
DEPARTMENT OF COMMUNICATIONS

GOVERNMENT OF CANADA

SIMULATION STUDY OF USES OF A

COMPUTER NETWORK

Industrial Research Institute
Universityof Waterloo

, 	arlooOntario

1n ciLls tr)/
Lie n A annyacla

,JuIL
JUL 2 0 7998

siaLi o -rt-tÈQ
UE Inclus,_trie

Canada
te,

1

-C NIMUNICATO3 CiellA

NOV 10400
- 	 .

LIORM/- 8181.11111-1

IRI Project 1013 1 p
: 91
c655

. 	,

0458
1971:.

UNIVERSITY OF WATERLOO

INDUSTRIAL RESEARCH INSTITUT E

DEPARTMENT OF COMMUNICATIONS

GOVERNMENT OF CANADA

/ SIMULATION STUDY OF USES OF A

COMPUTER NETWORK

'OP

IRI Project 1013

SIMULATION STUDY OF USES OF A COMPUTER NETWORK

INTRODUCTION

• The University of.Waterldo, through its Department of

Computing Science and Computing Centre, has expertise, experience, and

facilities:in computer/communications. We propose to exploit and extend

them by addressing some of our personnel and facilities to the study of

- Canadian - computer/communications problems. This is one of a . set of

coordinated research proposals; because of the timeliness and urgency

of this particular research problem, this proposal is being submitted

first. 	• •

' BACKGROUND

• Networks of computers are being constructed in various places.

While there have been many statement s made concerning the anticipated

usefulness of such networks, the prime approach has been t:) construct •
	 ...

them first, and'then discover the services that they can provide. This
_ 	.

.is understandable, for the actual construction of the network strongly' •

affects its use, and until its properties are known, no other approach '

However, there are noW several networks under construction with . 	.

basically different design philosophies. •• These philosophies do affect

the user, and the constructions are seficiently advanced to enable us to

•see what . system parameters will result , eefore building more hardware,'

it is now, sensible to sit back and see* how plausible or practical certain

proposed applications are, under each •design philosophy. 	• .

IRI Project 1013

PROPOSED RESEARCH

We propose to perform theoretical and simulation studies of

certain uses that can be made of a computer network via • acilities

provided by subscribing computers of the network. Such facilities

inclUde - a system to SPOOL (See below) jobs tobe run on computers of

the network, a system to administer the sharing of jobs to be executed

by computers of the network, as well as a central file systemhshared by

the computers of the network. We intend to determine the functions of •

each facility and then perform a functional simulation of the facility.
_

The object of the simulation study is to determine whether such facilities

are technically feasible and - economically justifiable on a computer

network.

The system to SPOOL jobs to be run on computers of the network

would accept job requests from various sources, order the job requests

(perhaps by priority) for each processor of the network, and supply jobs

to processors on demand.

The system to administer the sharing of jobs to be executed by

computers of the network keeps,records and makes enquiries of processors

on the network to determine their loads. For each incoming job, cost,

anticipated turnaround, and possibly other parameters are considered in

determining which of the computers capable of executing the job should

do so.

Centralized file systems:are desirable as they allow great

economies of scale and sharing; thus, for example, a single large disk

- file could provide file storage to a local .network of small computers .

IRI Project 1013

7

far cheaper than could be done:individually. . A major issue in organ-

izing such a file facility is the grade of service offered: "wholesale"

or "retail". If the central file system of a network were organized

. as a wholesale operation, it would allocate and otherwise manage files

for computers of the network without knowing or caring about the organ-

ization or contents of them. Retailing involves more direct control of

file format and management by the central file system so that files can

be shared by processors other than the originator.

Explicitly, the simulations will consist of program modules

that mimic the actions of the network .switches and various subscribers,

communication between the modules being limited to conventions that

reflect transmissions through the network. This kind of simulation is

necessary in order to examine the technical feasibility of proposed

fadlities. To do it we need the ability to do user-controlled multi-.

programming and some of the aspects of multiprocessing. • The program

structure providing these •s called a coroutine. system. Fortunatelya

coroutine system extension to fortran is being developed at the

University of Waterloo..

