record occurrences sometimes called _tuples in relational terminology. The
occurrences of'a relation‘stores data aBbut a set of similar entitie§ (e.g. persons,
places, things, or relationships). The héme of a relation identifies the set of
entities. The format of record occurrences is defined by naming the data items
. whose concatenated values occur in each record and specifying their length. The
length of each item in the relation is'fixed according to a users .choice of one
of several sizes. Each occurrence of a relation stores data which describes a
particular entity by dssigning a value to each of the items according to the format
of the relation The values are treated internally as simple bit patterns for
non-nuneric data and as integers in twos - complement format for numeric data.

Each relation and its occurrences are augmented by seQera] special one bit
items called mark bits. These items can be set to 0 or 1 under user control’
through various marking instructions or by the intermediate operations of other
instructions. The bits are used primarily as a work area to temporarily indicate
" subsets of record occurrences so that the results of one instruction can be used
in subsequent instructions, This is done by treating the mark bits as normal data

items to be tested during associative addressing.

10

2. THE ABSTRACT MACHINE 2.1
amouss § [peaen] [reww | - - - [P

| <tew. No>
L { S RELATION NAME S
.. .FORMAT & : A
IDENTIFICATION Mg oo e |tY <mmi?1§> e 4{/75%
[0V eso | [] XXXX | <e0 159,99
RECORD
OCCURRENCES |
| L
. -
\

RAP - RELATION

FIGURE 2 - RAP LOGICAL DATA STRUCTURES

11

2. THE ABSTRACT MACHINE 2.1

\

The occurrences of a relation‘can occupy one or several cell memories, but’
each cell can only store occurrences from one relation. Therefore, a single
RAP device can contain occurrences from one large relation or from N relations,
one for each of N cells. The programmer of a query need not be aware of the
cell location or number of cells occupied by the relations. However, there are
occasions, such as during garbage collection or bulk loading, where the usér
needs to control the device at a cell level. To permit this, a user can refer
to registers containing an ipteger address for each cell.

Several registers are also available in the controller. These can be

“used to store intermediate computations or retrieved data from relations and
used as search va]ueé or tested in subsequent instructions to executed complex
queries.

A RAP relation is an intermediate-level abstraction of large data bases.
Although it has a flat tabular structuré, it is not quite relational as defined by Codd.
For example, duplicate records are permitted and their existence is not automatically
detected. There are physical limitatjons on sizes and numbers of items. Also, the
special hardware oﬁerations for mark bit manipulation is a form of hardwired "access
method” that a user must control via program instructions to select desired data
for further processing. What RAP does is to prdvide a data view or model fhat is
high-level but flexible or general enough to easily support software implementations
of set-oriented versions of common user views such as hierarchies, networks, qnd
relations. An outline of how RAP can do this is presented later.

2.2 Instruction Format

The general format of most RAP instructions is:

<label> <opcode> <mark option> [<object> : qualification>) @parameter>)

Exceptions will be noted as they arrive. fhe label is an optional symbolic
fnstruction address, the opcode specifies the data manipulation operation.

A mark option can take one of the following forms:

2. THE ABSTRACT MACHINE | 2,2

a) <null>, {mplies no marking is done. o
b) MARK <bit specification>, Sets (to 1) the mark bit data items
specified in the bit specification o” the yualified tuples.
c) RESET <bit specification>, resets (to 0) the mark bit data items specified
by the bit specification of the qualified tuples.
The individual mark bits will be donoted M1, Mé, «<«s Mb where b is the hardware
parameter 1imiting the number of mark bits. A bit specification i; simply a
1ist of mark bit names. An object has one of the following formats and is used
) ~ primarily to specify which c;IIs are to be manipulated by the {nstruction:
a) {01, :-:,0s) where Rn is a relacion name and (D1, D2,...Ds) is a 1ist of data
{tem names associated with relation Rn. The data item 1ist is optional
or not relevant in many instructions. The index s is a hardware limit
on the number of domain names that can be included for certain instructions.
b) List of cell address, CELL(1), Qhere i the integer address of the i-th cell.
A qualification in the RAP instruction format can take one of the following forms:
a) <nu11>,1mp1yiﬁg évéry'tuple qf the relatipn qualifies.
b) Q1& Q2& .Q3 ... &Qg:denoting the conjunction of simple conditions Qi.
c) Q1 1Q2 1Q3 ...1Qp denoting the disjunction of simple conditions Qi.
.§~;-A simple condition Qi can be any one of the fbl]ow1ng:
a) <Di> <comparator> <operand>
where i) Di is a data item name
1) comparator is one of:=,#,<,<,>,>
. - {i1) operand is one'of REG (1), <integer>, "<11tera1>', where REG(1)
reférs to the contents of the i-th controller register.
b) MKED (Mi) denoting the mark bit test Mi = 1.

c) UNMKED (Mi) denoting the mark bit test Mi = 0.

d) CELL (1) indicating that the cell address is tested as part of the

'qualification.

2, THE ABSTRACT MACHINE 2.2

‘A qualification has certainvrestrictions which are not appa;ent from the
description of its syntax. A qualification can have at most k simple conditions
of type (a) (i.e., data item comparisons) andésimple conditions of types (b)
and fc). Only one simple condition of typey may be included in any qualification.

The format of parameter varies greatly and will be explained along with each
1nstrucfion that. requires additiona] information not supplied above.

2.3 ription of RAP Instructions
2.3.1 Selection
Select:

<label> Select <mark option> (Rn : <qualification>)

This instruction selects qualified tuples ffom the relation Rn and sets or resets
the mark bits of these tuples according to the mérk option given. For example,
the instruction: . | '

Select Mark (MIM2) (R1 : DI = 'a')
will set mark bits M1 and M2 of tuples in Rl which have D1 = 'a'. Whereas the
instruction: ‘) S

Select Reset (MIM2) (Rl : D1 = 'a')
will reset the mark bits M1 and M2. A null operation occurs when the mark'option
{s omitted. '
' Cross Select:

<label> Cross-Select <mark option on RI> ('<k1>3<Dl> “<comparator> <R2>.<D2>)

(<R2> <mark option on R2> : <qualification>)

This instruction involves opergtion between two relations called source (R2) and
target (R1). It works 1ike a repetitive select instruction on the target relation
with the except%on that qualification for egch éeIECtion is obtained from the source
relation data item values. That is, in order to select a target relation (R1)
tuple, the items DI éﬁd D2 respectively of targef and source relation must Have
comparable values (i.e., values from thé same. domain) that satisfy the comparison

between them.

L

2. THE ABSTRACT MACHINE | 2.3

_ The source tuples participating in the comparison are those which satisfy the
second qualification.
For example: | . : ‘ _ .

Cross_Select Mark (M2) (Rl : D1 < R2.D2)

| (R2 Reset (M1) : D4 = 8)

Source tuples partic1patipg in the comparison are those which satisfy the
‘qualificatiqn D4 = 8. Notice the M1 mark bit of the participating tuples of
the source relation will Se reset due to the mark option on R2. In order for
tuples of R1 to be M2 marked, it must have values of the D1 {tem. less than the
.‘value of one D2 item of the participating source tuples. To further illustrate

. this, suppose R1 and - R2 have the following values:

Rl (target relation) . R2 (source relation)
" Tuplé # | DI - | - - Tuple#|D2 | D4 - -
1] 15 ' 110 7
206 | 2l 4} 8
-3 9 31 11 8
4 30 '
5 T

The participating source tuples are tuple 2 & 3 from R2 since théy satisfy the
condition D4 = 8. The tuples of the target relation that will be M2 marked are
tuples 2, 3 and 5 because they meet the condition on R1 that D1 < R2.02. A null
operation will result if both mark options of R1 and k? are missing. A
2.3.2 Retrieval

<label> Read-All <mark option> (Rn (D1, ..., Ds) :‘<qua11ficationi) {<work area$j
This 1nstructibn transfers data from all tuples of Rn satisfying the qualifications
to the supporting processor's storage address as.speéified by work area.. This could -
be a seugence of primary memory addresses or a file designation. If the object '

data item 1ist is present, only those item values are read out, otherwise, the

2. THE ABSTRACT MACHINE -~ 2.3.2

entire eligible tuple is transfered. If the mark option is present, the mark

bit items of the eligible tuples will be set or reset according tb the given

mark option. For examplie: i ‘
Read-A11 Reset (MIM2) (Rl (D1,D2) :mked (M1) & mked (m2) & D3 = 10} (file.0)
Eligible tup1e§ in this case are those which are MiM2 and marked and have D3 = 10.

Notice only DI and D2 of e11§1b1e.tup1es will be read into file .0. Ml and M2 ' {
mark bits of the eligible tuples will be reset. o

_Read:

<label> Read (n) <mark option> (Rn (D1,...Ds):<qualification>) (<work area>) §
- This instruction is very similar to the Read-A]]Iinstruction, except that only _ ' ?
data ftems from the "first" n or less cualified tuples are transfered to the
supporting processor's storage location. The mark option will only be exercised i
on the tuples that are transfered. | . |
Save: e o
<label> Save (n) <mark option> (Rn(b],..:,Ds):;qualification>) (<register list>)?
Save (n) transfers data items from qualified tuples of a relation to registers of é
the RAP controller. Only items from the "first" n or less eligib]é tuples are
transfered. If the mark option is pfesent, the mark bits of the‘tup}es will be set
_or reset accordihg to the mark option; If the data element list is not present, !
the entire tuple will be transfered, otherwise, only those items in the list are
read into the registers. Values will be storedﬂleft'jhstified and paddedlon the

right with blanks. Data elements with arithmetic domains will be assumed to be a

fixed word length in twos-compliement format. v
Register 1ist can take on any combination of the following 2 forms: .
a) Reg (1), Reg (4)...., Reg (k) |
b) Reg (i) - Reg (j), 1< L
where Reg (i) - Reg (j) means Reg (i), Reg (i + 1),..., Reg (j). The transfer is

done in the order given, that is, the first item in the object 1ist is read into

the first register designated in the register 1ist. second item into the second F

16

2. THE ABSTRACT MACHINE - 2.3.2

register, etc. The n items are read from each tuple, the first item of the second
. eligible tuple will be read into the n+l register in the register list.
Read Reg:
<label> Read Reg (<Reg_list>) (<work wrea>)
This instruction transfers contents of the'specified RAP registers to the
supporting processor. Register 1ist has the same format as the register list
in the save instruction.

2.3.3 Statistical Combhtations

Sum, Count, Max, Min:

<label> <sopr> <mark option> (Rn(Dn):<qualification>) (Reg (1))
where sopr is one of the statistical functidn operators sum, count, max or min.
The opcode count counts eligible tuples in the relation Rn and places the result
in the register specified. (Dn) is omitted for this statistical function. The
other instructions compute the spécifigd function over the numeric domain of item
Dn from qualified tuples. Mark bits of the qualified tuples can be set or reset
by the presence of the mark option..
2.3.4 Update . ,

<label> <opr> <mark option> (Rn(Dn):<qualification>) (<opd>)
where opr is one of the operators add, sub or replace and opd is either a constant,
a data item name, of a RAP register. Item Dn in every eligible tuple is bperated
on by opr. Like previous instructions, the mark bits of the eligible tuples can
be set or reset by the presence of the mark option.

~ 2.3.5 Insertion and Delection

Delete:
<label> Delete (Rn : <qualification>)
Tuples of relation Rn qualifying for deletion has their delete flag bit set

. causing the tuple to be ignored in subsequent vperations.

2, THE ABSTRACT MACHINE p 2.3.5

" Colgrbg:
_ <label> Colgrbg (<relation list> and/or <cell list>)
This instruction initiates the physical deletion of all delete-flagged tuples

of thelisted pelationsand/or listed cells. Tre datu is packed towards the

- beginning leaving garbage accumulated towards the end of the cell memory. The
cell 1ist has the same format as a register 1ist. The relation list has the
following format:

(R1, R2, ..., Rn)
Space Count:
<label> Space_Count kRn : <cell Tlist>) (Reg (i))
" This instruction will examine the cells uf relation Rn and returns a value
indicating the number of ava%lable spaces in these cells. This value is

stored into the given register. Available spaces include both empty tuples

and the delete-flagged tuples{ If the optiona1 cell list is present, only |
those cells in the cell 1ist will be exahined. A1l cells in the cell list g;
must belong to relation Rn. This iﬁstruction is usually used to test for E%
space before an Insert instruction {s used. |
Insert: . S i
<label> Insert (n) (Rn : <cell 1ist>) (<work area>)
Work area is the front-ehd processor's program stdrage location containing‘the i?
n tuples to be inserted. If the optional cell IiStvis given, the n tuples will
be inserted in those cells only. There i{s an arbitrary hardware upper limit
on the number of characters that can be iﬁserted in one INSERT instruction |
‘which places a limit on n. '
. 2.3.6 Data Definition
Destroy:
<label> Destroy ®n : <cell list>

This instruction deletes the tuples, format, and names of the specified cells of

18

2, THE ABSTRACT MACHINE - 2,3.6

a relation. If a cell 1ist is not present, the relation is removed from all the
cells it occupies. A special null relation name is reserved for all blank cells.
© Create: |
<label> Create (Rn : <cell Tist>). (<format$)
Oné execution of this instruction formats each cell in the cell list for
relation Rn. Empty tuples are delete flagged on the created cells. Format
contains parqmetr%c data about the length of the data items stored in a relation.

2.3.7 Register Manipulation

Only registers containing valid integer values will result in meaningful numeric
-computations. All register'arithmetic will assume word length operands on the
left-most bits of controller registers.
Insert Reg:

<label> Insert_Reg (<register 1list>) (<coﬁstant 1ist>)
This instruction will insert the constants into the specified registers. _If
only one constant is present, this constant will be inserted in all registers
of the register 1ist. Otherwise the number of constanfs must match the number
of registers.

Dec Reg, Inc Req:

<label> Dec_Reg {Reg (1))
<label> Inc_Reg- (Reg (i))
The instruction Dec_Reg performs the following operation:
Reg (i) = Reg (i) - 1
The instruction Inc_Reg does the following:
Reg (1) = Reg (i) +'1
Regisfer Arithmetic:

<label> <ropr> (Reg (f)) (<ropd>)

where ropr is one of the operators; Radd, Rsub,. Rmul Rdiv and ropd'can either

be an integer or another register.

2. THE ABSTRACT MACHINE | | - 2.3.8

2.3.8 Decision and Transfer

BC:

- <label> BC <label> , <boolean expréésion of. conditions>

where BC is the abbreviation for "branch on condition". -Condition can be
one of the following :

a) null -- this implies the instruction is treated as an unconditional branch

b) Reg (i) <comparator> Reg (i) |

c) Req'(i) <comparator> <constant>

d) Test (Rn : <mark qualification>)
If the boolean condition is true, branching will take place, otherwise control
1§ given to the next instruction.
Condition type (d) tests each individual mark bit of specified by the mark
qualification separately and if the test is met for at least one tuple (rot necesiry)
the same one) of relation Rn then the test is true, otherwise, the test is false.
Mark qualification can be either disjunctive ér conjunctive. For example:

Test (Rl. : MKED (M1) & MKED (M2))
is true if the M1 mark bit is set to one for at least one tuple and the M2
mark bit is set to one for at least.one tuple (not necessary the same one),
“otherwise the test is false. | ’

. B0 :
<label> EOQ

This indicates the end of a RAP progra;r!.

20

e oY

2. THE ABSTRACT MACHINE . 2.4

:2.4 Summary of Performance

Execution times depend on the speed of the cell processor';nd the
capacity of a cell memory. These could vary greatly depending on choice
of technology and architecture of the processor and memory. Therefore, we
give a summary in terms of the number of searches or scans of the memory

are required to execute on instruction.

TYPE OF OPERATION‘ INSTRUCTION EXECUTION TIME (IN # OF SEARCHES)
Selection ' Select S
‘ Cross_Select 1 +:(# of source tuples/k)
-Retrieval : " Read-all = . ,.AAi + transfer time
Read (n) - . 2 + transfer time
Re;d_Reg . .. -0
| save (n) - 2
Statistical Functions P ' BE
| Count ' . 1
Max . | ' 1
o Min | B
~ Update Ad - 1
B Subs . L
Replace 1
Insertion & Deletion Delete ' 1
| Colgrbg 1
Space_pouﬁt ' 1
Insert (n) o
Data Definition Create ' | 1
. Destroy 0
Register Manipulation' : Insert_Beg . 0
Ing_ﬂeg 0
Dec_Reg 0

2. THE ABSTRACT MACHINE 2.4

TYPE OF OPERATION INSTRUCTION EXECUTION TIME (IN # OF SEARCHES)

Radd ' 0
Rsub 0
Rmul 0
Rdiv 0
Decision & Transfer BC 0
EOQ 0
An important feature of the RAP instruction set is that it is relationally
complete. This means that any query expressable by the relational calculus
-Can be implemented entirely within the RAP processor. This eliminates the
need to transfer extensive amounts of data dérived from the intermediate
results of query processing between RAP and the supporting computer.
- It is important to note that each high-level instruction operates on at
2 most two entire relations during its exgcution. The hardware is naturally
locked during an instruction execution. Thus all software schemes concerned
with mutual exclusion of update operation; can simply implement synchronization
mechanisms at the relation level. This eliminates much of the operating system
overhead incurred by conventional implementations. '
Studies have been conducted to compafe the‘hypothétical performances of
the original RAP arcﬁitecture relative to a conventional computer system for
implementing a relational data base (8). Both appoaches were modeled analytically.
The models considered resident data bases for the originalvRAP architecture and
fast access paths in ‘the form of inverted 1ists for the conventional system. The
results show that significant gains in query execution speed can be achieved by
the RAP architecture over the conventional system. Furthermore, the newer archi-
tecture improves this gain substantially. The model studied queries of the form:

retrievals and updates on rows of relations selected with respect to simple and

complex boobon qualifications, retrievals that include statistical criteria in the

22

2. THE ABSTRACT MACHINE | 2.4 |

selection qualification, and retrievals involving the implicit join of two
or more relations. This study indicates that, u.der many ¢ircumstances, . |

on-line retrievals and updates of large data bases may only be possible with ,

. the use of RAP-1ike Systems.

23

3, IMPLEMENTATION o 3l

3. IMPLEMENTATION

3.1 History
The RAP project was started in 1975 in’the computer systems Research Group

ét the University of Toronto in order to impiement a data base system based
on the-on the relational model in hardware. It started with the direct implementation
of the logic specified in Ozkarahan's thesis (4) and in 1976 resuited in a
system (hereafter called RAP,1) consisting of two cells. The RAP, 1 system consisted
of a hardwired controller and “wheré each cell had its .own.memory track where '
a portﬂqn of a relation is stored. The format and timing of.a track is modeled
on disk technology. ‘

In RAP, 1, all compdﬁents of the system were required to be synchronized by
one single clock, all tracks had to.be of. eﬁual Tength, and inter-cell communication
required .data flow between all cells. . Every operation concerning data on the
track took one or many "revolutions”; a.revolution is the time it takes to serially
scan a track. A ’

During the project two important decisions were made to change the architecture
of RAP.1 which resulted in the design.and {mplémentation of RAP.2. First, the
controller was to be implemented by a mini/micrb computer. Second, the data track
was designed around the capabilities of eﬁerging block addressible technology
instead of disk. A ﬁafdwired implementation of the controller was found to be in-

flexdble and speed was not an issue. The Development of a disk system that meets
the requirements of a RAP system was difficult because of synchronization and
error correction problems. Furthermore, there is a widespread belief CCD,
bubbles and/or electrom beam technologies will eventually cause disks to be.

phased out.

The use of a general purpose computer as the controller resuited in\dramatic

changes in the RAP architecture. Due to the f{eXibility of the computer, a major

24

-3, IMPLEMENTATION _ | o 3.1

_redistribution of the work-load became feasible. In RAP.2, the cells are
greately simplified and asked to do only those tasks related directly to
their tracks while the controller takes care of the rest. Because the controller
is inherently slow ahd cannot cope with the speed of the cell, it became
important to decouple cell synchronization from the controller. The new work-load
ﬁisfribut1on also frees every cell from the task of sending data directly to other
cells. This can be done through the controller. Each cell can operate independently
of other celis and the controller. As a by-product each cell can have its own
track length. RAP.2 looks 1ike a conventional computer system with the controf1er
. coordinating the tésks of many cells which are treated as independent peripheral
8ev1ces attached to bus lines. '

In summer of 1977, a RAP.2 prototype of 2 cells and query language software
were demonstrated. Each cell contained a million bit CCD track built from Intel's
2416. The controller was a PDP11/10. The RAP,2 was interfaced to a PDP11/45 as
a pMA . device. To make.the transistion from RAP.1 to RAP,2 as fﬁst as possible,
it was decided that only essential changes were aliowed. Consequently, RAR.2
.1s far from perfect and {its performance can be greatly improved. In this paper we

refer to enhancements not yet implemented as features of a future RAP. 3 system.
3.2 Physical Data Organization

In review, data is organized into files called RAP relations. A relation
1s a collection of records called tuples. Each tuple is a string of many
concatenated fields called data items in some fixed order. The number of fields
per tuple of a given relation is a constant. Every relation and each of its fields
have a name étored iﬁ a compactly coded form. In RAP, the length of each item
must be constant. In other words, all tuples of a relation share a common
FORTRANvlike format. In the RAP,1 and RAP,2 orototvoes each tuple can have up
to 255 domains and the length of a domain can be either one, two or four bytes of
encoded data. In RAP,3, this length can be anywhere from one to n bytes (where
n should be 32 bytes or greater).' Each celf stores only one relation. If a

relation has too many tuples. thev can be allocated in manv cells.

-

25

3, IMPLEMENTATION . 32

" In RAP,T, a cell stores the relation name as well as the cell address
- at the track head followed by iuples separated by géps (Fig. 3). Each gap

must be at least the size of the longest domain and furthermore, must be

such that the block size (i.e., tuple length + gap length) is either 256,

512, 768 or 1024 bits. A tuple is preceded by 7 mark-bits and ended by a

2-bit length code (Fig. 4).

In RAR.?. the cell addre#s is defined by an 8-contact switch set by

an operator. The relatioﬁ_name is stored in a 16-bit register and is defined

by the programmer. Both the cell address and the relation name can be read out.
.The CCD memories of each cell behave 1ike a very long drum with many small tracks
of 256 bits each. Due‘to historical reason, in the remaining part of this paper,
by "track" we mean the entire CCD drum and each 256-bit circumferencé will be
called a minor loop. The format for each tuple remains unchanged except that the
two-bit space between 2 consecutive domains are left blank since all the length
codes are stored in a reéister called the LENGTH CODE RAM. As for gaps,

the only requirement is that each tuple must fit in an arbitrary integral number
of minor loops (Fig. 5). RAP.2°simulates a disk read head by the use of a counter
which poihts to the "current" location. The write head can be ca}cu]ated from
the read head bv using an adder. For most instructions. the write head is one
block behind thg read.head, in some instructions the two heads are identical.
Because of the randomly accessible nature of minor loops, access time is small
(the worst case is 256 bit-times). When a cell is not do1ﬁg anything, it is "on"
the first minor 1oop._ In operation, each instruction requires the heads to scan
Just enough space to complete the job. After an instruction is completed, the
heads immediately return to the first minor loop. Due to fhis property, it is
more apprOpriaté to use the term "pass" or "search" instead of "revolution" to
indicate the time required to do an instruction. In the worst case, a pass is
one revolution. Typically, a pass is porportional to the length of the track

portion containing data. Sometimes, as in data retrieval or insertion, a pass

26

3., IMPLEMENTATION 3.2

Gap | 2nd Tuple | Gap

e

Gap |Cell Gap | Relation Gap | Ist Tuple
Address Name

Fig. 3. RAP,I's data track.

Deerw Fasg
o T RACK-EWD FLAG ,
last I

DF ¥l 12 mh n\é L ot Lﬁ'é‘i'w] k- ¢ Pewi
Ll 1] | 1 U- A7 B et ” L1] 1]
b mark-bus : eé L '_r‘ j Y
. : - delimiter—/

2-bit length codes

Figd. RAP,1 tuple. : '
RAP,.,. still keeps the same tup‘le s space distribution but the 2-bit

spaces after domains are left blank.

.5 25§th sector

1st sector-l : '
' i { | | <+.1st minor.loop
Ist tuple /! '
\ i
2nd tuple \\
' Vi
J."\—*\L\\.L

Fig & RAP,Z "dissected" drum.
Drawing shows a file with 3x256-bit tuples.

.

3. IMPLEMENTATION _ | . 3.2

ends immediately when enough tuples have been retrieved or inserted.

In RAP, 3, storage efficiency is maximized. There is no 1nter-itaq space
and. no gap. A more sophisticated delay.mechanism is employed to write data in
proper spaces. There is a "return from halt” option (analogous to the "return
from subroutine” instruction of some mi croprocessors) that allows the cell to
resume scanning at some previous spot. This option greatly improves execution
time where a very large volume of data is inserted or retrieved.

