HERMES PROJECT

report on the preliminary phase

NATIONAL TELECOMMUNICATIONS BRANCH DEPARTMENT OF COMMUNICATIONS

Dec 1971

LABORATOIRE D'ECONOMETRIE UNIVERSITE LAVAL AND
SORES INC., MONTREAL

TABLE OF CONTENTS

Page
SUMMARY 1
FOREWORD 3

1. PROIEGOMENON 6
2. NATURE OF THE MODEL 8
2.1 General remarks 8
2.2 Structure of the model 11
2.3 Formulation and analysis of the network, cost 16
functiols and demand: CADUCEE
2.3.1 Iaputs 16
2.3.2 Mechanism 18
2.3.3 Quipuis 23
2.4 ldentification of minimum cost copacity expansion 24. programs: TRANCHE
2.4.1 Activities and constraints 24
2.4.2 Alixed integer linear programming procedure 26
2.4.3 Solutions 27
3. THE OPERATIONAL FORMULATION OF THE HERMES I MODEL 28
3.1 The mathematics of the model 28
3.1.1 The nature of the problem and the tools available 28
3.1.2 inalysis of the nerwork 30
3.1.3 The formal structure of the optimizing model 34
3.1.4 Frinciples of the branch and bound algorithm 37
3.2 Assembling the model inputs from the data base 38
3.2.1 The network 38
3.2.2 Cost functions 40
3.2.3 Demand 44
3.2.4 Specific exclusion rules etc. 44
3.3 $\frac{\text { Identification of admissible faci ity assignment }}{\text { chains ond of upper bounds on capacity expanm }}$ sion: C ADUCEE 45
3.4 Solving the minimum cost capaciy expansion problem: TRANCHE 49
3.4.1 The formulation of the mixed integer linear programming problem 49
3.4.2 Practical solving of the problem 52
4. FIRST RESULTS 62
4.1 Tridiproblems 62
4.2 Input Deta 62
4.3 Toronto- Montreal-Halifax Problein 63
4.3.1 CADUCEE 63
4.3.2 TRANCHE 73
4.3.3 Ancilysis of results 78
4.4 Montreal-Vancouver Problem 79
4.4.1 The problem 79
4.4.2 The solution 79
4.4.3 Corclusion 87
5. TOWARDS A DEMAND MODEL 90
5.1 The problem of linking HERMES I with a demand nodel 90
5.2 The elements available: methodo ogy and data 92
5.3 Possible approciches 94
6. EXTENSIONS AND FURTHER DEVELOPMENT 96
6.1 General remarks 96
6.2 Improvelnent of the operating chatacteristics of the HERMES 1 model 97
6.3 More deiailed networks 98
6.4 Enlargea networks 99
6.5 Planninc capacity expansion over time 101
APPENDIX: Reduced Example

LIST OF FIGURES

Page

1. HERNES I model - General Flow Chart - CADUCEE 14
2. HERMES I model - General Flow Chart - (cont'd) TRANCHE 15
3. The Canadian Telecommunications network (abstracted) 4.1.
4. Inves:ment Cost function - Heavy route: 42
5. Inves ment Cost function - Nodal facilities to U.S.A. 43
6. Compister input form - Sample network 55
7. The kasic problem matrix 57
8. Relevant region for trial problem 65
9. Network of admissible chains for trial problem 72
10. Trial problem: optimal solution 77
11. Admi ssible Chains - Vancouver-Montreal 2.s.c. 86

SUMNARY

During the preliminary phase of the HERMES project, a model was developed it for plar ning interregional telecommunications network capacity expansions /f from the initial state at mintimum capital sost levels given certain configurations of demend changes and other constraints. The present version of this model (called HERAES I) is operational, based on simplified facility expansion cost functions and on abstracted representation of the Canadian interregional neiwork.

The moriel consist of two parts. The first art (consisting of the CADUCEE soitware) analyse: the telecommunications network, the related capacity expansion cost functions and the specified demand increeses, and identifies admissible facility assignment chains and the bounds on capo:ity expansions. Thus this part of tie model fermits to eliminate all so called lominated chains, which cannot be part of the solution under any circumstances and also the dominated capacity expansion increments. The most importan procedure of this part of the model is a gereralization of the shortest chain algorithm for non-directed networks, based on Bellman's principle of optimaliy.

The secind part of the model (consisting of the TRANCHE software) identifie; the minimun cost expansion program, using a: its main procedure a mixed intege: linear frogramming algorititm of the branch-and-bound type.

The prinicipal output of the model consist of the values of capacity expansion activitias constituting the minimum cosi capacity expansion program.

To use the full potentiel of the models of the HERMES series, it is recommanded that a demand model be concurrently devalopped which would provide forecasts of different patterns of increases of demand for relecommunications facilities in Cancida. Although there is no established methodology applicable to the problen, afew approaches con be suggestad. It is expected that one of these approaches would play the main role in the procedure adopted, namely a model based on the struciure of activity analysi:.

The HERMES 1 is the first one of a series: and future developments will involve the following steps:

- Improvements of the methodology already developped, including the software and its applications to more detailed networks.
- The introduction of additional factors affecting the planning of network expansions
- The linking of the network capacity expansion models with demand models
- The introduction of dynamic considerations: capacity expansion planning over time.

As a guide to the reader, the following remarks concerning the contents of the various parts of the report may be useful.
-. Chapters 1, 2, 5, and 6. will provide a general overview of the HERMF:S I model, as well as an exposé an possible approaches for a demand model and a description of recommanded extensions and further develspments for the models of the HERM:S series. These 4 chapters give a fairly complete presentation, in semi-technical terms, of the work carriedout ard the results obtained during the preliminary phase of the project.

- Chapter 4 presents some of the results that were obtained while using the model to solve specific problems submitted by D. O. C. personnel.
- Chapter 3 is a very detailed and technical presentation of the HERMES I model. Combined with the reduced example of the appendix, which takes the reader through almost every step of the calculations, it is intended to provide a complete understanding of the various mechanisms used in the model.

The overall objectives of the Preliminary Phase of the HERMES project were:
a) To develop a marhematical model for planning interregional Eelecommunications network capacity expansions from the initial state at minimum capital cost levels, given certain hypothetical configurations of demand changes and other constraints.
b) ro develop a methodology for realistic demand forecasts for interregional telecommunications.
c) To carry out preliminary work on meihodological development of an intregrated approach to demand forecasting and/or simulation and the planning of interregional network capacity changes.

According to the terms of reference the prelininary phase was to be divided in two parts. The first part was to lead to ar interim report containing the following:
i) Detailed formulation of the first version of the model.
ii) Operational but probably inefficiert software relating to (i).
iii) Two sets of data recommendations:
.. data needed to construct the model;
..
data needed to operate the model.
In turn, the second part was to lead to a Final Report, due on January 31, 1972 and containing the following:
i) Translation of the reduced model info an operational model; detailed formulation of the model; its functioning.
ii) Preliminary results of the model, forecasts and simulation.
iii) Conclusions: recommendations concerning subsequent phases.

In concurrence with the National Telecommunications Branch, it was decided to consolidcte the contents of both documents into the present report, which is submitted at an earlier dare than was origirally anticipared. The scope of the interim report, submitted on October 26, 1971, was accordingly reduced to a very brief activity report.

The HERMES project is a joint enterprise carr"ed our by:

- The National Telecommunications Bianch of the Department of Cemmunicarions
- Economics Depariment, Carleton University
- Lázoratoire d'èconométrie, Universtté Laval
- Soiès Inc., Montréal.

The following persons collaborated in the activities leading to this report:

- Department of Communications:
O.L. Britney, Space Systems Consultant
W. Fenton, Consultant
J. Guérin, Econometrics Advisor
J. Halina, Director General, National Telecommunicarions Branch K.T. Hepburn, Chief Regulatory Consultant E.E.R. King, Chief, Staiistical Information Ccrleton University:
G. Paquet, Professor of Economics
- Universite Laval:
C. Autin, professeur agregé
M. Hupe, assistant de recherche
T. Matuszewski, professeur d'économétrie
J. Poirier, P.Eng., charge de recherche (analyste des systèmes)
-. Sorès Inc.
1.P. Bergeron, Project Director
M. Lafontaine, intermediate Economist
R. Riendeau, Intermedials O.R. Specialist
B. Webber, Intermediate O.R. Specialist

Mr. E.E.R. King, Chief, Staristical Information, of the Department of Communications is the Project officer. Professor T. Maruszewski of Universite L.aval is responsible for providing direction with respect to the technical inpuis of all team members into the project.

1. PROLEGOMENON

Project HERMES is a joint enterprise carried out by a quadripartite team, whose consposition is detailed in the Foreword. From the beginning it has been considered that such an arrangement was a necessary condition of the success of the project. It has to be realized however that there are inevitable delays and costs involved in coordinating the working of such a team. It will also be noted that each member's contribution carries a special flavour. And this is how it ought to be. The present text, for instance, is clearly different from what it would have been, had it been written as an internal dopartmental document, as a study oidered from a consulting firm working aione, or again, as a straight acadernic exercise.

A number of serious difficulties are inherent in the very nature of the project. Telecommunications are in a state of rapid expansion and undergoing profound changes. These will continue at an increasing rate. Trends observed in the past are not, by themselves, a very reliable guide. The economics of the telecommunications are rendered particularly difficult by the special characteristics of the "producis" and of the "processes" involved. On the one hand, these "products" are highly individualized and defy any simple measurement procedures. On the orther hand, the "processes" are more often than not characterized by the importance of joint costis, of decreasing average costs, of substitution possibilities and of often very wide ranges of technical alterm natives. And then, there are particular difficulties in arriving at operational definitions of both the cost and the demand cisncepts. All this is further complicated by the very special institutional and corporate structure of the telecommeni cations industry.

On the methodological side, precedents are few and the ones that exist concern certain aspects only of the problems with which we are concerned in this study. The conceptual effort concerned with the difficulties mentioned in the pres:eding paragraph is thus inevitably to a large extent exploratory.

The challenge of the HERMES project lies in the necessity to combine some quite fund amerrial and advanced concepts of economic theory and of mathematical programming with the very down-wowearth realities of the Canadian interregional telecommunications network. The results are not of universal applicabilty, an least not in the form in which they are being worked out. In a sense, the HERMES project is "custom made". However, one can envisage iss modifications and extensions which may go a long way in increasing the transferability of these vesults. The basic methodology and the overall conceptualisation of the relevant software are quite general. Applications to more detailed shudies of regional networks or of specialized networks within Canada are first to come to mind. Adaptations to the special characteristics of the telecommunicarions planning oblems in other countries are certainly possible.

It was decicied from the beginning that the HERMES project would proceed by stages. The results contained in this report are based on real data, but severely simplified cr "rationalized". Thus, they are to be considered to some extent as experimental. The HERMES model itself is in a fairly advanced stage of developmerit, and thus can efficiently handle a much more detailed and realistic dara base. A large part of the work of future phases will be devored to developing such a data base. Proceeding by stages means that the models developed in the course of the project must be perfectible, that provisions must be made for accommodaiing and taking advantage of new data, for increasing the scope and the complexity of the relations these models contain and for improving their performancé. This perfectibility requirement evidently imposes certain additional burdens on the conceptualization of these motels and on the development of computing and other procedures necessary to eperate them.

It was decided not to approach telecommunictions carriers for additional information, statistical and other, until the poject is in a more advanced stage of developnient. It is clear however that their cooperation will be essential if the project is to yield truly operational results.

Some goveriment departments have been approached and are being kept informed of the progress of the project. No input from these other departments has been used to obtuin the results reported on here. In the future stages of the project, however, it is expected that such inputs will become important.
ncy.
2. NATURE OF THE MODEL

2.1 General Remarks

Although based on real, though of course simplified and aggregated, data and although full: operational within its terms of reference, the HERMES I model is just the first one of a series. The development of the methodology, including the corresponsing software, was done to a very lirge extent and at a considerable additional effort and expense in view of future refinements and extensions. Already the description of the model and its functioning contained in this and in the following chapters goes a good deal beyond the fairly narrow objectives of the Preliminary Phase. It is not until Chapter 6 of this Report however that the full potentialities of the model in view of future developments are discussed at length.

The HERMES 1 model is formulated with reference to the Canadian telecommunications netwerk. However, the methodology developed is perfectly general and applicable to the telecommunications network of any country, or group of countrieso It will be noted that the methodology in questior covers all the essential steps from the conceptualization and economic analysis, theough mathematical formulation of the model to the development of the relevant sofiware. It is evident however that the implantation of this methodology in a foreign context would still require a considerable effort of data collection and data integration which could not be undertaken except in close collaboration with the specialists of the country, or the countries, concerned.

The basic function of the HERMES I model is to find optimal telecommunications capacity expansion programs, given specified increases in demand. Demand for telecommunications facilities, and changes in this demand, are specified in a manner exogenous to the model. In subsequent phases of the project a series of HORAE mode is will be developed whose function will be to provide these specifi-. cations and thus to work in tandem with models of the HERMES series.

For the purposes of the HERMES I model demand is defined as the number of circuits or channels deemed necessary at a given level of quality of service between any two demand points. It will be noted that it is thus the demand for facilities (fransmission facilities only in the sase of HERMES I, transmission and nodal facilities in subsequent versions) that is taken into account here, and not demend for communications as such.

By optimal capacity expansic: "rogram is meant a program (which may be not unique) which minimizes the toral capital cost of capacity expansion. In subsequent models of the HERMES series, operaring costs will undoubtedly al so be introduced.

The model is formulated with reference to the Canadian interregional telecommunications network, as established by the Department of Communications officers. Evidently, the real network with all its details could not be incorporated into the model and a simplified version had to be used. The simplified version resembles the real network with respect to its geographic patrern. It includes 98 demand points, of which 19 are portals to foreign nodes.

It will be urderstood that, as a general rule, cinumber of alternative facility assignment ehains are available to satisfy the demand existing between any two points. The number of these chains may, in fact, be extremely large. Thus, preliminary calculations indicate that, already in the simplified network referred to above, the number of possible facility assigrment chains between Montreal and Vancouver s well over 30,000 . To evaluafe and compare such a number of alternatives within the context of mixed integar programining is well beyond the possibilities of even the most powerful computers. The first major mathematical problem to be solved was thus to find a procedure to identify the facility assignment chains which are candidates for inclusion in an optimal capacity expansion program - tiese are called admissible chains - and to eliminate the chains which are dominated, in the sense that although possible, they are so inefficient that they could never appear in any reasonable capacity expansion program and certairly not in the optimal program. In this way, the problems submitted to the model could be retuced to manageable dimensions without sacrificing any relevant information and, also, maintaining the originai level of detail. Such a procedure was formulated, and made operational. It is described in Sections 2.3 and 3.3. below: Apart from supplying intermediate resultrs essential for the functioning of the model, this procedure yields certain valuable by - products of interest in the overall appre-: ciations of the telecommunications network concerned and in the evaluation of its proposed extensions.

The other m:xihemarical difficulty was the importance of decreasing costs and of joint cosís m it is the capacity expansion costs which are meant here. As it is well known. the presence of such costs complicates very considerably the search for optimal solutions and, in addition, makes sensitivity analyses of the resulis more laborious o It is, of course, the indivisibilities characteristic of telecommum nication facilities which are responsible for these difficulries. The techniques employed te overcome these difficulties are those of mixed ineger linear programning. They have keen made operational and adapted to the special needs of the HERMES project. They remain however more complex and laborious than the technique of continuous frogramming applicable in other contexts. The use of mixed integer programming to handle real life problems is still a fairly recent development.

HERMES I is an optimizing model . However, its searching for optimum solutions is always done within a framework of hypotheses: hypotheses concerning the demand pattern, concerning capacity expansion cosis and, of course, concerning the structure of the telecommunicarions nerwork itself, including a given state of network capasity. It is not designed to supply "ence for all" solutions. Ifs proper role is that of a simulating device supplying conditional solutions to certair: ranges of prolilems and tracing the likely consequences of alternarive hypotheses.

It is essential to realize that the presence of decreasing costs and of joint costs makes for the successive solutions of the optimizing procedure being non-additive. This may be illustrated as follows. Supposing a certain demand increase for a given pair of points is specified and the corresponding minimum cost capacity expansion prcgram identified. Then another pail of points is taken up and again a minimum cest capacity expansion program is identified, designed to satisfy the demand increase specified for the second pair of points. Now, if the same demane increases for borh these pairs of points are considered simultaneously, the corresponding minimum cost capacity expansion progran will not, in general, be the sum of the two capacity expansion programs found previously and the cost of this overall progran will, in general, be less than the sum of the costs of the two original progiams. This is so because the two denand increases may well be assigred to share certain facilities and thus to take advantage of decreasing average costs. This consideration is of paramount importance in the planning of communication networks and is reflected in certain fundamental characteristics of the HERMES I model.

The limitations of the HERMES I model are inherent in its formulation and will become apparent as its description unfolds. Although it is elaborate and detailed by the usual standards, it is no more than a simplified version of just a segment of the relevant reality. Its principal limitation is perhaps its static character. To refine the degree of detail and to increase the number of variables is time-consuming and expensive, but does nor call for major revisions of the methodology originally developed. To introduce dynamic considerations, so that capacity expansion progams spread over time can be taken into account and optimized, calls for some major conceptual revisions, a fairly fundamental reformulation of the methodology, and a new conceptualization of the relevant software. It is evident, however, that suct, a dynamization will heve to appear somewhere along the line of development of the HERMES series of models, given the extremely repid growith of demand for telecommunications and given the particular nature of capacity expansion cost functions for telecommunications.

To sum up, the model HERMES I is certainly perfectible in the sense of having a considerable potential for future refinements and extensions, including the construcition of dynamic versions. However, its present version already is fully operarional, besed on real, though simplified, data and supported by a system of sofiware which, although functioning and reasonably efficient, is also capable of considerable further deve'opment.

The remainder of this and the following chapter deal with the HERMES I model, leaving to \%hapters 5 and 6 the question of its possible extensions and future developmerts.

