
UNIVERSITÉ DE MONTRÉAL

/ (...-
'f MEMORY STRUCTURES FOR VIDEOTEX SYSTEMS

by

R. Nigel Horspoole,Gregor v. Bochmann**

and G. Eugene Saunders**

Publicatien #454

DÉPARTEMENT D'INFORMATIQUE

ET DE RECHERCHE OPÉRATIONNELLE

Faculté des arts et des sciences

Université de Montréal

C.P. 6128, Succursale "A"

Montréal, P.Q.

H3C 3J7

' P
91
C655
H67

1982

*
* *

eMA.NCATIONS Ck14

IUIN
 'J UNC

RAJ1Y 	3 1 1TRe.

- ..---------7Z5nada

\- libralv Quee

..
•

91

C655
H67

1982

JU1L 2 1 199f J ul__ Jun- 2 1 1998

Industrie Canada

Elbllotheque QUeerl

/MEMORY STRUCTURES FOR VIDEOTEX SYSTEMS j(
(.

by

.
i 	Li)
/ R. NigellHorspoor, Gregor v. Bochmann**

. 	-- ,

. and G. Eugene Saunders**

Publication #454

School of Computer Science, McGill University .

Département d'informatique et de recherche opérationnelle,
Université de Montréal

This report is prepared under contract no. 20SU.36100-1-0169 of
between the University of Montreal and the Department of,Communications, Canada.

The opinions expressed in this report are those of the authors. They do not
necessarily imply any position •of the Department of Communications.

Département d'informatique et
de recherche opérationnelle
Université de Montréal

Octobre 1982

1-De q0(09J---

bc)5s
i410-7

n cin

-2-

INDEX

1. 	INTRODUCTION

2. STORAGE STRUCTURES FOR VIDEOTEX
2.1 	The Memory Hierarchy
2.2 	Memory Required for User Context Information
2.3 	The Page Directory Structure
2.4 	Page Placement in the Hierarchy
2.5 	Most Cost-Effective Memory Configuration
2.5.1 	Discussion of Possible Configurations
2.5.2 	Cost-effectiveness for, the General Memory

Hierarchy

3. THE IMPACT OF THE TRANSMISSION NETWORK
3.1 	Introduction
3.2 	Television Page Transmission
3.2.1 	Pure Broadcast Cycle
3.2.2 	Combined Approach
3.2.3 	Pure Request Approach
3.3 	Telephone Transmission of Pages
3.4 	Combined Telephone and Television Transmission

4. EXTENDING THE USER INTERFACE
4.1 	Introduction
4.2 	Survey of Database Machines
4.3 	Simple Keyword Access
4.4 	Postcoordinate Keyword Access

5. VIDEOTEX ACCESS MACHINES
5.1 	Introduction
5.2 	System Configuration
5.3 	System Modelling
5.4 	A System Example

6. CONCLUSIONS

Bibliography
Appendix Al - Fitting the Bradford-Zipf Distribution
Appendix A2 - Extrapolating the Yield Formula

1. INTRODUCTION

Videotex systems have three basic components:

(a) a service providing host computer, usually including a

page-oriented database, (b) a data transmission system, and (c)

user terminals. This paper concentrates on the organization of the

memory structures that may be found in the host computers to

support the database (the information pages and various directory

structures) and the data buffering required for transmission. The

memory structures for distributed data base systems are also

considered.

As far as the transmission system is concerned, two major

approaches are considered: (a) "interactive videotex" and (b)

"teletext". In addition, two major transmission media considered

for interactive videotex: telephone lines and • TV transmission

channels. Interactive videotex differs from teletext in that pages

are transmitted only in response to requests from users. In

particular, a page may be transmitted only to the particular user

who requested it. There are currently two major methods for

transmitting videotex pages. One method is to use standard

telephone lines and the other method is to use spare channels on

cable television networks. These two methods have quite different

transmission rates (1200 bps versus 4,000,000 bps). Therefore, we '

can expect different implementations and hardware configurations

for the videotex computer system. However, many of the issues and

implementation decisions are similar.

-4-

While initial videotex databases only included men

selection user interfaces, keyword and other kinds of user

interfaces are currently considered in addition for newly

developed videotex systems [41]. Sections 2 and 3 of this paper

investigate issues related to the memory structures related to

simple menu-oriented databases of information pages. In section 4,

issues related to the support of keyword access (the simple kind

of keyword interface [17]), and full keyword facilities with

boolean search are reviewed. ;

Like traditional databàse systems, videotex databasesjlay •

be viewed at different levels, of the architecture [42]; fôr

instance the internal, conceptual,•and. external level. While: the

user interface is related to the database structures at the

'conceptual and external'levels, the internal level is Concernèd

with the physical organization of the'data within the databasè,

and the mechanisms used to provide the conCeptual data structures

to the application programs and users.

In section 2, we discuss the memorST structures in central

memory and secondary storage used to support the storage of the

information pages and support their retrieval in an efficient way.

A memory hierarchy and different ways of managing it aie

considered. Using some empirical mesurements on usage patterns,

the optimization of the storage structures are demonstrated for

some examples.

-5-

In section 3, the memory requirements for the page

transmission to the users are considered, distinguishing the

different transmission approaches over telephone and TV

facilities. An additional problem in the case of teletext with a

broadcast cycle of pages is the . question of which-pages to put

into that cycle, in. particular in such eystems• where» additional

pages may be available to the user through an. alternate

transmission scheme . An analysis similar to the one applied to the

memory hierarchy in section 2 is shown to be useful here.

In section 4, extensions to the. user interface are

considered with their impact on the memory - structures' for

supporting efficient'access in the case of a large number of

users. It is in this context that. special purpOse.database

machines could possibly be useful. .

In section 5, the ideas of section 2 are extended

considering the configuration of a distributed videotex system. In

particular the design and performance of the user interface

machine is considered.

-6-

2. STORAGE STRUCTURES FOR VIDEOTEX

2.1 The Memory Hierarchy

Let us first consider the largest use that memory will be

put to. The system will normally include a large store of pages.

One source [18] estimates that a minimum of 50,000 pages are

needed for the initial implementation of a videotex system and

that the number would have to approach 500,000 pages if mass

market success is wanted. We estimate that the average size 'of a

page will be between 1000 and 2000 bytes. It is hard to be more

precise than this because there will be many index pages with a

small size and. there will be an indeterminate nUmber of pages

containing picture descriptions and will thetefere be quite large.

For the moment, we will use 1000 bytes àS a rower bound .on , the

average page size. Hence, 50000* 1000'-=- . 5 0 MbyteS'ià.en'eStimate

of the minimum storage capsoity of the System. Since 50 Mbytes is

rather large for the main memory of a computer, it is . clear that'a

mass storage device such - as a 'disk must be used. Howevet, it is

reasonable to assume that a fairly high proportion of pages can be

kept in the main memory or some Other fast memoty device.

Thus, we have obtained a convincing reason for why a

standard videotex system must contain at least two kinds of

memory. These would be the main memory of the computer and its

disk memory. As we will discuss later, it would probably be

cost-effective to attach a separate mass memory •device with an

-7-

access time that is intermediate between main meMory and disk ,

access times. 	The configuration of these three kinds of memory

would form a memory hierarchy. It is important utilize the

hierarchy efficiently, meaning that we shàuld carefully chOose

information which memory level is to contain which items

(either program or data).

If we consider just the placement of"Videotex pages into

appropriate memory levels, theremay, logically, be a fourth kind

of memory to consider. If we Consider a videotex System that uses

a broadcast cycle, such as *Ceefax or Oracle, then we must

determine WhiCh pages.are tà be included in the Cycle.. We can

.logically consider this cycle to be.another kind of memorythat is

more exclusive than main memory (because of the limited Capacity

of the. cycle) but thatsives:faster access to subscribera.

