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1. INTRODUCTION  

Videotex systems have three basic components: 

(a) a service providing host computer, usually including a 

page-oriented database, (b) a data transmission system, and (c) 

user terminals. This paper concentrates on the organization of the 

memory structures that may be found in the host computers to 

support the database (the information pages and various directory 

structures) and the data buffering required for transmission. The 

memory structures for distributed data base systems are also 

considered. 

As far as the transmission system is concerned, two major 

approaches are considered: (a) "interactive videotex" and (b) 

"teletext". In addition, two major transmission media considered 

for interactive videotex: telephone lines and • TV transmission 

channels. Interactive videotex differs from teletext in that pages 

are transmitted only in response to requests from users. In 

particular, a page may be transmitted only to the particular user 

who requested it. There are currently two major methods for 

transmitting videotex pages. One method is to use standard 

telephone lines and the other method is to use spare channels on 

cable television networks. These two methods have quite different 

transmission rates (1200 bps versus 4,000,000 bps). Therefore, we ' 

can expect different implementations and hardware configurations 

for the videotex computer system. However, many of the issues and 

implementation decisions are similar. 
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While initial videotex databases only included men 

selection user interfaces, keyword and other kinds of user 

interfaces are currently considered in addition for newly 

developed videotex systems [41]. Sections 2 and 3 of this  paper 

investigate issues related to the memory structures related to 

simple menu-oriented databases of information pages. In section 4, 

issues related to the support of keyword access (the simple kind 

of keyword interface [17]), and full keyword facilities with 

boolean search are reviewed. ; 

Like traditional databàse systems, videotex databasesjlay • 

be viewed at different levels,  of the architecture [42]; fôr 

instance the internal, conceptual,•and. external level. While: the 

user interface is related to the database structures at the 

'conceptual and external'levels, the internal level is Concernèd 

with the physical organization of the'data within the databasè, 

and the mechanisms used to provide the conCeptual data structures 

to the application programs and users. 

In section 2, we discuss the memorST structures in central 

memory and secondary storage used to support the storage of the 

information pages and support their retrieval in an efficient way. 

A memory hierarchy and different ways of managing it aie 

considered. Using some empirical mesurements on usage patterns, 

the optimization of the storage structures are demonstrated for 

some examples. 
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In section 3, the memory requirements for the page 

transmission to the users are considered, distinguishing the 

different transmission approaches over telephone and TV 

facilities. An additional problem in the case of teletext with a 

broadcast cycle of pages is the . question of which-pages to put 

into that cycle, in. particular in  such eystems• where» additional 

pages may be available to the user through an. alternate 

transmission scheme .  An analysis similar to the one applied to the 

memory hierarchy in section 2 is shown to be useful here. 

In section 4, extensions  to  the. user interface are 

considered with their impact on the memory - structures' for 

supporting efficient'access  in the case of a large number of 

users. It is in  this  context that. special purpOse.database 

machines could possibly be useful. . 

In section 5, the ideas of section 2 are extended 

considering the configuration of a distributed videotex system. In 

particular the design and performance of the user interface 

machine is considered. 
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2. STORAGE STRUCTURES FOR VIDEOTEX 

2.1 The Memory Hierarchy  

Let us first consider the largest use that memory will be 

put to. The system will normally include a large store of pages. 

One source [18] estimates that a minimum of 50,000 pages are 

needed for the initial implementation of a videotex system and 

that the number would have to approach 500,000 pages if mass 

market success is wanted. We estimate that the average size 'of a 

page will be between 1000 and 2000 bytes. It is hard to be more 

precise than this because there will be many index pages with a 

small size and. there will be an indeterminate nUmber of pages 

containing picture  descriptions and  will thetefere be quite large. 

For the moment, we will use 1000 bytes àS a rower bound .on , the 

average page size. Hence, 50000* 1000'-=- .  5 0  MbyteS'ià.en'eStimate 

of the minimum storage capsoity of the System. Since 50 Mbytes is 

rather large for the main memory of a computer, it is . clear that'a 

mass storage device such - as a 'disk must be used. Howevet, it is 

reasonable to assume that a fairly high proportion of pages can be 

kept in the main memory or some Other fast memoty device. 

Thus, we have obtained a convincing reason for why a 

standard videotex system must contain at least two kinds of 

memory. These would be the main memory of the computer and its 

disk memory. As we will discuss later, it would probably be 

cost-effective to attach a separate mass memory  •device with an 
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access time that is intermediate between main meMory and disk ,  

access times. 	The configuration of these three kinds of memory 

would form a memory hierarchy. It is important utilize the 

hierarchy efficiently, meaning that we shàuld carefully chOose 

information  which memory level is to contain which items 

(either program or data). 

If we consider just the placement  of"Videotex pages into 

appropriate memory levels, theremay, logically, be a fourth kind 

of memory to consider. If we Consider a videotex System that uses 

a broadcast cycle,  such  as *Ceefax or Oracle, then we must 

determine WhiCh pages.are tà be included in the Cycle.. We can  

.logically consider this cycle to be.another kind of memorythat is 

more exclusive than main memory (because  of the limited Capacity 

of the. cycle) but thatsives:faster access to subscribera. 

2.2 Memory Required for User Context Information  

- Additional main memory - MuStbe , allcicatedfor:.user context 

information. For each active user, we can reasonably assume that 

the following details must be retained: 

a. User identification. 

b. User address (I/O  address or routing information). 
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c. Accounting  information. 

d. Current page number and page header information. 

e. Trace of previbusly accessed pages, etc. 

We can attempt some minimum estimates for the storage 

requirements as follows. The user , identification need consist of 

no more than an account number and 4 bytes would be more than 

. adequate 'for this purpose: 	(Presumably, the - .account' number 

indexes a master file of subscribers that is held on :a 

non-volatile storage medium such as a disk.) The user 'I/0 address 

could probably be packed into 4 bytes'too. Accounting information 

for an active session shàuld, at least,'inblude-the .  time of daY 

that the user -  signed.On.(requiring 6 decimal digits or 3 byteà) 

and the number of page requests that.have been made. - so far (2 

bytes, say). The current page number is about 7.bytes. The 7.;-byte 

figure is balculated according to the assumPtion'that page nuMbes 

are  comprised of up to 13 decimal digits.follOwed perhaps,a 

decimal point and three,  more digits. Page header information - 

includes cross-references to - other videotex pages where the 

Telidon hierarchical trèe structure is -violated. Perhaps space for 

up to 2 such cross-references should be allocated; but:this.figuie 

is a pure guess. Assuming 2, we hava twci more page numbers .  (of 7 

bytes each) to store. The minimum total  storage thus works. out to 

be 34 bytes per user or 34 Kbytes for:1000 active uSars. Compared 

to the resident page directories thatwe will be looking at next, 
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this is an insignificant amount of storage. 

However, the 34 byte estimate represents an absolute 

minimum. It may be expedient for a practical system to retain more 

information about the user status. Also, there is provision in 

Telidon for "action pages". These action pages correspond to 

computer programs which interact with the user. Such a program 

and its data must • be retained in memory until the user has 

finished with it (unlike a normal text or picture page that can be 

deleted once it has been sent to the user). If severél 

subscribers are using the same action page, there need be only one 

copy of the program resident in memory but each subscriber would 

need his own data space. Without any experience in this regard, lit 

is impossible to guess the popularity of action pages and to 

estimate their storage requirements.. 

2.3 The Page Directory Structure  

Another general issue forvideotèx systems concerns the 

implementation of the page directory. A user can - enter a page 

number as a decimal nilmber. HoweVer, because thé page numbers 

follow a special kind of hierarchy, the page ntimbers are quite' 

sparsely distribtited. If, as we have juSt discussed; a page.ntimber 

of. page can consist of ui)to. 16 decimal digits then the ,  space 

numbers is 10**16 in size and is immense when compared to the 

total number of pages (between 50,000 and 500,000). 	A videotex 

system will necessarily have to provide a directory that woulcUbe 
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used to translate from the page number to a memory addresa for the 

page. This directory will have to be implemented by  saine  method 

that is efficient in storage. 	The possibilities include hash 

tables [36], tree structures [36] and trie memory [16]. A hash 

table implementation appears to be'the most economical in storage 

at the expense of some unpredictability in access times to look up 

entries. 

For an - example, let us suppose that we wish to 'prOvide 

for 50,000 pages. A hash table-with  7 5,000 entrieswoUld'enable 

'us to look up an eritrY with two  probes on average. (62,500 entries 

would give an average of three Probes to the table.) Thus the 

aMount Of CPU time expended' in  table  look-up need not .-bè 

significant. The storage.ocCupied by  the  table is of far greater 

importance. We would expect that each entry in the table'wOuid 

contain (at a minimum) the  following information: 

a. The page number (16 decimal digits is equivalent tà 51 

bits). 

b. The memory residence of the page, main memory or disk.(1 

bit). 

c. The address of the page, either a. main memory or a - dlsk 

address (24 bits seems a reasonable estimate). 
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d. The size of the page in bytes (about  16 bits). 

e. Usage statistics or priority information for this page 

(about 16 bits). 

• 	This gives a total of about 108 bits  or  1. 4 bytes.. Thub, 

the size of the entire table would be approxitately 14 * 75,000 = 

1,050,000 bytes, that is, about 1 Mbyte'.. Although a' -megabyte 

memory Might be available, -:the: table would 'ocCuPy memOrithat 

could'potentially hold 1000' videotex, pages:Keeping-an extra 1000 

pages in main memory could conceiably reduce the number of pages 

read .from disk by a .  large factor. However, if -We db . .not keep - the 

—table in main Memory, it would fiave to be held'on 'diSk and evëry 

page look-up would require an extra disk: read. -• Probably,.:scime 

compromise  ,strategy 	is 	best.-  Analysis of such  compromise  

strategies is difficult because it'is xery'ciPen7énded and becàüsè 

it is dependent on> the usagé statisticS of ,the sYstem. The 

requited statistical' information ' about  the:''uSage:of''exist >ing 

videotex systems is usually not publicly available .. Therefore,we 

will look in the following at just one viable possibility for 

splitting the directory between:the  two  memory le‘iels.. 

Let us suppose that the 90-10 rule applies to page 

requests so that 90% of all page requests are made to only 10% 'of 

the pages in the system. This rule appears to be approximatèly 

true for one experimental system (which is discussed in more 

detail later (39)). We will also assume ‘that the system has 50,000 
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pages. If we set up a hash • table that contained entries for only 

the 5,000 pages that account for 90% of all requests, its size 

would be only 105 Kbytes. To handle the other 10% of requests, we 

can set up a second table which corresponds to haShing with 

external chaining. The number of entries in this second table can 

be ,  freely chosen, so let us use . N to represent the number. of 

entries. Each entry is a pointer to a liash bucket. ' Since the 

hash buckets are held on disk, the pointer is a disk address 

(requiring about 24 bits). The hash buckets on disk can be 

implemented as a linked-list of blôCkS,'where eàch::bli;ck contains 

information about some number of videotex Pages' and a pointer 

the next block. The.size of the  block would probably be.chosen tO 

suit the hardware, let us assume  512 bytes whiCh is sufficient'to 

, 
hold information on.36 pages. A. lOok-uPléan' bè 'pèrfotnied 

linear Search through the entries in a buCket:A diagram'of the 

data structure i5 .  shown in Figure 2.1, 	If  N is chosen to. be 

50,000/36, 'then the average  number of pages .per  bucket Will b 

(or one disk block). This implies that the second table will 

require 4,175 bytes. Probably, it is better to choose N to be 

larger, say double, so that we will rarely need to search through 

more than one disk block in a bucket. In fact, the entries in'a 

bucket should be sorted according to their request frequencies, 

with the most popular pages at the fronts of the lists. This  

would tend to make the probability of having to read a second disk 

block even smaller. Therefore •  we can trade a 1 Mb table in main 

memory for about 115 Kb of tables in main memory, but where 10% of 

the look-ups will reguire a disk read'(a very small proportion of 
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look,ups may require two disk reads). 	By varying the storage' 

allocated to the tables in memory,...we can change the trade-off as 

desired. A picture of the kind of trade-off that can be expected 

is shown in Figure 2.2. 