2.2 Structure of the model

The HERMES I model consists of two parts. The firsi part serves to analyse the telecommunications network, the related capasity expansion cost functions and the specified demand increases. Its principal output is the identification of admissible facility assignment chains and of the upper bounds on capacity expansions. It al so yields certain by-products of interest. The second part serves to identify minimum cost capacity expansion prog:ams. It uses as its principal input the principal output of the first part.

The role of the first pari of the HERMES I model may be briefly described as follows.

The national interregional telecommunications system is represented by a non-directed network in which there can be at most one link between any two nodes. In due course the present simplified network will be raplaced by a more complicated one, allowing for more than one link between any tvo geographic nodes and for more than one nodal facility at any given geographic point, to take account of different facility systems, of the existence of distinct telecommunications carriers, and of other considerations. However, the device of dummy nodes and links relared to them allows the representation of this more complicated network by a somcalled "eniarged network" whose formal structure is strictly analogous to the neiwork discussed here, so that the methodology presented below applios equally well to the more complicated network.

Capital capacity expansion cost functions are defined for every link (and node: geographic, or a dummy node) in the interval between the existing capacity (assumed to be equal to the present level of utilization) and an upper bound on capacity expansion, set at a maximum of 30 service channels, although in the actual applications of the model, the upper bounds are set at lower levels, depencing on the specified pattern of demand increases. In fact, successive revisions of the upper bounds on capacity expansions play an important role in the first part of the HERMES I model and contribute significantly to its efficiency.

The second art of the HERMES I model use a mixed integer linear programming formulation (TRANCHE) to choose the minimum cost capacity expansion program. This kind of formulation, instead of a much easier contimuous progranming formuw lation, is made necessary by the presence of decreasing average costs (due to the fact that the total cost functions are step functions) and to the presence of point costs: demend concerning two or more different pairs of demand points nay be accommetaled by the same transmission, or nodal, facility.

In the mixed integer linear programming formulation, every facility assignment chain between every pair of points considered in any given problem gives rise to an activity, i.e. to a variable (facility assignnent activity) and all possible capacity expansion increments also give rise to activities which, in addition, must be represented by integer variables. Even in a network of moderate size the number of passible facility assignment chains and of possible capacity expansion increments may be extremely large. The handing of tens of thousands of variables in mixed integer linear programming problems is nor a practical proposition.

It is therefore essential to eliminate in advance facility assignment chains which cannot, under any of the circumstances considered, form part of a minimum cost capacity expansion program. It is also important to eliminate in advance the capacity expansion increments which cannot, under any of the circumstances considered, form part of a minimum cost capacity expansion program designed to satisfy a spe:ified pattern of demand increases. These are the capacity expansion increments vihich lie beyond the upper bounds on capacity expansions. Such facility assignment chains and such capacity expansion increments are called dominated. Facility assignment chains and capacity expansion increments which are not dominated are called admissible.

The main function of the first part of the HERNEES I model is to identify the admissible facility assignment chains and the camissible capacity expansion increments (ihis in fact means identifying the upper bounds on capacity expansion:), and thus to make the second part of the model operational, apart from yielding certain interesting by-products. This is done with the help of the computer progrom CADUCEE with its principal subroutines B \varnothing RNE and D \varnothing MIN \varnothing.

The concept of the lower and upper bounds on incremental capacity expansion costs plays ait essential role in the first part of the HERMES I model. These bounds depend on the initial state of the netwerk (the installed and assumed fully utilized capacity on every link and node of the network) and on the upper bounds on ccpacity expansions. These, in turn, depend on the pattern of specified denand increases.

The efficiency of the first part of the HERMES I model depends in a vital way on the lower and upper bounds on incremental capacity expansion costs on the links (and nodes) of the network being as close together as possible. This is why an iterative procedure is incorporated into the CADUCEE program whose purpose is to confront repeatedly the specified pattern of demand increases with the structure of the nerwork and with the capacity expansion cost functions to narrow, step-by-step: the intervals between the lower and the upper bounds in question. This iterative procedure, which is used only if the problem submitted to the model involves demand increases involving more than one pair of demand points, makes use of the concepts of the "maxirem contemplated demand increase" and "maximum relevant demand increese" defineá and discussed below.

To sum up, the principal function of the first part of the HERMES I model is to identify the relevant variables for the second part of the model.

The main procedure of the second part of the HERMES I model is mixed infeger linear programming. The capacity expansion programs are identified with reference to the initial state of the network. The model uses the computer program TRANCHE. The heart of this program is a standard mixed integer linear programming algorithm of the branch-and-bound type. This algorithm is surrounded by fairly elaborate procedures for the efficient handling of inputs, on the one hand, and for the outputting of results on the other. The inputs into TRANCHE are, in the first place, the principal outputs of the first part: the admissible facility assignment chains and the upper bounds on capasity expansions. In addition, TRANCHE requires as inputs the complete specifications of capacity expansion cost functions, functions which have already been, to some extent and for a different purpose, utilized in the first part of the model. The output of TRANCHI: is the identification of the minimum cosi capacily expansion program corresponding to the specified pattern of demand increases. Sisch a program takes the form of a list of transmission capacity expansions (and, in future versions, of capacity expansions or nodal facilities) and their costs. The corresponding facility assignment chains are also idenrified, chiefly in order to demonstrate that the specified demand increases are in fact satisfied by the expansion program concerned.

The structure of the medel and the sequence of the main groups of operations involved in its functioning is illustrated by the flow charts of Figures 1 and 2.

It is to be noted that the HERMES I model works in units of 1 service channel for both demand increase specifications and for the measurement of capacity and of capacity expansions. In future models of the HERMES series, finer, and not necessarily uniform, units may be used, without any fundamental change of the methodology proposed here, though at the price of a heavier data organization and computing effort.

As shown in Figure 1, CADUCEE starts with the network characteristics and the problem specified as pairs of points between which a demand increase is given. From this is cal culated the "maximum contempleted demand increase!" This is the maximum number of service channels which sould be added to one link to meet the specified increase and can be illustrated as follows. Suppose we specify an increased demand of 2 channels between A and B and 2 between C and D. On any link X, the maximum possibla number of channels which we might have to add to meer these demands is 4 channels. The bounds are then calculated based on this number, the "maximum contemplated increase"." The software then identifies the minimum cost chains beiveen the specified points and produces the $D \varnothing M I N \varnothing$ tables. Admissible nodes and admissible chains are then identified for each pair of points specified. It should be noted from the flow chart that output of these data and tables is optional. There is also an option of resorting to specific exclusion rules to eliminate chains which might be otherwise admissible.

Figure 1: FERNES I model - General Flow Chart - CADUCEE

Figure 2: HERMES I model - General flow chart (cont' d) - TRANCHE

Once all pais specified have been examined, the software then tightens the bounds by identifying common elements of chains and calculating "maximum relevant demand increase". Again to illustrate using the above example, suppose that the chains between A and B use links K, Y and Z and those between C and D use links K, L and X. Thus the "maximum relevant demand increase" for. K, L, Y and Z, K is 2, whereas for link X if is 4 to The bounds are revised on this basis and if they have changed since the last itaration, the process of identifying new chains and nodes is repeated. If the bounls have not changed, they are as tight as the software can make them and no fur her iteration is undertaken. The admissible chains at this point are punched out for input to TRANCHE.

As shown in ligure 2, TRANCHE begins with the same network characteristics and cost data as CADUCEE. In addition, the CADJCEE output is fed into the computer. Using these ciata, the Problem Marrix Generator develops all of the specific formats required by the Mixed Integer Linear Programming package which solves the problem and tinds the minimum cost facilities expansion program.

2.3.1 Inputs

The computer program CADUCEE which corresponds to the first part of the HERME I model requires the following three groups of inputs.
i) A rerresentation of the telecommunications network by a non-directed graph havitg the property that there can be cnly one link between any two nodes: a proposed extension of the model, des rribed in some detail in Chapter 6 of this Report, will allow for more than one link between any two geographic nodes, corresponding to more than one transmission facility between these nodes. The extension proposed involves the construction of enlarged networks in witich appear the sowcalled dummy rodes and which allow for the existence of more than one facility between any two geographic nodes while respecting the fromal requirement of the existence of at most one link between any two node: (geographic, or dummy). Although, of course, the network used in the model is a simplification of the real telecommunications network, the degree of detail taken into account may be fairly. large, the model being able to handle networks with several hundred nodes. The nerwork used to obtain the first results of the Preliminary Phase contained 98 nodes. It is described in some derail in Section 3.2 and illustrated in Figure 3 . The retwork is not specified once for ail. In successive utilizations of the model, the network can be easily modified. In particular, certain parts of it of particular interest in any given application may be specified in greater detail. Also, non-existent but contemplared links may be introduced to evaluate their porential role in plannerl capacity expansion programs.
inc.
ii) The copacity expansion cost functions on all the elements of the neiwork involved. In the HERMES I model, the elements involved are the links correspyonding to transmission facilities. In future extensions, cosí functions of nodal facility capacity expansions wili be introduced and treated in a manner analogous to that described here for the transmission facilities. These are capital costs. Operating costs are not taken into account in the HERMES I model. More complere discussions of the cost concepts relevant to HERMES I and to other models of this series appear in several places in this report, and in particular in Sub-section 3.2.2. It will be noted that in every utilization of the model, cost functions have to be specified for all the elements of the nerwork, in the H:RMES I model for all the links, though of course, for parts of the network which are not of main interest, it may suffice to have first estimates indieating the orders of magnitude.

In the CADUCEE program, the cost functions are not used as such but serve to calculare the lower and upper bounds on incremental capacity expansion costs. The bounds in question inay be revised several times in the course of any given utilization of the model. These revisions are part of the mechanism of the computer progran and are described in the following Sub-section and in Chapier 3. However, the concept of the lower and upper bounds on incremental capacity expansion costs and its relation to the cost functions will be taken up here. Capacity expansion is measured in discrete units of 1 service channel. Capacity expansion cost functions ore step functions. For transmission facilities the possible increments are $\$ 1,000, \$ 3,000, \$ 5,000$ or $\$ 9,000$ per mile. For the nodal facilities, of course; the possible increments will be in the total capacity expansion costs, and not expressed on per mile basis.

For ecch link (and node) the lower bound and the upper bound is established for the incremental unit (i.e.per 1 service channel) cost of capacity expansion. Fror links this cost relares to ci unit increase in capacity over the wiole length of the link.

The liwer and upper bounds on incremental capacity expansion costs are calculated as the lowest and the highest, respectively, capacity fransmission cost per 1 service channel, within the interval between the initial stare and the maximum contemplated demand increase, or the maximum relevand demand increase, dependirg on which stage of the algorithm the calculation is being make. For links; these bounds are always one of the amounts of $\$ 1,000, \$ 3,000, \$ 5,000$ or $\$ 9,000$ multiplied by the mileage. It wil! be noted that if the interval in questrion is equal to 1 service channel only, the lower and upper bounds necessarily coincide.

It will be observed that the lower and upper bounds refer to incremental capaitity expansion cosis per 1 service channel. The lower bound cortesponds to the most favourable and the upper bound to the least favoirable configuration of facility ass:gnments throughout the network, insofar as the given link (or node) is concerned. The actual costs are likely to be higher than the lower bourd multiplied by the number of service channels installed and lower than the upper bound multiplied by the rumber of service channels installed. The setring of the lower and uppe: bounds on incremental capacity axpansion costs serves two distinct purposes in the model. In the first place, the knowledge of these bounds is nesessary for the identification of acmissible facility assignment chains. In the second place, the interaction of the specified demand increases with the lower and upper bounds on adnissible assignment chains yields the inlentification of admissible capacity expansion increments.

It will be recalled that facility assignment chains and capacity expansion increments are represented by variables in the second part of the model. The only way to make this second part of the model operational is to keep the numbers of variables down to manageable dimensions. This is done by considering the admissible chains and the admissible capacity increments only.
iii) Specffied pattern of demand increases. In any given utilization of the model, demand increases can be specified for one, or for any number of pairs of demand points, which correrpond to the nodes of the network. As pointed out earlier, if demand increases are specified for more than one fair of demand points, it is essential to treat them simultaneously and not sequentially.

In the HERMES I model, demand is always taken to be two-way demand, and c:ll transmissior (and nodal) facilities are assumed to be two-way facilities. This does not mean, of course, that all demand is necessarily demand for instantaneous two-way comnunications.

2.3.2 Mechanism

The purpose of the first part of the model is to dentify the admissible chains and the admissibl: capacity expansion increments and thus to eliminate the dominated chains and the dominated capacity expansion increments.

This is achieved by a progressive evaluation and eliminarion procedure. This procedure may be applied to one, or to any number of, pairs of demand points to be treated simultaneously within a given problem.

The results are not invariant with respect to:
-. The snallest discrete (lump) increment in demand and in transmission (and in nodal) facilities; it is assumed here to be 1 service channel;

- the iritial state of the network; the inctalled, and assumed to be fully utilized, capacity;
- the specified pattern of demand increas soncerning all the pairs of points to be treated in a given problem.

The procedure is a generalization of the shortest chain algorithm for non-directed networks and is based on Bellman ${ }^{\text {s }}$ "principle ef optimality". The generalization proposed here: consists in taking account of the fact that on each link (node) there is a lower bound and an upper bound on the incemental capacity expansion cost, instead of a single incremental cost coefficient, the actual value depending on the facility requicements which could be assigned to this link (node) to accommodate the demands hetween the demand points involved in any given problem.

For any pair of the demand points considered, "complete chain is a chain connecting these two points, called N \varnothing RG and NDEST respectively, and an incomplete chain is a chain connecting N $\varnothing R G$ to any point other than NDEST.

The procedure progressively eliminates complets, or incomplete, chains which are dominated by other chains. A complete, or an incomplete, chain is dominated if the sum of the lower bounds of the incremental capacity expansion costs of its links (and norles) is higher than the sum of the upper bounds of the incremental capacity expansion costs of the links (and nodes) of some other chain connecting the same pair of nodes. A dominated chain carnot form part of any minimum cost capacity expunsion program. A complete chain is cominated if any incomplete chain it contains is dominated. It will be recalled that an admissible chain is a chain which is not dominated.

If, in any given problem, one pair of demand points only is being considered, these lower and upper bounds have to be set onse only. If more than one pair of demand points are to be treated simultaneously, the lower and upper bounds set at the beginning of the problem are successively revised, the number of revisions being at most equol to the number of pairs of demand points considered, less one. The effect of these revisions is to bring the lowar and upper bounds closer together, or to leave them urshanged. It will be recalled that the power of the procedure depends on the lower and upper bounds being as close together as possible, while insuring that no admissible chains nor admissible capacity expansion increments are eliminated.

At the begirning of solving any given problem a "maximum contemplated demand increase" is calculated. This number is the same for all the links (and nodes) of the network. It is equal to the sum (expressed as a number of service channels) of the demard increases specified for all the poirs of demand points in be treated simultaneously in this problem.

In subsequent revisions of the lower and upper bounds the concept of the "maximum contemplates demand increase" is replaced by the concept of the "maximum relevent demand increase". This number will not, in general, be the same for all the links (and nodes) of the network. For any given link (or node) this number is equal to the sum of the damand increases specified for the pairs of demand points whose admissible chains (i.e. admissible chains connecting them) pass through this link (or node). It will be neted that, for any link (or node), a pair of demand points must be incluted in the calculation of the "maximum relevant demand increase" even if only one of its admissible chains passes through this link or node.

Given the capacity expansion cost functions, the lower and upper bounds on incremental capacity expansion costs depend out the interval between the initial state, that is the installed (and assumed fully whilized) capacity and the upper bound on cepacity expansion which equals either the "maximum contemplated demand increase" or the "maximum relevant demand increase", depending at which stage of the problem the calculation is being made. Capacity expansion increments which are ostside this interval are considered fominated. It will thus be seen that the successive revisions of the lower and upper bounds have at the same time the effect of progressively reducing the list of admissible capacity expansion incremenis.

Since capacity expansion costs on any element of the network are independent of the capacity expansion costs on any other element, the lower bound for a chain is the sum of the lower bounds on its elements and the upper bound for a chain is the sum of the upper bounds on its element. The enlarged network proposed for future models of the HERMES series preserves the principle of the independence of costs on the elements of the network. Hence the procedure described here wil: be equally well applicable to such enlarged networks.

The lower and upper bounds are calculated and then revised by the subroutine $B \not \subset R N E$. The program CADUCEE identifies the admissible facility assignment chains for each pair of demand points in turn. Once all the pairs have been treated, it calls the subroutine BORNE to revise the lower and upper bounds and again treats all the pairs of points concerned. The procedure stops when no further revisions of the bounds are possible.

Every time the main program CADUCEE is used for any pair of demand points, it requires the following information:

- the specification of the two nodes of the pair of points concerned: NØRS and NDEST
- the lower and upper bounds on the capacity expansion cosis on all the links (and nodes) of the nefwork, calculated with reference to the initial stare and with reference to the "maximum contemplated demand increase" or to the "maximum relevant demand increase" on each link (and node), as the case may be.

The procedure starts by calculating the costs of minimum cost chains, under different cost assumptions between NORG and NDEST and every other node of the network. This is done with the help of the subroutine D \varnothing MIN \varnothing of the prograin CADUCEE.
$D \varnothing M I N \varnothing$ calculates four tables, although in fact three of them only are required in further calculations:

- the cest of the minimum cost chain, costs being set at their upper bounds, from NØRG to every other node of the network;
- the cost of the minimum cost chain, cost: being set at their upper bounds, from NDEST to every other node of the network (this table is not required in further calculations);
-. . the cost of the minimum cost chain, costs being set at their lower bounds, from $N \varnothing$ RG to every other node of the network;
- . the cost of the minimum cost chain, cost being set at their lower bounds, from NDEST to every other node of the network.

It will be noted that the costs of chains which appear in the above tables are per 1 service channel. However, since they are upper (lower) bound costs, upper (lower) bound costs for capacily expansions for 2, 3, etc. service channels are simply the corresponding multiple of the bounds for 1 service channel -up to the "maximum contemplated demand increase" or up to the "maximum relevant demand increase", as the case may be.