2.2 Memory Required for User Context Information

- Additional main memory - MuStbe , allcicatedfor:.user context

information. For each active user, we can reasonably assume that

the following details must be retained:

a. User identification.

b. User address (I/O address or routing information).

-8-

c. Accounting information.

d. Current page number and page header information.

e. Trace of previbusly accessed pages, etc.

We can attempt some minimum estimates for the storage

requirements as follows. The user , identification need consist of

no more than an account number and 4 bytes would be more than

. adequate 'for this purpose: 	(Presumably, the - .account' number

indexes a master file of subscribers that is held on :a

non-volatile storage medium such as a disk.) The user 'I/0 address

could probably be packed into 4 bytes'too. Accounting information

for an active session shàuld, at least,'inblude-the . time of daY

that the user - signed.On.(requiring 6 decimal digits or 3 byteà)

and the number of page requests that.have been made. - so far (2

bytes, say). The current page number is about 7.bytes. The 7.;-byte

figure is balculated according to the assumPtion'that page nuMbes

are comprised of up to 13 decimal digits.follOwed perhaps,a

decimal point and three, more digits. Page header information -

includes cross-references to - other videotex pages where the

Telidon hierarchical trèe structure is -violated. Perhaps space for

up to 2 such cross-references should be allocated; but:this.figuie

is a pure guess. Assuming 2, we hava twci more page numbers . (of 7

bytes each) to store. The minimum total storage thus works. out to

be 34 bytes per user or 34 Kbytes for:1000 active uSars. Compared

to the resident page directories thatwe will be looking at next,

-9-

this is an insignificant amount of storage.

However, the 34 byte estimate represents an absolute

minimum. It may be expedient for a practical system to retain more

information about the user status. Also, there is provision in

Telidon for "action pages". These action pages correspond to

computer programs which interact with the user. Such a program

and its data must • be retained in memory until the user has

finished with it (unlike a normal text or picture page that can be

deleted once it has been sent to the user). If severél

subscribers are using the same action page, there need be only one

copy of the program resident in memory but each subscriber would

need his own data space. Without any experience in this regard, lit

is impossible to guess the popularity of action pages and to

estimate their storage requirements..

2.3 The Page Directory Structure

Another general issue forvideotèx systems concerns the

implementation of the page directory. A user can - enter a page

number as a decimal nilmber. HoweVer, because thé page numbers

follow a special kind of hierarchy, the page ntimbers are quite'

sparsely distribtited. If, as we have juSt discussed; a page.ntimber

of. page can consist of ui)to. 16 decimal digits then the , space

numbers is 10**16 in size and is immense when compared to the

total number of pages (between 50,000 and 500,000). 	A videotex

system will necessarily have to provide a directory that woulcUbe

-1 0-

used to translate from the page number to a memory addresa for the

page. This directory will have to be implemented by saine method

that is efficient in storage. 	The possibilities include hash

tables [36], tree structures [36] and trie memory [16]. A hash

table implementation appears to be'the most economical in storage

at the expense of some unpredictability in access times to look up

entries.

For an - example, let us suppose that we wish to 'prOvide

for 50,000 pages. A hash table-with 7 5,000 entrieswoUld'enable

'us to look up an eritrY with two probes on average. (62,500 entries

would give an average of three Probes to the table.) Thus the

aMount Of CPU time expended' in table look-up need not .-bè

significant. The storage.ocCupied by the table is of far greater

importance. We would expect that each entry in the table'wOuid

contain (at a minimum) the following information:

a. The page number (16 decimal digits is equivalent tà 51

bits).

b. The memory residence of the page, main memory or disk.(1

bit).

c. The address of the page, either a. main memory or a - dlsk

address (24 bits seems a reasonable estimate).

-11-

d. The size of the page in bytes (about 16 bits).

e. Usage statistics or priority information for this page

(about 16 bits).

• 	This gives a total of about 108 bits or 1. 4 bytes.. Thub,

the size of the entire table would be approxitately 14 * 75,000 =

1,050,000 bytes, that is, about 1 Mbyte'.. Although a' -megabyte

memory Might be available, -:the: table would 'ocCuPy memOrithat

could'potentially hold 1000' videotex, pages:Keeping-an extra 1000

pages in main memory could conceiably reduce the number of pages

read .from disk by a . large factor. However, if -We db . .not keep - the

—table in main Memory, it would fiave to be held'on 'diSk and evëry

page look-up would require an extra disk: read. -• Probably,.:scime

compromise ,strategy 	is 	best.- Analysis of such compromise

strategies is difficult because it'is xery'ciPen7énded and becàüsè

it is dependent on> the usagé statisticS of ,the sYstem. The

requited statistical' information ' about the:''uSage:of''exist >ing

videotex systems is usually not publicly available .. Therefore,we

will look in the following at just one viable possibility for

splitting the directory between:the two memory le‘iels..

Let us suppose that the 90-10 rule applies to page

requests so that 90% of all page requests are made to only 10% 'of

the pages in the system. This rule appears to be approximatèly

true for one experimental system (which is discussed in more

detail later (39)). We will also assume ‘that the system has 50,000

- -127

pages. If we set up a hash • table that contained entries for only

the 5,000 pages that account for 90% of all requests, its size

would be only 105 Kbytes. To handle the other 10% of requests, we

can set up a second table which corresponds to haShing with

external chaining. The number of entries in this second table can

be , freely chosen, so let us use . N to represent the number. of

entries. Each entry is a pointer to a liash bucket. ' Since the

hash buckets are held on disk, the pointer is a disk address

(requiring about 24 bits). The hash buckets on disk can be

implemented as a linked-list of blôCkS,'where eàch::bli;ck contains

information about some number of videotex Pages' and a pointer

the next block. The.size of the block would probably be.chosen tO

suit the hardware, let us assume 512 bytes whiCh is sufficient'to

,
hold information on.36 pages. A. lOok-uPléan' bè 'pèrfotnied

linear Search through the entries in a buCket:A diagram'of the

data structure i5 . shown in Figure 2.1, 	If N is chosen to. be

50,000/36, 'then the average number of pages .per bucket Will b

(or one disk block). This implies that the second table will

require 4,175 bytes. Probably, it is better to choose N to be

larger, say double, so that we will rarely need to search through

more than one disk block in a bucket. In fact, the entries in'a

bucket should be sorted according to their request frequencies,

with the most popular pages at the fronts of the lists. This

would tend to make the probability of having to read a second disk

block even smaller. Therefore • we can trade a 1 Mb table in main

memory for about 115 Kb of tables in main memory, but where 10% of

the look-ups will reguire a disk read'(a very small proportion of

-13-

look,ups may require two disk reads). 	By varying the storage'

allocated to the tables in memory,...we can change the trade-off as

desired. A picture of the kind of trade-off that can be expected

is shown in Figure 2.2.

It must be stressed that the selection of which page

entries of the directory should be held in main memory as opposed

to on disk is theoretically independent of the selection of which

pages (the data itself) to keep in the fast memory , and which

shotild be held on disk. In practice, We would 'want to keep the

entries for the pages that - are the most often accessed in the

primary table and the same consideration - applies for selecting the

pages to be held in fast memory. However, there is...not

necessarily any correlation between the number of entries :in - the

primary table and the number of' pages that .are held . in fast

memory. It is not unreasonable to have directory information in

the main memory about a page that normally resides on a disk. The.

converse is also possible but probably . inefficient. (It seeàs

unreasonable to have to access the disk, to' find an address in' main

membry for a page, this must surely represent an inefficient

allocation of memory.).

PRIMARY

TABLE

-14-

Hash Table (with internal chaining)
containing entries for 5,000 of the
most frequently requested pages.

Total size = 105 KB.

SECONDARY

TABLE

• •
> 1 disk block 1 	> 1 disk block

• 	 1 	 1 	1
> 	...etc

•

	

-> 1 disk block 1 		> 1 disk block

1 	 1 	1 	

Hash Table (with secondary chaining)
containing 2750 3-byte bucket pointers.
Total size = 8250 bytes.

