
RAP 2

AN ASSOCIATIVE PROCESSOR
FOR

DATA BASES

S . A. SCHUSTER
H . B . NGUYEN

E . A. OZKARAHAN
K . C . SMITH

INAL REPORT TO DOC - CONTRACT OSU5-0205

UNIVERSITY OF TORONTO
JANUARY 1978

COMMICATIONS CAN

SFP "983

/ 6) f<KP
(lieu

1/
	(...."---ef -11---

Industry 	nadir
Librani Queen

jJuuILL. 2 2 1998

Industrie Canada
Bibliotheaue Queen 7 -

te0,1s1
13,5

tIOARt - BigLIOT OE

boc/

1

31eird—>"

(31 1 	/-5.
%_ci
u 2

D

• 	• TAB. LE OF CONTENTS

O. OVERVIEW 	'

1; •INTRODUCTION 	. 	 • . •
• 1.1 DATA BASE MANAGEMENT SYSTEM REQUIREMENTS

1.2 PROBLEMS WITH CONVENTIONAL IMPLEMENTATIONS

1.3 THE ASSOCIATIVE/ARRAY PROCESSOR APPROACH

1.4 BASIC ARCHITECTURE OF RAP

2. THE ABSTRACT MACHINE
2.1 DATA STRUCTURE

2.2 iNSTRUCTION FORMAT

2.3 DESCRIPTION OF RAP INSTRUCTIONS

2.3.1 SELECTION

- 	2.3.2 . RETRIEVAL

2.3.3 STATISTICAL COMPUTATIONS

2.3.4 UPDATE

2.3..5 INSERTION AND DELETION

2.3.6 DATA DEFINITION

7.3.7 REGISTER MANIPULATION

2.3.8 DECISION AND . TRANSFER

264 SUMMARY OF PERFORMANCE

3. IMPLEMENTATION
3.1 HISTORY

3.2 PHYSICAL DATA ORGANIZATION

3.3 GLOBAL ARCHITECTURE AND COMMUNICATIONS

3.4 INSTRUCTION, SET EXECUTION

3.5 CELL STRUCTURE

3.6 SOME STATISTICS

4. DBMS UTILIZATION OF RAP
4.1 SYSTEM ORGANIZATION

4.1.1 RAP AS AN ACCESS PATH PROCESSOR

4.1.2 DATA BASE PARTITIONING

4.1.3 PAGING AND VIRTUAL MEMORY' 	.

4.2 SUPPORTING MULTIPLE LOGICAL VIEWS

• 4.3 A NOTE ON PROTECTION, SECURITY AND INTEGRITY

5. RAP . AND COMMUNICATIONS
5.1 . COMMUNICATIONS PROSLE?IS

5.2 THE INHERENT counter BETWEEN DBMS Am
GENERAL:PURPOSE COMPUIING

5.3 RAP AND COMMUNICATIONS

5.4 DATA SASE PROCESSORS AT THE NODES OF A COMMUNICATIONS NETWORK

5.4.1 A SOCIETAL PROBLEM

5.4.2 A TECHNICAL PROBLEM

5.4.3 A TOTAL SOLUTION

5.5 kg, IN A COMMUNICATIONS ENVIRONNENT

5.5.1 REMOTE DATA BASES

5.5.2 bISTRIBUTED DATA SASES

5.5.3 PRIVACY AND SECURITY

6. ACKNOWLEDGMENTS 	.

7. REFERENCES

8. DESIGN/PERFORMANCE APPENDICES
8.1 RAP 2 ... CELL LOGIC DESIGN

8.14 GENERAL

8.1.2 FUNCTIONAL DESCRIPTION

8.1.2.1 LOGIC DIAGRAM L*1

8.1.2.2 Lem DIAGRAM L*2

8.1.2.3 .LOGIC DIAGRAM L•3
8.1.2.4 LOGIC DIAGRAM L*4

8.1.2.5 LOGIC DIAGRAM L*5

8.1.2.8 LOGIC DIAGRAM L*8

8.1.2.7 LOGIC DIAGRAM 1.*7
8.1.2.8 Loam DIAGRAM L*8

8.1.2.9 LOGIC DIAGRAM

8.1.2.10 LOGIC DIAGRAM L*10

8.1;2.11 LOGIC DIAGRAM L*11 AND L*12
8.1.2.12 LOGIC DIAGRAM L*13

8.1.2.13 LOGIC DIAGRAM 1..44
8.1.2.14 LOGIC DIAGRAM 1....15
8.1.2.15 LOOM DIAGRAM 1.•16
8.1.2.16 Loam DIAGRAM L*17

8.1.2.17 LOGIC DIAGRAM L*18

8.1.2. 18 LOGIC DIAGRAM L*19

8.2.4
8.2.5

8. 8.1 8.1.3 LIST OF SIGNALS USED IN LOGIC DIAGRAMS 1•1 TO 1-19
8.1.4 LOGIC DIAGRAMS 1.4 THROUGH

8.2 RAP 2 •• SYSTEM CHARACTFRIZATION AND MEASUREMENT

8.2.1 OVERVIEW •

8.2.2 SOFTWARE CHARACTERIZATION

8.2.2.1 DEFINITION OF CHARACTERISTIC TIMES

COMPILATION TIME •

INPUT FORMATTING TIME

• OUTPUT FORMATTING TIME
•

RESPONSE TIME

.8.2.2.2 MAJOR PROGRAM STEPS

8.2.2.3 'PROCEDURES FOR TIME ESTIMATION • •

• 8.2.2.4 SOFTWARE COMMUNICATION BLOCK DIAGRAM

• 8.2.2.5 EXECUTION TIME ESTIMATES

•

•

8.2.2.6 DEMQNSTRATION QUERY STATISTICS

• 8.2.3 HARDWARE CHARACTERIZATION

8.2.3.1 MODULE DERINITION
UNIEUS
11MS INTERFACE ,
CELL INTERFACE

CELL I * II

8.2.3.2 HARDWARE COMMUNICATION.. BLOCK DIAGRAM

8.2.3.3 •DMA RATES

8.2.3.4 RELATIVE SPEEDS 	 . 	.
RAP DEMO .

DATA MANAGEMENT BY RAP

• . MISCELLANEOUS

9.1 DOCUMENTATION CATALOGUING SYSTEM

9.2 INTEL PRODUCT PROSPECTUS «A DATA BASE COMPUTER'

9.3 PHOTOGRAPHS 	 •

9.3.1 RAP CELLS AND MEMORY
• ' 	9.3.2 RAP CONTROLLER POP

9.3.3 HOST MACHINE POP 11/45
9.3.4 RAP II • cal BOARDS

ALU
• OPCODE III •

FORMATT I
• PORMATT II

• I/O SUFFER

CONTROLLER

CONTROLLER II

DATA MANPULATOR

9.3.5 RAP II • MEMORY BOARDS

CONTROLLER (FOR 1.94 BITS)

MEMORY (320K BITS)

9.3.6 RAP II • INTERFACES

CELL TO CONTDOLLER
CONTROLLER TO HOST

9.3.7 SOME OF THE'RAP TEAM (gROM THE LEIT reuvu,
PEREIRA. PATKOWo HUDYMAo SMITH, SOONG, SCHUSTER,

RADACZ. HAWKINS* KLEBINOFF.

• •

OVERV I EW 	 0,0.0

O. OVERVIEW
0.0.0. Overview

This report is intended to summarize, in a modest way, a jor effort

conducted at the University of Toronto by the Computer Systems Research Group •

With staff and students of the Department of Computer Science, the Department

of Electrical Engineering and staff and resources of the Computer Research

Facility (CRF). The project received direct support of $199,065 via the

Department of Supply and Services (DSS) and the Department of Communications

(DOC) of the Government of Canada. In addition it has benefitted by close

relationships with a variety of individuals and organizations who have

provided a great deal of assistance both motivational and tnagible. Very

high on the long list of individuals and organizations are, Dr. A.R. Elliott

of the Department of Communications, Dr. R.F. Webb of R.F. Webb Corporation LTd.

and Gordon Moore of Intel Corporation.

Direct costs of the RAP project from all sources including those

supported by National Research Council (NRC) operating grant funds are

estimated to be $218,000. Not included are expenditures by DOC on market

studies through R.F. Webb Corporation Ltd. and by INTEL on various associated

studies (see Section 9.2).

'The RAP prOject itself occupied an elapsed time of 23 months following

the original 15 month period of definition by E.A. Ozkarahan in preparing his

Ph.D. thesis entitled "An Associative Processor for Relational Data Bases RAP",

presented in Jaunary 1976. A total of 21 persons worked on the project at

the University of Toronto providing a total of more than 12 man years since

1975 and 1 1/2 (largely by EA) before than time.

The summary presented here is a very brief distillaion of a large

amount of documented concept, design, experiment, and interacion with others.

Estimates of its statistics include:

a) A 350 page thesis.

h) 6 CSRG reports of 225 pages in total.

c) A categorized documentation system estimated to hold 1,500 pages.

The cataglouging system and table of contents is included in

• 	Section 9.1 for interest.

d) 8 conference/workshop presentations.

0, OVERVIEW 	 0,0,0

e) 6 papers published in journals/proceedings, of 60 pages in

total.

f) Visits by RAP staff to 18 organizations as part of an industrial

liason program leading to the study reported by R.F. Webb.

g) Visits by 30 individuals from 10 organizations to view the

RAP work.

h) 75 written enquiries and requests for RAP information.
1) 15 interim/progress reports to DOC.
j) 12 terminal demonstrations of RAP locally.

k) . 1 terminal demonstration of RAP elsewhere.

1) 3 M.Sc. completed.
m) 1 Ph.D. completed.

The present status of RAP is a physical system demonstrable within the boards

of timescale and availability characteristic of a multiple user system of

the computer-hardware consisting of:

1) One communications-linked input teminal running SEQUEL or RAP

connected to a:

2) POP 11/45 well-equipped proceSsor running UNIX, connected to a:

3) POP 11/10 controller via a . 100 foot, 3 byte-paralle link,
driving a:

4) CELLBUS with 250 cell capacity to which is attached:

• 	5) Iwo CELLS each having:

6) CCD Memory of 320K bits 'capacity, all controllable also from

7) an input terminal to the ?DP 11/10 controller communicating in

RAP ASSEMBLER.

Read on!

INTRODUCTION 	 1.

1. INTRODUCTION

RAP - a Relational Associative Processor - is a back-end or peripheral

device designed to augment a general purpose computer for implementing a data

base management system (DBMS). Its architecture is based on the fact that

data base operations are inherently set-oriented and data base addressing is best

accomplished through associative reference to achieve high data independence. RAP

utilizes these characteristics by combining the features of associative and array

processors.

Previous publications on RAP have dealt separately with the details of the first

version of its architecture (1,2,3,4), language interface (5,6,), and performance

evaluation (7,8,9,). Also, these topics were discussed strictly from the point of

view of the relational model of data. This reportprovides details on the recently

evolvectfastenand more flexible architecture and discusses RAP's applicability to

a wider range of data base models and its various uses and roles within a complete

DBMS implementation. Further its role in communications is highlighted.

In this introduction, we will try to motivate the need for a RAP-like device in DBMS

implementations. First, we review some important requirements for these systems. A

discussion follows of the limitations of conventional• computers in meeting these require-

ments. The philosophy of using array/associative machines for data base management

is then presented. The introduction concludes with the global organization

of the RAP processor.

1.1 Data Base Management Systems Requirements

Data base management systems attempt to isolate the details of data storage

and manipulation from the application programmers that use the data (10). This is

accomplished by providing users a loqical . view of a data base distinct from the

details of its physical realization, a query or data manipulation language by which

users can specify or program the retrievals and .updates of data,and a data definition

language to define and control access to data.

INTRODUCTION 	 111.

The success to which DBMS can realize the above goals depends heavily upon meeting

the following three important requirements. First, query languages must be sufficiently

high-level and powerful to permit non-procedural specifications of complex data

manipulation. Such languages allow users to specify manipulations in a set-oriented

fashion (e.g., retrieve or update all employees...) and addresses of the data

associatively . by qualifying items stored in the data base (e.g.,... employees who

work in the furniture department). The higher the level of query language, the

faster and easier it is to code understandable and reliable application systems.

Also, high-level query languages can easily be extended to provide stand-alone interactivE

facilities to users, e.g. engineers, physicians, financial analysts, etc., who are not

computer specialists but who are technically oriented and specialize in the semantics

of the data being processed.

Secondly, fast response is required because the majority of DBMS will be required

to operate in on-line and concurrent user environments which support users at terminals,

batch application programs running within multi-tasking systems, and communication and

networking systems providing access to distributed data bases.

The third requirement concerns the technical administration of data base systems.

The separation of the logical view of data from its physical reality, as provided by

data base systems, forces the responsibility of providing efficient performance to be

delegated to the data base administrator of the system. This responsibility was

originally distributed over several users and distinct file processing systems. Now

the data base administrator must make decisions, often conflicting with individual

user requirements, for all users: The complexity of this task is enormous in

current implementations. It is imperative that tuning of data base systems be

• effectively and easily achieved.

1. INTRODUCTION 	 1.2

1.2 Problems with Conventional Implementation

Using conventional computers and traditional secondary memories to implement

data base systems makes it difficult to realize the requirements of data base

. systems and contributes greatly to the high cost of using data bases. The

problems of conventional computers arise because of their processing and

addressing structure. Conventional machines are designed to process data serially

(i.e., the execution of one instruction on a single data item at a time) and

that accessing of the data te be processed is accomplished by specifying its

location or hardware address. Unfortunately, this is in direct conflict with

:se-oriented processing and associative addressing in data base systems.

The lack of set-oriented and associative features in conventional

architectures force the implementors to achieve equivalent operations by

simulating them with software. Accordingly, to implement efficient access to

a data base, large complex programs must be written to provide mapping

mechanisms that map the users view into the structure of the hardware and

provide access paths to facilitate fast location of arbitrary portions of the

data base. Access paths refer to both • ndexing data and software

designed to provide access to specific items of the data base. Additional

software must also be provided to maintain access paths. Some of the problems caused

by the use of access paths and mapping mechanisms in conventional computer

implementations of DBMS are:

a) Unbalanced Performance:

Access paths provide fast retrieval of data at the expense of slower

updates because updates to the data base must also be reflected in the

access paths.

h) Poor Generalized Performance:

Generalized systems based àn access paths rely on multi-level software

do not permit sufficiently tunable generalized systems that respond to

5

INTRODUCTION 	 1.2

widely varying applications in dynamic user environments.

c) Reduced Potential for Exploiting Concurrency:

Because access paths must be updated whenever the data base is modified,

they become additional critical resources that require synchronization

to avoid interference in a shared environment. The additional synchronization

adds. overhead to a data base system.

d) Reduced Reliability:

System failures, especially during updates, can cause the access paths

and mapping mechanisms to become inconsistent with the data base. Detection

and recovery can be very complex and time consuming.

e) Extra Storage Requirements:

Access paths are often implemented by "invertingu the values occurring

In the data base. This technique organizes the physical addresses of data

items into search data base creating a second data base requiring extra

storage.

f) Software Complexity:

As a consequence of added data structures for implementing access paths

and mapping techniques, large complex software is required that is unreliable

and dificult to maintain and administer.

A major consequence of these problems is that only those queries whose formulation

were preconceived can be conveniently and efficiently processed. The result is that

general purpose data base management systems, which must meet the requirements of

many applications over broad user environments, perform in a limited fashion in

practice. The traditional approach to solving the performance problem has been

to acquire faster CPUs and larger primary memortes at, of course, tremendous expense.

Clearly, this solution does not solve any data base administration problems.

1.3 The Associative/Array Processo.r Approach

A solution to the limitations of conventional computers for implementing

1, INTRODUCTION 	 1,3

and administrating a DBMS would be to establish a computer architecture

that eliminates, or, at least, reduces the dependency on complex software. The new

architecture should close the gap between the users logical view and processing

. requirements and the way the data is represented and processed physically. This

can be partially accomplished by utilizing a high degree of parallelism for both

processing and addressing. If the parallelism is achieved by repeated cellular logic

each operating on its own memory, then the data base system requirement of performing

the same operation on many data item operands can be efficiently accomplished.

Inexpensive associative memories can be achieved by using block addressable

serial memories and searching their contents at high speed in parallel.

Furthermore, if such device were designed to augment, rather than replace, a

conventional computer, it would have a greater chance of overcoming the natural resistanc

to a radically new technology by providing a evolutionary approach to total DBMS

architecture. Other benefits of moving the majority of data base processing to a

back-end organization can be found in (11). We will discuss them with respect to RAP

shortly. Designs other than RAP, that prescribe to this approach in various degrees,

can also be found in the literature (12-16).

1.4 Basic Architecture of RAP

The basic architecture of a RAP device consists of a "chain" of parallel

components called cells, a statistical arithmetic unit, and central controller.

This organization is shown in Figure I. Each cell is composed of a processor

and block addressable memory. The processor is specifically constructed for data

base definition, insertion, deletion, update, and retrieval primitives. Logic for

each processor has been designed to be compatible with LSI circuit implementation

technology. The 	memory 	can be implemented by a rotating magnetiC device such

as the track of a disk or drum, semiconductor CCD, or bubble memory. The statistical

arithmetic unit is designed for computing summary statistics (e.g. totals, averages, etc.

over the combined contents of the cell memories. The controller is responsible 'for

INTRODUCTION 	 1,4

receiving instructions in RAP machine format from a general purpose front-end,

àomputer decoding them, broadcasting control sequences to initiate cell execution,

and passingretrieved or inserted items between the front-end and RAP. Each RAP

instruction is executed within the cells whi,h opeeate in parallel directly on the•

data. Simple intercell communication for priority polling ià implemented along

the chain. Each memory contains data formated into a sequence of records containing

values of data items. The details will be given shortly.

A cell is composed of several logic units. The most important being involved

with searching. Several comparitor elements •form the basis of the associative

*addressing architecture of a cell. The comparitors can independently test the contents

of one item in the data base against several literais or several items each against

different literais. The true or false resufts of comparison tests on a record can be

combined into a disjunctive or conjuctive result to determine if the record associatively

qualifies for further manipulation.

The front-end computer supports high-level user functions. It interfaces users to

to RAP by supporting communications via interactive terminals or through programming

language CALL and I/O statements for application programs running in batch multi-

programming operating systems. The translation of various query languages into RAP

programs will also be accomplished in the front-end. Data base system software responsib -

for coordinating multiple and diverse secondary storage devices other than RAP, schedulim

of queries, and maintaining protection, security, and integrity must also be supported

• in the front-end but can be aided by the data processing capabilaties of RAP.

TERMINALS

a
ir

EXECUTING
PROGRAMS

CELL N
L..

I micro
processor

• CELL 1

CELL 2

FRONT-END
CONVENTIONAL
• COMPUTER

R.A.P.

CONTROLLER

STATISTICAL
— ARITHMETIC

UNIT

2. THE ABSTRACT MACHINE 	 2

2. THE ABSTRACT MACHINE

The RAP system has a machine-oriented yet high-level and complete instruction

set for manipulating its data base. Most macro-assembler instructions correspond to

one machine instruction which involves several cell micro-code instructions. In this

section, an explanation of the RAP macro-assembler instructions will be presented.

A programmers view of the RAP data structure will be given first. Then the basic

structure of a RAP instruction will be given followed by the description of each

individual instruction.

2.1 Data Structure

• From a eogrammer's view, RAP stores data as unordered occurrences of

records defined by a RAP relation as shown in Figure 2. A relation can be

envisioned as a formatted table of data where rows of the table represent a set of

record occurrences sometimes called tuples in relational terminology. The

occurrences of a relation stores data about a set of similar entities (e.g. persons,

places, things, or relationships). The name of a relation identifies the set of

entities. The format of record occurrences is defined by naming the data items

whose concatenated values occur in each record and specifying their length. The

length of each item in the relation is fixed according to a users choice of one

of several sizes. Each occurrence of a relation stores data which describes a

particular entity by àssigning a value to each of the items according to the format

of the relation 	The values are treated internally as simple bit patterns for

•non-numeric data and as integers in twos - complement format for numeric data.

Each relation and its occurrences are augmented by several special one bit

items called mark bits. These items can be set to 0 or 1 under user control

throue various marking instructions or by the intermediate operations of other

instructions. The bits are used primarily as a work area to temporarily indicate

subsets of record occurrences so that the results of one instruction can be used

in subsequent instructions. This is done by treating the mark bits as normal data

Items to be tested during associative addressing.

10

2.1 2. THE ABSTRACT MACHINE

• • CONTROLLER
REGISTERS gre(1) rE4eo FE6 (1?)

1
A, 0 >

ee.

...-FORMAT &
IDENTIFICATION

e,Merve Ai« F 5

eA 	I sreol
,VA > 046-

• • 9

RECORD
OCCURRENCES

I--t

040 X)00(t•

ditP j RELATION

FIGURE 2 - RAP . LOGICAL DATA STRUCTURES

11

2. THE ABSTRACT MACHINE 	 2.1

The occurrences of a relation can occupy one or several cell memories, but

each cell can only store occurrences from one relation. Therefore, a single

RAP device can contain occurrences from one 1.1rge relation or from N relations,

one for each of N cells. The programmer of a query need not be aware of the

cell location or number of cells occupied by the relations. However, there are

occasions, such as during garbage collection or bulk loading, where the user

needs to control the device at a cell level. To permit this, a user can refer

to registers containing an integer address for each cell.

• 	Several registers are also available in the controller. These can be

used to store intermediate computations or retrieved data from relations and

used as search values or tested in subsequent instructions to executed complex

queries.

A RAP relation is an intermediate-level abstraction of large data bases.

Although it has a flat tabular structure, it is not quite relational as defined by Codd.

For example, duplicate records are permitted and their existence is not automatically

detected. There are physical limitations on sizes and numbers of items. Also, the

special hardware operations for mark bit manipulation is a form of hardwired "access

method" that a user must control via program instructions to select desired data

for further processinà. What RAP does is to provide a data view or model that is

high-level but flexible or general enough to easily support software implementations

of set-oriented versions of common user views such as hierarchies, networks, and

relations. An outline of how RAP can do this is presented later.

2.2 Instruction Format

The general format of most RAP instructions is:

<label> <opcode> <mark option> eobject> : qualification>) (<parameter>)

Exceptions will be noted as they arrive. The label is an optional symbolic

Instruction address, the opcode specifies the data manipulation operation.

A mark option can take one of the following forms:

12

THE ABSTRACT MACHINE 	 2,2

a) <null>) implies no marking is done.

'1:1) MARK <bit specification>, Sets (to 1) the Mark bit data items

specified in the bit specification or the qualified tuples.

c) RESET <bit specification>, resets (to 0) the mark bit data items specified

by the bit specification of the qualified tuples.

The individual mark bits will be donoted MI, M2, ..., Mb where b is the hardware

parameter limiting the number of mark bits. A bit specification is simply a

list of mark bit names. An object has one of the following formats and is used

primarily to specify which cells are to be manipulated by the instruction:

a) ell,.. e ,Ds) where Rn is a relaGion name and (01, 02,...Ds) is a list of data

item names associated with relation Rn. The data item list is optional

or not relevant in many instructions. The index s is a hardware limit

on the number of domain names that can be included for certain instructions.

h) List of cell address, CELL(i), where i the integer . address of the i-th cell.

A qualification in the RAP instruction format can take one of the following forms:

• a) <null>,implying every tuple of the relation qualifies.

h) 	Ql& Q2& .Q3 	&Qp, denoting the conjunction of simple conditions Qi.

c) Q1 1 Q2 1 Q3 ... 11(âp, denoting the disjunction of simple conditions Qi.

A simple condition Qi . can be any one of the following:

a) <Di> <comparator> <operand>

where i) Di is a data item name

ii) comparator is one of:=,t,<,<,>,>

• iii) operand is one of REG (1), <integer>, 1 <literal> 1 , where REG(i)

• refers to the contents of the i-th controller register.

• h) MKED (Mi) denoting the mark bit test Mi . 1.

c) UNMKED (M1) denoting the mark bit test .Mi = O.

d) CELL (i) indicating that the cell address is tested as part of the

qualification.

13

THE ABSTRACT MACHINE 	 2.2

A qualification has certain restrictions which are not apparent from the

description of its syntax. A qualification can have at most k simple conditions

of type (a) (i.e., data item comparisons) and6simple conditions of types (b)

and (c). Only one simple condition of type; may be included in any qualification.

The format of parameter varies greatly and will be explained along with each

instruction that requires additional information not supplied above.

2.3 Delcriotion of RAP Instructions

2.3.1 Selection

Select:

• 	<label> Select <mark option> (Rn : <qualification>)

This instruction selects qualified tuples from the relation Rn and sets or resets

the mark bits of these tuples according to the mark option given. For example,

the instruction: 	 •

Select Mark (M1M2) (R1 : D1 = 'a')

will set mark bits M1 and M2 of tuples in R1 which have D1 = 'a'. Whereas the
;

Instruction:

Select Reset (M1M2) (R1 : D1 7 'a')

will reset the mark bits M1 and M2. A null operation occurs when the mark option

is omitted.

Cross Select:

<label> Cross-Select <mark option on R1> (<R1>:<D1> <comparator> <R2>.<02>)

(<R2> <mark option on R2> : <qualification>)

This instruction involves operation between two relations called source (R2) and

target (R1). It works like a repetitive select instruction on the target relation

with the exception that qualification for each selection is obtained from the source

relation data item values. That is, in order to select a target relation (R1)

tuple, the items D1 and D2 respectively of target and source relation must have

comparable values (i.e., values from the same•domain) that satisfy the comparison

between them.

- 	Tuple # DI 0111. D2 D4 IN>

1 10

24
3 11

7

8

8

15

6

9

30

•'..TUplé II

•

2

3

4

5

THE ABSTRACT MACHINE 	2,3.1

The source tuples participating in the comparison are those which satisfy the

second qualification.

For example:

Cross Select Mark (M2) (R1 : D1 < R2.D2)

(R2 Reset (M1) : D4 8)

Source tuples participating in the comparison are those which satisfy the

qualification D4 = 8. Notice the M1 mark bit of the participating tuples of

the source relation will be reset due to the mark option on R2. In order for

tuples of R1 to be M2 marked, it must have values of the D1 itemh less than the

value of one D2 item of the partfcipating source tuples. To further illustrate

this, suppose RI and R2 have the following values:

R1 (target relation) R2 (source relation)

The participating source tuples are tuple 2 & 3 from R2 since they satisfy the

condition D4 = 8. The tuples of the target relation that will be M2 marked are

tuples 2, 3 and 5 because they meet the condition on R1 that DI < R2.D2. A null

operation will result if both mark options of RI and R2 are missing.

2.3.2 Retrieval

Read All:

<label> Read-All <mark option> 	(Rn (01, ..., Us) : <qualification>) (<work area>)

This instruction transfers data from all tuples of Rn satisfying the qualifications

to the supporting processor's storage address as specified by work area. This could ,

be a seuqence of primary memory addresses or a file designation. If the object

data item list is present, only those item values are read out, otherwise, the

15

THE ABSTRACT MACHINE 	 2.3.2

entire eligible tuple is transfered. If the mark option is present, the mark

bit items of the eligible tuples will be set or reset according tO the given

mark option. For example:

Read-All Reset (M1M2) (R1 (D1,D2) :mked (M1) & mteed (m2) & 03 = 101 (file.0)

Eligible tupleS in this case are those which are M1M2 and marked and have 03 = 10.