CURRENT STATUS OF THE RESEARCH

We have chosen to simulate the following networks:

(a) The U.S. Advanced Research Projects Agency (ARPA) network

designed by Boit, Beranek, and Newman, Inc.

(b) The so-called Davies network being implemented by the

National Physical Laboratory of Great Britain.

IRI Project 1013'.

(c) The experimental network being developed by A.G. Fraser

. 	at Bell Telephone Laboratories, Inc. 	-

(d) The OCTOPUS network of Lawrence Radiation Laboratories .

We are studying their properties, and are planning to collaborate - with

the designers and implementers of each of these networks.

The functional design of the applications to be simulated has

been studied. We think we know what kind of data we are s'eeking frem

the simulation.

Coroutines can now be written and run with our system, although

the translator extending Fortran by coroutine operations is still being

implemented. This coroutine system has been described in a paper that

lias been submitted for presentation at IFIP 1971 CongreSs. A copy of the

paper is included as an appendix.

TIME SCALE

• By October 1971 the -coroutine system'should be running

completely, the simulation of the SPOOLING system should be running, and

'an •analysis of possible designs of the central file system should be

completed. . 	.

By March 1972 the study of the SPOOLING system should be

complete and simulation of some. aspects of the central file system should

	

be underway.. 	'

• it is expected that useful results will be available from all

phases of the project:in approximately two and one-half years.

IRI Project 1013.

_INVESTIGATORS

The Project Director for this research will be Professor

D.D. Cowan. The Principal Investigator will be Professor N.M. Gentleman,

assisted by three graduate students.

PATENT RIGHTS

• 	It is not anticipated that any patentable idea will evolve from

this investigation; however ., should a. patent ariseAt will be in ..the

'names,of the Project Director and the Principal Investigator and the

rightS will be offered for assignment to the Department of Communications,

Government of Canada, for considerations to be negotiated. 	.

PUBLICATION RIGHTS-

The Project Director, the Principal Investi gator and the

graduate students involved will retain the rights to publish the methods

and general findings of this study.

BUDGET FOR ONE YEAR

• We submit the following budget for this research for one year:

Support of three graduate students
.at $3,500 per year per student

•Professional fees

One secretary one day per week

,$ 10,500.00.

2,500.00

1,000.00

IRI - Project 1013

Reports of the work and findings will be submitted periodically

at natural division points of the work.

A summary report will be provided at the conclusion of the first

year of work.

In the event that no report is provided in any three month period,

a brief technical progress statement will be submitted before the expiry of

such period. Such statement will indicate the work undertaken in the pericid

and planned for the next three month period or longer.

15 hours of computer time at $654.50/hour 	9,817.50

20 cylinders of file space at $5/cylinder/month 1,200.00

Books 	 100.00

Travel 	 1,500.00

Telephone and miscellaneous expenses 	500.00

University overhead 	 8,135.25

TOTAL 	 $ 35,252.75

. 	. Invoices will be provided quarterly: 3, 6, 9 and 12 months •after

authorization to proceed with the Work.

J. W. Tomecko, Director
Industrial Research Institute

Vera Leavoy
Assistant to Comptroller

Dated:

D.D. Cowan

W. M. Gentleman

• Chairman,
' Department of Applied Analysis and Computer"
Science

Witness to signature

. Witness to signature •

Witness- to signature

IRI'Project 1013

AGREEMENT . 	. 	. 	'. 	• 	'

., It is agreed that the work-should proceed in accordance with this

-7

proposal.

DEPARTMENT OF COMMUNICATIONS
GOVERNMENT OF CANADA 	-

Per: 	: 	• . 	. 	• 	Per:

'UNIVERSITY OF WATERLOO

In consideration of being retained by the University as Principal

Investigator in connection with this project, 1 hereby agree with . the

University to be bound by . the terms of the foregoing contract.

Dated at Waterloo, this 	26th . 	day of January 	, 19 71

APPROVED BY

APPROVED BY
. Dean of Graduate Studies

Department of Applied Analysis

and Computer Science

Research Report CSRR 2031

A PORTABLE CÔR0UTINE SYSTEM

by

W. Morven Gentleman

IRII'roject 1013
Appendices

A PORTABLE COROUTINE SYST4M.::

by W. M. Gentleman-

University of Waterloo

Waterloo, Ontario.