Hash Table Organization for Page Directory

Figure 2.1

0.5 -

0.0 -+ 	+
8Kb 115Kb

---*
1050Kb

-457

1.0 -

Expected number of disk accesses for a directory
look-up versus main memory allocation (in Kbytes).

Figure 2.2

2.4 Page Placement in the Hierarchy

. 	Choosing the best distribution of pages between two kinds

of memory is a standard problem for memory hierarchies. However,

the characteristics of the videotex system are unlikely to be very

similar to other systems where memory hierarchies are provided.

The videotex system is envisaged as having a large number àf

active users (say in excess of 1000) and each user is requesting

pages relatively infrequently (about one every 10 seconds).

Therefore, if we look at all the requests received over a short

period of time (several seconds), we are unlikely to discover

correlations between page requests.

- For example, the fact that page 123 has just baen

requested by one user does not increase the probability that it

-
wIll also - be raquested by,another liser.in-thenear future. .Also,

-16-

by the time that the first user has finished reading page 123'and

now wishes to traverse the tree of pages to page 1237, say, there

will have been hundreds of other requests received from the other

videotex subscribers. Although there may be a strong probability

that 	a user will request page 1237 after page 123, .this

correlation will go almost unnoticed in a system with a thousand

or more users and it is not worthwhile for the system to try to

exploit such correlations. It is simpler to consider page requests

to be independent random selections drawn from some underlying

probability 	distribution. 	In 	this 	situation, the optimal

implementation is to simply place the pages with the highest

request frequencies in the fast main memory and put all other

pages in the slower backing memory (1). We would, however, •expect

page request frequencies to depend on the time of day and on other

external 	factors. For example; weekend users might request

information pages on sports scores the most whereas weekday

afternoons may be dominated by users concerned with stock market

closing prices. This factor suggests that the distribution

pages between the two kinds of memory 'should be allowed to change.

•There are various page replacement polieies that : may be suitable

for automatically determining the distribution of pages. Some

prime candidates are:

LRU The least recently used pages are kept in the slower backing

;
• memory. One implementatiOn of this policy- keeps - af record of

the time of last use for each page in the main memôry. When

a . request is made-for a page that is not-in main-memory, the

page is transferred to main*memory..-If Speee in_Maïn . memory

17-

must be obtained first, it Is obtained hy deleting, one ,or,

more pages that have not been used for the longest period of

time. .

LFU The least frequently used pages are kept the slower

memory. The implementation requires that a count of uses be

kept for each page in the system. When space in main memory

must be found, pages currently in memory with the lowest

usage counts are deleted.

CLIMB The pages in the system are soited into a prioiity -order

that ià continually updated. Whenever a.pagé:is uéed,. it. lis

.advanced one position higher in the ptiority list

(overtaking one page). Obviously, a page at. the top of the

list cannot .be - advanced any higher when it.is used.When-

.

	

	space in main memory must be obtained, the page or pages 1.1-1

-memory that are lowest in the priority list ate deleted'.

The LRU and LFU policies are standard paging strategies

and are described in many references [13]. 	CLIMB is not .so

well-known; it is described and analyzed in only a few references

[15, 32]. LFU would be the optimal management policy if there were
0

no time factor present in the probability distribution function

for page requests. When there is time dependence, LFU can be

quite poor because an increased page request probability will Aot

be acted upon until the usage count of that page has overtaken the

counts 'for other pages in the system. Informally, we might Say

that LFU is poor because it is too stable. LRU would be expected

-18-

to operate more satisfactorily because it responds to' changed .page

request probabilities very .quickly. However, - LRU can be

criticised for being too unstable. That is, an isolated request

for an unpopular main memory for a adapt as fast'as LRU. That is,

CLIMB is like a stable version of LRU but not as stable as LEU.

CLIMB is named. the "transposition heuristic" in [32] because it

can be implemented by transposing adjacent elements in a priority

list of the pages.

. However, CLIMB has a big drawback compared tor,'LRU.' 'To

implement LRU we need an ordered listof only the pages that_are

currently held in the fast memory. .To'imPleMent-CLIMB, NY.e. need Sn

ordered list of all pages in the system and this list is too long

to be practical. Even if the pages are numbered from 1.tti

We would need 100Kb of storage for the list. This aMOunt of

storage woèld be better employed for holding'an'extra 60 to 100

pages in memory. It should be possible to iMplèment a policy lbhat

is a compromise in bàth storage and performance between LRU:and

CLIMB. The ordered list should bè longer than that required fo r.

just the pages resident in memory bilt much shOrter than the Size-

needed to list all pages. 	Jdhen a page not on,,,the list.: is

acceSsed, it is inserted into the list and the page that Was

previously in the last position is deleted from - the list. 	To

prevent a page from being pushed out of the list too soon after it

has been inserted in the list, we should not insert a newly

referenced page at the very bottom of the list. 	It should be

inserted higher up. iAlso, each time a page is referenced,, it

-19-

should advance more than one position in the list ordering. 	Wg

suggest that the number of positions to advance should be

expressed as a fraction of the page's current position in the

list. However, the selection of values for the free parameters in

this policy will require some experience or some detailed

simulation experiments.

2.5. Most Cost-Effective Memory Configuration
.. 	•

2.5.1. Discussion of possible configurations -

:

If the computer system:has-fonly 'main memory and, a _single

disk unit, the disk will . limit the . oVerall'syStem;perforMSnCe . To

lustify- this assertion, conàider a System with 1250'nserà who,.

. 	collectively, generate 125 page requests per' second. The disk can

• handle only about 25 page transfers per second (assuming typical'

.disk speeds). Therefore, SO% Of-.all pagèreqUests'would have'to bé

• àérved from main- memory- 	But this - would imply that the.systek

.

	

	requires:a rather largeamount . of main'kemory .. If the 90-10- rule

holds for a systeM with 50,000-.pages', we woUld need to retain

- about 5,000 pages in main memory- to satisfy'90% of - page 'requests.

Theàe 5,000 pages would éccupy 5 to 7.5 Mbytes, .Which . is a quite

feasible but large amount of main memory by current.standards.

Any improvement the transfer rate of pages from

secondary. storage into main memory. would le reflected in a reduced

requirement for' main-,-memory. . There ar e . .. two obVious ways of

-20-

improving the effective transfer rate:

attach additional disk drives to the system, or

b) attach a semiéonductor mass storage device. Such devices

are often provided as direct replacements for disk "or

drum units but use LSI, CCD or Bubble technology and aire

therefore much faster. (We will refer to this kind

• device as a buffer memory.)

These 	possibilities . lead 	to 	four -general sySteM

architectures to be'evaluated from economié, costr-effectiVeness,

consideratiOns. The various - configurations are diagrammed . in

Figure 2.3. System A•representé a ystem:Where the bàffer memory

simply replaces the disk drive. System - U rep .resents à system,witii'

replicated disk . drives (we will conSider .two."diSks" to be

representative of systems with three or more disks). ' System d •

shows -both a disk and a buffer memory connected to the main

memory. System' D"shows a memory hierarchy Where pages may only be

transferred between the disk and thé buffer memory and betWeen'the

buffer memory .and the main "memory.. A 'fairly- sophisticated

controller (independent of the main CPU) is needed" to • manage the

page transfers. 	.