It will also ko noted that the numbers contained in the above four tables depend on the initial state of every link (and node) of the network and on the "maximum contemplated demand increase" or the "maximum relevant demand increase" depending at which stage of the procedure they were calculared.

The above four tables having been calculated by the subroutine D \varnothing MIN \varnothing, the main program CADUCEE takes over and eliminates all the dominated nodes. A node is dominated if all possible chains connerting N \varnothing RG and NDEST through this sode are dominated.

For every noda of the nerwork a comparison is mede between:
.. the sum of the costs of the two minimum cost chains connecting this nude with NめRG and with NDEST respectively, costs being set at their lower bounds;

- the cost of the minimum cost chain connecting N \wp RG and NDEST T_{p} costs being set at their upper bounds.

If the first term of this comparison is greater than the second term, the nodes concerned is eliminated as being a dominated note. Two of the four D \varnothing MIN \varnothing tables are used in this operation.

All the links connecting a dominared node with any other node, whether dominated or not, are eliminated.

It may be noled that when the procedure is used for one or more pairs of geogram phically close points, the elimination of dominared nodes will provide a non"arbitrary delineation of the geographic region relevant to the question of capacity expansion to accomrnodate an increase in demant berween the pairs of nodes concerned.

CADUCEE sturts by identifying chains having one link, called "chains of length 1 " starting from N \varnothing RG. It uses these to identify chains "of length 2", etc. Every time a chain meets a node, a comparison is made berween:
-. . The cust of the incomplete chain concerned - costs of its links being set at their lower bounds;

- The cisst of the minimum cost chain connecting N \varnothing RG to the node concerned, costs being set ar their upper bounds. This information is contained in one of the four D \varnothing MINQ rables.

If the first tem of this comparison is greater thar the second term, the incomplete chain concerned is eliminated as a dominated incomplete chain. All complete chains cortaining this incomplete chain are also implicitly eliminated.

The procedure stops when no further incomplete or complete admissible chains can be identified.

The program CADUCEE then takes up another pair of demand points, calls the subroutine $D \varnothing M I N \varnothing$ and repeats the procedure described above, warting with the calculation of the $D \phi M I N \varnothing$ tables.
inc.

Once all the pairs of points concerned have been treated, the subroutine $B \not \varnothing R N E$ is called to revise the lower and upper bounds and again all the pairs of demand points are treated in turn. This revision starts by sorting out all the admissible chains by the pairs of demand poin's to which they relate. Then, for each link (or node) of the network, the pairs of demand points are identified whose admissibie chains (one or more) pass through this link (or :1ode). The "maximum relevant demand increase" for each link (or node) is then calculated as the sum of the demund increases for all the pairs of demand points so "dentified. These "maximum relevant demand increases" are then used to recalculate the lower and upper bounds on incremental capacity expansion cosis and also as a by-product, to identify the admissible cupacity expansion increments. The procedure stops when no further revisions of hounds are possible.

Once the adnissible chains have been idenifiod by the above procedure for all the pairs of demand points concerned, they may be further tested to eliminate those arnong them which violate the specific elimination rules which reflect the institutional and technical peculiarities of the Canadian national interregional telecommunications system. The taking into account of these specific rules is an option in the CADUCEE program: option "specific exclusion rules".

2.3.3 Ouiputs

CADUCEE outputs all the admissible complete shains connecting the demand points of all the pairs considered. These chains are identified (as sequences of nodes and as sequences of links). It also outputs the upper bounds on capacity expansion on every link (ond node) of the network and thus, implicitly, identifies the admissible capacity expansion increments.

All the chains which have been eliminated are dominated chains, that is chains that cannot appear in the minimum cost capaciy expansion program with the given initial state and the specified pattern of demand increases. There is therefcre no danger of missing the optimum solution by stbmitting to the program TRANCHE only the chains identified as admissible. However, if the option "specific exclusion rules" is usec, it may happen that some admissible chains are eliminated.

The program sontains an option to print (punch on cards, ...nsfer to disk, etc.) the four $D \varnothing$ iNIN \varnothing tables. If this option is used, CADUCEE will also identify (as sequences of nodes and as sequences of links) the two corresponding minimum cost chains between points of each of the pairs of points considered, and output them. This information is not required in furthar calcularions, but may be of interest by itself.

Among other uses, these additional outputs provide information relevant to the evaluation of possible new links berween nodes not af present directly connected.

2.4 Identification of minimum cost capacity expansion programs TRANCHE

2.4.1 Activities and constraints

The procedure of the identification of minimum cost expansion programs is formulated in terms of Activity Analysis. The dements of the procedure are:

- variables, usually referred to as "activities"; the procedure chooses the optimum set of values of these variables;
- consiraints which these variables have to respect, individually or, more often, in sub-sets;
- the objective functions where the variables of the problem appear as arguenents and whose value is to be optimized (minimized or maximized).

The procedure involves two types of activities.

- - The acility assignment activities:

These are the facility assignment chairs of the preceding section. They correspond to the allocation of demand to different chains of links (and by implication to the corresponding seqsences of nodal facilities). These activities are somewhat evocative of the routing of fraffic between any pair of demand points, however they do not in fact represent the routing of traffic. They merely represent sets of facilities which may serve the demund between any two demand points. These activities (variables) are non- negative and continuous. However, in the HERMES I model, demand is al ways specified in discrete units of che service service channel and so is copacity and capacity expansions. As a consequence, the variables concerned will always take integer valses. But they do not have to be declared as integer variables, which would have the effect of rendering the romputations unnecessarily cumbersume. Their levels indicare the capcity of the corresponding chains allocated to satisfy the demand beiween the points concerned. There is one such variable for every adm missible fraility assignment chain between the points of every pair of poinis.

- The capacity expansion activities.

These are non-negative integer variables representing discrete additions of trunsmission capacity. In future version of the model, when nodal capacity expansion is also taken into account, another set of nodal capacity exponsion activities will have to be introduced.

An investment or capacity expansion activity sorresponds to the building of an indivisible facility or of a block of equipment for the purpose of increasing the capacity of an element of the network: a link (or a node). It may thus concern a transmissicn facility or a block of transmission equipment (or a nodal facility or a block of nodal equipment). The level of an investment activity represents the number of facilities or of blocks of equipmient installed. It is thus a nonnegative intager. If an investment decision is of the "yes or no" kind, the corresponding investment variable will be a $0 \cdots 1$ variable. If the installation of a facility or of a block of equipment of a given kind may be repeated a certain number of times, the corresponding investment activity is a non-negative integer variable. In practive, it will always have a lnown upper bound.

It is to be noted that the aciual transmission of messages does not appear as an activity any where in the model.

It will also be noted that the staric nature of the model puts rather severe conditions on the interpretation of the activities (variables) as defined above. Thus, the levels of the facility assignment activities represent unchanging and permanent claims on the transmission (and nodal) facilities all along their respective chains. Once a change in demand is specified, demand is asstmed to remain at this level indefinitely. The capacity expansion activities, on the other hand, are to be interpreted as "once for all"activities. The capacity expansions concerned are to be undertaken immediately and the equilibrium, described $b_{:}$an optimal solution of the model, will not be cittained until all these new investinents have been implemented to meet the new pattern of demand.

The first grosp of constraints ensures that all demand increases are satisfied: the sum of all the facility assignment activities betwern any two demand points must be equal to the demand increase between these two points.

The second group of constraints ensures that the existing and new capacily on every element of the network is at least sufficient to handle all the demand allocated to this element. In the HERMES I model, which is concerned exclusively with trans". mission facilities, links are the only elements considered. When, in future versions, nodal facilities also are taken into account, onalogous constraints will have to be defined for the nodes of the network. It is clear that, since they appear in the same constraints, the allocation of demand variables and the expansion of capacity variables must be expressed in the same units. It is in these constraints that the integer varicbles appear reflecting the indivisibility (or "lumpiness") of investment decisions concerning tronsmission facilities.

The third grcup of constraints in which appear the same integer variables ensures the preceder:ce of capacity expansions on any given element of the nefwork. The presence of decreasing unit costs makes it nacassary to exclude the possibility of getting "solurions" where an cadition to a facility is included in the capacily ex-" pansion program while the original facility itsalf is not.

If capacity expansion on every relevant element of the network is allowed, the presence of the three above groups of constraints cannot give rise to a situation where there are no feasible solutions. On may, however, consider situations where restrictions are imposed on capacity expansions. They would be either restrictions on individual elements uf the network or global restrictions on the whole capacity expansion program. One might, for instance, allow capacity expansion on certain specified links only, or fix fairly low upper bounds on allowable capacity expansion on ceriain links. Slobal restrictions may, for instance, take the form of a constraint on the total capital outlay. In these cases, the corresponding mathematical problem may hava no feasible solutions.

In future models of the HERMES series, the concept of the annual capital charges may be used. This concept will involve taking into account the expected life, interest charges, and annual maintenance cosis.

It will be recalled that the investment or capacity expansion activities represent discrete additions of transmission (and, in later varsions, also of nodal) facilities. Each of these activities has a cost associated with it. Thus, the procedure works in terms of rotal costs. However, the shape of these total cost functions is such that the underlying average costs are decreasing over the intervals corresponding to discrete capacity expansions. In any solution including the optimal, some of these activities will appear with positive values, the others will appear with zero values. The function to minimize is the sum of the costs of the capacity expansion activities, the activities appearing at zero levels making, of course, no contria bution to the sotal cost.
2.4.2 Mixed integet linear programming procedure.

The procedure which constitutes the core of the program TRANCHE is that of mixed integer linear programming.

The basic conceptual difficulty one faces here strms from the indivisibilities which characterize telecommunication facilities and equipment. These indivisibilities give rise to the phenomena of joint cost; and of decreasing average costs which necessitate the introduction of what are known in the economic programming parlance as conditional constraints. It is the presence of these constraints which calls for the infroduction of integer variables.

Geometrica!ly, the presence of conditional constraints means that the admissible region over which the cost function is to be minimized is not convex, as if is the case in the ordinary linear or quadratic programming. The usual methods of solution which rely heavily on the concept of the supporting plane are no longer applicable and the combinatorial character of the problem has to be faced directly.

This not only makes for much heavier computations than those required to solve ordinary programming problems of comparable size, but also means that sensitivity analyses, once an optimal solution is found, are much more difficult. The usual parametrizarion procedures are no longer applicable and sensitivity analyses become essentially combinatorial problems involving heavy computations. It thus becomes more than ever necessary to have a cicse collaboration with the users of the model who are best qualified to indicate the precise nature of the sensitivity analyses they are interested in.

The TRANCHE program uses a "branch and bound" algorithm for solving mixed integer linear programming problems. The principle of this algorithm is described in sub-section 3.1.4. It is essential to have an extremely efficient computer program, and a powerful computer since the volume of calculations is often several hundred times greater than in the case of continuous linear programming problems of comparable dimensions. It is also essential, of course, to reduce the number of veriables and to fix the lowest possible upper bounds on the infeger variables. This is achieved by CADUCEE.

2.4.3 Solutions.

A solution ': the model gives in the first place the values of the facility assignment activities associated with the minimum co:t capacity expansion program. These are obtained as a by-product of the principal output of the second part of the HERMES I model.

This principal output consists of the values of capacity expansion activities cons" fituting the ninimum cost capacity expansion program.

Finally, the procedure gives the total cost associared with this capacity expansion program: and its breakdown by the elements of the network where capacity expansion is indicared. The actual cost of transmitting messages does not appear anywhere in the model.

HERMES I is not a model which is formulated once for all and intended to turn out a unique oprimal capacity expansion program. It is destined to be used repeatedly with different sets of capacity expaision minimum cost functions, with modifications of the original network and, of course, for different paiterns of demand increases. Any model, however elaborate, is a brutal simplification of realiiy. it would be to misunderstand complately the nature of the project HERMES to expect to get out of it a once-for-all straightforward answer to the question: what ought to be the program of capacity expansion of the interregional relecommuni cations network.
inc.

3. THE OPERATIONAL FORMULATION OF THE HERMES I MODEL

3.1 The Matheinatics of the Model

3.1.1 The nature of the problem and the rools available

In Chapter 2, we have discussed the structure of the model as being twofold: a search for a set of admissible chains and a mixet integer linear program to establish the cptimum capacity expansion.

The first problem is treated with some of the tools of graph theory and the notion of dominated chains. The second is handled by a mathematical programming formulation requiring integer variables to express the mathematical representation of indivisible phenomena like the addition of indivisible quanta of capacity and ordering of these capacity additions.

The presence of integer variables mean that the admissible region over which the cost function is to be minimized is not convex, as it is the case in the ordinary linear or quactatic programming. The usual methods of solution which rely heavily on the concept of the supporting hyperplene are no longer applicable and combinatorial methods using clever partial enume:ations of the admissible points are used. The resulting computing time increases drastically. Moreover, a sensitivity andysis from a given optimal solution is much more difficulì. Parametrization procedures are impossible due to the integer variables and the computarion of shadow prices indicating the marginal contribution of relaxing certain constraints is ao longer applicable. The sensitivity analysis must be conducted through combinatorial variations of sets of parameter values and recomputation of new oprimal solutions.

In order to express the problem, we will start with a few definitions.
The network i; represented by a set N of indices tor the nodes with typical element called ; and a set L of indices for the links with typical element called I. Some elements of the network represent capacity expansion increments. The set of indices labeling these elements will be called K and a typical index will be designated by k.

For each $k \in K$, a capacity expansion cost function is defined from the initial capacity to as upper limit which is sufficient for all the problems to be submitred to the model. This cost function is a slep funcrion. The domain of this function is a set of integers from 0 to the above mentioned upper limit; but, the steps having different possible sizes, we must define a set $T(k)$ of ordered capacity expansion activities whose typical notation will bet. The first activity starts
from the initial state and has a possibility of having its level increased, one unit of capacity at a time, as long as the cost increments stay the same. As soon as the cost increments change, we define a second activity and so on. It should be noted that we must exhaust the first acrivity before the second starts and so on for the following ones. We will denote $y(k ; t)$ the integer which is the level of the capacity expansion activity tof k, and $c(k ; r)$ the cost increment associated with the same activity.

For each pair i of elements of N, there exists a sei of chains, that is, a sequence of links going from N \varnothing RG, the first element of the pair, to NDEST, the last ons. We denote $R(i)$ as this set of chains and r its typical element. With each hain r a facility assignment activity can be defined; its value is a non-negative number $\times(i ; i)$ which is the level of facilities required to satisfy demand between the elements of the pair i of demand points. We could also define a unit cost $c(i ; r)$ associated wish $\times(i ; r)$ but it would not have a clear meaning in the actual state of the expansion problem.

The typical problem is to choose the capacity expansion configuration in the network which minimizes the cost of facility expansion to meet a given level of demand letween pairs of demand points. Lat D denote the set of indices labeling the pairs of demand points relevant for the problem and let $;$ be such a pair and d(i) the demand.

The mixed integer programming problem is the following:
Minimize $z=\sum_{k, y} \sum_{t \in T(k)} c(k ; t) y(k ; t)$
Subject to

1) for all $(i ; r), \quad x(i ; r) \geqslant 0$
for all $(k ; t) \quad y(k ; t) \in\{0,1,2, \ldots\}$
2) demand constraints
$\sum \quad x(i ; r)=d(i), i \in D$
$r \in R(i)$
3) capacity constraints
$\sum_{i \in D} \sum_{r \in R(i)} \delta(r ; k) \times(i ; r)-\sum_{t \in T(k)} y(k ; i) \leqslant 0, k \in K$
where $\delta(r ; k)$ takes the value 1 if the chain r uses the element k and 0 otherwise.
4) sequencing constraints imposing the order of the capacity expansion activities for each element of K.
5) bounding constraints

$$
y(k ; t) \leqslant \bar{y}(k ; t), \text { for all }(k ; t)
$$

As outlined in Chapter 2, this general formulation is impractical when it comes to solving a problem on the computer since, for a given pair $i, R(i)$ could have several tens of thousands of elements. We must tind a way of reducing the size of the problem without loosing anything. The nction of admissibility and its negation, the notion of domination, provides the method of reducing the problem to the level where a solution becomes practical.

3.1.2 Analysis of the network

We are looking for a sufficient condirion such that, when a facility assignment activity satisties it, we are sure the corresponding variable enters the solution with a zero value, $i . e .$, it is absent from the opimal capacity expansion program. Tha theorem of optimality in dynamic rogramming which says, loosely stated, that eny subset of choices extracted from an optimal sequence of choices must also be uptimal, provides the keystone of the meihodology. For example, if the best way of going from the point A to poin F is the sequence of points A, B, C, D, E, F, then the subset B, C, D, must be the best way of going from B to D, other wise the first sequence would not be optimal.

Before develcping this idea, it should be noted that, for a given problem, the set of demand pairs of points and the associated demands d(i) permit a first reduction in the number of capacity expansion abtivities for each capacitated element. In effect, the worst which can happen is that each such element will be required to satisfy all the demands. We define therefore the maximum contemplated demand:

$$
\max C D=\sum_{i \in D} d(i)
$$

Consequerily, the set $T(k)$ of capaciry expansior: achivities for the nerwork element k is now such that:

$$
\sum_{r \in T ; k)} \bar{y}(k ; t)=\max C D, \text { for all } k K_{0}
$$

Let us define a few more helpful concepts:
max (k) is the upper bound cost of a unit increase for the argument of the eapacity expansion cost function of the $k^{\text {th }}$ element (link or node) in the interval $(0, \max C D)$;

$$
\max (k)=\operatorname{MAX}_{i \in T(k)} c(k ; i)
$$

$\min (k)$ is defined similarly

$$
\min (k)=\operatorname{MIN}_{t \in T(k)}^{\operatorname{Min}}(k ; t)
$$

Lma: (i) is the least cost with respect to all the chains having the element of the pair i as end points, the cost on each capacitated element k being at it; max (k), that is

$$
\operatorname{Lmax}(i)=\operatorname{MAX}_{\operatorname{MAR}(i)} \sum_{k \in K} \delta(k ; r) \max (k),
$$

where $\mathcal{S}(k ; r)=1$ if the element k belonss to the chain r and 0 otherwise.
Smir: ($\mathbf{i} ; \mathbf{r}$) is the summation of the costs at their respective lower bound for cll k elements of the chain r between the pair of nodes i, that is

$$
\operatorname{Smin}(i ; r)=\sum_{k \in K} \delta(k ; r) \min (k)
$$

Now we are ready to state a sufficient condition which will allow us to reduce the number of facility assignment activities.