It must be stressed that the selection of which page 

entries of the directory should be held in main memory as opposed 

to on disk is theoretically independent of the selection of which 

pages (the data itself) to keep in the fast memory ,  and which 

shotild be held on disk. In practice, We would 'want to keep the 

entries for the pages that - are the most often accessed in the 

primary table and the  same consideration - applies for selecting the 

pages to be held in fast memory. However, there is...not 

necessarily any correlation between  the number of entries :in -  the 

primary table and the number of' pages that .are held . in  fast 

memory. It is not unreasonable to have directory  information  in 

the main memory about a page that normally resides on a disk. The. 

converse is also possible but probably . inefficient. (It seeàs 

unreasonable to have to access the disk, to' find an address  in' main  

membry for a page, this must surely represent an inefficient 

allocation of memory.). 
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Hash Table (with internal chaining) 
containing entries for 5,000 of the 
most frequently requested pages. 

Total size = 105 KB. 

SECONDARY 

TABLE 

• • 
> 1 disk block 1 	> 1 disk block

• 	  1 	 1 	1 
> 	...etc 

• 

	

-> 1 disk block 1 		> 1 disk block 

1 	 1 	1 	 

Hash Table (with secondary chaining) 
containing 2750 3-byte bucket pointers. 
Total size = 8250 bytes. 

Hash Table Organization for Page Directory 

Figure 2.1  
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Expected number of disk accesses for a directory 
look-up versus main memory allocation (in Kbytes). 

Figure 2.2  

2.4 Page Placement in the Hierarchy  

. 	Choosing the best distribution of pages between two kinds 

of memory is a standard problem for memory hierarchies. However, 

the characteristics of the videotex system are unlikely to be very 

similar to other systems where memory hierarchies are provided. 

The videotex system is envisaged as having a large number àf 

active users (say in excess of 1000) and each user is requesting 

pages relatively infrequently (about one every 10 seconds). 

Therefore, if we look at all the requests received over a short 

period of time (several seconds), we are unlikely to discover 

correlations between page requests. 

- For example, the fact that page 123 has just baen 

requested by one user does not increase the probability that it 

- 
wIll also - be raquested by,another liser.in-thenear future. .Also, 
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by the time that the first user has finished reading page 123'and 

now wishes to traverse the tree of pages to page 1237, say, there 

will have been hundreds of other requests received from the other 

videotex subscribers. Although there may be a strong probability 

that 	a user will request page 1237 after page 123, .this 

correlation will go almost unnoticed in a system with a thousand 

or more users and it is not worthwhile for the system to try to 

exploit such correlations. It is simpler to consider page requests 

to be independent random selections drawn from some underlying 

probability 	distribution. 	In 	this 	situation, the optimal 

implementation is to simply place the pages with the highest 

request frequencies in the fast main memory and put all other 

pages in the slower backing memory (1). We would, however, •expect 

page request frequencies to depend on the time of day and on other 

external 	factors. For example; weekend users might request 

information pages on sports scores the most whereas weekday 

afternoons may be dominated by users concerned with stock market 

closing prices. This factor suggests that the distribution 

pages between the two kinds of memory 'should be allowed to change. 

•There are various page replacement polieies that : may be suitable 

for automatically determining the distribution of pages. Some 

prime candidates are: 

LRU The least recently used pages are kept in the slower backing 

; 
• memory. One implementatiOn of this policy- keeps -  af record  of 

the time of last use for each page in the main memôry. When 

a . request is made-for a page that is not-in main-memory, the 

page is transferred to main*memory..-If Speee in_Maïn .  memory 
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must be obtained first, it Is obtained hy deleting,  one ,or, 

more pages that have not been  used  for the longest period of 

time. . 

LFU The least frequently used pages are kept the slower 

memory. The implementation requires that a count of uses be 

kept for each page in the system. When space in main memory 

must be found, pages currently in memory with the lowest 

usage counts are deleted. 

CLIMB The pages in the system are soited into a prioiity -order 

that ià continually updated. Whenever a.pagé:is uéed,. it. lis 

.advanced one position  higher in the ptiority list 

(overtaking one page). Obviously, a page  at.  the  top  of the 

list cannot .be - advanced any higher when it.is used.When- 

. 

	

	space in main memory must be obtained, the page or pages 1.1-1 

-memory that are lowest in the priority list ate deleted'. 

The LRU and LFU policies are standard paging strategies 

and are described in many references [13]. 	CLIMB is not .so 

well-known; it is described and analyzed in only a few references 

[15, 32]. LFU would be the optimal management policy if there were 
0 

no time factor present in the probability distribution function 

for page requests. When there is time dependence, LFU can be 

quite poor because an increased page request probability will Aot 

be acted upon until the usage count of that page has overtaken the 

counts 'for other pages in the system. Informally, we might Say 

that LFU is poor because it is too stable. LRU would be expected 
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to operate more satisfactorily because it responds to' changed .page 

request probabilities very .quickly. However, - LRU can be 

criticised for being too unstable. That is, an isolated request 

for an unpopular main memory for a adapt as fast'as LRU. That is, 

CLIMB is like a stable version of LRU but not as stable as LEU.  

CLIMB is named. the "transposition heuristic" in [32] because it 

can be implemented by transposing  adjacent  elements in a priority 

list of the pages. 

. However, CLIMB has a big drawback  compared tor,'LRU.' 'To 

implement LRU we need an ordered listof only the pages that_are 

currently held in the fast memory. .To'imPleMent-CLIMB, NY.e. need Sn 

ordered list of all pages in the system and this list is too long 

to be practical. Even  if the pages are numbered from 1.tti 

We would need 100Kb of storage  for the list. This aMOunt of 

storage woèld be better employed for holding'an'extra 60 to 100 

pages in memory. It should be possible to iMplèment a policy lbhat 

is a compromise in bàth storage and performance between LRU:and 

CLIMB. The ordered list should bè longer than that required fo r.  

just the pages  resident in memory bilt much shOrter than the Size-

needed to list all pages. 	Jdhen a page not on,,,the list.: is 

acceSsed, it is inserted into the list and the page that Was 

previously in the last position is deleted from -  the list. 	To 

prevent a page from being pushed out of the list too soon after it 

has been inserted in the list, we should not insert a newly 

referenced page at the very bottom of the list. 	It should be 

inserted higher up. iAlso, each time a page is referenced,,  it 



-19- 

should advance more than one position in the list ordering. 	Wg 

suggest that the number of positions to advance should be 

expressed as a fraction of the page's current position in the 

list. However, the selection of values for the free parameters in 

this policy will require some experience or some detailed 

simulation  experiments. 

2.5.  Most Cost-Effective Memory Configuration  
.. 	• 

2.5.1. Discussion of possible  configurations  - 

: 

If the computer system:has-fonly 'main memory  and,  a _single 

disk unit, the disk will . limit the . oVerall'syStem;perforMSnCe . To 

lustify- this assertion, conàider a System with 1250'nserà who,. 

. 	collectively, generate 125 page requests  per' second. The disk can 

• handle only about 25 page transfers  per second  (assuming typical' 

.disk speeds). Therefore, SO% Of-.all pagèreqUests'would have'to bé 

• àérved from  main-  memory- 	But this - would imply that the.systek 

. 

	

	requires:a rather largeamount . of main'kemory .. If the 90-10- rule 

holds for a systeM with 50,000-.pages', we woUld need to retain 

- about 5,000 pages in main memory- to satisfy'90% of - page 'requests. 

Theàe 5,000 pages would éccupy 5 to 7.5 Mbytes, .Which .  is a quite 

feasible but large amount  of main  memory by current.standards. 

Any improvement the transfer rate of pages from 

secondary. storage into main memory. would le reflected in a reduced 

requirement for' main-,-memory. . There ar e . .. two obVious ways  of  
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improving the effective transfer rate: 

attach additional disk drives to the system, or 

b) attach a semiéonductor mass storage device. Such devices 

are often provided as direct replacements  for disk "or 

drum units but use LSI, CCD or Bubble technology and aire 

therefore much faster. (We will refer to this kind 

• device as a buffer memory.) 

These 	possibilities . lead 	to 	four -general sySteM 

architectures  to be'evaluated from economié, costr-effectiVeness, 

consideratiOns. The various - configurations are diagrammed .  in 

Figure 2.3. System A•representé a ystem:Where the bàffer memory 

simply replaces the disk  drive.  System - U rep .resents à system,witii' 

replicated disk . drives (we will conSider .two."diSks" to be 

representative of systems with three  or more disks). ' System d • 

shows -both a disk and a buffer memory connected to the  main

memory. System' D"shows a memory hierarchy Where pages may only be 

transferred between the disk and thé buffer memory and betWeen'the 

buffer memory .and the main "memory.. A 'fairly- sophisticated 

controller (independent of the main CPU) is needed" to • manage the 

page transfers. 	. 

Now system D can be immediately discounted as inferior ttl 

system C (given identical disk units and buffer memories in the 

two systems). This is essentially because pages normally resident 
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on the disk must be transferred in two steps for system D, whereas 

only one step is needed for system C. Also, some slots in the 

buffer memory of system D must be reserved for pages passing 

through into main memory, whereas no such provision need be made 

in system C. In fact, there are simulation studies for 

conventional virtual memory systems that compare the two•

configurations corresponding to C and D [8, 9]. The results show 

that configuration C can be used much more effectively than D and 

achieves a large improvement in the efficiency of memory usage. " 

• , • 

We can -consider systems A and B as variations on system 

C. Let us consider a generalized  version of .0 which has à 'buffer 

store  (with .unspeCified capacity)and D disk drives -attaChed as 

drawn in Figure 2.4. Let. us consider . only -  the problem of 

determining page placement in the hierarchy. 	• 
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System 	I' Main 
A 	I Memory 

I Buffer I 
I Memory 1 

Main 
• • 

MemorY  1 	Buffer I 
I Memory I 
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System 	1 Main I 
1 Memory I 

I 	I 	. 	• 	. 	• 
System 	I Main I de_.- 1 Buffer  

D 	I Memory .1  S 	I  Memory I 

Possible Memory Hierarchies 

Figure 2.3 
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Main 

Memory 

/1• \ 
• subscriberà 

General.Memory Hierarchy 

- 	Figure 2.4 	 • 	t 

• • 

2.5.2 Cost-effectiVeness for the  general memory hierarchY. 

• 

We .consider now the general memor3i hierarchy of figure 

. 2.4, and assume  that transfer rate of the buffer mekory 

sufficient to serve all user page requestà. We also assume that 

the transmission rate to the subsèribers is faster than the 

transfer rate from the buffer meMorY. •(Additional output buffers 

are required ln the opposite casé, as discussed in section 3.3 

below): 	• 

It is first noted that no pages need be held in the main 

memory. It. is possible to fetche page from the buffet memôry 
" 
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• while another page is being transmitted to a subscriber. Thus we 

could theoretically make do with just enough main memory to hold 

two pages. (One memory slot contains the page being transmitted 

and the other slot is used to receive the page being read from the 

bufger memory.) In practice, the timing constraints imposed by 

this ideal situation may be too onerous and additional main memory 

would be appropriate. However, it is clear that no significant 

amount of main memory should be reserved for pages if buffer 

memory is cheaper (as would be the case) and provided that the CPU 

and I/0 channels have enough unused capacity. 