.- Canada .

IRI Project 1013

Abstract

Çoroutines have been aroUnd at least since Cônway introduced

-the terminology in 1963. Nevertheless, except in discrete event simulatiôt

and .in some systems programs, they have rarely been used. A:belief:that .

this iS because they have not-been widely. available in a highér . level

programming language has motiVated-the development:of a portable.Coroutine :

 syStem; This system is based on an extenSion of Fortran that provides

:a very . general fàrm of coroutines in addition to the standard program .

units'such as subroutines and block data subprograms. . The compiler, its

object code, and the supplementary service rôutines are all essentially

ANSI Fortran prograffis such that implementation at a new installation

will be:simple,. This paPer describes the - system, tells- how it is.

.implemented, and discusses some uses of corôutines.
•

. 	• •
'*-ThiS research Was'supported - by . the National -:. Research Council ofCanada.

IRI Project 1013

A PORTABLE:COROUTINE,SYSTEM

Introduction
•

: There is general agreement that. MbàùIàrity,in:programming.

.good, thing, ekposing the essential strtieturé.oftheprogramand

-

simplifying debugging and modification. The most familiar kind of

program module is the subroutine. The usual realization of subroutines

has, however, several features that limit the ways they can be used.

Coroutines are another kind of program module (4, 5, 8, 9,11) . .

They provide greater flexibility than subrontines because, they Separate

the three actiOns.involVed in calling a subroutine -- obtaining an

executable copy of the routine, transmitting- arguments, and transferring . 	.

control --. and blur the distinction between CALL and RETURN. Elegant

new languages such as Simula 67 (6) have beendesigned whiçh provide at

least a limited form of coroutine"as well asi or instead of, subrontines.

'But'iMplementations of such languages have not.been widely. available, and

• 'hence coroutines have not been widely used: • •

. 	The system described here,.is intended to encourage the Use of

coroutines bY making- them readilY available. ,ArLextension to ANSI Fortran

(12).is defined that provides a veryseneral form Of coroutine ih addition

to the standard Fortran program unità such as subroutines and block data
• •

subprograms. The main reason- for using-an'extension to-Fortran-is that,

Yas Will be shown, it is posSible-to.translate program units of the' extension
•

.

into prograM Units of Fortran such that,iwilen used in conjUnction.With

-.supplementary service routines(also mostly inFortran),the desired - effects

:occur.' ,,ThuS by writing-the.translator, too'in . Fortran,:the System can

-- installing, it on any,machine with .an ANSI Fortran

the:statements. asithey are;-,so.the user payS-little or notbing at run

be made portable

primitives and putting

IRI.Trojec:t 1013

compiler involves little more than providing a few

•it in a library.

Two additional advantages accrue from extending Fortran. First,

extending such a widely used language should alleviate the problems of ,

•programmer inertia, because •rather than learning a whole new language,

they need only learn the new features. Second, the translation of

program units other than coroutines consists essentially of leaving

time for features not actually used.

•SysteM SiirveV;

› The .portable coroutine systere provides a very general-form
,

of coroutine, incorporating-most features suggested elsewhere with

other's that are whelly new. ‹The best introduction to the system is to

view -a running program.

A running program consists of a number of executable modules.

Each module has a distinct name provided by the system, and modules "know"

about each other by having special variables that contain names of modules.

At any time, statements in only one module are being executed. The module

that is executing can create new modules, either as duplicates of existing

modules it knows about, or afresh from patterns supplied by the programmer.

IL can also transmit arguments'to modules it knows about, such arguments

persisting until subsequently. changed. And it also can pass control to
. 	 . . 	 . , . 	 . . 	 , 	.

any other,Module it knows about,: - execution of:statements in .this other

module beginning.where it was:left'off : the:last:timé,the module-was executed.

IRI pm;ject1013

Note that all that matters is whichmodules'are known.

particular, the route by which control reached the module currently being

executed is irrelevant, unlike the way that the order in the nesting

list affects relations between subroutines. Note also that if a module

or group of modules become unknown to the module currently being executed,

and to all other modules to which control could pass, then such a module

:.or group of modules can be expunged from the - system. Note finally that-

. values,' etc.): is called . duplicating a cepy. The language extension

provides CREATE and DUPLICATE statements: these statements resemble

LOGICAL IF statements'in that'a substatement is'included to be eXecuted

,if. the creation or duplication fails, for instance if insufficient store

is:available.

nothing precludes modules from employing Conventional programming facilities

such as functions or Subrontines, comMon data bases, standard I/O, etc.