A Sufficient condition

Proposition :

Whatever $n=\sum_{t \in R(k)} y(k ; t)$, the number of units of added capacity on an element k, n being in the interval (0 , max $C D$), then

$$
\min (k) \leqslant c(k ; j) \leqslant \max (k)
$$

and it follows that

$$
\sum_{r \in T(k)} \min (k) y(k ; t) \leqslant \sum_{t \in T(k)} c(k ; i) \text { y }(k ; t) \leqslant \sum_{t \in T(k)} \max (k) y(k ; i)
$$

and it follows again, for a given chain i which has been assigned the same number n of units of facilities on each of irs elements, that:
$\sum_{k t} \sum_{i} \delta(; r) \min (k) y(k ; t) \leq \sum_{k i} \sum_{\delta}(k ; r)$ c $(k ; r)$ y $(k ; r) \leqslant \sum_{k t} \sum S(k ; r) \max (k) y(k ; r)$
and, substituting according to our defiritions:
$\operatorname{Smin}(i ; r) n \leqslant \sum_{k} \Sigma \delta(k ; r)$ c $(k ; r)$ y $(k ; r) \leqslant \sum_{k} \delta(k ; r) \max (k) n$ 。

Proposition 2:

Consider the chain r for the pair i, and suppose there exists a sub-chain u of r between the pair i^{*} such that:
a) $L \max \left(i^{*}\right)<S \min \left(i^{*} ; u\right)$,
then, all the n facility units assigned to the chain r could be transferred to another chain which would differ from r only as far as the sub-chain u is concerned, the sub-chain u^{*} corresponding to Lmax (i^{*}) replacing u.
(To be sure, the transfer is passible if the maximum contemplated expansion cn each k of the new sub-chain is arge enough; this is guaranteed, whatever the already assigned facilitie:, if we have chosen the maximum contemplated demand as the maximum contemplated expansion for the elements of the new sub-chain).
b) What is now important to note is the necessary decrease in total expansion cost associated with that transfer. This follows from Proposition 1 and Proposition 2 b since for the non common parts of the two chains that is u and $u *$, we have:
$\sum_{k \dagger} \sum_{i}\left(k ; u^{*}\right)_{c}(k ; t) y(k ; i) \leqslant \operatorname{Lmax}\left(i^{*}\right) n<\operatorname{Smin}\left(i^{*} ; u\right) n \leqslant \sum_{k t} \delta(k ; u)_{c}(k ; t) y(k ; t)$
with $f_{i} y(k ; t)=n$ for both chains u^{*} and u;
it is clear that a transfer of n units from u to u^{*} decreases the total cost, therefore the level of the facility assignment activity corresponding to the old chain r must be zero.

Definition of an cdmissible chain:
A chain for which there does not exist c sub-main which satisfies the condition a) is called an admissible chain.

Definition of a dominated chain:
It is a chain which is not admissible.
In fact, is the CADUCEE software we use a moie restrictive notion of domination since we employ the notion of the incomplete chain, that is a sub-chain from the origin of the chain, rather than the concept of a subwchain which includes the other one. This results in some dominated chains, in this more restrictive sense, remaining in the optimizing program with a loss of efficiency which may be of some importance if large demand increases are being sonsidered. CADUCEE II will take care of this modification

This concept of the search for admissible chains reduces drastically the size of the problem. The search is based on the concert of "maximum contemplated demand" froil which the max (k) and min (k) was computed. From a first iteration giving the afmissible chains, we could now tentatively try to reduce further the number of cepacity expansion activities on certain capacitated elements. This is done with the concept of "maximum relevant demand" which replaces the "maximum contemplated demand". To fix an upper bound on the numbers of possible unit; of expansion on an element, we add only the demands for the pairs of points whose admissible chains use that particular element and the search for new dominated chains starts again. Finally, when there is no further change in the maximum relevant demands, we are ready to state the reduced optimizing problem. However, before leaving the subject, we will explain briefly the way in which the least cost Lmax (i) is computed in the subroutine D $O M I N \varnothing$.

Suppose we have a network and the costs which are fixed numbers associated with the links. (if costs are associated with the nodes also, we define dummy links). The problem is to find the cost of a least cost chain between an origin $N \varnothing R G$ and a destination NDEST. We are interested in the cost and not in the chain.

Notice first that since the graph is finite, the least cost is the cost of a chain which has at most L-1 links, l-1 being the "lengit" of a chain using each link without repelition. We will now reason by induction.

Let LCOST (N \varnothing RG, S) denote the least cost we are looking for and $\operatorname{LCOST}(J, S ; K \leqslant x)$ the least cost for the chains between J and S among the costs of the chains smaller than or equal to X as far as the number of links is concerned. Lest $\operatorname{COST}(j, S)$ be the cost of the link $J_{i} 5$. If that links does not exisi, $\operatorname{COST}(J, 5)=\infty$; if $J=5, \operatorname{COST}(J, J)=0$. We will find, using the same prom cedure, $\operatorname{LCOST}(N \phi R G, S)$ for all S.

Among the chains of length $\leqslant 1$ from $N \varnothing R G$, we have, for all S :

$\operatorname{L} \operatorname{Cos} \Gamma(N \rho R G, S) \leqslant \operatorname{cost}(N \varnothing R G, S)$

Among the chains of length $\leqslant 2$. from N \varnothing RG, wa have, for all S :
$\operatorname{LCOST}(N \not \varnothing R(3, S) \leqslant \operatorname{LCOST}(N \varnothing R G ; S ; \lambda \leqslant 2)=$
$\underset{J}{\min \{\min [\operatorname{Cost}(N \varnothing R G, J)+\operatorname{CosT}(J, S)]: \min [\operatorname{Cost}(N \varnothing R G, S)]\} . ~ . ~ . ~}$
Among the chains of length $\leqslant 3$ from $N \varnothing R G$, wave for all S :
$\operatorname{LCOST}(N \not \subset R(i, S) \leqslant L \operatorname{COST}(N \not \gamma R G, S ; X \leqslant 3)=$
$\min _{j}\{\min [\operatorname{LCOST}(N \varnothing R G, j ; x \leqslant x-1)+\operatorname{CCST}(J, S)] ; \min [\operatorname{LCOST}(N \not \subset R G, S ; x \leqslant x-1)]\}$
and so on...
$\operatorname{LCOST}(N \varnothing R(;, S) \leqslant 1 . \operatorname{CosT}(N \not \varnothing R G, S ; X \leqslant x)=$

$$
\min _{J}\{\min [\operatorname{LCOST}(N \varnothing R G, J ; X \leqslant x-1)+\operatorname{COST}(J, S) ; \min [\operatorname{LCOST}(\operatorname{NORG}, S ; X: S x-1)]\}
$$

In fact, it is not efficient to reach for $X \leqslant L-1$ hecause of the following proposition:

If, for all $S, \operatorname{LCOST}(N \not \subset R G, S ; X \leqslant x)=L \operatorname{COst}(N \rho R G, S ; X \leqslant x-1)$ there is no need to go further since having added another link to any chain having a length $\leqslant x-1$ has not chonged the least upper bounds of the cost from NØRG to any destination S. We can write

$$
\operatorname{LCOsT}(N \not O R G, S)=\operatorname{LCOST}(N \varnothing R G, S ; x ; x-1)
$$

3.1.3 The formal struciure of the optimizing model

In this section, the formal structure found in sultroutine TRANCHE is outlined. Cail TA (k) the sat of admissible ordered capacity expansion achivities of element k of the network and call RA(i) the set of admissible facility assignment activiries for the pair of demand points \mathbf{i} when the maximum relevant demands do not change anymore.

The reduced mixed integer linear programming problem is:

$$
\operatorname{minimize}_{x, y} z=\sum_{k \in K} \sum_{t \in T A(k)} c(k ; r) y(k ; i)
$$

subject to:

1) for all $(i ; r), x(i ; r) \geqslant 0$
for all $(k ; t), y(k ; t) \in\{0,1,2, \ldots\}$
2) demand constraints:

$$
\sum_{r \in R A(i)} x(i ; r)=d(i), i \in D
$$

3) capacity consiraints:
$\left.\sum_{i \in D} \sum_{r \in R A(i)} \delta(r ; k) x(i ; r)-\sum_{t \in T A(k)} y ; k ; t\right) \leqslant 0, k \in K$
where $\delta(r ; k)$ takes the value 1 if the chain r uses the elements k, and 0 otherwise.
4) sequencing constraints:

For a typical link k of the network, let the cost function of k be like the one described in Section 2.3. We will define the set TA(k) of admissible ordered capacity expansion activities the following way. Call $y(k ; 1)$ the level of the first activity, $y(k ; 1)$ takes the value 0 or 1 giving therefore a big jump in expansion cost for $y\left(k_{;} 1\right)=1$; call $y(k ; 2)$ the level of the second activity, $y(k ; 2)$ takes the value $0,1,2,3$ or 4 giving a sequence of equal small jumps in the cost; call $y(k ; 3)$ the level of the third activity, $y(k ; 3)$ takes the values 0 or 1 giving a middle size jump; finally, suppose the maximum relevant demand increase for k is 8 , the final activity y (k;4) takes the values 0,1 or 2 for two equal small jumps in the cost. Note that effectively the sum of the upper bound is
$\bar{y}(k ; 1)+\bar{y}(k ; 2)+\bar{y}(k ; 3)+\bar{y}(k ; 4)=1+4+1+2=80$
This guarantees that we can meet the maximum relevant demand increase with our expansion activities on k.

We must also sequence the expansion activities in a given order. This is done the following way:
a) $4 y(k ; 1) \geqslant y(k ; 2)$ or equivalently $4 y(k ; 1)-y(k ; 2 j \geqslant 0$

This constraint guarantees that $y(k ; 2)$ will not be greater than 0 before $y(k ; 1)=1$ and moreover, $y(k ; 2)$ will not reach a value greater than 4. A: well, there are separate bounding constraints.
b) $y(k ; 1)+y(k ; 2) \geqslant[\bar{y}(k ; 1)+\bar{y}(k ; 2)] y(k ; 3)$ or
$y(k ; 1)+y(k ; 2)-[1+4] y(k ; 3) \geqslant 0$
This constraint forces $y(k ; ?)$ to wait at 0 until $y(k ; 1)$ and $y(k ; 2)$ take respectively the values 1 and 4.

If a non-zero initial state is present, for example initial $y(k ; 1)=1$ and initial $y(k ; 2)=2$, that is, three channels already installed, we write:
$\left.b^{\text {e }}\right) \quad y(k ; 1)+[$ initial state of $y(l ; 2)]+y(k ; 2)-(1+4) y(k ; 3) \geqslant 0$

- and the bounding constraints will indicate that $y(k ; 1)=1$ and $y(k ; 2)$ can take only the value 0,1 or 2 .

The last sequencing constreint is similar to the first.
c) $2 y(k ; 3)-y(k ; 4) \geqslant 0$

In brief, the three preceding constraints assure that we climb up the cost function in the right order. No capacity expansion activity will be chosen before the preceding activity has reached its upper bound.
-5) bounding constraints:
These constraints delimit the domain of variation of ach integer variable, permitting in particuiar the assignment of initial states to these variables.

3.1.4 Principle of Branch and Bound Algorithm

The mixed integer programming algorithm described in this section is classified as a "tree search" method. The particular type of tree search algorithm is known as branch and bound.

The features of the branch and bound algorithm: are: (i) it is easy to understand, (ii) it is easy to program on a computer, (iii) the upper bound on the number of steps needed in the clgorithm: increases exponentially as the size of the problem increases.

Consider a piste integer program:

$$
\min z=c y \text { subject to } A y \geqslant b, y \geqslant 0 \text {, integers. }
$$

If each component of y is bounded from above by an integer M, then there are $(M+1)^{r}$ possible solutions y, where n is the number of variables. We could test euch of these solutions with the minimum (maximum) valse of the objective function as the optimal solution. Since the number of solutions is usually very large, the algorithm tries to avoid inspection of solutions which are dominated by solutions already inspected.

We first solve the integer program as a linear rogram. If all variables $y_{i} \geqslant 0$ and all are integer, then y is clearly the optianal solution to the integer program since the integer constraints were ignvred in obtaining the solution. If a particular component $y_{k}=\left[y_{k}\right]+f_{k}$, where $0<f_{k}<1$, then we solve iwo linear programs, one with the additional constraint $y k \xlongequal{=}[y k]$ and one with the additional constraint $y k_{k}=\left[y_{k}\right]+1$. If one of the fwo still does not give integer solutions then two more linear prograns are solved, eic.

All the solurions obtained in this way can be partially ordered as a tree with the root of the tree representing the linear prigramming solution obtained without any additional integer constraints. When a selution y_{0} does not sarisfy the integer constraints, it branches to iwo others y_{1} and y_{2}. The solution y_{0} is called the "predecessor" of y_{1} and y_{2}, and y_{7} and y_{2} are called the "successors" of 90 .

If the successors to y_{1} and y_{2} are all irifeasible, then we have to branch again from y_{0}. A node may have more than two suecessors. A node is called a terminal node if it has no successors; this definition implies that a terminal node represents a feasible or infeasible integer soltrion. The idea of the branch and bound methed lies in the following iwo facts:
ino.

- Because the predecessor has fewer constraints than the successors and additional constraints cannot improve the value of the objective function, the optimum value of a successor is always larger than or equal to the optimum value of the fredecessor.
- If wo integer feasible solutions have the same predecessor, then the op:imum value of the first solution is ess than the optimum value of the second. That is, the further away the value of the solution is frem the linear programming solution, the worse is the resulting value of the objective function.

During the: computation of the branch and bound method, we keep the optimum value \mathcal{Z}^{*} of the best integer feasible solution found so far. If a node with a nor:-integer solution has an optimum value worse than $z *$ then all the succes sors of that node must have optimum values worse than z z. There is therefore no point in branching from that node and the branch is abandoned.

We proceed in this fashion until we find that terminal node which represents the optimal integer feasible solution; that is, all other branches have been abandoned as having optimal values greater than the 근.

3.2 Assembling the Model Inputs from the Data Base

We have already discussed the nature and structure of the HERMES I model and the nature of the problems to be solved. In order to solve these problems, the data inputs to the model required specification.

Specifically, data was required on the networls to determine the physical characteristics of the problem area, on cost to give the model the information necessary to optimize, on demand such that the problem could be specified, and finally, on specific exclusion rules or routing rules for facility assignment chains so that the problem remained manageable.

3.2.1 The networt:

The HERMES I model is consiructed around a simplified representation of the Canadian Telecommunications inter-toll facilities network. This initial network consists of seographic points between which demand for telecommunication facilities is specified. Connecting these poin's or nodes are links representing existing or contemplated facilities.

This network was arrived at after considerable discussion between Sorès and the Department of Telecommunications and was agreed to by both parties as being to a degree representative of the real network, yet absiracted to a sufficient degres to allow it to be handled already at the preliminary stage of the project.

The first level of simplification or abstraction agreed upon was that the network representation should show only the major links between major facility demand points and eliminate for the time being all intermediate facility demand points and subwnetivorks surrounding such points, intermediate and major.

The second level of abstraction was that, in sone cases, major links were "moved" to show them passing through a major facility cemand point when in fact this point was bypassed but connected. For example, if the actual network (at the first level of abstraction) was as follows about points X and Y;

This could be represented in the model network as:

The third leval of abstraction was that no differentiation was made between carriers.

The fouth level was that, where more than one facility existed between two points of the simplified network, these were shown as a single facility.

Thus, for excmple, if the network were as follows beiween points A and B :

This would be represented in the computer as:

The final abstract network which was developed consists of 98 nodes and 143 links (See Figure 3).

3.2.2 Cost functions

The cost of installation of new facilities were developed by the Department of Communicalions, consistant with the level of abstraction of the neiwork.'

Rather than establish the engineering cost figures for facilities (a task which would have been inpossible given the time consiraints) some general cost functions were developed. These cost functions, generally spaking, rel ate new facilities costs to the length in miles of the facility, the type of facility (light and heavy routes), and to whether new routes, new system of existing routes, or additional microwave channels on existing systems are involved. Some allowance was made for becoming more routerpecific by introducing special categories of facilities where costs were specified a sriori, by allowing for a "difficulty factor" on some routes, and by using nodal as opposed to link costs for transborder faciliries.

There were ', asically two cost functions:

- Inve stment Cost function-Heavy Routes (Figure 4)
- Investment Cost function-Nodal facilities to U.S.A. (Figure 5)

The cost calegories for links are as follows:

Expansion categories microwave

1) Heary route
a) New route
b) New system - existing route
c) New channeis on existing system
2) .. Light rouie
a) New route
b) New system - existing route
c) New chamels on existing system

TAL INVESTMENT COST/MILE

Figure 4 - Investment cost functions - Heavy routes

Figure 5-Investment cost functions - Nodal facilities to U.S.A.
(1)

Figure 5 - Investment cost funchions - Nodal

3) Specifics - any link that cannot be costed under 1 or 2 above.
4) Terminal equipment only on links to Continental U.S.A.
3.2.3 Demand

Demand as referred to in this chapter means demand for facilities expressed in service channals. In the formulation of the modal, existing demand was assumed to equal supply, that is, installed capacity.

Problems are posed by choosing a pair of points end specifying a level of facility requirement between these points. Since in the network supply and demand are equal, there is no "slack" in the installed faciltities and the demand must be met by crearing new facilities.

Note: In actual practice, the "demand" will include a percentage of spare facilities for a number of reasons.