- The problem therefore. reduces to determining  the .most 

desirable quantity'of buffer memory and the. most desirable numbe r . 

of disk drives, where all other charactéristids.of the.s'ystem .  are  

• given. Let us define the following quant • ties:. 	• • 

n = reqùest rate for pages frok 'all lisérs (in . pages per 

second). 

N = total number of pages in the database. 

m = the number of •pages that are held in the buffer memory.' 

rd = the transfer rate of information from a disk to the main 

memory (in pages per second). 
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cd = the cost of one disk drive (in dollars). 

cp = the cost of sufficient buffer memory to hold one page 

(in dollars). 

fb(m) = the probability that a* request for a 'page can be 

satisfied from the buffer memory (rather than from one of 

the disks ) . 

NOw, the . major.requirement of the system is that it muàt 

be able to handle the processing load that is imposed upon it. 

Thus, we can write the following apPrOximate eqùation which 

relates the available *transfer rate from all disks to the page 

demands by the subscribers: 

rd * D >= [ 1 - fb(m) ] * n 	(Eqn. 1) 

This equation is inexact because disk usage actually becomes .more  

efficient as the load is increased. Thus, two disks will yieid 

less than twice the overall transfer rate of. one .disk. (The 

increase of efficiency is due to the fact that disk seeks can be 

scheduled better if there are more requests to choose between in 

the request queue.) Also, we have not considered whether the 

databaSe of pages should be totally replicated on  •each disk or 

whether each disk should hold only a portion of the databas'S.. 

(Our formula is more appropriate for the replicated database 

case.) 
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Experimental observations on lhuman behaviour and on  

computing systems have repeatedly disèovéred that ' measurements 

appear to follow Zipf's• Law [38, 31]. The pattern of usage for 

videotex pages is no exception. We have obtained data from one 

(small-scale) videotex system [39] and have found a very  close  

agreement between - the observed page reference frequencies and the 

frequencies that would be predicted by Zipf's Law. This law 
, . 

predicts that the frequency of access to the k-th most popular 

page should be proportional to 1/k. Equivelently, the cumulative 

probabilities of access to  the 'k  most frequently -accessed pages 

should bé a linear function- of log .(k). We have-graphed the 

cumulative probability function for .  the experimental Telidoù 
. 	. 

system against log(k) - in Figure 2.5. The graph is : indeed lineer 

until about 400 pages are accounted - for (representing 83% of all 

requests)... After this point, the  probability fails to incréase,aà 

rspidly as the formula .predicts.' This is ' aCtually a - COmmoh 

occurrence' for.phenomena that seem to follow Zipf's. Law.. The 

dropping away  of'  the curve from the straight line ia known às thé 

"Groos Droop" [19, 7]. The curve corresponds to .a' 88712 rule 

(i.e. 88% of requests are to only 12%-of the pages). , • 
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If storage in the Telidon system is allocated optimally,, 

we would retain only the most frequently accessed pages in a fasp 

memory. Less frequently accessed pages would be relegated to the 

slower but cheaper disk memory. Therefore, a sensible storage 

allocation policy, as discussed in section 2, implies that the 

cumulative probability function, fb(m), as defined earlier, fits 

the Zipf Law. More formally, the Bradford-Zipf distribution 

specifies the following form for the cumulative probability 

function: 

fb(m) - h log( m/u + 1 ) + fb(0) 	(Eqn. 2) 

The. parameters, h and u, represent constants. The.logarithis are• 

to base e. For the system being modelled, fb(0) ideally should be 

zero but may not be', due to an imperfect match between .  the 

equation  and  reality. (This particulai'form of the Bradford-Zig 

distribution is known as the "Yield  Formula" (20].) The values 

h and u cannot easily be Predicted for a full-scale videotex 

sySteM. Our data from the small system fits. the followidg 

› 	; equation: 

fb(m) = 0.151 log( m / 0.731 + 1 ) 	0.091 

This formula is accurate only for values of m that'do not exceed 

400. Foy larger values of m, the Grooà Droop appears and the 

equation becomes inaccurate. (Therefore, we should be suspiciolis 

of any results that we derive where larger values for m are 

exPlicitly or implicitly assumed.) The method for calculating h, m 

• and fb(0) is given in Appendix,Al. 
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We can estimate the memory cost of our system, C, in 

dollars with: 

C = D*cd + m*cp 	 (Eqn. 3) 

Note that C excludes the cost of memory needed to hold programs, 

page directories and other system data. 

• Supposing for the moment. that D need not be-an integer, 

the requirement of minimal cost would force equality to hold in 

Equation 1. Therefore, we can rewrite - the equation-as: . 

n * [ 1 - fb(m) 
D -  	 (Eqn. 4) 

• rd 

This gives D as a function of m. Substituting for D in Equation 3 

and differentiating with respect to m yields: 	. 

dC 	• 	- n * h;  * cd 
+ cp 	(Eqn. 5) 

dm • 	rd * ( m + u ) 

It is clear that the second  derivatiVe of C is  positive for all m 

(since n, h, u and rd are all positive quantities) .. Theréforei  if  

we equate the first derivative to - zero and solve for m, we obtain 

. 	a unique minimum in the cost function. This solution for m is: 

n * h * cd 
m = 	 u 	 (Eqn. 6) 

rd * cp 
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If we numeriéally determine m. from Equation -  6 and 

substitute for m in Equation 4, we will certainly find the optimal 

number of.disks, D, to be a non-integer. Therefore, we will have 

to round D up and down to the two adjacent integers and check to 

see which gives. the lower system cost. (This procedurè yieldnthé 

•true minimum cost system because  of the Concave . shàpé of the cos t 

• -function.) 

As an example,'let us consider the small eyétem for whiCh 

we have.obtainefithe page access'probability function. 	We shall,- 

• • assume the following data: 

cd = $10000 .  (a low estimate), 

$8 (approximately 0.1c. per bit), 

N .= 4000, 	. 

rd = 25 (i.e. 40msec'per disk transfer), 

n = 100. 	' 

Inserting these values into Equation 6 leads-to the 

. • result that the optimal value of M is 754. .This is in n region 

where our fitted equation is a little inaccurate. However, xge 

cannot actually use this value - of m anyway. Substituting this 
• 

value of m into Equation 4 yields D=0.17. We clearly cannot 

• purchase 17% of a disk (with 17%  of. its performance .  for 17% of the 

• 
cost) and so we consider . D=0 and D=1 .  to. find  an  achievable 

• 
minimum cost system. (We ignore here•the possibility of sharing 

part of thé disk space with other applications). The memory cost 

. 	wheh D=0 is given by Equation . 3 as 4000*8 = $32,000. To find  :the 
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cost when D=1, we must first determine frok Equation  1  that we, 

want a value of m that yields fb(m) = -0.75. FrOm Equation.2 or 

from Figure 2.5, we see that m=191 yields thé desired value of 

fb(m). Therefore the memory cost for D=1; m=191.is $11,528.. 

(Since m=191 lies within the. range of applicability for the 

.probability function, .we, can  trust  this result.) Therefore, the 

memory configuration with m=191 and D=1 optimizes  the  system cost.. 
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3. THE IMPACT OF THE TRANSMISSION NETWORK 

3.1 Introduction 

With interactive videotex, there are communications in 

two directions. Requests may be transmitted from the user to the 

central system and pages are transmitted from the central system 

to the user. The requests from the user can be transmitted over 

telephone lines or over bidirectional cable TV connections. The 

pages may be transmitted to the user over telephone lines or as 

'television signals (through the air or by using cable TV 

distribution; we assume in the following a full channel (not only 

the return interval) allocated to videotex). These two choices for 

each direction of transmission'result in four useful combinations: 

a) Telephone requests, telephone pagdtransmission, 

Telephone requests, television page transmission, 

c) Bidirectional cable TV for both requests and pages, 

d) Telephone requests, 	both 	TV 	and 	telephone 	page 

transmission. 

Since thousands (even millions) of subscribers can all 

receive the same television signals, it may be economical to  use a 

broadcast-cycle for Page transmission. There is no 'correspondÉng 
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possibility for telephone transmission of pages where, presumably, 

only one subscriber is attached to the end of each telephone line. 

3.2 Television Page Transmission 

There are three possibilities tO consider. First, a pure 

broadcast cycle approach may be used, as in Ceefax or Oracle. 

Subscribers may view only . pages that the server elects to place in 

the cycle. Secondly, a pure request approaçh may be used. Only 

pages that SubScriberà have'requested are transmitted. .Third, a 

combination of the two approaches may be used. Presumably, -  the 

.most popular pages are automatically.included in the broadcast 

cycle. HOwever, a limited number of slots in the cycle may be 

filled with pages that have been requested by subscribers. 

3.2.1 Pure Broadcast Cycle 

The performance of a videotex system that uses the pure 

. broadcast.cycle appràach depends critiCally on the size  of the  

cycle. Let us consider a system that fully uses the capacity '.of« 

. one television channel. The figures given for the transmission 

.rate of videotex information varies between 3.89 and 5.8 million 

bits per second depending on which field trial or Telidon stàndàrd 

one looks at [10]. We Will  assume an  average figure of 4 Mbs. 

'Following our earlier estimates that an average page 

contains between 1000 and ,1500 bytes 'of data and assuming that 
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about 10 bits must be transmitted per byte (to allow for error 

detection and other system overhead), we dan estimate  that  the 

. page transmission rate lies between 267 and 400 pages perSecond., 

If we follow guidelines that 90% of requests must 

responded- to within 10 seconds [23], we must limit the broadcast 

cycle length to 11.1 seconds (i.e. 10 / 90% ). This implies that 

the cycle can contain between 3000 and 4400 : pages. The videotex 

database can contain no.more pages than this figure. It falls-far 

short of the estimate given previously that at least 50,000 pages 

must be in the database. - Also, the average response'time would be 

5.5 seconds which might-be unacceptably slow:to màny uSers. - 	• 

With Such 	à Small number of pages,...:it -  would 

tedhnically feasible to.hold . them.  all  in the main,memory of 

• 
computer. 	However, as: we have .argued,previously, itwOuld be 

cheaper and pst as effective to hold almost all:these pages in 

mass memory backing store if the data transfer rate Is sufficient. 

Pages can be retrieved from the bàéking stOre just:before thSy-are 

- due to be transmitted in the broadcast cycle. -Thus the main 

-memory is Used Solely for temporary buffering of the.pages. 

The possibility of uSing  one or - more,-disks is alàà 

interesting. Because the pattern of page transmissions is totally 

determined by the cycle, the information on the • disks can• be 

formatted in . an optimal manner. We could read many consecutive' 

pages in the cycle.  by performing a sequence of . disk. reads.  to  
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consecutive tracks and adjacent cylinders. Disk seek times can  be 

 reduced to an absolute minimum and, with careful timing, latency 

delays can be reduced. -  Here is some data for a modern disk, the 

IBM 3350 disk unit 126): 

Time to seek to an adjacent cylinder = 10 msec., 

Average seek time 

Maximum seek time 

Number of tracks per cylinder 

. Maximum  capacity of each track 

Time for one full rotation  

= 25 msec. 

= 50 mséc. 	• 

.= 	30. 

.= 19065 bytes. 

= 16.7 . méeé. 