Notice only D1 and D2 of eligible . tuples will be read into file .0. M1 and M2

mark bits of the eligible tuples will be reset.

Read:

<label> Read (n) <mark option> (Rn (D1,...Ds):<qualification>) (<work area>)

• This instruction is very similar to the Read-A11 instruction, except that only

data items from the "first" n or less qualified tuples are transfered to the

supporting processor's storage location. The mark option will only be exercised

on the tuples that dre transfered.

Save:

<label> Save (n) <mark option> 	(Rn(D1,...,Ds):<qualification>) (<register list>

Save (n) transfers data items from qualified tuples of a relation to registers of

the RAP controller. Only items from the "first" n or less eligible tuples are

transfered. If the mark option is present, the mark bits of the tuples will be set

or reset according to the mark option.. If the data element list is not present,

the entire tuple will be transfered, otherwise, only those items in the list are

read into the registers. Values will be stored left justified and padded on the

right with blanks. Data elements with arithmetic domains will be assumed to be a

fixed word length in . twos-complement format.

Register list can take 6n any combination of the following 2 forms:

a) Reg (1), Reg (j),..., Reg (k)

h) Reg (1) - Reg (j), 	< j

where Reg (i) - Reg (j) means Reg (1), Reg (1 	1),..., Reg (j). The transfer is

done in the order given, that is, the first item in the object list is read into

the first register designated in the register list, second item into the second

16

2. THE ABSTRACT MACHINE 	 23.2

register, etc. The n items are read from each tuple, the first item of the second

eligible tuple will be read into the n+1 register in the register list.

Read Re:

. <label> Read Reg 	(‹Reg list>) (<work urea>).

. This instruction transfers contents of the specified RAP registers to the

supporting processor. Register list has the same format as the register list

In the save instruction.

2.3.3 Statistical Computations

Sum, Count, Max, Min:

• 	<label> <sopr> <mark option> (Rn(Dn):<qualification>) (Reg (1))

where sopr is one of the statistical function operators sum, count, max or min.

The opcode count counts eligible tuples in the relation Rn and places the result

In the register specified. (Dn) is omitted for this statistical function. The

other instructions compute the specified function over the numeric domain of item

Dn from qualified tuples. Mark bits of the qualified tuples can be set or reset

by the presence of the mark option.

. 2.3.4 Update

<label> <opr> <mark option> 	(Rn(Dn):<qualification>) (<opd>)

where opr is one of the operators add, sub or replace and opd is either a constant,

a data item name, or a RAP register. Item Dn in every eligible tuple is operated

on by opr. Like previous instructions, the mark bits of the eligible tuples can

be set or reset by the presence of the mark option.

2.3.5 Insertion aneDelection

Delete:

<label> Delete (Rn : <qualification>)

Tuples of relation Rn qualifying for deletion has their delete flag bit set

causing the tuple to be ignored in subsequent operations.

THE ABSTRACT MACHINE 	2.3,5

• Colgrbg:

<label> Colgrbg 	(relation list> and/or <cell list>)

This instruction initiates the physical deletion of all delete-flagged tuples

of thelisted relationsand/or listed cells. The data is packed towards the

beginning leaving garbage accumulated towards the end of the cell memory. The

cell list has the same format as a register list. The relation list has the

following format:

CR1, R2, ..., Rn)

Space Count:

<label> Space Count 	(Rn : <cell list>) 	(Reg (1))

' This instruction will examine the cells uf relation Rn and returns a value

indicating the number of available spaces in these cells. This value is

stored into the given register. Available spaces include both empty tuples

and the delete-flagged tuples. If the optional cell list is present, only

those cells in the cell list will be examined. All cells in the cell list

must belong to relation Rn. This instruction is usually used to test for

space before an Insert instruction is used.

Insert:

<label> Insert (n) 	(Rn : <cell list>) 	(<work area>)

Work area is the front-end processor's program storage location containing the

n tuples to be inserted. If the optional cell list is given, the n tuples will

be inserted in those cells only. There is an arbitrary hardware upper limit

on the number of characters that can be inserted in one INSERT instruction

which places a limit on n.

2.3.6 Data Definition

• Destroy:

<label> Destroy 	(Rn : <cell list')

This instruction deletes the tuples, format, and names of the specified cells of

• 18

a relation. If a cell list is not present, the relation is removed from all the

cells it occupies. A special null relation name is reserved for all blank cells.

• Create:

<label> Create 	(Rn : <cell list›). (<format>) 	•

One execution of this instruction formats each cell in the cell list for

relation Rn. Empty tuples are delete flagged on the created cells. Format

contains parametric data about the length of the data items stored in a relation.

2.3.7 Register Manipulation

Only registers containing valid integer values will result in meaningful numeric

computations. All register arithmetic will assume word length operands on the

left-most bits of controller registers.

Insert Reg:

<label> Insert2eg 	(<register list>) n‹constant list>) 	•

This instruction will insert the constants into the specified registers. If

only one constant is present, this constant will be inserted in all registers

of the register list. Otherwise the number of constants must match the number

of registers.

• Dec Reg, Inc Reg:

<label> Dec Reg 	(Reg (1))

<label> Ing_Reg. 	(Reg (1))

The instruction Dec_Reg performs the following operation:

Reg (1) = Reg (i) - 1

The instruction Inc_Reg does the following:

Reg (1) 	Reg (1) +1

Register Arithmetic:

<label> <ropr> 	(Reg (1)) (<ropd>)

where ropr is one of the operators; Radd, Rsub,.Rmul Rdiv and ropican either

be an integer or another register.

2, THE ABSTRACT MACHINE 	2,3,6

19

2. THE ABSTRACT MACHINE 	 2.3.8

2.3.8 Decision and Transfer

8C:

. label> BC <label> , <boolean expression of conditions>

where BC is the abbreviation for "branch on condition". Condition can be

one of the following :

a)null -- this implies the instruction is treated as an unconditional branch

b)Reg (i) <comparator> Reg (1)

c)Reg (1) <comparator> <constant>

d)Test (Rn : <mark qualification>)

If the boolean condition is true, branching will take place, otherwise control

is given to the next instruction.

Condition type (d) tests each individual mark bit of specified by the mark

qualification separately and if the test is met for at least one tuple (not necese-y)

the same one) of relation Rn then the test is true, otherwise, the test is false.

Mark qualification can be either disjunctive or conjunctive. For example:

Test (RL : MKED (Ml) & MKED (M2))

is true if the M1 mark bit is set to one for at least one tuple and the M2

mark bit is set to one for at least.one tuple (not necessary the same one),

*otherwise the test is false.

fe
<label> EDO

This indicates the end of a RAP program.

20

2. THE ABSTRACT MACHINE 	2.4

2.4 	Summary of Performance

Execution times depend on the speed of the cell processor•and the

capacity of a cell memory. These could vary greatly depending on choice

of technology and architecture of the processor and memory. Therefore, we

give a summary in terms of the number of searches or scans of the memory

• are required to execute on instruction.

TYPE OF OPERATION 	INSTRUCTION 	EXECUTION TIME (IN # OF SEARCHES)

Selection 	Select 	 1

Cross Select 	1 + (# of source tuples/k)

•Retrieval 	Read-a11 	1 + transfer time

Read (n) 	2 + transfer time

Read Reg 	0

Save (n) 	2

Statistical Functions 	Sum 	 1

Count • 	1

Max 	 1

Min 	 1

Update 	 Add 	 1

Subs 	• 	1

Replace 	 1 •

Insertion & Deletion 	Delete 	 1

Colgrbg 	1

Space Count 	1

Insert (n) 	1

Data Definition 	Create 	 1

Destroy 	 0

Register Manipulation 	Insert_Reg 	0

Inc Reg 	 0
:-

Dec Reg 	 0

2. THE ABSTRACT MACHINE 	2.4

TYPE OF OPERATION 	INSTRUCTION 	EXECUTION TIME (IN # OF SEARCHES)

Radd 	 0

Rsub

• Rmul 	 0

Rdiv 	 0

Decision & Transfer 	'BC 	 0

EOQ 	 0

An important feature of the RAP instruction set is that it is relationally

complete. This means that any query expressable by the relational calculus

can be implemented entirely within the RAP processor. This eliminates the

need to transfer extensive amounts of data derived from the intermediate

results of query processing between RAP and the supporting computer.

• It is important to note that each high-level instruction operates on'at

most two entire relations during its execution. The hardware is naturally

locked during an instruction execution. Thus all software schemes concerned

with mutual exclusion of update operations can simply implement synchronization

mechanisms at the relation level. This eliminates much of the operating system

overhead incurred by conventional implementations.

Studies have been conducted to compare the hypothetical performances of

the original RAP architecture relative to a conventional computer system for

implementing a relational data base (8). Both appoaches were modeled analytically.

The models considered resident data bases for the original RAP architecture and

fast access paths in the form of inverted lists for the conventional system. The

results show that significant gains in query execution speed can be achieved by

the RAP architecture over the conventional system. Furthermore, the newer archi-

tecture improves this gain substantially. The model studied queries of the form:

retrievals and updates on rows of relations selected with respect to simple and

complex b'oobon qualifications, retrievals that include statistical criteria in the

22

2. THE ABSTRACT MACHINE 	 2.4

I
n selection qualification, and retrievals involving the implicit join of two

or more relations. This study indicates eat, u.ider many circumstances,

on-line retrievals and updates of large data bases may only be possible with

the use of RAP-like Systems.

23

3.1 3. IMPLEMENTATION

3. IMPLEMENTATION

3.1 	History

The RAP project was ttarted in 1975'in'the computer systems Research Group

at the University of .Toronto in order to implement a data base system based .' .

. on the-on the relational model in hardware. It "started with the direct implementation

of the logic specified in Ozkarahan's thesis (4) and in 1976 resulted in a

system (hereafter called RAP.1) consisting of two cells. The RAP,1 system consisted

of a hardwired controller and 'where each cell had its.oWn.memory track where

a portion of a relation is stored: The format and timing of.a track is modeled
r.

on disk technology.

In RAP,1, all components of the system were required to be synchronized by

one single clock, all tracks had to.be of equal length, and inter-cell communication

required .

track took one or many "revolutions»; a .revolution is the time it takes to serially

scan a track.

During the project two important decisions were made to change the architecture

of RAP.1 which resulted in the design.and implementation of RAP.2. First, the

controller was to be implemented by a mini/micro computer. Second, the data track

was designed around the capabilities of emerging block addressible technology

Instead of disk. A hatdwired implementation of the controller was found to be in-

flexable and speed was not an issue. The Development of a disk system that meets

the requirements of a RAP system was difficult because of synchronization and

error correction problems. Furthermore, there is a widespread belief CCD,

bubbles and/or electrom beam technologies will eventually cause disks to be

phased out.

The use of a general purpose computer as the controller resulted in dramatic

changes in the RAP architecture. Due to the fleXibility of the computer, a major

data flow between all cells. 	Every operation concerning data on the

24

3, IMPLEMENTATION 	 3,1

redistribution of the work-load became feasible. In RAP.2, the cells are

greately simplified and asked to do only those tasks related directly to

their tracks while the controller takes . care of the rest. Because the controller

is inherently slow and cannot cope with the speed of the cell, it became

important to decouple cell synchronization from the controller. The new work-load

distribution also frees every cell from the task of sending data directly to other

cells. This can be done through the controller. Each cell can operate independently

of other cells and the controller. As a by-product each cell can have its own

track length. RAP.2 looks like a conventional computer system with the controller

coordinating the tasks of many cells which are treated as independent peripheral

devices attached to bus lines.

In summer of 1977, a RAP.2 prototype of 2 cells and query language software

were demonstrated. Each cell contained a million bit CCD track built from Intel's

2416. The controller was a PDP11/10. The RAP,2 was interfaced to a PDP11/45 as

a dim*. device. To make . the transistion.from RAP e l to RAP 1 2 as fast as possible,

it was decided that only essential changes were allowed. Consequently, RAR.2

is far from perfect and its performance can be greatly improved. In this paper we

refer to enhancemenis -not yet implemented as features of a future RAP. 3 system.

3.2 	Physical Data Organization

In review, datals organized into files called RAP relations. A relation

is a collection of records called tuples. Each tuple is a string of many

concatenated fields called data items in some fixed order. The number of fields

per tuple of a given relation is a constant. Every relation and each of its fields

have a name stored in a compactly coded form. In RAP, the length of each item

must be constant. In other words, all tuples of a relation share a common

FORTRAN-like format. In the RAP,1 and RAP.2 prototypes, each tuple can have up

to 255 domains and the length of a domain can be either one, two or four bytes of

encoded data. In RAP.3, this length can be anywhere from one to n bytes (where

n should be 32 bytes or greater). Each cell Stores only one relation. If a

relation has too many tuples. they can be allocated in many cells.

25

3. IMPLEMENTATION 	. 	 3,2

' In RAP.1, a cell stores the relation name as well as the cell address

at the track. head followed by tuples separated by gaps (Fig. 3). Each gap

must be at least the size of the longest domain and furthermore, must be

such that the block size (i.e., tuple length + gap length) is either 256,

512, 768 or 1024 bits. A tuple is preceded by 7 mark-bits and ended by a

• 2-bit length code (Fig. 4).

In RAR.2, the cell address is defined by an 8-contact switch set by

an operator. The relation name is stored in a 16-bit register and is defined

by the programmer. Both the cell address and the relation name can be read out.

.The CCD memories of each cell behave like a very long drum with many small tracks

of 256 bits each. Due to historical reason, in the remaining part of this paper,

by "track" we mean the entire CCD drum and each 256-bit circumference will be

called a minor loop. The format for each tuple remains unchanged except that the

two-bit space between 2 consecutive domains are left blank since all the length

codes are stored in a register called the LENGTH CODE RAM. As for gaps,

the only requirement is that each tuple must fit in an arbitrary integral number

of minor loops (Fig. 5). RAP.2 , simulates a disk read head by the use of a counter

which points to the "current" location. The write head can be calculated from

the read head by usine an adder. For Most instructions. the write head is one

block behind the read.head, in some instructions the two heads are identidal.

Because of the randomly accessible nature of minor loops, access time is small

(the worst case is 256 bit-times). When a cell is not doing anything, it is "on"

the first minor loop. In operation, each instruction requires the heads to scan

just enough space to complete the job. After an instruction is completed, the

heads immediately return to the first minor loop. Due to this property, it is

more appropriate to use the term "pass" or "search" instead of "revolution" to

indicate the time required to do an instruction. In the worst case, a pass is

one revolution. Typically, a pass is porportional to the length of the track

portion containing data. Sometimes, as in data retrieval or insertion, a pass

26

Gap Gap Gap 2nd Tuple Gap Cel 1
Address

1st Tuple Relation
Name

1.
•
4 256th sector

1 st mi nor. loop

1st sector

1st tuple

2nd tuple

3,2 IMPLEMENTATION

Go

Fig. 3. RAP. I 's data track.

Pree. ri,re

v 	st, 2nd 	 last i

DE 	I‘; TKE p: item

1111111:111111111 	11111111111/1111%L A1111111
1 • 	in 	JO 	Iffle

1%
2-bit length codes

ma rk-bitis«.

delimiter-)

RAP., 	tuple.
RAP,2 still keeps the same tuple's space distribution but the 2-bit
spaces after domains are left blank.

fig jr: RAP , 2 	"dissected" drum.
— Drawing shows a file with 3x256-bit tuples.

27

3. IMPLEMENTATION 	 3.2

ends immediately when enough tuples have been retrieved or inserted.

In RAP.3, storage efficiency is maximized. There is no inter-item space

and no gap. A more sophisticated delay mechanism is employed to write data in

proper spaces. There is a "return from halt" option (analogous to the "return

from subroutine" instruction of some microprocessors) that allows the cell to

resume scanning at some previous spot. This option greatly improves execution

time where a very large volume of data is inserted or retrieved.

3.3 	Global Architecture and Communications

The RAP.2 system is organized as shown in Fig. 6. There are eight control

lines and data is exchanged . between the cells and controller via a bilateral

16-line bus. There is no direct data link between cells. A DMA link is

established between the data bus of the controller and front-end computer.

There is a priority line that runs through all cells to allow fast pulling

of Individual cells. This is used to control cell access to retrieved intermediate

computatton, retrieval qualified records or perform bulk loading. The line is

not essential but in a large RAP system, the it reduces access time and storage space

In the controller. As a variation it is also possible to !'fragment" this line;

the cells can be grouped where each group has its own priority line.

The reason why the direct data communications between cells lines was

dropped in RAP.2 is multifold. First, expensive drivers were required because each

cell was able to drive all others. Second, there was the classical transmission

line problem requiring the entire RAM system to be crammed into a physically

small space. Third, we wanted to desynchronize the system. Last, reliability

was questionable when . data is sent automatically from any cell directly to all

others. If one cell is malfunctioning, the whole system would suffer and

diagnosis would have been an extremely difficult task. Furthermore, the amount

of information to be exchanged was usually too small to justify the cost of

any direct communication link.

28

CCD
Track

Cell 1+1

CCD
Track

3, IMPLEMENTATION 	. 	 3,3

16 DATA lines

Priority line
- 8 CONTROL lines —„_,

Cell i <-1>

CONTROLLER

r»I4 • /

Front End
Computer •

f19_6. RAP 11 System Structure.

29

3. IMPLEMENTATION 	 3.3

Seven of the control lines allow a maximum of 128 micro-code commands

called "keys". The eigth control line is named "key enable" and is similar

to the "valid data/address" line of microprocessors. In the absence of key

enable, the cells ignore everything on the bcs lines. Each combination of the

seven control lines is interpreted as a command. In practice, these lines

are connected to the least significant part of the address bus of a POP 11/10

controller and the key enable line is decoded from the most significant part

and from some other lines. Therefore, each reference to one of 128 ficticous

memory locations are reserved for RAP and is interpreted as a key. Some keys

are accompanied by an operand which must appear on the data bus, some expect data

from cells to be put on the data bus and others are not associated with any data

at all.

Commands are broadcasted indiscriminately to all cells of the system.

Establishing a scheme to restrict selectively the commands to only one or a

few cells is handled by the creation of three state-variables called "open",

"blocked" and "rejected". A cell must be open but neither blocked nor rejected

to be sensitive to all commands; it ignores most commands otherwise. There are

three different ways to open a cell. In the simplest case, the controller can

open all cells simultaneously by referring to special keys. The controller can

also open any particular cell by its integer designation by storing that value

in one key location. Finally, cells can be opened by referencing the name of

the relation stored in the cell.

Under some circumstances, it is necessary to restrict the communication to

only one cell. For example, in Insert, it is not desirable to have a same

tuple to be written in several cells of a same relation. A simple way to achieve

this is to open by cell address. This requires, however, that the controller either

has to keep track of an address table or to poli all the cells one after another and .

is therefore suitable only in small systems. The states "blocked" and "rejected"

30

IMPLEMENTATION 	 3,3

together with the priority line and the."get next cell" command are intended

for this purpose. Consider the following analogy. A number of persons forming

a line to buy a ticket in a theatre. Those who have bought one are "rejected";

thèse who still have to wait are "blocked". The one who is buying is neither

blocked nor rejected. Each time the line moves corresponds to "get next".

Only open cells are sensitive to a get next cell key. This command rejects the

current non-blocked cell and unblocks the first blocked cell. For example,

to serve all cells of a relation Rn sequentially, the controller must first open

all Rn cells and then block them which is achieved by-reffering to another

location. It then sequences through 'a program loop starting with a get next cell

and followed by the service routine.

There must be some way allowing the controller to know if there is any

cell "listen" to its commands. This is possible Wassigning the value "1" to

the most significant bit of a cell status register which can be read either

selectively or collectively. The controller simply has to read the status to

• know if its audience.is non-existent.

For a cell to respond to a command, the cell must be in a proper state:

•it must be open, neither blocked nor rejected, and furthermore, not running.

The lait condition is a measure of protection against any erroneous attempt to

change the parameters of a query or the nature of the instruction being executed.

Also, the controller has to store relevant data into appropriate reserved memory

locations. Many single bit items are grouped in bytes to save time and space.

For I/O each cell has a (1K-word) RAM called the I/O buffer and a pointer

which is resettable by the controller. As far as the controller is concerned,

for loading, the I/O buffer looks like a single reserved memory location. Every

time a word is stored in this location, it is sent to the I/O buffer where pointer

is incremented automatically. In this implementation, to insert a set of tuples,

all the controller has to do is repeatedly store two bytes at a time in the

reserved location.

31

3. IMPLENTATION 	. 	 3.3

It indicates how many tuples to be inserted by writing this number in another

reserved location. After the cell is initiated to run, it will look for

enough vacant slots on its track and pull data from its I/O buffer to fill them.

During data retrieval, the opposite is done. The cell looks for desired

data on its track and puts them in its I/O buffer. Since the buffer size is

limited, the controller must also indicate how many tuples to be retrieved.

As far as the controller is concerned, for reading, the I/O buffer also looks

like a reserved memory location. The buffer pointer is automatically incremented

every time this location is read out.

Besides track data, many other kinds of information of a cell are also

available for retrieval by the controller: processing status, cell address, relation

name, buffer pointer, result register for computations and the S-counter which

contains the number cf satisfied tuples in the mGst recent pass. Access to the

buffer pointer allows the establishing of a future DMA link with any cell

attached to the data bus for mass transfer of inserted/retrieved data. This

could permit DMA transfers directly between cells and the front-end computer.

3.4 	Instruction Set Execution

An important feature of RAR.2 is . that many micro-instructions can be

overlapped or carried out simultaneous.ly . After the controller has initiated

some cells to do one Instruction, it is free to prepare other cells for a new

instruction. Since a pass is typically much longer than preparation time, there is

virtually no limitation to the degree of concurrency. Software is being developed

to exploit this property.

Each macro-instruction is divided into many smaller parts called "tasks".

There are three distinct classes of tasks:

(a) The principle class consists of tasks involving the scanning of a

track (e.g., writing on a track, finding a blank space on a track, etc.)

These tasks are performed strictly by the cells after being initiated

32

IMPLEMENTATION 	 3.4

to run by the controller. Every cell determines when.to stop

the execution of a track (e.g. when the physical end of the

track is reached): Each task is completed in one single pass

which is,,under the worst condition, one revolution time.

(h) The second class consists of tasks done by the controller to the

cells (e.g., opening cells, sending operands, etc.). As mentioned

before, each task of this kind is carried out by referring to one

of the reserved memory locations. Typically, each task of this

type takes 1 psec to be executed.

(c) The last class does not involve the cells (e.g. register manipulation,

DMA communication, etc.). These tasks are accomplished within the

front-end computer and/or the controller;

3.5 	Cell Structure

• 	The structure of a cell can be divided into eight units as shown in Fig. 7.

In the following, we will describe briefly the functions of each.

Cell Interface:

This unit is the part of a cell that 'listens" to the outside world. It

contains bus receivers and a large decoder that decodes the contents of the

control bus. This decoder is prohibited by some states of the cell to make

restricted communication feasible. Some of the outputs of the decoder are for

steering data from the data bus to appropriate registers. Others are for

reading from various places of the cell or for changing states.

The cell address is part of this unit and is defined by an 8-contact switch.

The switch setting is constantly compared with the data bus by an address comparator.

If matching occurs while the controller is referring to a reserved location the

state "lock open" will be high indicating that the cell•is open. Once a cell is

open; it remains so until specifically told tcyclose.

QUERY ANALYZER

Terms Evaluator
3.Data Item Comparator Units:

Item Number Register & .
Comparator

Comparand Register
Serial Comparator
Comparison Symbols Register

UPDATE CONTROL

Mark/Unmark Option Register

SYfiCHRONIZER

Phas1 Generator
Read lead & Write Head

• Block Size Register
Length Code RAM
Word Position Counter
Word Length Counter 	•

'timing for Mark-Bits, Data Integer-
End of Track, etc.

Op-code Register & Decoder
3 Item' Number Registers &

Comparator.
Limit Register
S-Counter

ARITHMETIC UNIT

Register 1
Register 2
Result Register
Serial Adder .
Serial Comparator

CCD TRACK

CCD Chips & Drivers

I (

OUTPUT MULTIPLEXER

BUS Drivers

Data Bus.),

IMPLEMENTATION 	 3.5

. 	 .

Control & Data Dus .

priority line) I CELL INTERFACE

BUS Receivers & Decoder
Cell Address
Relation Name Register
Status(& its control)

I/O BUFFER

I/O RAM
Parallel-Serial Register
Serial-Parallel Register
Buffer Pointer

no. 7. RAP. 	Cell Is Block Structure
• a,

314 -

3,5 ImPLEMENTAT1ON

There is a 16-bit relation name register which behaves much the same

way as the cell address. The.main difference is that it is settable by the

user via the controller. Another difference is that if the cell is "destroyed"

the relation name comparator is negated, thus opening by relation name becomes

impossible. When the cell is giyen a new name in a future CREATE instruction

allowing again opening by relation name.

The logic for "get next cell" is also part of this unit. As mentioned

before, every reference to a specific location will affect the states "blocked"

and "rejected" of an open cell.

Finally there are•also status states indicating whether, in the.last pass,

there is a mark on bits DF, Ml, M2, etc. and a state indicating if there is a

satisfied tuple. The most significant bit of the status is always a "1" and

is used to indicate the presence of a cell.

Synchronizer: 	.

This is the largest logic unit of a cell. It provides all timing signals

and shift clocks to the rest of the cell except the output multiplexer which

does not need any. For simplicity and ease of testing, all basic clock signals

. are periodic. This implies that there is alwayi eread phase and a write phase

for the CCD memories. Consequently, the bit rate of RA2.2 is slightly below

1 MHz. (In RAii. 3, read and write phases would be allowed only when necessary).

The 1 MHz bit rate is a limit of the CCDs not the cell logic which has been

rated at 10 MHz. •

There is an 8-bit sector counter that keeps track of the current position

on a minor loop. Another .(extendable) counter points to the current minor loop.

These two counters simulate the read head. The write head is calculated from the

other by subtracting the contents of the block size register. A time multiplexing

logic 'allows switching between the two heads. the block size register is loaded

35

3. IMPLEMENTATION 	 3.5

by the controller with the size (number.of minor loops) of a tuple during a

Create process. For self-testing purpose, some logic has also been

incorporated in RAP.2 protd-type cells to halt cells . to implement the

"single *.àtep" mode or to slow them- down. This is possible by an appropriate

• manipulation of the read head. .

Also, in a Create process, the format of the tuples must be loaded in a 256x2

RAM called the length code Ram (LCR). This allows a maximum of 256 data items

per tuple and at most 3 different size of domains. In RAP,3, the width of the LCR

is expanded to allow more choices. In operation, the LCR is sampled just before

any domain is expected: The contents are passed to the word length counter

which decides when to -expect the end of the current domain and hence the next

domain. These contents are also decoded and sent to the feedback control of

various variable-length shift registers to allow thei.r rotation.

- Every time the LCR is loaded or sampled, its pointer is incremented

accordingly. The pointer is the contents of the word position counter which

keeps track of which- item is under scan. There are three 8-bit registers

storing the data item number of up to three "specified" data items to be read

out or that are operands in an arithmetic operation. A comparator is used with

the word position counter to test sequentially the three registers to determine

when a specified item is being scanned.