3.3 Global Architecture and Communications

The RAP,2 system is organized as shown in Fig. 6. There are eight control
. lines and data is exchanged between the cells énd controller via a bilateral
16-1ine bus. There is no direct data 1ink between cells. A DMA link is
established between the data bus of the controller and front-end computer.
There_is a prierity line that runs through all‘cells to allow fast pulling
of individual cells. This is used to control cell access to retrieved intermediate
computation, retrieval qﬁa}ified records or perform bulk loading. The line is
not essential But in a large RAP system, the it reduces access time and storage space
1n the controller. As a variation it is also possible to "fragment" this line;
the cells can be grouped wheré each group has its'own priority ljne.
The reason why the direct data communications between cells lines was
dropped in RAP.2 is multifold. First, expensive drivers were required because each
cell was able to drive all others. Second, there was the classical transmission
line problem requiring the entire RAP.1 system to be crammed into a physically
small space. Third, we wanted to desynchronize the system. Last, reliability
-was questionable when data is sent automatically from any cell directly to all
others. If one cell is malfunctioning, the whole system would suffer and
‘diagnosis would.have been an extremely difficult task. Furthermore, the amount.
of information to be exchanged was usually too small to justify the cost of

any direct communication 1link.

28

3, IMPLEMENTATION

8 CONTROL lines —__,|

CONTROLLER

A

3.3

16 DATA lines

ifl

Priority line

Cell i

K——>

CCD

Track -

Cell i+1

>

cch
Track

/

-

Front End
Computer

Fig 6. RAP II System Structure,

29

3, IMPLEMENTATION = 3.3

Seven of fhe control lines allow a maximum of 128 micro-code commands
called "keys". The eigth control line is named "key enable" and is similar
to the "valid data/address” line of microprocessors. In the absence of key
enable, the cells ignore e&erything on the bus Iincé. Each combination of the
seven control lines is interpreted as a command. In practice, these lines
are connected to ;he least significant part of the address bus of a PDP 11/10
controller and the key enable line is decoded from the most significant part
and from some other lines. Therefore, each reference to one of 128 ficticous
memory locations are reservéd for RAP and is interpreted as a key. Some keys
" are accompanied by an Operahd which must appear on the data bus, some expect data -
from cells to be put on the data bus and others are not associated with any data
at all. _
Commands are broadcasted indiscriminately to all cells of the system.
Establishing a scheme to restrict se]ecfively the commands to only one or a
few ée]]s is handled by the creation of'fhree state-variables called "open",
"blocked" and "rejected". A cell must be open but neither blocked nor rejected
ta be sensitive to all commands; it ignores most commands otherwise. There are
three different ways to open a cell. .In the simpiest case, the controller can
open all cells simultaneously by refeéring to special keys. The controller can
al;o open any particular cell by its integer designation by storing that value
in one key location. Finally, cells cah be opened by referencing the name of
the relation stored in the cell.
Under some circumstances, it is necessary to restrict the communication fo
“only one cell. For example, in'Insert, it is not desirable to have a same
tuple to be written in several cells Sf a same relation. A simple way to achieve
this is to open by cell address. This requires, however, that the controller either
has to keep track of an address table or to poll all the cells one after another and .

s therefore suitable only in small systems. The states "blocked" and "rejected"

3C

3. INPLEMENTATION .33

together with the priority line and the. "get nexf cell" command are intended
for this purpose. Consider the following analogy. A number of persons forming
a line to buy a ticket in a theatre. Those who have bought one are "rejected";
those who still have to wait are "blocked". The one who is buying is neither
blocked nor rejected. Each time the 1ine moves corresponds to "get next".
Only open cells are sensitive to a get next cell key. This command rejects the
current non-blocked cell and unblocks the first blocked cell. For example,
to serve all cells of a relation Rn sequentially, the controller must first open
all Rn cells and then block them which is achieved by.reffering to another
location. It then sequences through a program loop starting with a get next cell
and fb]]owgd by the service routine.

There must be some way allowing the controller to know if there is any
cell‘“1isten” to its commands. This is possible by assigning the value "1" to
~ the most significant bit of a cell status register which can be read either
selectively or collectively. The controller simply has to read the status to
know if its audience. is non-existent. | |

For a cell to respond to a command, the cell must be in a proper state:
1t must be open, neither blocked nor rejected, and furthermore, not running.
The last condition is a measure of protection against any erroneous attempt to
| change the parameters of a query or thé nature of the instruction being executed.
Also, the controller has to store relevant data into appropriate reserved memory
Yocations. Many éing]e bit items are grouped in bytes to save time and space.

For 1/0 each cell has a (1K-word) RAM called the I/0 buffer and a pointer
which is resettable by the controller. As far as the controller is concerned,
for loading, the I/0 buffer Tooks like a single reserved memory location. Every
time a word is stored in this location, it is sent to the I/0 buffer where pointer
is incremented automatically. In this implementation, to insert a set of tuples,
all the controller has to do is repeatedly store two bytes at a time in the

reserved location.

3, IMPLENTATION , - 3.3

It indicates how many tuples to be inserted by writing this numbef in another
reserved location. After the cell is initiated to run, it will 1ook for
enough vacant slots on its track and pull data from its I/0 buffer to fill them.
During data retrieval, the opposite is donef The cell looks for desired
data on its track and puts them in its I/0 buffer. Since the buffer size is
1imited, the controllier must also indicate how many tuples to be retrieved.
As far as thg controller is concgrned, for reading, the 1/0 buffer also looks
1ike a reserved memory location. The buffer pointer is automatically incremented
every time this location is read out.
‘ Besides track data, many other kinds of information of a cell are also
avaiTéble for retrieval by the controller: brocessing status, cell address, relation
name, buffer pointer, result register for computations and the S-counter which
contains the number cf satisfied tuples in the mast'recent pass. Access to the
buffer pointer allows the establishing of a future DMA link with any cell
attached to the data bus for mass transfer of inserted/retrieved data. This
could permit DMA transfers directly between cells and the front-end computer.

3.4 Instruction Set Execution

An important feature of RAR.2 is that many mfcrp-instruction; can be
overlapped or carried out simultaneously.. After the controller has initiated
some cells to do one .instruction, it is free to prepare other cells for a new
instruction. Since a pass is typically much longer than preparation time, there is
virtually no limitation to the degree of concurrency. Software is being developed
to exploit this property.

Each macro-instruction is divided into many smaller parts called "tasks".
There are three distinct classes of tasks: |

(a) The pf1ncip1e class consists of tasks involving the scanning of a

track (e.g., writing on a track, finding a blank space on a track, etc.)

These tasks are performed strictly by the cells after being initiated

32

3, INPLEMENTATION 3y

to run by the controller. Every cell determines when to stop . i
the execution of a track (e.g. when the physical end of the
track is reached). Each task is complete@ in one single pass
which is, under the worst condition, one revolution time.

(b) .The second class consists of tasks done by the controller to the

cells (e.g., opening cells, sending operands, etc.). As mentioned

before, each task of this kind is'carried out by referring to one !

of* the reserved memory locations. Typically, each task of this
type takes 1 usec to be executed. . f
(c) The last class does not involve the cells (e.g. register manipulation,
DMA communication, etc.). These tasks are accomplished within the
- front-end computer and/or the controller,

3.5 Cell Structure

The structure of a cell can be divided into eight units as shown in Fig. 7.

In the following, we will describe briefly the functions of each.
' Cell Interface: |

This unit is the part of a cell that "listens" to the outside worid. It) W
contains Bus receivers and a large decoder that decodes the contents of the |
.contro1 bus. This decoder is prohibited by some states of the cell to make i
restricted communication feasible. Some of the outputs of the decoder are for f
‘steering data from the data bus to appropriate registers. Others are for
feading from varibus places of the cell or for changing states.

The cell address is pért of this unit and is defined by an 8-contact switch.
The switch setting is constantly compared with the data bus by an address comparator.
If matching occurs while the controller is referring to a reserved location the
state "lock open" will be high indicating that the cell is open. Once a cell is

open, it remains so until specifically told to ‘close.

3, IMPLEMENTATION : 3 5
R l. 3
4@/ . control & Data Bus
priority‘linel | CELL INTERFACE
' M BUS Receivers & Decoder |
Cell Address
Relation Name Register
Status(& its control)
SYNCHRONIZER
Phase¥ Generator i
Read liead & lrite Head - . ARITHMETIC UNIT
Block Size Register :
Length Code RAM ~ }Register 1
Word Position Counter Register 2
Word Length Counter ‘ _ {Result Register
Timing for Mark-Bits, Data Integers, © {Serial Adder
End of Track, etc. Serial Comparator
Jop-code Register & Decoder
3 Item Number Registers &
Comparator-
Limit Register _
S-Counter -
UPDATE CONTROL
QUERY ANALYZER o Mark/Unmark Option Register
Terms Evaluator o .
3 Data Item Comparator Units:
; Item Number Register & .
Comparator) CCD TRACK
. Comparand Register] :
Serial Comparator CCD Chips & Drivers
Comparison Synbols Register
1/0 BUFFER ‘ ' OUTPUT MULTIPLEXER
1/0 RAM ' o BUS Drivers
Parallel-Serial Pegister , T
Serial-Parallel Register
s
Buffer Pointer , . N Data Busﬁa

LW 5

Fig 7, RAP.2 Cell's Block Structure

3

3

3, IMPLEMENTATION ' - 3.5

There is a 16-bit relation name register which behaves much the same
way as the cell address. The:main difference is that it is settable by the
user via the controller. Another difference is that if the cell is "destroyed"
thé relation name comparator is negated, thus opening by relation name becomes
impossible. When the cell is given a new name in a future CREATE instruction
allowing again opening by relation name. ‘

The logic for "get next cell” is also part of this unit. As mentioned
before, every reference to a specific location will affect the states "blocked"
and "rejected” of an open cell.

Finally there are-also status st&tes indicating whether, in the.last pass,
there is a mark on bits DF, M1, M2, etc. and a state indicating if there is a
satisfied tup1e. The most significant bit of the status is always a "1" and
is used to indicate the presence of a cell. ‘ |

Synchronizer:

This is the largest logic unit of a cell. It provides all timing signals
and shift clocks to the rest of the cell except the output multiplexer which
does not need any. For simplicity and ease of testing, all basic clock signals
are periodic. This implies that there is always & read phase and a write bhase
for the QCD memories. Consequently, the bit rate of RAR- 2 is slightly below
1 MHz. (In ﬁAE 3, read and write phases would be al]dwed only when necessary).
The 1 Mz bit rate is a limit of the CCDs not the cell Togic which has been
rated at 10 MHz. - |

There is an 8-bit sector counter that keeps track of the current position
on a minor loop. Another (extendable) counter points to the current minor loop.

These two counters simulate the read head. The write head is calculated from the

other by subtracting the contents of the b]ock size register. A time multiplexing

logic allows switching between the two heads. Thé block size register is loéded

35

3, IMPLEMENTATION ' | 35

by the controller with the size (number-of minor loops) of a tuple during a
Create proceés. For self-testing purpose, some logic ~ has also been
incorpdrated in RAP.2 prototype cells to halt cells to implement the
I's*ingle step" mode or to slow them down. This is possible by an appropriate

manipulation of the read head. .

Also, in a Create process, the format of the tuples must be loaded in a 256x2
RAM called the Tength code Ram (LCR). This allows a maximum of 256 data items
per tuple and at most 3 different size of domains. In RAP..3, the width of the LCR

is expanded to allow more choices. In operation, the LCR is sampled just before
any domain is expected: The contents‘are passed to the word length counter
which decides when to ‘expect the end of the current domain and hence the next
domain. .These contents are also decoded and sent to the feedback control of

various variable-length shift registers to allow the{r rotation.

- Every time the LCR is loaded or sampled, its pointer is incremented
accordingly. The pointer is the contents of the word poéition counter which
keeps track of which- item is under scan. There are three 8-bit registers
storing the data item number of up to three "specified" data items to be read
out or that are operands in an arithmetic operation. A comparator is used with
.the word positfon counter to test sequentially the three registers to determine
when a specified item is being scanned. i

An important duty of the synchronizér is to stop the cell at the end of an
instruction. As mentioned before, each instruction ends in a distinct way. There
is a 4-bit op-code register associated with a reserved controller address storing
the code of the current instruction plus the op-code decoder. The S-counter §
constantly gets incremented every time a satisfied tuple is found. Typically,
a "satisfied tuple" means a tuple satisfying‘the qualification; but this is not
alwayé true. In particular, Insert and Space-Count look for vécant tuples aﬁd
Create for spaces being large enough to define a tuple. Thus, after Space-Count

and Create, the S-counter indicates the number of vaéant'spaces on the track;

36

3, IMPLEMENTATION - 35

after Iﬁserf it indicates the number of new tuples just inserted. Due to the
finite size of the 1/0 buffer, only a liﬁited number of tuples can be read/inserted
. per pass. This number must‘be'supplied to the limit register. This register
is constantly compared with the S-counter to determine when enough satisfied
tubIes have been processed so that the instruction can be terminated (for Insert
.and Read only); Other instructiéns except Space-Count terminate when the logical
end of the track is reached. The logical end is indicated by a vacant tuple
bearing a mark (TKE) on its 6th and 7th bits. If the whole track 1; used, no
logical end exists and all instructions terminate when the physical end of the track
“{s reached. .
Finally, there are severa] single-bit registers that sample the ;alue of
the mark bits that are reauired for the auerv analvzer.

Oderv Ana]yzerﬁ

This is the heart of a cell and is the only unit that remains esséntia11y
unchénged from RAP,1. .It determines'whether a tuple satisfies the qualification.
" A guery‘]ist has one Pf two forms: either disjunctive or conjunctive. A tuple
qualifies if either no term is false (conjunctive form) or at least one term is
true (disjunctive form). RAP..3 in addition allows the comparison of two data
~ ftems of a same tuple as well as other forms of qualification.

The QUERY ANALYZER has two parts: the terms evaluator and three identical
data item comparator units. Each comparator unit has an 8-bit register to store
the {tem number of the relevant {tem a tapped 32-bit shift register for the
externally supplied constant, a 4-bit register which indicates the selection of the
unit and the symbols (<, =, >) of the comparison and a serial comparator. In
operation, a comparator is constantly used to compére the item number with the
contents of the word position counter to signal the scanning of the selected item.
When this happens, the constant is .rotated and compared with data read from the
track. By the end of the selected item, the serial comparator knows the truth

value of the simple condition of the query list covering this data item.

37

3. IMPLEMENTATION ' 35

" The terms evaluator has a multiple single bit register to store the form
of the guery 1ist as well as the criteria concerning mark bits. It also has a
small logic to determine, from the rest of the query analyzer, if the current
tuple qualifies. |

RAP, 3 would not use shift rggisters to store constants (comparand in the

comparator units and’operands in the arithmetic unit). They are stored in a
RAM for two reasons. First, long and tapped'shift resisters are expensive.
Second, there would be no need for a mechanism to rotate the registers. The

pointer for this RAM is the contents of the word length counter.
1/0 Buffer: '

This unit is of primé importance to decouple a cell frmﬁ the controlier for
data retrieval and insertion.. The controller empties 6r fills up, at its
convenience, the 1/0 buffe; of each cell which loads or unloads its buffer
whenever it can. It is not knowﬁ what is the optimized size for the buffer, but
_ the current prototype cells have a 1K x 16 RAM. Perhaps a size four times larger
would be more suitable.

For data 5nsertion, new tuples must be preloaded in the buffer. After the

cell is initiated to run, it will look for vacant spaces which are marked at the
1st bit. When one is found, the cell erases all mark bits. New marks will be
generated if the mark option is used; The data is pulled from the buffer. A
16-bit parallel-to-serial register is used to send one bit at a time to the update
‘control unit for writing on the track. The cell stops when enough tuples have
been inserted. If there are not enough spaces, ‘the cell stops at the physical
end of its track.

For data retrieval, data from the read head i§ shifted in a 16-bit serial-to-
parallel converter to be loaded into the buffer either once per every 16 bits of a
' item or | once per every 8-bit item;. If the tuple is found not to qualify, the
cell back tracks its buffer pointer so that, in the end, the buffer holds on1} the

selected items of qualified tuples. The cell stobsbwhen ‘either enough quaiified

38

3, IMPLEMENTATION _ - 35

- tuples have been fead or when the logical or physical end is met. In RAR3,
since the read phase is allowed only when necessary, the retrieval procedure
is different. The cell only reads the selected items of a tuple after it has
been found to qualify. '

Arithmetic Unitt

This is the only unit that is not vital to the operation of the rest of
ihe cell. It is necessary only for supporting arithmetic instructions (namely
~ Add, Sub, Sum, Max, Min) and can be removed if they are not required. It
contains three tapped shift registers to store operands and results. For lack
of space, the prototypes were built to support 8-bit and 16-bit operands only.
It is trivial to expand these registers for ionger fields. As mentioned in
query analyzer, RAR.3 supports much longer domains where a RAM would be more
suitable than shift registers. A serial comparator similar to the one ofvthe
item ‘ comparator units helps to 1Mp1emgnt Max and Min. A serial adder is used
for Add, Sub, and Sum.

In operation, if the instruction involves only one .item, the arithmetic
is immediately performed while that item is being scanned. If two items are
fnvolved, the first one is stored in one of the shift registers until the second
one is scanned. In Add, Sub, and Rep]ace: the result is immediately stored in
the result register tb be written in the proper space later (i.e., during the
next tuple-time) if the current tuple qualifies. For Max, Min and Sum, the result
is transferred to the result register only after the tuple has been found to
quality (i.e., in next tup]e-timg). It is up to the controller to probe the
.result register after the cell stops. Multiplyand Divideare not implementéd
directly in RAP-2 cells because of timing conflicts in the bit serial logic. .

Update Control:

This is the smallest unit of a cell. It has a register to store infdrmétion
concerning the Mark: and Reset option. It takes care of the marking and resetting of

mark bits as well as the writing of new data supplied by the I/0 buffer for Insert

39

3, IMPLEMENTATION - . - 3.5

or by the arithmetic unit for Add, Sub and Replace. It also erases the
track for Create or only selected tup]és for Delite. It also erases the
track for Create or only selected tuples for Delite.

Qutput Multiplexer:

This is logically the simple;t unit. Appropriate reqisters are connected
to various bus drivers which are enabled by signals from the cell interface
decoded from the control bus.

For most registers, it is the duty of the controller to assure that only

one cell at a time is in the readable state otherwise information on the data bus

is meaningless. The only exception is the reading of the status which is meaning-

ful in an "OR"form..
CCD Memories:

This unft is built in a very straightforward manner. Due to physical
limitations, the 1-megabit drum occupies three identical boards. Each board
contains all necessary drivers and 20 Intel 2416 CCD chips which are arranged
in an X-Y matrix of 4 x 5. This arrangement is necessary to reduce the number
of drivers. It is possible because the CS and CE inputs of the chips are

i{nternally "and-ed" together. Two different kinds of drivers are used: Intel's

5244 chips are used for shift inputs and Intel's 3245 chips are foraddressing, these

drivers are quite good but there is a small problem of mismatched speeds. The
former type is about 70 ns slower and some compensation must therefore be made.
Currently, all the.CCD chips are driven at a same frequency. If the memory size
is expanded much larger, it makes sense to use two different rates. Only one or
two éhips at a time are driven at the fastest rate and the rest at the minimum
frequency to conserve power.

3.6 Some Statistics

Each cell (including the 1-megabit track) requires about 9 amperes at 5 volts,
1s spread over 13 boards and employs 412 IC packages (218 SSI + 117 MSI + 77 LSI).

For each additional 1 megabit extension, 96 IC's are needed.

iy DBMS UTILIZATION OF RAP | b

4. DBMS UTILIZATION OF RAP

In this section we address four issues relating to total data base management
system architecture and various uses of RAP as a systems component. First we
consider s stems approaches for data bases larger than RAP capacity. Next we show
how RA? can be programmed to support multiple views of data. Last we consider RAP's
applicability to protection, security, and integrity.

4.1 System Crganization

One might conceive of the day in which microprocessor logic and memory
becomes so inexpensive that all secondary memories would have RAP-l1ike processing
¥capabi1it1es. However, the first generaiions of commercial RAPs would have capacity
T1imitations relative to the total data base storage requirements. In this case,
all existing data base jnsta11ations have significant capital already committed to
conventional secondary memories. ' A

A complete cost effective system would therefore consist of a triad of component
types: a front-end general purpose computer to interface with users and provide operating
system and language processing functions, a RAP device used as a peripheral or béck-end
processor/memory, and one or more conventional secondary memories. The entire triad

can also be éonsidered as a back-end data base computer for further levels of front-end

systems (11). We will briefly outline three approaches to the DBMS organization that
exploit this organization at varying levels of complexity. |

- It is important to note that some of the problems alluded to in the section on
Timitations of conventional approaches are reintroduced with this approach. However,
because the complex situations are handled by RAP, we would expect that an overall im-
provement in performance and a reduction in administration complexity would still be
achieved.

4.1.1 RAP as an Access Path Processor

As stated before access paths are indexing methods used in conjunction with conventiora’

DBMS implementation to speed the searching of large data bases. Two major types of

access paths will be considered: inverted lists and links. An inverted 1ist is a data

ul

4, DBMS UTILIZATION OF PAP o 4,1.1

structure which extracts the values that occur in the data base and associates with

each unique value the physical or relative addresses of the records that contain that
value. The records which satisfy a boolean selection criterion of simple item conditions
of the form "<item> = <value>" can be found by processing the inverted 1ists rather than
Searching the data base directly. The boolean Ayp operator between two conditions

is satisfied by the intersection of the inverted lists addresses associated with the

item <values>. The OR operator is satisfied by the merge or union of the address lists.
The NOT operaton can be inplemented by the relative complement of the list's address.
Arbitrary boolean expressions can be parsed into a trees and prdcessed two or more
lists at a time produc%ng intermediate Tists until the final 1ist contains the addressed
of the qualifying records.

It is possible to create an inverted list on several different items within a

file at the same time. This is done by associating the addresses of the records in

which a particular combination of values occur where each value is from a different

item. This type of inverted list is called a multi-key inverted list. In this 1

case a conjunctive boolean qualification has already been formed as part of the 21
list structure. The records satisfying a general boolean qualification can be found 1
by first p]acing.the qualification into disjunction normal form and since there exists
a list for each conjunction, the qualifying records can be computed by just merging |
the lists to satisfy the dfsjunction.
~ In dynamic update situations nhere the inverted 1ists are stored on conventional
“devices, the single values inverted 1ists are preferred because they are easier to
maintain. In static non-update environments, the mu}ti-key inversion gives better
. retrieval performance. | |
A link is a data structure which records instances of pairwise inter-record

connections of records of different type. It is often used to record the existence

of a particular relationship between the records and provides a fast access path

TP P

'4. DBMS UTILIZATION OF RAP 41l

for locating and accessing the linked record given the other record. Such structures
are used to optimize join operations in relational data bases system or the
implementation of sets in CODASYL Systems (10).

Processing Inversions:

Inversions can easily be stored in RAP relational format. For a single

ftem inversion we could create a RAP 'retation for each item inverted. There will

be two entries in the records -- one for the value and one for the address pointer.

For multi-key inversions one would create a RAP relation containing an data item for
each value and one for the address. In cases where the same value(s) occur at many
addresses, we must duplicate the values for each address.

Two tﬁings affec£ the efficiency of RAP for processing inversions: the size
of the record occurrences and the type of processing réquired. In the sirgle
inversion case, each record has only two items - a value and an address. Becahse
a gap is sometimes ?equired‘between each record, the utilization of space would not
be very efficient (tﬁis is eliminatéd in RAP,3). Secondly, the processing of single
valued inverted lists required intersections or unions of data items between relations
on RAP. This requires cross marking operations which are among the slower multi-
revolution execution instructions for large volumes of qualified RAP records.

The above ﬁrocessing is to be distinguished from the union and intersection of
jtems in the same relation.which is very fast on RAP. This fact can be exploited
to solve both the spéce and processing problems by utiiizing one multi-key inversion

for each data base file. The storage of more values per RAP relation creates larger

and fewer RAP records. Also the clustering of lists into one RAP relation represen-

tation of the multi-key inyersion creates a structure efficient for RAP processing.

As stated before a]i conjunctive queries are preprocessed by construction of the

list. Conjunctive queries invoIving' only some of the dinverted items are processed -
naturally by the RAP marking and qualification logic. Disjunctions are then simply

processed by reading the address items of the marked records. However, it should

43

&4, DBMS UTILIZAITON OF RAP | 411

be noticed that the list of address is not guaranteed to be in sorted order unless
the storage or reading process is controlled.

Processing Links:

A simple RAP relation for implementing links requires a pair of items. Each RAP

" record records the addresses of the pair of linked data base records where the first
address item always points to one data base file and the second points to the other.
By kndwing the data base address of a record one can mark the RAP linkage records
using the.address as a condition on one of the items. A1l the addresses of data base
records linked to first can be readily read.