Repeating the above description in more détail, the first idea

is that what the programmer writes are.not executable modules themselves,

but_rather patterns(calIed Prototypes) froM which modules .can be made.

Executable modules (called copies) made from the Same prototype need>not

be identical; because'à pretotype can have parameters Whose values affect,

for example, array dimensions or initial values of - variables. This is

similar to theA.dea of macro definitions, from which (nounecessarily

identical) macro expansions can be produced in text.

•Making a copy from a prototype is Called•creating a copy. •

Makihg a new copy which is identical to an existing copy in its current

state (in - particular_so arrays have the same sizes, variables the same

-.V

the

IRI Projèct 1013

. .The system.assigns - ,each copy a, unique name, its copyname, - and
. 	, 	. 	. _

langUage extension provides variableS.Of typecePyname through which

copies can be referenced: For eXample,:whena:CoPy Is .crèated or duplicated,.

the nameof the-new càpy.is made available in a sYstein copynamè variable;

NEWCPY:. 'Arrays of depynames and cOpynamè-valued finictions are allowect

, aa.well-as simple 'copyname variabies 	Apart . .from use in referencing copies,

only two operations are defined for copynames: assigning a copyname to

a copyname variable, and testing whether two copynames are identical.

A copyname variable may not be undefined: it must refer to the null copy

if no other.

The usUal syntax for st.ibroutine .argument transmission would be

	

' 	 >
. 	 ,.

inapproPriate-for coroutines, because argument transmission is not linked _

to transfer of centrol. InStead-.the language extension allows Variables

to be declared accessible, whereupon their values can:be set or fetched

from other copies at any time, by executing the new statements STORE and

FETCH. It also allows variables to be declared dummy, whereupon other

• copies can at any time substitute variables for the dummy variable by

execution of the new statement ASSOCIATE. Thereafter, whenever the dummy

variable is apparently used, the storage locations of its current associate

are actually used. •The association persists until another execution of

an ASSOCIATE statement establishes a new associate. Note that accessible

variables correspond to the association of subroutine arguments "by

assignment" or "by value", whereas dummy variables correspond to the

association of subroutine arguments "by address" or "by reference" or

in IBM.360 jargon "by name".

IRI.Project 1013

Variables can be both accessible and dummy, which means the

value of the current:aaseciaté can be set and fetched from other copies.

The STORE', FETCH, and ASSOCIATE statements.identify accessible of dummy

variables by matching the ,symbolic name,-an important feature because

.it means'that the prototype of the,referenced copy neednot be known.

Like the CREATE, and DUPLICATE stateMents, these statements include

a substatement to be executed if the main statement fails,,for example

if the referenced copy contaihs no such variable. - The statéments STORE

and FETCH are only defined for simple variables or array elements,

but ASSOCIATE may also be used with arrays. As with Fortran subroutine

array arguments, this means associating thé. array bases, the dimensioning

for the dummy array being declared with it.

Each copy has a special copyname variable "CALLER" that plays

a role similar to a subroutine return address. At any time, one copy is

distinguished as being'the currently executing copy and statements in it

are executed in the usual sequential manner. It can transfer control to

any copy it knows about in two ways: if it invokes the other copy, its

.copyname is Placed in the CALLER variable of the invoked copy, whereas

if it resumes the other copy, the CALLER variable of the resumed copy is

left unchanged. The copy yielding control thus has the option of whether ,

to make its copyname available so the invoked copy knows who invoked it,

or to transfer control anonymously, preserving the copyname of the previous

invoker.

In either case, execution of the copy to which control is

transférringfprOceeds .from the .:poiht indicated : hy the'résumption market.

IRI PrOject

of , that copy. Initially this point the first exectitable statement of

(Figure 1
about- here)

the copy, but normally it is jiist after the statement last causing •

- Control to leave the copy. Thë. resuirlption marker is in fact an integer

variable GOFROM used in a super COMPUTED GO TO, so declaring it accessible

allows other copies to force resumption at specified points.