An important duty of the synchronizer is to stop the cell at the end of an

instruction. As mentioned before, each instruction ends in a distinct way. There

is a 4-bit op-code register associated with a reserved controller address storing

the code of the current instruction plus the op-code decoder. The S-counter

constantly gets incremented every time a satisfied tuple is found. Typically,

a "satisfied tuple" means a tuple satisfying the qualification; but this is not

alwayi true. In particular, Insert and Space-Cbunt look for vacant tuples and

Create for spaces being large enough to define a tuple. Thus, after Space-Count

and Create, the S-counter indicate's the number of vacant . spaces on the track;

36

3.5 ImPLEMENTATION

after Ihsert it indicates the number of new tuples just inserted. Due to the

finite size of the I/O buffer, only a limited number of tuples ran be read/inserted

per pass. This number must,be - supplied to the limit register. This register

is constantly compared with the S-counter to determine when enough satisfied

tuples have been processed so that the instruction can be terminated (for Insert

and Read only). Other instructions except Space-Count terminate when the logical

end of the track is reached. The logical end is indicated by a vacant tuple

bearing a mark (TKE) on its 6th and 7th bits. If the whole track is used, no

logical end exists and all instructions terminate when the physical end of the track

is reached.

Finally, there are several single-bit registers that sample the value of

the mark bits that are reouired for the auerv analyzer.

• Ouerv Analyzer:

This is the heart of a cell and is the only unit that remains essentially

unchanged from RAP.1. It determines whether a tuple satisfies the qualification.

A query'list has one of two forms: either disjunctive or conjunctive. A tuple

qualifies if either no term is false (conjunctive form) or at least one term is

true (disjunctive form). RAP..3 in addition allows the comparison of two data

items of a same tuple as well as other forms of qualification.

The QUERY ANALYZER has two parts: the terms evaluator and three identical

data item comparator units. Each comparator unit has an 8-bit register to store

the iteM number of the relevant item a tapped 32-bit shift register for the

externally supplied constant, a 4-bit register which indicates the selection of the

unit and the symbols (<, =, >) of the comparison and a serial comparator. In

operation, a comparator is constantly used to compare the item number with the

contents of the word position counter to signal the scanning of the selected item.

When this happens, the constant is rotated and compared with data read from the

track. By the end of the selected item, the serial comparator knows the truth

value of the simple condition of the query list covering this data item.

4

IMPLEMENTATION 	 3.5

The terms evaluator has a multiple single bit register to store the form

of the query list as well as the criteria concerning mark bits. It also has a

small logic to determine, from the rest of the query analyzer, if the current

tuele qualifie.

RAP,3 would not use shift registers to store constants (comparand in the

comparator units and operands in the arithmetic unit). They are stored in a

RAM for two reasons. First, long and tapped shift resisters are expensive.

Second, there would be no need for a mechanism to rotate the registers. The

pointer for this RAM is the contents of the word length counter.

I/O Buffer: 	 . 	.

This unit is of prime importance to decouple a cell from the controller for

data retrieval and insertion. The controller empties or fills up, at its

convenience, the I/O buffer of each cell which loads or unloads its buffer

whenever it can. It is not known what is the optimized size for the buffer, but

the current prototype cells have a 1K x 16 RAM. Perhaps a size four times larger

would be more suitable.

For data insertion, new tuples must be preloaded in the buffer. After the

cell is initiated to run, it will look for vacant spaces which are marked at the

 1st bit. When one is found, the cell erases all mark bits. New marks will be

generated if the mark option is used. The data is pulled from the buffer. A

16-bit parallel-to-serial register is used to send one bit at a time to the update

control unit for writing on the track. The cell stops when enough tuples have

been inserted. If there are not enough spaces,'the cell stops at the physical

end of its track.

For data retrieval, data from the read head is shifted in a 16-bit serial-to-

parallel converter to be loaded into the buffer either once per every 16 bits of a

item or once per every 8-bit item.. If the tuple is found not to qualify, the

cell back tracks its buffer pointer so that, in the end, the buffer holds only the

selected items of qualified tuples; The cell stops when 'either enough qualified

38

3, IMPLEMENTATION 	 3,5

• tuples have been read or when the logical or physical end is met. In RAP.3,

since the read phase is allowed only when necessary, the retrieval procedure

is different. The cell only reads the selected items of a tuple after it has

been found to qualify.

Arithmetic Unit:

This is the only unit that is not vital to the operation of the rest of

the cell. It is necessary only for supporting arithmetic instructions (namely

Md, Sub, Sum, Max, Min) and can be removed if they are not required. It

contains three tapped shift .registers to store operands and results. For lack

of space, the prototypes were built to support 8-bit and 16-bit operands only.

It is trivial to expand these registers for longer fields. As mentioned in

query analyzer, RAP..,3 supports much longer domains where a RAM would be more

suitable than shift registers. A serial comparator similar to the one of the

item comparator units helps to implement Max and Min. A serial adder is used

for Md, Sub, and sum.

In operation, if the instruction involves only one Atem, the arithmetic

is immediately performed while that item is being scanned. If two items are

Involved, the first one is stored in one of the shift registers until the second

one is scanned. In Add, Sub, and Replace the result is immediately stored in

the result register to. be written in the proper space later (i.e., during the

next tuple-time) if the current tuple qualifies. For Max, Min and Sum, the result

is transferred to the result register only after the tuple has been found to

quality (i.e., in next tuple-time). It is up to the controller to probe the

result register after the cell stops. •Multiplyand Divide are not implemented

directly in RAR 2 cells because of timing conflicts in the bit serial logic.

Update Control:

This is the smallest unit of a cell. It his a register to store information

concerning the Mark' and Reset option. It takes care of the marking and resetting of

mark bits as well as the writing of new data supplied by the I/O buffer for Insert

3.5 3. IMPLEMENTATION •

or by the arithmetic unit for Add, Sub and Replace. It also erases the

track for Create or only selected tuples for Delite. It also erases the

track for Create or only selected tuOles for Delite.

Output Multiplexer: 	 •

This is logically the simplest unit. Appropriate registers are connected

to various bus drivers which are enabled by signals from the cell interface

decoded from the control bus.

For most registers, it is the duty of the controller to assure that only

one cell at a time is in the readable state otherwise information on the data bus

is meaningless. The only exception is the reading of the status which is meaning-

ful in an "OR"form..

• CCD Memories:

This unit is built in a very straightforward manner. Due to physical

limitations, the 1-megabit drum occupies three identical boards. Each board

contains all necessary drivers and 20 Intel 2416 CCD chips which are arranged

in an X-Y matrix of 4 x 5. This arrangement is necessary to reduce the number

of drivers. It is possible because the CS and CE inputs of the chips are

internally "and-ed" together. Two different kinds of drivers are used: Intel's

5244 chips are used for shift inputs and Intel's 3245 chips are foraddressing, these

drivers are quite good but there is a small problem of mismatched speeds. The

former type is about 70 ns slower and some compensation must therefore be made.

Currently, all the CCD chips are driven at a sàme frequency. If the memory size

is expanded much larger, it makes sense to use two different rates. Only one or

two Chips at a time are driven at the fastest rate and the rest at the minimum

frequency to conserve power.

3.6 	Some Statistics

Each cell (including the 1-megabit track) requires about 9 amperes at 5 volts,

is spread over 13'boards and employs 412 IC packages (218 SSI + 117 MSI + 77 LSI).

For each additional 1 megabit extension, 96 IC's are needed.

LtQ

DBMS UTILIZATION OF RAF

4. DBMS UTILIZATION OF RAP

In this section we address four issues relating to total data base management

system architecture and various uses of RAP as a systems component. First we

consfder srstems approaches for data bases larger than RAP capacity. Next we show

how RAP can be programmed to support multiple views of data. Last we consider RAP's

applicability to protection, security, and integrity.

4.1 System Organization

One might conceive of the day in which microprocessor logic and memory

becomes so inexpensive that all secondary memories would have RAP-like processing

capabilities. However, the first generations of commercial RAPs would have capacity

limitations relative to the total data base storage requirements. In this case,

ail existing data base installations have significant capital already committed to

conventional secondary memories.

A complete cost effective system would therefore consist of a triad of component

types: a front-end general purpose computer to interface with users and provide operating

system and language processing functions, a RAP device used as a peripheral or back-end

• processor/memory, and one or more conventional secondary memories. The entire triad

can also be considered as a back-end data base computer for further levels of front-end

syitems (11). We will briefly outline three approaches to the DBMS organization that

exploit this organization at varying levels of complexity.

It is important to note that some of the problems alluded to in the section on

limitations of conventional approaches are reintroduced with thjs approach. However,

because the complex situations are handled by RAP, we would expect that an overall im-

provement in performance and a reduction in administration complexity would still be

achieved.

4.1.1 RAP as an Access Path Processor

As stated before access paths are indexing methods used in conjunction with.conventiona:

DBMS implementation to speed the searching of large data bases. Two major types of

access paths will be considered: inverted' lists and links. An inverted list is a data

41

DBMS UTILIZATION OF RAP 	4,1.1

structure which extracts the values that occur in the data base and associates with

each unique value the physical or relative addresses of the records that contain that

value. The records which satisfy a boolean selection criterion of simple item conditions 	1

of the form "<item> = <value>" can be found by processing the inverted lists rather than 	,

searching the data base directly. The boolean AND operator between two conditions

is satisfied by the intersection of the inverted lists addresses associated with the

Item <values>. The OR operator is satisfied by the merge or union of the address lists.

The NOT operator can be implemented by the relative complement of the list's address.

Arbitrary boolean expressions can be parsed into a trees and processed two or more 	•

lists at a time producing intermediate lists until the final list contains the addressed

of the qualifying records.

It is possible to create an inverted list on several different items within a

file at the same time. This is done by associating the addresses of the records in

which a particular combination of values occur where each value is from a different

item. This type of inverted list is called a multi-key inverted list. In this

case a conjunctive boolean qualification has already been formed as part of the

list structure. The records satisfying a general boolean qualification can be found

by first placing the qualification into disjunction normal form and since there exists

a 1ist for each conjunction, the qualifying records can be computed by just merging

the lists to satisfy the disjunction.

In dynamic update situations where the inverted lists are stored on conventional

. devices, the single values inverted lists are preferred because they are easier to

maintain. In static non-update environments, the multi-key inversion gives better

. retrieval performance. 	•

A link is a data structure which records instances of pairwise inter;record

connections of records of different type. It is often used to record the existence

of a particular relationship between the records and provides a fast access path

42

4, DBMS UTILIZATION OF RAP 4,1,1

1

for locating and accessing the linked record given the other record. Such structures

are used to optimize join operations in relational data bases system or the

implementation of sets in CODASYL Systems (10).

• Processing Inversions:

Inversions can easily be stored in RAP relational format. For a single

Item inversion we could create a RAP 'relâtibnfor each item inverted. There will

be two entries in the records -- one for the value and one for the address pointer.

For multi-key inversions one would create a RAP relation containing an data item for

each value and one for the address. In cases where the same value(s) occur at many

addresses, we must duplicate the values for each address.

Two things affect the efficiency of RAP for processing inversions: the size

of the record occurrences and the type of processing required. In the single

inversion case, each record has only two items - a value and an address. Because

a gap is sometimes 'required between each record, the utilization of space would not

be very efficient (this is eliminated in RAP,3). Secondly, the processing of single

valued inverted lists required intersections or unions of data items between relations

on RAP. This requires cross marking operations which are among the slower multi-

revolution execution instructions for large volumes of qualified RAP records.

The above processing is to be distinguished from the union and intersection of

items in the same relation which is very fast on RAP. This fact can be exploited

to solve both the space and processing problems by utilizing one multi-key inversion

for éach data base file. The storage of more values per. RAP relation creates larger

and fewer RAP records. Also the clustering of lists into one RAP relation represen-

tation of the multi-key inversion creates a structure efficient for RAP processing.

As stated before all conjunctive queries are preprocessed by construction of the

list. Conjunctive queries involving only some of the inverted items are .processed -

naturally by the RAP marking and qualification logic. Disjunctions are then simply

processed by reading the address items of the marked records. However, it should

43

44

4. DBMS UTILIZAITON OF RAP 	4.1.1

be noticed that the list of address is not guaranteed to be in sorted order unless

the storage or reading process is controlled.

Processing Links:

A simple RAP relation for implementing links requires a pair of 'items. Each RAP

record records the addresses of the pair of linked data base records where the first

address item always points to one data base file and the second points to the other.

By knowing the data base address of a record one can mark the RAP linkage records

uiing the.address as a condition on one of the items., All the addresses of data base

records linked to first can be readily read.

In many cases the link mould have been established from values already existing

In the data base. These values could be added to the RAP linkage structure as extra

items. The values can then be used to aid in updating the link on RAP when the data

base is modified.

4.1.2 Data Base Partitioning

The major problem with the indexing approach is that the index data stored

ôn RAP are duplicates of data on disk. Instead we can partition the data base

files both horizontally, i.e. placing certain records on RAP and other on disk.,

and/or vertically placing clusters of data items on one device or the other.

Because no duplication takes place, the technique is called device partitioning.

Extra data items such as record id's may be required to link corresponding partitions.

This particular approach attempts to exploit the notion that not all data ln a

data base, at a particular point in time, requires the same processing capabilities.

Data can be categorized by the system according to its usage characteristics and placed

on the conventional secondary memories or RAP depending on processing requirements that

' best fit the data.. 	 • . 	.

•The implementation of such a system should include mechanisms for both user

controlled and automatic migration of data between the various devices as usage of the

4. DBMS UTILIZATION OF'RAP 	4.1.2

data chànges. 	Research into algorithms that exploit data base device partitioning

Is under way at the University of Toronto.

A request would be processed by decomposing it into RAP and Disk subqueries and

first executing the RAP subqueries. Access would then be made to . disk only if the re-

quest can not be entirely serviced by RAP. In this case the response from the RAP

subquery would be used to minimize the search over the disks portion.

4.1.3 Paging and Virtual Memory

This approach mimics the techniques of paging operating systems to provide

a virtual associative address space for a RAP device. This requres all the data in the

data base to be stored according to RAP memory format. The data is then divideci into

pages the size of one RAP cell. All data base queries are translated into RAP pro-

cessing statements. Before execution, each query is directed through a software

monitor executing on the front-end computer. The principal tasks of the monitor are

to maintain a table that gives the location of the pages for each data base file,

45

1

DBMS UTILIZATION OF . RAP 	 4.1.3

analyze which pages are required to execute a query, and then page the necessary data

between the conventional secondary storage devices and the RAP processor. The query is

then passed to the RAP processor for execution. It would be optimum to have a diretc

path between the secondary storage devices and RAP so that pages . would not have to

.be transferred through the front-end.

As opposed to the indexed or partitioned approaches, all queries will be executed

entirely within the RAP processor. This requires that all the data for a query be

small enough to fit on the RAP device at any particular time.

A detailed design of the proposed monitor has been outlined in a previous study

(9). Many of the arthliectual extensions proposed to the RAP,device to allow the

overlapping of paging with processing are not required by the RAP.2 architecture.

A GPSS simulation of the entire system was performed and the results were analyzed (3,7).

Statistics were collected on the average response time for on-line queries for a pop-

ulation of Poisson arrivals with a fixed mean and specific sized RAP device. Response

was studied with respect to average exponential processing times, average amount of

data stored in a relation, total data base size, and uniform and exponential locality

of relation references. Locality was defined as the degree to which short sequences

of queries reference some relations more than others. It was found that no significant

losses in performance will occur in user environments which exhibit some relative com-

bination of the following characteristics:

a) Relations that occupy a small number of cells.

• 	h) Query populations which exhibit long processing times relative to their

paging requirements so that overlapping of processing and paging can be

effective.

c) Query populations which exhibit a "significant" amount of locality.

4.2 Supporting Multiple Logical Views

The concept of RAP relations and linkage between record occurrences can be

used in the implementation of each of the three common views or models of data:

46

4, DBMS UTILIZATION OF RAP 	 4.2

hierarchical, network, and relational. Relations viewed as tables of data have a

natural correspondence to RAP relations. Many relational operations have a natural

correspondence to RAP instructions (5).

Hierarchies and networks can be implemented by setting aside items in the

record occurrences to store identification and structural data. We require that

each record occurrence have one item whose value uniquely identifies the RAP relation

and each particular occurrence within the RAP relation. This item will be called

ID for identification.

Implementing hierachies and networks requires the ability to implement

functional associations between occurrences of record-types (17). A functional

association can be defined as 1:N (i.e., one to many) linkage or mapping between

record occurrences of two RAP relations. That is, if a 1:N linkage exists between

RAP relations A to 8 then one record occurence of A can be associated or linked with

zero or more unique records of B. Each record will have at most one A record for a

particular association. One way to implement the association is to allocate an item

called ASSOC in the RAP relation. This scheme is shown in Figure 8. For each record

of D that is associated with one record A we store the record ID value of A in the

ASSOC item of B. Finding the records of A with those associated with B and vice

versa is simply a matter of using the cross marking selection instructions which

interrelate two different RAP relations through the comparable ID and ASSOC values.

A second way to associate records of different type is to create a new linking

RAP relation which contains two (or more) ID items -- one for each record-type. This

is simàlar to storing link access paths on RAP except each occurrence of this RAP

relation associates one record of A to one record of B by storing the associated ID's

of the two records in one occurrence. This scheme has the advantage of implementing

M:N (i.e. , many to many) associations between two . types of RAP relations.

It should be noied.that only "information-carrying" associations need be im-

plemented with links for data bases physically stored on RAP (10). All other rela-

TV-13 ift-ewe iteste

rO- ,4 1 tte

data

dale' A2 83

4,2 DBMS UTILIZATION OF RAP

8

a), 1:N Associations for Hierarchy or Network 	b) PAP Relation Format

cecrfet

1

da 1"4 81 Al

L 8 	f 	A, 	.,...._
é) Example Record Occùrrences

FIGURE 8 - IMLEMENTING 1:N ASSOCIATIONS WITH RAP RELATIONS

48-•

DBMS UTILIZATION OF RAI; 	 4,2

tlonships which can be derived directly from the values in the records can be

handfed through the cross marking selection instructions.

Because RAP can be programmed . to support multiple .user views it can be

considered as the basis for implementing a conceptual schema (17). This is a

mechanism that provides an intermediate normal form or common denominator for

the supporting of multiple external views of the same data base (17). That is,

we propose that the RAP data model and instruction set should be a viable candidate

to implement such a data base system. A query from any one of the user.views

can be translated into RAP programs manipulating RAP relations structured to

reflect necessary associations.

4.3 A Note on Protection, Security and Integrity

The most general approaches to seçurity and integrity assurance in a data

base system are through modification of the original query or ceneration of

internal queries to check the validity of the operation (I7). These techniques

are highly compatible with RAP's query oriented instruction set. In addition,

the qualifications added by query modification will often not affect the execution

time on a RAP processor. This happens because the RAP qualification logic is

executed on the entire RAP contents and a qualification can have one or several

conditions to check often without affecting performance.

49. -

RAP.AND_COMMUNICATIONS

5. RAP AND CdMMUNICATIONS

5.1 Communications Problems •

A crucial component in the origin of the RAP system concept and its
subteguent implimentations was consideration of rational data communication.

The failure of - alternative data base machines and systems is largely a failure

to recognize the nature of data ' communication implied by DBMS. The result is

that existing data base machines and system of machines suffer from inherent

bottlenecks to which the bandaids of more computing power and increased

external communication have been applied.

The real problem is very basic. It is that there has been too little

examination of the root causes for the vast transfer of data within .computing

maehines, between machines and peripherals, and from machine to machine

whether near or far. Upon some examination one realizes that one underlyina

cause is a pathological response the inherent lack of precision in human

communication. When one is not sure what he wants fn detail, he usually

asks for everything. Vast piles of unreadable computer printout attest to this

tendency. These piles are of course also a commentary on the need for

assurance and security, more of which later.

The pathology of uncertainty is, unfortunately, regenerative: For example,

the more one needs paper printout, the more one needs very high speed printers;

the more spectacular is the printer, the more likely is the Motive for a batch

system; the more remote the mechanism for computer response, the stronger is

the open-ended needs for data less and less precisely specified. All this is

understood in detail, but not in its generality: Interactive terminals are

an answer to the need for immediacy, a counter to a batch philosophy, an

alternative to printouts; but their impact is superficial; the next layer of

the onion is still the same; it is fraught with communications problems.

5.2 The Inherent Conflict Between DBMS and General-Purpose Computing

From its very beginning the general purpose digital computer has possessed
a property which is, at once, its strength and its weakness, It is this property
which has shaped computing machines at every stage of the evolution of

5,1

50.

RAP AND COMMUNICATION 	 5,2

hardware and software into what is essentially the same mold - that postulated

by Von Newmann three decades ago. The property is this:

The general purpose computer is a crutch upon which one rests, having

identified the existence of a problem, while one perceives the direction of

its solution, confident that the genrality of the crutch will also assist

In one's passage to its resolution.

But, just as the crutch benefits the crippled, so also it can impede the fit.

The very generality of the conventional computer makes it less than perfect -

overkill at best for any specific task. All of its special features, whether

hardware of software, are in support of the nonspecificity of the unknown.

Since it is unknow what feature is more important, all are created equal.

Since total parallism of their actions is prohibitively expensive, each is

available, but only one at a time.

The resulting processor, while more and more geheral, remains largely serial

at its micro and macro levels. It is still Von Neuman's original machine

with token parallism, replicated feàtures etc. It still does one of very many

things, one at a time. Incidentally, it is the reluctance to recognize the

intrinsic inhibition brought by generality which explains the general lack of

success of computer science in its search for methodology and structure for

parallel processing.

One may now realize the real problem faced by current data base systems.

They are, lacking anything else, implimented on general-purpose machines. While

DBMS problems are inherently parallel, general-purpose machines, for economic

generality, are really serial. If serial they must •be faster and faster to do

bigger and bigger (general-purpose) jobs. As they became internally faster,

they require more and more appartus for bandwidth matching to the inherently

slower bulk storage and external communications paths. Bandwidth, limited

by the speed of light, demands parallism of connectism at the wire as well as

the function level. The numbers of required input/output processors increase.

Software support for this generality burgeons; but it is all undirected; it is

general purpose, it impliments what might be called the 370/ 00 solution.

51

5. RAP AND COMMUNICATIONS 	 5.3

5.3''RAP and Communications

RAP, in the barest sense, is based on a recogntion of the communications

problems inherent within a conventional general purpose processor (GPP) running

a DBMS. Though the problems are many and interacting, three only will emphasized.
They are that conventional general purpose computers are essentially serial

In operation, explicit in addressing, and that the storage implied by a DBMS

is vast and accordingly slow for reasonable cost. Incidentally the latter

description, "vast", is not an absolute one. Compared to the storage required

for other pu'rposes in the typical OMBS system of whatever absolute size, or

cost the space for storage of data is very great indeed.

The serial nature of i GPP demands very high speed operation to handle

a (typically (relatively)) large DBMS data base. Though obvious if one

"naively" considers exhaustive search as the access mechanism other "more

knowledgeable" approaches founder on the same basis. The data is often

inherently poorly structured for more than a single ouery type. Yet it must

be stored in systems with inherent location structure. As query scope expands,

more and more complex data sturctures, dictionaries, access paths or whatever

are required. The overhead for the stdrage and dynamic update of these mechanisms

grows atrociously with the generality of the system. The overhead of upkeep

and the complexity of list search again imply very hight speed operation of an

inherently serial processor.

Resulting general-purpose systemS become very badly balanced from a

bandwidth point of view. Circuits are genrally running with speeds limited

by interconnect propegation time, since in the range of the last decade of logic
circuit speeds, power per logic operation increases sharply with a resulting

decrease in convenient logic density. The usual solution is microparallelism:

more wires larger words, wider adders etc. However, economics dictates use

of this technique close within the processors, leading in turn to close-packed

processors/channel architecturés.

When distances become large, as they are to bulk storage devices, economy

of interconnection tends to reduce the space bandwidth of the interconnection.

The geometry of the situation encourages mini-parallelism in which very many

storage devices couple to many controllers, to several charnels, to one or two

or so cpu's. There is a parallelsim, but it is on a small scale and focussed

52

RAP AND COMMUNICATIONS 	5,3

to centrality. The result is an enormous total bandwidth (in both frequency

and space) concentration at the centre.' The channels on the GPP grow without

bound, driven by a geometry-based square law effect.

• On the other hand one should recognize that in the bulk storage devices

bandwidths are modest. There is probably a law that says they should always

be so, for if the technology of low cost bulk storage supported high bandwidths

then it would become the centralized high speed technology and so on for

another cycle of lower cost bulk stores..

Of course, they key to the RAP system is the recognition of these facts

of communication: If the data is physically dispersed, available at low

bandwidths, Inherently homogeneous and potentially always available as it is

In cyclic stores such as discs and their replacements, then one shoed process

it in place. In 1975, at the beginning of RAP, the possibilities of data
compression, both for interrogation and response using the RAP concept,

seemed enormous. Subsequent simulation and measuremtn on pnysical models
showed this to be so as the attached documents attest.

That the arguments leading to RAP are even more general and have more

global application may be obvious at this point. However let us expand upon

this possibility.

5.4 Data Base Processors at the Nodes of a Communications Network

5.4.1 A Societal Problem
Of the many large credibility gaps which appear to surround us, there is

none as large or far reaching as that separating the realtiy of data base
systems from its perception by society. What is most crucial is that this

gap is apparently recognized by few and admitted by fewer. Yet it is in the

area of data base systems that the average citizen, manager or politician sees

both the power and threat of computers. Yet these beliefs are founded on hearsay

and conjecture supported by the self-serving implications by computer manufacturers

and professionals.

The generality of and economy of query and response from data systems,

as vtewed by the ultimate citizen user, is several orders of magnitude separate

from what is available, or likely to be available, with existing hardware and

software technology or simple extrapolations of what is now provided. Unfortunately,

far-reaching decisions are made a simplistic basis. The U.S. freedom of

* GPP General Puroose Processor

53

5, RAP AND COMMUNICATIONS 	5,4

information legislation for example was encouraged in part by this simplistic

view of what is known in an organized way. Others will copy this lead on the

same basis. Yet the simple questions that can be asked, yet are not answerable

at reasonable cost are legend. Most seriously the cost is not simply that

enormous one of using inadequate systems of people and machines to provide an

answer but the social one which delay in response will exact in reinforcing

societal cynicism.

5.4.2 A Technical Problem
The reality of the service provided by a data base system is that the more

you know, the better. As the intellectual scope of the data base decreases it

is possible to do more and more to reduce the cost of response to queries. If

every possible query type is defined, then the system can be tuned to give

economical response somewhat independent of the size of the data base involved.

Thus an airline reservations system can operate effectively in its constrained

domain of routes, flights and bodies with neames, but would be very hard pressed

to answer a query on the age distribution of its passengers by route. It is

simply not set up to do this nor would it be expected to be, except as a very,

very background job that may be possible at relatively great expense.