In many cases the'1ink'wou1d have been established from values already existing
in the data base. These values could be added to the RAP linkage structure as extra
ftems. The values can then be used to aid in updating the 1ink on RAP when the data
base is modified.

4.1.2 Data Base Partifioning

The major problem with the indexing approach is that the index data stored
on RAP are duplicates of data on disk. Instead we can partition the data base
files both horizontally, i.e. placing certain records on RAP and other on disk,

and/or vertically placing clusters of data items on one device or the other.

Because no duplication takes place, the technique is called device partitioning.

Extra data items such as record id's may be required to 1ink corresponding partitions.

This partigular approach attempts to exploit the notion thét not all data in a
data base, at a particular point in time, requires the same proce§sing capabilities.
Data can be categorized by the system éccording to fts usage characteristics and placed
on the conventional secondary memories or RAP depending on processing requirements that
best fit the data. .

-The implementation of such a system should 1nc1udé mechanisms for both user

-controlled and automatic migration of data between the various devices as usage of the

yu

4, DBMS UTILIZATION OF RAP 4,12

data changes. Research into algorithms thét exploit data base device partitioning
{s under way at the University of Toronto.

A request would be processed by decomposing it into RAP and Disk subqueries and
firsf executing the RAP subquerjes. Access would then be made to disk only if the re-
quest can not be entirely serviced by RAP. In this case the response from the RAP
subquery would be used to minimize'the search over the disks.portion.

4.1.3 Paging and Virtual Memory

This approach mimics the techniques of paging operating systems to provide
a virtual aﬁsociative address space for a RAP device. This requres all the data in the
data base to be stored accordjng to RAP memory format. The data is then divideu into f1::
pages the size of one RAP cell. All data base queries are translated into RAP pro-
cessing statements. Before execution, each query is directed through a‘software
monitor executing on the front;end computer. The principal tasks of the monitor are

to maintain a table that gives the location of the pages for each data base file,

.45

4, DBMS UTILIZATION OF RAP - 4,13

analyze which pages are required to execute a query, and then page the necessary data
between the conventional secondary storage devices and the RAP processor. The query is
then passed to the RAP processor for execution. It would be optimum to have a direct

path between the secondary storage devices and RAP so that pages would not have to

- be transferred through the‘front-end.

As opposed to the indexed or partitioned approaches, all queries will be executed
entirely within the RAP processor. This requires that all the data for a query be
small enough to fit on the RAP device at any particular time.

A detailed design of the prbposed monitor has been outlined in a previous study
(9). Many of the arthitectual extensions proposed to the RAP, device to allow the
overlapping of paging with processing are not required by the RAP.2 architecture.
A'spss simulation of the entire system was performed and the results were analyzed (3,7).
Stétistics were collected on the average response time for on-line queries for a pop-

ulation of Poisson arrivals with a fixed mean and specific sized RAP device. Response

- was studied with respect to average exponential processing times, average amount of

data stored in a relation, total data base size, and uniform and exponential locality

} of relation references. Locality was defined as the degree to which short sequences

of queries reference some relations more than others. It was found that no significant
losses in performance will occur in user environments which exhibit some relative com-
bination of the following characteristics: ‘
a) Relations that occupy a small number of'ce1ls.
b). Query populations which exhibit long processing times relative to their
‘ paging requirements so that overlapping of processing and paging can be
 effective. ' ' ‘
¢) Query populations which exhibit a "significant" amount of locality.

4.2 Supporting Multiple Logical Views
The concept of RAP relations and linkage between record occurrences can be

used in the implementation of each of the three common views or -models of data:

46

4, DBMS UTILIZATION OF RAP 42

hierarchical, network, and relational. Rélations viewed as tables of data have a
natural correspondence to RAP relations. Many relational operations have a natural
correspondence to RAP instructions (5).

Hierarchies and networks can be implemented by setting aside items in the
record occurrences to store identification and structural data. We require that
each record occurrence have one item whose value uniquely identifies the RAP relation
and each particular occurrence within the RAP relation. This item will be called
;D for identification.

Implémenting hierachies and networks requires the ability to implement
functional associations between occurrences of record-types (17). A functional
association can be defined as 1:N (i.e., one to many) linkage or mapping between
record occurrences of two RAP relations. That is;_if a 1:N Tinkage exists between
RAP relations A to B then one record occurence of A can be associated or linked with
zero or more unique records of B. Each record will have at most one A record for a
particular association. One way to implement the association is to allocate an item
called ASSOC in the RAP relation. This scheme is shown in Figure 8. For each record
of B‘that is associated with one record A we store the reco}d 1D value of A in the
ASSOC item of B. Finding the records of A with those associated with B and vice
versa is siﬁp]y a2 matter of using the cross markingvselection instructions which
interrelate two different RAP relations through.the comparable ID and ASSOC values.

A second way to associate records of differeﬁt type is to create a new linking

RAP relation which contains two (or more) ID items -- one for each record-type. This

is siﬁi]ar to storing link access paths on RAP except each occurrence of this RAP
relation associates one record of A to one record of B by storing the associated ID's
of the two records in one occurrence. This scheme has the advantage of implementing
nin (i.e. , many to many) associations between two ‘types of RAP relations.

It should be ndted,that only "information-carrying” associations need be im-

plemented with links for data bases physically stored on RAP (10). A1l other rela-

47

e

==

4, DBNS UTILIZATION OF RAP° | 4,2

A 1 oA | s
o 4 . ,
. . t
B ID-B |A-AS0t| (fems
a) 1:N Associations for HRierarchy or Network ' b) RAP Relation Format
—7 \ ' i
’ |
/ \ |
/ \ (
A L)
l B/ Al fata \ 83 | A2 Aata
\ \ :
\

BL Al oot

_.€) Example Record Occurrences

FIGURE 8 - IMLEHENTING 1:N ASSOCIATIONS WITH RAP RELATINNS

4, DBMS UTILIZATION OF RAP 4.2

tionships which can be derived directly from the values in the records can be
handTed through *he cross marking selection instructions.
Because RAP can be programmed to support multiple user views it can be

considered as the basis for implementing a conceptual schema (17). This is a

. mechanism that provides an intermediate normal'form or common denominator for
the supporting of multiple external views of the same data base (17). That is,

we propose that the RAP data model and instruction.set should be a viable candidate
~ to implement such a data base system. A'query from any one of the user views
can be translated into RAP programs manipulating RAP relations structured to
reflect necessary associations.

4.3 A Note on Protection, Security and Integrity

The most general approaches to security and integrity assurance in a data
base system are through modification of the original querv or ceneration of
internal qugries.to check the validity of the operation (17). These techniques
are highly compatible with RAP's query oriented instruction set. In addition,

;he qualifications added by query modification will often not affect the execution
time on a RAP processor. 'This happens because the RAP qualification logic is
executed on the entire RAP contents and a qualification can have one or several

conditions to check often without affecting performance.

5, RAP_AND. COMMUNICATIONS 51

5. RAP AND COMMUNICATIONS

5.1 Communications Problems °

subsequent implimentations was consideration of rational data communication. Q
The failure of-alternative data base machines and systems is largely a failure |
to recognize the nature of data'communication implied by DBMS. The result is . ﬁ
that existing data base machines and system of machines suffer from inherent
bottlenecks to which the bandaids of more computing power and increased
external communication have been applied.

A crucial component in the origin of the RAP system concept and its i
|

The real problem is very basic. It is that there has been too little i
examination of the root causes for the vast transfer of data within computing
mar~hines, between machines and peripherals, and from machine to machine
whether near or far. Upon some examination one realizes that one underlyine |
cause is a pathological response the inherent lack of precision in human ‘J
communication. When one is not sure what he wants in detail, he usually lﬂ
asks for everything. Vast piles of unreadable computer printout attest to this]
tendency. These piles are of course also a commentary on the need for
assurance and security, more of which later.

The bathoIogy of uncertainty is, unfortunately, regenerative: For example,
the more one needs paper printout, the more one needs very high speed printers;
~ the more spectacutar is the printer, the more likely is the motive for a batch ;
system; the more remote the mechanism for computer response, the stronger is f
the open-ended needs for data less and less precisely specified. A1l this is '
understood in detail, but not in its qenerality: Interactive terminals are

an answer to the need for immediacy, a counter to a batch philosophy, an
alternative to printouts; but their impact is superficial; the next layer of
the onion is still the same; it is fraught with communications problems.

5.2 The Inherent Conflict Between DBMS and General-Purpose Computing

From {ts yery beginning the general purpose digital computer has possessed
a property which is, at once, {ts strength and its weakness, It is this property - j
which has shaped computing machines at every stage of the evolutfon of

. ' | | 56

5. RAP AND COMMUNICATIONS | 5,2

hardware and software into what is essentially the same mold - that postulated
by Von Newmann three decades ago. The property is this:

The general purpose cdmputer is a crutch upon which one rests, having
1dént1f1ad the existence of a problem, while one perceives the direction of
its solution, confident that the genrality of the crutch will also assist
in one's passage to its resolution. '

But, just as the crutch benefits the crippled, so also it can impede the fit.

The very generality of the conventional computer makes it less than perfect -
overkill at best for any specific task. All of its special features, whether
hardware of software, are in support of the nonspecificity of the unknown.
Since it is unknow what feature is more important, all are created equa].
Since total parallism of their actions is prohibitively expensive, each is
avaflable, but only one at a time.

The resulting processor, while more and more gerieral, remains largely serial
at its micro and macro levels. It is still Von Neuman's original machine
with token parallism, replicated features etc. It still does one of very many
things, one at a time. Incidentally, it is the reluctance to recognize the
1ntr1n$i; inhibition brought by generality which explains the general lack of
success of computer science in its search for methodology and structure for
parallel processing.

One may now realize the real problem faced by current data base systems.
They are, lacking anything else, implimented on general-purpose machines. While
DBMS problems are inherently parallel, general-purpose machines, for economic
‘generality, are really serial. If serial they must be faster and faster to do
bigger and bigger (general-purpose) jobs. As they became internally faster,
they require more and more appartus for bandwidth matching to the inherently
slower bulk storage and external communications paths. Bandwidth, Timited
by the speed of 1ight, demands parallism of connectism at the wire as well as
the function level. The numbers of required input/output processors increase.
Software support for this generality burgeons; but it is all undirected; it is
general purpose, it impliments what might be called the 370/ « solution.

s N S PR AR

5. RAP AND COMMUNICATIONS o 53

5.3"§AP and‘Communications

RAP, in the barest sense, is based on a recogntion of the communications
problems inherent within a conventional general purpose processor (GPP) running
a DBMS. Though the problems are many and interacting, three only will emphasized.
They are that conventional general purpose computers are essentially serial
in operation, explicit in addressing, and that the storage implied by a DBMS
is vast and accordingly slow for reasonable cost. Incidentally the latter
~ description, "vaét“, is not an absolute one. Compared to the storage required
for other pdrposes in the typical DMBS system of whatever absolute size, or
cost the space for storage of data is very great indeed.

The serial nature of a GPP demands very high speed operation to handle
2 (typically (relatively)) large DBMS data base. Though obvious if one
"naively" considers exhaustive search as thé access mechanism other "more
knowledgeable" approaches founder on the same basis. The data is often
inherently poorly structured for more than a sinale auery type. Yet it must
be stored in systems with inherent location structure. As query scope expands,
more and more complex data sturctures, dictionaries, access paths or whatever
are required. The overhead for the storage and dynamic update of these mechanisms
grows atrociously with the generality of the system. The overhead of upkeep
and the complexity of 1ist search again imply very hight speed operation of an
inherently serial processor.

Resulting general-purpose systems become very badly ba]anced from a
bandwidth point of view. Circuits are genrally running with speeds limited
by interconnect propogation time, since in the range of the last decade of logic
circuit speeds, power per logic operation increases sharply with a resulting
decrease in convenient logic density. The usual solution is microparallelism:
more wires larger words, wider adders etc. However, economics dictates use
of this technique close within the processors, leading in turn to close-packed
processors/channel architectures.

When distances become large, as they are to bulk storage devices, economy
of interconnection tends to reduce the space bandwidth of the interconnection.
The geometry of the situation encourages'mini-para11e1ism in which very many
storage devices couple to many controllers, to several channels, to one or two
or so cpu's, There is a parallelsim, but it is on a small scale and focussed

5. RAP AND COMMUNICATIONS - 5.3

to centrality. The result is an enormous total bandwidth (in both frequency
and space) concentration at the centre. The channels on the GPP grow without
bound, driven by a geometry-based square law effect.

On the other hand one should recognize that in the bulk storage devices
bandwidths are modest. There is probably a law that says they should always
be so, for if the technology of Jow cost bulk storage supported high bandwidths
then it would become the centralized high speed technology and so on for
another cycle of Tower cost bulk stores..’

Of course, they key to the RAP system is the recognition of these facts
of communication: If the data is physically dispersed, available at low
bandwidths, inherently homogeneous and potentially always available as it is
in cyclic stores such Ss discs and their replacements, then one shouTd process
it in place. In 1975, at the beginning of RAP, the possibilities of data
compression, both for interrogation and response using the RAP concept,
seemed enormous. Subsequent simulation and measuremtn on pnysical models
showed this to be so as the attached documents attest. '

That the arguments leading to RAP are even more general and have more
global application may be cbvious at this point., However let us expand upon
this possibility. '

5.4 Data Base Processors at the Nodes of a Communications Netwbrk

5.4.1 A Societal Problem

0f the many large credibility gaps which appear to surround us, there is
none as large or far reaching as that separating the realtiy of data base
‘systems from its perception by society. What is most crucial is that this
gap is apparently recognized by few and admitted by fewer. Yet it is in the
area of data base systems that the average citizen, manager or politician sees
both the power and threat of computers. Yet these beliefs are founded on hearsay

and conjecture supported by the self-serving implications by computer manufacturers
and professionals.

The generality of and economy of query and response from data systems,
as viewed by the ultimate citizen user, {s several orders of magnitude separate
from what is available, or likely to be available, with existing hardware and
software technology or‘simple extrapolations of what is now provided. Unfortunately,
far-reaching decisions are made a'simplistic basis. The’U.S; freedom of

* GPP General Purpose Processor

5. RAP AND COMMUNICATIONS | 5.4

information legislation for example was encouraged in part by this simplistic
view of what is known in an organized way. Others will copy this lead on the
same basis. Yet the simple questions that can be asked, yet are not answerable
at reasonable cost are legend. Most seriously the cost is not simply that
enormous one of using inadequate systems of people and machines to provide an
answer but the social one which delay in response will exact in refnforcing
societal cynicism.

5.4.2 A Technical Problem

The rea11ty'of the service proyided by a data base system {s that the more
you know, the better. As the intellectual scope of the data base decreases it
is possible to do more and more to reduce the cost of response to queries. If
" every possible query type is defined, then the system can be tuned to give
economical response somewhat independent of the size of the data base involved.
Thus an airline reservations system can operate effectively in its constrained
domain of routes, flights and hodies with neames, but would be very hard pressed
to answer a query on the age distribution of its passengers by route. It is
simply not set up to do this nor would it be expected to be, except as a very,
very background job that may be possible at relatively great expense.

Contrast this with a more public service, say a legal repository residing
at the node of a computer network. Obviously a simple index of decision by
sing]e crime type is trivial, but what about queries involying many attributes,
say a, b and c. First of all these attributes must have been identified
originally when the index was prepared. But what was once noteworthy and
subject to indexing no doubt changes. As the system expands and is used more
and more, additional classification will doubtless be needed.

The difficulty is that the process of tuning for classification is far
from linear. Generally as each new attribute is tuned all others suffer., OQOne
might argue that faster computers are the solution, but public demand and
aspiration will normally outstrip the public's ability to pay or technology to
provide.

In such a system two levels of procedure will predominate, The first,
at the simple level of tuned query and response, will require a fairly brief
exchahge with a user at a remote terminal, the time being dominated 1ikely by
the processor actiyity. Since the query system is relatively unsophisticated
a fairly large amount of data will usually result. However some queries will

54

5. RAP AND COMMUNICATIONS | | 5.4,2

be unanswerable in real time, Some of these answers may be availahle overnight at
increased cost. Some will be available dayé later after special programs are
written at much increased cost. Some will not be available at all, Probably

the alternative of overnight shipment of a large part of data base will be
offered. In this case the Tocal enquirer can cull the data by hand or machine

on his own time scale as needed.

In summary the communication between a user at a terminal and a data base
resource node in a conventional system amy be characterized by
a) Short people orgininated rquests into a node.
b) Modest delay in response. '
c) Long computer generated resonses from a node,
d) Occasional delayed, batched, mass transfers of large amounts of data
from a node,

- 5,4,3 A Total Solution ,

If the node were a RAP machine or RAP machine-assisted, there would be jittle
or no query tuning, Access would be largely by association with no particular
knwoledge of the system or its content reauired. There would be no universal
incremental cost of change in user aspiration except for general busyness at the
node, There would be non-linear "blocking" effects. Queries would be interactive,
of the class "Do you have anything about x?" with a simple quantity and request
for detail in response. There would be very few requests that are unanswerahle
with reasonable delay and an automatic means to induce refinement of the reauest
to minimize time. There is almost no need for mass shipment of data for local
perusal, Responses generally would be short, focussed and quantitative, except
those Tike "Tist all people" which would be refused or sent by mail (heaven forbid!).

In summary the communication between a user at a terminal and a data base
resource node with a RAP system-may be characterized by
a) Very short people-originated rauests into a node with repetative
{teration,
B) Reduced delay in response for the average query.
c) Short computer generated responses from the node interspersed with a),.
d) Almost no mass, batched data transfer except as well-formed reports
‘with high utility originating from a node.

55

5. RAP AND COMMUNICATIONS | 5.5

5.5 RAP in a Communications Environment

5.5.1 Remote Data Bases .

Communication from a remote site to a RAP supported data base can be either
in the nigh level language SEQUEL or in RAP assembler. Either form provides
a relatively tight and efficient scheme whose use would depend somewhat on the
application and the nature of the originating termainal. The query/response
process would likely be extremely interactive, though it need not be. The system
suits a hierarchy of users of increasing sophistication in an effective way.
Provided a great deal is known of existence and nature of the queried data very -
tight and effective queries can be written straightforwardly. If nothing is
‘known, even the existence of data, then the process is inherently selfdirecting
(but see Security, later).

It is natural fo form queries to provide statistics of the rquired response
while transmitting virtually no explicit data. Thus an interactive user can
comprehend the nature of his request without generating enormous system overhead.
In the event that an inadvertent request for vast amounts of data is given it
is relatively straightforward for a RAP system to respond with statistics and a
rquest for clarification. '

In summary communication with a remotely located RAP system can be nearly
ideal requring only a few bytes of relatively unsophisticated query with a
few bytes response in an interactive dialog which is inherent in the processor
itself. More sophisticated users can expand their requests enormously with
far less than proportional effort while at the same time retrieving extremely

explicit results requiring little communications overhead and in relatively
short time. : -

5.5.2 Distributed Data Bases
~ The RAP scheme is ideally suited to distributed dynaimic data bases: Because
RAP intrinsically minimizes structure in the data, update is not traumatizingly
long. Thus the period of lockout from general queries required by a conventional
system to ensure that a response is not based on some unknown combination of
old and new data, is very small, of the order of "revolution”.

56

5, RAP AND COMMUNICATIONS 5,5,2

RAP systems can likely be easily arranged in parallel or hierarchically
such that requests for existence can be "broadcast" to all participants. Responses
to a "broadcast" query can be ‘used to focus more normal RAP machine/user dialog.
An exception is the case in which attributes of a particular query subject are
spread geographically. In this case, naturally, various cell to cell interactions,
such as cross-mark, are not possible in the usual way. Such operations would
generally require much greater exchange of data between sites. The possibility
however exists in a RAP network of merging files temporarily at an intermediate
geographic site for detialed query executioﬁ.

An interesting special case is one in which each user has a mini-RAP as
part of his query termina. Normally his interaction is with his own data base
stored locally. A retail store inventory system might be a simple example.
Upon the occasion of seeking stock elsewhere to fill an immediate cuétomer demand
access to other RAP machines would be straightforward. The interaction would Tikely
be interactive as the optionality of the product, its physical location etc. etc.
suited the customers requirements. Various centralized inventory, product
history, sales prifles etc. data could easily be acquired by a head office
connected to such a system. - :

5.5.3 Privacy and Security

Security of information with a RAP system is likely to be superior to that
with any other approach. This statement appears to be in conflict with the
*fishing" attribute of RAP systems which generally allows queries based on no
‘real fact; but it is not.

RAP's ultimate strength is that its data is as "unfied" as one wishes or
‘needs. Since the data is its own key it can be arranged that all of it exist
at one place, in one "file", with no other vestigest. Specifically there need
not be dictionaries, lists, access paths etc. which hint at the existence of
data. In conventional systems, protection of such 1ists is extremely comples,
since the access path approach is already ponderous with duplication and
redundant data. To add simple privacy codes mighf be easy but not adequate. A
real situation is much more complex, with a dynamic and data dependent "need to
know" system normally required.

The real advantage of RAP, and particularly distributed RAP, with respecf

to privacy is the possibility of maintaining keys with all of the data which
can be used to implement a thorough protection system including query trace.

57

5. RAP AND COMMUNICATIONS 5,53

The latter is probably useful to follow, up certain pathological requests for
“statistics" which can inadvertently provide information which is masked for
explicit use at a higher level than that at which its occurrence can be counted.

One of tke potentially most powerful techniques available, particularly

with distributed RAP or mini RAP buffered queries, is the possibility of keys
which trigger reverse queries ard/or trace recording.

58

6. ADKNOWLEDGEMENTS

" & ACKNOWLEDGEMENTS

This research was funded by the Department of Communications, Department of Supply

and Services, and the Mational Research Council of Canada. We gratefully, Thank Intel

Corporation for their donation of CCD and associated driving components. We would

also like to acknowledge and thank the members of the RAP project that have contributed
so pych to its accomplishments: M. Chan, A. Cousin, R. Freen, C. Hawkins, R. Hudyma,

H. Huwito, W. Lane, R. Nakano, B. Patkau, P. Pereira, A. Radaez, R. Reid,-P. Sadowski,

M. Soong, K. Sevcik, J. Klebanoff and A. Tsonis. A special thanks to M. Soong whose memo

on the RAP. 2 instruction set was used as a basis for section 2.

9

7. REFERENCES

' _ 7. REFERENCES - - :) ' i

1. Ozkarahan, E.A. Schuster, S.A. and Smith, K.C, "A Data Base Processor" ' ;1‘|

Technical Report CSRG-43, Computer Systems Research Group, University of }

'_ Toronto, September 1974, ' '
2. Ozkarahan, E,A., Schuster, S.A. and Smith, K.C., "RAP--An Associative

Processor for Data Base Management", Proc. AFIPS NCC, vol. 44‘. 1975, pp. 379-87.

j
, |
3. Schuster, S.A., Ozkarahan, E.A., Smith, K.C., "A Virtual Memory System |
for 2 Relational Associative Processor”, Proc. AFIPS NCC, Vol. 45, 1976, |
p.p. 855-862. . |
s Osksrakan, E.A., "An Associative Processor for Relational Data Bases- ' !

RAP*, PH. D. Thesis, University'of Toronto, 1976.

5. KerschBerg, L., Ozkarahan, E. A., and Pacheco. J.E.S., "A Synthetic English

Query Language for a Relational Associative Processor”, Proc. of the Second

International Conference on Software Engineering, October, 1976. , o ‘ i

6. Ozkarahan, E.A. and Schuster, S.A., "A High Level Machine-Oriented Assembler '

' Language for a Data Base Machine”, Technical Report, CSRG-75, Computer i
Systems Research Group, Uniyersity of Toronti. Octqber 1976.)

7. Nakano, R. "A Simulator for a RAP Virtual Memory System", M.S. i:hesis.

University of Toronto, 1976. - i .
8. Ozkarahan, E.A.. Schuster, S.A., and Sevcik, K.C.,**Performance Evaluation
of a Relational Associative Processor",ACH. TODS Vol. 2, No., June, 1977, pp. 175-195 ‘
9. Ozkarahan, E.A. and Sevcik, K.C., "Analysis of Architectual Features for
Enhancing the Perforﬁance of a Data Base Machine", (in press), ACM T0DS. . | ., v
10. Sibley, EH (Ed), ™"Special Issue: Data-Base Management System". AcM . o
Computing Survey, Vol. 8, No. 1, June, 1976. o) i
11. Lowenthal, E.I., The Backend Computer, Auerbach, 1976. .
- 12. Copeland, G.P., Lipovski, G.J., Su, S.Y.H., "The Architecture of CASSM:

AA cellular System for Non-numeric Processing”, Proc. First Annual Symposium

on Computer Architecture, 1973, - | ' | !
" 13. DeFiore, C.F., and Berra, P.B., "A Data Management Systén Utilizing an ‘
Associative Memory", Proc. AFIPS NCC, Vol. 42, 1973.

14. Lin, C.S., Smith, D.C.P., and Smith, J.M., “The Design of a Rotating
Associative .Array Processor for a Relational Data Base Management
Application”, ACM TDDS, Vol. 1, No. 1, March, 197G, pp. §3-65.