3.2.4 Specific exclusion rules

In order to make problem solving possible using tive model, a method had to be developed to reduce the number of possible routes by which one node could be connected with another. For example, the number of possible routes berween Montreal and Vancouver which the model would have to consider exceeds 30,000 . All but a few hundred of these obviously should not be considered and should be eliminated.

In order to do this, exclusion rules were developed by the Depariment of Communications and introduced as an potion into the HI:RMES I models. These rules wers: divided into two classes: general and specitic.

The more general exclusion rules are applicable so all areas and involve the following:

- A notle may appear only once in any factity assignment chain.
- Crossing of an inferregional boundary more than twice on any chain is not permitted.
- . The satellite may bo used only once in any chain.

As well as the above, there are many specific rules which apply to one area only. For examples:

- Chainsoriginating and terminating in B.C.may not involve points east of Alberta.
- ... Chatns originaring west of Thunder Bay may not pass through Roujn-Noranda.

There are many such rules whose function is to make the size of the problem mariageable.

3.3 Identification of Admissible Facilities Assignment Chains and of Upper Bounds on Capacity Expansion: CADUCEE

The objective of the CADUCEE software is to identify non-dominated nodes and admissible chains for specified levels of demand expressed in service channels between any number of pairs of demand points in the network and to identify the upper bounc's on capacity expansion. The following is a detailed discussion of the program developed for this purpose (See also Figure 1).

In order to :olve any particular problem, we first read from punched cards the number of pairs of demand points to be considered (NCQUP). We then read the network nore numbers of each pair and the level of demand specified.

The subroutine $B O R N E$ is then called which reads in the cost functions for facilities expansion and the data on each link of the network. These dara consist of the link number, the origin and destination of the link (the nodes connected), the length in miles of the link, a code identifying the proper cost function for facilities expansion on this link, the number of channels already installed ard the maximum number which can be added. For each link, the subroutine ral culates the marginal cost of adding each service channel up to the level of the maximum contemplated demand increase. Once this has been done for all of the network links, the subroutine then calculares the upper and lower bounds costs for the specified level of demand increase, the "maximum contemplated demend increase ${ }^{1 t}$.

Nate: When the subroutine is called in subseciuent iterations, the bounds are recalculated without recalculating the marginal costs and the specified demand increase is the "maximum relevant demand increase".

The progran then begins two iterative procedures or "loops", one within the other o In the inner loop (NGT), the calculations are carried out for each pair of specified demand points in furn. For each pair (N $\neq R G$ and NDEST) the minimum expansion costs are celculated at upper and at lower bounds from $N \varnothing R G$ to every other point and from NDEST to every other point. using the DQMMN \varnothing subroutine. Al the option of the user, the four D D NilN F tables may be output on cards, tape, disk
or printer. Dominated nodes are then eliminatec and non-dominated nodes are printed out. Admissible chains are then identifind and printed out. These chains are identifiec by means of their component link numbers.

Once the inner loop is terminated, that is the alove calculations have been carried out for all pairs of speciffed demand poirts, the common elements of admissible chains are identified and the "maximum relevant demand increase" is calcuiated for each link of the network. The BGRNE subroutine is recalled and the upper and lower bounds are recal culated, based on this "maximum relevart demand increase". The program then re-enters the inner loop and repeats the calculations based on the new upper and lower bounds. This overall process constitutes the outer loop by which non-dominared nodes and admissible chains are identifieci by successive iteration.

At maximum, this outer loop is repeated a number of times corresponding to the number of pairs of demand points in the problem. However, in most cases, the number of iterations will be less and a test is made to stop the procedure when no further changes in maximum relevant demand are occurring from one iteration to the nexi.

The data cards of the program are set out in the following manner:
First card:

NCQUP : number of pairs of points of demand
IMPR : code permitting the option of printing the cost tables (IMPR >0) or not prining them ($I M P R=0$)

Second group of cards:

$$
\begin{aligned}
& \text { col. } 12345,678910,1112131415 \\
& \text { NORG NDEST NDEM }
\end{aligned}
$$

NODRG: node of origin number
NDEST : node of destinarion number
NDEM: : value of demand for this pair
There are as many cards in this group as there are pairs of points of demand.

Third group of cards:

These are the costs of the cost funcrion; there are four cards, one for each link caregory.

Fourth group of cards:

A \varnothing
D MI LD(I)
LD(12) CT
x]
Δx

A: - link number
D, D: - numbers of nodes joined $b y$ this link
MI \quad - length of link (in miles)
LD (I): - information concerning existing facilities, i.e. if X_{1} exists, how many ΔX_{1} exist, how many are permitted? Does X_{2} exist, etc.? respectively: up to how may ΔY are permitted? Thus, $1=12$ 。
CT: - link category (for the chaice of the cost function)
$x_{1}: x_{1}, y, y$: same meaning as for X_{1}, X_{1}, Y, Y.
The costs given by the variables starting with a small letier take priority over the costs given by the variablesstarting with a capital letter if these variables (small letters) have a value different from 0. It is thes possible to specify a cost function different from the categories of functions predicted.

This group is composed of as many cards as there are links.
The output of the CADUCEE software is variable ar the option of the user. In all cases, however, the first output is the specifications of the problem, that is:

- The number of pairs of points in the problem.
- The network node numbers of each pair of points and the demand increase specified for each pair.
- The data read by the B \varnothing RNE subroutine, that is, the cost data and facilities characteristics for each link.

At the user's option, the four cost tables calculated in the D $\varnothing \mathrm{M} \| \mathrm{N} \mathscr{6}$ subroutine at each itaration and for all pairs of demand poinis may be output on the printer or on disk, tape or punched cards.

At each iteration and for each pair of demand poiths, the non-adominated nodes and the adrissible chains are printed.

In this first version of CADUCEE, if is possible of the option of the user to verify whether or not the admissible chains found by the methods described above are also admissible in terms of any set of specific rules for expansion of facilities. The Department of Communications has specified such rules for the network. In the soffware routines developed to do this, the specific rules apply not only to the end points of the chains found but also to tie incomplete choins which make up the admissible chains. The card's necessary to exercise this option are as follows:

First card:

NSYM: number of nodes in the network
NX : total number of specific zules
ND: : number of specific rules of the type "admissible nodes"
$\left(N L_{2}-N D_{1}\right)$: number of specific rules of the type "nonwadmissible nodes"
Second carci:
col $1112131415,16 \ldots 20$
NORG NDEST
Third group of cards:

ϕ	D	C.B.S。
ϕ		of nodes
C.B.S.		und cost

As many cards are read as there are links in the network.
Fourth group of cards:
These cards provide the information concerning the speciffic rules. The rules are divided into three categoties:
-. admissible nodes

- non-admissible nodes
- chains of the type "disjunctive consiraints"

The data on these cards do not change unless modifications to the specific rules are made.

Fifth grou of cords:

$$
\text { cot: } 1234567 \ldots 12
$$

$\because \phi$ C.B.I.
C.B.I. : lower bound cost

This group is similar to the third group.

3.4 Solving the Minimum Cost Capacity Expansion Problem:
 TRANCIE

The soffwate described under the general title TRANCHE consists of two parts. These can be described as the problem matrix generator and the mixed ineger linear proframming package. They are relafted to each other and to CADUCEE as shown ia the flow-chart of Section 2.2 (see Figure 2).
3.4.1 Formulation of the mixed integer linear problom

Linear prozramming is a technique for trearing problems involving complicated arrays of interacting variables. In mixed intuger linear programming we add a further complexity in that some of the variables must take on only integer values. In our discussion of the formulation of such a problem, however, we can treat all variables in the same manner as long as we bear in mind that the stipulated variables 1:ust in the solution be integer.

In our protlem, we are concerned with elements of four kinds: demand, capacity, the order in which facilities are built, and the cost. We will therefore introduca. three types of inequalities or rows in the problem matrix and the objective function, or cost rov\% to handle them.

The variakles with which we are dealing or the columns of the problem matrix are of two types: facility assignment variables and capacity expansion variables.

The rows and columns of the problem matrix are related by entries in the body of the matix called coefficients.

The form of the matrix is as follows:

ROWS: As we have already stated, there are four types of rows related to demand. supply or capacity, expansion order and cosi.

The demand rows are shown in the problem matrix above idenified as I. The inequalities take the form
$a_{i} i \geqslant x$.
where
a is the coefficient (l in most cases)
i is the row associated with demand between the pair in question
i is the route column associat $\equiv d$ with the demand in question
$X \quad$ is the value of demand in service channels between the pair in question.

The sapacity rows are identified as II in the problem marrix. The inequalities take the form:

$$
a_{n j}+\sum_{\forall k} b_{n k} \leqslant 0
$$

where
a is the coefficient relating demand with capacity
n is the row associared with capacity on the link in question
i is the column associated with the route in question
b is the coefficient relating capacity with facilitios between the pair in question. Note this coefficient is negative.
k is the column associated with a particular stage of facilities development between the pair in question. Note that k assumes a range of values as there are several srages of development of facilifies between any pair .

The order in which facilities are built requires several rows for the facilities berween each pair. One less row is required than the number of stages of development of facilities between the pair. The inequality is of the form:

$$
a_{i j}+b_{i k} \geqslant 0
$$

where
a is a positive coefficient
i is the row associated with a particular stage of development of facilities between a pair
\hat{i}. is the column associated with the stage of development in question
b is a negarive coefficient
$k \quad$ is the column associated with the next stage of development of facilities berween the pair in question.

The objective function which we seek to minimize is shown in the mosrix above as IV. We are seeking io minimize:

$$
\sum_{\nabla_{i}} c_{i}
$$

where c is the cost coefficient of a particular column i and the sum is aken over all values of \boldsymbol{j}.

3.4.2 Setting up and solving a problem

For purposes of clarity in oullining the processes and operation of the seifing up and solution of a problem using the model, wo shall confine the discussion in this section to a highly simplified network consisting of five nodes and five links as follows:

The problem is that we wish to introduce an aciditional 15 service channels between 111 and 212. It should be noted that the network shown and the problem posed is trivial and is in no way intended to show the power and versatility or the software developed. Rather it was chosen so that:

- It effectively shows the relationships anong the variables, the coding siructure, etc., without being innecessarily burdensome to read.
-: The problem posed can be easily solved by hand calculation and/or a litle common sense.

The coding structure of the nodes and links follows the same scheme as in any larger netwark.

NODES: - The first digit represents me Region.

$$
\text { The regions are: B.C. } 1
$$

Prairie: 2
Ontario 3
Queber: 4
Marihines 5
North. 6
U.S. 7
East Coast Foreign 8
West Coast Foreign 9

- The second digit represents the suburegion. This can be a North-South and/or Provincial split as required.
- The third digit is assigned sequentially within subwregion.

LINKS: hinks are numbered sequentially from 101 upward.
The input date for the sample network were conceived in the same format and level of derait as provided for the HERMES I model. The data are as follows:

From Node No.	To Node No.	Mileage	Installed capacity	Maximum capacity	Expansion category	Noies
111	121	125	1	3	2	
111	211	150	4	10	1	10
121	212	60	2	0	10	3
211	212	40	0	10	4	First channel cost $=\$ 570,000$
111	711					

Note: The Expansion Caregory column is used to determine which of the cost functions applies to the addition of facilities on the link.

In order to get these dara info the computer, they are punched on cards. A standard form was developed for this and is shown completed with the data for our sample network, in Figure 6.

A word of explanation on the column headings is perhaps in order. The first four headings are obvious in their meaning. The next twelve can be divided into four groups, $\mathrm{X} 1, \mathrm{~K} 2, \mathrm{Y} 1$ and Y 2 corresponding to the four major steps in the cost curves.

The first step is the installation of the first chamel on a new chain. This is what column XI indicates. If this step has been taken, that is, if there is some installed capacity, the value of this column will be one.

Following this step, up to four additional channels may be added without encountaring the next step. This is what column IDXI indicates; the number of installed channels berween the first and second step. The total number of channels which can be installed in step one is shown in column LXI . This is usually five.

Figure 6

Computer Input Form

Sample Neiwork

LINK	$F R$.	70	MILES	x	$\begin{gathered} i \\ D \\ X \\ 1 \end{gathered}$	$\begin{gathered} L \\ X \\ 1 \end{gathered}$	\times 2	$\begin{aligned} & 1 \\ & 0 \\ & \times \\ & 2 \end{aligned}$	$\begin{aligned} & L \\ & X \\ & 2 \end{aligned}$	Y	$\begin{aligned} & 1 \\ & D \\ & Y \\ & i \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{Y} \\ & \mathrm{i} \end{aligned}$	$\begin{aligned} & Y \\ & Z \\ & Z \end{aligned}$	$\begin{aligned} & 1 \\ & D \\ & Y \\ & Y \\ & Z \end{aligned}$	$\begin{aligned} & L \\ & Y \\ & Z \end{aligned}$	$\hat{\mathrm{P}}$	\$X	\$	\$Y	\$ \underbrace{Y}
1,0,1	1111	$1,2,1$	1,2,5	10	10	15	10	10	15	1	1	1		1	1	2	$1+11$	$1+1$	11	11
1,0,2	1,1,1	2,1,1	1,5,0	1	, 3	5	0	0	, 5	10	10	, 5	10	1	5	1	$1-11$	$1+1$	1	1
1,0,3	1,2,1	2,1,2	,6,0	1	1	, 5	0	, 0	5	1	1	1	1	1	1	1	$1+1$	1 +1.	11.1	$1+1$
1,0,4	2,11	2,12	, 4,0	0	, 0	, 5	0	0	15	1	1	1	1	1	1	3	1, $1,5,7,0$	1,1,1	$1+1$	$1+1$
1,05	1,1,	7,1,1	, 11	11	10	,5	10	10	15	1	1.	1	1	1	1	4	1	11.1	11	1111
11	1.	1	11	1	1	1	1	1	1	1	1	1	1	1	1		$1+1$	$1+1$	1-1:3	
$\underline{1}$	-3	1	-	$\underline{1}$	2	1	-		1	1	-		1	-			$11+1$	L-1+1		,

\% Link 10 is a light route Installed capacity is therefore assumed to be zero.

+ Link 104 is a special route having a cost for the first channel of $\$ 570,000$.
Note: In this example, expansion does not go beyond 10 channels per link except for link 102.

The next three columms $\times 2,1 D \times 2$ and $L X 2$ are the same as the above but for the second siep. The nexi six columns are for steps three and four.

The last four columns on the form are for special cost values which are required for expansion category three.

The deck of cards produced from these data is shown in the overall flow chart (in section 2.2) as Link Data.

The Link Dat a deck of cards is fed into the computer to undergo what is called the Problem Marrix: Generator phase. In this phase, the raw data are used to generate all of the rows and columns of the "basic" marrix required for the optimization phase as well as the values of "coefficients" which make up the matrix. This marrix is shown in Figure 7.

As outlined in the section on problem formulation, there are three types of rows or "constraitrs" used in this formulation. The first type is the demand rows. There are prefixed by "D" in the marrix in Figure 7 and take the form DIJ: where I and J are three-dijit node numbers. Thus D111 121 is demand beiween nodes 111 and 121 . In our example network, this demand must be greater than or equal to zero, the installed caracity on this link. It should be noted that, wherever we refer to derand we mean demand for facilities in service channels.

The second lype of row is capacily. These are of the form Cl where I is a threes digit link number. Thus C 101 in our example means the capacity of link 101.

The third type of row represents the sequencing constraints on the addition of facilities. These take the form NMI where N facility must be builh before Ni facility on link 1. Thus, in our example, X1 DX1101 states that $\$ 1$, the first channel, must be installed before $D X 1$, the four remaining channels in step 1 , on link 101.

There are two types of columns in the formulation shown. The first type are the route columns. These are of the form RIJK, where E is the prefix for chain I is the chain number assigned serially, and J and K are the node numbers connected by this chain. Thus R1 111112 is chain number 1 between nodes 111 and 112.

An importoni point should be noted here.

- In tie basic moirix, only one chain ex sits between each pair of nodes, corresponding to the direct link berween thase nodes.

The second type of column represents the facilities on a link. Thess take the form MI, where M is the focility installed or to be considered for addition and I is the link number. Thus, in our example, $X 1101$ rapresents facility $X 1$, which we know is the first channe! of a new chain and 101 is the link number.

$i n o$.

The right hand side of the basic matrix is iedentified as "R.H.S." in figure 7. The right hand side shows the limit of the value of a row in the final solution. The relam tionship of the row to the R.H.S. is shown in the "Sign" column. For example, row D111 211 (the demand between node 111 and node 211) is specified to be greater than or equal to four.

The bounds sarve the same function for the columns that the R.H.S. serve for the rows; that is, they specify the limits of the velues of a column in the final solution. The bounds, however, unlike the R.H.So, express both an upper and lower limit. Where this upper and lawer limit are equal, the value of the column is fixed. Where bounds are not specified, the column value mey be anything.

The rows, columns, right hand side, and bounts are related and interact through the entries showi in the body of the marrix. Ler us take a very simple example of this to show the priaciple. Suppose we have the following matrix:

This represents a cise where the demand on Liak 125 between 301 and 302 is two chamels and the installed copacity is two channels.

Demand is stown in the first row of the matrix as being required to be greater than or equal to ?, the R.H.S. The inderelationship berween demand and capacity comes about through the two "ceefficients" in column R 1301302 . One musi bear in mind that all colums (and therefore all confficients in a column) are initicty multiplied by zero and are not "active" unless the multiplier is changed to satisfy a requirement, so that the correspending varicbles do not appear in the current : solution.

There is only one coefficient in the D 301302 row and it is equal to one. Therefore, if the relarionship expressed by the sign and the R.H.S. is to hold true, this coefficient must be multiplied by two (at minimum). To do this, we must multiply the column R 1301302 by 2 . This, then, makes the coefficient (in this column) of C 125 equal to 2 as well.

The relationship in row C 125 must now be checled. The requirement is that C 125 must be less than or equal to 0 . In order to meer this requirement, we must bring more columns into play. We see that the coefficients of column $\times 1$ 125, IDX 1125 and DX 1125 in row C 125 are all equal to minus one. We could thus satisfy the requirement by multiplying one of them by two; or two of them by one; or in fact, any combination of one or more of them by any number.