Contrast this with a more public service, say a legal repository residing

at the node of a computer network. Obviously a simple index of decision by

single crime type is trivial, but what about queries involving many attributes,

say a, b and c. First of all these attributes must have been identified

originally when the index was prepared. But what was once noteworthy and

subject to indexing no doubt changes. As the system expands and is used more

and more, additional classification will doubtless be needed.

The difficulty is that the process of tuning for classification is far

from linear. Generally as each new attribute is tuned all others suffer. One

might argue that faster computers are the solution, but public demand and

aspiration will normally outstrip the public's ability to pay or technology to

provide.

In such a system two levels of procedure will predominate. The first,

at the simple level of tuned query and response, will require a fairly brief

exchange with a user at a remote terminal, the time being dominated likely by

the processor activity. Since the query system is relatively unsophisticated

a fairly large amount of data will usually result. However some queries will

514

RAP AND COMMUNICATIONS 	5.4,2

be unanswerable in real time. Some of these answers may be available overnight at

increased cost. Some will be available days later after special programs are

written at much increased cost. Some will not be available at all. Probably

the alternative of overnight shipment of a large part of data base will be
offered. In this case the local enquirer can cull the data by hand or machine

on his own time scale as needed.

In summary the communication between a user at a terminai and a data base
resource node le a conventtonal system amy be characterized by

d) Short people orgintnated rquests into a node.
b) Modest delay in response.
c) Long computer generated resonses from a node,
d) Occaslonal delayed, batched, mass transfers of large amounts of data

from a node.

• 5.4.3 A Total Solution

If the node were a RAP machine or RAP machine-assisted, there would be little

or no queny tuning, Access would be largely byassociation with no particular
knwoledge of the system or its content required. There would be no universal
Incremental cost of change in user aspiration except for general busyness at the

node. There would be non-linear "blocking" effects. Queries would be interactive,
of the class "Do you have anything about x?" with a simple quantity and request
for detail In response. There would be very few requests that are unanswerable
with reasonable delay and an automatic means to induce refinement of the request
to minimize time. There is almost no need for mass shipment of data for local
perusal. Responses generally would be short, focussed and quantitative, except
those like "list all people" which would be refused or sent by mail (heaven forbid!).

In summary the communication between a user at a terminal and a data base
resource node with a RAP system-may be characterized by

a) Very short people-originated rquests into a node with repetative

iteration.
61 Reduced delay ln response for the average query.
c) Short computer generated responses from the node interspersed with a).
d) Almost no mass, batched data transfer except as well-formed reports

with high utility originating from a node.

55

RAP AND COMMUNICATIONS 	5 1 5

5.5 RAP in a Communications Environment

5.5.1 Remote Data Bases

Communication from a remote site to a RAP supported data base can be either

in the nigh level language SEQUEL or in RAP assembler. Either form provides

a relatively tight and efficient scheme whose use would depend somewhat on the

application and the nature of the originating termainal. The query/response

process would likely be extremely interactive, though it need not be. The system

sults a hierarchy of users of increasing sophistication in an effective way.

Provided a great deal is known of existence and nature of the queried data very

tight and effective queries can be written straightforwardly. If nothing is

known, even the existence of data, then the process is inherently selfdirecting

(but sée Security, later).

It is natural io form queries to provide statistics of the rquired response

while transmitting virtually no explicit data. Thus an interactive user can

comprehend the nature of his request without generating enormous system overhead.

In the event that an inadvertent request for vast amounts of data is given it

is relatively straightforward for a RAP system to respond with statistics and a

rquest for clarification.

In summary communication with a remotely located RAP system can be nearly

ideal requring only a few bytes of relatively unsophisticated query with a

few bytes response in an interactive dialog which is inherent in the processor

itself. More sophisticated users can expand their requests enormously with

far less than proportional effort while at the same time retrieving extremely

explicit results requiring little communications overhead and in relatively

short time.

5.5.2 Distributed Data Bases

The RAP scheme is ideally suited to distributed dynaimic data bases: Because

RAP intrinsically minimizes structure in the data, update is not traumatizingly

long. Thus the period of lockout from general queries required by a conventional

system to ensure that a response is not based on some unknown combination of

old and new data, is very small, of the order of "revolution".

•

56

RAP AND COPITIUN I CAT I °Ng 	 5.5,2

RAP systems can likely be easily arranged in parallel or hierarchically

such that requests for existence can be "broadcast" to all participants. Responses

to a °broadcast" query can be'used to focus more normal RAP machine/user dialog.

An exception is the case i n. which attributes of a particular query subject are

spèead rographically. In this case, naturally, various eell to cell interactions,

such as cross-mark, are not possible in the usual way. Such operations would

generally require much greater *change of data between sites. The possibility

however exists in a RAP network of merging files temporarily at an intermediate

geographic site for detialed query execution.

An interesting special case is one in which each user has a mini-RAP as

part of his query termina. Normally his interaction is with his own data base

stored locally. A retail store inventory system might be a simple example.

Upon the occasion of seeking stock elsewhere to fill an immediate cusiomer demand

access to other RAP machines would be straightforward. The interaction would likely

be interactive as the optionality of the product, its physical location etc. etc.

suited the Lustomers requirements. Various centralized inventory, product
history, sales prifles etc. data could easily be acquired by a head office

connected to such a system.

5.5.3 Privacy and Security
Security of information with a RAP system is likely to be superior to that

with any other approach. This statement appears to be in conflict with the

"fishing" attribute of RAP systems which generally allows queries based on no

'real fact; but it is not.

RAP's ultimate strength is that its data is as "unfied" as one wishes or

needs. Since the data is its own key it can be arranged that all of it exist

at one place, in one "file", with no other vestigest. Specifically there need

not be dictionaries, lists, access paths etc. which hint at the existence of

data. In conventional systems, protection of such lists is extremely comples,

since the access path approach is already ponderous with duplication and

redundant data. To add simple privacy codes might be easy but not adequate. A

real situation is much more complex, with a dynamic and data dependent "need to

know" system normally required.

The real advantage of RAP, and particularly distributed RAP, with respect

to privacy is the possibility of maintaining keys with all of the data which

can be used to implement a thorough protection system inCluding query trace.

57

RAP AND COMMUNLCATION'S 	 5.513

The latter is probably useful to follow.up certain pathological requests for

"statistics" which can inadvertently provide information which is masked for

explicit use at a higher level than that at which its occurrence can be counted.

• One of the potentially . most powerful techniques available, particularly

with distributed RAP or mini RAP buffered queries, is the possibility of keys

which trigger reverse queries add/or trace recording.

58

ADKNOWLEDGEMENTS

6 .: ACKNOWLEDGEMENTS

This research was funded by the Department of Communications, Department of Supply

and Services, and the National Research Council of Canada. We gratefully, Thank Intel

Corporation for their donation of CCD and associated driving components. We would

also like to acknowledge and thank the members of the RAP project that have contributed

so much to its accomplishments: M. Chan, A. Cousin, R. Freen, C. Hawkins, R. Hudyma,

H. Huwito, W. Lane, R. Nakaho, B. Patkau, P. Pereira, A. Radaez, R. Reid,.P. Sadowski,

M. Soong, K. Seycik, J. Klebanoff and A. Tsonis. A special thanks to M. Soong whose memo

on the RAP. 2 instruction.set was used as a basis for section 2.

59

7.. REFERÉfICES
7; REFERENCES 	• •

1. Ozkarahan, E.A. Schuster, S.A. and Smith, K.C, "A Data Base Processor"

Technical Report CSRG-43, Computer Systems Research Group, University of

. Toronto, September 1974. 	 •

.2. Ozkarahan, E,A., Schuster. S.A. and Smith, K.C., "RAP--An Associative

Processor for Data Base Management", Proc. AFIPS NCC, vol. 44, 1975, pp. 379-87.

3. Schuster, S.A., Ozkarahan, E.A., Smith, K.C., "A Virtual Memory System

for a Relational Associative Processor", Proc. AFIPS NCC, Vol. 45, 1976,

• p.p. 855-862.

4. Oskarakan, E.A., "An Associative Processor for Relational Data Bases-

N, PH. D. Thesis, University of Toronto, 1976.

5. Kerschberg, L., Ozkarahan, E. A., ..nd Pacheco. J.E.S., "A Synthetic English

Query Language for a Relational Associative Processor", Proc. of the Second

International Conference on Software Engineering, October, 1976.

6. Ozkarahan, E.A. and Schuster, S.A., "A High Level Machine-Oriented Assembler

Language for a Data Base Machine", Technical Report, CSRG-75, Computer

Systems Research Group, University of Toronti, October 1976. •

7. Nakano, R. ?A Simulator for a RAP Virtual Memory System", M.S. ihesis,

University of Toronto, 1976.

8. Ozkarahan, E.A., Schuster, S.A., and Sevcik, K.C.,-"Performance Evaluation

of a Relational Associative Processor",'ACM.TODS'Vol. 2, No., June, 1977, pp. 175-195

9. Ozkarahan, E.A. and Sevcik, K.C., "Analysis of Architectual Features for

Enhancing the Performance of Data Base Machine", (in press), ACM TODS.

10. Sibley, E.He (Ed), "Special Issue: Data-Base Management SysLems", ACM

Computing Survey, Vol. 8, No. 1, June, 1976. 	. 	.

11. Lowenthal, E.I., The Backend Computer, Auerbach, 1976.

• 12. Copeland, G.P., Lieovski, G.J., Su. S.Y.W., "The Architecture of CASSM:

A cellular System for Non-numeric Processing°, Proc. First Annual Symposium

on Computer Architecture, 1973. 	•

13. DeFlore, C.F., and Serra, P.S., "A Data Management System Utilizing an

• Associative Memory", Proc. AFIPS MCC, Vol. 42, 1973.

14. Lin, C.S., Smith, D.C.P., and Smith, J.M., "The Design of a Rotating

Associative Array Processor for a Reiational Data Base Management

Application", ACM TODS, Vol. 1, No. 1, March, 1976, pp. 53-65.

15. Baum, R.I., and Hsiao, D.K:, "Data Base Computers -- A Step Towards

Data Utilities, IEEE-TC, Dec., 1976, Vol C-25, No. 12.

16. Zaky, S.G.,. "Microprocessors for Non-Numeric Processing", Proceedings

of Third Workshop cn Computer Architecture for Mon-Numeric Processing, .

SIGARCN Vol. VI, No. 2, SIGIR Vol. XII No. 1, SIGMOD Vol. IX No. 2,

May, 1977, pp. 23-30.

Tsichritzis, D.C., and Lochovsky, F.N., Data Base Management Systemi c

Academic Press. 1977. 60

61

PESIGM/PFDP"MICE ePPENDICES 	8.1

8. DESIGN/PERFORMANCE APPENDICES

8.1 RAP 2 - Cell Logic Desiqn

. 	8.1.1 General

The design of each of the two cells imolimented is given in logic diagrams
L-1 to 1-19 appended in section.8.1.4. Each cell, with 320 kilobits of
memory requires, 412 IC packages occupying 13 boards. A memory expansion on
each cell to 1.5 megabits uses 128 IC packages on 4 boards. Each cell
exclusive of memory uses 9 amps at 5 volts for .45 watts power dissipation.

The logic design was done with little attempt at minimization of any
paticular sort. Rather, flexibility for options and improvement was sought
if time permitted. Design is largely small and medium scale integrited
T2L with Schottky used where necessary. Each cell employs 218 SSI, 117 MSI,
and 77 LSI IC packages with 96 IC's required for each megabit of storage.

The remainder of this section consists of a functional description of
each logic diagram in turn.

DESIGN/PERFORMANCE APPENDICES 	8.1,2

e.1.2 FUNCTIONAL DESCRIPTION

8.1.2.1 Logic Diagram 1 -1

1. The CONTROLLER communicates with the cells via the RAP CONTROL BUS

and RAP DATA BUS. Each cell must have its own buffer inverters to reduce the

load seen by the CONTROLLER.

2. The values set on the RAP CONTROL BUS are decoded by several decoders which

are typically prohibited/enabled by various states of the cell so that the CONTROLLER

can restrict 	communication to a few selected cells. KEY ENABLE is used

to prevent any switching noise on the CONTROL BUS from being interpreted as

a valid command. RUNNING is also used to prohibit some decoders in order to protect

the contents of its registei•s while a cell is scanning its track. Each output
of a. decoder corresponds to a task; for a full description of these tasks,

see Appendix B.

8.1 t2.2- Logic Diagram L-2,

This diagram shows the logic of all important states of the cell.

1. ADDRESS SWITCHES are a set of 8 SPST.switches settable by a human operator.
Their "contents" are readable by the CONTROLLER (See L-13) and are compared
with the RAP DATA BUS during an attempt to open the cell by address (by CK 1).
2. The RELATION NAME REGISTER (abbr: RN REG) contains a 16-bit pattern which

is'a coded name of the relation name assigned to the cell. Its contents can

be set (by PLD 1) and read by the CONTROLLER (See L-13). They are.also compared

with the RAP DATA BUS during an attempt to open the cell by relation name (by CK 0).

Thus, the relation name is treated as a programmable address.

3. There is a provision (by CK 4) for opening all cells independently of their

state , address and name. This is not essential but it helps to accelerate the

initialization process after power is turned on.

4. When the cell is udestroyed" (by PLD 9), ALIVE«) and the RN COMPARATOR is

negated; thus the cell cannot be.opened by any relation name until a new name

Is assigned to it (by PLD 1) when ALIVE becomes high.
5. Each cell must be initiated to run; i.e. RUNNING is set high by either CK 6

(for all cells) or by PLD 8 (for some selected cells). After a cell has been

running (scanning its track), there are very few things the CONTROLLER can do to

it.; it is therefore important to load all necessary constants before initiating

a cell to run.

6. A cell can be made to terminate its activities and erase most parameters

of the °currentn instruction when EXFIN is generated (by CK 7 for all cells

62

DEFIGN/PEPFORMANCE APPENDICES 	8.1,2.2

unconditionally or by INS 4 for some selected cells). Most of the time, this is

not essential but it can help to simplify the process of loading parameters of

the next instruction. The only circumstance for which it must be used is after an

instruction with a Query List involving a test on the address (See L-7).

7. POLL IN and POLL OUT belong to the single line that runs through all cells

and that defines prior,ity by physical location. The line is used with the

GET NEXT CELL scheme (i.e. with INS 3) to select exactly one cell and to °advance"

the selection along the line. This unique selection is important in the reading

of most information (but STATUS) from a cell and in the insertion of new tuples.

REJECTED indicates that a cell has been served and BLOCKED means that it must

*wait until its turn. Note that only open cells are affected by this selection

scheme; others are totally "transparent" to it.

This scheme (and the priority line) is not essential since one can always

select by address. However, for a large system, this scheme can help to reduce

both time and space.

8.1,2,3' -togic Diagrmas L-3
1. BLOCK START is a narrow pulse marking the beginning of every tuple while the

cell is running (See L-17). It is stretched until the next falling edge of e

to become BS which initiates the generation of $1 thru $7 corresponding to the

ftrst seven bit-times of every tuple.. SQ1...SQ7 are shorter versions of 4 1... 4 7.
2. GAPE is low while a tuple is being scanned. It is found to go up again at

the end of every tuple by DL . .

3. Before (as well as after)every domain exist two bits that were employed in

RAP I to store the length code of the next domain.LC1 and LC2 are the bit-time

signals for these bits. .6 and • 7 provide these bits forthe first domain and,

as mentioned earlier, their generation is due to BS. PLC1 and PLC2 provide these

bits of all subsequent domains; they are generated by the termination (MOR) of

every domain. In RAP*2 , the length code bits are no longer necessary since the

LENGTH CODE RAM stores all format information . . It is difficult, however, to

remove these bits without extensive changes in timing. These bits and the

corresponding timing signals are therefore maintained but they no longer

carry any Information except that the first two are still reserved for the TKE symbol.

4. The WORD LENGTH COUNTER is (synchronoutly) preloaded with a proper value which

depends on the length of the next domain. When a domain is being scanned, EOR

allows the counter to operate; after the clocicpulse of the last bit of the domain,

the counter becomes full (indicated by its TC terminal), MOR is generated to

mark the end àf the domain and to initiate the generation of PLC1 and PLC2.

'63

8. DESIGN/PERFORMANCE APPENDICES 	8.1.2.3

5. The tnformation on the mark-bits are sampled by SQ1 through SQ5 to get OF, A,

B, C and D.

8.1.2,4 Logic Diagram 1-4

1. WORD POSITION COUNTER (abbr: WPC) is the pinter indicating the next domain
(the 1st domain of any tuple is numbered zero) relative to the "current" tuPle.

When the cell is running, it is incremented by EOR which is a signal covering every
domain. In a CREATE process, while the CONTROLLER is loading format informations
into the LENGTH CODE RAM, the counter is incremented automatically. It is however
the duty of the CONTROLLER to reset (with PLO 11) the counter to zero before
starting to load. When the cell is initiated to run, the counter is automatically
reset (by EXRUN).
2. LENGTH CODE RAM .(abbr: LCR) stores the length codes of all domains: S'aice
there is only one format Per cell, the RAM has to be only deep enough to accommodate
the maiimum number of domains per tuple. In RAP II, this number is 255. For s!safety"

reasons,the LCR can be loaded only while the op-code for CREATE is present.
KEY ENABLE must last long enough to write on the RAM.
3. Since the WPC always points to the next domain, the length codes of the current

domain must be pre .-sampled by LC1. They are then decoded to see if the READ HEAD
Is now at the end of a tuple (contents of LCR is "11"). In this case, DL is
generated. Otherwise, there will be another domain coming next and EOR is generated
slightly before the 1st clock pulse of that domain, and one of E10, E18, E34.
is also produced to control the WORD LENGTH COUNTER and to define the proper length
of many shift registers. EOR is reset at the end of every domain by MOR.
4. Due to an historical reason which was thought unimportant to change, the length

code bits of the 1st domain of every tuple is used to store the "logical track
end" symbol (TKE). If bOth these bits are marked, it means that there is no more

valid data beyond this tuple. TKE is therefore generated from the sampled values

of DATAIN at •6 and 47. In the case of data retrieval, when enough satisfied
tuples have been taken, a false TKE condition is "faked" so that the cell
stopsproperlY. TSYN assures that TKE is reset before any instruction is carried out.

• 8,1,2,5 Logic Diagram 1-5

This diagram shows the production of EQUALITY and EQUALITY2 which are employed
to cover the operand(s) in an arithmetic instruction or the domains to be read
out in a partial •etrieval instruction.
1. A specified domain-number must be preloaded by the CONTROLLER into one of
three 8-bit registers where it is compared with the WPC to generate either

64

DESIGN/PERFORMANCE APPENDICES 	8,1.2.5

EQUALITY or EQUALITY2. Typically, only EQUALITY is generated (at most 3 times
per tuple). EQUALITY2 appears only for the instructions ADD, SUB and REP
provided INT-1 0 INT-2 (See L-11 and L-12).
2. The domain number corresponding to EQUALITY2 must be loaded into the middle
8-bit register. Yl prevents EQUALITY2 from being generated by the contents of

the other two registers.

3. In an arithmetic instruction (indicated by C op4=1), EQUALITY corresponds

to the leftmost register. YO prohibits the other two registers from giving any

interference.

4. for historical 	reasons, the three 8-bit registers share the same comparator.

TherefOre, a restriction must be made as follows:
- The leftmost register has the highest priority; * the rightmost the lowest

(EX: If onlY one domain has to be covered, the leftmost register must
be used).

- A smaller domain number must be stored in a higher priority register.
To simplify software/hardware, the three registers also share the same loading

signal (SLD 4). The smaller domain-number must be shifted in later. It is also

important (in data retrieval only) that unused registers must contain zero so that
unwanted matching with the comparator cannot occur.

5. Since the three 8-bit registers are connected one after another through

tri-state gates to the comparator, it is important that there always be one

register remaining connected (otherwise a false match could result). For

this purpose, the signal Y2 is used to prohibit the 2-bit counter from being
incremented.

8,1,2,6 Logic Diagram L-6

There are three independent Domain Comparator Units that are virtually

identical; therefore only the first one is shown in L6 and analyzed. Each unit
Is used to compare a domain with some constant as specified by the Query List.

1. To use the first unit, SL-4 must be preloaded with a value of "1". The

values of fi, gl and hl must also be specified. The comparand must be loaded
(by SLD 5) together with the domain-number of the domain to be tested. There
are four shift registers for this purpose. The leftmost stores the domain number

(which must be loaded last). The next one is for an 8-bit comparand; if it is

16-bit, one more.register is used. Finally, for a 32-bit comparand, the rightmost
register stores its least significant part.

2. In operation, PQ1 is generated (in a similar way to EQUALITY) to cover the

specified domain when the contents of the leftmost shift register match the WPC.

65

8. DESIGN/PUTOPMANCE PFTEMDICES 	8.1.2.6

PQ1 allows the clock s to be used (as •cl) for the comparison. *cl rotates
the comparand and samples the "current" result of the comparison in two J-K
flip flops. The comparison of the comparand with the value of the specified domain
is made through two EX-OR gates and a few other gates under the assumption that

numbers are in pure binary. A D-flip flop storing the sign difference is used

with two more EX-OR gates to accommodate 2's complement notation. The final
results are gated with fi, gl, hl and then sampled by PLC1 (first bit after

the last bit of the relevant domain) to produce Ql. If the comparison is satisfactory,

Ql is high after the domain is scanned and stays high until the next tuple;
otherwise Ql will be low. 	 •

- 	8.1,2,7 —Loptc Diagramp L -7
This diagram shows how the mark-bits and the result of the Domain Comparator

Units are evaluated to produce the QDCJ signal. QDCJ means "qualified either
disjunctively or conjunctively"; that is to say the relevant tuple satisfies

the Query List.

1. DISJ is a value loaded by the CONTROLLER. It must have the value of "1"
If the Query List is in the disjunctive form; zero otherwise.

2. QMRK (= "qualified as far as marks are concerned") is high for a tuple if:
- at least one specified mark-bit has a mark.
- Furthermore, if DISJ=0, all specified mark-bits must have mark.

3. QUMRK (= "qualified as far as absence of marks are concerned") is similar

to QMRK except that it concerns the absence of marks on mark-bits.
4. QDCJ for a valid tuple is high after all necessary information has 	been

acquired if:

- either no item in the Query List is 	satisfactory

- or (in the disjunctive mode only) at least one item is satisfactory.

One simple way to select no tuple is to set DISJ=0, a2=a3=1.. This asks

for the impossible case that the mark-bit A has and has not a mark.

In the case of "LOAD I/O BUFFER", after enough tuples have been read, the

cell is forced to scan one more tuple; for this extra tuple, QDCJ is forced low

by a (possibly faked) TKE condition.

5. ADR is automatically set when a comparison against the ADDRESS SWITCHES is
made for the execution of the Query List (ADR is not affected by the opening
of a cell by address). Many such comparisons can be made for the Query List

and just one match is enough to set HMA high. It is important that EXFIN is

issued after the CONTROLLER has finished with an instruction involving address test.

66

8. DESIGN/PEREOPMANCE APPENDICES 	 8.1.2.7

'Otherwise , the value of ADR and HMA can interfere with any future query

test. The concept of address test is necessary only in RAP / and totally
undesirable in RAP II; it is implemented here just for the sake of keeping the
original RAP specifications unchanged.

8,1.2.8 Logic Dtagramt-8
1. Most instructions demand act/on if and only if a tuple satisfies a Query List.
These instructions are characterized by the fact that they involve only valid
data and can be terminated by a TKE condition. The rest, namely SPACE COUNT,

INSERT and CREATE, are quite different: They involve non valid data (i.e.

vacant .space) and consequently need no Query List and cannot be terminated by a

TKE condition.
2. The signal SATISFIED is used to indicate that some actions must be taker for
a relevant tuple. 	For 'the reasohs discussed above, most instructions must

havetheirSATISFIED signal generated by sampling the value of QDCJ by DL; whereas

INSERT and SPACE COUNT by sampling the value of DF by SQL CREATE is quite

different since it does not depend on the data on the track; but rather it

seeks to see if there is enough space to place a future tuple.Consequently,
In CREATE, the signal SATISFIED must be generated by DL which marks the end of a
tuple space.
3. The S-COUNTER counts the number of satisfied tuples in a pass. Its contents
are compared with a limit loaded by the CONTROLLER in the LIMIT REGISTER for the
instructions INSERT and LOAD I/O BUFFER. After the.limit is reached, no additional
SATISFIED can be produced (and hencenno4 action) and the S-COUNTER is frozen.
In the case of INSERT, the cell stops after inserting the last tuple required.
In LOAD I/O BUFFER, the READ HEAD still scans one more tuple after having read

the last satisfied tuple required so that the WRITE HEAD can have a chance to

mark/unmark properly. Since the extra tuple dàn be satisfied and can cause a

problem (see L-10), it is necessary to fake a TKE condition for that tuple.

4. RHOFF indicates that the READ HEAD has gone beyond the physical end of the

track and obviously there are no other satisfied tup1es to be counted.
5. WHOFF indicates that the WRITE HEAD has gone beyond the physical end of the

track and obviously there is no more space to write on and the cell must stop.

6. TABLE 1 shows the timing of the signal SATISFIED

TABLE 2 shows the timing of the signal AUTOFIN.

7. Note that in'RAP I, there must be at least one TKE tuple left on the track.
In RAP II, there is no need for this; furthermore, the odd track remnant that may

exist (if the length of a block does not divide the track length) cannot cause any
problem,

67

8. DESIGM/PERFORMANCE APPENDICES 	8.1.2.8

TABLE 1
Properties of the signal SATISFIED

	

INSERT 	SPACE COUNT 	CREATE 	LOAD I/O BUFFER 	OTHERS

Criteria of

generation 	OF = 1 	OF = 1 	All tuples 	QDCJ = 1 	QDCJ=1
	 _
Prohibited when 	

,

the S-COUNTER 	Yes 	No 	No 	Yes 	No

reaches' a

predetermined limit

Timing 	
.

Immediate 	Immediate 	Delayed 	Delayed 	_ 	Delayed
Immediate: 	from SQ1 of relevant tuple until DI_

Delayed 	: 	from DL of relevant tuple until next DL.

TABLE 2
Generation of the signal AUTOFIN.
If many conditions can cause AUTOFIN, only the one which
comes earliest will.

_
Moment of generation 	INSERT 	SPACE COUNT 	CREATE 	LOAD I/O BUFFER 	OTHERS
'SHOFF = 1 	Yes 	Yes 	' 	Yes 	Yes 	Yes ,
Last bit of the
last required tuple 	Yes 	N/A 	N/A 	No 	N/A
- 	
_ast bit of the tuple

beyond the last 	No 	N/A 	N/A 	Yes 	N/A
required tuple

_ast bit of a
tuple bearing the 	No 	Nà 	N/A 	Yes 	Yes
symbol TKE

68

8. DEISM/PEPFOPMANCE APPENDICES

8,1.2.9 Logic Diagram L-9

1. REN is the signal that allows writing to be performed for the CCD track
and TTDATA is the data to be written there when REN is high (See L-14 and L-18).
2. For INSERT, a vacant tuple is completely erased (including all mark-bits) and
rewritten with the serialized contents (INS_DATA) of the I/O BUFFER; the option

MARK can be used to preset (with SBIT) all new tuples.
3. For DELETE, the whole tuple ts also erased; but the 1st mark-bit is marked
by SQ1 through SBIT.
4. For CREATE, the whole track is erased and marked with DF and TKE symbols
(i.e. the 1st, 6th and 7th bits) by SQ1, SQ6 and SQ7.
5. By examining carefully diagrams L-8 and L-9, onewill find that the remnant
that may exist at the track endwIll pose no problem: It will be erased and it is
never misinterpreted as a'tup1e.
6. For most instructions but SPACE COUNT, the MARK/UNMARK option will cause

the marking/erasing of the mark-bits (specified by al, bl, cl and dl) by the turning

on of REN at the right time. MARK overrides UNMARK since SBIT is interpreted as
data to be written. It does not make sense (though permissible) to use the MARK

option for DELETE and CREATE.