15.. Baum, R.I., and Hsi2o, D.K., "Data Base Cor.nputers -- A Step Towards
Data Utilitfes, IEEE-TC, Dec., 1976, Vol C-25, No. 12.

IB.v 2aky, S.G..,'. I"I‘ﬂ:ropmcesscws for Hon-Numerfic Processing”, Proceedings
of Third ﬁorkshmgﬁ_ Compufér Architecture for .‘v:on-!‘lumerjc Processing, .

"SIGARCH Vol. VI, No. 2, SIGIR Vol. XIT No. 1, SIGHOD Vol. ;x No. 2,
May, 1977, pp. 23-20. | '

17, Tsichritzis, 0.C., and Lochovsky, F.H., Data Base Management Systems,

A;z.ldunic' Press. 1977.. e - L | 60

'S, DESIGN/PEFNRMANCE APPENDICES | 8.1

8. DESIGN/PERFORMANCE APPENDICES
8.1 RAP 2 - Cell Logic Design
8.1.1 General

The design of each of the two cells implimented is aiven in logic diaarams
L-1 to L-19 appended in section 8.1.4. Each cell, with 320 kilobits of
memory requires, 412 IC packages occupying 13 boards. A memory expansion on
each cell to 1.5 megabits uses 128 IC packases on 4 boards. Each cell
exclusive of memory uses 9 amps at 5 volts for .45 watts power dissipation.

The logic design was done with 1ittle attempt at minimization of any
paticular sort. Rather, flexibility for options and improvement was sought
if time permitted. Desian is largely small and medium scale intearated
TZL with Schottky used where necessary. Each cell employs 218 SSI, 117 MSI,
and 77 LSI IC packages with 96 IC's required for each megabit of storage.

The remainder of this section consists of a functional description of
each logic diagram in turn..

8, DESIGN/PERFNPMANCE APPENDICES - 8.1.2

8.1.2 FUNCTIONAL DESCRIPTION

- 8.1.2.1 Logic Diagram L-1

1. The CONTROLLER communicates with the cells via the RAP CONTROL BUS

and RAP DATA BUS. Each cell must have its own buffer inverters to reduce the

~ load seen by the CONTROLLER.

2. The values set on the RAP CONTROL BUS are decoded by several decoders which

are typically prohibited/enabled by various states of the cell so that the CONTROLLER
‘can restrict communication to a few selected cells. KEY_ENABLE is used

to prevent any switching noise on the CONTROL BUS from being interpreted as

a valid command. RUNNING i{s also used to prohibit some decoders in order to protect
the contents of its registers while a cell is scanning its track. Each output

of .a. . decoder corresponds to a task; for a full description of these tasks,

see Appendix B.

8.1.2.2 logic Diagram L-2

Thfs diagram shows the logic of all important states of the cell.
1. ADDRESS SWITCHES are a set of 8 SPST.switthes settable by a human operator.
Their "contents" are readable by the CONTROLLER (See L-13) and are compared
with the RAP DATA BUS during an attempt to open the cell by address (by CK 1).
2. The RELATION NAME REGISTER (abbr: RN REG) contains a 16-bit pattern which
{s a coded name of the relation name assigned to the cell. Its contents can
be set (by PLD 1) and read by the CONTROLLER (See L-13). They are also compared
with the RAP DATA BUS during an attempt to open the cell by relation name (by CK 0).
Thus, the relation name is treated as a programmable address.
3. There is a provision (by CK 4) for opening all cells independently of their
state , address and name. This is not essential but it helps to accelerate the
initialization process after power is turned on.
4. When the cell is "destroyed" (by PLD 9), ALIVE=0 and the RN COMPARATOR is -
negated; thus the cell cannot be opened by any relation name until a new name
1s assigned to 1t (by PLD 1) when ALIVE becomes high. '
5. Each cell must be initiated to run; i.e. RUNNING is set high by either CK 6
(for all cells) or by PLD 8 (for some selected cells). After a cell has been
running (scanning its track), there are very few things the CONTROLLER can do to
it; it is therefore important to load all necessary constants before initiating
a cell to run.) '
6. A cell can be made to terminate its activities and erase most parameters
of the "current" instruction when EXFIN is. generated (by CK 7 for all cells

62

8. DESIGN/PERFCPMANCE APPENDICES 8.1.2.2

unconditionally or by INS 4 for some selected cells). Most of the time, this is
not essential but it can help to simplify the process of loading parameters of
the next instruction. The only circumstance for which it must be used is after an
instruction with a Query List fnvolving a test on the address (See L-7).
7. POLL_IN and POLL_OUT belong to the single line that runs through all cells
and that defines priority by physical location. The line is used with the
GET_NEXT_CELL scheme (i.e. with INS 3) to select exactly one cell and to "advance"
the selection along the 1ine. This unique selection is important in the reading
of most information (but STATUS) from a cell and in the insertion of new tuples.
. REJECTED indicates that a cell has been served and BLOCKED means that it must
‘wait until fts turn. Note that only open cells are affected by this selection
scheme; others are totally "transparent” to it.

This scheme (and the priority line) is not essential since one can always
select by address. However, for a large sysfem, this scheme can help to reduce
both time and space. '

8.1.2.3 Logic Diagrmas L~3 .
1. BLOCK_START is a narrow pulse marking the beginning of every tuple while the
cell is running (See L-17). It is stretched until the next falling edge of ¢
to become BS which initiates the generation of ¢1 thru ¢7 corresponding to the
first seven bit-times of every tuple. $Q1...5Q7 are shorter versions of ¢1...¢7.
2. GAPE is low while a tuple is being scanned. It is found to go up again at
the end of every tuple by DL. C
3. Before (as well as after)every domain exist two bits that were employed in
RAP I to store the length code of the next domain.LCl and LC2 are the bit-time
signals for these bits. ¢6 and ¢7 provide these bits forthe first domain and,
as mentioned earlfier, their generation is due to BS. PLCl1 and PLC2 provide these
bits of all subsequent domains; they are generated by the termination (MOR) of
every domain. In RAP'2 , the length code bits are no longer necessary since the
LENGTH CODE RAM stores all format information . It is difficult, however, to
remove these bits without extensive changes in timing. These bits and the
corresponding timing signals are therefore maintained hut they no longer

carry any information except that the first two are still reserved for the TKE symbol.

4. The WORD LENGTH COUNTER is (synchronously) preloaded with a proper value which
depends on the length of the next domain. When a domain is being scanned, EOR
allows the counter to operate; after the clock pulse of the last bit of the domain,
the counter becomes full (indicated by its TC terminal), MOR is generated to

mark the end 6f the domain and to {nitiate the generation of PLC1 and PLC2.

63

. DESIGN/PERFORMANCE APPENDICES 8.1.2.3

5. The tnformation on the mark-bits are §amp1ed by SQ1 through SQ5 to get DF, A,
B, C and D.

8.1.2.4 Logic Diagram L-4

1. WORD POSITION COUNTER (abbr: WPC) is the pdinter indicating the next domain
(the 1st domain of any tuple is numbered zero) relative to the “current" tuple.

When the cell {s running, it {s incremented by EOR which is a signal covering every
domain. In a CREATE process, while the CONTROLLER is loading format informations
into the LENGTH CODE RAM, the counter is incremented automatically. It is however .
the duty of the CONTROLLER to reset (with PLD 11) the counter to zero before
starting to load. When the cell {s {initiated to run, the counter is automatically
reset (by EXRUN).

2. LENGTH CODE RAM .(abbr: LCR) stores the length codes of all domains: Siace
there is only one format per cell, the RAM has to be only deep enough to accommodate
the maximum number of domains per tuple. In RAP II, this number is 255. For "sdfety"
reasons, the LCR can be loaded only while the op-code for CREATE is present.
KEY_ENABLE must last long enough to wh’ te on the RAM.

3. Since the WPC always points to the next domain, the length codes of the current
domain must be pre¥samp1ed‘by LC1. They are then decoded to see if the READ HEAD

{s now at the end of a tuple (contents of LCR is "11"). In this case, DL is

~generated. Otherwise, there will be another domain coming next and EOR is generated

s1ightly before the Ist clock pulse of that domain, and one of E10, E18, E34.

{s also produced to control the WORD LENGTH COUNTER and to define the proper length
of many shift registers. EOR is reset at the end of every domain by MOR. A

4. Due to an historical reason which was thought unimportant to change, the length
code bits of the 1st domain of every tuple is used to store the "logical track

end" symbol (TKE). If both these bits are marked, it means that there is no more
valid data beyond this tuple. TKE is thefeforé generated from the sampled values

of DATA_IN at ¢6 and ¢7. In the case of data retrieval, when enough satisfied
tuples have been taken, a false TKE condition is "faked" so that the cell
stopsproperly. TSYN assures that TKE is reset before any instruction is carried out.

8.1,2,5 “Logfc Diagram L-5
This diagram shows the production of EQUALITY and EQUALITY2 which are employed
to cover the operand(s) in an arithmetic instruction or the domains to be read
out in a partial retrieval instruction. _
1. A specified domain-number must be preloaded by the CONTROLLER into one of
three 8-bit registers where {t is compared with the WPC to generate either

el

8. DESIGN/PERFCRMANCE APPENDICES 8125

EQUALITY or EQUALITY2. Typically, only EQUALITY is generated (at most 3 times
per tuple). EQUALITY2 appears only for the instructions ADD, SUB and REP
provided INT-1 # INT-2 (See L-11 and L-12). ‘
2. The domain number corresponding to EQUALITY2 must be loaded into the middle
8-bit register. Y1 prevents EQUALITY2 from being generated by the contents of
the other two registers. ’ ‘
3. In an arithmetic instruction (indicated by C_op4=1), EQUALITY corresponds
to the leftmost register. YO prohibits the other two registers from giving any
{nterference.
4, For historical ' reasons, the three 8-bit registers share the same comparator.
Therefore, a restriction must be made as follows:
- The Teftmost register has the highest priority; the rightmost the lowest
(EX: If only one domain has to be covered, the leftmost register must
be used). _

- A smaller domain number must be stored in a higher priority register.

To stmplify software/hardware, the three registers also share the same loading
signal (SLD 4). The smaller domain-number must be shifted in later. It is also
important (in data retrieval only) that unused registers must contain zero so that
unwanted matching with the comparator cannot occur.

5. Since the three 8-bit registers are connected one after another through
tri-state gates to the comparator, it is important that there always be one
register remaining connected (otherwise a false match could result). For

this purpose, the signal Y2 is used to prohibit the 2-bit counter from being
i{ncremented.

8,1.2,6" L‘da1c Diagram L-S

There are three independent Domain Comparator Units that are virtually
identical; therefore only the first one is shown in L6 and analyzed. Each unit
is used to compare a domain with some constant as specified by the Query List.

1. To use the first unit, SL-4 must be preloaded with a value of "1". The

values of f1, gl and hl must also be.specified. The comparand must be loaded

(by SLD 5) together with the domain-number of the &omain to be tested. There

are four shift registers for this purpose. The leftmost stores the domain number
(which must be loaded last). The next one is for an 8-bit comparand; if it is .
16-bit, one more register is used. Finally, for a 32-bit comparand, the rightmost
register stores its least significant part.

2. In operation, PQ1 is generated (in a similar way to EQUALITY) to cover the

specified domain when the contents of the leftmost shift register match the WPC.

65

8. DESIGN/PERFORMANCE APPENDICES 8.1.,2.6

PQl allows the clock ¢ to be used (as ¢c1) for the comparison. ¢cl rotates

the comparand and samples the "current" result of the comparison in two J-K

flip flops. The comparison of the comparand with the value of the specified domain

{s made through two EX-OR gates and a few other gates under the assumption that

numbers are in pure binary. A D-flip flop storing the sign difference is used

with two more EX-OR gates to accommodate 2's complement notation. The final

results are gated with fi, gl, hl and then sampled by PLCT1 (first bit after

the last bit of the relevant domain) to produce Q1. If the comparison is satisfactory,
Q1 is high after the domain is scanned and stays high until the next tuple;

otherwise Q1 will be low.

8.1,2,.7 > 'Logic¢ Diagram L-7

This diagram shows how the mark-bits and the result of the Domain Comparator
Units are evaluated to produce the QDCJ signal. QDCJ means "qualified either
disjunctively or conjunctively"; that is to say the relevant tuple satisfies
the Query List.

1. DISJ s a value loaded by the CONTROLLER. It must have the value of "1"
if the Query List is in the disjunctive form; zero otherwise.
2. QMRK (= "qualified as far as marks are concerned") is high for a tuple if:

- at least one specified mark-bit has a mark.

- Furthermore, if DISJ=0, all specified mark-bits must have mark.

3. QUMRK (= "qualified as far as absence of marks are concerned") is similar
to QMRK except that it concerns the absence of marks on mark-bits.

4. QDCJ for a valid tuple is high after all necessary information has been
acquired 1f:

- either no item in the Query List is satisfactory

- or (in the disjunctive mode only) at least one item is satisfactory.

One simple way to select no tuple is to set DISJ=0, a2=a3él.- This asks
for the impossible case that the mark-bit A has and has not a mark.

In the case of "LOAD I/0 BUFFER", after enough tuples have been read, the
cell is forced to scan one more tuple; for this extra tuple, QDCJ is forced Tow
by a (possibly faked) TKE condition.

5. ADR is automatically set when a comparison against the ADDRESS SWITCHES is

made for the execution of the Query List (ADR is not affected by the opening

of a cell by address). Many such comparisons can be made for the Query List

and just one match is enough to set HMA high. It is important that EXFIN is

issued after the CONTROLLER has finished with an instruction involving address test.

66

8. .DESIGN/PEREOPMANCE APPENDICES 8.1.2.7

Qtherwise -, the value of ADR and HMA can interfere with any future query
test. The concept of address test is necessary only in RAP I and totally
undesirable in RAP II; it {s implemented here just for the sake of keeping the
original RAP specifications unchanged.

8,1.2.8 'Logic Diagram L-8
T. Most instructions demand action if and only if a tuple satisfies a Query List.
These instructions are characterized by the fact that they invelve only valid
data and can be terminated by a TKE condition. The rest, namely SPACE COUNT,
INSERT and CREATE, are quite different: They involve non valid data (i.e.
vacant space) and consequently need no Query List and cannot be terminated by a
TKE condition.
2. The signal SATISFIED is used to indicate that some actions must be taker for
a relevant tuple. For the reasons discussed above, most instructions must
havetheirSATISFIED signal generated by sampling the value of QDCJ by DL; whereas
INSERT and SPACE COUNT by sampling the value of DF by SQi. CREATE is quite
different since it does not depend on the data on the track; but rather it
seeks to see if there is enough space to place a future tuple.Consequently,
in CREATE, the signal SATISFIED must be generated by DL which marks the end of a
tuple space.
3. The S-COUNTER counts the number of satisfied tuples in a pass. Its contents
are compared with a 1imit loaded by the CONTROLLER in the LIMIT REGISTER for the
{nstructions INSERT and LOAD 1/0 BUFFER. After the . limit is reached, no additional
SATISFIED can be produced (and hencefi¥ Sole action) and the S-COUNTER is frozen.
In the case of INSERT, the cell stops after inserting the last tuple required.
In LOAD I/0 BUFFER, the READ HEAD still scans one more tuple after having read
the Jast satisfied tupIe‘required so that the WRITE HEAD can have a chance to
mark/unmark properiy. Since the extra tuble can be satisfied and can cause a
problem (see L-10), it is necessary to fake a TKE condition for that tuple.
4, RHOFF indicates that the READ HEAD has gone beyond the physical end of the
track and obviously there are no other satisfied tuples to be counted.
5. WHOFF indicates that the WRITE HEAD has gone beyond the physical end of the
track and obviously there is no more space to write on and the cell must stop.
6. TABLE 1 shows the timing of the signal SATISFIED '

TABLE 2 shows the timing of the signal AUTOFIN.
7. Note that in RAP I, there must be at least one TKE tuple left on the track.
In RAP II, there is no need for this; furthermore, the odd track remnant that may

exist (if the length of a block does not divide the track length) cannot cause any
problem, : '
67

| 8, DESIGN/PERFORMANCE APPEMDICES 8.1.2.8

TABLE 1
Properties of the signal SATISFIED

NSERT SPACE COUNT CREATE LOAD I/0 BUFFER} OTHERS

riteria of
eneration DF = 1 DF = 1 A1l tuples] QDCJ =1 QDCJ=1
rohibited when :
e S-COUNTER Yes No No Yes No
eaches a
predetermined 1imit
Timing Immed.'l ate| Immediate Delayed Delayed Delayed
Irmediate: from SQ1 of relevant tuple until DL .
Delayed : from DL of relevant tuple until next DL.

- ' TABLE 2
Generation of the signal AUTOFIN.

if many conditions can cause AUTOFIN, only the one which
comes eariiest will.

Fbment of generation { INSERT SPACE COUNT CREATE LOAD I/0 BUFFER OTHERS

WHOFF = 1 Yes Yes Yes Yes Yes
last bit of the -
last required tuple Yes N/A N/A No N/A

| ast bit of the tuple

beyond the last No N/A N/A Yes N/A
required tuple

Last bit of a
tuple bearing the No No o N/A Yes Yes
%ymbo] TKE

68

e

l8. DEISGN/PERFOPMANCE APPENDICES 8.1.2,9

8.1. 2 9 Logic Diagram L-9

1. REN 1s the signal that allows writing to be performed for the CCD track

and TTDATA is the data to be written there when REN is high (See L-14 and L-18).
2. For INSERT, a vacant tuple is completely erased (including all mark-bits) and
rewr{tten with the serialized contents (INS_DATA) of the I/0 BUFFER; the option
MARK can be used to preset (with SBIT) all new tuples.

3. For DELETE, the whole tuple {s also erased; but the 1st mark-bit is marked

by SQ1 through SBIT.

4, For CREATE, the whole track {s erased and marked with DF and TKE symbols
(i.e. the Ist, 6th and 7th bits) by SQ1, SQ6 and SQ7.

5. By examining carefully diagrams L-8 and L-9, onewil] find that the remnant
that may exist at the track endwill pose no problem: It will be erased and it is
never misinterpreted as a tuple.

6. For most instructions but SPACE_COUNT, the MARK/UNMARK option will cause

the marking/erasing of the mark-bits (specified by al, bl, ¢l and dl) by the turning
on of REN at the right time. MARK overrides UNMARK since SBIT 1s interpreted as
data to be written. It does not make sense (though permissible) to use the MARK
option for DELETE and CREATE,

7. For some arithmetic instructions (more specifically, for ADD, SUB and REP),
the result to be rewritten on the track is expressed by OR1P; and UPDATE covers
the domain to be updated.

8. Except for the above ru]es, the contents of the track cannot be changed by the
cell in any other circumstance. It is possible however to change manually (for
testing purpose) as described in L-14 and L-18.

8,1.2,10 - Logic Dfagram L-10
1. The I/0 BUFFER serves only to implement the insertion/retrieval instructions
(INSERT and LDAD I/0 BUFFER). As its name implies, it serves as a buffer to
decoup1e the speed of the CONTROLLER (or other external devices) from that of
the cell.
2. In INSERT, the CONTROLLER loads as much data as it wants; limited only by the
size of the I/0 BUFFER (which is currently 1Kx16 RAM). A 16-bit domain fits
nicely in one RAM word. An 8-bit domain must be Toaded into the Tower byte'of the RAM.
A 32-bit domain must be loaded in two consecutive RAM words; with the least significant
half first. The CONTROLLER also has to load the number of tuples to be inserted
into the LIMIT REGISTER.
The BUFFER has its own pointer (I/0 BUFFER COUNTER) which can be reset to

zero by the CONTROLLER (using PLD11). Every time a word is loaded (by SLD1), the

69

.8q DESIGN[PERFORMAHCE'APPENDICES,. 8.1,2.10

signal BT is generated by a one-shot to transfer data from the RAP DATA BUS
into the RAM. Note that the op-code for INSERT must have been preloaded before
this transfer can be done correctly. A second one-shot is used to advance the
pointer. ' .

In operation, the pointer is reset to zero by the initiating signal EXRUN. i
When a vacant place {s found (SATISFIED is set by DF), a BT pulse is generated
before the first clock pulse of every domain to transfer the "current word" ;
into a parallel-to-serfal converter. For a 32-bit domain, after the first 16 bits ?
of the‘domain, a second BT pulse is generated (this is done by decoding the
contents of the WORD LENGTH COUNTER) to get the second half of the domain. The @
contents of the parallel/serial converter are shifted out and go through a D-flip '
flop where they are chopped by RSQ into a stream of pulses named INS_DATA (absence
of a pulse indicates a zero) which will be sent to the UPDATE CONTROL unit (L-9)
for writing onto the track. _
3. In LOAD I/0 BUFFER, data from the tiack is continuously shifted into a
serial-to-parallel converter and & BT pulse is generated immediately either after
the last bit of every domain or after its 16th bit to write the converter's contents
{nto the BUFFER. Also, the pointer is incremented accordingly. This is done for
all valid tuples even non satisfied ones. Since we do not want to store non-qualified
data, we must overwrite it with new . In other words, we must backtrack if a
tuple 1s found to be not satisfied. Naturally, the backtracking is not done on the
track but by resetting the pointer to a proper value. This is possible thanks to a
(not named) register which remembers (by SQ5) the value of the pointer before any
tuple is read in. At the end of the tuple (marked by DL), if it is not satisfied
(QDCJ=0), that value is returned to the péinter.

Finally, in the partial retrieval mode, SL-1=1 and the BT signal is generated
only for domains covered by EQUALITY (See L-5) and hence only specified domains will
be stored in the BUFFER.

Since the size of the BUFFER is finite, only a 1imited number of tuples
can.be read., It is up to the CONTROLLER to find this 1imit and load it into
the LIMIT REGISTER. After enough tuples have been retrieved, the cell will fake
a TKE condition and 1t will stop in one tuple-time after the last retrieved tuple.
If there are not enough satisfied tuples, the cell will stop at either the logical
end of physical end of the track (See L-8).

8.1.2,11" Logic Diagrams L-11 and L-12
The ARITHMETIC UNIT is employed strictly to support the instructions ADD,

SUB, REP, SUM, MAX and MIN which are characterized by C_op4 = 1. Due to limitation

70

8. DESIGN/PERFORMANCE APPENDICES 8.1,2,11

of space, we only allow 8-bit and 16-bit operands. It is a straightforward
matter to expand the logic to accommodate 32-bit domains; it is mandatory however
to define new "keys" to l1oad and read data for a longer field.
1. For MAX and MIN:
These instructions ask for the max/min value of a specified domain of all L
satisfied tuples to be stored in the RESULT REGISTER. In operation, REGISTER 1
' constantly takes the specified domain of all tuples; satisfied or not. Meanwhile,
the contents of REGISTER 2 are compared against the specified domain (from the
track) withthe help of a serial comparator which employs a few EX-OR gates, J-K j
f1ip flop and a D-flip flop for sign correction (note the similarity with the
logic of the comparator of the Domain Comparator unit). If TAKE NEW =1, it means
that the latest tuple has a "better" value and must replace the "current" max/min
value stored in REGISTER 2. However, TAKE NEW is "anded" with SATISFIED so that
the result of the comparison is discarded if the latest tuple is not satisfied.
Furthermore, for all tup1e§ from the beginning until and including the first
satisfied tuples, the serial comparator is deactivated by SAT ONCE=0 and always
produces a high value of TAKE NEW. The net result is that at the 1st bit of the Ist
tuple after the Ist satisfied tuple, the contents of REGISTER 1 are transferred
to REGISTER 2. Briefly speaking, the logic of L-11 assures that the specified
domain of the 1st satisfied tuple is always loaded into REGISTER 2 before any
more comparison. From now on, the serial comparator is activated (SAT ONCE=1)
and any satisfied "better" value will be loaded into REGISTER 2 where it is
" rotated and compares against the data from the track until a still satisfied and
better value replaces it. Furthermore, the finding of a satisfied and better
value also triggers an R-S flip flop that allows the generation of CKb which will
shift that vatue (from REGISTER 2) into the RESULT REGISTER. This shifting occurs
one tuple-time after that value was first seen. Note that there is no problem
even if the max/min value happens to belong to the last tuple on the track since
the cell only stops one tuple-time after the track-end. Once in the RESULT
REGISTER, the "current" max/min value stays there until it is replaced by a
“better” and satisfied one. ' ' |
After the cell stops the CONTROLLER can read from the RESULT REGISTER using
R_ALU (See L-13). Note that if the specified domain is 8-bit long, the result
is duplicated in both bytes of the RESULT REGISTER.
2. For ADD, SUB and REP.
These instructions are similar and are characterized by: _
- They need two operands and therefore are the only instructions
requtring the signal EQUALITY 2. : _ !

/1 ‘l

8. DESIGN/PERFCRMANCE APPENDICES - 8.l.2.1

- They are the only instructions that can cause a change in one |
domain (of all satisfied tuples).