An examination of the bounds, however, determines our course of action. We see that the bounds on column XI 125 and IDX1 125 are both one. This means that both of these rows must be multiplied by one and our reçuirement is satisfied. This is in frect the manner in which existing capacity is introduced at no cost. By adjusting the bounds, the proper columns are called up in the solution, that is, they are multiplied by a number other than zero.

We have the efore multiplied columns X1 125 ard IDX1 125 by one. What effect does this have on other rows? Column $\times 1125$ has a coefficient in row $\times 1$ DX1 125 equal to 9 . Since 9 is greater than or equal to zero, the requirement of this row, the condition is arisfied.

Since there are no more rows, all conditions ore satisfied and we can compute the cost. The columns which are now non-zero are R1 $301302, \mathrm{Xl} 125$ and ID X1 125. RI 301302 has no coefficient in the cost row and therefore we do not consider it. The coefficient of $X 1125$ and ID 125 in the cost row are equal to zero and therefore tive cost of this solurion is zero.

This far, we have been concerned only with the setring up of the "basic" matrix. However, the basic matrix does not represent a rroblem. The posing of a problem comes from the output of CADUCEE in the form of the list of Admissible Chains, the pairs between which new demand is specified and the level of this new demand.

In our very simple problem, the output of CADUCEE would be the two adnissible chains
and $\quad 111-211-212$
We now have our two chains and a stipulared level of demand berween 111 and 212 and we must get this into the problem matrix. To do this, the problem matrix generator must add more rows and columis.

First, in order to deal with the demand, it must add a demand row. This row will be D $1112 \$ 2$ and it must be greater than or equal to 15 as per our problem. Capcicity will have fo be sarisfied by adding capacify to existing links, so we do not have to add any caracity rows.

In order to elate demand with capacity, however, two new facility assignment columns must be added. These will be, using our atready established convention, R1 111212 and R2 111 212. The changed portion of the basic matrix showing the added rows and columns and the coefficients through which they interact with the other elementis is shown as follows:

The circled coefficients have been added. Note that since demand can be satisfied between 111 and 212 by either one of the fwo new chains, a coefficient is added in both chain columns. Note as well that chain R1 111212 uses capacity on link 101 and 103 and, therefore, is shown to effect both of these rows. In the same way, route 2 effects row C 102 and C 104. The problen can now be solved.

Using the problem matrix, the minimum cost solution or expansion program is sought subject to all the constraints. The problem matrix is fed into the Mixed Integer Linear Programming Package.

The first solution sought is the continuous or linear programming solution. In this solution, the requirement that the variables take only integer values is not adhered to. Once this solution is found by iteration, the branch and bound me thod described earlier is used to find the optimal mixed-integer solution.
4. FIRST RESULTS
4.1 Trial Problems

Once the CADUCEE and TRANCHE models had keen made operational, it was deemed desirable to test them on the network, solving realistic problems. The trial problem selected was:

Determine the optimal capacity expansion program for increased demand, as follows:

Monfreal-Toronto	2 service channels
Toronto-Halifax	2 service channels

An additional problem was posed to prove the effectiveness of CADUCEE. This was:
Determine the non-dominated links and nodes for the following increased demand:
hontreal-Vancouver 2 service channels
The results of these problems were presented to the Department of Communications at a meeting on November 1st, 1971.

4.2 Input Data

The cost and capacity data for each link are caiculated and input info the computer. The total cos for a channel addition is obtained by multiplying the distance for the link by the cppropriate unit cost of the category. The unit cost data used is shown in Table 4-1. Both CADUCEE and TRANCHE rely on this data as basic input.

TABLE 4-1
COST CATEGORY DATA

Catagory Mo.	Unit costs			
	X	$D X$	Y	$D Y$
1	9	1	5	1
2	5	1	0	0
3	9	1	5	1
4	300	50	200	50
5	200	50	0	0

Units: Caregories 1, 2 and 3: $\$ 3,000 / \mathrm{mile} /$ channel Caregories 4 and 5: \$1,000 per channe!
4.3 Toronto-Nontreal-Halifax Problem

4.3.1 CADUCEE

A demand increase of 2 service channels is hypothesized between MonirealToronto, and Toronto-Halifax. Thus, the initial maximum contemplated demand increase will be 4 service channels and the masimum relevant demand increase in parts of tha network (i.e. somewhere East of Montreal, where Toronto-Montreal demand would not be routed) will be 2 service channels.
a) Dominated nodes:

The CADUCEE portion was run initially including all nodes and links in the network. That is to say there were 95 nodes, 124 links and some 10,000 chains. Alter two iterations, for 4 charinels and then for 2 channels where applis:able, the network had been reduced to 25 nodes and 37 links through the determination of non-dominated nodes.

The ron-dominated nodes are listed in Table 4-2 for each demand pair, and illustrated in Figure 8 for the combined problem. The region of interest is defined by these nodes and links. The minimum cost routes from origin to destinarion at lower and upper bounds were computed and are given in Table; $4-3$ and $4-4$, respectively.

At this stage, also, data was produced on the cost of the minimum cost chair befween each node and the origin and destination. These are the $D \varnothing M 1 N \varnothing$ tables and are shown in Table 4-5.
b) Admi isible chains:

In the second stage of CADUCEE, all possible chains, costed at lower bound's, were compared with the least cost chain costed at upper bounds, to select the almissible chains. At the end of this stage, the problem had been reauied to 15 nodes, 23 links and 47 chains. Of the 47 chains, 40 were for the Tororto-Halifax demand, 7 for Toronfo-iVontreal. These chains are listed in Table 4-6.

It is to be noted that for 4 service channels between Toronto and Halifax, there would be 306 chains rather than the 40 obtained with only two channels.

The links from which the admissible chains are formed, and the associated node:, are shown in Figure 9.

TABIE 4-2
Trial Problem - Non-Dominated Nodes
Toronto-Montreal (2 service channels); Toronto-Halifax(2 service channels)

TORONTIO-MONTREAL (4 service channels)

Node No. Name
$3!2$
313
314
315
316
32
$3: 3$
3\%6
3.1
$3: 2$
412

Name
Toronto
Barris
Uxbridge
Acton
Port Hope
Beansville
Hamilton
Millar Hill
Ohtawa
Spencerville
Monireal

TORONTO-HALIFAX (4 or 2 service channels)

3 1
3.2

313
314
315
316
32
$3: 3$
324
333
335
$3: 36$
341
342
$4!2$
413
421
422
423
424
511
512
522
523
524

Allen Park
Toronto
Barrie
Uxbridge
Acton
Port Hope
Beansville
Hamilion
St. Catharines
Sudbury
North Bay
Millar Hill
Otrowa
Spencerville
Montreal
Sherbrooke
Quebec
Rimcuski
Trouble Mountain
Gros Rocher
Moncton
St. John
Halifax
Mill Village
Sydrey

TABLE 4-3
Tial Problem - Minimum Cosi Chain (at lower bounds)
a) TORONTO-HALIFAX (4 or 2 service channels)

Node No.
Neme

312
To onto
314
Uxiridge
34
Otama
Mcntreal
412
$4 ? 1$
512
522
Qrebec
St: Johns
Holifax
Minimum cost (ar lower bounds): \$1,030,000.
b) TORONTO-MONTREAL (4 service channels)
rode No.
Nume
312
314
311
412
To onto
Usibridge
Otrawa
Miontreal
Ninimum cost (at lower bounds): $\$ 310,000$.

TABLE $4 \sim 4$

TABLE 4-5
An Example of D \varnothing MIN \varnothing Tables for Trial Problem

TORONTO-MONTREAL (4 s.c.)
TORONTO-HALIFAX (4 or 2 s.c.)

Node No.	Node Name	Minimum costs ($\$ 1,000$)			
		At Upper Bound		At Lower Bound	
		$\begin{aligned} & \text { From } \\ & \text { Toronio } \end{aligned}$	Frcm Mentreal	From Toronto	From Montreal
113	/ancouver	2980	3:00	2580	2650
312	Toronto	0	440	0	310
341	Otiawa	380	150	200	110
412	hontreal	4.40	0	310	0
522	talifax	2610	2355	1029	719
532	St. Johns	4385	4130	1417	1107
		From Toronto	From Halifax	From Toronto	From Halifax
113	Vancouver	2935	$4 \% 15$	2580	3370
312	Toronto	0	1480	0	1030
341	Otrawa	380	1190	200	830
412	Montreal	440	1040	310	720
522	Halifax	1480	0	1030	0
532	St. Johns	3100	1980	1420	600

TABLE 4-6

> Admissible Chains for Trial P:oblems Toronto-Montreal $\left(2 \mathrm{soc}_{2}\right)$ Toronto-Halifax $(2 \mathrm{soc})$

No. of From To Links

3	312	412	312	314	34	412		
3	312	412	312	336	34%	412		
4	312	412	312	313	31%	341	412	
4	312	412	312	314	31%	341	412	
4	312	412	312	314	34%	342	412	
5	312	412	312	313	314	341	342	412
5	312	412	312	314	316	341	342	412

TABLE $4-6$ cont $^{2} d$ （b）Toronto＝Halifax（cont ${ }^{\prime}$ d）

No．of From To Links

8317522
3312.522
？317 『？
331257 ．
0317522
2． 12 ：？？
2 317 57？
9 3．1．7 7n？
-312 ック？
$931 ? 52$
$9.312 \quad 322$
¢ 312522
9312322
$3312!22$
$\bigcirc 312522$
9312522
○ 31252 ？
\＆ 312522
10312522
10312522

NODES IN CHAINS
$\begin{array}{llllllllll}312 & 314 & 341 & 342 & 412 & 421 & 422 & 511 & 5.2\end{array}$

$3123143413424124215125115 ? 2$
$\begin{array}{llllllll}? 12 & 314 & 341 & 412413 & 421 & 422 & 511 & 5 ?\end{array}$
312314341412413421.517511527
$312314341412421427511 \quad 512$ 92？
$\begin{array}{lllllll}312 & 314 & 341412 & 421 & 427 & 511 & 57.4 \\ 5 ?\end{array}$
$31231434141 ? 42151 ? 511524$ 『？？
312336342412421472511512522
$\begin{array}{llllllllll}212 & 313 & 3.14 & 341 & 342 & 412 & 421 & 422 & 511 & 57 ?\end{array}$
$\begin{array}{llllllllll}3 & 12 & 313 & 314 & 341 & 342 & 412 & 421 & 512 & 511\end{array} 522$
$312313314341412421422511512 \quad 522$

$\begin{array}{llllllllllllllll}212 & 314 & 316 & 341 & 412 & 421 & 422 & 511 & 512 & 527\end{array}$
$312 \times 314341342412421422511512522$
$\begin{array}{lllllllllllll}312 & 314 & 341 & 342 & 412 & 421 & 422 & 511 & 524 & 522\end{array}$
$312314341412413421422511 \quad 512522$.
$\begin{array}{lllllllllllll}312 & 313 & 314 & 341 & 342.412 & 421 & 422 & 511 & 512 & 522\end{array}$
$\begin{array}{lllllllllll}312 & 314 & 316 & 341 & 342 & 412 & 421 & 422 & 511 & 512 & 52 ?\end{array}$

TABLE 4-6 cont' d
(b) Toronto (312) to Halifax (522) - (4 or 2 s.c.)

No.
of From To links

4.3.2 TRANCHE

a) Contirivous solution

The problem is now in suitable form for the TRANCHE model.
As is clescribed in Chopter 3, the model first seeks an optimal solution assuming that all variables are continuou:. The resulting facility expansion program is given in Table $4-7$. This "solution", which has no real meaning, was "costed" at \$2,982,000.

The significance of this continuous solution is that any infeger solution will cost as much or more. This is then a L.ower Bound on expansion cost.

TABLE 4 7
Conitinuous Solution
Capacity Expansion for Trial Problem

Nodes				Additional capacity
From		To		
No.	I Name	No.	Name	
312	Toronio	314	Uxbridge	4.0
314	Uxbridge	341	Oriawa	4.0
341	Ottava	412	Montreal	4.0
412	Montreal	421	Quebec	2.0
421	Quebsa	422	Rimouski.	1.0
421	Quebec	512	St. Johr:	1.0
422	Rimouski	511	Monctor:	1.0
511	Moncton	522	Halifax	1.0
512	St. John	522	Halifax	1.0

b) Integer solutions

Having found an optimal continuous solution, the model proceeds to seek integer solutions and, ultimately, the optimal inseger solution.

The results of the integer solution search are summarized in Table $4-8$. The cptimal solution was found to cost $\$ 5,600,000$ and is summarized in Table 4\%9, and Figure 10.
integer nodes

Toronto - Montreal (2.s.c.)
Toronto - Holifax (2.s.c. $)$
INT:

U, $2!1$

TABLE 4.․․
Optimal Capacity Expansion Program
for Trial Problem
Monireal-Toronto: $2 \mathrm{~s} . \mathrm{c}$.
Toronto-Halifax: 2 s.c.

From		To		Additional capacity
No.	Nanie	No.	Name	
312	Toronto	313	Barrie	1
313	Barre	314	Uxbridge	1
312	Toronto	314	Uxbridge	3
314	Uxbiidge	341	Ottawa	4
341	Otrewa	34.2	Spencerville	1
342	Spencerville	412	Montreal	1
341	Ottawa	412	Montreal	3
412	Montreal	421	Quebec	2
421	Quésec	422	Rimouski	2
422	Rimeuski	511	Moncton	2
511	Moriston	524	Sydney	1
524	Sydriey	522	Halifax	1
511.	Moncton	522	Halifax	1

c) Explanation of output

Sincy the integer solution search procedure may be of inferest, Table 4-8 is explained below.

The "Node" row is an internal counter only. The "Functional" row is the value or "cost" of each integer solution. Thus the first solution had a cost of $\$ 5,955,000$ 。

The zearch then proceeded by searching for integer solurions which were better than the previous one. When no other solution could be found that was better; the solution was declared to be optimal . (The "Estimation" row nerely shows that the solutions were integer.)

Below these three rows are a listing of the values of integer variables. The left hand column is a list of the variables, using their code discussed in Chapter 3. The key numbers are the last three digits, e.g. 158, 159, which define the links. The number of the nodal pair defining each link has beel added, beside the link variables, for clarity of exposition.

It is to be noted that the final solution s s the optimal one and is the same as that given in Table 4-9.

4.3.3 Analysis of results.

The optimal expansion cost was found to be $\$ 3,600,000$, requiring capacity additisn on 13 of 23 links.

One questicn that arises is the cost of bympassing Rimouski and adding a new link from Quebes: Cify to Moncton. From the input cost data, it can be seen that the cost of inste:ling the first channel will be $\$ 5_{p} 130,000$ and, for the second channel, $\$ 570,000$. Thus, the two channels can be installed for $\$ 6,300,000$.

The cost of by massing Rimouski will then be the cost of the Quebec-Moncton link less the cost of the Quebec-Rimouski link $(\$ 40), 000)$ and of the Rimouski-Moncton link $(\$ 600,000)$, that is, $\$ 1,000,000$. This somes to a marginal cosi of $\$ 5,300,000$.

4.4 Montreal-Vancouver Problem

4.4.1 The problem

A demand increase of 2 service channels is hyprhesized beiween MontrealVancouver. Two runs were made on this problem to prove the power of the CADUCEE program.

In the first run, no a priori exclusion rules weru employed. In the second, these rules were introduced, and had some effect on teduction in Ontario and Quebec.

In discussing the results, the current output format of the CADUCEE software will also be illustrated.
4.4.2 The solution
a) Basic network

The basic network consists of 124 links; 95 nodes and well over 30,000 possible chains.

The first output from CADUCEE is the tanslation of nodes numbers into the isternal numbering system. This is shown in Table $4=10$. This can be referred to in studying subsequent tables.
b) Leasi cost chain

The Least Cost Chains at upper and lower bounds are shown in Table 4a11.
c) Dominated nodes

At the end of the D \varnothing AIN \varnothing stage, when dominated nodes had been eliminated, the network had been reduced to 41 nodes and 64 links. The tnfranslated list of non-dominated nodes is shown in Table 4-12 and ilusirated in Figure 11.

The [\varnothing MIIN \varnothing tables for this problem are shown in Table 4-13.
d) Admi sible chains

It is in the search procedure of admissible chains that the exclusion rules ure considered. Without exclusion rulas, there were 338 adnissible chains, comprising 36 nodes and 57 links. The links and nodes constituting the admissible chains are illustrated in Figure 11.

TABLE 4...10

Conversation Tabla for
Montreal - Vancosver
2. s.c.

d) Cost et upper bounds

CRIG DEST. VALELR
b) Coṣt ut lower bounds

CFIG. DEST. VALEUR

2	5	130
5	7	515
7	19	$65 C$
15	21	945
21	25	1345
25	21	1735
21	47	2155
47	48	2290
48	52	2320
52	50	$265 C$

TABLE 4-12

Non wominated nodss

for
Monireal-Vancouver 2.s.c.

1	2	4	5	6	7	9	12	16	17	18
19	20	21	22	24	25	26	28	29	31	33
34	35	36	37	38	40	41	42	43	44	45
46	47	48	49	50	51	52	53			

TABLE 4-13
D.OMINO tables for

Montreal - Vancouver
2. s.c.