7. For some arithmetic instructions (more specifically, for ADD, SUB and REP),

the result to be rewritten on the track is expressed by OR1P; and UPDATE covers
the domain to be updated.

8. Except for the above rules, the contents of the track cannot be changed by the

cell in any other circumstance. It is possible however to change manually (for

testing purpose) as described in L-14 and L-18.

8.1.2,10 Locitc Dtaoram L-10

1. The I/O BUFFER serves only to implement the insertion/retrieval instructions

(INSERT and -LOAD I/O BUFFER). As its name implies, it serves as a buffer to

decouple the speed of the CONTROLLER (or other external devices) from that of
the Cell.

2. In INSERT, the CONTROLLER loads as much data as it wants; limited only by the

size of the I/O BUFFER (which is currently 1Kx16 RAM). A 16-bit domain fits

nicely in one RAM word. An 8-bit domain must be loaded into the lower byt&of the RAM.
A 32-bit domain must be loaded in two consecutive RAM words; with the least Significant

half first. The CONTROLLER also has to load the number of tuples to be inserted

into the LIMIT REGISTER.

The BUFFER has its own pointer (I/O BUFFER COUNTER) which can be reset to

zero by the CONTROLLER (using PLD111. Every time a word is loaded (by SLD1), the

69

8_, DESIGN/PERFORMANCE APPENDICES 8, 1 .2,10

signal BT is generated by a one-shot to transfer data from the RAP DATA BUS

Into the RAM. Note that the op-code for INSERT must have been preloaded before
this transfer can be done correctly. A second one-shot is used to advance the

pointer.

In operation, the pointer is reset to zero by the initiating signal EXRUN.

When a vacant place is found (SATISFIED is set by DF), a BT pulse is generated
before the first clock pulse of every domain to transfer the "current word"

into a parallel-to-serial converter. For a 32-bit domain, after the first 16 bits
of thedomain, a second BT pulse is generated (this is done by decoding the

contents of the WORD LENGTH COUNTER) to get the second half of the domain. The

contents of the parallel/serial converter are shifted out and go through a D-flip

flop where they are chopped by RSQ into a stream of pulses named INS_DATA (absence •

of a pulse indicatei a zero) which will be sent to the UPDATE CONTROL unit (L-9)

for writing onto the track.

3. In LOAD I/0 BUFFER, data from the tiack is continuously shifted into a

serial-to-parallel converter and a BT pulse is generated immediately either after
the last bit of every domain or after its 16th bit to write the converter's contents
into the BUFFER. •Also, the pointer is incremented accordingly. This is done for

all valid tuples even non satisfied ones. Since we do not want to store non-qualified

data, we must overwrite it 	with new 	. In other words, we must backtrack if a

tuple is found to be not satisfied. Naturally, the backtracking is not done on the

irack but by resetting the pointer to a proper value. This is possible thanks to a

(not named) register which remembers (by 5Q5) the value of the pointer before any

tuple is read in. At the end of the tuple (marked by DL), if it is not satisfied
(QDCJ=0), that value is returned to the pdinter.

Finally, in the partial retrieval mode, SL-1=1 and the BT signal is generated

only for domains covered by EQUALITY (See L-5) and hence only specified domains will

be stored in the BUFFER.

Since the size of the BUFFER is finite, only a limited number of tuples

can be read. It is up to the CONTROLLER to find this limit and load it into

the LIMIT REGISTER. After enough tuples have been retrieved, the cell will fake

a TKE condition and it will stop in one tuple-time after the last retrieved tuple.

If there are not enough satisfied tuples, the cell will stop at either the logical

end of physical end of the track (See L-8).

8.1.2,11 • Logic Diagrams L-1 1' and L-12

The ARITHMETIC UNIT is employed strictly to support the instructions ADD,

SUB, REP, SUM, MAX and MIN which are characterized by C op4 = 1. Due to limitation

70

DESIGN/PERFORMANCE APPENDICES 	 8,1.2.11

of space, we only allow 8-bit and 16-bit operands. It is a straightforward
matter to expand the logic to accommodate 32-bit domains; it is mandatory however
to define new °keys" to load and read data for a longer field.
1. For MAX and MIN;

These instructions ask for the max/min value of a specified domain of all
satisfied tuples to be stored in the RESULT REGISTER. In operation, REGISTER I
constantly takes the specified domain of all tuples; satisfied or not. Meanwhile,
the contents of REGISTER 2 are compared against the specified domain (from the
track) withthe help of a serial comparator which employs a few EX-OR gates, J-K
flip flop and a D-flip flop for sign correction (note the similarity with the
logic of the comparator. of the Domain Comparator unit). If TAKE NEW =1, it means
that the latest tuple has a "better" value and must replace the "currént" max/min
value stored in REGISTER 2. However, TAKE NEW is "anded" with SATISFIED so that
the result of the comparison is discarded if the latest tuple is not satisfied.
Furthermore, for all tuplei from the beginning until and including the first
satisfied tuples, the serial comparator is deactivated by SAT ONCE=0 and always
produces a high value of TAKE NEW. The net result is that at the 1st bit of the 1st
tuple after the 1st satisfied tuple, the contents of REGISTER 1 are transferred
to REGISTER 2. Briefly speaking, the logic of L-11 assures that the specified
domain of the 1st stdIsfied tuple is always loaded into REGISTER 2 before any
more comparison. From now on, the serial comparator is activated (SAT ONCEel)
and any satisfied "better" value will be loaded into REGISTER 2 where it is
rotated and compares against the data from the track until a still satisfied and
better value replaces it. Furthermore, the finding of a satisfied and better
value also triggers an R-S flip flop that allows the generation of CKb which will
shift that value (from REGISTER 2) into the RESULT REGISTER. This shifting occurs
one tuple-time after that value was first seen. Note that there is no problem
even if the max/min value happens to belong to the last tuple on the track since
the cell only stops one tuple-time after the track-end. Once in the RESULT
REGISTER, the "current" max/min value stays there until it is replaced by a

"better" and satisfied one.

After the cell stops the CONTROLLER can read from the RESULT REGISTER using
R ALU (See L-13). Note that if the specified domain is 8-bit long, the result
is duplicated in both bytes of the RESULT REGISTER.
2. For ADD, SUB and REP.

These instructions are similar and are characterized by:
- They need two operands and therefore are the only instructions
reqùtring the signal EQUALITY 2.

71 	•

DESIGN/PERFORMANCE APPENDICES 	 8.1.2.11

- They are the only instructions that can cause a change in one
domain (of all 5atisfied tuples).

• The need for two operands requires (unless an operand is a constant) the
covering of the lower-numbered domain by EQUALITY and that of the higher-numbered
domain by EQUALITY2. The relevant domain-numbers must be shifted in by the
CONTROLLER in correct order (See L-5). If the 1st domain (lower-numbered) must
be updated, the CONTROLLER must preload INT-1=0, INT-2=1. If the 2nd one must be,
INT-1=1 and INT-2=0. In the limiting case where both operands are identical,
then the 2nd domain-number is ignored since EQUALITY2 will not be generated;
the CONTROLLER must set however INT-1 = INT-2 = 1. If one operand is a constant
(supplied by the CONTROLLER), only one domain is involved and only EQUALITY but
not EQUALITY2 will be generated; the CONTROLLER must set INT-1 = INT-2 = O.
The operation of the cell depends on the values of INT-1 and INT-2:
Case 1: INT-1 = INT-2 = 0 (External operand)

The CONTROLLER must preload the constant into REGISTER 2 using PLD 13 (before
the cell is initiated ro tun). If the relevant domain is 8-bit, the constant
should reside in the higher byte. In operation, CKa will rotate the constant
properly when the specified domain is being scanned. Meanwhile (i.e. while
EQUALITY * EOR = 1):

For ADD, the serial full adder adds the output of REGISTER 2 (i.e. the
constant) with the current domain value (from track). A D-flip flop takes care
of the carry and the result is shifted into the RESULT REGISTER. If the domain

is 8-bit long, both bytes of the RESULT REGISTER store the duplicated sum. At
the end of a tuple, the sum is already contained in the RESULT REGISTER, whether
or not the current tuple is satisfied. While the current sum is shifted in,
the previous sum is shifted out through a 0-flip flog to become OR1P which is
immediately sent to the UPDATE CONTROL UNIT (L-9) to be written on the track.
If the previous tuple qualifies, UPDATE is high and the writing process is
accomplished; otherwise no writing will be possible (for the previous tuple).

In a similar way, the current sum must wait until the next ttple is scanned to
be written on the track.

For SUB, the constant is complemented by an EX-OR gate controlled by SUB.
Also, the carry flip flop is preset to 1 to complete the 2's complementing of
the constant. Everything else remains the same as for ADD.

For REP, the adder is not used and the constant is shifted directly into
the RESULT REGISTER. Every other activity is the same as for ADD.
Case 2: INT-1 = 0, INT-2 = 1 (lowernumbered domain is 'iodated)

72 	•

DESIGN/PERFORMANCE APPENDICES 	8 1 1.2.11

Both REGISTER 2 and the RESULT REGISTER are shifted while either relevant
domain ts scanned. The lst'domain is shifted in REGISTER 2 while EQUALITY is
htgh and stays there untll tt is shifted out when EQUALITY2 is high to be added
with the 2nd domain (for ADD) or the latter's 2's complement (for SUB) and the

sum Is shtfted into the RESULT RÉGISTER. For REP, the 2nd domain is simply
shtfted directly in the RESULT REGISTER. By the end of the 2nd specified domain,
the proper result ts stored in the RESULT REGISTER (whether or not the tuple
qualifies) where it remains until the 1st specified domain of the next tuple
ts scanned when tt wt11 be shifted out to become OR1P and everything else is
stellar to Case 1.

Case 3: INT-1 = 1, INT-2 = 0 (higher-numbered domain is updated) 	.
Only REGISTER 2 is shifted while either relevant is scanned. The RESULT

REGISTER is shifted only while the 2nd domain is scanned. Like Case 2, the 1st
domain is shifted into REGISTER 2 and is shifted out to be added with the 2nd
domain (for ADD) while EQUALITY 2 is high. However, if SUB is involved, the

contents of REGISTER 2 is complemented before being added. For REP, the

contents of REGISTER 2 is also shifted directly into the RESULT REGISTER.
Again, like Case 2, by the end of the 2nd specified domain, the proper result
is stored in the RESULT REGISTER but this time it must wait until the 2nd specified
domain of the next tuple to become OR1P which will be written on the track if
the relevant tuple is satisfied.
Case 4: INT-1 = INT-2 = 1 (single operand)

In the case, only EQUALITY is generated and both REGISTER 2 and the RESULT
REGISTER will be shifted while EQUALITY is high. If ADD is involved, the value

of the specified domain is delayed by one bit-time by a D-flip flop before
being shifted into the RESULT REGISTER. The net effect is that the sum is twice

the operand. For SUB, nothing (i.e. zero) is shifted into the RESULT REGISTER

to form the proper null result. For REP, the operand is shifted into the RESULT

REGISTER directly. Just like case 2, the proper result stays in the RESULT

REGISTER until the next tuple to be shifted out and written on the track if the
relevant tuple qualifies.
3. For SUM 	 •

This operation involves only one operand and EQUALITY is used to control

the cléck for both REGISTER 2 and the RESULT REGISTER.
The specified domain is always shifted into REGISTER 2 (whether or not

the tuple qualifies) when it stays until the same domain of the next tuple

displaces it. If the relevant tuple is not satisfied, nothing is done; otherwise

73 	•

DESIGN/PERFORMANCE APPENDICES 	8.1.2.11

the output of REGISTER 2 is added with the contents of the RESULT REGISTER.

and the sum is stored back in the RESULT REGISTER. The partial sum remains

there until a next satisfied tole is formed.

As mentioned before, there is no problem if the last tuple of the track

qualifies since the cell always scans one extra tuple (an "imaginary" one,

if necessary) beyond the track end before it stops.

After the cell stops, the CONTROLLER can read the final result from the

RESULT REGISTER by R ALU. If many cells are involved in the SUM instruction,

it is up to the CONTROLLER to collect all individual sums and find the final sum.

Note that as long as no satisfied tuple has been found, "zero" is

constantly shifted in the RESULT REGISTER. Even if the 1st tuple qualifies,

this fact is not known until the end of that tuple; consequently the RESULT

REGISTER is always initialized properly to zero.

- 	8.1.2.12 Logic Diagram L-13

This diagram shows clearly everything that the CONTROLLER can read from

a cell and it needs little explanation.

1. To read the I/O BUFFER properly, its pointer must be read first to know

how many words in the I/O BUFFER are meaningful data. Since the pointer always

points to one word beyond the valid data area, if the BUFFER is full, the pointer

can point to zero. A check on the "satisfied status" should clarify this.

2. Every time the I/O BUFFER is read, its pointer is automatically incremented

by one. But the CONTROLLER must reset the pointer (using PLD 11) before starting

to read.

If a domain is 8-bits long e it must bé taken from the higher byte. If a

domain is 32-bitS long;the lower word is read out first.

3. The five least significant bits of 	STATUSindicate the presence of at

least 1 mark on the mark-bits (Ex: If there is at least one vacant place,

bit #4 is high). Note however that these bits reflect only the portion of the

track seen by the READ HEAD in the last pass; that is to say, after an INSERT

or LOAD I/O BUFFER, these status bits do not necessarily show the mark-bits

of the whole track. Furthermore, these bits are not affected by whatever was

written by the WRITE HEAD. For instance, after a CREATE or after a MARK/UNMARK

option, these bits do not reflect what is on the track.

4. Bits 5 to 9 of the STATUS have not been defined. The rest is for important

states of the cell. The most significant bit is always high; this is very

important to detect the presence/Osence of any cell and is necessary as a

"feedback" test for the use of "GET NEXT CELL".

714

8, DESIGN/PERFORMANCE APPENDICES 	8,1,2,13

8.1.2.13 Logic Diagram L-14

This diagram shows the generation of all important memory phases.

1. All the phases are decoded from the various counts (a, b, c, d) of the

master cloCk MC.

OSC signals the end/beginning of each bit-time. To understand CHOICE, it

is necessary to realize that each INTEL 2416 chip is in fact two time-multiplexed

drums. CHOICE is used to alternate between them. 01, 02, 03, 04 are strictly used
for shifting CCD memories.
2. SAMPLE is used mainly to mark the time when data is available from the CCD.
0 is used for many parts of the cell such as shift registers and the WORD LENGTH
COUNTER. RSQ is a secondary phase arriving slightly late than 0 to truncate
various signals. WE is for enabling the writing process, CE1 is used for enabling

the CCD chips.
8.1.2.14 Logic"Diagram L-15

This diagram shows how the current position on the track is monitored. It

also shows how the single-step mode and the slow mode together with the halt

logic are implemented.

1. In the normal mode, the SECTOR COUNTER points to the current position on a

minor loop, and the TRACK COUNTER the current minor loop. The SECTOR COUNTER is

advanced once every timethe TRACK COUNTER is full (LS=1).
2. In the slow mode, which can be entered either manually (by setting a switch

properly) or electronically (via EX SLOW when the cell is running at the highest

speed), for each bit-time "given" to the rest of the cell, 256 others bit-times
are held back; that is to say the CCD memories are constantly working at the full

speed but the rest of the cell "thinks" that the speed is reduced 257 times. In

the holding state (characterized by STORE = 1 and bit- times being held back), the

TRACK COUNTER is not incremented and the SECTOR COUNTER is used to count the number

of held bit-times: At the beginning, the SECTOR REGISTER stores the contents of

the SECTORE COUNTER which is then reset to zero (by LOAD ZERO); it then counts
until it becomes full (LS=1). The holding state is then replaced by the normal

state, the contents of the SECTOR REGISTER are transferred back to the SECTOR COUNTER

and everything goes back to normal again. The speed mode commands are then tested:

If the cell is still not yet supposed to run at full speed, the normal state nuld
last only one bit-time and the holding state would be again entered.

3. The single-step mode can only be entered manually by setting a switch properly.

An R-S flip flop is used to debounce the pulser's push button. Another D-flip flop

is essential as a conventional service flag to synchronize with the cell (since

75

DESIGN/PERFORMANCE APPENDICES 	8.1.2.14

the activation of the pulser is random).

In the single step mode, the cell is typically in the holding state. After

every 256 bit-times, the speed mode commands are tested to see if the single sten

mode must remain; meanwhile the service flag (of the pulser) is also tested

to see if a step is required. If the flag is down, nothing is done; otherwise

the cell temporarily leaves the holding state (for just one bit-time) in a

similar way as for the slow mode; the only additional thing to do is that

the flag is reset.

4. The cell can be halted (if the automatic stop switch is set properly)

electronically either by REF (a signal produced when the READ HEAD reaches a

spot defined by an array of thumbwheel switches) or by HALT (an external signal

coming from some test equipment).

The halt state'is similar to the single step mode except that no step is
generated. After every 256 bit-times, the cell tests to see if it has to

• remain in this state.

8.1.2.15 Logic Diaaram L-16
This diagram shows how the READ HEAD and WRITE HEAD are applied to the CCD

memories. Note that if DUAL HEAL = 0 (INSERT . 1), both HEADs are identical.
The CCD chips are arranged in an X-Y matrix to reduce the number of drivers and
wiring. The value of "4" of the number of columns is due to some physical restrictions.

8.1.2.16 Logic Diagram L-17
This diagram shows the timing for the beginning and end of the track. 	•

1. A multiplexer permits the choice of many different memory sizes by the setting

of a switch. A large AND gate is used to determine when the last minor loop is

scanned (either by the READ HEAD or WRITE HEAD). A HEAD falls off the track when

it exits from the last minor loop; this circumstance is indicated by RHOFF/WHOFF.
2. BLOCK START is produced at the 1st sector.of a minor loop when GAPE=1; this

implies that no gap is allowed on the 1st sector. Consequently, the value of

Block Size must be carefully calculated so that no gap can exceed 255 bits.

' 8.1.2.17 Lactic Diagram L-18
This diagram shows clearly the signals other than CE and CS that drive the

CCD chips.

1. Data to be written is sampled by e. CE1 guarantees that no data can overlap

with the next bit and no data glitch can latch.

2. The Read Only mode can be entered by an appropriate setting of the Data Control

Switch. In this mode, writing is prohibited and the contents of the track are

preserved. It is of great importance for testing purposes.

3. The Manual Writing mode can also be entered by an appropriate setting of the

76

8, DESIGN/PERFORMANCE APPENDICES

Data Control Switch. In this mode, data to be written on the track is defined

by the Data Switch. It can be used with the Single Step mode and the Automatic

Stop (by REF) mechanism to modify any bit anywhere on the track.

If N is the current reading of the 7-segment LED display, N indicates the

current position of the READ HEAD; that of the WRITE HEAD is at N-X where X is

either zero or the block size (in bits) depending on the value of DUAL HEAD

(i.e. on the current C op values). An attempt to write manually now will affect

location 1+N-X.

8.1.2.18 Logic Diagram L-19
This diagram shows how the current position of the READ HEAD is displayed

by 7-segment LEDS, and how it is compared with the setting of the thumbwheel

switches to produce the signal REF which can be used to halt the cell or to trigger .
some test equipment; 	.

77

8, DESIGN/PERFORMANCE APPENDICES 	8,1,3

8.1.3. 	LIST OF SIGNALS USED IN LOGIC DIAGRAMS 1-1 TO 119

NOTE: The digits in parenthesis following the name of each signal refer to
---- the L-number. The source of the signal is underlined.

A (3,17,13) Indicates that the mark-bit A of the current tuple has a mark.

a (14) The least significant bit (first bit) of the BASIC TIMING COUNTER.
It is a square wave of half the frequency of MC.

al (9) Loaded by the CONTROLLER to indicate that the mark-bit A of all satisfied
tuples must be marked or unmarked depending on the value of MARK and UNMARK.

a2, a3 (7) Loaded by the CONTROLLER to indicate that the presence or absence
respectively of a mark on the mark-bit A is part of the Query List.

AD 1 ... AD 7 (1) Inverted froM the RAP CONTROL BUS.

ADD (11,12) Decoded from C op values; indicatin.; that the cell must perform
an addition on the track 	for all satisfied tuples.

ADR (2) Indicates that the cell-address is part of the Query List; this
Feature is not necessary in RAP II.

ALIVE (2) A state of the cell indicating that it contains a well defined relation.
If the cell is "destroyed", it becomes low and prevents the cell from
being opened by any relation name.

AUTOFIN (2,8) A narrow pulse indicatihg that the cell discovers that it
has completéd its job.

B (3,7,13) Similar tci A; but concerning the mark-bit B.

b(11) The second bit of the BASIC TIMING COUNTER (Cf. a).

bl (9) Similar to al; but concerning the mark-bit B.

b2, b3 (7) Similar tu a2, a3; but concerning the mark-bit B.

BLOCKED (1,2,13) An important state of a cell. In this state, a cell is
not sensitive to most commands of the CONTROLLER.

BLOCK START (3,5,17) A narrow pulse preceding the first clock pulse of the
first bit of every tuple while the cell is scanning its track.

BS(3) Simply a stretched form of BLOCK START.

BT(10) A narrow signal used to write onto the I/O BUFFER and to transfer
its contents to a parallel-to-serial converter.

78

8. DESIGN/PERFORMANCE APPENDICES 	8.1.3

C(3,17,13) Similar to A; but concerning the mark-bit C.

c(14) The third bit of the BASIC TIMING COUNTER.

cl (9) Similar to al; but concerning the mark-bit C.

c2, c3 (7) Similar to a2,a3; but concerning the mark-bit C.

CE1 (14,16,17,18) A periodic signal of the same frequency as 0. It goes
up twice in each cycle to enable reading and writing.

CHOICE (14) A square wave, half the frequency of OSC.

CK 0 	CK 7 (1,2) Decoded from the RAP CONTROL BUS. They are effective
for all cîlls of the)estem independently of their states.

CKa, CKb (11,12) Same as 0; but restricted to one or two domains. Only
used—Tn Arithmetic Instructions.

C opl 	C op4 (5,8,11,12) Loaded by the CONTROLLER; used to encode the
job eat the 7E.11 must do. A value of C np4 = 1 indicates that an
Arithmetic Instruction is involved.

CREATE (4,8,9,16) Decoded from C op values to indicate that the CONTROLLER
wants to define a new file—(i.e. Relation).

CSXO 	CSX3, CSYO 	CSY15 (16,17) Decoded from the 6 most significant
bits of the "current" HEAD (which can be READ or WRITE). Employed to
select CCD chips.

D (3,7,13) Similar to A; but concerning the mark-bit D.

d (9) The third bit of the BASIC TIMING COUNTER (Cf. a).

dl (9) Similar to al; but concerning the mark-bit D.

d2, d3 (7) Similar to a2, a3; but conerning the mark-bit D.

DATA_IN (3,4,6,10,11,12,18) "Current" data read by the READ HEAD from the track.

DELETE (8,9) Decoded from C op values; indicates that all satisfied tuples
must be deleted (i.e.—Marked at the mark-bit D).

OF (3,7,8,10,13) Similar to A; but concerning the mark-bit DF.

DISJ (7,9) Loaded by the CONTROLLER to indicate that the Query List is in
the disjunctive form; i.e. at least one item of the list must be satisfactory.

DL (3,4,5,6,8,10) A narrow pulse that follows the last clock pulse of every tuple. 	•

DT 0 ... DT 15 (1,2,4,5,6,7,8,9,16,11,16) Invèrted from the RAP DATA BUS.

DUAL HEAD (16) A control signal to indicate that the READ HEAD and the WRITE HEAD
are not.identical. The WRITE HEAD must be calculated from the other HEAD by
subtracting the contents of the BLOCK SIZE REGISTER. This signal must be
connected to the complement of INSERT.

79

8. DESIGN/PERFORMANCE APPENDICES 	8.1.3

e (14) The most significant bit of the BASIC TIMING COUNTER.

E10, E18, E34 (3,4,6,11,12) Indicate that the cell is scanning an 8-bit, 16-bit
or 32-bit long domain. Employed to rot • te sue shift registers and to control
the WORD LENGTH COUNTER.

EOR (3,4,6,10,11,12) Indicates that the cell is scanning some domain. This is
peîhaps the most important signal of a cell. Its presence and
stability indicate that the cell is essentially functioning.

EQUALITY (5,10,11) Covers a domain which is either an operand in an Arithmetic
Instruction or retrieved in a partial retrieval mode.

EQUALITY2 (5,11) Covers the 2nd domain (if necessary) needed in an Arithmetic
Instructions.

EX DATA (18) Data sent from the cell to be written on the track. This signal
must be connected to TTDATA.

EXFIN (2,5,6,7,8,9) A narrow pulse generated by the CONTROLLER to terminate the
activities of the cell and to erase many of its registers.

EXRUN (2,4,8,10,11,13) A narrow pulse controlled by the CONTROLLER to initiate
te cell to start scanning its track to do its job (after all necessary
parameters have been supplied). 	.

EX SLOW (15) A control signal for testing purpose only. When being high, it
causes the speed of the CCD Track to slow down by 257 times. It has no
effect if the speed is set at Single Step Mode.

fi, f2, f3 (6) Values loaded by the CONTROLLER to indicate that idomain must
be smager than some constant (which . is also loaded by the CONTROLLER) as
part of the Query List. The digital suffix refers to the chosen Domain
Comparator Unit.'

FAST (15) Decoded from the SPEED CONTROL SWITCH to indicate that the cell must
run at its highest speed.

gl, g2, g3 (6) Similar to fi, f2, f3; but equality is required.

GAPE (3,4,5,6,11,17) A signal that goes low from the beginning of every tuple
&Jail its end when it will go high again. This remains true even if two
consecutive tuples have no space between them.

hl, h2, h3 (6) Similar to fi, f2, 13; but superlative comparison is required.

HALT (15) A control signal for testing purpose. It can bring the scanning of the
CCD Track to a halt if the AUTOMATIC STOP CONTROL is set properly.

80

8, DESIGN/PERFORMANCE APPENDICES 	8,1,3

HMA (Z) Indicates that the cell-address has been compared successfully with
some value supplied by the CONTROLLER as part of the Query List. This
feature is not needed in RAP II.

INS 0 ... INS 7 (1,2) Decoded from the RAP CONTROL BUS. They are effective
for all open cells.

INS DATA (9,10) Data to be written on the track when the cell is processing
an INSERT Instruction. For each domain, they come as a (typically broken)
stream of pulses; absence of a pulse indicates a zero.

INSERT (8,9,10,16) Decoded from C op values to indicate that a specified number
of vacant tuples on the Traci must be filled with the contents of the I/O

 BUFFER.