* The need for two operands requires (unless an operand is a constant) the
covering of the lower-numbered domain by EQUALITY and that of the higher-numbered ‘
domain by EQUALITY2. The relevant domain-numbers must be shifted in by the oo
CONTROLLER in correct order (See L-5). If the 1st domain (lower-numbered) must :
be updated, the CONTROLLER must preload INT-1=0, INT-2=1. If the 2nd one must be,
INT-1=1 and INT-2=0. In the 1imiting case where both operands are identical.
then the 2nd domain-number is ignored since EQUALITY2 will not be generated;

. the CONTROLLER must set however INT-1 = INT-2 = 1. If one operand {s a constant
(supplied by the CONTROLLER), only one domain is involved and only EQUALITY but
not EQUALITY2 will be generated; the CONTROLLER must set INT-1 = INT-Z = 0.

The operation of the cell depends on the values of INT-1 and INT-2: '

Case 1: INT-1 = INT-2 = 0.(Externa1 operand)

The COMTROLLER must preload the constant into REGISTER 2 using PLD 13 {tefore
the cell is initiated ro tun). If the relevant domain i{s 8-bit, the constant
should reside in the higher byte. In operation, CKa will rotate the constant
properly when the specified domain is being scanned. Meanwhile (i.e. while
EQUALITY * EOR = 1):

For ADD, the seffal full adder adds the output of REGISTER 2 (i.e. the
constant) with the current domain value (from track). A D-flip flop takes care
~ of the carry and the result is shifted into the RESULT REGISTER. If the domain
{s 8-bit long, both bytes of the RESULT REGISTER store the duplicated sum. At
the end of a tuple, the sum is already contained in the RESULT REGISTER, whether
or not the current tuple is satisfied. While the current sum is shifted in,
the previous sum is shifted out through a D-flip flop to become ORIP which is
immediately sent to the UPDATE CONTROL UNIT (L-9) to be written on the track.
1f the previous tuple qualifies, UPDATE is high and the writing process is
accomplished; otherwise no writing will be possible (for the previous tuple).

In a similar way, the current sum must wait until the next tyle is scanned to
be written on the track. '

For SUB, the constant is complemented by an EX-OR gate controlled by SUB. |
Also, the carry flip flop is preset to 1 to complete the 2's complementing of E
the constant. Everything else remains the same as for ADD.

For REP, the adder is not used and the constant is shifted directly into
the RESULT REGISTER. Every other activity is the same as for ADD.

Case 2: INT-1 = 0, INT-2 = 1 (lower=numbered domain is updated)

72

8, DESIGN/PERFORMANCE APPENDICES 8.1.2.11

Both REGISTER 2 and the RESULT REGISTER are shifted while either relevant
domain fs scanned. The 1st domain is shifted in REGISTER 2 while EQUALITY is
high and stays there until it is shifted out when EQUALITY2 is high to be added
with the 2nd domain (for ADD) or the latter's 2's complement (for SUB) and the
sum {s shifted into the RESULT REGISTER. For REP, the 2nd domain is simply
shifted directly in the RESULT REGISTER. By the end of the 2nd specified domain,
the proper result is stored in the RESULT REGISTER (whether or not the tuple
qualifies) where it remains until the 1st specified domain of the next tuple
1s scanned when it will be shifted out to become ORIP and everything else is
similar to Case 1.

Case 3: INT-1 =1, INT-2 = 0 (higher-numbered domain is updated)

Only REGISTER 2 is shifted while either relevant is scanned. The RESULT -
REGISTER is shifted only while the 2nd domain is scanned. Like Case 2, the Ist
domain is shifted into REGISTER 2 and is shifted out to be added with the 2nd
domain (for ADD) while EQUALITY 2 is high. However, if SUB is involved, the
contents of REGISTER 2 is complemented before being added. For REP, the
contents of REGISTER 2 is also shifted directly into the RESULT REGISTER.

Again, 1ike Case 2, by the end of the 2nd specified domain, the proper result

is stored in the RESULT REGISTER but this time it must wait until the 2nd specified
domain of the next tuple to become ORIP which will be written on the track if
the relevant tuple is satisfied.

. Case 4: INT-1 = INT-2 = 1 (single operand)

' In the case, only EQUALITY is generated and both REGISTER 2 and the RESULT
REGISTER will be shifted while EQUALITY is high. If ADD is involved, the value
of the specified domain is delayed by one bit-time by a D-flip flop before

being shifted into the RESULT REGISTER. The net effect is that the sum is twice
the operand. For SUB, nothing (i.e. zero) is shifted into the RESULT REGISTER
to form the proper null result. For REP, the operand is shifted into the RESULT-
REGISTER directly. Just like case 2, the proper result stays in the RESULT
REGISTER until the next tuple to be shifted out and written on the track if the
relevant tuple qualifies.

3. For SUM

This operation involves only one operand and EQUALITY is used to control
the clock for both REGISTER 2 and the RESULT REGISTER.

The specified domain is always shifted into REGISTER 2 (whether or not
the tuple qualifies) when it stays until the same domain of the next tuple
displaces it. If the relevant tuple is not satisfied, nothing js done; otherwise

73

8. DESIGN/PERFCRMANCE APPENDICES - 8.1.2.11

the output of REGISTER 2 is added with the contents of the RESULT REGISTER.
and the sum is stored back in the RESULT REGISTER. The partial sum remains
there until a next satisfied tuple is formed.

As mentioned before, there is no problem if the last tuple of the track
qualifies since the cell always scans one extra tuple (an "imaginary" one,
if necessary) beyond the track end before it stops.

After the cell stops, the CONTROLLER can read the final result from the
RESULT REGISTER by R_ALU. If many cells are involved in the SUM instruction,
it is up to the CONTROLLER to collect all individual sums and find the final sum.

Note that as long as no satisfied tuple has been found, “zero" is
constantly shifted in the RESULT REGISTER. Even if the Ist tuple qualifies,

© . this fact is not known until the end of that tuple; consequently the RESULT

REGISTER is always initialized properly to zero.
8.1.2.12 Logic Diagram L-13

This diagram shows clearly everything that the CONTROLLER can read from
a cell and it needs little explanation, | '
1. To read the I/0 BUFFER properly, its pointer must be read first to know
how many words in the 1/0 BUFFER are meaningful data. Since the pointer always
points to one word beyond the valid data area, if the BUFFER is full, the pointer
can point to zero. A check on the "satisfied status" should clarify this.
2. Every time the I/0 BUFFER is read, its pointer is automatically incremented
by one. But the CONTROLLER must reset the pointer (using PLD 11) before starting
to read. . ' ‘

If a domain is 8-bits Tong, it must be taken from the higher byte. If a
domain is 32-bits Tong, the lower word is read out first.
3. The five least significant bits of STATUS indicate the presence of at
least 1 mark on the mark-bits (Ex: If there is at least one vacant place,
bit #4 is high). Note however that these bits reflect only the portion of the
track seen by the READ HEAD in the last pass; that is to say, after an INSERT
or LOAD I/0 BUFFER, these status bits do not necessarily show the mark-bits
of the whole track. Furthermore, these bits are not affected by whatever was
written by the WRITE HEAD. For instance, after a CREATE or after a MARK/UNMARK
option, these bits do not reflect what is on the track.) _
4, Bits 5 to 9 of the STATUS have not been defined. The rest is for important
states of the cell. The most significant bit is always high; this is very
important to detect the presence/apsence of any cell and is necessary as a
"feedback" test for the use of "GET NEXT CELL".

74

8. DESIGN/PERFORMANCE APPENDICES 3.1,2,13

8.1.2.13 Logic Diagram L-14

This diagram shows the generation of all important memory phases.
1. A1l the phases are decoded from the various counts (a, b, ¢, d) of the
master clock MC.

0SC signals the end/beginning of each bit-time. To understand CHOICE, it
is necessary to realize that each INTEL 2416 chip is in fact two time-multiplexed
drums. CHOICE is used to alternate between them. ¢1, 42, ¢3, ¢4 are strictly used
for shifting CCD memories.
2. SAMPLE is used mainly to mark the time when data is available from the CCD.
¢ is used for many parts of the cell such as shift registers and the WORD LENGTH
COUNTER. RSQ is a secondary phase arriving slightly late than ¢ to truncate
various signals. WE is for enabling the writing process, CEl is used for enabling
the CCD chips. '

"~ 8.1.2.14 Logic Diagram L-15

This diagram shows how the current position on the track is monitored. It
also shows how the single-step mode and the slow mode together with the halt
Togic are implemented.
1. In the normal mode, the SECTOR COUNTER points to the current position on a
minor loop, and the TRACK COUNTER the current minor loop. The SECTOR COUNTER is
advanced once every time the TRACK COUNTER is full (LS=1).
2. In the slow mode, which can be entered either manually (by setting a switch
properly) or electronically (via EX_SLOW when the cell is running at the highest
speed), for each bit-time "given" to the rest of the cell, 256 others bit-times
are held back; that is to say the CCD memories are constantly working at the full
speed but the rest of the cell "thinks" that the speed is reduced 257 times. In
the holding state (characterized by STORE = 1 and bit- times being held back), the
TRACK COUNTER is not incremented and the SECTOR COUNTER is used to count the number
of held bit-times: At the beginning, the SECTOR REGISTER stores the contents of
the .SECTORE COUNTER which is then reset to zero (by LOAD ZERQ); it then counts

until it becomes full (LS=1). The holding state is then replaced by the normal ﬂ
state, the contents of the SECTOR REGISTER are transferred back to the SECTOR COUNTER !+

and everything goes back to normal again. The speed mode commands are then tested:
If thelcell is still not yet supposed to run at full speed, the normal state would

3. The single-step mode can only be entered manually by setting a switch properly.

|
\
|
last only one bit-time and the holding state would be again entered. !
! |
|

An R-S flip flop is used to debounce the pulser's push button. Another D-flip flop .
is essential as a conventional service flag to synchronize with the cell (since

75

8. DESIGN/PERFORMANCE APPENDICES o sla2.

the activation of the pulser is random).

In the single step mode, the cell is typically in the holding state. Affer
every 256 bit-times, the speed mode commands are tested to see if the single steo
mode must remain; meanwhile the service flag (of the pulser) is also tested
to see if a step is required. If the flag is down, nothing is done; otherwise
the cell temporarily leaves the holding state (for just one bit-time) in a
similar way as for the slow mode; the only additional thing to do is that
the flag is reset. b
4, The cell can be halted (if the automatic stop switch is set properly) i

_ electronically either by REF (a signal produced when the READ HEAD reaches a (
spot defined by an array of thumbwheel switches) or by HALT (an external signal ' E
coming from some test equipment). f

The halt state is similar to the single step mode except that no step is
generated. After every 256 bit-times, the cell tests to see if it has to
remain in this state.

8.1.2.15 Logic Diagram L-16

This diagram shows how the READ HEAD and WRITE HEAD are applied to the CCD
memories. Note that if DUAL HEAL = O (INSERT = 1), both HEADs are identical.

The CCD chips are arranged in an X-Y matrix to reduce the number of drivers and
wiring. The value of "4" of the number of columns is due to some physical restrictions.

8.1.2.16 Logic Diagram L-17

This diagram shows the timing for the beginning and end of the track. -~
1. A multiplexer permits the choice of many different memory sizes by the setting
of a switch. A large AND gate is used to determine when the last minor loop is-
scanned (either by the READ HEAD or WRITE HEAD). A HEAD falls off the track when
it exits from the last minor loop; this circumstance is indicated by RHOFF/WHOFF.

2. BLOCK START is produced at the 1st sector of a minor loop when GAPE=1; this

implies that no gap is allowed on the 1st sector. Consequently, the value of

Block Size must be carefu)ly calculated so that no gap can exceed 255 bits. .
' 8.1.2.17 Logic Diagram L-18 | |

This diagram shows clearly the signals other than CE and CS that drive the g
CCD chips. ' ’ , ‘ fé
1. Data to be written is sampled by ¢. CEl guarantees that no data can overlap
with the next bit and no data glitch can latch.

2. The Read Only mode can be entered by an appropriate setting of the Data Control
Switch. In this mode, writing is prohibited and the contents of the track are
preserved. It is of great importance for testing purposes,

3. The Manual Writing mode can also be entered by an appropriate setting of the

76

‘8. DESIGN/PERFORMAMCE APPENDICES 8.1.2.17

Data Control Switch. In this mode, data to be written on the track is defined
by the Data Switch. It can be used with the Single Step mode and the Automatic
Stop (by REF) mechanism to modify any bit anywhere on the track.

If N is the current reading of the 7-segment LED display, N indicates the
current position of the READ HEAD; that of the WRITE HEAD is at N-X where X is
either zero or the block size (in bits) depending on the value of DUAL HEAD ‘
(i.e. on the current C_op values). An attempt to write manually now will affect }
Tocation 1+N-X.

8.1.2.18 Logic Diagram L-19

This diagram shows how the current position of the READ HEAD is displayed i

" by 7-segment LEDS, and how it is compared with the setting of the thumbwheel ' ?
switches to produce the signal REF which can be used to halt the cell or to trigger . 3
some test equipment. ;

77

R UL TR

8. DESIGN/PERFORMANCE APPENDICES 8.1.3

8.1.3. LIST OF SIGNALS USED IN LOGIC DIAGRAMS L-1 TO L19

NOTE: The digits in parenthesis following the name of each signal refer to
the L-number. The source of the signal is underlined.
A (3,17,13) Indicates that the mark-bit A of the current tuple has a mark.

a (14) The least significant bit (first bit) of the BASIC TIMING COUNTER.
It is a square wave of half the frequency of MC.

al (9) Loaded by the CONTROLLER to indicate that the mark-bit A of all satisfied

tuples must be marked or unmarked depending on the value of MARK and UNMARK.

.a2, a3 (7) Loaded by the CONTROLLER to indicate that the presence or absence
respectively of a mark on the mark-bit A is part of the Query List.

AD1...AD7 (1) Inverted from the RAP CONTROL BUS.

ADD (11,12) Decoded from C_op values; indicating that the cell must perform
an addition on the track for all sat15f1ed tupIes

ADR (7) Indicates that the cell-address is part of the Query List; this
Feature is not necessary in RAP II.

ALIVE (2) A state of the cell indicating that it contains a well defined relation.
Tf the cell is "destroyed", it becomes Tow and prevents the cell from
being opened by any relation name.

AUTOFIN (2,8) A narrow pulse indicating that the ce]l discovers that it
has completed its job.

B (3,7,13) Similar to A; but concerning the mark-bit B.
b(14) The second bit of the BASIC TIMING COUNTER (Cf. a).

bl (9) Similar to al; but concerning the mark-bit B.

b2, b3 (7) Similar to a2, a3; but concerning the mark-bit B.

BLOCKED (1,2,13) An important state of a cell. In this state, a cell is
not sensitive to most commands of the CONTROLLER.

BLOCK_START (3;5,11) A narrow pulse preceding the first clock pulse of the
first bit of every tuple while the cell is scanning its track.

BS(3) -Simply a stretched form of BLOCK_START.

BT(10) A narrow signal used to write onto the 1/0 BUFFER and to transfer
its contents to a parallel-to-serial converter.

78

8. DESIGN/PERFORMANCE APPENDICES 8.1.3

C(3,17,13) Similar to A; but concerning the mark-bit C.
¢(14) The third bit of the BASIC TIMING COUNTER.

cl (9) Similar to al; but concerning the mark-bit C.

¢2, ¢3 (7) Similar to a2,a3; but concerning the mark-bit C.

CEl (15,16,17,18)'A periodic signal of the same frequency as ¢. It goes
up twice in each cycle to enable reading and writing.

CHOICE (14) A square wave, half the frequency of 0SC.

€K 0 ... CK7 (1,2) Decoded from the RAP CONTROL BUS. They are effective
: for all c—1ls of the System independently of their states.

CKa, CKb (11,12) same as ¢; but restricted to one or two domains. Only
used in Arithmetic Instructions.

C_opl ... C_op4 (5,8,11,12) Loaded by the CONTROLLER; used to encode the
job that the cell must do. A value of C_ond = 1 indicates that an
Arithmetic Instruction is invo]ved.

CREATE (4,8,9,16) Decoded from C_op values to indicate that the CONTROLLER
wants to define a new file (3. e. Relation).

CSX0 ... CSX3, CSYQ ... CSY15 (16,17) Decoded from the 6 most significant

bits of the "current® HEAD (which can be READ or WRITE). Employed to
select CCD chips.

D (3,7,13) Similar to A; but concerning the mark-bit D.

d (9) The third bit of the BASIC TIMING COUNTER (Cf. a).

dl (9) Similar to al; but concerning the mark-bit D.

d2, d3 (7) Similar to a2, a3; but conerning the mark-bit D.

DATA_IN (3,4,6,10,11,12,18) "Current" data read by the READ HEAD from the track.

DELETE (8,9) Decoded from C_op values; indicates that all satisfied tuples
must be deleted (i.e. marked at the mark-bit D). '

DF (3,7,8,10,13) Similar to A; but concerning the mark-bit DF.

DISJ (7,9) Loaded by the CONTROLLER to indicate that the Query List is in
the disjunctive form; i.e. at least one item of the list must be satisfactory.

oL (3,4,5,6,8,10) A narrow pulse that follows the last clock pulse of every tuple.

OT O ... OT 15 (1,2,4,5,6,7,8,9,10,11,16) Inverted from the RAP DATA BUS.

DUAL_HEAD (16) A control signal to indicate that the READ HEAD and the WRITE HEAD
are not: identical. The WRITE HEAD must be calculated from the other HEAD by

subtracting the contents of the BLOCK SIZE REGISTER. This signal must be
connected to the complement of INSERT. 79

8, DESIGN/PERFORMANCE APPENDICES 8.1.3

e (14) The most significant bit of ‘the BASIC TIMING COUNTER.

E10, E18, E34 (3,4,6,11,12) Indicate that the cell is scanning an 8-bit, 16-bit
or 32-bit 1ong domain Employed to rot-te soue shift registers and to control
the WORD LENGTH COUNTER.

EOR (3,4,6,10,11,12) Indicates that the cell is scanning some domain. This is
perhaps the most important signal of a cell. Its presence and
stability indicate that the cell is essentially functioning.

EQUALITY (5, 10 11) Covers a domain which is either an operand in an Arithmetic
Instruction or retrieved in a partial retrieval mode.

EQUALITY2 (5,11) Covers the 2nd domain (if necessary) needed in an Arithmetic ‘
Instructions

EX_pATA (18) Data sent from the cell to be written on the track. This signal
must be connected to TTDATA.:

EXFIN (2,5,6,7,8,9) A narrow pulse generated by the CONTROLLER to terminate the
activities of the cell and to erase many of its registers.

EXRUN (2,4,8,10,11,13) A narrow pulse controlled by the CONTROLLER to initiate
the ce]] to start scanning its track to do its job (after all necessary
parameters have been supplied).

EX_SLOW (15) A control signal for testing purpose only. When being high, it
causes the speed of the CCD Track to slow down by 257 times. It has no
effect if the speed is set at Single Step Mode.

f1, f2, f3 (6) Values loaded by the CONTROLLER to indicate that a domain must
be smaller than some constant (which is also loaded by the CONTROLLER) as
part of the Query List. The digital suffix refers to the chosen Domain
Comparator Unit,

FAST (15) Decoded from the SPEED CONTROL SWITCH to indicate that the cell must
run at its highest speed.

gl, g2, g3 (6) Similar to f1, f2, f3; but equality is required.
GAPE (3,4,5,6,11,17) A signal that goes low from the beginning of every tuple

unti1 its end when it will go high again. This remains true even if two
consecutive tuples have no space between them.

h1, h2, h3 (6) Similar to f1, f2, f3; but superlative comparison is required.

HALT (15) A control signal for testing purpose. It can bring the scanning of the
CCD Track to a halt if the AUTOMATIC STOP CONTROL is set properly.

30

8, DESIGN/PERFORMANCE APPENDICES 8.1.3

HMA (7) Indicates that the cell-address has been compared successfully with
some value supplied by the CONTROLLER as part of the Query List. This
feature is not needed in RAP II.

INS 0 ... INS 7 (1,2) Decoded from the RAP CONTROL BUS. They are effective
for all open ce11s

INS_DATA (9, 10) Data to be written on the track when the cell is processing
an INSERT Instruction. For each domain, they come as a (typically broken)
stream of pulses; absence of a pulse indicates a zero.

~ INSERT (8.9,10,16) Decoded from C_op values to indicate that a specified number
: of vacant tuples on the Track must be filled with the contents of the 1/0
BUFFER.

INT-1, INT-2 (5,8,10,12) Values loaded by the CONTROLLER if the relevant
task is a 2~operand instruction (i.e. ADD, SUBTRACT or REPLACE)

KEY_ENABLE (1,2,4,5,6,10,13) A pulse generated by the CONTROLLER Other lines
?f RAP CONTROL BUS and RAP DATA BUS must remain constant while KEY_ENABLE
s activated.

LC1, LC2, (3,4,5,6) Two consecutive b1t~time signa]s that precede and follow
all domains .

LCE (17) A signal indicating that the .last CCD chip is being used. It helps
to detect when the R/W HEADS go beyond the physical end of the Track.

LOAD 1/D BUFFER (5,8,10) Decoded from the C_op values to indicate that the
cell must look for not more than a specified number of satisfied tuples
and store them (or up to three domains per tuple) in the I/0 BUFFER.

LOAD_ZERO (15) A narrow pulse to load the SECTOR COUNTER with zero (to start
Ta cognt 't of 256 bit-times during which the Track behaves as if it does not
move

- LOCK_OPEN (1,2) An important state of a cell: Not in this state, it cannot.
recieve most commands of the CONTROLLER.

LS (15,17) Decoded from the SECTOR COUNTER to indicate that it is full.

MANUAL. (14,18) Decoded from the DATA CONTROL SWITCH indicating that data to |
be written on the Track must come from the DATA SWITCH.

MARK (9) A value loaded by the CONTROLLER indicating that all satisfied tuples
must be marked according to al, bl, cl and dl.

81

8, DESIGN/PERFORMANCE APPENDICES 8.1.3

MAX, MIN (11,12) Decoded from C_op values; indicating that the cell must
~find the max or min value of the specified domain of all satisfied tuples
and put it in the RESULT REGISTER.

MC (14) Master clock; a 20 Mhz square wave. Every activity ié synchronized
with MC. _

MOR (3,4,5) A narrow pulse occuring immediately after the last clock pulse
of every domain.

ORIP (9,12) Similar to INS_DATA; but concerning either ADD, SUB or REP.

- 0SC (14,15) A narrow pulse marking the beginning of every bit-time.

¢ (3,4,6,10,11,12,14,17,18) The basic clock pulse of the cell.
¢1, ¢2, @3, ¢4 (14,18) Four phrases required to shift thz CCD chips.
#1, ..., 7 (3,4) The first seven bit-times of every tuple.

gcl, #c2, #c3 (6) Same as @3 but restricted to some selected domain; used to
rotate the comparand in the Domain Comparator Units.

PLCT, PLC2 (3,6) The first and second bit-time after the last bit of every domain.

PLDO, ..., PLD 15 (1,2,4,6,7,8,9,10,11,16) Decoded from the RAP CONTROL BUS.
They are effective only to open cells that are neither blocked, nor
rejected, nor running.

POLL_IN, POLL_OUT (2) Indicate the input and output points of the daisy-chained
priority line that runs through all cells in the System. This line is
needed only in large systems to replace a polling-by-address scheme.

Q1 (6,7) Indicates that the Domain Comparator Unit #1 is chosen and the result
.—of the comparison (as specified by f1, g1, h1) is positive.

Q2, Q3 (6,7) Similar to Q1; but applied to the other remaining units.

Q0CJ (7,8,10) Indicates that the "current" tuple contains valid data and it
satisfies the Query List. In the case of data retrieval, a low value of
QDCJ could indicate that the 1imit of tuples to be retrieved has been
reached.

QMRK (7) Indicates that the Query List asks for the presence of at least
one mark (as specified by a2, b2, c2, d2) and that the current tuple is
satisfactory as far as the presence of marks is concerned.

QUMRK (7) Similar to QMRK; but related to the absence of marks.

8. DESIGN/PERFORMANCE APPENDICES | 81,3

R_ADDRESS, R_ALU, R BC,R_I/0, R_RN, R_SC, R_STATUS (COND) (1,10,13) Decoded
from the RAP CﬁNTROL BUS. They are effective for open cells that are
. neither blocked nor rejected. Employed to put the Address, RESULT REGISTER,
BUFFER COUNTER, I/0 BUFFER, RELATION NAME REGISTER, S_COUNTER and STATUS
respectively on the RAP DATA BUS.

R_STATUS (UNC) (1,13) Decoded from the RAP CONTROL BUS. It is effective for
all cells independently of their states. Employed to put the STATUS
on the RAP DATA BUS. .

RAP CO?{ROL]$US (1) A set of 8 1ines of control flowing from the CONTROLLER to
all cells.