. 	If the copy being resumed or invoked is the null copy, control

returns to the main program.

The new statements and.resérved words of the language extension

are shown in Figure 1. The language extension also includes . a change

in interpretation and some restrictions. The change in interpretation

Js HIP natural on ," tbPf- "" e"temn .ntr••4 " pr^t^l- ypns should refer to

create time not compile time. This has two important consequences,

first that . creation.parameterS, mentioned earlier, are allowed as values

in data statements; and second that array dimensions may be defined in

data statements, thus allowing arrays to be of different sizes in different

copies. Most of the restrictions are consequences of the implementation;

for example subroutines can be called from the main program, from coroutines,

or from other subroutines, but coroutine control transfer can only occur

from the main programor coroutines.

• Implementation Scheme

Since Fortran is the •language extended, the goal of portability makes

implementation by precompiling to Fortran desirable. More, it is desirable

to preserve' the important Fortran feature that each program unit can be

.IRI 13)^oject110 .13

separately coMpiled. Thismpans Coreutinésliust . be compiled to:functions;

or Subroutines.. InYfact,:each_coroutine compiles-into three Subroutines:

body, create, and precall.

- -

The body subrOutine consists essentially of the exectitable

stateMents of the prototype, with extension statements . converted to

. subroutine calls as 'outlined later. :
. 	.

- - „ . The possibility of multiple copies of a prototype indicates- that

the .prototype should be compiled as .pure code,' copies actually being storage,

- frames for this code. The create subroutine:is called to .obtàin an adéquate

block of sterage for a storage fraMe, perform initializations, etc.

. Management of storage frames as blocks in a,Storage pool is well underStood,

and the only distinctions of this application are that a fixed header

scheme (2) will avoid the need for backpointers when compacting the pool,

and that true garbage collection (rather than a reference count scheme)

,
is necessary . because rings of , pointers,may be expected. The .management

routines are readily written in Fortran; the. main-interface being the

allocation routine OBTAIN.

Two ways of using a,Fortran subroutine as pure code are to -

exploit Fortran's argument transmission by addresS by putting an item in

the Calling sequence-and using the Corresponding entry in the storage-

frame as the argument, or to treat the Storage in the subroutine as.registers,

copying in values from the Storage. frame in a prologue before execnting

the body, and copying them back afterward in an epilogue. Except for some

simple variables, the first way is better, so the body subroutine has a

long argument list. Since the arguments to be supplied depend only on the

IRI Proj .ect 1013

copynaméand offsets:1n thestoragg'frame4 a third - subroutine, : the predall .

 subroutine,-is produced to 'calculate these- Offsets and call the body

suhrOutine.•

A copynaMe variable is really a pointer to the fixed header

of the storage frame - of the copy-. To invoke, or resume- this copyi the

'correaponding prototype must be found. . This is arranged for by having

the create subroutine Call a machine language primitive, SAVE, with the

precall>subroutine as argument. This primitive redords in the Storage .

frame enOtigh information (e.g. entry point address) that later when - a

seçondmachine.language primitive, CALL, is given this information, it

can call the precall subroutine. (Note that these primitives are 	.

effectively providing procedure name variables).

(Figuré
about here)

The organization of the system.is:thus. indicated by Figure 2.

Solid boxes are routines compiled from the program, dotted boxes are

supplementary .service routines. To invoke or resume a copy DISPATCHER

locates the appropriate storage frame (and, if invoking, updates CALLER),

'and then 'calls the precall subroutine via CALL. The precall subroutine

in turn then calls the body subroutine. 'As. mentioned earlier, thé body

- 	--
subroutine starts with a COMPUTED GO TO so execution can begin at the

_ point, indicated . by the:resumption marker. _ (Note - that this might be in

a DO loop, which would require the DO loop te be. replaced by. equivalent
••

statements). , In - executing, the body may cail service subroutines
•

STORE,: FETCH,. and ASSOCIATE t6 performthese operatic:ins—upon specified

Sterage frames, Duplication is perforMed by':CalIing:the servicestibroutine

DUPLICATE; and ereationby calling the create routine for. the specified

- 	. 	.
data structures Such as fileS. , 'FreqUently there:aremany,ways to interpret_

the request "next item from structure", and for each interpretation there

IRI Project 1013

prototype. Both of these may cause blocks to move in the-storage pool,

so the body subroutine must return to the precall subroutine and be called

again to ensure the storage correspondences are correct. Before returning

for this, and of course before returning to DISPATCHER to invoke or resume

another copy, the resumption marker GOFROM must be updated.