For this:disk, we could.transfer:30 - consecutivetracks of data 

the main .memory of. the computer in ' 30 	consecutive 	diSk 

revôlutions. Then there is a delay while the disk . head seeks to 

the next cylinder (10 msec). As the seek is being performed, the 

disk continues-  rotating. Therefore, after . the-seek we must Wait  

for the disk to rotate back to the beginning of the track in the 

new cylinder. Unless' the tracks have a staggered organization 

(which is hardly worth the troUble), the addieional delay is .6.7 	. 

msec. The overall data transfer rate (assuming data.on consecutive 

tracks and on consecutive cylinders) is therefore 30 tracks for 

every 31 revolutions. This works out to be 1107 KBytés/sec or 8.8 

Mbs. Thus a single disk can theoretically keep up with televid. ion 

channel transmission (and have about  50%.spare capacity). It would 

require a very carefully tuned  computer  system tà achieve this 

disk eransfer rate in practice (there must  be almoit immediate 

• 	- response tO each dlsk interrUpt), but'is not  impossible.  
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Another interesting possibility is the use of.CCD (Charge 

Coupled Device) logic for the backing memory. A.CCD memory is 

implemented as multiple shift registers, where stored 	data 

circulates around closed loops. 	This would appear to exactl.y 

match the requirements of a pure broadcast cycle.videotex system. 

There is a possibility that such a system could have simple 

hardware requirements. A general-purpose computer would not -

required 	to 	handle 	page 	transmission, 	instead 	a .  small 

. microprocessor would be adequate. Hbwever, a generaI-purpose 

computer would pràbably still le'required in order  to itpdàte-tbe 

• database of pages. The Texas - Instruments TMS -  3064 CCD memory 

device has the lollowing characteristics [5]:. 

Capacity. 	= 64K bits. 

Cycle size 	= 4K bits 

Maximum transfer rate 	= 	5 Mbs 

Maximum latency delay 	= ..820 microsecs. 

The chip is organized as 16 shift registers, T:aith each shift 

register holding 4K bits. The transfer rate matches the 

television transmission speed very closely. The biggest drawbacks 

with CCD memory are its cost and the volatile nature of the 

storage. According to current estimates [12], CCD memory costs 

about $10,000 per Mbyte (about 100 times as much as a disk). , 

3.2..2 Combined Approach 
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A combined broadcast cycle and request . apprOach has been 

simulated for the case where a cable television•broadcast medium 

is available [24]. 	The simulation covers various assumptions 

about the hardware configuration and its timings. 	Some of its 

fixed assumptions are the following: 

Fraction of requests to pages in the cycle 	= 40% 

Fraction of requests to pages not in cycle, • 

but are available from local disk(s) 	• = 55% 

• Fraction of requests to pages not in cycle, 	• . 

obtained from a non-local database 	- .= . 5% 

Transmission speed over cable television 	=lo5 Mbs. 

Transfer  rate  from non-local database' 	= 4800 bps 

Average size of a page 	 1000 bytes. 

The other'importànt assumptions, •and assumptions that were varied, 

were the following*. First,. it . .was- assumed that, each requeSt 

received by the system involved a certain amount of processing. 

This  processing might inclùde CPU actiVity and'searching page. 

directories for information about the page. Three figures for the 

amount of processing needed for each request were gimulated: 20ms, 

50ms and 100ms. *Secondly, the total number 'of. pages' in the 

, 	. 
database was assumed to be 500, 1000  'and 2000. 'These three 

possibilities for . each  ,of  two parametèrà lead to nine  simulation 

curves. 	The nine curves from the study [24] are reproduced In 

Figures 2.6, 2.7 and 2.8 (corresponding to the figurés numbered 

5.23 - 5.24 in the study). They show'hôw the expected waiting'time 

for a request to.. be snswered increaàes with thé ngmber of users on 
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the system. 

There is nothing surprising in- these curves. Their 

general shape would be predictable without any simulation 

experiments..  The most important observation is that the.system'haS 

a maximum capacity. 	If more users than this attempt to use the 

system, the expected delays in waiting for a page 	become 

intolerably .large. This maximum.number-of users can bé calculated 

analytically from the values of the system parameters (as, indeed, 

Lafitte did [24]). Similar calculations could be performed for la 

.real system after the necessary measurements had been performed. 

In order to maximize the capacity of. a combined brOadcast 

cycle - request mode system,. it is obvious tb.“ 

:repeat very popular pages . in.the Cycle. 'Thus, the selectiôn: of 

which pages are, to be regularly repeated is analOgous to. the 

problem : of sharing the pages between two kinds of Memory. The 

crucial problem is determining- the proportion - of;pages in .  the 

cycle that are regularly repeated versus the proportion of pages 

that are included in .  the cycle once  in response to a specific 

subscriber request. (Note that the size of the hroadcast cycle  4s 

constrained by a calculation similar to one given:in section 

3.21.1.) . • 

If a.page is sufficiently - popular that there would almost 

always.be-at least one user desiring to see that,  page  during a 

cycle, then the'page should be regularly - repeated.as part of the 
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cycle. However, it seems hard to be more precise . with this 

statement. 	Given the stochastic nature of the system, it cen 

never be guaranteed that there W111 ectually be a user  who wishes 

to access any particular page during a given cycle. . 

Some crude analysis of the problem can be carried out as 

follows. We define M and x as: 

M = maximum number of pages transmitted per second. 

= number of pages per second that are part of the 

cycle:and regularly repeated,(x<=M). 

The other quantities that we will be using, n and fb(x), have the 

same meanings as before in Section 2.5.2. That is, n represents 

the rate at which users make requests to access pages and fb(x) is 

the cumulative probability distribution function' for page 

• requests. Now, we are permitting only M-x pages in  •each cycle to 

be transmitted in response to special requests. Thus we have a 

basic requirement: 

[ 1 - fb(x)  1  * n <= M - 

Equality. in this  équation  would - hold if the system were . opereiting 

at maximum capacity. Rearranging the equation and ,assuming that 

.the system is fully loaded yield!: 

M - x 
n =  	 (Eqn. 7) 

1.  - fb(x) 
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Presumably our goal ià to maximize the capacity of the 

system, that is - , maximize..the•number of users it can handle. -We 

. can choose the value of x that maximizes n and so' maximizes the 

number of users. When n is a' maximum,  x satisfies. the following 

àquation: • 

d 
(M - x) * 	fb(x) ) = .1 - fb(x) 

dx 

If we use the same form for fb(x) as before (Equation 2 in Section 

2.5.2), we have the following equality: 

(M - x)  *h 
1 - fb(0) - h log(x/u+1) . 	(Eqn. 8) 

• x + u 	• 

By substituting known 'values for M, h, .0 and fb(0), We gan  

numerically solve Equation 8 for x. Any solution for x in the 

range .  0<x« necessarily corresponds to a maximum for n (and, thus 

gives the maximUm request rate that the àyàtem can handle). 

As a brièf,numerical example,.we will  use the values' of 

h, u and fb(0) that were determined for the experimental system. 

For various values of M, the capacity of the system is. maximized 

as follôws: 

M =.100, x = 20, n = 136 

M = 200, x = 49, n = 333 

M = 300, x = 87, n  =578 

 M = 400, x = 132, h = 87 
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Of course, only the constraints imposed by the broadcast 

cycle approach are being considered. Even if there is room in 

each cycle to handle a system with 877 requests per second, there 

is no guarantee that the system can retrieve pages from the disk 

at this rate. In other words, we have to also take the analysis of 

Section 2.5.2 into account. If we take the M=400 example a little 

further, we can see that the system must transmit 400-132 = 286 

pages per second in response to subscriber requests. 	If. every 

such page needed  ta  be retrieved from a disk, we would need - about 

10 disk units.on the systeM. 

There is also a feedback problem. 	How can the system 

know which are the" most popular pages (and which should be 

regularly- repeated) if requests for  these pages .are, • . not 

.transmitted to the Central site? Perhapa the system shoul'd 

occasionally drop a page from the cycle just to fi.nd out how many 

requests this generates  for  . the page from üsers? -  However, ft 

would force all users to be connected to the system.via telephone 

(Or two-..way ,cable), whereas this would previously have been 

unnecessary for users who were content.to,reference . only popular 

pages. 

3.2.3 Pure Request Approach  

When every page must be specially requested by users, 

there is considerably more processing overhead imposed on the 

system. than with the combined approach, às just discussed. .1..t 
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will therefore be very important to look up page numbers lin 

directories and to retrieve pages from backing store quite 

efficiently. The analysis given previously in Sections 2.3, 2.4 

and 2.5 is very applicable. 

In 	addition 	to efficiency problems with directory 

structures and page placement -  in- storage, there are some 

scheduling decisions that are worth considering. We contend that 

responses to requests should not be sent too quickly. Our, argument 

is as.follows. The initial assumption is that userS are jtist  as  

,likely to be,satisfied with 0.5 second response times as with .0.1 

second response times. Perhaps users will even perceive a one 

second  delay in response to be fast. (The worst response time 

that we,should consider ià 10 seconds [23].) Suppose, for  sake. of 

exaMple, that the videotex system,is aiming for a responSe . time of 

one second. Now, if a.  request for some page arrives and .  the 

system waits one second before transmitting the page, there»is 

some chance that another requeàt for the same. page will have 

arrived in the.meantime. If this does happen . , both - requests.can 

be . answered with a single page transmission. The more,  popular a 

page is, the more likely it is that requests. for it can.be 

combined'. • 

Of course, it would be ridiculous for the. system to stop 

transmitting pages at any point just because it has no pendllig 

requests that are approaching the one second target delay. 

However, when the system has a choice' between two pagesto 
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transmit next, the selection ruleg appear to be: 

1. If neither page has had an outstanding request for one 

second or more, transmit the less popular page first. 

2. If one of the pages has had an outstanding request:for 

one second or more, transmit that page next. 

3. Otherwise (both pages are overdUe for transmission), 

transmit the page that - has the greater number of requests 

(to annoy fewer subscribers). If both  pages  have  the  same 

number of requests,  transmit the less popular.pàge first. 

Our scheduling criteria are therefore,biased towards sending less 

popular pages first. This is simply because  the chance  of being 

able to pool requests for these pages are not:so good. 

When the system has a .  large qUeile - of.outstanding rèquests 

.(perhaps hundreds •of.' requests, pending . at - any- moMént), the best - 

scheduling policy is hard to pin •down. ,Thesystem would -  have to 

build a téntative.list of pages in.the:order that théy.are to be • 

transiitted and estimate the time at-which eaCh page should be 

sent. 	Thus the system will be able to plan ahead so as not to 

.leave too many pages to be transmitted over a short interVal. • 

When  there is.slack In this schedule, the system will be ableto 

apply our scheduling criteria .and so .  improve system. efficiendy. 

The more heavily loaded thesystém is, the less.freedom there.will 
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be in shuffling the schedule. 

The  precise formulation of this scheduling problem and 

its solution must remain a research problem for now. 

3.3 Telephone Transmission of Pages  

The proposed  standard for transmission of videotex pages 

over telephone lines specifies a speed of 1200 bits per second. 

At this rate, it would take about 10 seconds to send an average 

page. Perhaps the slow speed of transmission will cause pages to 

be kept small in size, and so our estimate of the average page 

size is too high. The pages of the British Ceefax system are 

smaller than our estimate. 

The transmission speed has a consequence for memory usage 

and storage organization. The user's "think time" betWeen reCei4ot 

of one page . ànd making. a request for the next •is likely to be 

' 

	

	quite small compared to page transmission tiMes. For - one:thing, 

the user  can read a page as  it is being , received. Theteforè eech .  