RAP DATA BUS (1,13) A set of 16 bilateral 1ines to transfer data from the CONTROLLER
to all cells and back. Not used to transfer data between cells.

RBIT (9) A narrow pu1se indicating that the "current® mark-bit (relative to the
WRITE HEAD) must be erased.

READ_ONLY (18) Decoded from the DATA CONTROL SWITCH to indicate that the contents
“of the CCD Track must not be altered. This is of great value for testing
purpose.

REF (15,19) A signal indicating that the "current" location on the Track matches '
with the setting of the thumbwheel switches. This is also of great value
for testing purpose.

REJECTED (1,2,13) An_important state of a cell to indicate that it has been served.

RELOAD (15) A narrow pulse used to restore the contents of the SECTOR COUNTER
after it has counted a multiple of 256 bit- times during which interval the
CCD Track behaves as if it is standing still.

REN (9,14) Indicates that the "current" bit (relative to the WRITE HEAD) must
be rewritten.

REP (11,12) Decoded from the C_op values to indicate that the specified domain
: of —TT satisfied tuples must be replaced either by a constant or by
another domain.

RHOFF (8,7,17) Indicates that the READ HEAD has gone beyond the physical end of
the CCD track.

RSQ (3,4,5,10,12,14) Another clock phase that occurs slightly later than ¢ ‘
Employed mainly to truncate some signals so that they do not overlap with g
the next bit-time.

RUNNING (1,2,4,8,10,11,13,17) Indicates that the cell is executing its job and
therefore the CONTROLLER cannot do many things to the cell.

SAMPLE (14,16,18,19) A narrow pulse that occurs slightly before ¢. Used to
samBTe data from the CCD Track. :

33.

| 8, DESIGN/PERFORMANCE APPENDICES 8.1.3

R_ADDRESS, R_ALU, R BC,R 1/0, R_RN, R SC, R_STATUS (COND) (1,10,13) Decoded
from the RAP CONTROL BUS. They are effective for open —cells that are ‘
neither blocked nor rejected. Employed to put the Address, RESULT REGISTER, ;
BUFFER COUNTER, 1/0 BUFFER, RELATION NAME REGISTER, S_COUNTER and STATUS ¥
respectively on the RAP DATA BUS. i

R_STATUS (UNC) (1,13) Decoded from the RAP CONTROL BUS. It ts effective for
all cells independently of their states. Employed to put the STATUS
on the RAP DATA BUS.

RAP CO?{ROL ?US (1) A set of 8 1ines of control flowing from the CONTROLLER to
all cells.,

RAP DATA BUS (1,13) A set of 16 bilateral lines to transfer data from the CONTROLLER
to all cells and back. Not used to transfer data between cells.

\RBIT (9) A narrow pulse indicating that the “current" mark-bit (relative to the
WRITE HEAD) must be erased.

READ_ONLY (18) Decoded from the DATA CONTROL SWITCH to indicate that the contents
“of the CCD Track must not be altered. This is of great value for testing
purpose.

REF (15,19) A signal indicating that the “current” location on the Track matches
witﬁ_the setting of the thumbwheel switches. This is also of great value
for testing purpose.

REJECTED (1,2,13) An important state of a cell to indicate that it has been served.

RELOAD (15) A narrow pulse used to restore the contents of the SECTOR COUNTER i
after it has counted a multiple of 256 bit-times during which interval the
CCD Track behaves as if it is standing still.

REN (9,14) Indicates that the “current" bit (relative to the WRITE HEAD) must
be rewritten.

REP (11,12) Decoded from the C_op values to indicate that the specified doma1n
of ET7 satisfied tuples must be replaced either by a constant or by
another domain.

RHOFF (8,7,17) Indicates that the READ HEAD has gone beyond the physical end of
the CCD track.

. RSQ (3,4,5,10,12,14) Another clock phase that occurs s]ight]y later than ¢.
Employed mai—Ty to truncate some signals so that they do not overlap with ;
the next bit-time, ‘ ,

RUNNING (1,2,4,8,10,11, 13 ,17) Indicates that the cell is executing its job and i
therefore the CONTROLLER cannot do many things to the cell.

SAMPLE (14 16,18,19) A narrow pulse that occurs slightly before ¢. Used to i
sampTe data from the CCD Track. !

TR

8. DESIGN/PERFORMANCE APPENDICES 3.1.3

SATISFIED (8,9,10,11) Indicates that the "current" (relative to the WRITE HEAD).
tuple 7s satisfied and must be perhaps marked, updated, retrieved, etc.

SAT_ONCE (11,12,13) Indicates that the cell has seen at least one satisfied
tuple since it was initiated to run. .

SBIT (9) A narrow pulse indicating that the "current" mark-bit (relative to
the WRITE HEAD) must be marked.

SINGLE (15) Decoded from the SPEED CONTROL SWITCH to indicate that the speed
is in the Single Step Mode; i.e. the PULSER BUTTON must be activated to
advance the Track.

SL-1 (5,8,10) Loaded by the CONTROLLER to indicate that the data retrieval
instruction is in the partial mode; i.e. only up to three domains from
each tuple must be stored in the [/0 BUFFER.

Sl.-4, SL-5, SL-6 (Q}?) Loaded by the CONTROLLER to indicate that the Domain
C?mparator Unit #1, #2, #3 respectively is chosen to execute the Query
List.

St 0, ..., SLD 7 (1,4,5,6,10) Decoded from the RAP CONTROL BUS to load serially
some registers. They are effective for all open cells that are neither
blocked nor rejected nor running.

SPACE_COUNT (8) Decoded from the C_op values to indicate that the cell must
count to see how many empty spaces it has left on its track. The answer
is left in the S_COUNTER.

sQl, ... SQ7 (3,6,8,9,10,11) Narrow pulses (slightly wider than ¢) that mark
the first seven bits of every tuple.

STOP (15) A signal occuring only in the Single Step Mode. It indicates that
the cell is waiting for someone to activate the PULSER BUTTON.

STORE (14,15,17) A signal coverning the interval during which the CCD Track
behaves as if it is not spinning. SAMPLE, ¢, RSQ, CE1, WE are not generated
in this interval which must be a multiple of 256 "bit-times".

SUB (11,12) Decoded from the C op values to indicate that the cell must perform
a subtraction on the track for all satisfied tuples.

SUM.(11,12) Decoded from the C_op values to indicate that the cell must calculate
the sum of the specified domain of all satisfied tuples and leave it in
the RESULT REGISTER.

TAKE NEW (11) Employed only in MAX/MIN to indicate that current (specified) domain
has a better value that must be stored if the relevant tuple qualifies.

TKE (4,7,8,10) Indicates that either the track has no more valid data or that
Tin the case of data retrieval) the 1imit of retrieval has been reached.

385

8, DESIGN/PERFORMANCE APPENDICES - 8153

TRACK_START (17) A narrow pulse to mark the moment the CCD Track gets synchronized
with the cell when it is running (i.e. it occurs just before the clock pulse
of the first bit of the Track).

TRIGGER (14,15,16,17) Decoded from the BASIC TIMING COUNTER. It comes slightly

later than 0SC. It changes the CCD locuation pointer from WRITE HEAD to
READ HEAD.

TSYN (3,4,14,15,17) Indicates tkat the cell is scanning its track and is
synchronized with it.

TTDATA (9,18) The data that must be written on the track if REN is high.
See also EX_DATA.

-, UNMARK (9) Similar to MARK; but for unmarking purpose. If both MARK and UNMARK
are high, UNMARK has no effect.

UPDATE (9,11,12) Covers the domain that must.be updated of all satisfied tupies
in the instructions ADD, SUBTRACT, REPLACE.

WE (14,18) The "enable" signal for writing on CCD chips.

WHOFF (8,17) A narrow pulse to indicate:that the WRITE HEAD has gone beyond
the physical end of the track and therefore producing the AUTOFIN signal.

Y0, Y1, Y2 (5) Decoded from a 2-bit counter to connect one of 3 registers to
a comparator to produce the EQUALITY and EQUALITY2 signals.

36

8. DESIGN/PERFORMANCE APPENDICES 8.1.4"

8.1.4 LOGIC DIAGRAMS L-1

CELL INTERFACE: BUS RECEIVERS, CONTROL DECODERS

LOCK_OPEN 3

BLOCKED + REJECTED—(B
AD 0_g He ‘) E - R_I/0
AD 1.4 ' } AD 4~| #% |-R STATUS (COND)
E _ -
D 2 - — " ADS R ADDRESS
2D 3. |« KEY ENABLE S AD 6 -
AD 4— INS (0:7) -
AD 5— : -
AD 6~
BLOCKED + REJECTED : E## - R SC
AD 0~g _] , — — ;
o1 He m‘%b_g 25— [R |
LOCK_OPEN AD 4 — .
. AD 2— - R ALU
AD 5 — SLD(0:7) | -
AD 3 :
D 6 .
‘ KEY ENABLE F 44 | PO
RONNING g £ D 4 -
KEY ENABLE | B4 AD 5
RAP CONTROL BUS AD 4 — > AD 6
7 6...0 AD 5 — PID(8:15)

. | 1 e
..__.DO.AD 7 D0 — # CK(0:7)
AD 4 :>

AD 5 ‘,

‘,__Dg_m_m:s AD 6— ' |

AD 0

RAP DATA BUS Eé’ _STATUS (UNC) '
15 (R NN 0) ..-_o

pro PP 6— !

. . (#)... 2:4 Decoder
1 D DT 15 (##)... 3:8 Decoder :

87

8. DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM L-2
CELL INTERFACE: CDNTROL OF IMPORTANT STATES

PLD 1
DT(0:15) PL? 9
L/ |
LOAD R S R

RELATION NAME REGISTER

Q
EXFIN
ALIVE _» cK SD_R

LOCK_OPEN
1 .
RELATION NAME COMPARATOR K0 |
‘{}k - , CK 4 S
CK 1 —
Dr(0:15)
CK 7 + INS 4__
ADDRESS SWITCHES S Q|_EXFIN
4\}; KEY_ENABLE *I:----<3§'
ADDRESS COMPARATOR |— ' EXFIN + AUTO']IN

2w
D
l{]k EXFIN + INS 1 + INS 2 RUNNING

DT(0:7) . | Ck 6 :D_*» Q
' PL
BLOCKED R YRUN
___:::::5:f§:::::>-—-n Q[REJECTED
A EXFIN 1 INS 2

INS 3

INS 1

s
ok

BLOCKED

S R
D Q

A
NS 3d— T

POLL_IN L POLL_OUT
BLOCKED ::i:::::>i-::::::>_—_

LOCK_OPEN

38

e = e A s L st 5 s e

8. DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM L-3
SYNCHRONIZER: MARK-BITS, LENGTH CODES, DOMAINS.

BLOCK_START

1]
s R
_L:_D' ql_BS Din .
L Serjial-Parallel Converter g
A A F
g1 :
5— #1¢2|¢3 |4 |gs g6’ 97 '
Rsq |zéap D P D D D D
R 2 QQQQQ
R |
V R SQ2 ceeeeennn sq7 e
SQ1
D o
E34
P Py
I | |
g | W DDDDD R SR
R_lonr BN
, WORD-LENGIH-COUNTER TC—
1 Rsg |
5 .
P o+ olemet |y [P
ey T= A
#6 #7 $ I :
:
BLOCK_START o
DATA IN
= { : 1]
D R D R D R D R D R
- fPE L QlB als. ol
CK CK CK CK CK
sQl sq2 s03 so4 | SQ5 '

39

'S, DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM L-4
SYNCHRONIZER: LENGTH CODE RAM, DOMAIN INDICATORS, DELIMITER, TKE

i Vo
Al | | =m0
LENGTH CODE RAM | El8
oT 0 Dil Dol D Q LA -7
pr1_|pi2: . Do2 D Q .,
W E
| [EOR 3,
KEY_ENABLE —— . -
FORNING —o} s 9 GAPE + MOR
SID 2 — 100 ns !
CREATE — =
DOrF
Qf—
F
—— 1C2
'__“(See L-8 RSQ —4
R S—
GAPﬁ l._.-/' R
] DL
D Qi 2
o [+
R .!L —
D Q ' SR ’?\
i ‘3_
T
A TKE Q
#e __,;—‘K "(#)... 2:4 Decoder

I

8, DESIGN/PERFORMANCE APPENDICES - 8.1.4

LOGIC DIAGRAM L-5

SYNCHRONIZER: DOMAIN SELECTOR

\Y

Bmcx_smmeL_R# ONT EN |
(prl
8
vo v |v2|
EXFIN |
; KEY_ENABLE * SID 4
|] T |
CK CK R CK R
DPO_Ihi , Do pi , Do pi
1 !|]\!
*k E—-J *k E}— *de E
;‘
1

I]
-1 |
e O) O
; _d | R
s GAPE —
| — a— "\ p oEQUALITY2
COMPARATOR __/ _— A
]
RSQ*mR N |
omn e
SR DL/ T
________ B |
- A
' c1|
C_opd S |

(#) TRy Z-bit wmter

K (##)... 2:4 Decoder ~
LOAD 1/0 BUFFER * SL-1 (*)... 8-bit Serial/Parallel Register

(**)... Tri-state Buffers

91

8, DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM L-6

QQERY ANALYZER: DOMAIN COMPARATOR UNITS

(&) ...

4-bit Iatch

(&&) ... 8-bit Latch

gcl R
KEY_ENABIE * SID 5 7 ! |
| P ¢ m Dil * Do[ftipi * Do[tipi ** Do
: D10
T {} r_C:C_.mo r‘(18 r(L E34
: L
COMPARATOR T — del
: {} o BR—
R
R N GPE__(] p ot
r a1 L]
| WORD-POSITION |. SI~4 __| A
L COUNTER 12 PICL
Q1
D'Q R Q=
R 4 D
=D -
sQ5 4 £1 —
; | >-
C hlf
n Loty T
DATA IN gel —q | gl —]
VR
g9 EFIN |
ﬂK Qf—— R |- SIS
: . EXFIN
- £2
NOTE: . ~ g2
y the 1st unit Q1 R SL_4ur(o:7) | 1912
is shown. For others, use DT(4:7 L g - :> & | o6
- identical logic with variables --- s - a L £3
modified as indicated in -y - o
Table below. PLD 6 — PID S—{roap [~ 3
QL (SL~4 |fl|gl{hl |SLD 5 | gcl (#)... 8-bit Serial/Parallel Register
Q2 |s1~5|£2]g2|h2 |SID 6 | #c2 (*)... 8-bit Shift Register
Q3(SL~6(£3|g3|{h3|SID 7 | &3 (**)... 16-bit Shift Register

92

8, DESIGN/PERFORMANCE APPENDICES 3.1.4

LOGIC DIAGRAM L-7

QUERY ANALYZER: TERMS EVALUATOR

A

| B —CD_, A

e &

B

(#) LR N a-bit mtch

D_QUMRK

A __1— DIST

a3"_,

B] ! A _4

53..__1 . a3 |

C _ B —d

03____1 b3 _|

D | C g

s) o

s -

Ql —¢ B — DF
i |

Q2 —(
S5 -

Q3 —g
SL~6 —

M —(

93

8, DESIGN/PERFORMANCE APPENDICES - 8.L.b

LOGIC DIAGRAM L-8

SYNCHRONIZER: GENERATiON OF "SATISFIED" AND "AUTOFIN"

L

EXFIN ;
DT BUS

PID 3 _[tomD _SL-1 " ad
___INT—Z =1
DT (7:0) | TT-1 — CREATE
: —~ SPACE_COUNT
(#)... 8-bit Latch ‘Covd F
(##) ... 3:8 Decoder Cop3 —ICAD I/O BUFFER
' - C op2 %Dm
- C opl o INSERT

94

8, DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM L-9

UPDATE CONTROL UNIT

SOl + 506 + SQ7
E o
sql — SBIT
DELETE) D j—

|/ 1
al * sqQ2 Mﬂ&_ﬁ
bl * sQ3
cl * s -
dl * sE5
UNMPRK

‘ : RBIT
SATISFIED._|

—
SBIT
RBIT INS_DATA

UPDATE
I .
R
r—-—
PID 4—| Loap |~ DIV
~ MARK
m(o:7):> . — UNMARK
¢ [—al
— bl
— 1

95

'8, DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM I~10

. 1/0 BUFFER

(#)eee '
(&) ... 16-bit Ser:.eal/Parallel Register

(&&)... (16)2:1 Multiplexer BT,

(*) ... 1XKx16 RAM ‘ a

(**)... 16-bit Parallel/Serial Register b‘mg nsQ >60#ns Q I
] | ;

DATA IN —Din &

KEY_ENABLE * R_I/O

DL —
DI (15:0) QDCJ‘C_}"‘
V 1GAD

_ \va
(High to select DT) '
. e —lsel 1/0 BUFFER COUNTER
LOAD I/0 BUFFER R_ Qi Di
EXRUN + PID 11 —4
|) [{} | zoaD_1/0 BUFER
b
W Di Addr R DL 0L
LOAD
INSERT I/OBUE’.EER 505-13—
o 2|
; 'V
SATTSFTED ___,
SATTSFIED-] [ToaD Di EOR 5 | INS_DATA
- BOR_ Do Q
1]
Zm Y D,
INSERT RSQ
INSERT

9

8 DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM L-11

ARITHMETIC UNIT: REGISTER 1, REGISTER 2, COMPARATOR, SHIFT CONTROL.

*
DATA IN —{Di TSTER (*)... 16-bit Ser/Par Reg
REG] ! (**)... 8-bit Par/Ser Reg
 Cka | . (#)... (16)2:1 Multiplexer
DT (15:0) ' .

. C_opd —
mm.——Sel " E%R-—-w >CKa.

7

8. DESIGN/PERFORMAMCE APPENDICES 8.1.4

LOGIC DIAGRAM L-12

ARITHMETIC UNIT: RESULT REGISTER, ADDER

?
g
:
Y
m 8
L

comt e |32

SUM * SAT ONCE L, L
\ | C_opl — - REP
ADD + SUB J C_op2 — e
C_op3 — I
INT-1 * INT-2 = —~ MRX

. w2 | ADD —..
R
parA D Q , REP— (*)... Pull Adder
- INT-2_] (**)... B8-bit Ser/Par Register
(#) ... 3:8 Decoder

l DATA IN_|
Cka QUTPUT of
REGISTER 2

- FEP —emy <
mqu}
MAX + MIN

93

| 8, DESIGN/PERFORMANCE APPENDICES .8.1.4

LOGIC DIAGRAM L-13

OUTPUT MULTIPLEXER

I/0 BUFFER ADDRESS RELATION NAME
S_COUNTER COUNTER
R Cy {} REC | {l; R_ADDRESS L% 5 RRY | \ ;’ :
E E E - E
* * * *

[{}{}
nh

NS
e

2

* *r R SC r E
E E -
| T R BC 1 *kk
R AL R 1/0 {} ©
| R_1/0-
RESULT REGISTER 1/0 BUFFER
l RAP DATA BUS
p g R RAP DATA BUS (0:4)
ke
C =8
23 B
A]S
oF s E
R _STATUS (COND)
'R_STATUS (UNC)
SAT ONCE - .,
RUNNING — RAP DATA BUS (10:15)
m } (*) eece ni-smte inVEItEI
BLOCKED (**) ... Open-collector driver
LOCK OPEN — (***) ... Tri-state driver (non-inv)
&

99

8. DESIGN/PERFORMANCE APPENDICES 81

LOGIC DIAGRAM L-14

SYNCHRONIZER: PHASE GENERATORS FOR CCD MEMORIES

aJ,LFT‘He Lo eve —J
Q

mw> a*c*tdg*re D ol _95C>y S
BASIC TIMING COUNTER QfF—
(AN CHOICE
20 MHz MC]
SquareWave
abcde ‘ :
CHOICE
— o™

STORE

D

= =ML
c—0 J o S ki

da ol ez 27 o B
alDe -

OSC + STORE
] -
LT
- e 5 7o Y =

———

100

F

:8. DESIGN/PERFORMANCE APPENDICES 3.1.4

LOGIC DIAGRAM L-15

SYNCHRONIZER: SECTOR COUNTER, TRACK COUNTER, SPEED CONTROL

101

'8, DESIGN/PERFORMANCE APPENDICES 81,4

LOGIC DIAGRAM L-16

CCD TRACK: ADDRESSING FOR CCD CHIPS

DT BUS
-anAm*Pmol e e |
| TRACK COUNTER !
LOAD

P |

BIOCK SIZE REGISTER

¢

(*) ... TTL-MOS Driver
(**) ... TIL~MOS Driver
ADDER (*%*) ... TIL-MOS Driver
(#)... 2:4 Decoder
(##) ... 4:16 Decoder

SaMpLE T J& | ($)--+ CCD Memory Chip
- _g} R of— \V .
DUAL HE Sel

G (Con —emctmed to the R/W HEADS MULTIPLEXER

camplement of INSERT)

]
i] 1 .6 bits (lsb)
\‘
#
~_ CSX (0:3) CE1
Wk *%

Addr Addr Addr
<\/7 - L an [

’ISY(OHB).

i

)
8 8

—]
38

1
—t
X

—
2 f

102

8, DESIGN/PERFORMANCE APPENDICES - 8.1.4

LOGIC DIAGRAM L-17

SYNCHRONIZER: BLOCK START, TRACK START, PHYSICAL END OF TRACK

|

_—-0>

)

4>

(#)... 4:1 Multiplexer.

103

‘8. DESIGN/PERFORMANCE APPENDICES

LOGIC DIAGRAM L-18

CCD TRACK: I/0, SHIFT DRIVE for CCD CHIPS

EX_DATA (Connected to TTDATA))

N —] .
DATA CONTROL —/ D_ .

SWITCH

DATA SWITCH

8.1.4

i
4

Sl

DATA_IN

| d
v? Dout D Q
#H4 A
fo— #1 SAMPIEI
e — @2
[x — 43
™ — ¢4

(#) ... TTL to MOS Driver. The actual mmber of drivers depends on
fan-out and on the physical distribution of CCD chips.
(#4) ... MOS Clock Driver. The actual nurber depends on fan-out.
(##4) ... OCD Chips. logically, the pins shown above of all CCD chips
are connected in parallel. But in practice, the limitations

oﬁ drivers prevent that.

104

8, DESIGN/PERFORMANCE APPENDICES 8.1.4

LOGIC DIAGRAM L-~-19

CCD_TRACK: REF CONTROL, LED OCTAL DISPLAY

(8) THUMBWHEEL, SWITCHES

REF
COMPARATOR D Q
VAWAY A
SAMPLE
P N Tttt
| TRACK COUNTER | 'smonowm |
[P | __3T__11___J
e
lszmonmzsm -
VAV,
£ 21K —>{ (3) 8:1 MULTIPLEXER
. (8) 7-SEGMENT
i 7-SBGMENT :>
LEDS
3-BIT | DEC/DRIVER ‘ A
| comrer
1 3:8 DEC/DRIVER i

105

| 8. DESIGN/PERFORMANCE APPENDICES 3.2

8.2 RAP 2 - System Characterization and Measurement
8.2.1 Overview '
A prototype system incorporating a POP 11/45 Main Frame, a PDP 11/10

Controller and two cells has been fabricated and tested in a variety of ways.

The unifying theme in these tests has been the development of a set of 6
demonstration queries which characterize the system and its'use. Section
8.2.5 provides a copy of these queries with printouts showing a tangible
measure of intermediate and final results. In normal use, input in either
SEQUEL commands or RAP Macro-Assembler language would be used. Output would
be the same, display of intermediate results not being essential.

Section 8.2.2 provides a sofware/user characterization centering about

" the Block Diagram in section 8.2.2. Sizes of software resources are given,
where fixed, on the diagram, or, where query-variable, in the table of Query
Statistics in section 8.2.2.6 Various operation times are defined in 8.2.2.1
with results of measurement in 8.2.2.5.

A corresponding hardware system description is provided in section
8.2.3 with data on channel widths and rates provided.

The spirit of the whole presentation is to provide data in a modular
form with enough discrete data points made available to permit estimation
(at some effort) of the performance of alternate systems incorporating
different processors, cell sizes, cell quantities, or other changes.