The importance of the scheme outlined above is that by using

three simple machine language primitives (ASSOCIATE requires the usual

primitive of finding the address of a variable) and a set of supplementary

service routines totaling about 300 lines of Fortran, it is possible to

implement a completely different language structure in Fortran. In this

sense, Fortran is a powerfully extensible language.

Usés. 'of Coroutines

date, 'coroutines have Mainly been used either for processing

data streams (sequences of items of data) or for simulating several processes

simultaneously.

.For example, each pass of a compiler . can be regarded as a stream

processor whose input stream is the output stream of the preceding pass.

Passes written as coroutines, rather than running to completion before the

next pass is started, can be run in quasi-parallel, each yielding control

whenever its input buffer is empty or its output buffer is full. In this

way buffer size can be controlled, although each pass executes essentially

independently.

Another important use of coroutines is in generating streams from

IRI Project:10I

- 10-

may well bé ,severalgeneratorspositionedat various places in the structure:

• WritingeaChgenerator as a coroutine is a useful way to allow each the
 ,

buffermemory, etc:, that - it needs, and generators corresponding te-the

saMe .interptetation of next item Willusually - 'be so similar that copies,

a single prototype are attractive.

. In processing streams, a featbre of-considerable value (1) is

that no coroutine really knows i -in any ,hard, and fast sense, just who : his

neighbouris. The fact that copynamèS are' variables, combined with symbolic

matching to identify accessible-Or dummy variables, meanà that Modules

can be bound and Unbound dynamically. ,For example, a module . can.bé

temporarily inserted betWeen two others to . monitor intermediate.results,

or various different.versions of.a modille:Can be experimentally connected

in place;

Sometimes streams merge or split: In such cases, the processing-

module may want to request that . not just one but a list of other modules

be invoked. This is easily handled by having one coroutine that is a •

scheduler, accepting stich requests and deciding which copy to execute next.

Discrete eVent Simulation consists of simulating,a precess that

consists of:a sequence of discrete' eVents, each of which affects tbevalues

of state-variables of the system. When several procesSes affecting common

State variables are simulated simultaneously, it.is convenient to code

each precess as a Coroutine, for. execution milst be quasi-simultaneous in

order that events in different processes Oceur'in Proper . order of time.

A scheduler as mentioned aboveusuallY becomes neceSsary, 'Moreover as

processes. will often, be similar, and the number of suçh similar processes

may depend' on intérMediate,results,'creatable copies are necessary.

_J•

IRI .Proj .ect .1013

. Recently two neW:uses of coroutines have:becOmejapparent. The

first Of these arises in a type of heuriatic programming that oceurs in such

-areas as artificial intelligence and 'statistical model fitting (3 ,

A set of alternatives exidts, each:of which if pursued would introduce'a

further,set of alternatives, and sà•on. Rather than pursuing - each set of

choices-in turn tà the limit (a concept that may well be meaningleSs), it

is far. more desirable:to.proceed more uniformly, pruning branches.of-the

choice tree whenever they appear coMparatively unprofitable, but following.

up the others . more or . lésssimultaneouSly. .1f pursuing each alternative

takes a separate:program:module, quasi-parallel execution and hence ,

eoroutines are called for. Further, many alternatives will use copies of

the same prototype, and ,also storage recovery from .the pruning occurs '

• naturally.as unprofitable branches are "forgottee..

Thé other new,use of coroutinés ià to pràvide a user with

effectively hi d own multiprôgramming system., càmplete with powerful features

such as dynamic binding, special schedulers, means of communicating between

running programS, run tiMe spawning of new jobs, dynamic storage allocation,

common access to shared data bases, and message switching between jobs

and various peripherals. Suchfacilities, When available at all,are

usually available Only for the computer .system as a whole,- and often only

to systems programmers. 'There are times, however; particularly in an

interactive environment, when a user might want to structure such a system

to hi s own needs (7).. The Coroutine system needs nothing more than

viewing in this way to provide this service, the only restriction being

that it is natural.break, rather than interrupt:driVén„Multiprogramming'.