• user's telephone line is likely to be occupied nearly all the time 

with.pàge-transmission. 

• If.  'there are around 1000.users connected to the syseem 

then, perhaps, as many- as 800 of - them are receiving pages at  any 

moment. This  implies that the system has tomaintain output 

buffers for.800 telephone:lines. If the smallest unit -  read-  from a 
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disk and transmitted is a page, then around 800 Kbytes of .memory 

would.be devoted to telephone output buffering. 

One solution that would reduce the memory requirement is 

to split pages into smaller blocks. With the slow telephone 

transmission rate, it would be possible to fetch blocks from disk 

as they are needed for transmission. The penalty attached to 

using this approach is the greater volume of disk accesses that 

would be required. 

A better solution might be to adopt the use of Videotex 

Access Machines (VAM's) [40]. Each VAM would use relatively cheap 

hardware end could service the 

group of subscribers. A network 

ajority  of  page requestS froma 

VAMs':iinked With'  one main  

computer, to handle leis popular page.requests and to  interface  

with other computer systems, would be a relatively ecolibmicar 

solution. The design and performance analySis of à VAMHmaChina is 

provided in section  5 of this report. 

3.4 Combined Telephone and Television Transmission  

This scheme for transmitting pages does not appear 

•  have been suggested before. It is a simple idea  •that maximizes 

the capacity of the system to transmit pages . . A television 

channel  • is used to transmit just a broadcast cycle of regularly 

repeated pages. If a user wishes to see one of the pages in the 

cycle, there is no difficulty. The user's videotex adaptor will 
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capture the page from the air as usual. If  the user wishes to see 

some page that is not in the broadcast cycle, his adaptor 

transmits a request for it over the telephone line and - the pageA.s 

subsequently received over this same line. 

As discussed previously, a pure broadcast . cycle can be 

transmitted very efficiently. The cycle should. contain as many 

pages as possible. (consistent  with limits on acceptable response 

times), so  as  to minimize the.need for special'telephone requests. 

The installations providing the broadcast cycle and the 

installation responding to telephone requests could be separate 

entities. However there are benefits to having a single facility 

or to at least linking the two services. By monitoring the 

frequencies of requests for pages over the telephone, the system 

can learn which pages should be added to the broadcast cycle. 

(Knowing which pages to remove from the cycle is another problem, 

as discussed in section 3.2.2.) 

Thé only disadvantage appeàrs, to bè that the videotex 

adaptor needs to be a little  more  complicated than with any of the 

other approaches that we have considered. However, we think that 

the idea is worth further consideration. 
ft  
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4. EXTENDING THE USER INTERFACE  

4.1 Introduction 

A basic videotex system provides relatively primitive 

facilities for locating information in the àatabase. Unless the 

user has access to a directory of page numbers which he can peruse 

and so plan his sequence of inputs, the user can easily get "lost" 

while traversing the database. A logical next step in makirig 

videotex more usable is to provide some more sophisticated acceàs 

methods for the information. 

One possible approach' is to provide keyWord access to 

'pages.: For  example, a user  wishing to See a list of restatirants 

may  only  have to type the  keyworcL"RESTAURANT" . . The'iist is 

likely to be rather lông. PerhaPs  the user would  be  permitted 

type two keywords, Feuch as "GREEK RESTAURANT"; and then:he Would 
• 

be shown only the feW  pages  that give hiM aCcess to information on 

Greek Restaurants. An even more sophisticated interface might 

permit 	the ' user 	to construct simple queries. , ' similar to 

"RESTAURANT: GREEK AND (CGST<10.00)"._ This Might . retrieve 

'information on a few affordable Greek restaurant s .  for the user. 

The example of the Greek Restaurant and the associated menu tablés 

has been discusse d  more fully elsewhere. [17, 41]. 

Whatever facilities are added to assist , the :uSer.  

_finding appropriate-  • .pages In the database, they x0.11:requite 
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computing resources. All keyword schemes require some form of 

searching, some keyword schemes requiring more searching than 

others. A more powerfù1 facility such as a-simple 'query language 

may require much computation. For example, a query that asks for 

a list of all towns with ten or more' restaurants would 'probably 

require information on every restaurant in the database to he 

read. Even more powerful query languages, such as those based on 

natural language, may be envisaged but they currently belong to 

the realm of artificial intelligence. A range of different user 

- -interfaces for videotex are discussed in [41]. 

Other 'possibilities 	for extending videotex involve 

general interactive software. 	This would correspond to the 

. "action. page" concept. 	User services that require interaction 

many include message forwarding systems (as are provided 

computer systems), reservatiOn taking or seat sàleà (e.g.  for-the 

theatre), computer aided instrùction and- .game' playing, (e.g. 

Checkers or pacman). 	If more - than a few usertake.advantage . of 

such services, there Willbe a sub stantial processing load on the 

« system. 

In this section of the report, we will  look into the 

possibility of providing for keyword access to pages and for more 

 general user queries. The possibility of using special-purpobe 

hardware to assist these extensions will be considered. There has 

been much research into designing special hardware for datababe 

systems. However, the hardware solution is not necessarily very 
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applicable to videotex systems because it may not be as fast as 

would be required and is relatively expensive. 

4.2 Survey of Database Machines  

• 	The term "Database Machine" describes any computer system . 

. with special-purpose hardware to assist the processing .of  database 

operations. The operation that is most frequently automated is 

that of seatching through large volumes of data. Because of the 

large volume, the data would normally reside on a disk or drum and 

.the special-hardware would consist of processors that scan data as 

it passes beneath the read/write heads.. To make the searching  as 

fast as possible, each track has its own read/write head and its 

own processor. These kinds of storage devices are frequently , 

called "logic-pet-track" devices. . 

An early logic-per-track-device was à modified- version of 

a disk built by .Burroughs Corp. [30].-It was a disk with 1000 

,information tracks, each track having its own read/write' head. 

Tracks were subdivided into quadrants that held information. The 

information was tagged as being "keyword", "associated . data" or 

"unused". When the computer issued a search. request, the 

processors associated with each read/write head would' check the 

data in every track simultaneously for a match against a specified 

keywôtd. • When a keyword is successfully matched, the-associated 

data is read by the read head and, transmitted' to the computet - . 

(This is known as "associative search"..) 
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More recent developments of logic-per-track devices are 

similar to the Burroughs device. The main improvements have been 

in the search processors, which are now capable of handling 

complicated conjunctions of search conditions. One of the simpler 

schemes is used in CASSS [21] and involves multiple searches 

through the data and tag accumulators that are associated with 

every data record on the disk. For example, if CASSS is to search 

for records containing both the keywords "GREEK" and "RESTAURANT", 

it proceeds by first searching for matches against "GREEK". , In 

each record that matches, the associated tag accumulator,is 

incremented (from zero to one) and rewritten to the disk. 

SubSequently, the . same process repeated for the .keyWord 

"RESTAURANT". Ieinally,'the proceSscirs ere> •  instructed to search 

for, and output-any record whose.tag accumulator:contains a Value 

of two or more. Thus the disk.wOuld need to rotate at least three 

times to output the desired list Of. Greek restaurants. Mbre 

rotations  than three are needed if two . procesàots try tO . output a 

record simultaneously (one of them'ill2be forced to Wait for:, a 

Subsecfuent disk revolutioe. 

• 	
The RAP device [2 8] is. more powerful than CASSS:because 

there-•are k Boolean comparatOrs associated with each head: 	is 

determined because' only prototypes Of. RAP have been built.) 

As eachAata record passes underneath -the read/write head', it can 

be checked 'for conformity> with 	terms . of a general,Boorean 

function that describes the deeired .records; 	If the SelectIon 

function contains .  k or fewer terms, matched  records  can be output 
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immediately. If the'function has more than k terms, records  that 

 satisfy the first k terms are rewritten with some'mark-bits set. 

.0n the next disk revolution, the Boolean comparators can check for 

the next k terms of the selection function, and so on. 1 

There are many other database machine designs that 

support searching. These include LEECH [27], CASSM [37], CAPS 

[2],  RARES [25], DBC [3], RAPID [29] and STARAN [34], 

- 	Searching is. not the only, - operation appropriate fora  

database 'system. 	Other operations suitable'for the relational 

database model include projection, join, union,:intersection and 

difference. However,.according to one reference,[351, it is search 

and join that are the most interesting for hardware enhanceMent. 

The.join operation is more difficult ,to implement than a searCh 

. (or selection) operation and not all designs for database machines 

support- the join operation. Some' machines  that do provide it 

, include CASSM, RAP, LEECH and CAPS.  HoweVer, the time required to 

coMplete the operation is very data- dependent. It is typically 

proportional to the number of tuples in one of the relations 

participating in the join operation. Thus, machines such as RAP 

and  CAPS  will usually require many disk revblutions.to complete 

the processing. 

Another operation which is useful but not required for 

relational . ,-database system is sorting. .4 few machine designs do 

provide for fast sorting . of tuples'(i.e.  records) in relations. 
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These are RARES [25], the Chen Machine [11] and the Intelligent 

Memory [14]. Sorting is nice for preparing output to pass on to a 

user. Also, sorting hardware may be driven by software in order 

to achieve the effect of a join operation (as is done in RARES)'. 

Special hardware has been provided or proposed for text 

retrieval applications. In a bibliographic system, the user is 

usually permitted to search through the keywords associated with 

the papers in the database or to search through the abstracts lof 

• 
the papers. 	The user might search for all papers where a 

particular combination of words appears. A full text system would 

permit users to search through the actual texts of the documents. 

. 	. 
The hardware used to,implement text retrieval ié not very . 	. 

'different to that used for searching in database systems. :The 

major differences only arise in the keyword matching - process. Mie 

. 	. 
specialized processors attached to read/write heads scan  texte  as

it passes underneath. RoWever, finite, state machine.logic may,  :; be 

used to perform pattern matching .  on the text. • One 'simple form of 

pattern matching-makes  provision for "don't care" characters.. ...For 

example, if a "don't care" is . indicated.by  "?". then the -  pattern 

"BE?T" would match any 'of "BEAT", "BEST", etc. in the text. A 
. 	. 

more-general possibility is to provide ."variable ,  length dOn't 

care" characters.' If "*" denotes such a VLDC then the pattern 

"BE*T" -would match "BET", "BEAST", "BETTERMENT" ›  etc. By careful 

use of "don't care" - characters, some controlled imprecision can be 

added to à search. This can enable the user to.circUmvent .  preblems 
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cauSed by many variants of a word being used in documents. iA 

topiCal example would be  the  group of wcirds: ."computer", 

"cotputing" and "computation". 

Although there are: many proposals for'text retrieval 

hardware, there appear to be few 'actual implementations.. One 

implementation is the Associative File Processor [6].. 

4e3 Simple Keyword A.ccess  

The simplest approach tcr keywOrd -look-up woUld' use 

prècoordinated keyword access. With this approach, the system. 

implementors (or the information Providers)  must initially'extract 

keywords from documents and form them into table structures. 

Since this is done in advance of any user input, thé term 

"precoordinate" is used (to suggest prior coordination of the 

keywords with tile documents). When the user specifies a keyword, 

the  system will only  look for it in one or more of the previously 

constructed tables'. 	Thus the users are constrained by the 

contents and the organization of these tables. It takes very 

careful design by the system implementors to make the keyword 

tables useful and easy to use by subscribers. 