Destination: Montreal

za 3 N3 \square素空

TABLE 4－13（cont ${ }^{\text {d }}$ d）
DOMINO tables for

Montreal－Vancouver
2．s．c．

Oringin：Vancouver
Destination：Montreal

Internal node number	minimum cost			
	at upper bound		at lower bound	
	From origin	From destinarion	From origin	From destination
＜4	1350	1860	1055	1270
＜ 5	1640	1395	1345	1305
＜e	2020	1845	1205	1455
＜ 7	2610	2365	1285	1795
＜ε	1590	1660	1295	1570
＜ 5	$1 \leqslant 55$	1390	1500	1300
2 C	2010	1765	1405	1675
31	2030	1005	1735	915
$3{ }^{2}$	20 5	590	26？	820
ミコ	2865	490	2570	320
$\underline{3}$	2875	440	2580	310
ミ5	2845	470	2550	280
± 6	2935	500	2615	345
E 3	2915	480	2620	350
ミe	2820	280	2525	280
35	3135	700	2795	545
4 C	2650	410	2355	410
41	2890	515	2595	310.
42	2680	355	2385	355
4 E	2525	110	2630	120
44	2965	530	2645	275
45	2545	510	2650	380
46	2480	620	2185	620

\qquad

$$
\text { TABLE 4-13 (cont' } \mathrm{d})
$$

DOMINO tables for
Montreal - Vancouver
2.s.c.

Origin: Vancouver
Destination: Montreal

Internal node number	minimum cost			
	at upper bound		at lower bound	
	From origin	From destination.	From origin	From destination
47	2450	585	2155	495
45	2585	720	2290	360
49	2570	105	2675	105
50	3035	0	2650	0
E1	3130	95	2745	95
E2	2735	870	2320	330
53	3200	165	2815	155
54	3400	365	3015	365
ES	3700	665	3315	665
56	3 ¢20	785	3200	550
5	3565	530	3280	530
Eと	3750	715	3085	435
ES	4 C 5	1780	3430	780
Ec	5665	2030	3480	830
61	4720	1685	3435	785
62	4985	1950	3464	814
63	4075	1040	3370	720
64	3940	905	3555	505
Es	4120	1085	3375	725
Et	4925	1890	3540	890
E 7	5470	2435	3685	1035
$\in \varepsilon$	5655	2660	$37 \in 0$	1210
¢	7290	7340	6810	7270
70	7290	7340	68:0	7170

Using the exclusion rules, a further 3 nodes and 7 links were eliminated. This is also illustrated in Figure 11.

A sample of the output of adnissible chairs is illustrated in Table 4..14. The first line of each set shows the node path using internal node numbers. The second line of the set shows the chains in the input format to TRANCHE, using the nerwork node numbers. The first four entries on a line are the control information, giving: chain length r origin number, destination $^{\text {a }}$ number, serial number of chains.

The final output is a count of the number of chains and a count of chains of given length. This is shown in Table 4. 15.

4.4.3 Conclusion

The number of chains from Montreal to Vancouver has been reduced from approximately 30,000 to an eminently manageable 338 . This illustrates the power and effectivenass of CADUCEE.

TABLE 4-14

Admissible Chains
(a sample)
for
Montreal - Vancouver

Shains are defined by internal node numbers (1st line) and by network node number (2nd line).


```
10 113 412 1 113 114 212 21.4 2.22 242 331 334 335 341 412
10 113 112 2 113 114 212 214 232 242 331 3344154444412
11 113 612 3 11इ 114 112 213 2l4 232 242 331 334 335 341 412
```



```
11 113 112 4.113 114 212 213 2:4 232 242 331 3344415414412
```



```
11 113%%12 7 112 114 <12 214 232 242 331 332 333 336 342 412
11 113 412 & 113 114 212 214 232 242 331 332 333 335 341 412
11 113 412 & 113 114 212 214 222 242 331 334 335 314 341 412
    z
11. 113 412 1C 112 114 212 214 252 242 331 334 335 341 342412
```


TABLE 4-15

Chain Statistics

for
Montreale Toronto
2.s.c.

5. TOWARDS A DEMAND MODEL

5.1 The problem of linking HERMES : with a demand model

The previous sections of this report have clearly demonstrated the great potential of the HERMI:S mode!. If this potential is to be fully utilised, it will not be sufficient to assume hypothetical increases of denand between given points expressed in number of channels, as it is done in the preseat version of the model; it should be possible to consider forecasis of different patierns of increases of demand for telecommunications facilities in Canada, provided by a demand model.

It is intended to work from the present concept of demand for facilities backward through the demand for felecommunication servises to the demand for the transe mission of messages and even beyond so as to begin to identity the real determinants of demand. In this way, progress towards a demand model will proceed step-by srep from a solid base of an operational, though manifestly narrow in scope, network capacity expansion model.

The importart, and difficult, first stage of this cevelopment will be to introduce the considerctions of the type of service (voice, TV, data transmission, etc.) of the quality of service and of the timing of demand.

The presence: of joint costs and of decreasing cots makes it important to consider also the demand for local traffic allhough the mudel is primarily concerned with interregional traffic.

The demand *or telecommuni cations is obviously generated by the social and economic aciivities and by the activities of pubic agencies. Public policies may have great direct effects (0.9 . the policies of the statemowned TV networks, etc.) and indirect effects (e.g. encouragement of regional development, control of foreign investments, etco). However, all these influences are certainly very complex and depend heavily on institurional arrangements.

There is also an interaction berween the supply of telecommunicarions and the demand for them. Apart from the easy to name but difficult to evaluate, effect of prices on demand, there are also the effects en demand of the very existence of telecommunication facilities and of the quality of service.

Although HERMES 1 is a static model, its successors will be made progressively more dynamic. The importance of indivisibilifies; and of the joint cots and of decreasing costs that go with them, makes it imperative th consider simultaneously several planning horizons to arrive at capacity expansion programs which are compatible with efficient sequencing in time of capacity expansion to fase rapidly growing demand. The demand model to be aimed at is then a mosiel capable of producing series of demand forecasts, for different horizons and, of course, corresponding to different hypotheses.

The results of any demand model, if they are to be used in the models of the HERMES series, should be compatible with the formulation of the se models; thus, the results would have to be expressed in equivalent units (channels or smaller units envisaged) and would have to coriespond to the present or envisaged configuration of the network. It is viorthwhile noting that some research is lieing done on the demand problem inside the Depariment of Communications and while some results could be very interesting they could not, in their present form, be fed directly into models of the HERMES series. An importart point also worth noting is the fact that the neiwork actually used in the present version of the HERMES model, although very simplified, is largely supply oriented. Therefore, further axtensions of this network aimed at bringing it closer to reality should take befter account of the demand aspects of the problem.

Another spenific problem is brought about by a characteristic of the tele.communications industry: the product being nons stockable, the time of consumption is very important.

Still another problem is brought about by the growing variety of telecommunications services which can, and offen do, use the same facilities but in substantially different amounts; also account has to be taken of the fact that the production of certain services can be dielayed to escape the peak-hour problem and thus provide a better utilization of facilities; with the growing importance of data transmission this fact becomes more and more relevant to the problem.

As we proceed by successive steps from the demand for facilities all the way to analyzing the social and economic and other activities which ultimately generate the demand for telecommunications, we shall have to rely more and more on data, on results of analyses and on econometric models, originating in other agencies. This is bound to give rise to serious problems.

The potentia inputs from other agencies are seldom in the formats directly usable for our purposes. And, of course, teler:ommunications, as other spatial aspects, are in most cases given a very summary treatment, if they are not entisely neglected in analyses and in econometric models originaring in other agencies.
5.2 The elemints available: methodology and data

Literature or telecommunications economics in general cannot be termed abundant; this is understandable though, in visw of the fact that the field is fairly new with its technology evolving rapidly. Research in the field has been mainly focused on problems associated with regulation of the industry, such as pricing of services, rate of return of the firm, etc. Fairly numerous recent publications deal also with the broad pioblems of the impact of the telecommunisations on the economy and the society as a whole.

In fact, there is no established and tested methodology directly relevant to the problem : of demand forecasting for the purposes of the models of the HERMES series. There are however a certain number of studies that have tackled the problem of demand forecasting in the telecommunications industry. This section of the report deals with a few of these studies; no references will appear here shough because we believe that ile bibliography on the subject is not reasonably complete and that further exploration is needed. However, the studies referred to here, as well as a number of orher studies, are available on file.

Studies of the Telecommission constifute the main source of readily available documentation on telecommunications in Cancida. Once again, regulation caught a large part of the attention but a certain number of studies have been devoted to telecommunications economics.

One of these studies contains some highly aggegated regression analyses with an attempt to take account of the prices on tha demand for telecommunications services. Another study contoins forecasts of the volume of local and toll relephone messages up to 1980. The origin of the messages only is specified and the fore asting technique relies heavily on linear extrapolations.

A study has ralso been submitted by TCTS and CN-CP Telecommunications, titled "Telerommunications Carriers Market Projection and Analysis". It is too general to be useful in our study, representing more the thoughts of the carriers on the growth of their industry than a thorough analysis of the underlying factors.

In conclusion, we could say that studies of the Telecommission constitute a basic sousce of general reference on the telecommunications industry in Canada, but they cannot be expected to be useful for specific purposes such as building a demand model applying to an interregional neiwork.

Other studies in the field of demand forecastirg also include a recent US study, whese traffic forecasts were made by assuming a specified annual rate of increase over a period of years and applying the resulting factors to the actual valume of traffic during a specified reference year. Results were also cidjusted to take account of "impulse jumps" caused by a rapid rise in the number of telephones, noticeable improvement in the quality of service, etc.

This procecture was used to forecast telephone, telex and telegraph demand. To obtain circuit requirements the results were transformed using data concerning the average length of conversation, the average number of business days, the busy-hour to total-day relarionship, and finally, the minutes charged to circuit-usage relationship.

Also treated in this study were the problems of routing and network configuration (radio-relay versus satellite, etc.), revenue projections and analysis of rates, aid finally, economic feasibility of the proposed system.

Another study, though concerned only with estimating the price elasticity of demand for telegrams, proposes a methodology that merits a closer examination for the purposes of demand forecosting relaied to the HERMES series of mudels. This study was related mainly to issues in regulation but it can also provide valuable insights in the field of traffic forecasting. The object of the study was to estimate price elasticity for telegrams where price varies over distance beiween the point of origin of messages and their destination.

It was assumed that these telegrams were not only a good, having a price and providing utility, but also a method of social and economic interaction. It was expected thus that the volumes of messages were not only related to the basic variobles of price and income, but also to spatial and gravitational characteristics such as distribution of population and income; physical distance beiween ariy two given points, levels of business activity at different points, etc.

Since all these elements influence the quantity of messages in a system, it appeared that an application of a gravity model in the investigation of demand for telegrans was appropriate. A functional relationship was sought linking the messoge volume to gravitational variables, demand variables, and indices of economic ectivity for each metropolitan area within the communications network.

Still anothe: study dealing with forecasting the demand for international telecommunication contains an elaborate analysis of a large number of factors poss"bly affecting this demand. The resulis seem to show that some of these factors, including relative prices and quality of service have a significant effect on demand and on the choice of the type of service. There is no doubt, that work on actual demand forecasting will have to be preceded by analyses of this kind carried out with respect to Canadian data.

This is no place to attempt a comprehensive survey of the data available. Suffice it scy that the development of demand forecasting procedures will involve a major effort in data integration. Fundamentally, data relevant to demand forecasting are available from iwo groups of sources: the carriers and the users. Any more than superficial analysis of the factors affecting the demand for telecommunications will have to give considerable importance to users' daia, which ties in with the informalion on users characteristics.

The rapid growth and the rapid rate of change in the telecommunications industry mein that reliance on past trends may; be very misleading. In any case, some of the phenomena involved have too short a history for any significant irends to emerge. The bulk of the effort will have to go into detailed cress-section analyses to uncover the mechanisms which determine the demand for telecommunications.

5.3 Possible approaches

There is no doubt that several approaches to the forecasting of the demand for telecomiaurications will have to be explored. The procedure arrived at will certainly contain features inspired by different approaches.

As pointed cut above, there is no established inethodology applicable to the problem in hand and a good deal of preliminary analysis and hypothesis testing will have to precede the stage of formulating forecasting procedures.

It is also evident that what is being aimed at are conditional forecasts, corresponding to alternative hypotheses and nut "once for all" projections. And again, the forecasting procedures will selve to produce ranges of values rather than point forecasts. The models of the HERMES series into which these alternative forecasts will be fed will then have to be considered as being in fact simulation devices.

Broadly speaking one could consider three posisible approcches to the questions of forecasting the demand for telecommunications. They are of course not mutually exclusive.

The extrapoiations of past experience, with a gradual introduction of more explanatory variables and a gradual refinement of the level of detail. This is what might be termed the traditional approach.

The integration of detailed information collected by the telecommunication carriers in the course of their operations and for their internal purposes. In the first phose, there will have to be a coordination of the carriers own forecasts. Then, there will be the question of using carriers data in conjunction with informsition obrained from other sources. This will obviously be an essential component of the forecasting procedure. However, this approach is inevitably rather restrictive since the carrier: data do not go very far concerning the characteristics of the users and their activities and cannot reveal some of the fundamental determinants of the demand for telecommunications.

The third approach is that of building derailed and elaborare models of the behaviour of relecommunications users, models whose structures will be basically thase of activity analysis. This apprach relies heavily on the collection and integration of the telecommunications users data: a major effort will have to be done in this area. For one, the users data are rather scanty and, in most cases, in formats which make them difficult to reconcile with each other and with the carriers data. Secondly, the purchases of telecommunications services represent in most cases relatively minor cost items and in addition, the accounting practices often make it difficult to identify them.

For a number of reasons, it may be expected that this third approach will play the main role in the procedure adopted, with the carriers data however being used to the fullest possible exfent. This approcech will involve the identifications: of the fundamental determinants of the demand for telecommunications as well as of the successive stages through which social, economic and other activity gives rise to the need to communicate, to the demand for the transmission of messages, to the choices of the type of services, to the patential traffic flows all the way to the demand for telecommunication facilities and finally a definite capacity expansion program. By proceeding by clearly defined stages, the mechanisms of the successive transformations can be better formulared and tested. The model would include a large number of relatively simple relations based, as far as possible, direcily on detailed dara concerning observable phenomena. A model of such a structure is also more "transparent" arid yields itself better to subsequen: refinements and up-datings apart from being much more suitable for simulation purposes. A considerable experience has been acquired, by the Laboratoire d'économétrie and by Sorès Inc., in admittedly different contexts, in constructing and operating models of this kind.

6. EXTENSIONS AND FURTHER DEVELOPMENT

6.1 General remarks

The work indertaken in the preliminary phase of the HERMES project was done to a arge extent in view of extensions end further developments, often at the expense of considerable additional effort. As it has been pointed ous the HERMES I model is to be considered as the first of a series. The future steps fall naturally into four categories:

- improvements of the methodology already developped, including the software and its applications to more detailed and more elaborate networks,
- the introduction of additional factors affecting the planning of network expansions, including the considerations of the quality of service, the peak demands, etc...
- the linking of the network capacity expansion models with demand noodels,
- The introduction of dynamic considetations: capacity expansion Flanning over time.

This chapter deals in some detail with the first of four categories. It covers what migh be termed the natural extensions of the HERMES I model. Although the relevant methodology including the software is already arailable, their implementation will still call for a considerakle effort, including once again a very hecvy reliance on the expertise of the Depariment of Communications specialists.

The other three categories go a long way beyond the scope of the HERMES I model. The relevant operational formulations and implementations will have to be preceded by an intensive exploratory work, again calling for a close collaboration of all the participants to the projects.

Finally, it must be mentioned that naturally, the efficiency and the usefulness of the model will increase considerably as the data base becomes generally more detailed and closer a reality. This concerns in particular the cost data.

6.2
 Improventent of the operating characteristics of the HERNTES I model

Although fully operational and, in fact quite efficient, the methodology of the HERNES I model, including the sofiware, still requires a number of refinements especially concerning the format of the outputs of the model and a bette: utilization of its by -products which are of value in themselves. In addition, to handle problems where considerable demand increases are specified (e.g. more than 6 service channels) and the demand points concarned are far apart, a more powertul version of the CADUCEE program will have to be resorted to.

Soflware improvements will concern in the first place the output formats of the CADIJCEE program. These outputs serve two purposes. The primary purpose is to constitute inputs into the TRANC.HE program. In this case, the output is on punched cards according to the specification of TRANCHE, and no chatges are contemplated at this stage (however, see below). The secondary, but important purpose of the CADUCEE outputs is to provide information concerning the analysis of the network. Output formats which are appropriate for this purpose are different trom those specified for the inputs in the TRANCHE program and, in any case, many of these outputs are not needed in TRANCHE. Since these secondary outputs are destined to be analysec by various users, not necessarily familiar with the inner working of the model, they will have to be in a form which makes it easy to interpret them. More explicit identification of the elements of the nefwork, including place names will have to be provided for, as well as better identification, with explanatory remarks, of the various derived concepts such as the minimum cost chains, at lower (upper) cost bounds, dominated nodes, etc.

In addition, clear indications will have to be given concerning the use of $D \varnothing$ MIN \varnothing tables for the evaluation of non-es:isting, but contemplated links.

Finally, the CADUCEE II program will have to be developed. The conceptualization of this program has already been done. There still remains the actual programming and, undoubtedly, several successive improvements of the resulting software. CADUCEE II will be more powerful than CADUCEE I in eliminating dominated chains and thus in reducing the loced on the program TRANCHE, at the expense, of course, of heavier computations at the CADUCEE stage. It will also require less core space than CADUCEE I, which is of considerable importance in some problems referred to above. The fundamental difference between CADUCEE II and CADUCEE I will be that the former will use a more restrictive definition of admissible chains, that is a wider definition of dominated
chains. In CADUCEE I, a complete, or incomplete chain is dominated if any incomplete chain it contains is dominated. In CADUCEE II a complete, or incomplete chain will be dominated if any sub-chain it contains is dominated. Since, for any complete or incomplete chain, the incomplete chains it contains are a subset of the sub-chains it contains, the CADUCEE II definition of dominated chains is wider that the definition of CADUCEE $!$ and therefore, will lead to the elimination of some chains which survive the elimination procedure of CADUCEE 1. It goes without saying that CADUCEE II will not eliminate, as dominated, any chains which could appear in the optimal capacity expansion program. The program CADUCEE II requires the computation of the costs of minimum cost chains, at upper bound costs, for all the pairs of points of the neiwork, instead of just for the pairs of points for which a lemand increase is specified.