- 12 -

Summary

IRI Project 1013

It has been shown how, Fortran can be extended, in a simple and

natural way, to provide a very general form of coroutines; how this can

be implemented, in Fortran using only a few primitives, so that the

system is portable; and why, considering oie 'of the uses of coroutines,

certain features are desirable. It is hoped the discussion of how

coroutines can be used will suggest new problems for which coroutines

are a useful tool, a tool which the portable coroutine.system makes

available.

References

1. Balzar, R.M., "Dataless programming", 1967 Fall Joint Computer Conference,

AFIPS, pp. 535-544.

2. Brown, W.S., "An operating environment for dynamic recursive computer

programming systems", Comm. ACM 8, 1965, pp. 371-377.

3. Chambers, J.M., "A computer system for fitting models to data",

Applied Statistics, ,18, 1969, pp. 249-263.

4. Conway, M.E., "Design of a separable transition-diagram compiler",

Comm. ACM 6, 1963, pp. 396-408.

5. Dahl, 0.J., and_ Nygaard, K., "Simula - an Algol-based simulation

-language", Comm. ACM 9, 1966, pp. 671-678.

6. Dahl, 0.J., Myhrhaug, B., andNygaard, K., "Simula 67, ,common base , . 	.

language, Publication S-2;gqdrwegian :Cemputing, Centre, Oslo, Norway,

• 	• 1968. , 	 . _

, .0reen;E,S., "rime sharing- inaAtraffiC control pregram", Comm -

ACM 7,. - 1964, pp. 678-681.

- 13 -

IRI Pr'oject 1013. -

. Knuth, D.E., The art of computer programming: Volume_1, Fundamental

algorithms. Addison Wesley 1968.

9. McIlroy, M.D., "Coroutines: Semantics in search of syntax", unpublished

memorandUm.

10, Unger; S.H.,"GIT - a.heuristie'program for testing pairs of direeted .

line graphs for isomorphism", Comm. ACM 7, 1964, pp. 26-34.

11. , Wegner, P., Programming Languages, information structures, and

machine organization. McGraw Hill, 1968.

12. ANSI Standard Fortran, Publication X.39 - 1966, American National

Standards Institute, also "Fortran vs. Basic Fortran", Comm. Am 7,

1964, pp. 590-625, and "Clarification of Fortran standards - initial

progress", Comm. ACM 12, 1969, pp. 289-294.

Non-execUtable stateMents
• •

Reserved identifiers

NEWCPY

CALLER

MYNAME

GOFROM

COROUTINE name (par 1, par 	patn

COPYNAMEyar 1, var 1, Var 2; 	var n: 	.

.-COPYNAME : FUNCTIONnaMe (arg . 1 .,..arg 2, 	n)

, 	ACCESSIBLE Var 1, var 2, ..., var .n.

. HDUMMY var 1, var,2, 	var

. Exectitable'Statements

Figure 1 - New. Statements and Reserved Identifiers

IRI . Project 1013

- .CREATE (name (par 1, par 2, 	n)) substatement

DUPLICATE,<CopYnamesubstatement 	. •

. 	- STORE (value, acc Var, copyname) Sub'stai7eWert

FETCH (variable, acc var, dopyname) substatèment

ASSOCIATE (variable,.dum var, cepyname) substatement

INVOKE copyname

RESUME copyname

IRI Project 1013

on the Nesting List

DISPATCHER ,

1 	.
1 	CALÉ 	. 1
I 	1

PRECALL

j

L 1}

7
1 	<

FETCH- ''

STORE

:BODY

)1, ASSOCIATE 	!

DUPLICATE 	1-

I _MAIN PROGRAM

j

—1
SAVE 	ti<= CREATE

—

Figure 2. Relation between Compiled ROutinesend'Servide Routines

OBTAIN 	;

ten

SIMULATION STUDY OF USES OF A

COMPUTER NETWORK : DRAFT

91
C655
G458
1971

DATE DUE