A simple precoordinate 	keyword 	scheme has been 

implemented in the experimental "Montreal Keyword System" [17] at  

the Universite de MOntreale Keyword tables are associated with 

some of the more important and strategically placed pages in the 
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database.. As an example, suppose that a user is currently viewing 

page 12345.67 in the database when he inputs a keyword. The system 

will search the table  associated with page 12345, if there is one. 

If there is no table, the system will check the ancestor page in 

the hierarchy, page 1234, and search its table, if there is one, 

etc. That is, the closest table along the path back . to  the root 

of the page hierarchy is searched. If the table contains the 

specified keyword, the aseociated information will refer to a menu 

. page for the appropriate subject and the system will display this 

automatically. If the keyWord is not found, the table can specify 

up to 10 other keyword tables to be searched nekt. 

Because the tables :in , the -Mont*éal-Keyword System are 

associated with particular pages, the tables  can take account of 

context .. For example,  the  tables can be set up SO that specifying 

the keyword "GREEK" While looking.:at- any .page .,çonceriled with 

restaurants 	will 	bring 	the user information on Greek 

restaurants. HoweVer, specifying "GREEK" while *looking at a page 

on the subject of travel.. may bring . .the  user  th  information on 

travel agents who provide vacations to Greece. 

As described above, the keyword look-up is carried out as 

the following logical steps: 

L. Find the nearest page in the hierarchy .(along the path to 

the root) that has an associated keyword table. 
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2. Locate this keyword table in memory or, if necessary, 

fetch it from disk. 

3. Search the table for the desired keyword: If it is 

found, we are finished. 

4. If the keyword was not found, we look up the location 

the next keyword table to try and proceed as for step 2. 

Some hardware assistance with steps 2 and 3 is possible. Some of 

the logic-per-track devices discussed earlier would permit the 

look-ups to be performed without actually having to read tables 

into main memory.  first. However, there would be little speed 

advantage to this. The speed of the search is mostly limited by 

the rotation rate of the disk. If the tables aie short, veiy 

little CPU time is consumed. 

Economies of scale are possible if all the stall keyWo'rd 

tables are combined into a single" large table.. We. may still 

logically view the data structure as representing many small 

tables. There need not be a close correspondance between a 

logical view of data and its physical realization. We propose 

revising the steps needed to look-up a keyword as follows: 

1. As before, determine the page p that has an associated 

(logical) keyword table. 
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2. Search 	the 	combined 	table> for 	the • combination 

<p,keyword>. 

3. If found ., the associated information is retrieved and ïwe 

are done. Otherwise, we determine'the-next page p whose 

associated (logical) table is to be searched and go back 

to step 2. 

To implement step 1,_there'need only be a single bit in 

the entry for each page in the 'page directory. -The bit- -Çgépüld 

simply indicate whether the Corresponding page has an associated 

(logical) table. For example,.if the user is currently viewing 

page 12345, the  system would check the bit  for page 12345, thén 

for 1234, then for 123, etc. until a page with the bit set is 

 foànd. 

• 	 To implement step 2, a wide choice of data Structures for 

the table are possible. 	We could certainiy"use a hash table. 

That is, a hash function is càmputed frém the <p,keyword> 

combination and used to index the hash table. If the hash talae 

is not heavilY loaded, the desired entry will be found almost 

immediately.  • 

Step 3 .can be implemented by putting some extra entries 

into the càmbined table. If the look-up with <p,keyword> fails . 

then we could perform a look-,up with a special combination siich•as 

<p,"???"> 	which 	retrieVes 	the number(s). of page(s) 'Whose 
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associated table(s) are to be searched next. 

Now a single combined table is .certain to-be very large. 

We can get around this by implementing the table in two lévels as 

was suggested for the page directory in Section .2.3 of this 

report. Thus some of thé most frequently used <p,keyword> 

combinations could be kept in main memory and the remainder are 

kept on disk. Alternatively, the whole table could be held on disk 

and if it is not compressed intO too small a Volume, almost all 

keyword look-ups would require jiist - a single disk read. . 

Again, there is little need for special purpose hardware 

to speed up the -look-up. The-only advantage Of logic-per-track 

deviceS is that they have read/write heads for each track. Thé 

processing capability .  associated with.,eaçh head would. belargély 

wasted. We can Obtain ,the same search rate by . using a (cheaper) 

fixedLhead disk or drum device, which also haa one.head per traCk. 

4.4 Postcoordinate Keyword Access  

• • 	Most  bibliographic retrieval systems use postcoordinate 

keyword access. Their mode of operation is not difficult to 

• describe.. Initially, every document in the bibliographic databaàe 

• •  is provided with, a list of keywords. (Some systems would require 

abstracts to be supplied for every document.) . The keyword lists 

are normally provided by the authors of the documents. If a user 

• wishes to retrieve documénts relating, to Greek Restaurants, say, 
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he would specify the keywords that he thinks would define the kigd 

of document he wants. 	For example, he might simply 	type 

'RESTAURANT GREEK'. The system then searches through all tlie 

. keyword lists to find one or more • documents  where both _keywords 

appear in the associated keyword list. 	 . 

It is possible that the author of the dodument did not. 

provide a good selection of keywords or that he used some 

synonyms. For example, an author might have usee:the keyword 

"CAFETERIA" and  our user's search would nôt:lôcate this  document.. 

Some - systems permit the.user to specify choices . (diSjunritions)  and 

 this mechanism 'could be usèd by a susPicious-user.to wid -eh hig 

search.: He mayi . -for example,,entér his keyWod liàt .  as 

"(RESTAURANT or CAFETERIA) (GREEK . or GREECK)". This possible lack 

of appropriate keywords (or keyWords that.the user  would expect) 

is, 'perhaps, the biggest problem for postèoordinate keywoftd 

syStéms. 

The idea of postcoordinate keyword searches is easily 

adapted to videotex systems. Every information provider would, 

presumably, be required to supply keyword lists for his  mot 

important pages. Such pages would be "gateways" into particular 

subjects and would usually be menu pages. These keyword lists ai. e 

held on-line in the videotex system. When a user specifies solhe 

keywords, the lists are searched. Very often, there is more than 

one page in the system whose associated keyword list matches the 

action seems search criteria. In this situation, an appropriate 
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to be to display the matched page that is highest in the page 

hierarchy (and consequently has the shortest page number). 	From 

this page, the user should be able to use normal menu selection to 

find the specific information page that he desires. 

We will explain why • the highest page out of many that 

match the search criteria is the most appropriate to display. 

Suppose that the hierarchy of pages on the subject of restaurants 

is structured as below: 

RESTAURANTS 

GREEK . TURKISH 	FRENCH «ea etc. 

MONTREAL TORONTO VANCOUVER 	etc. 

That is,.the menu page on the subject of restaurants display& the 

choice of cuisine. After a User has selected which cuisine 

(Greek, Turkish, etc.) he wants, he is next shown a menu page that 

displays a choice of locations (Montreal, Toronto, etc.). • After 

he has specified the -location, he may then be able to access 

particular restaurants.. 

Now, one of the lower level pages would likely have all 

• three of: the keywords ,"GREEK",. "RESTAURANT" and "MONTREAL". The 

menu page at the level above (where  the user  is asked • to ,select 
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location) would just have the keywords "GREEK1 and  "RESTAURANT'.  

Therefore, if the user requests a search on the kèywords "GRE,Ek 

RESTAURANT", one Menu pag e .  at the second level and many .pages et 

the third level of this sub-tree in the hierarchy would match. 

Clearly, it is the highest page in the hierarchy that is the most 

appropriate (in the absence of any information that specifies the 

desired location). 

On the other hand, if the uaer were tà SpecifY.the 

keyword cembination "RESTAURANT MONTREAL", thete Would  be  :many 

pages at the same level« in the hierarchy that. match. That is, the 

search should find pages on Greek restaurants, French restaurants, 

TurkiWn restaurants, eté., all in Montreal.. Possibly  the user  

should .  be  shown the,lowest common ancestor of-all ,these pageà in 

the hierarchy .(the initial  menu page  for.. 1RESTAURANT") . .  The user 

• would probably prefer to be shown the first  of 'the  pages«.thet 

•match and be permitted•to• step thtough . all  of' theSe matching 

pages. 	However, this capability would either requite searehes)to 

berepeated or It wOuld -require a - (possibly) .  large àMonnt of extrà 
, 

context information to be retained (the list of page numbers). 

A postcoordinate keyword system is relatively easy for 

the user to .understand and quite 'flexible. Users are ',lot 

constrained to . predefined access paths information, as with 

menu selection or with precoordinate keyword systems. However, 

the flexibility comes at a price. Let us.firet estiMate  the  amàunt 

of storage occupied by the keyWord. liSts and then  estimate .  the 
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search times, 

a minimal size system of 50,000 pages, - there might 1:te 

about 10,000 menu pages (assuming an average branching . degree of 5 

at each level). .Pérhaps not all menu pages would have associated 

keywords, so we will use a conservative estimate of 5,000 keyword 

lists. An average of five keywords per list is another 

conservative estimate. We wil l .  guess thàt  the. average keyWôrd 

contains - 8 characters (keywords tend to be longer words  than  an 

average word in English prose). - These numbers multiply . to  give a 

lower bound of 200,000 characters. In addition, there would .be 

- extra storage needed to delimit the keywords and the correspànding 

page numbers must be stored. Èresumably, total storage 

requirements that reach a few megabytes .„and are not unreasonable 

for keyword lists of larger videotex systems. 

• 	According 	to 	one - - solirCé- 	[ 33],. , ' an 	ikplèmented .  

bibliographic seatch system that runs on an IBW-370/1 :58 .computer • 

searChes through text at a rate  of 100,000  characters per second.- 

 Even with our minimal estimate of a. 200,000 character list, ,  a 

simple keyword search would take 2  seconds.  If the keyword list 

Can be held .  entirely in main memory ,and if efficient search 

.algorithms programmed in assembly. language are used, faster search 

rates are possible. In one experiment on an Amdahl V7 computer 

122], search rates - between 2 and 9 million characters' per second 

were observed. (The range reflects dependance on the length of the 

speed over  the  previàus 'keyword.) Much of. the iMprovement 
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measurement is due to the fact that an Amdahl V7 is about six 

times as fast as an IBM-370/158. At a search rate of 5 million 

characters per second, it would take 0.04 seconds of concentrated 

CPU activity to search the small list. 

-These search speeds are much too slow for a system like 

videotex where hundreds of . users will be active at any time. If 

postcoordinate keyword search  services are to be provided tci the 

majority of users, it is.clear that some hardware assistance :is 

essential. We  should now Consider how fast database  machines, as  

described earlier in Section 4.2, can perform keyword searches. 

If.a . modified disk, a logic-per-track device, is .used 

then all the devices described in the literature require et least 

.one disk revolution per. - search.  Most  devices: requiré one 

revolution per keyword if a çonjunction Of keyword's-is Specified. 

The RAP system isaft  exception becausè it Would be..able tà handle 

k keywords.in  one  revolution.. Now most disks-reYolve'60f:tiMes per 

second'. Thus, the- logic7per-track devices rePorted in the 

 literature could handle fewer than'60 keyword  look-ups  per second. 

 Possibly, this search rate can be improved if thé keyword  lits  

are replicated on the disk . . - For example, if the keyword lists 

occupy less than 50% of the disk.capacity, the disk surfaces co4ld 

be .divided into two semicircles, each containing .  ail 	the 

information. In this case, each search would require only half of 

a revolution. 
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For  faster search rates, it seemé necessary to use SoliA 

state memory devices, such as CCD or Bubble memory. In fact, A 

prototype of the RAP machine [28] has been built with CCD.memory. 