Now system D can be immediately discounted as inferior ttl

system C (given identical disk units and buffer memories in the

two systems). This is essentially because pages normally resident

-21-

on the disk must be transferred in two steps for system D, whereas

only one step is needed for system C. Also, some slots in the

buffer memory of system D must be reserved for pages passing

through into main memory, whereas no such provision need be made

in system C. In fact, there are simulation studies for

conventional virtual memory systems that compare the two•

configurations corresponding to C and D [8, 9]. The results show

that configuration C can be used much more effectively than D and

achieves a large improvement in the efficiency of memory usage. "

• , •

We can -consider systems A and B as variations on system

C. Let us consider a generalized version of .0 which has à 'buffer

store (with .unspeCified capacity)and D disk drives -attaChed as

drawn in Figure 2.4. Let. us consider . only - the problem of

determining page placement in the hierarchy. 	•

• •

System 	I' Main
A 	I Memory

I Buffer I
I Memory 1

Main
• •

MemorY 1 	Buffer I
I Memory I

System

-227

System 	1 Main I
1 Memory I

I 	I 	. 	• 	. 	•
System 	I Main I de_.- 1 Buffer

D 	I Memory .1 S 	I Memory I

Possible Memory Hierarchies

Figure 2.3

I Buffer 1 (capacity

1 Memory 1 for m pages)
1 	•1

0 • •

-23-

Main

Memory

/1• \
• subscriberà

General.Memory Hierarchy

- 	Figure 2.4 	 • 	t

• •

2.5.2 Cost-effectiVeness for the general memory hierarchY.

•

We .consider now the general memor3i hierarchy of figure

. 2.4, and assume that transfer rate of the buffer mekory

sufficient to serve all user page requestà. We also assume that

the transmission rate to the subsèribers is faster than the

transfer rate from the buffer meMorY. •(Additional output buffers

are required ln the opposite casé, as discussed in section 3.3

below): 	•

It is first noted that no pages need be held in the main

memory. It. is possible to fetche page from the buffet memôry
"

-24-

• while another page is being transmitted to a subscriber. Thus we

could theoretically make do with just enough main memory to hold

two pages. (One memory slot contains the page being transmitted

and the other slot is used to receive the page being read from the

bufger memory.) In practice, the timing constraints imposed by

this ideal situation may be too onerous and additional main memory

would be appropriate. However, it is clear that no significant

amount of main memory should be reserved for pages if buffer

memory is cheaper (as would be the case) and provided that the CPU

and I/0 channels have enough unused capacity.

- The problem therefore. reduces to determining the .most

desirable quantity'of buffer memory and the. most desirable numbe r .

of disk drives, where all other charactéristids.of the.s'ystem . are

• given. Let us define the following quant • ties:. 	• •

n = reqùest rate for pages frok 'all lisérs (in . pages per

second).

N = total number of pages in the database.

m = the number of •pages that are held in the buffer memory.'

rd = the transfer rate of information from a disk to the main

memory (in pages per second).

-25-

cd = the cost of one disk drive (in dollars).

cp = the cost of sufficient buffer memory to hold one page

(in dollars).

fb(m) = the probability that a* request for a 'page can be

satisfied from the buffer memory (rather than from one of

the disks) .

NOw, the . major.requirement of the system is that it muàt

be able to handle the processing load that is imposed upon it.

Thus, we can write the following apPrOximate eqùation which

relates the available *transfer rate from all disks to the page

demands by the subscribers:

rd * D >= [1 - fb(m)] * n 	(Eqn. 1)

This equation is inexact because disk usage actually becomes .more

efficient as the load is increased. Thus, two disks will yieid

less than twice the overall transfer rate of. one .disk. (The

increase of efficiency is due to the fact that disk seeks can be

scheduled better if there are more requests to choose between in

the request queue.) Also, we have not considered whether the

databaSe of pages should be totally replicated on •each disk or

whether each disk should hold only a portion of the databas'S..

(Our formula is more appropriate for the replicated database

case.)

-26-

Experimental observations on lhuman behaviour and on

computing systems have repeatedly disèovéred that ' measurements

appear to follow Zipf's• Law [38, 31]. The pattern of usage for

videotex pages is no exception. We have obtained data from one

(small-scale) videotex system [39] and have found a very close

agreement between - the observed page reference frequencies and the

frequencies that would be predicted by Zipf's Law. This law
, .

predicts that the frequency of access to the k-th most popular

page should be proportional to 1/k. Equivelently, the cumulative

probabilities of access to the 'k most frequently -accessed pages

should bé a linear function- of log .(k). We have-graphed the

cumulative probability function for . the experimental Telidoù
. 	.

system against log(k) - in Figure 2.5. The graph is : indeed lineer

until about 400 pages are accounted - for (representing 83% of all

requests)... After this point, the probability fails to incréase,aà

rspidly as the formula .predicts.' This is ' aCtually a - COmmoh

occurrence' for.phenomena that seem to follow Zipf's. Law.. The

dropping away of' the curve from the straight line ia known às thé

"Groos Droop" [19, 7]. The curve corresponds to .a' 88712 rule

(i.e. 88% of requests are to only 12%-of the pages). , •

50

Number of Pages -->

!

5 10 500 100 1000

1.0

0.0

s-

-27-

If storage in the Telidon system is allocated optimally,,

we would retain only the most frequently accessed pages in a fasp

memory. Less frequently accessed pages would be relegated to the

slower but cheaper disk memory. Therefore, a sensible storage

allocation policy, as discussed in section 2, implies that the

cumulative probability function, fb(m), as defined earlier, fits

the Zipf Law. More formally, the Bradford-Zipf distribution

specifies the following form for the cumulative probability

function:

fb(m) - h log(m/u + 1) + fb(0) 	(Eqn. 2)

The. parameters, h and u, represent constants. The.logarithis are•

to base e. For the system being modelled, fb(0) ideally should be

zero but may not be', due to an imperfect match between . the

equation and reality. (This particulai'form of the Bradford-Zig

distribution is known as the "Yield Formula" (20].) The values

h and u cannot easily be Predicted for a full-scale videotex

sySteM. Our data from the small system fits. the followidg

› 	; equation:

fb(m) = 0.151 log(m / 0.731 + 1) 	0.091

This formula is accurate only for values of m that'do not exceed

400. Foy larger values of m, the Grooà Droop appears and the

equation becomes inaccurate. (Therefore, we should be suspiciolis

of any results that we derive where larger values for m are

exPlicitly or implicitly assumed.) The method for calculating h, m

• and fb(0) is given in Appendix,Al.

-28-

We can estimate the memory cost of our system, C, in

dollars with:

C = D*cd + m*cp 	 (Eqn. 3)

Note that C excludes the cost of memory needed to hold programs,

page directories and other system data.

• Supposing for the moment. that D need not be-an integer,

the requirement of minimal cost would force equality to hold in

Equation 1. Therefore, we can rewrite - the equation-as: .

n * [1 - fb(m)
D - 	 (Eqn. 4)

• rd

This gives D as a function of m. Substituting for D in Equation 3

and differentiating with respect to m yields: 	.

dC 	• 	- n * h; * cd
+ cp 	(Eqn. 5)

dm • 	rd * (m + u)

It is clear that the second derivatiVe of C is positive for all m

(since n, h, u and rd are all positive quantities) .. Theréforei if

we equate the first derivative to - zero and solve for m, we obtain

. 	a unique minimum in the cost function. This solution for m is:

n * h * cd
m = 	 u 	 (Eqn. 6)

rd * cp

-29-

If we numeriéally determine m. from Equation - 6 and

substitute for m in Equation 4, we will certainly find the optimal

number of.disks, D, to be a non-integer. Therefore, we will have

to round D up and down to the two adjacent integers and check to

see which gives. the lower system cost. (This procedurè yieldnthé

•true minimum cost system because of the Concave . shàpé of the cos t

• -function.)

As an example,'let us consider the small eyétem for whiCh

we have.obtainefithe page access'probability function. 	We shall,-

• • assume the following data:

cd = $10000 . (a low estimate),

$8 (approximately 0.1c. per bit),

N .= 4000, 	.

rd = 25 (i.e. 40msec'per disk transfer),

n = 100. 	'

Inserting these values into Equation 6 leads-to the

. • result that the optimal value of M is 754. .This is in n region

where our fitted equation is a little inaccurate. However, xge

cannot actually use this value - of m anyway. Substituting this
•

value of m into Equation 4 yields D=0.17. We clearly cannot

• purchase 17% of a disk (with 17% of. its performance . for 17% of the

•
cost) and so we consider . D=0 and D=1 . to. find an achievable

•
minimum cost system. (We ignore here•the possibility of sharing

part of thé disk space with other applications). The memory cost

. 	wheh D=0 is given by Equation . 3 as 4000*8 = $32,000. To find :the

-30-

cost when D=1, we must first determine frok Equation 1 that we,

want a value of m that yields fb(m) = -0.75. FrOm Equation.2 or

from Figure 2.5, we see that m=191 yields thé desired value of

fb(m). Therefore the memory cost for D=1; m=191.is $11,528..