INT-1, INT-2 (5,8,10,12) Values loaded by the CONTROLLER if the relevant
task is a 2:Operand instruction (i.e. ADD, SUBTRACT or REPLACE)

KEY ENABLE (1,2,4,5,6,10,13) A pulse generated by the CONTROLLER. Other lines
of RAP UONTROL BUS and RAP DATA BUS must remain constant while KEY ENABLE
is activated.

LÇ1, LC2, (3,4,5,6) Two consecutive bit-time signals that precede and follow
all domains.

LCE (17) A signal indicating that the.last CCD chip is being used. It helps
to detect when the R/W HEADS go beyond the physical end of the Track.

LOAD I/O BUFFER (5,8,10) Decoded from the C op values to indicate that the
cell must look for not more than a speafied number of satisfied tuples
and store them (or up to three domains per tuple) in the I/O BUFFER.

LOADJERO (15) A narrow pulse to load the SECTOR COUNTER with zero (to start
a count of 256 bit-times during which the Track behaves as if it does not
move).

LOCK OPEN (1,2) An important stàte of a cell: Not in this state, it cannot
recieve most commands of the CONTROLLER.

LS (15,17) Decoded from the SECTOR COUNTER to indicate that it is full.

MANUAL (14,18) Decoded from the DATA CONTROL SWITCH indicating that data to
be written on the Track must come from the DATA SWITCH.

MARK (9) A value loaded by the CONTROLLER indicating that all satisfied tuples
must be marked according to al, bl, cl and dl.

81

8. DESIGN/PERFORMANCE APPENDICES 	8.1.3

MAX, MIN (11,12) Decoded from C op values; indicating that the cell must
find the max or min value of the specified domain of all satisfied tuples
and put it in the RESULT REGISTER.

MC (14) Master clock; a 20 Mhz square wave. Every activity is synchronized
with MC.

MOR (3,4,5) A narrow pulse occuring immediately after the last clock pulse
of every domain.

OR1P (9,12) Similar to INS DATA; but concerning either ADD, SUB or REP.

OSC (14,15) A narrow pulse marking the beginning of every bit-time.

• (3,4,6,10,11,12,14,17,18) The basic clock pulse of the cell.

•1, •2, •3, •4 (14,18) Four phrases required to shift th c CCD chips.

01, ..., 07 (3,4) The first seven bit-times of every tuple.

Ocl, 0c2, 0c3 (6) Same as •; but restricted to some selected domain; used to
rotate the comparand in the Domain Comparator Units.

PLC1, PLC2 (3,6) The first and second bit-time after the last bit of every domain.

PLD 0, 	PLD 15 (1,2,4,6,7,8,9,10,11,16) Decoded from the RAP CONTROL BUS.
They are effective only to open cells that are neither blocked, nor
rejected, nor running.

POLL IN, POLL OUT (2) Indicate the input and output points of the daisy-chained
"priority—line that runs through all cells in the System. This line is
needed only in large systems to replace a polling-by-address scheme.

Ql (6,7) Indicates that the Domain Comparator Unit #1 is chosen and the result
of the comparison (as specified by fi, gl, hl) is positive.

Q2, Q3 (6,7) Similar to Q1; but applied to the other remaining units.

QDCJ (7,8,10) Indicates that the "current" tuple contains valid data and it
satisfies the Query List. In the case of data retrieval, a low value of
QDCJ could indicate that the limit of tuples to be retrieved has been
reached.

QMRK (7) Indicatés that the Query List asks for the presence of at least
one mark (as specified by a2, b2, c2, d2) and that the current tuple is
satisfactory as far as the presence of marks is concerned.

QUMRK (7) Similar to QMRK; but related to the absence of marks.

u°2

DESIGN/PERFORMANCE APPENDICES 	8.1.3

R ADDRESS, R ALU, R BC,R I/O, R RN, R SC, R STATUS (COND) (1,10,13) Decoded
from the RAP CUNTROr BUS. —They are effective for open cells that are

. neither blocked nor rejected. Employed to put the Address, RESULT REGISTER,
BUFFM COUNTER, I/O BUFFER, RELATION NAME REGISTER, S COUNTER and STATUS
respectively on the RAP DATA BUS.

R STATUS (UNC) (1,13) Decoded frdm the RAP CONTROL BUS. It is effective for
all cells independently of their states. Employed to put the STATUS
on the RAP DATA BUS.

RAP CONTROL BUS (1) A set of 8 lines of control flowing from the CONTROLLER to
all cells.

RAP DATA BUS (1,13) A set of 16 bilateral lines to transfer data from the CONTROLLER
to all cells and back. Not used to transfer data between cells.

RBIT (9) A narrow pulse indicating that the "current" mark-bit (relative to the
WRITE HEAD) must be erased.

READ ONLY (18) Decoded from the DATA CONTROL SWITCH to indicate that the contents
of the CCD Track must not be altered. This is of great value for testing
purpose.

REF (15,19) A signal indicating that the "current" location on the Track matches
with the setting of the thumbwheel switches. This is also of great value
for testing purpose.

REJECTED (1,2,13) An important state of a cell to indicate that it has been served.

RELOAD (15) A narrow pulse used to restore the contents of the SECTOR COUNTER
after it has counted a multiple of 256 bit-times during which interval the
CCD Track behaves as if it is standing still.

REN (9,14) Indicates that the "current" bit (relative to the WRITE HEAD) must
be rewritten.

REP (11,12) Decoded from the C op values to indicate that the specified domain
of 	satisfied tuples must be replaced either by a constant or by
another domain.

RHOFF (8,7,17) Indicates that the READ HEAD has gone beyond the physical end of
the CCD track.

RSQ (3,4,5,10,12,14) Another clock phase that occurs slightly later than 4.
Employed mainry to truncate some signals so that they do not overlap with
the next bit-time.

RUNNING (1,2,4,8,10,11,13,17) Indicates that the cell is executing its job and
therefUre the CONTROLLER cannot do many things to the cell.

SAMPLE (14,16,18,19) A narrow pulse that occurs slightly before •. Used to
mire data from the CCD Track.

83.

8. DESIGN/PERFORMANCE APPENDICES 	8.1.3

R ADDRESS, R ALU, R BC,R I/O, R RN, R SC, R STATUS (COND) (1,10,13) Decoded
from the RAP CiTNTROr. BUS. —They are effective for open cells that are
neither blocked nor rejected. Employed to put the Address, RESULT REGISTER,
BUFFER COUNTER, I/O BUFFER, RELATION NAME REGISTER, S COUNTER and STATUS
respectively on the RAP DATA BUS.

R STATUS (UNC) (1,13) Decoded from the RAP CONTROL BUS. It is effective for
all cells iaependently of their states. Employed to put the STATUS
on the RAP DATA BUS.

RAP CONTROL BUS (1) A set of 8 lines of control flowing from the CONTROLLER to
all cells.

RAP DATA BUS (1,13) A set of 16 bilateral lines to transfer data from the CONTROLLER
to all cells and back. Not used to transfer data between cells.

RBIT (9) A narrow pulse indicating that the "current" mark-bit (relative to the
WiITE HEAD) must be erased.

READ ONLY (18) Decoded from the DATA CONTROL SWITCH to indicate that the contents
of the—ECD Track must not be altered. This is of great value for testing
purpose.

REF (15,19) A signal indicating that the "current" location on the Track matches
witE—the setting of the thumbwheel switches. This is also of great value
for testing purpose.

REJECTED (1,2,13) An important state of a cell to indicate that it has been served.

RELOAD (15) A narrow pulse used to restore the contents of the SECTOR COUNTER
after it has counted a multiple of 256 bit-times during which interval the
CCD Track behaves as if it is standing still.

REN (9,14) Indicates that the "current" bit (relative to the WRITE HEAD) must
Fe rewritten.

REP (11,12) Decoded from the C op values to indicate that the specified domain
of 11-1 satisfied tuples must be replaced either by a constant or by
another domain.

RHOFF (8,7,17) Indicates that the READ HEAD has gone beyond the physical end of
the CO—track.

RSQ (3,4,5,10,12,14) Another clock phase that occurs slightly later than 4.
Employed maiiiTy to truncate some signals so that they do not overlap with
the next bit-time.

RUNNING (1,2,4,8,10,11,13,17) Indicates that the cell is executing its job and
therefUre the CONTROLLER cannot do many things to the cell.

SAMPLE (14,16,18,19) A narrow pulse that occurs slightly before t. Used to
. 	samiré data from the CCD Track.

814

8, DESIGN/PERFORMANCE APPENDICES 	8,1.3

SATISFIED (8,9,10,11) Indicates that the "current" (relative to the WRITE HEAD).
tuple is satisfied and must be perhaps marked, updated, retrieved, etc.

SAT ONCE (11,12,13) Indicates that the cell has seen at least one satisfied
tuple since it was initiated to run.

SBIT (9) A narrow pulse indicating that the "current" mark-bit (relative to
ifié WRITE HEAD) must be marked.

SINGLE (15) Decoded from the SPEED CONTROL SWITCH to indicate that the speed
is ià the Single Step Mode; i.e. the PULSER BUTTON must be activated to
advance the Track.

SL-1 (5,8,10) Loaded by the CONTROLLER to indicate that the data retrieval
instruction is in the partial mode; i.e. only up to three domains from
each tuple must be stored in the I/0 BUFFER.

SL-4, SL-5, SL-6 (6 .,7) Loaded by the CONTROLLER to indicate that the Domain
Comparator Unit #1,.#2, #3 respectively is chosen to execute the Query
List.

SLD 0, 	SLD 7 (1,4,5,6,10) Decoded from the RAP CONTROL BUS to load serially
some registers. They are effective for all open cells that are neither
blocked nor rejected nor running.

SPACE COUNT (8) Decoded from the C op values to indicate that the cell must
aunt to see how many empty siiàces it has left on its track. The answer
is left in the S COUNTER.

SQ1, 	SQ7 (3,6,8,9,10,11) Narrow pulses (slightly wider than 0) that mark
the first seven bits of every tuple.

STOP (15) A signal occuring only in the Single Step Mode. It indicates that
thë cell is waiting for someone to activate the PULSER BUTTON.

STORE (14,15,17) A signal coverning the interval during which the CCD Track
behaves as if it is not spinning. SAMPLE, 4, RSQ, CE1, WE are not generated
In this interval which must be a multiple of 256 "bit-times".

SUB (11,12) Decoded from the C op values to indicate that the cell must perform
a sairaction on the tracî for all satisfied tuples.

SUM (11,12) Decoded from the C op values to indicate that the cell must calculate
the sum of the specified amain of all satisfied tuples and leave it in
the RESULT REGISTER.

TAKE NEW (11) Employed only in MAX/MIN to indicate that current (specified) domain
has a better value that must be stored if the relevant tuple qualifies.

TKE (4,7,8,10) Ihdicates that either the track has no more valid data or that
Tinthe case of data retrieval) the limit of retrieval has been reached.

85

If both MARK and UNMARK

of all satisfied tuples

8. DESIGN/PERFORMANCE.APPENDICES 	8.1 1 3

TRACK START (17) A narrow pulse to mark the moment the CCD Track gets synchronized
iiith the cell when it is running (i.e. it occurs just before the clock pulse
of the first bit of the Track).

TRIGGER (14,15,16,17) Decoded from the BASIC TIMING COUNTER. It comes slightly
later than OSC. It changes the CCD locution pointer from WRITE HEAD to
READ HEAD.

• TSYN (3,4,14,15,17) Indicates that the cell is scanning its track and is
synchronized with it.

TTDATA (9,18) The data that must be written on the track if REN is high.
See—àlso EX DATA.

UNMARK (9) Similar to MARK; but for unmarking purpose.
are high, UNMARK has no effect.

UPDATE (9,11,12) Covers the domain that must be updated
in the instructions ADD, SUBTRACT, REPLACE.

WE (14,18) The "enable" signal for writing on CCD chips.

WHOFF (8,17) A narrow pulse to indicate . that the WRITE HEAD has gone beyond
the ii-gysical end of the track and therefore producing the AUTOFIN signal.

VO, Yl, Y2 (5) Decoded from a 2-bit counter to connect one of 3 registers to
a compeator to produce the EQUALITY and EQUALITY2 signals.

86

AD 4-

AD 5-

INS(0:7)

BLOCKED + REJECTED -C

ice ENABLE
AD 4-
AD 5-

D 6-

- R I/O
-R g-TATUS (CM))
-
-R ADDRESS

OMM

SLD(0:7)
AD 4 -

AD 5 -1

AD 6
RUNNING

8. DESIGN/PERFORMANCE APPENDICES 	8.1.4

8.1.4 LOGIC DIAGRAMS L-1

CELL INTERFACE: BUS RECEIVERS, CONTROL DECODERS

REJECIED BLOCRED
-C

AD O--c
AD 1

ICCK OPEN

AD 3-4

AD 4
AD 5
AD 6 "

R SC
11.1.•n

R_BC

R RN

- R ALU

RUNNING_--c

KEY ENABLE 	
RAP CCNTROI, BUS

7 6 ... 0

AD 0

AD 4 -
AD. 5 -
AD .6 -

KEY ENAI3LE

AD 4 -
AD 5--
AD 6--

PLD(8:15)

PLD(0:7)

RAP DATA BUS

15 	

87

LLOCK OPEN

ADDRESS SWITCHES
CK 7 + INS 4

KEY ENABLE

R S
D Q

INS 3 1

SR
D Q

•

BLOCKED

PLD 9 DT(0:15)

DESIGN/PERFORMANCE APPENDICES 	8.1,4

LOGIC DIAGRAM L-2
CELL INTERFACE: CONTROL OF IMPORTANT STATES

PLD 1

LOAD R

RELATION NAME REGISTER

ALIVE -b.

CK 0
CK 4

CK 1

EXFILI---

CK 5 -1

RELATION NAME COMPARATOR

DT(0:15)

ADDRESS COMPARATOR

DT(0:7) .
BLOCKED

EXFIN

.•nn••n••

EXFIN + INS 1 + INS 2
CK 6
PLD 8

INS 3

POLL OUT POLL_IN

BLOCKED
LOCK OPEN

+71 REJECTED
EXFIN + INS 2

INS 1

EXFIN + AUTOFIN

88

Din

TS YN

D Q

DII":"«?

L_A_J
-V-3) Q

1-111- 1 D Q pre.2

1-1

DR 	D •
Q C • D

CK
SOS

8. DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOGIC DIAGRAM L-3

SYNCHRONIZER: MARK-BITS, LENGTH CODES, DOMAINS.

BS

BLOCKS TART

r-1 DS Q
Serial-Parallel Converter

01 02 03 04 05 06 07

v 	DDDDDD R.11.1 LOAD
QQQQQQ
Ii 	1 	1

SQ2 	 SQ7
SQ1

D Q

E 3 4

GAPE

LC2 	 El oy 	 BLOCK STAle

MDR WAD DDDDD R 	 41,"
Eee— cur EN

WORD-LENGTH-COUNTER TC
RSQ

PI=

07

Bum(STAFT 	
DAM IN rirrit

142

I C-1:1n-
gg 1. 	SQ21 	

' 	
D 113_

A

SQ3

89

PSQ

D-1

•••n1

ri

DESIGN/PERFORMANCE APPENDICES 	8,1,4

LOGIC DIAGRÀM L-4

SYNCHRONIZER: LENGTH CODE RAM, DOMAIN INDICATORS, DELIMITER, TKE

=RUN + DL + FIZ) 11

%MD POSITICN COUNTER

Ur 0—H

DT 1._]

•

LENGTH CODE RAM

Dil 	Do1

Di2•• 	D32

__E10

—

E34

100 ns
MUM,

KEY ENABLE

RUNNING

SLI) 2

CRTE

(#)... 2:4 Deccder
(##)... One-shot

90

CK 	R
Di * Do

* *

Dr 0

--

„ 3-JUALITY

r
woRD-PosrnoN •

L _oeurnER • YO

op4

mumzrz2 D Q
CCMPARATOR

RSQ * MOR

1 i>
LC2 1

IC1

(f)... 2-bit Counter
(##)... 2:4 Decoder
(*)... 8-bit Serial/Parallel Register

(**)... Tri-state Buffers

Cop4

LOAD I/O BUFFER * SD-1

GAPE

8. DESIGN/PERFORMANCE APPENDICES 	8.1,4

LOGIC DIAGRAM L-5

SYNCHRONIZER: DOMAIN SELECTOR

EQUALITY --I

PLO:K STARf + DL 	R # 	EN

QO Q1

f#

YO Y1 Y2

EXPIN

KEY ENABLE * SLD 4

91

8. DESIGN/PERFORMANCE APPENDICES

KEY ENABLE * SLD 5

LOGIC DIAGRAM L-6

QUERY ANALYZER: DOMAIN COMPARATOR UNITS

~ciD

Di # ar SEL
Dil *
Di0

* Do 44 Di *

1n11n1,

** Do

8.1 . 14

E34

Q1

mum.

EOR

PQ1 4

Ocl

R Q

D

EKE=

I WDRD-POSITION 1
I 	COUNTER 	r
L 	 1

•
SL-4 112)

SQ5
• •

DATA IN

J Q

K

GAPE

 SL-4

pscl

CCt4PARATOR

NOTE:
--Only the 1st unit Ql
is shadn. For others, use 	DT14:7

•identical logic with variables ---
modified as indicated in
Table below. 	PLD 6

-
01 SLr4 fl gl hl SLD 5 	OC1
ag SLr5 f2 g2 h2 SLD 6 	Øc2
03 SLr6 f3 g3 h3 SLD 7 	0c3

SLr5
f2
g2

hl 	g3 MIT C 	T rthri

DT(0:7) 	h2 SLr4
fi 	&& 	SLr6
gl 	f3

h3

8-bit Serial/Parallel Register
8-bit Shift Register
16-bit Shift Register
4-bit Latdh
8-bit Latch

PLD 5

(*)... (**)."

(W.

92

DISJ

A

a2

(#) • .. 8-bit Latch

A -{1
a?.

b2 "DJ
c2C 111)1

d2 1:11)--j

D

13'
b3117-2)
C /Di

d3
D

A III>

bB3

c3
D

PID 10

B —71
b2
aC 	 j

d2

DISJ_

DF
TKE

RHOFF

Q1
Q2
43

QMRK
QUMRK BMA

DISJ

RI
S

inxamscammma [2ps

a2
b2
c2
d2
a3
b3
c3
d3

EXFIN

DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOG/C DIAGRAM L-7

QUERY ANALYZER: TERMS EVALUATOR

93

DL

D

Th

SATISFIED

I
EXFIN

17T BUS

(#)... 8-bit Latch

(##)... 3•8 Decoder LCAD I/O BUFFER

DMIZE

um=

8. DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOGIC DIAGRAM L-8

SYNCHRONIZER: GENERATION OF "SATISFIED" AND "AUTOFIN"

Ruraurn
SQl

DF
INSERT

SPACE COUNT

OCC7 + CREATE
DL

SPACE CCUNT

INSERT —.

CREATE
R CNT EN

S-OZUNTER

RHOFF

LIMIT 0:71PARA'IOR

LOAD

LMITTREGISTER

I/O BUFFER__.;

Se

r-
MŒ

IQ Wm--
1 - _ j

DL
tarren• war?

PLD 3

ET (7:0)

94

al * SQ2
bl * SQ3

* SQ4
* EQ5

INSERT + DELETE

SATISFIED

DISI

MARK

mum
al

bl

(#)... 8-bit Latch

8. DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOGIC DIAGRAM L-9

UPDATE CONTROL UNIT

EXFIL1

95

e WORD 'MGM COUNTER I
L- 	- 	-

1Sbi I [Los_b

--7f7--

r
1

-

r-
EOR

K

EQUALITY

(#)... One-shot • -
(&)... 16-bit Serieal/Parallel Register
40... (16)2:1 Multiplexer
(*)... 1KX16 RAM

(**)... 16-bit Parallel/Serial Register

BT L-f> # # Q
400 ns. 60n

1n••n••nn

KEY ENABLE * SLD1

R Di

nqs men

DESIGN/PERFORMANCE APPENDICES 	8.1,4

LOGIC DIAGRAM Lr10

. I/O BUFFER

DATA IN

DT(15:0)

KEY ENABLE * R r/0
DL

QECJ

ID

&&

(High to select D))
t nisrmer —se.

LOAD I/O BUFFER ---
I BUNNIM

I/O BUFFER COUNTER
R 01 Di

EXRUN + PLD

AD I/0 BUFFER

R I/O

ENSERT

SATISFIED
EOR

INSERT

W Di Addr

I/O BUFFER

SATIbriEU

** 	Ece 	

ID Di

BSQ

* *

96

REGISTER 1

—

DATA D — Di

Dr (15:0)

(*)... 16-bit Ser/Par Reg
(**)... 8-bit Par/Ser Reg
(#)... (16)2:1 Multiplexer

RUNNING
(High to sel. Se/

rot , Dr)

C op4
-DDR

EQUALITY' + EQMLITY2

SATISFIED --> 	SATI CNCE

DQ I Q 	
-4-- 	S

t-OUTPUT of REGIertat 2

MKE NEW
\

SC21
SATISFIED

MAX +. MIN

DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOGIC DIAGRAM L-11

ARITHMETIC UNIT: REGISTER 1, REGISTER 2, COMPARATOR, Stun! ccurRoL.

-- ef4aDsi ** 	DD
WAD

REGIeLe.S» 	re 2 	 E18 DATA IN 	

•
Dsi ** Do —

MAD

sz

	 SUM + INT-1 + IN-2

PLD 13

El0 -H

Ci

B Co

HA

RSO

ATE

--I> LO_Ftl.P

Mill Adder
(**)... 8-bit Ser/Par Register
(#)... 3:8 Decoder

98

D CKb

1.1.e * * Di

H ADD
H SUB
7

I- PEP
SUM
MIN
MAX

C op4

C opl

C op2

C op3

DAM IN

CKa I

OUTPUT of REGIeitat, 2

RESULT REGIerr.N

* *

E1.0-

SUM * SAT CNCE

ADO + SUB

8. DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOGIC DIAGRAM L-12

ARITHMETIC UNIT: FtESULT REG/STER, ADDER

D

KEY DIABLE

R SC
R—EC

R I/C

8, DESIGN/PERFORMANCE APPENDICES 	8,1,4

LOGIC DIAGRAM L-13

OUTPUT MULTIPLEXER

S COUNTER I/O BUFFER
COUNTER

RALU

RESULT REGISTER

\7
* * *

RAP DAM BUS
D
C S R
B S
A S

R SUS (OOND)

R STATUS (UNC)

RAP DAM% BUS (0:4)
r-CI *

SAT ONCE —I

RE3RDECTEDNN-en

4_1

meanm

RAP DATA BUS (10:15)
r.41

(*)... Tri-state inverter
(**).• . Open-collector driver

(***)... Tri-state driver (non-inv)

* *

99

e!) e 	la* c'*-d

Din 	LOAD

BASIC TIMING COUNTER

a

t20 MHz
Square Wave
Generator 	a bcde

can=

STORE

MANUAL + REM
CSC + STORE-1

CM:),

SAMPLE
0

Qt_ d
• e

I D R Q

MANUAL + 1511 	,

RSQ

DESIGN/PERFORMANCE APPENDICES 	8,1,4

LOGIC DIAGRAM L-14

SYNCHRONIZER: PHASE GENERATORS FOR CCD MEMORIES

100

TRACK RESET SWITCH

TS212>IN

DESIGN/PERFORMANCE APPENDICES 	8,1,4

LOGIC DIAGRAM L-15

SYICHRMIZER: SECTOR CCUNT'ER, TRACK COUNTER , SPEED CONTP-IL

SECTDR RESET
SW=

f
TRIGGER

LOAD ZERO

STORE _c--) 	
	CNT EN

SECTOR COUNTER 	LS --> 	 mParv Crl

TRIGGER —I> 	TRACK °COMER

STORE me Di 	D:D
SECTOR REGISTER

101

8. DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOGIC DIAGRAM L-16

CCD TRACK: ADDRESSING FOR CCD CHIPS

Dr BUS

1 TRACK COUNTER 1

J

CREATE * PLD 01

LOAD

BLOCK SIZE REGISTER

sAmpLETRIGGER
R

CE1 	S Q

, DUAL HEAD
4eciacted to the

casplertent of BIM=

Sel
p'w HEADS MULTIPLEXER`

(*)... TTIrMOS Driver
(**)... TTLrMOS Driver

TTIArbee Driver
(#)... 2:4 Decoder

(##)... 4:16 Decoder
($)... CCD Memory Chip

.6 bits (lsb) /-

\1

* *
CSY (0:15)

Addr
11•n•••1

mum.. t—ICS rlsCE 11•n•••n1

CE

CS

Addr
C:E

CS

102

BM HEAL

TSYN

TRIGGERr4

=CI(STAFM
GAPE

 STORE

RUNNING

CE1
RUNNING

TR/ICK SIAM'

TS'YN
Q

TSYN

RUNNING

8. DESIGN/PERFORMANCE APPENDICES 	8.1.4

LOGIC DIAGRAM L-17

S YNC H RON I Z ER : PLCCK STARI , TRACK START , PHYSICAL END OF TRACK

TRIGGER

(#)... 4:1. Multiplexer.

103

8. DESIGN/PERFORMANCE APPENDICES 	8 1 1.4

LOGIC DIAGRAM L-18

CCD TRACK: I/O, SHIFT DRIVE for CCD CHIPS

EX DATA (Connected to TTDATA)

DATA CONTROL r1=11/11 Œ1—C
_ .•••n••n

tIANUAL SWITCH

) READ CKLY

D TA SWI'ICH

î

--J

WE

Dout

01
02 	.

03

eg

D Q

SAHPI 1-t

DATA iN

(#)... TTL to MOS Driver. The actual number of drivers depends on
fan-out and on the physical distribution of CCD chips.

(#1)... MOS CloCk Driver. The actual number depends on fan-out.
(###)... CCD Chips. Logically, the pins shown above of all CCD chips

are connected in parallel. But in practice, the limitations
of drivers prevent that.

104

3:8 DEC/DRIVER

DESIGN/PERFORMANCE APPENDICES 	 8,1,4

LOGIC DIAGRAM L-19

CCD TRACK: REF CONTROL, LED OCTAL DISPLAY

(8) TELIMBWHEEL swremas

COMPARA1OR

4
SAMPLE

r-- 	

1 TRACK OUJIll'ER I
1 	 1
I SECIŒ COEN= I

----]

1 SECIDR REGISTER _J
C7 C7

f (3) 8:1 MULTIPLEXER

3-BIT
COL1NTER

• 7-SEGMENT
DE/DRIVER

(8) 7-SEG4ENT
LEDS

1n•n•1n11

105

DESIGN/PERFORMANCE APPENDICES 	8 1 2

8.2 RAP 2 - System Characterization and Measurement

8.2.1 Overview

A prototype system incorporating a PDP 11/45 Main Frame, a PDP 11/10

Controller and two cells has been fabricated and tested in a variety of ways.

The unifying theme in these tests has been the development of a set of 6

demonstration queries which characterize the system and its use. Section

8.2.5 provides a copy of these queries with printouts showing a tangible

measure of intermediate and final results. In normal use, input in either

SEQUEL commands or RAP Macro-Assembler language would be used. Output would

be the same, display of intermediate results not being essential.