These memory devices are normally too expensive for use in large 

database systems. However, if our estimates are Correct, leap 

than à megabyte of storage would .be. needed to support keyword 

access in a moderate size videotex system. With this quantitY, 

the cost is no longer an issue (about $10,000 for one megabyte of 

CCD memory). 2 • 

With such memoty .devices, the time teqùired to'locate, 

retrieve and search , one 32 Kbyte segment of .kelaoty shoulcU bé 

between' .  200 and 500 microseconds [4].: The time dependà  on the 

particular memoty configuration in use and" on how coMplex- the 

search is. At this rate, :the system could perform betWeen 250 . and 

600 searches per second through 256 Rbytes:of kèyword:infCtmation. . 

Without any prior experience, it is difficult.to - gueSs 

how frequently users will request keyword Aearches.. Presumably, 

users will tend to rely on a keyword searchônly to - get to)a 

suitable starting page in the hierarchy. From that Point on, 

normal menu selection and sequencing through pages should be 

:sufficient. • If we .envisage a system with 1000 *users who 

collectively access pages. at a rate of 100 per second then a 

search request rate of. around  20. per second  should be reasonable. 

This would probably be too much'.for the standard logic-per-traék 

devices used in database machines (at best, it would be marginal ) . 
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However, corresponding devices that use CCD or Bubble memory 

should be quite fast enough. 
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5. VIDEOTEX ACCESS MACHINES  

5.1 Introduction 

Any videotex system çonsidered so far has been physically 

impleMented as a single CPU and data base serving a population of 

. users. Like . any on-line computer system, such a configuration has 

a Practical maximum number of simultaneous users, beyOnd which the 

response time becomes intolerably long. The most obvious way of 

serving à largerpopulation'of users is to ,duplicate the entire 

system as many times as necessary, which leads to update problems 

and offers  nô  economies of scale, since the cost per user remains 

the same. A better solution is to have-users connected-to,a 

,number of satellite machines which in .turn are connected t(i 

central *machine containing the data base .; The satellites; or 

Videotex Access Machines (VAM's) would contain temporary storage 

for the most frequently accessed pages using the Memory hierarchy 

idéaS of section 2. In this case however, the memory hièrarchy 

exists.. between the VAN and the central machine with the - small. 

subset of most frequently accessed pages stored in the VAN. For 

example, consider once again . a videotex data base whose pattern of 

accesses follows  the 90-10  rule. The VAN  c.ould therefore satisfy 

90% of all requests made to it by storing the most frequently 

accessed 10% of the data base. The remaining lp% of requests  are  

passed on to the central machine, and the pages when received ate 

. used to keep the most popular .page list up to date using one of 

the page replacement policies described in section 2.4. 
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Considering the user population as a whole,•the cost  per: l 

user for the VAN  configuration can be shown to be lower than  for  

the replicated system.configuration. For simplicity, assume that 

the MI and central  system are identical except that the VAN  disc 

storage- is only 10% as large. USing again' the .90-10 ,rule,  the;  

Central system in the" VAN configuration can.then.support 10 VAM'a 

since each one .passes on 10% of the requests it receives 

Therefore eleven systems are used to increase the user population 

tenfold. This is however less expensive than using.ten copies of 

the :central system because the-smaller disc..storage On'the - VAM'is 

considerably cheaper. • • 

In additiOn many of the advantages of 'idistributed 

computing apply' to the VAN configuration. 	The VAM's can bè 

. 	. 
located physically close.to the users, saving communication costs; 

and the single connection to the pbssibly distantcentral .  machiné 

' 	• 
is effectively shared Sy alruiers of the'VAM :  The VAN  

direct user interfacing and 'buffer 	handling ..a.à 	well 	as 

housekeeping tasks such as logon, user identification and usage 

statistics, so that the central 'machine need 	only 	accept 

pre-processed page requests and return the pages demanded. Such a 

distribution of functions over two -machines allows -each to be 

optimized for its specific task, resulting in greated overali 

efficiency. 

Extended videotex features can also be -naturally handled 

by  the VAN  configuration. Teleaoftware and action pages could be 
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executed on the VAM where extra CPU power can be provided as 

needed. Keyword searches could be partially implemented on the 

VAM using the same policy as used for temporary page storage, that 

is the most popular keyword indices would be stored in the VAM so 

that only a small portion of keyword lookups or searches would be 

done on the central machine. The configuration also allows more 

general networking since a VAM can access several central machines 

as easily as one. This provides users with a gateway function 

where access to remote data bases is provided as naturally as 

access to the central machine. - 

* The design and. implementatiOn Of a Videotex .  AcceSS 

Machine is a ctirrent research • topic at *the'Universit6 de Mcintr6ai. 

It is to be implemented as a multi-Micro-CPU system with a single 

disc and programmed in a  programming language. The 

disc implements , the: ,  local'storage-of most popular page:I,  and as 

many UPUs are Provided al needed.to . handle the user  'procesainà. 

Modern concurrent.languages such as' COncurrent Pascal.ôr  Modula 2 

are - designed to allow efficient multi-programming . on a "bare" 

machine, that is without the use of a general purpose operatilig 

system and the overhead it requires. In this way the machine 

dedicated precisely to the task represented by the concurrent 

program. In the remainder of this section we will describe hOw 

such a system might function and provide an analytic model of the 

system capacity for a given hardware configuration. 
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5.2 System Configuration  

The VAN  machine is physically implemented as - a .single 

disc drive and enough CPU's to handle user processing and I/O. If • 

more than one CPU is used then the system components are linked 

. together using' a shared high speed communication link. The 

• components in thiS case  are  complete micro-computer systems 

consisting of a CPU, memory and usually - sôme sort of I/O  facility. 

The concurrent program implementing" the VAN  sYstem aSs. whole 

Consists'of several concurrent processes that communicate amoung 

themselves and, in a given implementation these processes'are 

distributed over the CPU's. There is no conCeptuar différenèe 

between inter-process COmmunicatiOn taking place-ôn -  âne CPU or 

between two CPU's so the structure of, the overall: concurrent 

program is independent of the physical realizatiOn on one or  more . 

CPU's. It is practical considerations that 	determine 	the 

distribution of proceSses over the CPU's ;  for inStancé the 

prOceSsing and I/O  capacity Of à Single CPU  and the  SPèee . lienalty 

of cOmmunicating between twO - CPU'.'s. 

Since as many CPU's are used as needed, the throughput of 

the system is limited by the average service time of the disc. If 

the requests to the disc are treated in the order received, this 

time is dominated by the average seek time of the disc. However 

disc scheduling algorithms, which take into account the current 

head position of the disc, allow a reduced average service time at 

the cost of a greater variance since requests are not treated 
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the order in which they are received. According to Teorey [43] the 

SCAN algorithm, where the head shuttles back and forth servicing 

requests waiting along the way, is the best method for low ,to 

moderate disc loading. We will assume in our model that all VAM 

disc accesses are made using this method. • 

Although the VAM stores only the Most popular pages ,in 

the system, the memory hierarchy ideas of section 2 apply as Well 

to the VAN  taken by itself. Of the pages stored on the VAM, the 

most popular of these in turn can . be  stored-ta. memory to reduce 

the load on the disc. However the direCtory .  storage cannot be  

handled exactly as considered before because the  set of pages on

the VAM is continually being updated. When a new page is  'stored 

In the VAM, an old one must  be. deleted. If the corresponding 

directory entries were stored . on disc, this would require two 

extra disc writes to bring them up to date. Conàidering.alSoltat 

the set of pages on the VAM is already fairly small, wé  propose  

storing the entire'VAM page directory in memory.. . 

Estimating the number of CPU's required for a given 

configuration is difficult because the CPU processing required , is 

low while the I/O  throughput required is relatively high. For 

example, if each user request needed 5 ms of CPU time (1000 

instructions on a slow machine) then 200 users each generating one 

request every 10 seconds on the average would present only a 10% 

load on the CPU. On the other hand, assuming an average page size 

of. 1000 bytes, the same population of uiers would present' an I/O  
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load of two times 20 Kbytes per second, assuming the CPU must 

receive the data from somewhere (disc or another CPU) and send it 

to the user terminals. While this is well within the overall DMA • 

range of even a slow machine, it is still not necessarily true 

that a given CPU could support that many users, given such 

practical constraints as the number, of I/0 boards that can,be 

plugged in or how many devices can contend for DMA. In addition, 

extended features such as telesoftware and keyword searches 

require CPU processing. However it is difficult to estimate how 

much they require until usage statistics on,„these features become 

available. It is for these reasons that the VAM is conceived as- a 

multi-CPU system with the flexibility of adding processors to the 

- system as needed. 	• 

Figure 5 ..2 gives a possible Configuration where the 1.1fier 

terminalS are  divided between - twO -  CPU's  and a third . CPU is usedli to 

manage -  the local storage and intèrfaCe with  the central Systeiné. 

In -this instance additional  user interface . CPU's . may ,- be addéd 

•without changing the basic structure.. 

5.3 System Modelling.  

The VAM system model is based on three input parameters. 

Firstly, the capacity of the disc determines what proportion (:)f 

requests can be satisfied locally without accessing the central 

system. The larger the disc, the greater this proportion and 'so 

greater is the number of VAM's the central sYstem can  support. 
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• Secondly, the size of page 'storage in memory determines what 

proportion of requests serviced by the - VAM can avoid acceSsing the 

disc. Increasing the size of this storage reduces disc'accésses 

and therefore increases the potential number of 'on-line users.. 

Finally, the disc characteristics.determine the practical limiton 

the rate of accesses to the disc which along with the prevIous 

point determines the number of users.that the system can handle. 

We use queuing system analysis to model the performance of the 

system for various user loads.' To determine the relationship 

. between the size of local  storage  and  the proportion of reqUeSts 

that it can satisfy, we use the Yield formula, introduced Un 

section 2.5.2. 

Taking the VAM and centrai 'system as a Whole,.the 

response time for various user request rates can be modelled by 

:queuing system analysis. The usual measures are average resPénàe 

• time and 90% time,' the time  in  whiéh 90%  of  all requests are 

satisfied. 	Putting a given limit on the response time imposes 

through the model a limit on the user request rate.  • In the VAM 

system, the response' time distribution is a weighted'sum of twd 

disjoint cases: the response time of the VAM for pages it stores 

locally and that of the central system for requests it receives 

from the VAM. 

The response time of the VAM for locally stored pages .is 

the more important of the two since we expect most page requests 

to be satisfied locally. We will model this as just the disc 
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response time since the CPU processing'time is insignificant in 

comparison. Although a queuing model analysis of a disc - using the 

SCAN algorithm is very-complicated, Teorey [43] proidès depen . form 
• 

equations-that can be used to numerically determine the mean and 

variance of the response time as a function of the request rate, 

given the characteristics of the disc drive in question. 