106

8. DESIGN/PERFORMANCE APPENDICES 8.2.2

8.2.2 Software Characterization
8.2.2.1 Definition of Characteristic Times

Modules
Compilation Time Involve
- the time taken to translate a SEQUEL query into RAP intermediate code

- the SEOUEL code exists on a "s" file (with no comments) B

- the RAP intermediate code is written into a "r" file

Input Formatting Time
- the time taken to translate RAP intermediate code into RAP internal code F
- the RAP internal code is written to a "cit" file and is passed to the controller

Qutput Formatting Time

© = the time taken to transform raw data that is retrieved from RAP into a
displayable form

the following important formatting is done:
- relation and domain headings are produced J
- integer domains are transformed from binary form into character form

the retrieved data exists on a file names "raio 1"

the formatted data is written on a "o" file .

deletion and updating do not require output formatting since no data is retrieved

Response Time

- the time taken to "execute" a auery inc]uding:
- RAP input formatting time
' time taken to pass information to RAP from front-end FHJ
actual RAP execution time
time taken to pass information to front-end from RAP
ouput formatting time

8.2.2.2 Major Program Steps
There are 4 possible steps of program execution: -

1. Initialization of program.
g. gomp11$tion of SEQUEL.
. Execution of RAP
\ _ . Steps 1, 4 must
- RAP Input Formatting (3a) >
- RAP Execution (3b) always be executed.
- OQutput Formatting (3¢)
4. Termination

8.2.2.3 Procedures for Time Estimation
Compilation Time = Run (1 + 2 + 4) - Run (1 + 4)
Input Formatting Time = Run (1 + 2 + 3a +4) -« Run (1 + 2 + 4)
Output Formatting Time = Run (1 + 2 + 3a + 3b + 3¢ + 4) -
- Run (1 +2+ 3a+3b+4)
Response Time + Run (1 + 2 + 3a + 3b + 3c +4) - Run (1 + 2 + 4)

107

DinrrAMI

-

"8.2.2.4 SOFTWARE COMMUNICATION - BLOCK DIAGRAM

SOFTWRARE COMMUNICATION

A

SEOVEL
CoOMMANDS

80T

PDPIl/45 G PC POPl/1o_ CONTROLLER
E G m .
Ims; Org:o LT DRTA POOL (.50
- lINTER MEDIATE INTERNAL RAP I::;;?c‘::‘:'&
RAP MACKINE MACKINE LAN Y
[LANGVRAGE CODE_ . MZE PﬁanmETs(gik)
70 WOROY/, usTn . 3T WoRDSANSTR, | . 80 INSTRUCTIONS
-2 WoR0Y sTaNT 2 WORDS / ousTANT 32 WI0R0DS EACH
G\T?RTES / CELL OPERATION, /
o
CONTROLLER
SERY
R‘:ﬁ;" T/o BUFFER
RERDALL x)
KES\M-T:‘
RELISTER
MANIVPULATION
K VN
UNFORMATTED RAP REGISTERS
ourPuT RESULTS REGLoTERS
Q woros 4 2 WOl Domm 127 REFISTERS
/oomaIn 47 ZWORDS & ALK

CELLI

READ

H READPLL
€ross
< s

278 .

L_E CELLI

'8

SIIIANIddY FINVWEOLEId/NIISId

gf 8. DESIGN/PERFORMANCE APPENCICES - 8,2.2.5

8.2.2.,5 EXECUTION TIME ESTIMATES OF RAP FRONT-END SOFTWARE

Compilation ’ Input Output Response
Query Type Time Formatting Time Formatting Time Time

¢ Tgie mean sdev mean sdev mean ° sdev | mean | sdev
1 real 0.9 697 | 1.1 .707 . 4 .577 | 2.8 .577
user a1 | .090 .03 48 | .03 156 | .07 | .133

sys. .65 | .246 .72 .222 .08 206 | 1.46 | .263

2 real 1.0 721 | 1.4 .667 .4 .516 | 4.6 .516
user .08 | .119 .02 .133 12 145 | .20] .139

sys. .69 | 261 .75 .260 26 364 {3.35 | .289

3 | real 1.2 | g2 | 17 .707 4 577 Y37 | 707
user Q9 | 138 | Lo3 .163 .06 Ja16 | .10 | .143

sys. .88 | .370 | 1.02 .374 .09 329 §1.95 | .429

4 real 1.2 | 7 | 1.3 .606 0 0o |2.4 .516
user 13 | .07 .02 111 0 o} .05 .114

sys. 90 | .263 .77 .271 o |} o {1.34] .2713

5 real .6 .503 .9 .316 0 o 2.4 516
user .07 | .o070 .01 .111 0. 0 .06 1 145

sys. 431 274 .72 288 | o o {126} .307

6 | real 1.5 | 594 | 1.4 .577 .7 707 146 | 577
user 21) ey .03 f° 158 | .04 152 .12 .165

sys. | 186 | .367 .75 .350 .19 265 | 2,55 .388

-Note

All times are given in seconds, 10 trials were done for each mean. All were
done on a multiple-user system occupied by only a single user in addition to
_gystems functions, The latter account for some variationm.

real = actual elapsed time

ugser = actual program execution time

system = operafing system time for file access

. 8.2.2.6 DEMONSTRATION QUERY STATISTICS

ULT

SOURCE COMPILATION RETRIEVAL
RAP Macro RAP RAP Tuples TData Formatted | . VAP Execution Time Tor T

Type of Sequel Source Assembler Source Intermediate Code Internal Code Retrieved Retrieved Data Revolutions Controller and File (Disc)
Query (words) ' (words) (words) (words) {words) (words? Cell (sec.) Excess Time
Simple] 68 208 98 3 18 189 3 .07 2.27
Retrieval)

Projection 28 125 403 .92 28 88 592 ns 2.65 4.3
Retrieval .
Nested 95 185 669 322 n 66 405 13 .30 3.12
Selection
Update 73 N6 ae 200 0 0 0 5 23 2.42
Deletion 25 17 L} 66 0 0 0 1 .02 1.78

6. 610 14 56

z_:’s'ical 98 323 1263 e 191 63 1.37 N
Diagram A c 3 6 Cell 1,11 I K Cell I; 11

Label

'8

S3I1UNIddV JINvind0dAd/NO 1S

9'2'2'8

8, DESIGN/PERFORMANCE APPENDICES 8.2.3

.8.2.3 Hardware Characterization
. : Modules
8.2.3.1 Module Defintion - “"Involved

UNIBUS]
56 lines (16 data, 18 address, 22 control)
asynchronous operation with maximum data rate of 40 mbits/sec
(both 11/45 and 11/10) '
all peripherial devices appear as memory locations
DMA can be used by peripherials

DMA INTERFACE P, R
- DMA interfacrs on both buses allow memory to memory transfers
in either direction
'-“datapath between P and R interface is 16 bits
- asynchronous operation with maximu of 20 mbits/sec
- data transfers possible are:
a) block address block address
b) single address single address
¢) single address single address

CELL INTERFACE T
- decodes a cell address block 764000 764777
- beuffers unibus from cell bus
- cells appear to be unibus memory locations

CELL I, II c

- 1/0 buffer is a 1K work two port ram in which retrieval data is
written by the cell

- appears as a single memory location on unibus (memory address
pointer can be manipulated)

- 38 registers for control and status of cell appear as memory
locations on unibus '

111

8.2.3.2 HARDWARE COMMUNICATION - BLOCK DIAGRAM

T1ARAMIT
HARD WARE _COMMUNICATION [| PoPyo contrOLER |
_PopPyus oec : I . o I
¥ . AL, 1
OINE > TAPE I/o BUFFE
PRINTER]Q— PRIVE | | s . /-T*.. oo Ram | _
e : I | MEMOR) Ism()qa-ms::%
i<
kiR cons | | e Wf""”‘“ s’)
ABK wo Ve (u ‘REG R
OIS K PHYSIcA | | WSiom | k - lsn&s J
DARWNE <F—> N ’ '
eo0MoY L —> ‘ 1 - - S
QoK W0 | UNIBYS ‘r’b ' .
VIRTURL RRORESS
CO0E| | LELBUS
S | I o] o444 | “leoars
DISPLAY <t °"J3»m 3:‘3‘1:5-‘;
e | | R | letns [
m?g?t?ace CLGN } " R;
] . INTER ™ Tie
WORD CouNT P iae comT CONTR
i e I N X R— TS
. J$.
1) e I e v g 8 L[[
"""" oATA | REGISTERS tkxlb
UNIEOS iy 16 Ram
; MASTER 1paraLITS uniGus b s i hee B0
CONTROL| | % <ongaal MASTER 1 l 50018
: y
A B b s\ | [
. L OARTA BT A
30 éAvo VNIgYS I ' 13 noongss’m l T RECISTERS
2% coNTROL BIrg \)
. D — ! L eobiie | -
q—{ POPIVs : 10
e Froca] | 1 | |
, GERMINAD < 300 .
LINES . I '
/ o | |
N (TERMNAD i OnsuLE | | '
S v < l

‘g -

SIIIANIddV FINVIWE04d3d/NOTSId

AT

8. DESIGN/PERFORMANCE APPENDICES | 8.2,3.3

8.2.3.3. RAP - DMA INTERFACE kATES FOR _READ AND/OR WRITE
including time to setup the slave device

Transfer Block Size Number of Time Rate
Type Total Bytes Bytes Block Transfers sec. Kbytes/sec.) kbits/sec.
W 10’ 10° 10% 94.4 106 847
w 7 : 4
RW 10 500 10 94.7 106 845
6 3
R-W 10 500 10 15.8 63 506
' 5 3
RW 810 400 10 15.1 53 432.
R 6x10° 300 10° TR 43 340
| i
R-W 4x10° 200 10° I 13.4 30 239
) {
) ' i !
R 2x10° . 100 | 10° Do 15 | 122
! ‘~. !
4 2 ' i |
- RW 2x10 100 10 1.6 ;’ 12 | 100
5 4 !
R 2x10 10 10 105 2 16
Y

113

8, DESIGN/PEPFORMANCE APPENDICES 8.2.3,L

8.2.3.4 RELATIVE SPEEDS
POP 11 FAMILY CALIBRATION

Register to Register Transfer Times as a Measure of Relative Speed

Machine 11705 11/10 LSI 11 11703 ~11/04 11/20 11/34 11/40 11/45

Time in : .

. usec . 3.7 3.7 3.5 3.5 2.9 2.3 1.8 0.9 0.45
Memory to Memory Transfer Times

PDP 11/45 Memory to Memory MOV . - 3.8 usec

PDP 11/10 Controlier Memory to Cell Memory ‘ MOV 7.4 usec

11/70°

114

Demonstration of the
RAP System
‘Using the

S§QUEL Query ianguﬁge
. and the

- Actual RAP Hardware

DBINER

DOLAIN UALE

ORIVER.MO
SURNAHNE
INITIAL

HOKE

SEX
VARTTAL.STATLS
HEIGHT =~ ’
BIRTH_YEAR
OAY_HIRED
FONTH_HIRED
YEAR_MIRED .
SALARY

1838

DOMAIN HAUE

“TRIP_NO

ORIGIN
OESTN

v’

AR
TRAVEL.TINE
BRILEAGE
FARE
DRIVER.NO

DoubIl IXPE . DopAly LENGIM
INTEGECR 2 BYTES
CHARACTER 4 BYTES
CHARACTER 1 BYVE
CHARACTER 4 BYTES
CHARACTER .1 BYTE
CHARACTER ‘1 BYTE
INTEGER . 2 BYVES
INYTEGER 2 BYTES
INTEGER 1 BYTE
INTEGER 1 BYTE
INTEGER ©+ 2 BYVES
INTEGER - . 2 BYTES
DoeAIN IXBE - DopAIY LEUGIH
INTEGER 2 BYTES
CHARACTER 4% BYTES
CHARACTER 4 BYTES
INTEGER 2 BYTES -
INTEGER 2 RYTES
INTCGER 2 BYYES
INTCGER . 2 BYTES
INTEGER - 2 BYTES
INTEGER c 2 BYTES

'8

SHDIGNHddV.jDNVNHOﬂHHd/N9ISHU

h'¢'8

8. DESIGN/PERFORMANCE APPENDIQES L 8.2.4

%RAP,SCQUEL .
‘¢3¢ SEQUEL COHPILER - VERSION # 1 sed
°°'>FILE 'QUERY1.S!*

-

'S QUERY 1

RETRIEVE THE SURNANME. HOME CITY ANO YEAR OF BIRTH OF THOSE ORIVERS
. WHO LIVE IN MONTREALe. ANO WEKZ BORN AFTER 1940 %

¢SELECT SURNAME. HOMEs BIRTH_YEAR

FROM ORIVER . :

WHERE .HOME = "MONT®
AND BIRTH.YEAR > 19403 . '

THE SEQUEL STATEMENT HAS BELN TRANSLATEO IN 3 RAP INSTRUCTIONS

===dRAP

13 SELECT MARK(M1) CORIVER:GIRTH.YEAR>1940 & HOME='MONT®3

2) REAO_ALL RESET(M1) CORIVER(SURNAME,HOME.BIRTH. YEAR) MKEO(M1) 3 COUERY1.03
. 3) £00

===EXECUTE

QUERY TRANSHITTEO

QUERY EXECUTION: : : EI

3 REVOLUTINNS TO EXECUTE. . : o
4% SIXTIETHS OF A SECOND, : '

3 TUPLES RETRIEVED . "
e==30ISPLAY o. .) '
$ORIVER ' * .

+ . o : .
1SURNARE +HOME : SDIRTH.YEAR =+ .

+MARX AMONT 1947 L -
4PIXKE . +MONT .. 41948 4

&

00y SMONT $1953%

e=edFILE 'QUERY2.S?*

LY .) : .

% OUERY 2

RETRIEVE THE ORIGINSs AND OESTINATIONS OF ALL OF THE; DIFFERENT ROUTES RUN
8Y THE BUS CONMPANY.

¢SELECT UNIGUE ORIGINs OESTN
FROM TRIP*

THE SEQUEL STATEMEMT HAS BEEN TRANSLATED IN 6 RAP INSTRUCTIONS

«==>RAP
1) SELECT unaxtu1uz) LTRIP]
2) L1 SAVE(1) RESET(42) CTRIPIORIGIN,OESTN) MKEO(M2)2 CREG(l)-REGlZ)J
3) SELECT RESET(M14M2) CTRIPIMKEO(M2) 2 ORIGIN= REG(1) 2 O0ESTN=REG(2)2]
4y B8C L1, TEST CTRIPINKEO(M2)] .
S) REAO_ALL RESET(M1) CTRIP(ONIGIN,DESTN) IMKEO(M1)2] :auzﬂvz 01
6) £00 .

- e=edEXECUTE *

GUERY TRANSMITTED
QUERY EXECUTIONS

115 REVOLUTIONS TO EXECUTE,
159 SIXTIETHS OF A SECONO.

28 TUPLES RETRIEVED . . :

8. DESIGN/PERFORMANCE- I\PPENDICES _ 8.2.4

ki "*)OISPLAY =

$TRIP +
4 4
$0RIGIN 4DESTN +

~ #TORO +LOMD "
+L0ND . $WIND + .
$Winp 4LDMD) :

+ 4LONO +TORD’ + .
4TORO 4HAN + ’ .
$HAM . 4NF +)
F SHAM + : .
4HAM . $TORO +
4TORO) $MONT 4. .
$MONT * 3TDRO 1)
$TORO $KING s+ !
$KING 3MONT P ¢ .
$MONT $KING 4

CHKING . $TORO s .
4TORO $PETE . 4 .
4PETE $0TTA + .
40TTA 4PCTE 4
$PETE $TORO s

. $4TORO $0TTA ¢
$0TTA 4TORO + ¢ *
4TORO) : $RARR s .
$BARR IMAAY s

. +NGAY $RARR +

#8ARR $TORO 4
MONT : 407TA 4
407TA #NBAY 4
$HBAY . $0TTA 4
‘20TTA $MONT 4 .

~==)FILE *'QUERY3.S’

—=a)

] QUERY 3

CALEULATE THE AVERAGE ANO TOTAL WILEAGE DRIVEN AY DRIVERS WHO LIVE
IN TORONTO. ANO RETRIEVE THE TRIP NUMBERS, ORIGINS: AND DESTINATIONS
OF THEIR TRIPS. A %

. #SELECT TRIP.NOe«- ORIGINe OESTM. AVG{MILEAGE) . SUH(H!LEAGEI
FROM TRIP . .
WHERE DRIVER.NO IS IN ¢SELECT DRIVER.NO - .
FROM ORIVER ' .
WHERE HOME = 'TORO'#+ t

THE SEOUEL STATEMEMT HAS BEcN TRANSLATED Iﬁ 10 RAP INSTRUCTIONS

-

~==>RAP
1) SELECT MARK{M1) CORIVER:HOME=‘TORO*)
2) CROSS_SELECT MARK(M1) CTRIP:ORIVER_NOSDRIVER.NRIVER.NOJ CORIVER RESET(M1): uKEo(Hiin
- 3) SUM CTRIPIMILEAGE) tMKEO(M1)] CREG(1)] .
%) CODUNT CTRIP:IMKED(M1)3 CREG(2)1] : .
s) ROIV CREG(1)3 CREG(2)]
" 6) READ.REG CREG(1)1] . *
7 SUM CTRIP(MILEAGE): MKFO(MI)J CREG(1)3
8) READ._REG CREG(1)1
9) REAO_ALL RESET(M1) CTRIP(TRIP.NO.ORIGIN.OESTN)}:MKED(M1)) :ouea*s.o:
100 ° Ego0Q . i L.

-8

=e=dEXECUTE

DESIGN/PERFORMANCE APPENDICES

P . . .
. ’

CUERY TRANSMITTED

QUERY EXECUTION:

13 REVOLUTIONS TO EXECUTE,
18 SIXTIETHS OF A SECOND.

" AVERAGE(MILEAGE) FROM TRIP IS 147

SUM(MILEAGE) FROM TRIP IS 1615 . .

11 TUPLES RETRIEVED

«==dDISPLAY =

$TIRIP N
$ &
_4TRIP.ND | $ORIGIN 40ESTN N)
$101 $TORO ’ 3LOND Ty
. +106 sLOND +TORO +
$201 +HAH : iNF N
. 4206 NF $HAN - H
+300 $TORO . +1ONT :
4400 $KING . SHONT + '
+600 4TORO +0TTA +
$601 .30TTA $T0RO :
4700 +TORO $BARR H
705 +NBAY $BARR :
+708 4BARR * $TORO" +
—e=dFILE "QUERYH,S' . '
caad)
% QUERY &

DUE TO IMCREASING COSTS. THE FARE OF }RIPS BETHEEN TORONTO AND LONOON

MUST BE RAISED TO 8 OOLLARS.

¢UPOATE TRIP

REPLACE FARE = 8 .
. WHERE ORIGIN = *TORO® AND DESTN = °*LONO"

OR ORIGIN *TORO'

LONO AND DESTN

THE SEGbEL STATEMENT HAS BEEN TRANSLATED IN 6 RAP INSTRUCTIONS

~==>RAP

1)

SELECT MARK({M1) CTRIP:OESTN='LOND* & ORIGIM=*TORD®]
SELECT MARK(M2) CTRIP:DESTN=*TORO* & ORIGIN='LONO']

2)
3 SELECT MARK(M3) CTRIPIMKED(M2) & MKED(M1)1
4) REPLACE RESET(M3) CTRIP(FARE):MKED(M3)] €83
s) SELECT RESET(MIM2) CTRIP]
-6 £00.
" aeedEXECUTE .

QUERY TRANSMITTED

QUERY EXECUTION:

§ REVOLUTIONS TO EXECUTE. ') -
8 SIXTIETHS OF A SECOND. ’ . .

8 TUPLES RETRIEVED

| 8. DESIGN/PERFORMANCE APPENDICES o 8.2.4

.

! . e==)FILE °*QUERYS5.S'
osed ’

% QUERY S

A ' STRIKE. WITH RELUCTANT
DRIVERS WHO LIVE IN MONTREAL GO ON A WILDCAT STRIKE.
CONSENT FROM THE NONE-TOO-POWERFUL DRIVERS® UNION+ MANAGEMENT .
PROCEEDS' TO FIRE THESE RECALCITRANT WORKERS. .

¢DELETE DRIVFR
WHERE HOME = 'MONT'#

THE SEQUEL STATEMENT HAS BEEN TRANSLATED IN 2 RAP INSTRUCTIONS

. =e=dRAP ’ . . L ' - .
1) . DELETE CDRIVERHOME=*MONT'J o
2) €00) . o

*==3EXECUTE
QUERY TRANSMITTED

QUERY EXECUTION: o . . X |
. 1 REVOLUTIONS To EXECUTE. .
1 SIXTIETHS OF A SECOND, .) .

0" TUPLES RETRIEVED ' . . o

"')F‘ILE 'QUERYG-s' ‘ . .

Y
4 QUERY 6

FOR ALL DR!VERS-HHO'LIVE IN OTTAWA. GENERATE A LIST OF THE TRIPS
ORIVEN 8Y EACH DRIVERs ALONG WITH THE DRIVERS® NAMES AND NUMBERS. %

+JOIN ON TRIP.DRIVER.NO = -DRIVER.DRIVER.NO

¢SELECT DRIVER.NO, SURNAME]

FROM DRIVER : -t

WHERE .HOME = *OTTA'S . .

. NITH Co
tSELECT ORIGINs OESTN

FROM TRIP}} :

.
.

THE SEQUEL STATEMENT HAS OEEN TRANSLATED IN 19 RAP INSTRUCTIONS

swedRAP

1) SELECT MARK(MIM2) CDRIVERS:HOME=10TTA']

2) ° SELECT MARK(M1) CTYRIP)I

3) 2C Lls TEST CDRIVERIMKED{M1))

%) SZLECT RESET(ML) .CTRIP] .

.5) 8C END - . .
6) L1 BRC L2, TEST CTRIP:MKED(M1)3]

7) SELECT RESET.(M1M2) CORIVER)

8) aC EMD)

9) L2 SAYE(1) RESET(M1) CDRIVER(DRIVER.NO)SMKED(M1)3J CREGI1)]

10) SELECT MARK(M2) CTRIPIDRIVER.NOZ=REG(1) & MKED({M1))

11) + BC L3+ TEST CTRIPIMKEN(M2)] :

12) 8C L&

13) L3 READ CDRIVER(DRIVER_NO.SURNAME) SUNMKED(M1) £ MKED(M2)) CAPPEND QUERYE.0) .
1%) RETRIEVE(1) RESET(12) CTRIPIORIGIN,DESTN) :MKED(M1) & MKED(M2)3J CAPPEND OUERYE.03)
15) 8C L3+ TEST CTRIPISKER(M2))

16) L% SELECT RESET(M2) CCRIVERIUNMKED(M1) & MKED(M2)) . c .
17) BC L2+ TEST CORIVERIMKED(M1)]

Lo 18) SILECT RESET(M1) CTRIPI ' L '
‘ 19) gND £0Q - .) . : 119

8, DESIGN/ PERFORMANCE APPENDICES

~e=3EXECUTE : , ' R
QUERY TRANSMITTED ’
QUERY EXECUTION: ' .

63 REVOLUTIONS .-TO EXECUTE.

B2 SIXTIETHS OF A SECOND.
-7 TUPLES RETRIEVED
«==>0ISPLAY =

40RIVER $TRIP)
+ +.) . -4
$0RIVER.NO . 4SURNAME 40RIGIN, - 4DESTN 4
4163 JWATT) +TORO +LoOND s
$103 SWATT +LOND 4TORO 4
4106) 4BEGG 40TTA . +PETE. 4
4106 4DEGG . 4PETE 4TORO)
4118 480ND NBAY 4NTTA K
1121 +BARR +yIND - 4LOMD +
4133 $CARR 40TTA 4+NBAY 4

‘emeadQUIT

8.2, 4

1

0

FACULTY OF APPLIED SCIENCE & ENGINEERING °

UNIVERSITY OF TORONTO

JUNE 1976 No. 30

UATA MANAGEITIEITT BY RAP

A NEW COMPUTER FOR DATA BASE MANAGEMENT

Recent developments in semi-conductor technology have brought about a great change,
not only in traditional computing machinery but in what is economically conceivable in
new computing organizations, One result is the RAP machine which may likely revolution-

ize the way people utilize data processing.

DATA BASE MANAGEMENT SYSTEMS

A data base can be thought of as a structured collection of
commonly pooled data which is accessible by concurrent users
through computer systems. Data bases constitute the heart of
management information systems. These systems comprise the
total organizations of people and computer technology for the
purpose of providing planners, managers, and researchers the
timely and reliable data on which they can base decisions and
inferences. Applications of data bases and management informa-
tion systems span all aspects of society; for example, economic
monitoring, regional planning, political forecasting, hospital ad-
ministration, and business to name but a few. Traditional computer
approaches to implementing earlier versions of data bases were
to provide users a collection of file processing programs. The data
for the applications were stored in computer files on secondary stor-
age devices and were directly manipulated by programs of the appli-
cation. Applications implemented this way were intimately tied
to the minute details of computer operations and specific storage
devices, As more applications were demanded, the number of
specialized files increased, causing many problems. Some of these
ﬁ?es often contained redundant information in different formats,
causing the values of an item to become inconsistent since some
files are updated by differing procedures on varying time-scales.
Also, any variations in the data organization require extensive
changes to the programs that access the data and vice versa. The
possibilities for on-line or real-time simultaneous access to common

ta by users was negligible and forced the costs of data proces-
sing software to soar. To alleviate this undesirable trend, the
concept of data base management systems evolved. These systems
aim at creating data bases that have an existence separate from
the specific applications using them. They are complex integra-
tions of computer software and hardware which attempt to
provide their users with a “logical view” of a data base that will
insulate users from the details of data storage and manipulation.
A query language is also available by which users can readily
specify the retrievals and updates of the data stored according to
the “logical view”. A data base management system, by control-
ling and monitoring access to a data base, can also promote the
security and consistency of the data and eliminate data duplication.