(Since m=191 lies within the. range of applicability for the

.probability function, .we, can trust this result.) Therefore, the

memory configuration with m=191 and D=1 optimizes the system cost..

-31-

3. THE IMPACT OF THE TRANSMISSION NETWORK

3.1 Introduction

With interactive videotex, there are communications in

two directions. Requests may be transmitted from the user to the

central system and pages are transmitted from the central system

to the user. The requests from the user can be transmitted over

telephone lines or over bidirectional cable TV connections. The

pages may be transmitted to the user over telephone lines or as

'television signals (through the air or by using cable TV

distribution; we assume in the following a full channel (not only

the return interval) allocated to videotex). These two choices for

each direction of transmission'result in four useful combinations:

a) Telephone requests, telephone pagdtransmission,

Telephone requests, television page transmission,

c) Bidirectional cable TV for both requests and pages,

d) Telephone requests, 	both 	TV 	and 	telephone 	page

transmission.

Since thousands (even millions) of subscribers can all

receive the same television signals, it may be economical to use a

broadcast-cycle for Page transmission. There is no 'correspondÉng

-32-

possibility for telephone transmission of pages where, presumably,

only one subscriber is attached to the end of each telephone line.

3.2 Television Page Transmission

There are three possibilities tO consider. First, a pure

broadcast cycle approach may be used, as in Ceefax or Oracle.

Subscribers may view only . pages that the server elects to place in

the cycle. Secondly, a pure request approaçh may be used. Only

pages that SubScriberà have'requested are transmitted. .Third, a

combination of the two approaches may be used. Presumably, - the

.most popular pages are automatically.included in the broadcast

cycle. HOwever, a limited number of slots in the cycle may be

filled with pages that have been requested by subscribers.

3.2.1 Pure Broadcast Cycle

The performance of a videotex system that uses the pure

. broadcast.cycle appràach depends critiCally on the size of the

cycle. Let us consider a system that fully uses the capacity '.of«

. one television channel. The figures given for the transmission

.rate of videotex information varies between 3.89 and 5.8 million

bits per second depending on which field trial or Telidon stàndàrd

one looks at [10]. We Will assume an average figure of 4 Mbs.

'Following our earlier estimates that an average page

contains between 1000 and ,1500 bytes 'of data and assuming that

-33-

about 10 bits must be transmitted per byte (to allow for error

detection and other system overhead), we dan estimate that the

. page transmission rate lies between 267 and 400 pages perSecond.,

If we follow guidelines that 90% of requests must

responded- to within 10 seconds [23], we must limit the broadcast

cycle length to 11.1 seconds (i.e. 10 / 90%). This implies that

the cycle can contain between 3000 and 4400 : pages. The videotex

database can contain no.more pages than this figure. It falls-far

short of the estimate given previously that at least 50,000 pages

must be in the database. - Also, the average response'time would be

5.5 seconds which might-be unacceptably slow:to màny uSers. - 	•

With Such 	à Small number of pages,...:it - would

tedhnically feasible to.hold . them. all in the main,memory of

•
computer. 	However, as: we have .argued,previously, itwOuld be

cheaper and pst as effective to hold almost all:these pages in

mass memory backing store if the data transfer rate Is sufficient.

Pages can be retrieved from the bàéking stOre just:before thSy-are

- due to be transmitted in the broadcast cycle. -Thus the main

-memory is Used Solely for temporary buffering of the.pages.

The possibility of uSing one or - more,-disks is alàà

interesting. Because the pattern of page transmissions is totally

determined by the cycle, the information on the • disks can• be

formatted in . an optimal manner. We could read many consecutive'

pages in the cycle. by performing a sequence of . disk. reads. to

-34-

consecutive tracks and adjacent cylinders. Disk seek times can be

 reduced to an absolute minimum and, with careful timing, latency

delays can be reduced. - Here is some data for a modern disk, the

IBM 3350 disk unit 126):

Time to seek to an adjacent cylinder = 10 msec.,

Average seek time

Maximum seek time

Number of tracks per cylinder

. Maximum capacity of each track

Time for one full rotation

= 25 msec.

= 50 mséc. 	•

.= 	30.

.= 19065 bytes.

= 16.7 . méeé.

For this:disk, we could.transfer:30 - consecutivetracks of data

the main .memory of. the computer in ' 30 	consecutive 	diSk

revôlutions. Then there is a delay while the disk . head seeks to

the next cylinder (10 msec). As the seek is being performed, the

disk continues- rotating. Therefore, after . the-seek we must Wait

for the disk to rotate back to the beginning of the track in the

new cylinder. Unless' the tracks have a staggered organization

(which is hardly worth the troUble), the addieional delay is .6.7 	.

msec. The overall data transfer rate (assuming data.on consecutive

tracks and on consecutive cylinders) is therefore 30 tracks for

every 31 revolutions. This works out to be 1107 KBytés/sec or 8.8

Mbs. Thus a single disk can theoretically keep up with televid. ion

channel transmission (and have about 50%.spare capacity). It would

require a very carefully tuned computer system tà achieve this

disk eransfer rate in practice (there must be almoit immediate

• 	- response tO each dlsk interrUpt), but'is not impossible.

-35-

Another interesting possibility is the use of.CCD (Charge

Coupled Device) logic for the backing memory. A.CCD memory is

implemented as multiple shift registers, where stored 	data

circulates around closed loops. 	This would appear to exactl.y

match the requirements of a pure broadcast cycle.videotex system.

There is a possibility that such a system could have simple

hardware requirements. A general-purpose computer would not -

required 	to 	handle 	page 	transmission, 	instead 	a . small

. microprocessor would be adequate. Hbwever, a generaI-purpose

computer would pràbably still le'required in order to itpdàte-tbe

• database of pages. The Texas - Instruments TMS - 3064 CCD memory

device has the lollowing characteristics [5]:.

Capacity. 	= 64K bits.

Cycle size 	= 4K bits

Maximum transfer rate 	= 	5 Mbs

Maximum latency delay 	= ..820 microsecs.

The chip is organized as 16 shift registers, T:aith each shift

register holding 4K bits. The transfer rate matches the

television transmission speed very closely. The biggest drawbacks

with CCD memory are its cost and the volatile nature of the

storage. According to current estimates [12], CCD memory costs

about $10,000 per Mbyte (about 100 times as much as a disk). ,

3.2..2 Combined Approach

Q

Z
o

CO

111

1:1
C-)
rn

n-q
Cf) rt3

Çiet:3
1--t0

o

bid

ur.a
-C)

0

Q.

o

Q
Q

• cp.00

br-
ATTENTE MOYENNE DES USAGERS (SEC)

1.00 	2.00 	3.00 	4.00 	5.00 	6.00 	1.00

c.n

ea.

11

.)

o
D.

•
tt

%UM 0.11P 	 ' MID

‘4.• lee gam 	 ••n•

n
.111.0

MM.

n

tc,

0 	%

% 	%

t.

.