Section 8.2.2 provides a sofware/user characterization centering about

the Block Diagram in section 8.2.2. Sizes of software resources are given,

where fixed, on the diagram, or, where query-variable, in the table of Query

Statistics in section 8.2.2.6 Various operation times are defined in 8.2.2.1

with results of measurement in 8.2.2.5.

A corresponding hardware system description is provided in section

8.2.3 with data on channel widths and rates provided.

The spirit of the whole presentation is to provide data in a modular

form with enough discrete data points made available to permit estimation

(at some effort) of the performance of alternate systems incorporating

different processors, cell sizes, cell quantities, or other changes.

106

DESIGN/PERFORMANCE APPENDICES 	8,2,2

8.2.2 Software Characterization

8.2.2.1 Definition of Characteristic Times

Modules
Involve ,

Compilation Time

- the time taken to translate a SEQUEL query into RAP intermediate code

- the skquEL code exists on a "s" file (with no comments)

- the RAP intermediate code is written into a "r" file

Input Formatting Time

- the time taken to translate RAP intermediate code into RAP internal code

- the RAP internal code is written to a "clt" file and is passed to the controller

Output Formatting Time

- the'time taken to transform raw data that is retrieved from RAP into a
displayable form

• - the following important formatting is done:

- relation and domain headings are produced

- integer domains are transformed from binary form into character form

- the retrieved data exists on a file names "raio 1"

- the formatted data is written on a "0'; file

- deletion and updating do not require output formatting since no data is retrieved

Response Time

- the time taken to "execute" a query including:

- RAP input formatting time

- time taken to pass information to RAP from front-end

- actual RAP execution time

- time taken to pass information to front-end from RAP

- ouput formatting time

F H

8.2.2.2 Major Program Steps

There are 4 possible steps of program execution:

1. Initialization of program.
2. Compilation of SEQUEL.
3. Execution of RAP

- RAP Input Formatting (3a)
- RAP Execution 	(3b)
- Output Formatting 	(3c)

4. Termination

Steps 1, 4 must
always be executed.

8.2.2.3 Procedures for Time Estimation

Compilation Time = Run (1 + 2 + 4) - Run (1 + 4)

Input Formatting Time = Run (1 + 2 + 3a + 4) - Run (1 + 2 + 4)

Output Formatting Time = Run (1 + 2 + 3a + 3b + 3c + 4) -

Run (1 + 2 + 3a + 3b + 4)

Response Time + Run (1 + 2 + 3a + 3b + 3c + 4) - Run (1 + 2 + 4)

107

cELL 1r

2DP/OD cow rROI....LER PDP jI/iS Cr

G.
INTE&E An LITER '

F 	 POOL 	 Ple,111 POOL (.5k)

,--R-1:->
er POT 	mAcHINE I.AterdAére

INTERNAL RA?
TMSTRUCTioN

ebb COWSTetill

/Meng 	
, PR R R METE tkS

«04 	
(2.90

3e *-1 mos/1 wee 	. 	 SD INSTRucrion5

2 `4°R115/coos-rANT 	 . 	. 	 3 2 woelos eAcli

DESIGN/PE
RFORMANCE APP ENDICES

00

I-1
 CD

00

CELL
Ç-1

) Rene*
41A0 ALL

ROsS SEL2CTS
SAVE

cett. OMER orn00;

(-

C orvT R 0 t.teR

Xio 11OFFER
(Mc)

uiSERT

14 .

AfflDLEAlci 	
Arno
arnoALL
KGS Gets

_
RAP REO MRS

a 7 RŒfrISTERS
wORIDS ACti

.e5
' uei FORM ATTU,

R E S ULT.5
wffloyoome"

Re TotiEveD

IC

OUTPUT
FI LS

`meet/I /commie

A

S E &tea-
C orritti AM:es

3'

sEGUEI:
comPtLE
\.(172 K).

elitER AND UT
oc.L.

I NTE R MEDIA-1-E
RAP MACHINE
iet4 iryA E CO!'t>E

-to woROSA rem .

1-E wogkOSeconsTeer

C

Wir
Ac

,ASsE me LEIR
Lots bueGE

Redered
mArmputfiTsON

RAI»
GWEAMS

8.2.2.4 SOFTWARE COMMUNICATION - BLOCK DIAGRAM

DIFI&RAMI

QEIWRRE CONIMONI Ç ATI N

co

DESIGN/PERFORMANCE APPENC I.CES •
8.2.2.5 EXECUTION TIME ESTIMATES OF RAP FRONT-END SOFTWARE

8 .2 . 2 5

r 	Compilation 	Input 	Output 	Response
Query 	Type 	Time 	Formatting Time 	Formatting Time 	Time

of
#• 	Time 	mean 	sdev 	mean 	sdev 	mean 	sdev 	mean 	sdev

1 	real 	0.9 	.697 	1.1 	.707 	.4 	.577 	2.8 	.577

user 	.11 	.090 	.03 	.148 	.03 	.156 	.07 	.133

sys. 	.65 	.246 	.72 	.222 	.08 	.206 	1.44 	.263

2 	real 	1.0 	.721 	1.4 	.667 	.4 	.516 	4.6 	.516

1 	

user 	.08 	.119 	.02 	.133 	.12 	.145 	.20 	.139

sys. 	.69 	.261 	.75 	.260 	.26 	.344 	3.35 	.289

3 	real 	1.2 	.721 	1.7 	.707 	.4 	.577 	3.7 	.707

•
user 	.19 	.138 	• 	.03 	.163 	.06 	.116 	.10 	.143

sys. 	.88 	.370 	1.02 	.374 	.09 	.329 	1.95 	.429

4 	real 	1.2 	• 	.721 	1.3 	.606 	0 	0 	2.4 	.516

• user 	.13 	.076 	.02 	.111 	0 	.05 	.114

sys. 	.90 	.263 	.77 	.271 	0 	0 	1.34 	.273

5 	real 	.6 	.503 	.9 	.316 	0 	0 	2.4 	.516

user 	.07 	.070 	.01 	.111 	0 	0 	.04 	.145

sys. 	.43 	.274 	.72 	.288 	0 	0 	1.24 	.307

6 	real 	1.5 	.594 	1.4 	.577 	.7 	.707 	4.4 	.577

user 	.21 	.143 	.03 	• 	.158 	.04 	.152 	.12 	.165

, 	

sys, 	186 	.367 	.75
- 	

.350 	1 	.19 	.245 	2.55 	.388

,Note

AU times are given in seconds. 10 trials were done for each mean. All were
done on a multiple-user system occupied by only a single user in addition to

. systems functions. The latter account for some variation.

real n actual elapsed time

user n actual program execution time

system n operating system time for file access

109

•

00

S
M

IG
N]
dd
V
 33
W
Wb
Od

U
3d

/N
9I
SI

E

8.2.2.6 DEMONSTRATION QUERY STATISTICS

•
SOURCE 	COMPILATION 	RETRIEVAL

11' 	cro 	11• 	•ii. 	up es 	ata 	ormatt 	11. 	 ecut on 	me 	or 	me an
Type of 	Sequel Source 	Assembler Source 	Intermediate Code 	Internal Code 	Retrieved 	Retrieved 	Data 	Revolutions 	Controller and 	File (Disc)

	

Query f 	Query 	(words) 	: 	(words) 	(words) 	(words) 	(words) 	(words.) 	Cell (sec.) 	Excess Time

1 	Simple 	61 	68 	208 	98 	3 	18 	189 	3 	.07 	2.27 	.
Retrieval 	•

2 	Projection 	28 	125 	403 	. 192 	28 	88 	592 	115 	2.65 	4.32

Retrieval 	 .

3 	Nested 	95 	185 	669 	322 	• 	11 	• 	66 	. 	405 	13 	.30 	3.12
Selection 	 -

	

0 	5 	.13 	2.42 4 	Update 	73 	116 	414 	200 	0 	0

5 	Deletion' 	25 	17 	141 	46 	0 	0 	0 	1 	.02 	1.78

6 	Physical 	98 	323 	1263 	610 	14 	56
Join 	 (7+7) 	

391 	63 	1.37 	3.74

Diagram 	A 	C 	• 	E 	G 	Cell 1.11 	I 	K 	Cell I; II

	

. 	Label

oo

-C71

8.2.3 Hardware Characterization
8.2.3.1 Module Defintion

P, R

DESIGN/PERFORMANCE APPENDICES 	8 1 2 1 3

Modules
Involved

UNIBUS

- 56 lines (16 data, 18 address, 22 control)

- asynchronous operation with maximum data rate of 40 mbits/sec

(both 11/45 and 11/10)
- all peripherial devices appear as memory locations

- DMA can be used by peripherials

DMA INTERFACE

- DMA interfacrs on both buses allow memory to memory transfers

in either direction

-. datapath between P and R interface is 16 bits

- asynchronous operation with maximu of 20 mbits/sec

- data transfèrs possible are:
a) block address 	block address

h) single address 	single adiress

c) single address 	single address

CELL INTERFACE

- decodes a cell address block 764000 	764777
- beuffers unibus from cell bus

- cells appear to be unibus memory locations

CELL I, II

- I/O buffer is a 1K work two port ram in which retrieval data is

written by the cell

- appears as a single memory location on unibus (memory address

pointer can be manipulated)

- 38 registers for control and status of cell appear as memory

locations on unibus

111

s -AAtrROgUr

RD.14E1.61 C 0 171 UNIgir/ON

P OP 	 Cr. Pc I 	I

I

I 	1

I
I . 	I

1 	I

1 	I

1 	I

t oo'

POPlyn, c ON TKOLLER

UN , Ole

DATA orr.s
tolOOREif irrs

a e CONTRoL 0111

rn A tr.
-roPe
PRIVE

nz MOTE
Lugs

"3 oodflo0

[

LINE
1_7kIWTtfl

oiSK
OKWE

SOM6iT

CsilA
oispLoy

 	•

e—P-ifONE

3oo cleu0

- o

ic
RIK woe
phys*

He—ear etbKuolli
I 	%/ergo

l
t.

OM
4.1-ER.FeCE

oRO
nix:41E41

STATUS

- - - -
-SelteuS

vflA11E14.
c poUtrIOL

4

UNIOYS

. 	(TERmIgAl.)

3 LOC-tAt
 Oop

V

rOPIV4S

CPU

mirOorti

16 lc
COR O

IXb GIUFFER
Acid*, RAM

Ace,
51110

8uFlerR

/ CC1
aredMEmo

_64K ,
Neut.(

	I STF)TU.S
Ronsr101.

RE tri sriRs

CfLLJ4

OATe
11 ODV&IESS
2 C Om" Ot-

le.161--jitana

ALU
Sy«)

cownom 	auFffit

ereys RE&I TEAS I -1
. _

POP 1 VIo
CPU

8.2.3.2 HARDWARE COMMUNICATION - BLOCK DIAGRAM

I 	I

1 	I

1

I 	1

1 	1

I

1 	I

1 	3

R .
0 foir

Itnrit 	1

1-40R0 COliiil
Aocets5

offrA - Rfe tS T'9
ere TuS

4za_ti UNIOUS
FIDORESS

MOPE
-764 444

.

"6 itill - ourgm
1{.0173

RA,
 nalcon'R

(-rstrou4

STATUS F-à-- oe- ,

_
t‘oarotsrs

" Jet
meleTER

c oNTotoi.

DESIGN/P ERFORM ANCE APPEN DICES

DESIGN/PERFORMANCE APPENDICES 	 8.2.3.3

8.2.3.3. RAP - DMA INTERFACE RATES FOR READ AND/OR WRITE

including time to setup the slave device

Transfer 	Block Size 	Number- of 	Time 	Rate

	

Type 	Total Bytes 	Bytes 	Block Transfers 	sec. 	Kbytes/sec. kbits/sec.

W 	107 	103 	104 	94.4 	106 	847

	

R-N 	107 	500 	104 	94.7 	106 	845

	

R-W 	106 	500 	10
3 	

15.8 	63 	506

	

R-W 	8x105 	400 	10
3 	

15.1 	53 	432.

	

R-W 	6x105 	300 	10
3 	

14.1 	43 	340

	

RAJ 	4x105 	200 	10
3 	

13.4 	30 	239

	

R-W 	2x105 	100 	10
3 	13.1 	15 	122

- 	R-W 	2x104 	100 	10
2 	1.6 	12 	100

	

R-W 	2x105 	10 	10
4 	

105 	2 	16

113

DESIGM/PEPTORMANCE APPENDICES 	8.2.3.4

• 8.2.3.4 RELATIVE SPEEDS

POP 11 FAMILY CALIBRATION

Register to Register Transfer Times as a Measure of Relative Speed

Machine 	11/05 	11/10 	LSI 11 	11/03 	11/04 	11/20 	11/34 	11/40 	11/45 	11/70'

Time in
usec 	3.7 	3.7 	3.5 	3.5 	2.9 	2.3 	1.8 	0.9 	0.45 	.3

Memory to Memory Transfer Times

PDP 11/45 Memory to Memory MOV. 	3.8 usec

PDP 11/10 Controller Memory to Cell Memory 	MOV 7.4 usec

114

. 	DRIVEN

DOMAIN UANE DOMAIN ME

Demonstration of the

RAP System
. 	.

'Using the

SEQUEL Query Language

• .and the

Actual RAP Hardware

DONA1N LENGIU

BRIVER_NO 	• 	INTEGER 	2 BYTES
SURNAME 	CHARACTER 	4 BYTES
INITIAL 	' 	CHARACTER 	1 BYTE 	-
HOME 	CHARACTER 	4 BYTES
SEX 	CHARACTER 	.1 BYTE 	00

MARITAL-STATL3 	. CHARACTER 	. 1 BYTE
HEIGHT 	' 	' 	INTEGER .. 	2 BYTES
BIRTH-YEAR 	INTEGER 	2 BYTES • 	CO
DAY-HIRED 	INTEGER 	1 BYTE 	• 	rn
MONTH_HIRED 	• INTEGER 	. 	1 BYTE 	. 	(l)
YEAR_HIRED• 	INTEGER 	- •2 BYTES 	›--. - •
SALARY 	INTEGER 	•• • 	2 BYTES 	er,")

. . 	 =
• . 	 '-••••. 	. . 	. •

• . 	 '1J . 	.
•

rn • • . 	.
•

. 	 .

. 	 -T1 .

	

. 	 •

• .

•

DONAIN NAVE 	DOMAIN IX2E DOMAIN LENGIN 	= •
C--)

. 	 • rn• . 	 .
- TRIP-NO 	INTEGER 	- ' 	2 BYTES 	:r›
ORIGIN 	CHARACTER • 	4 BYTES 	-T:1
DESTN 	• 	• CHARACTER 	. 4 BYTES
Or 	 INTEGER 	2 BYTES. 	ni •
AR 	INTEGER 	2 BYTES
TRAVEL-TIME 	INTEGER 	• 	2 BYTES 	CI

. MILEAGE 	INTEGER 	2 .BYTES 	P......1

FARE 	INTEGER 	- 	2 BYTES 	• 	C-)

DRIVER-NO 	INTEGER • 	
• • 	2 BYTES 	rn

8, DESIGN/PERFORMANCE APPENDICES 	.2.4
SRAP.SEQUEL 	'

ir•• SEQUEL COMPILER • VERSION 4.1**

---)FILE •QUERYI.St

_ 	.
•6 	QUERY 1 	 . 	.

RETRIEVE THE SURNAME, HOME CITY AND YEAR OF BIRTH OF THOSE DRIVERS
WHO LIVE IN MONTREAL, AND WERE BORN AFTER 1940 •

+SELECT SURNAME. HOME , BIRTH_YEAR
FROM 	DRIVER
WHERE .HOME 	'MONT'

AND BIRTH-YEAR > 1940+

THE SEQUEL STATEMENT HAS BE-AFTRANSLATED IN 3 RAP INSTRUCTIONS

--->RAP

1) SELECT MARK(M1) CORIVERWIRTH-TEAR>1940 Z HoME=PMONT.3
2) READ-ALL RESET(M1) CDRIvER(SURNAM(.HOMEIBIRTH-YEAR):MKED(M1), CQUERY1.02

• 3) 	COO

•-->EXECUTE

QUERY TRANsM/TTE0

QUERY EXECUTION:
' 	3 REVOLUTIONS TO EXECUTE. .

4 SIXTIETHS OF A SECOND.

3 TUPLES RETRIEVED

•-n>DISPLAy

!DRIVER
! 	•
*SURNAME 	!HOME 	• 	+DIRTH-YEAR 	+

MARX 	MONT 	+1947
+PIKE 	4mora 	. .+1948
+rny 	+MONT 	+1953

--->FILE eQUERY2.St

..., 	 • 	
• . 	ourRy 2

BETRIEVE THE ORIGINS, AND DESTINATIONS OF ALL OF THE OIFFERENT ROUTES RUN
BY THE BUS COMPANY. 	 5

+SELECT UNIQUE OR/GIN. OEsTN
FROM 	TRIP+

THE SEQUEL STATEmENT HAS BEEN TRANSLATED IN.6 RAP INSTRUCTIONS

-•••>RAP

1) SELECT MARK(M1M2) LTRIP3
2) Ll SAVE(1) RESET(M2) ETRIP(OR/G/NIDESTN):MKEO(M213 CREG(1)-RES12)3
3) SELECT RESET(M1M2) ETRIP:MKED(M2) j ORIDIN=REG(1) 1 OESTN=REG(2)3

4) • 	BC L1. TEST CTRIP:MKEDIM2)7
5) READ-ALL R(SET(M1) CTRIP(OrIGIN.DESTN):MKED(M1)7 CQUERY2.07
61 	COO

--->EXECUTE

QUERY TRANSMITTED

QUERY EXECUT/ON:
115 REVOLUTIONS TO EXECUTE.
159 SIXTIETHS OF A SECOND.

28 TUPLES RETRIEVED

116

f

+TR/P

+9R/GIN +0ESTN

8. DESIGN/PERFORMANCE APPENDICES 	. 	8.2.4
-n.•>DISPLAY * 	 . •

	

+TORO 	+LOMO 	4

•

	

+LOND 	+WINO 	+

	

+WIND 	+LON° 	*

	

. +LOND 	+TORO . 	+

	

+TORO 	+HAM 	+ .

	

+HAM 	+NF 	+
+NF 	+HAm 	+

	

+HAm 	, +70R0 	+
+TORO. 	'MONT 	+.

	

+MONT 	• +TORO 	+

	

+TORO 	+KING 	• 	4, '

	

+KING 	+MONT

	

+MONT 	+KING 	+

	

+KING 	+TORO 	+

	

.+TORO 	+PETE. 	+

	

+PETE 	+OTTA 	f

	

+OYU 	+PETE 	+

	

+PETE 	+TOR0 	+

	

.+TORO 	+6TTA 	+
•

	

fOTTA 	+TOR0 	+

	

+TORO 	+BARR 	+

	

+BARR 	' 	+MBAY 	+

	

+NBAY 	+BARR 	f

	

+BARR 	+TORO 	+
•

	

+MONT 	40114 	+

	

+OTTA 	+NDAY 	+

	

«MAY. 	+OTTA 	f
•tOTTA 	+MONT . 	. 	+

--->FILE 'QUERY3.Se

OUCRy %.

CALCULATE THE AVERAGE ANO TOTAL M/LEAGE DRIVEN ny DRIVERS WHO LIVE'
IN TORONTO , AND RETRIEVE THE TRIP NUMBERS, ORIGINS. ANO DESTINATIONS
OF THEIW TRIPS.

.4SELECT TR/P—NO.*ORIGIN. DESTN. AVG(MILEAGE1, SUM(MILEAGE)
FROM TRIP
WHERE DRIVER—NO IS IN +SELECT DRIVER—NO

• FROM 	DRIVER
WHERE HOME m.'TOROt++

. •

THE SEQUEL STATEMENT HAS BE4N'TRANSLATED /N 10 RAP INSTRUCTIONS

--->RAP

1) SELECT MARK(MI) [DRIVER:HOME:m..70RO')
2) CROSS—SELECT MARK(MI) CTRIP:ORIVER—NO=DRIVER.DRIVER_NO3 COR/VER RESET(M1):MKED(M1)3

•31 	SUM CTRIP(MILEAGE):MKED(M1)] CREG(1)3
4) COUNT CTRIP:MKED(M1)3 CREG(2)]
5) RDIV ÉREG(1)3 CREGC21)

	

«6) 	READ_REG CREG(1)3
7) SUM CTRIP(mILEAGE):MKFD(M1)3 CREG(1)3
8) READ_REG CREG(113
9) READ—ALL RESET(M1) CTRIP(TRIP—NOIORIGIN.OESTN):MKE001)3 CQUERY3.03

10.) • 	COO

117

8. DESIGM/PERFORMANCE APPENDICES 	8.2.4

---,EXECUTE 	.

• WERT TRANSMITTED
•

QUERY EXECUTION:
• 13 REVOLUTIONS TO EXECUTE.

• 18 SIXTIETHS OF A SECOND.

AVERAGE(MILEAGE) FROM TRIP IS 147

.SUM(NILEAGE) FROM TRIP IS 1615

11 TUpLES RETR/EVED
•

---,DISPLAY * 	 . 	.
. +7RIP 	 + .

f 	 +
. +TRIP—NO 	. 	+ORIGIN 	+DESTN 	+ •

• +101 	+TOR0 	4LOND 	+
+106 	+LOND 	+TORO 	. +

. +201 	4HAM 	+NF 	+.
+206 	+NF 	+HAM- 	+

• +300 	+TORO 	+mONT 	+
• +400 	+KING • . 	+MONT 	+

+600 	+TORO 	+OTTA 	+
+601 	.+OTTA 	+TORO 	+
*700 +TORO 	+HARR 	' + •
*705 	+NDAY 	+GARR 	+
+705 	+BARR 	' +TORO 	. 	+

'OUERY4.S ,

...>
I/ 	QUERY 4 	 . 	.

. 	. 	.
DUE TO INCREASING COSTS , INC FARE OF TRIPS BETWEEN TORONTO AND LONDON
MUST BE RAISED TO 8 DOLLARS.

+UPDATE TR/1.
REPLACE FARE m 8'

	

.WHERE 	ORIGIN m • TORO , AND DESTN = 'LON° ,

	

OR 	ORIGIN m , LOND , AND OESTN m tTOR0 1 +

THE SEQUEL STATEMENT HAS BEEN TRANSLATED IN 6RAP INSTRUCTIONS

--->RAP

. 	 .
.1) 	SELECT MARK(M1) CTRIP:OESTNmeLOND• s OR/GImm.TOROi3 	.
2) SELECT MARK(M2) CTRIP:OESTNmeTom0. a ORIGINme‘ONDI7 	 .

3) SELECT MARK(M3) CTRIP:MMED(M2) + mmED(M1)] 	.
4) REPLACE RESETIM3) CTRIP(FARE):1KED(M3)3 E83 	.
5) SELECT RESETJM1M2) [TRIP] 	.

.6) 	E00. 	 . 	.
. 	 . 	 .

• . 	 .
---,EXECUTE 	. .

	
.

..

QUERY TRANSMITTED

QUERY EXECUTION:
5 REVOLUTIONS TO EXECUTE.
8 SIXTIETHS OF A SECOND.

O TUPLES RETR/EVED

1i8

119

8, DESIGN/PERFORMANCE APPENDICES 	
. 	8 1 2.4

•«—>FILE 'CUERY5.S'

• .-..> 	 . 	 .
9 	:MERV 5 	 .

. 	.
• '

DRIVERS WHO LIVE IN moNTREAL GO ON A wILOcAT GTRiKE. WITH RELUCTANT
CONSENT FROM THE NONE-TOO-POWERFuL DRIVERS , UNION. MANAGEMENT
PROCEEDS'TO FIRE THESE REcALCITRANT wORKERS.

*DELETE DRIVER
WHERE HOME 	'MONT , *

THE SECUEL STATEMENT HAS BEEN TRANSLATED /N 2 RAP INSTRUCTIONS

• ,'")RAP

1) • DELETE EDRIVER:HOME='MONT 0 3
2) E00

•.-->EXECUTE

CUERY TRANSMITTED

QUERY EXECUTION:
1 REVOLUTIONS TO EXECUTE.
1 SIXTIETHS OF A SECOND.

O- TUPLES RETRIEVED

•--)FILE e CUERY6.S'

QUERY 6

FOR ALL DRIVERS wHO LIVE /N OTTAWA. GENERATE A LIST OF THE TRIPS
ORIVEN DY EACH DRIVER , ALONG WITH THE DRIVERS' NANES AND NUHDERS. 	9

*JOIN ON TRIP.DRIvER_NO m . DRIvER.DRIVER-NO
4SELECT DR/vER_NO, SURNAME
FROM DRIVER
WHERE .HOME = 'OTTA'+

. WITH
+SELECT ORIGIN. DESTN
FROM TRIP++

THE SEQUEL STATEMENT HAS DEEN TRANSLATED 1 N . 19 RAP INSTRUCT,/ONs

• • • .“-->RAP

1) SELECT MARK:M1M2) COR/VER:HOME=IOTTA'3
2) • SELECT MARK(M1) [TRIP]
3) BC Li. TEST EDRIVER:MKE0(M1)3
4) SELECT RESET(M1).CTR/P3 .
•5) 	BC END
6) Li BC L2$ TEST CTR/P:MKED(M1)1 	 •

7) SELECT RESETCM1M2) COR/vER3
8) BC Cie
9) L2 SktE(1) RESET01.1) CDRIvER(DRIVER-NO):MKEDCM1)1 EREGt1)3
10) SELECT MARKI42) ETRIP:DRIVER_NG=REG(1) A MKEDimuj

	

11 1 	DC L3. TEST CTRIP:MKED(m2)3

	

121 	BC L4
13) L3 READ CORIVER(DRIVER.NO.SuRNAHE):UNMKEDtM1) A NKED(M2)3 [APPEND QUERY6.03
14) RETR/EVE(2) REsETtK2) ETRIPiORIGIN.DESTN):HKED(M1) & NKED(M2)3 [APPEND CUERY6.61
15) DC L3. TEST ETRIP:›IKEncM2)3
16) L4 • SELECT RESET(m2) CCRIVER:UNEKEDIM1) & MKE0()12)3
17) BC l2. TEST EDRIvER:MKED(H1)7
18) SELECT RESET(M1) CTRIP3
19) END EDO

8. DESIGN/PERFORMANCE APPENDICES 	8.2.4

nnn>EXECUTE
. 	.

QUERY TRANSM/TTE0

QUE.RY EXECUT/ON:
63 REVOLUTIONS TO EXECUTE.
82 SIXTIETHS OF A SECOND.

'7 TUPLES RETRIEVED

••n,OISPLAY *

+DRIVER

4ORIVERJ40 	• +SURNAME .