THE RELATIONAL VIEW OF DATA

To understand data bases better, consider one of the newest
and most important logical views of data bases; the Relational
Model of Data. A relation can be viewed simply as a table of data
whose rows contain information which describe a set of similar
entities such as persons, places, or things. Figure 1 shows a col-
lection of relations which describe a department store. The name
of the table or relation identifies the set of entities being described
such as EMPLOYEE, SALES, and LOCATION. The names of
the columns identify the attributes which are used to describe
the characteristics of each entity for example NAME, SALARY,
and DEPARTMENT of an EMPLOYEE. Each row contains a
set of values — one for each attribute — which characterizes a
Darticular entity for example, JOHN SMITH, $20,000.00, and
men's SHOES. The order in which rows or columns occur is
immaterial to the users logical view of their relations. A relational

ata base is composed of a collection of time-varying relations
which may change because of modifications, insertions, and
eletions. Data in two or more relations can be interrelated

through common attributes which appear in each of the relations.

is allows users to execute queries which have complex selection
Criteria. For example, to find all the employees who work on the

gl

second floor, the location relation can give a list of departments
on the second floor. These departments can then be used to select
the employees who work in them. (Fig. 1) The Relational Model
provides users a view of data that is simple, consistent, and yet
computationally complete with respect to data processing require-
ments. Other types of logical data base views, such as hierarchies
and networks, can be constructed from relations. Languages for
manipulating relational data bases are simple but powerful. The
relational model of data and its associated languages can bring
data base capabilities to casual, clerical, and technical users who
are not computer specialists.

THE LIMITATIONS OF
CONVENTIONAL COMPUTERS

The full potential of data bases will be realized only if three
important requirements are -implemented. First, the languages
provided to users must be sufficiently user-oriented and powerful
enough to permit simple specifications of desired data manipula-
tions, That is, a user must only be required to write a few state-
ments to cause the execution of complex queries. These languages
allow users to specify manipulations in a set-oriented fashion that
is, to indicate in one command the retrieval or update of all the
items of interest and to indicate those items associatively by
specifying the values occurring in the file that qualify the items
rather than specifying their hardware address. Secondy, queries
that can reference arbitrary portions of the data base must be
satisfied within fast response time limits, Data base systems will
be required to operate within on-line concurrent user environments
which support interactive users at terminals, application programs
running within multi-programming systems, and communication
systems through distributed computer networks. The third require-
ment has to do with the technical administration of data bases.
The separation of the physical data from its users causes the
responsibility for efficient performance to be transferred from the
user to the administrator (collectively called the Data Base Ad-
ministrator) of the system. The responsibility for system tuning
was originally distributed over several users and file processing
systems, Today, the data base administrator must make decisions,

Hardware Being Developed for the RAP Prototype

121

often conflicting with individual user requirements for all the
users. Therefore, it is imperative that the tuning of data base
systems be accomplished effectively and easily, since several
reliability and cost problems arise when using conventional com-
puters to implement modern data management systems. The aim
of the University of Toronto’s Project RAP is to provide new
computer architecture exploiting new semi-conductor technology
to satisfy these requirements.

Since conventional machines lack the set-oriented processing
and associative addressing architecture required by modern data
bases, implementors must simulate this architecture through costly
software. Accordingly, large complex programs must be supplied
that map the user’s view into the physical reality of the machine
and provide access paths to permit fast location of arbitrary
portions of the data base. Access paths are extra data and/or sort-
ing strategies which “index” the original data base by providing
a more direct access to a specific item’s storage location. Additional
software must be provided to utilize and maintain the access
paths. Today’s machines with their need for costly software to
provide access paths and logical to physical mappings are an attempt
to force a machine to do a job for which it was not designed and
places a tremendous overhead on conventional computer systems.
For example, access gaths provide fast retrieval of data at the
expense of slower updates. This happens because updates to the
data base must also be reflected in the access paths. This trade-off
is just one difficulty in administering data base due to the dynamic
aspects of user environments.

THE RAP APPROACH TO DATA MANAGEMENT

The solution to these problems is the elimination of the need
for access paths and mappings. This can be done by developing
new computers whose architecture utilizes many processors and
memories in parallel and which address data associatively. The
data can then be divided into smaller more processable segments
and distributed across many processors and memories to be
searched and manipulated simultaneously. Associativity helps
eliminate access paths and is logical to physical mappings. Paral-
lelism causes associative addressing and set-orientes processing
to be performed at high . This new approach to data base
system implementation has recently become feasible because of
new developments in semi-conductor technology where extensive
amounts of memory can be miniaturized and entire computers
called microprocessors can be squeezed into the space of tiny
low cost silicon chips.

 The Relational Associative Processor, RAP, being designed and
implemented at the University of Toronto is based on these
principles and technologies. RAP is organized to augment a con-
Ventional computer in order to support the implementation of
efficient data base management. The design employs hundreds of
adjacently connected processors and memories called cells which
address data associatively. A statistical arithmetic unit is provided
to calculate summary statistics. The cells and statistical unit
are driven in parallel by a central controller. This organization is
shown in Figure 2. Each cell is composed of a microprocessor
Specially designed for data management operations and a sequen-
tial circulating memory, a track of a drum or disk, charge-coupled
device (CCD), bubble memory, or other. Each data base opera-
tion is executed in parallel within cells which operate directly on
the data as it circulates through each cell processor. RAP provides
an intermediate-level view of data and a collection of set-oriented
Instructions implemented entirely by hardware. The data organi-

-y acasmr
AOENL tront-ena

s tional
computer

t_:nnrr:ni

[iy s

LT

TERMINAL

F1c. 2 — Architecture of the RAP Processor

() '~ —l @,
= EMPLOYEE \ e

SALES:
wame | sawary | pepr
voL | ITEM| NAME - . oeet |Froom
: 3 5 NAME - Ogpy ; ;
sMITH| 20K | SHOE
200 | Gvm | swirn j—] > sroe 2
- . - JoNes | 14k |cLommes - -

Fic. 1 — Several Relations that Describe a Department Store

zation is sufficiently general to support set-oriented operations on
the commonly desired high-level user views of data: hierarchical,
network, and relational. The format for each hardware instruction
reflects the general structure of a data base query, that is, it
specifies the operation to be performed, the items to be operated
upon, and the criteria which associatively selects or addresses the
portion of the data base for which the query applies. Some of the
operations that can be performed are complex selection, statistical
calculation, retrieval, update, and data base creation, insertion,
and deletion.

The processor has been designed to close the gap between the
user’s logical view of data and the way it is represented in the
storage of the computer which supports the processing of the data.
This will allow data base management system applications to be
implemented more quickly because the implementor will no
longer be concerned with the details of representing and searching
a data base. Because the device more closely represents the users’
view of a data base management system, data base queries can
be formulated from just a few hardware instructions — often
only a single instruction is sufficient. The RAP system is designed
to execute the most important instructions within one simultaneous
rotation of the cell memories. Studies have been conducted to
compare the hypothetical performance of using RAP relative to
using a conventional computer system for implementing a rela-
tional data base. Both approaches were modeled analytically. The
results show that significant gains in query execution speed can
be achieved by the RAP architecture over the conventional system
and that, under many circumstances, on-line retrievals from, and
updates of, large data bases may only be possible with the use of
RAP-like systems.

PROJECT RAP is being conducted by the Computer Systems
Research Group and primarily funded by the Devartment of
Communications and the Department of Supply Services, Canada.
During the first phase of the project an experimental version of
the RAP computer will be built to prove the feasibility of the
concept and to examine the software implications. When com-
pleted, it is hoped that the interest of potential users and manu-
facturers of computers will encourage the pursuit of a full scale
prototype of this system which would ultimately lead to a
marketable product.

The experimental version of RAP will consist of two cells with
CCD memories and a controller capable of executing a third to
half of the instruction set. Some of the hardware being developed
for the prototype is shown in the photograph. A working system
is expected to be ready by the fall of 1976. This will include
software support for both a high-level query language and RAP
assembler language interfaces.

KENNETH C. SMITH is a Professor of Electrical Engineering
and Computer Science and Chairman of the Department of Elec-
trical Engineering, STEWART SCHUSTER is jointly appointed
to the Department of Computer Science and the Faculty of
Management Studies, ESEN OZKARAHAN is a Visiting Assistant
Professor of Computer Science from the Middle East Technical
University of Turkey, appointed to the Department of Computer
Science. are members of the Computer Systems Research
Group which is an interfaculty organization sponsored by the
Department of Computer Science, the Faculty of Arts and Science
and the Department of Electrical Engineering of the Faculty of
Applied Science and Engineering at the University of Toronto.

ENGINEERING FORUM is made available to high school science and technology departments, and
to graduates of the Faculty. Others who wish to receive ENGINEERING FORUM may be included
in our mailings by writing to: Liaison Office, Faculty of Applied Science and Engineering, University

of Toronto, Toronto, Ontario, M58 1A4.

122

941

From: S. Sc
Auscer From: S. Schuster

‘_ .
Date: March 2, 1976 . Date: March 2, 1976
Re: Memo :
distribution Re: revised memo reference numbers - for project work book
) : Me continue to encouragé the drafting of memos, working papers, etc.
addre:::df:;]m:g ;:ggr?u::ﬁx;:t d"'“M" the RAP project. Memo's . (not necessarily to be typed) for the project files and work books. Ptease
ups istributed their respective members use the following reference no system on all documents .

{see memo no. RAP-SAS-760302-01-010 for reference nos.) Otherwise

Tist the names for distribution. 1) ref# RAP-ABC-YYMMDD-##-TTT-(X)

RAP: eve .
ryone : v where :ﬁg is the proj:c: ;d
PI (princt . : are your fnitials
ggh u:tt:egal investigators): . :'Y‘ :s o yea:h
Ozkarahan : . . s the mon
Smith S . pD {s the day .
. : ; ## 1is the index indicating the order in time for memos
t: (hardware): : . : generated on the same day .
Ozkarahan , Smith) TIT is the reference to the task numbers (see below)
Pereira B X s NE total number of pages)
Nguyen) . n o YR e .
sg:ﬁster - Number al) pages by x/X {f X>1, where x f§s the page number and X is
Hunter C) the total number of pages .
Huwi to - . .
: 2) it task

000 project descriptions (e.g. propaganda, layman descriptions)

SNUANYTT4ISTi

SW (softw :
Schust::g) ’ 005 progress reports
Chan) ’ . olo project organization
Tsonis . . : 020 personnel and equipment procurment
030 ge:gral irirplementation fnemos (i.e.ischdules. notes, etc)
MA (modellin - ' 040 hardware implementation documentation .
(()zkarahang and analysis) : . 050 other RAP specific memos (e.g. reliability, performance
Schuster : . tradeoffs, extensions) .
Sevcik . 060 uses of RAP (e.g. networks, intelligent terminal, data models
. ’ index processor
I g?gxstrial tiason): ggg cﬁzizma“n:;ogmism
Schuster) 100 RAP/SEQUEL Compiler
Ozkarahan L . 110 Instruction Simulator
. 120 Software Driver

130 Industrial/User Liason
140 Semi-Conductor Industry
150 Patents

b

0

PRDDUCT PROPOSAL:

A DATA BASE COMPUTER

intel memory systems

A DIVISION OF INTEL CORPORATION
1302 N. Mathilda, Sunnyvale, CA 84086 ® (408) 734-8102

rrEwy Govporarion

Memory Systems Division
Sunnyvale, California
1. Introduction peripheral device d d to aug the relatively small
system p by impl ing many data base oper-

Intet is investigating the possibility of developing a data
base_computer (DBC| which includes both novel hardware
and plete data base system softwave. The
DBC wiil function either as 3 stand-alone applicstion dedi-
cated machine accessible through intelligent terminals or as
3 ‘back-end’ hi hed to medium and large host
infl A D8C ists of 8 ionat mini
puter snd large capacity disks sugmented by a special

purpou processov and memory. Tho entire system will

I indexing req vet achi
retsieval and update specds not possible with current
hes. Other ad of this approach are the

extension of mainframe capability through off-loading,
snhanced security snd reliability, multi-mainframe
sharing of the same data base, and simplified data base
administration.

The DBC will provide users a3 high-level semnemed data
lang offering non-p ifi
tion of data management tasks. It is anticipated um the
system wiit be designed to support the refational model
of data, although the special purpose hardware couid
provide hierarthical and network data bases. The system
wilt be most cost-effective in envir vequiring

h ini " $

query processing, mdlor in applications exhlbumo hmh
update traffic.

This document provides a summary of the DBC archi-
tecture and associsted software facilities, Also included
is & list of the p ial ad ges the offers
data base Y users. It i with a
summary of cost savings, performance improvement, and
expected price of the Intel DBC. '

2. The Data Base Computer
2.1 Hardware
2.1.1 Overview

Intei’'s DBC is a simple organization ol four types of
components: & system p . an ive pr Y
an array of ional large d

devices, and a host interface. The basic lrchilel:tuu b
shown in Figurel. The system goousor isa mcdlum m
farge mini with for

sting functions of the dsta base management system
{DBMS). The associative processor Is a specisl purpose

ations in dedicated hardware, At any point in time the
data. base is partitioned and distributed between the
associative processor memory and conventional disk
storage. Migration of data between the associative pro-
cessor and disk is dynamicly controlied by the DBMS
software, and is transparent to the user. Tape is provided
for bulk loading and for back-up and recovery logging.

The DBC wili link to user machines through the host
interface. This can be either a communications processor
sllowing very flexible access and muitipte host sharing of
the DBC or a high speed channel adaptor linking the DBC
to & single host. Direct attachment of terminals 1o the
DBC is also available,

2.1.2 The Associative Processor

The associative processor is the key element in making 8

feasible high performance DBC which provides fast retrieval
and update of large dawa bases in response to high-level data
i ds. The iati *s sechi-

lectuve is based on two facts. First, many dala base
operations are inherently set-oriented, requiring execution
of the same operalions on many records of the same file,
Secondly, to achiev# high data-independence ,dats base
addressing should be accomplished associatively by restrict-
ing user ref to data el tent rather than
position or location. Existing and newly developing data
base systems simulate these desirable features on conven:
tional computers via software thereby incurring d

Figure 1.

Data Base Computer
System Architecture

HOST SYSTEM ousK
WTEREACE PROCESSOR

L__} associanve
PROCESSON

"6

5Hu3NVTTHDSIw

¢'o

SCT

Ehere oy speciel p

P and inits i

The basic archi of the iati ., shown
In Figure 2, consists of s controller and set of pln”ﬂ

ZZ. 1 Osts Model

Tln purpose of a DBMS ls to create 8 common pool of dets
ted from i g snd to give applica-
uon progranumers & jogical model of the data base that Is
o of device or physical organization details,

celis. Each cell contains » processor and large i

memorv. The portion of the daia base residing.on ﬂn
associative processor is distributed across the cell memories.
The cell memories are constructed from CCD's, very high
density, state-of-the-art, low cost tewuconduclot compo-

) e

nents. Each cell pr is id d to one
cell mes..ry, snd ifically cor ted to high-
level data definition and ipriation | i The
controller of the iative p ives progr

Instructions from the sy , decodes each

instruction, snd broadcasts conuol ond dau sequences
to each ceil. Each cell p

the instruction over the contents of its mcmory Cell

instructions exist for dats defi
selection, insertion, deletion, numenc or repl

Commercial systems today provide users one of three datas
models: hierarchical, network, or relationsi. Ths Intel
DBC could be programmed 10 provide DBMS supporting
mvo(theu dels. Howeter, the ly non-pro-
ive, and set-oriented ch istics of the
gﬂuoml model of dau best suit the DBC architecturs.

2.2.2 Access Methods

To provide fast access to arbitrary portions of u\c dau
base, the DBMS usell bination of partiti g and
migration gies to ali dats b di;k and

update, retrieval, and ion of Y
The number of cells can be varied a5 user !

lative processof storage. The DBMS uses pafameters
wpplled by data base administrators and/or obtained

dictate.

The loglul format of data stored on the

ph usage histories to place the most searched or
dated data ek on the iative p . Figure
3 depicts how date bases can be partitioned. A search

pr ically interpreted by hard . Disect
execution ol mwlenl instr by the iati

processor elimingtes much of the software needed to
provide a complete DBMS.” In addition, the sssociative
processof eliminates the need for traditional indexing
software and dats for performing searches over online

dau bnu By eliminating index data, thn sysmn can ’

U d and fast resp t0

retrisval, snd update operations and provide greater

potential for concurrent usage, Other benefits will be
summarired later.

cEL v

L is d by first accessing the associative pro-
cestor, If further search is reqmrad over the disk por-
tion to plete the data ipul d, record
id’s are retriesved from the associative processor and used
to sccess the disks’ data. The search snd migration of
dats between disks and the associative processor is, of
course, P to the i programmer.

2.2.3 Data Definition, Manipulation, and Protaction

A complete set of data definition, manipulation, and
protection facilities will be provided. Data definition
schema, subsch and derived schema defini-

Trnrdasd,

e e]

Len CELL2

tions. Schema utdities such as data dictionary query,
macro definition, and accounging are also to be provided.
Performance monitoring information will b. svailable
through schema control.

The data ipulation language will provide high-level
suuctured English svn!ax lov specllvmg complex booleln
and nested. sel

jection of dats elements, kmn set construction or

H cain

Figure 2. Associstive Processor Architecture

—

aompulmms, snd grouping. Selected records a.d data

can be updated, inserted, deleted, sorted and
retrieved. The ipulati can be embedded
np ing on host machi s p of

cALumcmum or used us an interective language
it hooked diractiy 10 the DBC.

“\

v e it

g_gnﬂlr'_o_l will syncronize
providing the proper serialization of concurrent retrieval,
but mutusily exclusive update, while maintaining a high-
'lmc of dats base istency. Security snd integrity
#gainst thorized or invalid dis-
closures or updnes. A baclwg and recovery subsystem
will produce the Is and images for efficient
anvd refisble recovery, roll- back and eoll-forward.

LOGICAL
FILES
ar {€.0. RELATIONS)

-__-:l/

SYETEM
MocEssan

csommmd .

oisK

ASSQCIATIVE

1 enocesson

- ° . 1
]

9 ~ PORTION OF FILE STORED ON DISK.
AP~ PORTION DT FILE STORED DN ASSOCIATIVE PROCESSOA

Figure 3. Data Base Partitioning

3. Potential Benefits

The p ial benefits that can be | d from the Intel
DBC are grouped by the three principle festures of the
product: a distributed back-end wstem providing » high-
level set-ori d data ipul interface,
snd sug d by an iative pr Each {

In the list enhances the capshilities and performance of
the previous.

Back-End:

1) Extends host svstem capabilities by off-loading data
base i 1o & sep system
running in parallel,

2) Permits several possibly dissimilar host machines to
share a common data base.

3) Provides a basis whereby dissimilar hosts on a rh
can exchange dats vis the DBC's logical data model,

4) Provides » besis for graceful conversion from one main-

frame 10 her vendor's main .
6) Provides the data base admini distinct hardware,
f and date to tune with having

to compromise or conflict with other mainframe users.

EEIORCAN ATy
d query ion by

7

9)

software. .

Enhances data base security because of hardware
separation of data base functions from the host
operating system.

Reduces dependency of data base systems on host
operating system or compiler changes.

Greater availability of services because distributed
processing allows host or back-end availability when
one or the other fails.

Set-Oriented Processing:

1)

3

Reduces application programming, testing, and main-

tenance time. High-level commands are easier to

code, more understandable because their semantics

are closer to the end user’s job, and are more concise
of 2 user's requir

Reduces the amount ol data transter and hence reduce:

data ¢ i requir between the host
and back-end. The host sends less data in the form of
data ipulatio ds when ds are

expressed in high-level set-oriented languages. The
back-end responds with lJess retrieved data. Only
those data elements from the required records are
returned to host.

Permits the DBMS 1o optimize the execution of a
larger portion of the data manipulation requirement.

Commands expressed in high-level languages permit
the system, in advance, 10 snalyze operations which .

affect sets of records. This permits the system to
choose optimal access paths, buffering, and concur-
rency schemes because it can see a global picture of
user requirements. This is not possible using record-
at-a-time navigation oriented |

Associative Processor:

1)

2)
3

4)

6)

Provides very efficient execution of set-oriented
ds be its ive and parallel archi-

tecture is d to pr ing several ds at

the same time.

Reduces and balances update md tetrieval response

times with: tr ional ind: g hods and data.

Red totat g qui b duplicated

indexing data is eliminated.

Promotes greater concurrency because peripheral data
structures such as indices are eliminated and therefore
not subject to locki head.

Reduces data base administration lexity bx

simpl;hed physical dau ganjzati are achieved
gh hardy p of indices,

Red: c data ipulati d |

6

SNOANY TT43STH

usar fanguspes sd dets modefs,

7} Aliows low cost incremental system uggrnda because

" of the highly modul: hi of the fati
processor,

8) Increases reliability by exhibiting graceful degradation
dus to the modular and distributed architecture of
the associative processor.

9) Enhances the potentisl of the DBC to respond to
complex security and integrity testing because of its
sbility to efficientlty executs complex boolean tests

over data bases.
10} Redu s the of data farred b the
usocmm proecuor snd system processor because
. the ponds to highdevel com-
mands snd tnmmt only the required data items of
qualified . This is snalogous to the ad
thet set-orl ", ing achi lovhonmdbuck
- end communications.

4. Performance, Cost and Price

The Intel DBC is expected to be avsilable fourth quarter, .

1879. At this time, exact figures have not been determined

for pert: end user application costs and price of »

DBC required to meet the needs of a pmleulu uur

Instead, we first present a preliminary q

followed by s qualitati y of the p iat DBC

benelm that would directly reduce the totai data base
ratio. We tude with priu

ouimnes for various p and e

ations of the DBC,

.An analysis has been made 1o determine the execution

times of various data mampumion luncnom when data
tesides entirely on the its show

-execution from J0 to 1000 times lu(et ttua conventional

indexed implementations of the same functions, The most
dramatic improvements are found in update operations.
This massive pvoeenmg power gives substantisl lattitude
for pert in sy that incorp
lorge disk resident d-u bases. Wa conservatively estimate
that the DBC would improve execution times and through-
put by factors of § to 10.

¥/ Faster rewievsl, update snd reorganization response
times due to islized harch and less p
software.

2) Gream through-put dus to increased concurrency
! and faster resp times.

P

3) Faster and more maintainabl f
because of the high{evel data manipulation language
interface which provide a high degree of data-indepen-
dence, .

4) Greatar potentisl for dats bass shating by multiple
and dissimilar hosts ranging from large mainframes
to microprocessor based intsliigent terminats.

Cost:

1) Frees-up costly large host CPU cycles which extends
host lifs v snd/or increases woark-load
capability. .

2) Reduces data base administration complexity and time
because of the DBC’s simple dedicated hardware snd
software architecture,

3} Lower cost upgrades because of the highly moduler
srchitecture of the DBC,

4) Red disk ge requi and its iated
i costs b the DBC efimi index

dats overhead.
6) Lower application deval and mai costs

through th- use of a hm level dsta manipulation
language.

Price:

System Processor = from $30K to $200K.

Disk = $45K controlier + $25K per 200 MB (up to 1600
MB per controlier),

Associative Praocessor = $50K + $6K per MB.

Tape = $12K controlier + $14K per transport.

SMALL | MEDIUM LARGE

Svslem Processor

P

DBC 4 ssaciative Processon Prics
Sofsware Price
TOTAL

Associative Processor and Storsge

$30xK $100K $200K

toM8 50M8 10oM8
$110K $350K $650K
$50K $50K $50K

$190K $500K $900K

Disk Storage
Disk Price

Tape Traraports
Tape Price
TOTAL

il

200M8 1000M8 20008
$70K $145K $290K
1 2 4
$26K $40K ssex | EXAMPLE SYSTEMS
98K 185K 388K

b

i

NIVEINARENNIY

9, MISCCLLMECLS © - 9.3

9.3 Photographs) .
9.3.1 RAP Cells and Memory

9.3.2 RAP Controller - PDP 11/05
9.3.3" Host Machine - PDP 11/45 .
9.3.4 RAP IT - Cell Roards
ALU
' OPCODE 11T
FORMATT 1
FORMATT 11
1/0 BUFFER
CONTROLLER I
CONTROLLER I1I
3 ‘DATA MANIPULATOR
9.3.5 RAP II - Memorv Roards
' Controlter (For 1.5M Bits)
‘ _ Memory (320K Rits)
9.3.6 RAP II - Interfaces .
Cell to Controller
Controller to Host
9.3.7 Some of .the RAP team (from the left Nauyen,
~ Pereira, Patkow, Hudvma, Smith, Soong, Schuster
Radacz, Hawkins, Klebinoff).

Sl
~

N

'v "])y
AN A‘SSOCIATION PROCESSOR:S FOR DATA
BASES: FINAL REPORT TO DOC.

DATE DUE

DATE DE RETOUR

LOWE-MARTIN No. 1137