The use of the CADUCEE output for the evaluation of non-existing but contemplared links calls for no soffware development. However, the methodolog, has to be written up, examples worked out and the performance of this procedure examined with reference to resl data.

Concerning the TRANCHE program, the situation is roughly analogous. The available software is operational and efficient. Output formats will have to be made substantially more elaborate and explicit to facilitate the utilizations of the program. Since large numbers of variables appear in the formulations of the problams and in the solutions, provisions will have to be made for optional summaries of results.

Finally, the CADUCEE and the TRANCHE programs will have to be integrated so that there is an option of running a given problem through both programs without human interyention. It may be expected that this option will not be very frequently used: in most cases, it will be thought advisable to examine the outputs of CADUCE: before proceeding further. However, when speed is essential, or when several problems have to be solved in rapid succession such an option of fully integreted solving may be found useful.
6.3 More detailed networks

The relecommunications network used so far by the HERMES I model is a highly simplified and aggregated network. With the existing methodology and with basically the same software (although the softwire improvements referred to in the preceding section will have to be done first) one can handle considerably more detailed neiworks. This may, however, necessitate in some cases a recourse
ixac.
to information stored on a disk, with an inevitable and substantial increase in computing cost. It is however too early to speak with any assurance of the computing costs involved in handling more detailed networks since, on the one hand we do not yet know what will be the increase in efficiency due to CADUCEE II and, on the other, the volume of computations and memory space requirements depend not only on the size but also, in a vital way, on the structure of the neiwork concerned.

It is presently contemplated to construct a very detailed network containing up to 2,000 nodes to represent the Canadian telecommunications. This network would never by analysed as such but would serve more like a data base. A nore aggregated version containing some 500 nodes would be the network actually analysed in the first stage of handling a given problem. The CADUCEE program identifies, as one of its by-producis, the so-called nondominated nodes, in any given problem. These non-dominated nodes define, in a non-crbitrary manner, the region which is relevant to the problem on hand. This definition is not arbitrary, since dominated nodes are the nodes which cannot, under any of the circumstances specified in the problem, appear in the optimal capacity expansion program aimed at. This relevant region being identified on the 500 node nelwork, it can then be given a more detailed representation using the appropriate elements of the 2,000 node network, end the concluding stage of analysis carried out with reference to this new, partly blown-up network.

No experience has yet been acquired with this procedure and it is too early to say whot its performance will be with real data and with the new improved sofiware. Its objective is, basically, to reconcile the need for a more detailed analysis of certain regional problems, while avoiding the arbitrary defining of regions which might be particularly inappropriate in the case of telecommunications networks while, at the same time, keeping down to manageable proportions the dimensions of the problems.

The 500 and the 2,000 node networks referred to will originally be merely more detailed versions of the actual network. Hovever, they could also be the enlarged networks described in the following section, although to handle such enlarged networks a certain amount of software development will have to be done.
6.4 Enlarged networks

The methotology already developed is applicable also to the so -called enlarged neiworks. This concept is introduced in order to be able to take into account such important characteristics of the telecommunications network as the existence of distinct carriers and of distinct facility systems and of certain joint costs relating to certain indivisible facilities capable of accommodaring demand between more than one pair of points without one being able to allocate the cost of this
indivisible facility between the pairs of points concerned. However, to retain the mathematical formulation, and hence the basic sofiware of the original model, the enlarged network is constructed in such a way that its formal structure is strictly analogous to the network esed in the HERMES I model.*

In the first place, it may be necessary in some cases to split a given node of the geographic network into two or more nodes. This will reflect the existence of more than one nodal facility at the same geographic location, and/or of mire than one transmission facility between any given pair of nodes. Then either of the following two formulations may be adopted, depending on the purposes of the analysis. One can specify demand increases at the new nodes. In this case ${ }_{z}$ the demand increases are assumed to arise already with an initial commitment to a given type of facility, that i_{i}, in fact, to a given system controlled ty a given carrier. Alternatively, demand increases may be specified as arising in a given geographic location without any such original commiment. In these cases, a single dummy node will be introduced at the geographic location concerned and the demand increase specified as concerning this dummy aode. This dummy node will then be connected by zero-cost links to the nodes representing the different nodal facilities available in that location. The analysis will then bear, among other things, on the most efficient choice of the initial nodal facility and hence also, to some extent, on the choice of the system and of the carrier.

To reflect the interconnection costs between distinct systems, the interconnection links will have cost functions associated with them, which will behave in the model as the cost functions of transmission facilities, although, in fact, the geographic distance involved may well be negligeable.

It may well be the case in various places of the enlarged neiwork that facilities lying geographically close together are not in fact connected.

Another type of situation where dummy nodes will be introduced are the situations referred to already where we have a case of an indivisible transmission facility capable of accommodating the demand between more than one pair of points. In such cases, often only a small part of the cost of the facility can be allocated to the pairs of points concerned, the bulk of the cost being truly indivisible.

* An outstanding example of such an indivisible facility is the satellite. In the HERMES I model, an arbitrary allocation of the satellite cost is imposed which clearly does not reflect the true economics of the situarion. In an enlarged network, the joint costs will be treaied as such, and only the identifiable addirional costs will be allocated to the points served.
ingo.

In this case the indivisible transmission facility is represented by a dummy node. The indivisible part of the cost is associated with this node. The costs which can be allocated to particular points, that is the costs of connecting these points to the indivisible facility and hence to other points so connected, are associated with the links connecting each of these points to the dummy node in question. Incidentally, we shall thus have a rather paradoxical situation of a transmission capacity expansion cosi being (formally) associaied with a (dummy) node.

It may thus be seen that the concept of the enlarged network makes for a substantial increase in flexibility and realism without altering the formal structure of networks submitted to the model.
6.5 Planning capacity expansion over ime

As pointed out already in Chapter 5, a really efficient capacity expansion model will have to concern itself with the sequencing of capacity expansions over time. In the first place, this will require elaborate demand forecasting procedures working towards several different time horizons.

In the second place, the sofiware will have to attain a very high level of efficiency since the volumes of compuiations involved in analyses covering several periods will inevitably be very large.

It is of course the presence of important indivisibilities, and hence of joint costs and of decreasing costs, coupled with the very rapid growth of demand for telecominunications which explain the interest in planning capacity expansion over time.

The dimensions and the complexity of the probliems involved exclude, for the time being at any rate, the use of such rigorous procedures as those of dynamic programming or of the optimal control theory. The approach which appears most promising is that of repeated simulation runs, over various horizons and with different hypotheses, to calculate the alfernative expansion programs and the orders of mrignitude of the trade-offs between them.

Capacity expansion cost functions for each link are as follows:
(The vertical axis represents cost per mile, the horizontal axis the increase in capacity measured in service channels.)

Link 1-2

Link 4-3

Link 2-3

Link 1-4

Link 5-3

Link 2-5

Link 4-2

Link 1-6

Link 6-5
3. THE PROBIEM

Determine the minimum capital cost capacity expansion program necessary to accommodate the following demand increases:

2 service channels between nodes 1 and 3

2 service channels between nodes 4 and 5
The maximum contemplated demand increase is thus 4 service channels.
4. SEARCHING THE ADMISSIBLE CHAINS (CADUCEE Program)
4.1 Demand points 1 and 3

Origin: $\quad N \not \subset R G=1$
Lestinarion: NDEST $=3$
a) Lower bound (LB) and upper bound (UB) on capacity expansion incremental costs for the maximum contemplared demand increase (4. service channels): sub-routine $B \varnothing$ RNE.

These lower and upper bounds are calculared on each link as shown in the following table.

Link	Mileage	Lower bound on incremen". tal cost per channel per mile.	LB (Incremental cost per channel)	Upper bound on incremen- tal cost per channel per mile。	UB (Incremental cost per channel)
$1-2$	100	1	100	4	400
$2-3$	200	2	400	8	10
$1-4$	600	5	3000	12	6000
$4-3$	600	6	3600	7800	
$1-6$	700	4	2800	8	5600
$6 \cdots 5$	800	4	3200	8	6400
$5-3$	300	1	300	2	600
$2-5$	200	1	200	2	400
$4-2$	500	4	2000	8	4000

b) Search for dominated nodes.

The I) $̧$ MIN \varnothing tables are first calculated. They contain the lower bounds (LB) and upper bounds (UB) of the mininum cost chains from every network node to the origin (NORG) and from every network node to the destination: (NDEST).

From N \varnothing RG to:	LB	UB	From NDEST to:	LB	UB :
1	0	0	1	500	1400
2	100	400	2	400	1000
3	500	+ 400	3	0	0
4	2100	4.400	4	2400	5000
5	300	800	5	300	600
6	2800	5600	6	3300	7000

inc.

A noc'e is dominated when the minimum cost chain through it has a LB highe: than the UB of the minimum cost chain between the pair of demand points.

The two terms of the comparison, obtained from the D \varnothing MIN \varnothing table, are showr in the following table, for each node of the network except the origir: and the destination. The dominated nodes are identified.

Node	LB on minimum cost chain through node	UB on mininum cost chain between $1 \& 3$	Dominared
	$100+400=500$	1400	NO
2	$3000+2400=5400$	1400	YES
4	$300+300=600$	1400	NO
5	$2800+3300=6100$	1400	YES

c) Seaich for admissible chains.

Starting from $N \not \varnothing R G$, the chains having one link are identified. These are called "chains of length 1". The chains of length 1 are used in tarn to identify chains of length 2, atc. Every time a node is arrived at the following two conditions for adm"ssibility are tested:
i) An admissible chain (or incomplete chain) contains no dominated node. (Necessary but not sufficient).
ii) The LB on the cost of the incomplese chain concerned is less than or equal to the UB of the minimum cost chain connecting the node considered to NORG - (Sufficient).

The successive testing for these two coriditions is illustrated in the following table. If condition (i) is not fulfilled, the incomplete chain is immediately identified as non admissible. It is no longer used in further steps to consfruct chains of greater lengths.

If condition (i) is fulfilled, the node is tested for condition (ii). The first term of the comparison is calculated using the table of paragraph (a) above. The second term is found in the DOADE $\bar{\infty} \varnothing$ tables.

Length of chain	Chain	Dominated node in the chain	LB on cost	UB on minimum cost chain	Admissible
1	$1-6$	YES			- 3 NO
	1-2	NO	100	400	YES
	1-4	YES			$\Rightarrow \mathrm{NO}$
2	1-2-5	NO	300	800	YES
	1-2-3	NO	500	1400	YES
	1-2-4	YES			3 NO
3	1-2-5-3	NO	600	1400	YES

The following chains are admissible:
1-2 -3
1.-2-5-3
4.2 Demand points 4 and 5

$$
\begin{aligned}
& \mathrm{N} \zeta \mathrm{ORG}=4 \\
& \mathrm{NDEST}=5
\end{aligned}
$$

The same resisoning as for the first pair of demand points is followed, starting from step (b). (The resulits previously obrainec in slep (a) are used again for the second pair of demand points).
b) Serrch for dominared nodes.

DOMINQ Tables

From NQRS to:	LB	UB	From NDEST to:	LB	UB
1	2100	4400	1	300	800
2	2000	4000	2	200	400
3	2400	5000	3	300	600
4	0	0	4	200	4400
5	2200	4400	5	0	0
6	4900	10000	6	3100	6400

Node	LB on minimum cost chain through node	UB on minimum cost shain between 485	Dominated
1	$2100+300=2400$	4400	NO
2	$2000+200=2200$	4400	NO
3	$4400+300=2700$	4400	NO
6	$4900+3100=8000$	4400	YES

c) Search for admissible chains.

Length of chain	Chain	Dominated node in the chain	$\begin{aligned} & \text { LB } \\ & \text { on cost } \end{aligned}$	UB on minimum cost chain	Admissibie
1	4-1	NO	3000	4400	YES
	4-2	NO	2000	4000	YES
	4-3	NO	3000	5600	YES
2	4-1-6	YES			$\Rightarrow \mathrm{NO}$
	4-1-2	NO	4 (00	4000	YES
	4-2-1	1	2:00	4400	1
	4-2-5	1	2400	4400	"
	4-2-3	1	2400	5600	${ }^{11}$
	4-3-2	"	4000	4000	1
	4-3-5	${ }^{\prime \prime}$	3900	4400	${ }^{1}$
3	4-1-2-5	NO	3300	4400	YES
	4-1-2-3	NO	3100	5600	YES
	4-2-1-6	YES			$\pm N O$
	4-2-3-5	NO.	2700	4400	NO
	4-3-2-5	NO	4200	4400	NO
	4-3-2-1	NO	4100	4.400	NO
4	4-1-2-3-5	NO	3800	4400	NO
	4-3-2-1-6	YES -			\Rightarrow YES

The following chains are admissible:
$4-2-5$
4-3-5
4-1-2-5
$4-2-3-5$
4-3-2-5
$4-1-2-3-5$

4.3 Revision of upper and lower bounds

a) Maxilinum relevant demand increase.

The maximum relevant demand increases; are calculated by considering in turn cach link of the network and testirg for the following conditions:

- If the link does not appear in any of the admissible chains listed for all the pairs of demand points considered in the problem, the maximum televant demand increase on the liak is zero. The link can effectively, be considered as removed from the network.
- If the link appears in the lists of admissible chains for one or more 'emand point pairs, the maximum relevant demand increase for the link is equal to the sum of the demand increases for all the point pairs for which the link appears in the list of admissible chains.

The naximum relevant demand increases are calculated in the following table:

Link	MRD
$1-2$	4
$1-6$	0
$1-4$	2
$6-5$	0
$2-5$	4
$4-2$	2
$4-3$	2
$5-3$	4
$2-3$	4

Note that the maximum relevant demand increases on the links which constitute the admissible chains for the first pair of demand points (1 and 3), i.e. $1-2,2-3$ and $1-2,2-5$ and $5-3$ is no different from the maximum demand increase as consideret in the first part of the example. The admissible chains for this pair of points thus remain the same and only the second pair of demand points (4 and 5) has to be considered here.
b) L.B and UB on capacity expansion incremental cosis.
L.B ard UB on capacity expansion incremental costs for links 1-4, 4-2 and $4-3$ have now to be revised as the naximum relevant demand increase on these links is now 2 service channels. The results are given in the following table.

Link	LB on incrementa cost per channel	UB on incremental cost per channel
$1-2$	100	400
$2-3$	400	1600
$1-4$	3000	4000
$4-3$	3600	3600
$5-3$	300	600
$2-5$	200	400
$4-2$	2000	2200

Note that links $1-6$ and $6-5$ are no lonejer considered.
c) Search for dominated nodes.

D \varnothing MIN \varnothing Tablas

From NØRG to:	LB	UB	From NDEST to:	LB	UB
1	2100	2600	1	300	800
2	2000	2200	2	200	400
3	2400	3600	3	300	600
4	0	0	4	2200	2600
5	2200	2600	5	0	0

Node	LB on minimum cost chain through node	UB on minimum cost chain between 18.	Dominated
1	$2100+300=2400$	2600	NO
2	$2000+200=2200$	2600	NO
3	$2400+300=2700$	YES	

d) Search for admissible chains.

Lengrh of chain	Chain	Dominated node in the chain	$L B$ on cost	UB on minimum cost chain	Admissibla
1	4-1	NO	3000	2600	NO
	4-2	NO	2000	2600	YES
	$4-3$	YES			$\Rightarrow \mathrm{NO}$
2	4-2-5	NO	2200	2600	YES
	4-2-3	YES			$\Rightarrow \mathrm{NO}$

Only one admissible chain remains: $4-2-5$
4.4 Results of CADUCEE

Demand points 1 and 3:
Adnissible chains: 1-2-3
1-2-5-3

Demand points 4 and 5:
Adnissible chains: $4-2-5$
5. THE CHOICE OF THE MINIMUM COST CAPACITY EXPANSION PROGRAM (TRANCHE: Program)
5.1 General

For the two pairs of points that were considesed at the outset of the problem, there remains a choice for only one: the pair 1 ard 3 , for which 2 chains are admissible. For the other pair, only one chain remains si that further processing with the TRANCHE program is not neçessary.

For the demand between node 1 and node 3 it is evident that the problem can be solved by hand, and does not require an optimization model. Thus, the determination of the optimal solution by hand is shown. As a further example of formulating mixed integer linear programs in the manner chosen for TRANCHI: the matrix for this problem is shown in Figure A_{-1} l and discussed.
5.2 Hand Solution

Although there is only one chain for the derand from node 4 -node 5 , it must be considered since link 2-5 enters also in one of the chains from node 2 to node 3. Thus in selecting the least cost chain from node 2 to node 3 an existing 2 channels on link $2-.5$ must be cossumed.

These 2 channels, for demand from 4-5, can be added at a cost of 200 units each, for a total of 400 units. The data on channel addition for each link is computed below:

Link	Milleage	Additions			
		Ist channel		2nd channel	
		Cost per mile	Total cost	Cost per mile	Total cost
1-2	100	1	100	1	100
$2-3$	200	2	400	2	400
2-5	200	1	200	2	400
5-3	300	1	300	1	300

A-13

nacto

The costs for adding one and two channels on each of the two chains are given below:

Chain		Cost	
	1 channel	2 channel	
$1-2-3$			
$1-2-5-3$	500	1000	
	600	1400	

Thus the optimal expansion program is:

Link	Additional channels	Total cost
$1-2$	2	200
$2-3$	2	800
$4-2$	2	4000
$2-5$	4	1000

5.3 Matrix of Problem

There are a number of different approaches that could be taken in forming mixed-integer linear programs to solve the problems posed in Project HERMES.

The matrix in figure A-1 for the example problem uses the approach taken by the TRANCHE program but is not representative of the apparent form of the TRANCHE matrix. It is, however, representative of the effective form of the matrix. The difference lies in the generality of the TRANCHE program in regard to the status of channels on any link.

The links have been coded as follows:

Link no.	Nodes
101	$1-2$
102	$2-3$
103	$4-2$
104	$2-.5$
105	$5-3$

The form of the problem is clearly seen, especially if the discussion on problem formulation in Chapter 3 is referred to.