.1= .11= r =it .=11. . 	 .

o
o
o

1 1

4s,
1C)
rz)

«CM
••••

ATTENTE MOYENNE DES USAGERS (SEC)
1. 00 	2.00 . 	 3.00 	t&.00 	5.00 	6.00 	.00

1. n
elm 1..a.a29.

a

ru

z8

CO

firl a • rn
Z °

	

rn„ 	
C o

rt
o 	C")

	

a rn 	Pi =3 or)
t.t) C2

	

ta 	•
P..% .0
X 0

CD 	•

1:13
CY

•

Z

• CO

1 	rrt
rn

-4 	ei
S m
rq 	Œ 8

ee, rq

t.n
c

In

1.3.1
ru

.11.3

cll. 00

sot-
0

ATTENTE MOYENNE DES USAGERS (SEC)
1.00 	2.00 	3.00 	• 4.01:1- 	• 	5.00 	5.00 	•'1.00

1.

..
II 	jH : 1 	I 	'i II

cm - 	I —à
O 	i a
c:, 	10 	I e

. a

se,

• 8
i
t
1

i
t 	t 	 t
t 	1 	 I

t I 	t
I 	• t
t 	1
I., 	t 	 t

t

1 1

t

I
t 	

t 	 t
I

I.
	 tt
t

•1 • , t 	.
t I I.
% — %

%
• \ 	%.

•„

•

• t

0

-3 6 -

A combined broadcast cycle and request . apprOach has been

simulated for the case where a cable television•broadcast medium

is available [24]. 	The simulation covers various assumptions

about the hardware configuration and its timings. 	Some of its

fixed assumptions are the following:

Fraction of requests to pages in the cycle 	= 40%

Fraction of requests to pages not in cycle, •

but are available from local disk(s) 	• = 55%

• Fraction of requests to pages not in cycle, 	• .

obtained from a non-local database 	- .= . 5%

Transmission speed over cable television 	=lo5 Mbs.

Transfer rate from non-local database' 	= 4800 bps

Average size of a page 	 1000 bytes.

The other'importànt assumptions, •and assumptions that were varied,

were the following*. First,. it . .was- assumed that, each requeSt

received by the system involved a certain amount of processing.

This processing might inclùde CPU actiVity and'searching page.

directories for information about the page. Three figures for the

amount of processing needed for each request were gimulated: 20ms,

50ms and 100ms. *Secondly, the total number 'of. pages' in the

, 	.
database was assumed to be 500, 1000 'and 2000. 'These three

possibilities for . each ,of two parametèrà lead to nine simulation

curves. 	The nine curves from the study [24] are reproduced In

Figures 2.6, 2.7 and 2.8 (corresponding to the figurés numbered

5.23 - 5.24 in the study). They show'hôw the expected waiting'time

for a request to.. be snswered increaàes with thé ngmber of users on

-3 7-

the system.

There is nothing surprising in- these curves. Their

general shape would be predictable without any simulation

experiments.. The most important observation is that the.system'haS

a maximum capacity. 	If more users than this attempt to use the

system, the expected delays in waiting for a page 	become

intolerably .large. This maximum.number-of users can bé calculated

analytically from the values of the system parameters (as, indeed,

Lafitte did [24]). Similar calculations could be performed for la

.real system after the necessary measurements had been performed.

In order to maximize the capacity of. a combined brOadcast

cycle - request mode system,. it is obvious tb.“

:repeat very popular pages . in.the Cycle. 'Thus, the selectiôn: of

which pages are, to be regularly repeated is analOgous to. the

problem : of sharing the pages between two kinds of Memory. The

crucial problem is determining- the proportion - of;pages in . the

cycle that are regularly repeated versus the proportion of pages

that are included in . the cycle once in response to a specific

subscriber request. (Note that the size of the hroadcast cycle 4s

constrained by a calculation similar to one given:in section

3.21.1.) . •

If a.page is sufficiently - popular that there would almost

always.be-at least one user desiring to see that, page during a

cycle, then the'page should be regularly - repeated.as part of the

‘
-38-

cycle. However, it seems hard to be more precise . with this

statement. 	Given the stochastic nature of the system, it cen

never be guaranteed that there W111 ectually be a user who wishes

to access any particular page during a given cycle. .

Some crude analysis of the problem can be carried out as

follows. We define M and x as:

M = maximum number of pages transmitted per second.

= number of pages per second that are part of the

cycle:and regularly repeated,(x<=M).

The other quantities that we will be using, n and fb(x), have the

same meanings as before in Section 2.5.2. That is, n represents

the rate at which users make requests to access pages and fb(x) is

the cumulative probability distribution function' for page

• requests. Now, we are permitting only M-x pages in •each cycle to

be transmitted in response to special requests. Thus we have a

basic requirement:

[1 - fb(x) 1 * n <= M -

Equality. in this équation would - hold if the system were . opereiting

at maximum capacity. Rearranging the equation and ,assuming that

.the system is fully loaded yield!:

M - x
n = 	 (Eqn. 7)

1. - fb(x)

-39-

Presumably our goal ià to maximize the capacity of the

system, that is - , maximize..the•number of users it can handle. -We

. can choose the value of x that maximizes n and so' maximizes the

number of users. When n is a' maximum, x satisfies. the following

àquation: •

d
(M - x) * 	fb(x)) = .1 - fb(x)

dx

If we use the same form for fb(x) as before (Equation 2 in Section

2.5.2), we have the following equality:

(M - x) *h
1 - fb(0) - h log(x/u+1) . 	(Eqn. 8)

• x + u 	•

By substituting known 'values for M, h, .0 and fb(0), We gan

numerically solve Equation 8 for x. Any solution for x in the

range . 0<x« necessarily corresponds to a maximum for n (and, thus

gives the maximUm request rate that the àyàtem can handle).

As a brièf,numerical example,.we will use the values' of

h, u and fb(0) that were determined for the experimental system.

For various values of M, the capacity of the system is. maximized

as follôws:

M =.100, x = 20, n = 136

M = 200, x = 49, n = 333

M = 300, x = 87, n =578

 M = 400, x = 132, h = 87

-40-

Of course, only the constraints imposed by the broadcast

cycle approach are being considered. Even if there is room in

each cycle to handle a system with 877 requests per second, there

is no guarantee that the system can retrieve pages from the disk

at this rate. In other words, we have to also take the analysis of

Section 2.5.2 into account. If we take the M=400 example a little

further, we can see that the system must transmit 400-132 = 286

pages per second in response to subscriber requests. 	If. every

such page needed ta be retrieved from a disk, we would need - about

10 disk units.on the systeM.

There is also a feedback problem. 	How can the system

know which are the" most popular pages (and which should be

regularly- repeated) if requests for these pages .are, • . not

.transmitted to the Central site? Perhapa the system shoul'd

occasionally drop a page from the cycle just to fi.nd out how many

requests this generates for . the page from üsers? - However, ft

would force all users to be connected to the system.via telephone

(Or two-..way ,cable), whereas this would previously have been

unnecessary for users who were content.to,reference . only popular

pages.

3.2.3 Pure Request Approach

When every page must be specially requested by users,

there is considerably more processing overhead imposed on the

system. than with the combined approach, às just discussed. .1..t

-41-

will therefore be very important to look up page numbers lin

directories and to retrieve pages from backing store quite

efficiently. The analysis given previously in Sections 2.3, 2.4

and 2.5 is very applicable.

In 	addition 	to efficiency problems with directory

structures and page placement - in- storage, there are some

scheduling decisions that are worth considering. We contend that

responses to requests should not be sent too quickly. Our, argument

is as.follows. The initial assumption is that userS are jtist as

,likely to be,satisfied with 0.5 second response times as with .0.1

second response times. Perhaps users will even perceive a one

second delay in response to be fast. (The worst response time

that we,should consider ià 10 seconds [23].) Suppose, for sake. of

exaMple, that the videotex system,is aiming for a responSe . time of

one second. Now, if a. request for some page arrives and . the

system waits one second before transmitting the page, there»is

some chance that another requeàt for the same. page will have

arrived in the.meantime. If this does happen . , both - requests.can

be . answered with a single page transmission. The more, popular a

page is, the more likely it is that requests. for it can.be

combined'. •

Of course, it would be ridiculous for the. system to stop

transmitting pages at any point just because it has no pendllig

requests that are approaching the one second target delay.