+TRIP
+ 	 • +
+ORI6/N. 	40ESTN 	+

+183 	+WATT' 	+Tod° 	+Low) 	' +
4103 	+WATT 	+LOND 	+TORO 	+

' +106 	. 	+BEGS 	+OTTA 	.4PETE. 	+
4106 	+BEGS 	+PETE 	epno 	+
+118 	+BONO 	+NRAY 	+OITA 	4
+121 	+BARR 	+WINO 	•+LOND 	• 4
.133 	+CARR 	.f0T7A 	+REMY 	4

120

FAC'ULTY OF APPLIED SCIENCE & ENGINEERING • 	UNIVERSITY OF TORONTO
JUNE 1976 No. 30

Ofisifi gliM1PIEEMEFIT Y FifiP
A NEW COMPUTER FOR DATA BASE MANAGEMENT

Recent developments in semi-conductor technology have brought about a great change,
not only in traditional computing machinery but in what is economically conceivable in
new computing organizations. One result is the RAP machine which may likely revolution-
ize the way people utilize data processing.

DATA BASE MANAGEMENT SYSTEMS

A data base can be thought of as a structured collection of
commonly pooled data which is accessible by concurrent users
through computer systems. Data bases constitute the heart of
management information systems. These systems comprise the
total organizations of people and computer technology for the
purpose of providing Warmers, managers, and researchers the
timely and reliable data on which they can base decisions and
inferences. Applications of data bases and management informa-
tion systems span all aspects of society; for example, economic
monitoring, regional planning, political forecasting, hospital ad-
ministration, and business to name but a few. Traditional computer
approaches to implementing earlier versions of data bases were
to provide users a collection of file processing programs. The data
for the applications were stored in computer files on secondary stor-
age devices and were directly manipulated by programs of the appli-
cation. Applications implemented this way were intimately tied
to the minute details of computer operations and specific storage
devices. As more applications were demanded, the number of
specialized files increased, causing many problems. Some of these
files often contained redundant information in different formats,
causing the values of an item to become inconsistent since some
files are updated by differing procedures on varying time-scales.
ALso, any variations in the data organization require extensive
changes to the programs that access thé data and vice versa. The
possibilities for on-line or real-tinie simultaneous access to common
data by users was negligible and forced the costs of data proces-
sing software to soar. To alleviate this undesirable trend, the
concept of data base management systems evolved. These systems
aim at creating data bases that have an existence separate from
the specific applications using them. They are complex integra-
tions of computer software and hardware which attempt to
provide their users with a "logical view" of a data base that will
insulate users from the details of data storage and manipulation.
A query language is also available by which users can readily
specify the retrievals and updates of the data stored according to
the "logical view". A data base management system, by control-
ling and monitoring access to a data base, can also promote the
security and consistency of the data and eliminate data duplication.

THE RELATIONAL VIEW OF DATA

To understand data bases better, consider one of the newest
and most important logical views of data bases; the Relational
Model of Data. A relation can be viewed simply as a table of data
whose rows contain information which describe a set of similar
entities such as persons, places, or things. Figure 1 shows a col-
lection of relations which describe a department store. The name
of the table or relation identifies the set of entities being described
such as EMPLOYEE, SALES, and LOCATION. The names of
the columns identify the attributes which are used to describe
the characteristics of each entity for example NAME, SALARY,
and DEPARTMENT of an EMPLOYEE. Each row contains a
set of values — one for each attribute — which characterizes a
Particular entity for example, JOHN SMITH, $20,000.00, and
men's SHOES. The order in which rows or columns occur is
immaterial to the users logical view of their relations. A relational
data base is composed of a collection of time-varying relations
which may change because of modificatibns, insertions, and
deletions. Data in two or more relations can be interrelated
through common attributes which appear in each of the relations.
This allows users to execute queries which have complex selection
criteria. For example, to find all the employees who work on the

second floor, the location relation can give a list of departments
on the second floor. These departments can then be used to select
the employees who work in them. (Fig. 1) The Relational Model
provides users a view of data that is simple, consistent, and yet
computationally complete with respect to data processing require-
ments. Other types of logical data base views, such as hierarchies
and networks, can be constructed from relations. Languages for
manipulating relational data bases are simple but powerful. The
relational model of data and its associated languages can bring
data base capabilities to casual, clerical, and technical users who
are not computer specialists.

THE LIMITATIONS OF
CONVENTIONAL COMPUTERS

The full potential of data bases will be realized only if three
important requirements are implemented. First, the languages
prnided to users must be sufficiently user- or iented and powerful
enough to permit simple specifications of desired data manipula-
tions. That is, a user must only be required to write a few state-
ments to cause the execution of complex queries. These languages
allow users to specify manipulations in a set-oriented fashion that
is, to indicate in one command the retrieval or update of all the
items of interest and to indicate those items associatively by
specifying the values occurring in the file that qualify the items
rather than specifying their hardware address. Secondy, queries
that can reference arbitrary portions of the data base must be
satisfied within fast response time limits. Data base systems will
be required to operate within on-line concurrent user environments
which support interactive users at terminals, application programs
running within multi-programming systems, and communication
systems through distributed computer netl.vorks. The third require-
ment has to do with the technical administration of data bases.
The separation of the physical data from its users causes the
responsibility for efficient performance to be transferred from the
user to the administrator (collectively called the Data Base Ad-
ministrator) of the system. The responsibility for system tuning
was originally distributed over several users and file processing
systems. Today, the data base administrator must make decisions,

Hardware Being Developed for the RAP Prototype

121

HAM! I sm-arr I DEPT.
FLOOR VOL ITEM

SALE S

NAI1E DEPT

SMITFI

JONES

SHOE

CLOTHES

SHOE I 	2
20k

200 GYM SMITH

I 4X

LL 2

seat is Ica'
•ritIttnellc

unC

I« c ALAI, t*"

often conflicting vvith individual user requirements for all the
users. Therefore, it is imperative that the tuning of data base
systems be accomplished effectively and easily, since several
reliability and cost problems arise when using conventional com-
puters to implement modern data management systems. The aim
of the University of Toronto's Project RAP is to provide new
computer architecture exploiting new semi-conductor technology
to satisfy these requirements.

Since conventional machines lack the set-oriented processing
and associative addressing architecture required by modern data
bases, implementors must simulate this architecture through costly
software. Accordingly, large complex programs must be supplied
that map the user's view into the physical reality of the machine
and provide access paths to permit fast location of arbitrary
portions of the data base. Access paths are extra data and/or sort-
ing strategies which "index" the original data base by providing
a more direct access to a specific item's storage location. Additional
software must be provided to uti lize and maintain the access
paths. Today's machines with their need for costly software to
provide access paths and logical to physical mappings are an attempt
to force a machine to do a job for which it was not designed and
places a tremendous overhead on conventional computer systems.
For example, access paths provide fast retrieval of data at the
expense of slower updates. This happens because updates to the
data base must also be reflected in the access paths. This trade-off
is just one difficulty in administering data base due to the dynamic
aspects of user environments.

THE RAP APPROACH TO DATA MANAGEMENT

The solution to these problems is the elimination of the need
for access paths and mappings. This can be done by developing
new computers whose architecture utilizes many processors and
memories in parallel and which address data associatively. The
data can then be divided into smaller more processable segments
and distributed across many processors and memories to be
searched and manipulated simultaneously. Associativity helps
eliminate access paths and is logical to physical mappings. Paral-
lelism causes associative addressing and set-oriented processina
to be performed at high speeds. This new approach to data base
system implementation has recently become feasible because of
new developments in semi-conductor technology where extensive
amounts of memory can be miniaturized and entire computers
called microprocessors can be squeezed into the space of tiny
low cost silicon chips.

The Relational Associative Processor, RAP, being designed and
implemented at the University of Toronto is based on these
principles and technologies. RAP is organized to augment a con-
ventional computer in order to support the implementation of
efficient data base management. The design employs hundreds of
adjacently connected processors and memories called cells which
address data associatively. A statistical arithmetic unit is provided
to calculate summary statistics. The cells and statistical unit
are driven in parallel by a central controller. This organization is
shown in Figure 2. Each cell is composed of a microprocessor
specially designed for data management operations and a sequen-
tial circulating memory, a track of a drum or disk, charge-coupled
device (CCD), bubble memory, or other. Each data base opera-
tion is executed in parallel within cells which operate directly on
the data as it circulates through each cell processor. RAP provides
an intermediate-level view of data and a collection of set-oriented
instructions implemented entirely by hardware. The data organi-

Fla. 2 — Architecture of the RAP Processor

Fic. 1 — Several Relations that Describe a Department Store

zation is sufficiently general to support set-oriented operations on
the commonly desired high-level user views of data: hierarchical,
network, and relational. The format for each hardware instruction
reflects the general structure of a data base query, that is, it
specifies the operation to be performed, the items to be operated
upon, and the criteria which associatively selects or addresses the
portion of the data base for which the query applies. Some of the
operations that can be performed are complex selection, statistical
calculation, retrieval, update, and data base creation, insertion,

and deletion.

The processor has been designed to close the gap beb.veen the
user's logical view of data and the way it is represented in the
storage of the computer which supports the processing of the data.
This will allovv data base management system applications to be
implemented more quickly because the implementor will no
longer be concerned with the details of representing and searching
a data base. Because the device more closely represents the users'
view of a data base management system, data base queries can
be formulated from just a few hardware instructions — often
only a single instruction is sufficient. The RAP system is designed
to execute the most important instructions within one simultaneous
rotation of the cell memories. Studies have been conducted to
compare the hypothetical performance of using RAI' relative to
using a conventional computer system for implementing a rela-
tional data base. Both approaches were modeled analytically. The
results show that significant gains in query execution speed can
be achieved by the RAP architecture over the conventional system
and that, under many circumstances, on-line retrievals from, and
updates of, large data bases may only be possible with the use of
RAP-like systems.

PROJECT RAP is being conducted by the Computer System.s

Research Croup and primarily funded by the Department of

Communications and the Department of Supply Services, Canada.

During the fi rst phase of the project an experimental version of

the RAP computer will be built to prove the feasibility of the

concept and to examine the software implications. When com-

pleted, it is hoped that the interest of potential users and manu-

facturers of computers will encourage the pursuit of a full scale

prototype of this system which wou/d ultimately lead to a

marketable product.

The experimental version of RAP will consist of two cells with
CCD memories and a controller capable of executing a third to
half of the instruction set. Some of the hardware being developed
for the prototype is shou;n in the photograph. A +corking system
is expected to be ready by the fall of 1976. This will include
software support for both a high-level query language and RAP
assembler language interfaces.

KENNETH C. SMITH is a Professor of Electrical Engineering
and Computer Science and Chairman of the Department of Elec-
trical Engineering, STEWART SCHUSTER is jointly appointed
to the Department of Computer Science and the Faculty of
Management Studies, ESEN OZKARAHAN is a Visiting Assistant
Professor of Computer Science from the Middle East Technical
University of Turkey, appointed to the Department of Computer
Science. All are members of the Computer Systems Research
Group which is an interfaculty organization sponsored by the
Department of Computer Science, the Faculty of Arts and Science
and the Department of Electrical Engineering of the Faculty of
App/ied Science and Engineering at the University of Toronto.

ENGINEERING FORUM is made available to hi,gh school science and technology departments, and
to graduates of the Faculty. Others who wish to receive ENGINEERING FORUM may be included
in our mailings by writing to: Liaison Office, Faculty of App/ied Science and Engineering, University
of Toronto, Toronto, Ontario, M5S 1A4.

122

(JD ..

-

cr)
C')
rn
r-
F--

J.D

film: 5. Sauster

Date: !larch 2, 1976 e

Re: Memo distribution

The following subgroups exist within the RAP project. Memo's
addressed to these groups will be distributed their respective members
(see memo no. RAP-SAS-760302-01-010 for reference nos.) Otherwise
list the nases for distribution.

RAP: everyone

PI (principal investigators):
Schus ter
Ozkarahan
Smith

HW: (hardware):
Ozkarahan, Smith
Pereira
Nguyen
Schuster
Hunter
Huwito

SW (software):
Schuster
Chan
Tsonis

MA (modelling and analysis)
Ozkarahan
Schus ter
Sevcik 	 •

IL (Industrial Liason):
Smith
Schuster
Ozkarahan

•

From: S. Schuster

Date: March 2, 1976

Re: revised memo reference numbers - for project work book

We continue to encourage the drafting of memos. working papers, etc.
(not necessarily to be typed) for the project files and work books. Ptease

use the following reference no system on all documents

1) refd RAP-ABC-YYMMOD-Of-TTT - (X)

where RAP is the project id
ABC are your initials
YY is the year
NM is the month
DO is the day
dd is the index indicating the order in time for memos

generated on the sanie day
TTT is the reference to the task numbers (see below)

X is the total number of pages
h , 	 ik

Number all pages by x/X if X1, where x is the page number and X is
the total number of pages

2) ITT 	task

	

000 	project descriptions (e.g. propaganda, layman descriptions)

	

DOS 	progress reports

	

010 	project organization

	

020 	personnel and equipment procurment

	

030 	general implementation memos (i.e. schdules, notes. etc)

	

040 	hardware implementation documentation

	

050 	other RAP specific memos (e.g. reliability, performance
tradeoffs, extensions)

	

060 	uses of RAP (e.g. networks, intelligent terminal, data models
index processor)

	

070 	Performance Comparison

	

080 	Virtual memory RAP

	

100 	RAP/SEQUEL Compiler
•

	

110 	Instruction Simulator

	

120 	Software Driver

	

130 	Industrial/User Liason

	

140 	Semi-Conductor Industry

	

150 	Patents

-

1—t

Figure I.

Data Base Computer
System Architecture

sl
lu

-
\iv

11
1

DS
1

PRODUCT PROPOSAL:

A DATA BASE COMPUTER

inter memory systems
A DIVISION OF INTEL CORPOHAT.ON

1302 N. Mathikla. Sunnyvale. CA 84088 • 1408) 7348102

we

//WPM/ C.471/0•0/.reelYarl,

Memory Systems Division

Sunnyvale, California

1. Introduction

Intel is investigating the possibility of devetoping ej1

..tase_comPlei 108C) which includes both novel hardware

and cornplete data base management system software. The

OBC will function either as stand-alone application dedi-

cated machine accessible through intelligent terminals or as

a 'back-end machine attached to medium end large host

mainframes. A OBC consists of a conventional minicom-

puter end large capacity disks augmented by • special

purpose processor and memory. The entire system will

alleviate traditional indexing requirements yet achieve

retrieval and update speeds not possible with current

approaches. Other advantages of this approach are Inc
 extension of mainframe capability through off-loading,

•nhanced "security and reliability, multi-mainframe

sharing of the sense data base, and simplified data base

adminisuation.

The 08C will provide users high-level set-oriented data

manipulation language offering non-procedural specifica-

tion of data management tasks. It is anticipated that the

system will be designed to support the relational model

of data. although Inc special purpose hardware could

provide hierarthical and network data bases. The system

will be " most cost-effective in environments requiring

complex searches. ursanticipated searches. interactive

query processing. and/or in applications exhibiting high

update traffic.

This document movides a summary of the 08C archi-

tecture and associated software facilities. Also included

is 1 list of the potential advantages Inc computer offers

data base management system user,. It concludes with a

summary of cost savings, performance improvement, and

expected price of the Intel DBC.

2. The Data Base Computer

2.1 Hardware

2.1.1 Overview

Intel's DBC is a :insole organization of four types of

componenu: a system processor, an associative processor,

en array of conventional large capacity secondary storage

devices, and a host interface. The basic architecture is

shown in Figural. The system processor is a medium to

large minicomputer with customized software for coordin-
sting functions of Inc data base management system

1D8140). The associative PsOutssor is • sPecill Mule*,

peripheral device designed to augment the relatively small

system processor by implementing many data base °per-

ations in dedicated hardware. At any point in time the

data. base is partitioned and distributed between Inc

 associative processor memory and conventional disk

storage. Migration of data between the associative pro-

cessor and disk is dynamicly controlled by the DBMS

software. and is transparent to Inc user. Tape Is provide

for bulk loading and for back-up and recovery logging.

The OBC will link to user machines through the host

interface. This can be either a communications processor

allowing very flexible access and multiple host sharing of

Inc DBC or a high speed channel adaptor linking the 08C

to a single host. Direct attachment of terminals to the

DBC is also available.

2.1.2 The Associative Processor

The assoçiative processor is the key element in making is

feasible high performance OBC which provides fast retrieval

and update of large data bases in response to high-level data

manipulation commands. The associative processor's aichl-
lecture Is based on two facts. First, many data base

operations are inherendy set-oriented, requiring execution

of Inc same operations on many records of the saine file.

Secondly, to achieve high dateindependence .data base

addressing should be accomplished associatively by restrict-

ing user reference to data element content rather than

position or location. Existing and newly developing data

base systems simulate these desirable features on conven-

tional computers via software thereby incurring tremendous

1

'1

AP

LOGICAL
Fen

ILO. AILATICILIN

0 ow

2 3

ewpsIefer wow. asz 	er imusummuer 	P000P0000• -
parallel and associative hardware in its archlifecture.

The basic architecture of the associative proceuor, shown
In Figure 2, consists of a controller and set of parallel
cells. Each cell contains a processor and large capacity
memory. The portion of the data base residing on the
associative processor is dishibuted across the cell memories.
The mil memories are constructed from CCD's, very high
density, state-of-the-art, low cost semiconductor compo-
nents. Each cell processor is identical, dedicated to one
cell mer....ry„ and specifically constructed to execute high-
level data def Widen and maniprtlation instructions. The
controller of the associative processor receives program
insuuctions from she system processor, decodes each
Instruction, and broadcasts control and data sequences
to each cell. Each cell processor independently executes
the instruction over the contents of its memory. Cell
instructions exist for data definition, complex boolean
selection, insertion, deletion, numeric or replacement.
update, nstrievel, and computation of summary statistics.
The number of cells can be varied as user requirement.
dictate.

The logical format of data stored on the associative
processor is automatically interpreted by hardware. Direct
execution of high-level instructions by the associative
processor eliminates much of the software needed to
provide • complete DBMS: In addition, the associative
processor eliminates the need for traditional indexing
software and data for perfonning searches over on-line
data bases. By eliminating index data, the sysum can
achieve balanced and fast response to complex selection,
retrieval, and update operations and provide a greater
potential for concurrent usage. Other benefits will be
summarized later.

HOURS 2. Associative Processor Architecture

Z.Z.1 Chew Modal

The purpose of a DBMS is to create a common pool of data
decoupled (rom application programs and to give applica-
tion programmers a logical model of the data base that Is
Independent of device or physical organization details.
Commercial systems today provide users one of three data
models: hierarchical network, or relational. The Intel
DISC could be programmed to provide DBMS supporting
any of these models. Howie«, the naturally non-pro-
ceded , associative, and set-oriented characteristics of the
relational model of data best suit the DSC architecture.

2.2.2 Access Methods

To provide fast access to arbitsary portions of the data
base, the DOMS uses a combination of partitioning' and
migration strategies to allocate data between disk and
associative processor storage. The DBMS uses palameters
supplied by data base administrators and/or obtained
through usage histories to place the most searched or
updated data elements on the associative processor. Figure
3 depicu how data bases cars be partitioned. A search
request is executed by first acceuing the associative pro-
s:mice. If further search Ii required over the disk per.
lion to compleu the data manipulation command, record
id's are retrieved from the associative processor and used
to ecceu the disks' data. The search and migration of
date between disks and the associative processor Is, of
course, transparent to the application programmer.

2.2.3 Data Definition. Manipulation, and Protection

A complete set of data definition, manipulation, and
protection facilities wilt be provided. Data definition
kuludes schema, subscherna and derived schema defini-
tions. Schema utilities such as data dictionary query,
macro definition, and accounting are also to be provided.
Performance monitoring information will be available
threes schema control.

The data manipulation language will provide high-level
structured English syntax for specifying complex boolean
and nested selections including s ' "cal calculations,
projection of data elements, loins , set construction or
comparlsions, and grouping. Selected records acd data
elements can be updated, Inserted, deleted, sorted and
retrieved. The manipulation statements cen be embedded
In programs running on host machines as perimeters of
CALL-statements or used as an interactive language
through tontine hooked dkectly to the DOC.

• - 1911nOMOn 	8101110 ON MA

AP - PINOMOM Of @Ile 110A/ 0 OM ASSOCIATIVII PROCLIII001

Figure 3. Data Base Partitioning

3. Potential Benefits

The potential benefits that can be Incurred from the Intel
DOC are grouped by the three principle features of the
product: a distributed back-end system, Providing a high'
level set-oriented data manipulation language interface,
and augmented by an associative processor. Each feature
In the list enhances the capabilities and performance of
the previous.

Back-End:

1) Extends host system capabilities by off-loading data

base management functions to a separate system
running in parallel.

2) Permits several possibty dissimilar host machines to
share • common data base.

31 Provides a basis whereby dissimilar hosts on a network
can exchange data via the DSC% logical data model.

4) Provides • basis for graceful conversion from one main-
trente to another vendor's mainframe.

5) Provides the data base administrator distinct hardware,
Software, and data resources to tune without having
to compromise or conflict with other mainframe usant.

mop aims estrecreriee...

software.

7) Enhances data base security because of hardware
separation of data base functions from the host
operating system.

131 Reduces dependency of data base systems on host
operating system or compiler changes.

9) Greater availability of services because distributed
processing allows host or back-end availability when
one or the other fails.

Set-Oriented Processing:

1) Reduces application programming, testing, and main-
tenance time. Highlevel -commands are easier to
code, more understandable because their semantics
are closer to the end user's job, and are more concise
statements of a user's requirements.

2) Reduces the amount bt data transfer and hence reduces
data i-ommunication requirements between the host
and back-end. The host sends less data in the form of
data manipulation commands Mien commands are
expressed in high-level setoriented languages. The
back-end responds « with less retrieved data. Only
those data elements from the required records are
returned to host.

3) Permits the DBMS to optimize the execution of a
larger portion of the data manipulation requirement.
Commands expressed in high-level languages permit
the system, in advance, to analyzioperations which .
affect sets of records. This permits the system to
choose optimal access paths, buffering, and concur-
rency schemes because it can ue a global picture of
user requirements. This is not possible using record-
at-a-time navigation oriented languages.

Associative Processor:

1) Provides very efficient execution of seturiented
commands because its associative and parallel archi-
tecture is oriented to processing several records at
the same time.

2) Reduces and balances update and retrieval response
times without traditional indexing methods and data.

3) Reduces total storage requirernents because duplicated
indexing data is eliminated.

4) Promotes greater concurrency because peripheral data
structures such as indices are eliminated and therefore
not subject to locking overhead.

5) Reduces data base administration complexity because
simplified physical data organizations are achieved
through hardware replacement of indices.

6) Reduces data manipulation command translation

—
control will SynCreniZe multithreaded query execution en;

providing the proper serialization of concurrent retrieval,
but mutually exclusive update, while maintaining a high-
level of data base consistency. Security and integrity
mechanisms protect against unauthorized or invalid dis-
closures or updates. A backup and recovery subsystem
will produce the necessary journals and Images for efficient

4;

and reliable recovery, roll-back, and roll-fonvard.

/••nn•4

CID

rn

7,)

urer fenzazepie eozletere oneoWa

71 MOWS IOW COS(Incremental system needs because

of the highly ittOdtdar ateitoottire of tile associative
processor.
1nCreaset reliability by exhibiting graceful degradation
due to the modular and distributed architecture of
the associative processor.

9) Enhances the potential of the DBC to respond to
complex security and integrity testing because of its
ability to e ff iciently execute complex boolean tests
over data bases.

10) Recluz,s the amount of data transferred between the
associative processor and system processor IX.Cletid

ea associative processor responds to high4evel com-
mands and transfers only the required data items of
qualified records. This is analogous 10 the advantages
that set-oriented processing adVeve for him and back-

• end communications.

4. Performance, Cost end Price

The Intel 08C k expected to be mailable fourth quarter.
1979. At this time, exact figures have not been determined
for performance, end user application costs and price of a
OBC required to meet the needs of a particular user.
lmtead, we first present • preliminary quantitative estimate
followed by • qualitative summary of the potential OBC
benefits Mat would directly teduce the total data base
application cost/performance riff°. We conclude with price
•stimates for various components and example configur-
ations -of the DBC.

An analysis has been made to determine the execution
times of various data manipulation functions when data
resides entirely on the associative procasa. Results show

'execution from 10 to 1000 times faster than conventional
indexed implementations of the same functions. The most
dramatic improvements are Sound in update operations.
This massive proceuing power gives substantial tattitude
for performance improvemenu in systems that Mcorporate
kage disk resident data bases. W. consenratively estimate
that the OBC woubd improve execution times and tIvough-
put by factors of 5 to 10.

11 Ferrer istristrai, update snel reOrganization reSponSe

times due to specialized hardware and less complex
software.

2) Greater through •put due to increased concunency
potential and faster response times.

3) Faster and more maintainable application software
because of Me high4evel data manipulation language
Interface which provide a hie degree of data-Indepen-
dence.

41 Greater potential for data base shoring by multiple
and dissimilar hosts ranging from large mainframes
to microprocessor based intelligent terminals.

Cost:

1) Freee-up costly large hose CPU cycles whkh extends
host lik expectancy andkr inaeases work-load
capability.

2) Reduces data base administration complexity and time
because of the DOC% simple dedicated hardware and
software architecture.

31 Lower cost upgrades because ot the highly moduler
architecture of the DBC.

4) Reduces disk storage requirements and its associated
maintenance costs because the DBC eliminates Index
data overhead.

61 LOW« application development and maintenance costs
through the use of 1 high-leval data manipulation
lanfewm.

Price:

Systern Processor • from 93011 *0 920011.
Disk • $45K controller + $25g per 200 MI (up to 1000

14B per controller).
Associative Process« • 150K + UK per 118.
Tape $12K convoller $1411 per transport.

Si
1u

3i
.v1

13
DS

IW

	

SiAALL 	MEDIUM 	LARGE

System Processor 	 LIM 	SIOOK 	112001(

l'.d. 	*woodier. Proem« end Storage 	10518 	50548 	MOMS
)8C 	Associative Fromm Mee 	St 108 	$3508 	9650K
tent

Software Price 	 1508 	35011 	3508

TOTAL 	 9180K 	850011 	890011

IleiIf 	Disk Stomp 	• 	 200518 	1000.48 	2000.48

reee 	Disk Price 	 STOK 	81451(8290K
end 	

1 	2 	4 Tana Tranegens
Mt
...it 	Tao...felon 	 S28K 	11400($688

gad 	TOTAL 	 888 	$1858 	STISK
EXAMPLE SYSYEMS

MISCELLANEOUS ' 	 9 1 3

9.3 Photographs

9.3.1 RAP Cells and Memory

9.3.2 RAP Controller - PDP 11/05

9.3.3 . Host Machine - PDP 11/45

9.3.4 RAP II - Cell Boards

ALU 	•

OPCODE III

FORMATT I

FORMATT II

I/0 BUFFER

CONTROLLER I

CONTROLLER II

DATA MANIPULATOR

. 9.3.5 RAP II - Memory Boards

Controller (For 1.5M Bits)

Memory (120K Bits)

9.3.6 RAP II - Interfaces 	•

Cell to Controller

• Controller to Host

9.3.7 Sonie of the RAP team (from the left Nauyen,

Pereira, Patkow, Hudyma, Smith, Soong, Schuster

Radacz, Hawkins, Klebinoff).

•

3.27

r
AN' ASSOCIATION PROCESSOP FOR DATA
BASES: FINAL REPORT TO DOC.

91
C655
R36
1978

iii hi u

DATE DUE
DATE DE RETOUR

LOWL-MARTIN No. 1137