For requests made to the central system, we will model 

the response time as the sum of the central disc response time and 

the communication time between the two systems, again ignoring the 

CPU processing time. Since we are just concerned here with the 

configuration of the VAM and since this class of requests 

represents only a small proportion of the total we will simply 

estimate a value for the central system disc response time. The 

communication time will be twice the transmission delay between 

the two systems, for sending the request and receiving the page 

	

Letting 	El"; be the average reèponàe•time of'the•VAM for 

local requests , n the average response .time of the central • 

- system and 	pv 	the proportion  of requests serviced by the VAM, 

then the average combined response time is . : 

(Eqn. 9) 

Ifwe specify an acceptable response -time_ for the system,  the  

value of tv can be found given pv . and . an estimateof - tc.• The 

.queuing model then givesthe corresponding disc accese rate •from 

Which -the maximum number Of on-line Users can be determined. 

tr = pv-tv. 	+ 	- pv).tc 
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In order to calculate the 90% time we use Allen's 

extension to Martin's estimate which states that the 90% time is 

equal to the mean plus 1:3 times the standard deviation [44]. For 

this we need the variance of the combined response time which is: 

var(tr) = pv.Var(tv) + (1 - pv).Var(tc) 

+ pv.(1 - pv).(tv - re)a 	(Eqn. 10) 

In order to determine how much -  local page store sh6uld 

be allocated on the VAM, we need to know the frequency 

distribution of page accesses. For a small  set of  .test,-.data, this 

was modelled quit e .  well using the Yield formula,.at 'least up-to 

about the  •85th percentile  of  :accesses 

However, no data was available to the authors for a more realistic 

siied data base of say 50,000 : pages. Therefore we 'present in 

Appendix A2 a meèhod of extrapolating the formula alreadydbtaj:ned 

to apply to a larger sized data base. 

Here we repeat the new Yield formula derived for a data 

base of 50,000 pages: 

, 

fb2(m) = 0.114 log( m/0.731  +1  ) - 0.069 	(Eqn. 11) 

Note that  as. in the -case of the original formula, if we set fb2(m) 

to 0.85 or greater and solve for m ,,we get values that - aretoo 

small because of the non-linearity of  the data in this range. 

This new formula corresponds  however to a 92-8 rule, so we will 

revise this downward to. the more conservative, 90-10 used in 

previous . examples. Obvlously more-work is needed to fit, a formula 
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to the non-linear part of the curve in order to determine such 

values with some confidence. 

Letting pv be the proportion of requests to be serviced 

locally by the VAM then the Yield formula gives the amount of disc 

storage necessary. Similarly, letting pm be the proportion of 

requests to be serviced directly from VAM memory, avoiding disc 

accesses, we can calculate the amount of page storage necessary. 

Given the  bove proportions, we can calculate the average 

number of disc accesses per user request. This gives Us the 

maximum user request rate given the maximum disc access 'rate 

determined from queuing analysis. The maximum:number of on-line 

users can then be found from the average rate at,Which each  'User 

makes requests to the system. Each user request generates 

pm)' page reads on the average becaUse Pm - O'f''the reads  go  

memory and 	7 pv) go to the Central systeM. in addition it 

generates (1 - pv) disc writes becausu pages from thé centrel 

 system are kept on the VAM disc to keep - its  pages  list up tO'date. 

The total number of disc:accesses on the average is then: 

pd = (pv - pm) + (1 - pv) = 1 - pm 	'(Eln. 12) 

This turns out to be independent of pv, decreàsing as' 

increases. 

(pv 

5.4 A System Example  
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In modelling a hypothetical VAM system, we will use the 

following parameters: 

Data base size 	= 50,000 pages 

Average page size 	= 1,000 bytes 

Average user request rate 	= 1 page per 10 seconds 

per user 

Average system response time = 	= 1 second 

90% response time 	= 2 seconds 

We specify the proportion oe requests to be serviced by 

the-NAM and the smaller - proportion to be serviced from VAM 111Mory 

. Q.9 

pm = 0.4 

As mentioned earlier, increasing 	pv . increases the 

number of VAM's that can be connected to the central system but 

costs VAM disc storage and directory space, while increasing 

increases the number of users that can be connected to the VAM but 

costs VAM memory space. If the costs of all system components 

were known, including the central system and the communication 

links, it should be possible to minimize the cost per user as a 

• function of pv and pm . However we simply specify what seem to 

• be reasonable values, since we are concerning ourselves here with 

the VAM system alone. 

Pm 
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Given the value of pv we can use the 90-10 tuIeto 

predict that the VAM disc must have a capacity of 5,000 pages or 5 

Mbytes. This is in the range of Winchester type discs dow 

available, which also have the virtue of being compact and fairly 

inexpensive. Using the estimate in section 2.3 of 14 bytes per 

directory entry then we also need 70 Kbytes. memory for 

directory space. To find the memory. space needed for 'pages .  we 

.solve fb2(m) .= pm (Equation 11) which gives a value of. m = 44.- 

Therefore the 44 most popular pages in the data base will satiàfy 

40%.of all aCcesses. This reqUires a - memory space Of 44 Kbytes.': 

To 	model the disC. responSe- time' we will  use the  

characteriètics of the IBM 2314 : type' disc becauSe Teorey:' . (43] 

provides complete data on it and because its average access time 

of 72 ms is within the range of current Winchester type discs. A 

more detailed analysis based on a particular disc would use the 

explicit formulas Teorey provides. ' 

Using a central system response time of 1 second andi a 

data transmission delay of 1/4 second we have n = 1.5 second. 

Using the values of tr and •pv given we can solve Equation 9'to 

yield tv = .94 second, the required average response time of the 

VAN  disc. From Teorey's Figure .8 this gives a disc access rate.'of . 

27 requests per second. His formulas give also var(tv) = .602  V.  

Estimating the variance of the central system to be 1 second 

(exponential case), Equation 10 gives var(tr) = .607. The 90% 

time is then tr + 1.3 s.d.(tr)  =1.95 seconds, which is within 
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the required range. 

Equation 12 gives pd = 0.6 disc accesses on the average 

per user request. Therefore the system will support 27/0.6 = 45 

user requests per second. Using the user request rate given of 

one per 10 seconds, then the system can support 450 on-line users. 

With the estimate in section 2.2 of 34 bytes for the user context 

this requires a total of 15.3 Kbytes of storage. 

As  we saw in section 5.2, even 450 users would'nt 

present much of a load to a single 	CPU, 	but 	practicàl 

ttl, be considerations would probably cause the user interfaces 

divided amoung two or more CPU's. 

In summary then . a VAM system can service 1 90% of requests 

to a 50,000 page data base -. using a Winchester type disc with 5 

Mbytes of storage. The system can  support '450 on-line us'ers 

about 130 Kbytes of memory for data storage. The exact number 

CPU's and the ammount of memory needed foi ii. rograM stOrage -kuat be 

determined experimentally. 

of  
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6. CONCLUSIONS  

The main conclusions from this work may be summerized ,as 

follows: 

Conclusions 	relating 	to 	storage 	structures 	of  

page-oriented databases: 

The memory space required in central memory  for the 

storage of the user context information for the active subscribers 

is small compared to the size of the page directory, and . to the 

space that.may be occupied by.moSt frequently accessed information 

pages. 	 • _ 

Among the different replacement strategies for deciding 

which pages to put from the fast buffer memory into the slower 

disk storage, such as "last recently used", "least frequently 

used", or ".CLIMB", the CLIMB algorithm seems to be the the best. 

However, further reseach is required to determine how it could be 

best adapted to the videotex environment, including the 

det«mination of certain operational parameters. 

Optimal allocation of the information pages  onto fast 

buffer memory and slower disk storage.can be determined based'on 

the non-uniform access pattern, of the subscribers to the data. 

However, not enough statistical data is currently available on 

such usage patterns to makdgeneral  conclusions' on  such optimal 
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allocations. 

A hashing technique seems appropriate 	for 	finding 

requested pages in the database. Part of the hashing directory.may 

be resident in the main memory of the computer. 

The memory allocation strategies discussed above are 

applicable for both telephone and TV channel transmission, as long 

as pages can be arbitrarily requested by the subscibers. 

In the case of a broadcast cycle combined with directly 

requested pages, the strategy for placing certain pages on .the 

broadcast cycle or not may be determined by the same method as for 

the question or placing pages in fast or slower memory. (see 

above). 

types 

Allocating the memory storage .  hierarchïover twO separate 

'machine  results in'à distributed'videoréx . system.with 

several advantages over a centralized system. The user interface 

machines can service large numbers of subscribers using relatively 

cheap hardware. 

Conclusions relating to keywords. 

For the implementation of simple keyword ac.cess, theuse 

of hashing techniques seems quite appropriate. 
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• For the implementation of keyword search with boôlean 

conditions, the use of special-purpose. hardware, . such #s“CCD 

devices or bubble memory may be useful, but it is not - clear 

whether its use would be economicàlly advantageous at this tiMe. 
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APPENDIX Al - FITTING THE BRADFORD-ZIPF DISTRIBUTION 

The following equations provide a convenient method of 

finding the parameters of the Yield Formula  used to describe  the 

Bradford-Zipf distribution. 

The general form of the Yield Formula is: 

fb(m) = h log(m/u + 1) + fb 	' 

, 
Initially, we find three values for m such thatthe 

corresponding fb(m)  values are equally spaced. That is, we find 

ml, m2 and m3 such that: 

fb(m1) = A 

fb(m2) = A + B 

fb(m3) = A + 2B 

Then we compute h, u and fb(0) as follows: 

m2**2 - ml*m3 

ml - 2*m2 + m3 

h = B / log(b) where b = (m2+u)/(ml+u) 

A 	 fb(0) = A - h*log(m l/u + 1 ) 
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APPENDIX A2 - EXTRAPOLATING THE YIELD FORMULA 

Given that we have a yield formula that applies-to a 

small test data base, we propose to extrapolate this formula for a 

larger sized data base by changing the parameters of Equation 2. 

First we note that the factor h appears 	in 	the 

calculation of fb(m) for all values of m except m=0. Setting b0 = 

fb(0)/h we have the more natural form 

fb(m) = h ( log( eu + 1) + b0 ) 

= h ( log(m + u ) 	log u + b0) 	(Eqn. Al) 

Here the equation is seen to be linear in log( m + u ) 

• with slope h. Letting M1 be the data base size, we should have 

fb(M1) = 1, a cumulative access probability of unity. For a larger 

data base size of M2 , we would have another Yield formula fb2 

such that 	fb2(M2) = 1. The second formula  can then be derived 

from the first by Changing the Value -  of -h. 
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1.0 + 

I 	slope 
Cumulative 	1 	= hl 
Probability 

= fb(m) 	0.5 + 	
slope 
= h2 

	

0.0 tre- 	
log(Ml+u) log(M2+u) 

m = Number of Pages 

Expected Yield formulas for data base sizes MI and M2 

Figure Al  

If we keep u and b0 constant then h 	is determined 

solely from the value of M , the data base size. The real data 

however is only linear for low values of 	m , after which the 

curve falls off (the "Groos Droop"), so the slope h calculated 

from the data is larger than we would expect. 



ideal , 
curve 0.5 + 

- -90--  

1.0 + 
. I 	real 

Curve 

.1  
0.0 

log(M+u) 

Comparison between the Yield formula and the actual data 

Figure  A2 

If however we postulate that the slope calculated from 

the data is proportional to -i the ideal slope calculated from the 

data base size, then this proportionality can be maintained for 

the extrapolated equation by multiplying by.the  ratio of the. idèal 

slopes. For this we need an expression for the ideal slôpe h° :as 

a function of the data base size  M. USing fb(M) = l'as before - we 

have: . 

1 
h °  =  	(Eqn. A2) 

log( M + u ) - log u + b0 

Letting hl be the slope calculated from the data gor 

the test data base of size M1 , we calculate h2 the slope for a 

data base of size M2 using a factor k such that h2 = k hl. 

The factor k is then 

log( M1 + u ) - log u+ b0 
k  	(Eqn. A3) 

log( M2 + u ) - log u + b0 
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Substituting values from the equation' ln section 2.5  ànd 

using M1 = 3795 and M2 = 50,000 we get k = .755 'which gives a 

new Yield formula applicable to a data base of 50,000 pages, 

fb2(m) = 0.114 log(m / 0.731 + 1 ) 	0.069 	(Eqn. A4) 
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