However, when the system has a choice' between two pagesto

-42-

transmit next, the selection ruleg appear to be:

1. If neither page has had an outstanding request for one

second or more, transmit the less popular page first.

2. If one of the pages has had an outstanding request:for

one second or more, transmit that page next.

3. Otherwise (both pages are overdUe for transmission),

transmit the page that - has the greater number of requests

(to annoy fewer subscribers). If both pages have the same

number of requests, transmit the less popular.pàge first.

Our scheduling criteria are therefore,biased towards sending less

popular pages first. This is simply because the chance of being

able to pool requests for these pages are not:so good.

When the system has a . large qUeile - of.outstanding rèquests

.(perhaps hundreds •of.' requests, pending . at - any- moMént), the best -

scheduling policy is hard to pin •down. ,Thesystem would - have to

build a téntative.list of pages in.the:order that théy.are to be •

transiitted and estimate the time at-which eaCh page should be

sent. 	Thus the system will be able to plan ahead so as not to

.leave too many pages to be transmitted over a short interVal. •

When there is.slack In this schedule, the system will be ableto

apply our scheduling criteria .and so . improve system. efficiendy.

The more heavily loaded thesystém is, the less.freedom there.will

-43--

be in shuffling the schedule.

The precise formulation of this scheduling problem and

its solution must remain a research problem for now.

3.3 Telephone Transmission of Pages

The proposed standard for transmission of videotex pages

over telephone lines specifies a speed of 1200 bits per second.

At this rate, it would take about 10 seconds to send an average

page. Perhaps the slow speed of transmission will cause pages to

be kept small in size, and so our estimate of the average page

size is too high. The pages of the British Ceefax system are

smaller than our estimate.

The transmission speed has a consequence for memory usage

and storage organization. The user's "think time" betWeen reCei4ot

of one page . ànd making. a request for the next •is likely to be

'

	

	quite small compared to page transmission tiMes. For - one:thing,

the user can read a page as it is being , received. Theteforè eech .

• user's telephone line is likely to be occupied nearly all the time

with.pàge-transmission.

• If. 'there are around 1000.users connected to the syseem

then, perhaps, as many- as 800 of - them are receiving pages at any

moment. This implies that the system has tomaintain output

buffers for.800 telephone:lines. If the smallest unit - read- from a

-44-

disk and transmitted is a page, then around 800 Kbytes of .memory

would.be devoted to telephone output buffering.

One solution that would reduce the memory requirement is

to split pages into smaller blocks. With the slow telephone

transmission rate, it would be possible to fetch blocks from disk

as they are needed for transmission. The penalty attached to

using this approach is the greater volume of disk accesses that

would be required.

A better solution might be to adopt the use of Videotex

Access Machines (VAM's) [40]. Each VAM would use relatively cheap

hardware end could service the

group of subscribers. A network

ajority of page requestS froma

VAMs':iinked With' one main

computer, to handle leis popular page.requests and to interface

with other computer systems, would be a relatively ecolibmicar

solution. The design and performance analySis of à VAMHmaChina is

provided in section 5 of this report.

3.4 Combined Telephone and Television Transmission

This scheme for transmitting pages does not appear

• have been suggested before. It is a simple idea •that maximizes

the capacity of the system to transmit pages . . A television

channel • is used to transmit just a broadcast cycle of regularly

repeated pages. If a user wishes to see one of the pages in the

cycle, there is no difficulty. The user's videotex adaptor will

-45-

capture the page from the air as usual. If the user wishes to see

some page that is not in the broadcast cycle, his adaptor

transmits a request for it over the telephone line and - the pageA.s

subsequently received over this same line.

As discussed previously, a pure broadcast . cycle can be

transmitted very efficiently. The cycle should. contain as many

pages as possible. (consistent with limits on acceptable response

times), so as to minimize the.need for special'telephone requests.

The installations providing the broadcast cycle and the

installation responding to telephone requests could be separate

entities. However there are benefits to having a single facility

or to at least linking the two services. By monitoring the

frequencies of requests for pages over the telephone, the system

can learn which pages should be added to the broadcast cycle.

(Knowing which pages to remove from the cycle is another problem,

as discussed in section 3.2.2.)

Thé only disadvantage appeàrs, to bè that the videotex

adaptor needs to be a little more complicated than with any of the

other approaches that we have considered. However, we think that

the idea is worth further consideration.
ft

-46-

4. EXTENDING THE USER INTERFACE

4.1 Introduction

A basic videotex system provides relatively primitive

facilities for locating information in the àatabase. Unless the

user has access to a directory of page numbers which he can peruse

and so plan his sequence of inputs, the user can easily get "lost"

while traversing the database. A logical next step in makirig

videotex more usable is to provide some more sophisticated acceàs

methods for the information.

One possible approach' is to provide keyWord access to

'pages.: For example, a user wishing to See a list of restatirants

may only have to type the keyworcL"RESTAURANT" . . The'iist is

likely to be rather lông. PerhaPs the user would be permitted

type two keywords, Feuch as "GREEK RESTAURANT"; and then:he Would
•

be shown only the feW pages that give hiM aCcess to information on

Greek Restaurants. An even more sophisticated interface might

permit 	the ' user 	to construct simple queries. , ' similar to

"RESTAURANT: GREEK AND (CGST<10.00)"._ This Might . retrieve

'information on a few affordable Greek restaurant s . for the user.

The example of the Greek Restaurant and the associated menu tablés

has been discusse d more fully elsewhere. [17, 41].

Whatever facilities are added to assist , the :uSer.

_finding appropriate- • .pages In the database, they x0.11:requite

-4 7-

computing resources. All keyword schemes require some form of

searching, some keyword schemes requiring more searching than

others. A more powerfù1 facility such as a-simple 'query language

may require much computation. For example, a query that asks for

a list of all towns with ten or more' restaurants would 'probably

require information on every restaurant in the database to he

read. Even more powerful query languages, such as those based on

natural language, may be envisaged but they currently belong to

the realm of artificial intelligence. A range of different user

- -interfaces for videotex are discussed in [41].

Other 'possibilities 	for extending videotex involve

general interactive software. 	This would correspond to the

. "action. page" concept. 	User services that require interaction

many include message forwarding systems (as are provided

computer systems), reservatiOn taking or seat sàleà (e.g. for-the

theatre), computer aided instrùction and- .game' playing, (e.g.

Checkers or pacman). 	If more - than a few usertake.advantage . of

such services, there Willbe a sub stantial processing load on the

« system.

In this section of the report, we will look into the

possibility of providing for keyword access to pages and for more

 general user queries. The possibility of using special-purpobe

hardware to assist these extensions will be considered. There has

been much research into designing special hardware for datababe

systems. However, the hardware solution is not necessarily very

7-48-

applicable to videotex systems because it may not be as fast as

would be required and is relatively expensive.

4.2 Survey of Database Machines

• 	The term "Database Machine" describes any computer system .

. with special-purpose hardware to assist the processing .of database

operations. The operation that is most frequently automated is

that of seatching through large volumes of data. Because of the

large volume, the data would normally reside on a disk or drum and

.the special-hardware would consist of processors that scan data as

it passes beneath the read/write heads.. To make the searching as

fast as possible, each track has its own read/write head and its

own processor. These kinds of storage devices are frequently ,

called "logic-pet-track" devices. .

An early logic-per-track-device was à modified- version of

a disk built by .Burroughs Corp. [30].-It was a disk with 1000

,information tracks, each track having its own read/write' head.

Tracks were subdivided into quadrants that held information. The

information was tagged as being "keyword", "associated . data" or

"unused". When the computer issued a search. request, the

processors associated with each read/write head would' check the

data in every track simultaneously for a match against a specified

keywôtd. • When a keyword is successfully matched, the-associated

data is read by the read head and, transmitted' to the computet - .

(This is known as "associative search"..)

-49-

More recent developments of logic-per-track devices are

similar to the Burroughs device. The main improvements have been

in the search processors, which are now capable of handling

complicated conjunctions of search conditions. One of the simpler

schemes is used in CASSS [21] and involves multiple searches

through the data and tag accumulators that are associated with

every data record on the disk. For example, if CASSS is to search

for records containing both the keywords "GREEK" and "RESTAURANT",

it proceeds by first searching for matches against "GREEK". , In

each record that matches, the associated tag accumulator,is

incremented (from zero to one) and rewritten to the disk.

SubSequently, the . same process repeated for the .keyWord

"RESTAURANT". Ieinally,'the proceSscirs ere> • instructed to search

for, and output-any record whose.tag accumulator:contains a Value

of two or more. Thus the disk.wOuld need to rotate at least three

times to output the desired list Of. Greek restaurants. Mbre

rotations than three are needed if two . procesàots try tO . output a

record simultaneously (one of them'ill2be forced to Wait for:, a

Subsecfuent disk revolutioe.

• 	
The RAP device [2 8] is. more powerful than CASSS:because

there-•are k Boolean comparatOrs associated with each head: 	is

determined because' only prototypes Of. RAP have been built.)

As eachAata record passes underneath -the read/write head', it can

be checked 'for conformity> with 	terms . of a general,Boorean

function that describes the deeired .records; 	If the SelectIon

function contains . k or fewer terms, matched records can be output

-50-

immediately. If the'function has more than k terms, records that

 satisfy the first k terms are rewritten with some'mark-bits set.

.0n the next disk revolution, the Boolean comparators can check for

the next k terms of the selection function, and so on. 1

There are many other database machine designs that

support searching. These include LEECH [27], CASSM [37], CAPS

[2], RARES [25], DBC [3], RAPID [29] and STARAN [34],

- 	Searching is. not the only, - operation appropriate fora

database 'system. 	Other operations suitable'for the relational

database model include projection, join, union,:intersection and

difference. However,.according to one reference,[351, it is search

and join that are the most interesting for hardware enhanceMent.

The.join operation is more difficult ,to implement than a searCh

. (or selection) operation and not all designs for database machines

support- the join operation. Some' machines that do provide it

, include CASSM, RAP, LEECH and CAPS. HoweVer, the time required to

coMplete the operation is very data- dependent. It is typically

proportional to the number of tuples in one of the relations

participating in the join operation. Thus, machines such as RAP

and CAPS will usually require many disk revblutions.to complete

the processing.

Another operation which is useful but not required for

relational . ,-database system is sorting. .4 few machine designs do

provide for fast sorting . of tuples'(i.e. records) in relations.

-51-

These are RARES [25], the Chen Machine [11] and the Intelligent

Memory [14]. Sorting is nice for preparing output to pass on to a

user. Also, sorting hardware may be driven by software in order

to achieve the effect of a join operation (as is done in RARES)'.

Special hardware has been provided or proposed for text

retrieval applications. In a bibliographic system, the user is

usually permitted to search through the keywords associated with

the papers in the database or to search through the abstracts lof

•
the papers. 	The user might search for all papers where a

particular combination of words appears. A full text system would

permit users to search through the actual texts of the documents.

. 	.
The hardware used to,implement text retrieval ié not very . 	.

'different to that used for searching in database systems. :The

major differences only arise in the keyword matching - process. Mie

. 	.
specialized processors attached to read/write heads scan texte as

it passes underneath. RoWever, finite, state machine.logic may, :; be

used to perform pattern matching . on the text. • One 'simple form of

pattern matching-makes provision for "don't care" characters.. ...For

example, if a "don't care" is . indicated.by "?". then the - pattern

"BE?T" would match any 'of "BEAT", "BEST", etc. in the text. A
. 	.

more-general possibility is to provide ."variable , length dOn't

care" characters.' If "*" denotes such a VLDC then the pattern

"BE*T" -would match "BET", "BEAST", "BETTERMENT" › etc. By careful

use of "don't care" - characters, some controlled imprecision can be

added to à search. This can enable the user to.circUmvent . preblems

-52-

cauSed by many variants of a word being used in documents. iA

topiCal example would be the group of wcirds: ."computer",

"cotputing" and "computation".

Although there are: many proposals for'text retrieval

hardware, there appear to be few 'actual implementations.. One

implementation is the Associative File Processor [6]..

4e3 Simple Keyword A.ccess

The simplest approach tcr keywOrd -look-up woUld' use

prècoordinated keyword access. With this approach, the system.

implementors (or the information Providers) must initially'extract

keywords from documents and form them into table structures.

Since this is done in advance of any user input, thé term

"precoordinate" is used (to suggest prior coordination of the

keywords with tile documents). When the user specifies a keyword,

the system will only look for it in one or more of the previously

constructed tables'. 	Thus the users are constrained by the

contents and the organization of these tables. It takes very

careful design by the system implementors to make the keyword

tables useful and easy to use by subscribers.

A simple precoordinate 	keyword 	scheme has been

implemented in the experimental "Montreal Keyword System" [17] at

the Universite de MOntreale Keyword tables are associated with

some of the more important and strategically placed pages in the

-53-

database.. As an example, suppose that a user is currently viewing

page 12345.67 in the database when he inputs a keyword. The system

will search the table associated with page 12345, if there is one.

If there is no table, the system will check the ancestor page in

the hierarchy, page 1234, and search its table, if there is one,

etc. That is, the closest table along the path back . to the root

of the page hierarchy is searched. If the table contains the

specified keyword, the aseociated information will refer to a menu

. page for the appropriate subject and the system will display this

automatically. If the keyWord is not found, the table can specify

up to 10 other keyword tables to be searched nekt.

Because the tables :in , the -Mont*éal-Keyword System are

associated with particular pages, the tables can take account of

context .. For example, the tables can be set up SO that specifying

the keyword "GREEK" While looking.:at- any .page .,çonceriled with

restaurants 	will 	bring 	the user information on Greek

restaurants. HoweVer, specifying "GREEK" while *looking at a page

on the subject of travel.. may bring . .the user th information on

travel agents who provide vacations to Greece.

As described above, the keyword look-up is carried out as

the following logical steps:

L. Find the nearest page in the hierarchy .(along the path to

the root) that has an associated keyword table.

-54-

2. Locate this keyword table in memory or, if necessary,

fetch it from disk.

3. Search the table for the desired keyword: If it is

found, we are finished.

4. If the keyword was not found, we look up the location

the next keyword table to try and proceed as for step 2.

Some hardware assistance with steps 2 and 3 is possible. Some of

the logic-per-track devices discussed earlier would permit the

look-ups to be performed without actually having to read tables

into main memory. first. However, there would be little speed

advantage to this. The speed of the search is mostly limited by

the rotation rate of the disk. If the tables aie short, veiy

little CPU time is consumed.

Economies of scale are possible if all the stall keyWo'rd

tables are combined into a single" large table.. We. may still

logically view the data structure as representing many small

tables. There need not be a close correspondance between a

logical view of data and its physical realization. We propose

revising the steps needed to look-up a keyword as follows:

1. As before, determine the page p that has an associated

(logical) keyword table.

-55-

2. Search 	the 	combined 	table> for 	the • combination

<p,keyword>.

3. If found ., the associated information is retrieved and ïwe

are done. Otherwise, we determine'the-next page p whose

associated (logical) table is to be searched and go back

to step 2.

To implement step 1,_there'need only be a single bit in

the entry for each page in the 'page directory. -The bit- -Çgépüld

simply indicate whether the Corresponding page has an associated

(logical) table. For example,.if the user is currently viewing

page 12345, the system would check the bit for page 12345, thén

for 1234, then for 123, etc. until a page with the bit set is

 foànd.

• 	 To implement step 2, a wide choice of data Structures for

the table are possible. 	We could certainiy"use a hash table.

That is, a hash function is càmputed frém the <p,keyword>

combination and used to index the hash table. If the hash talae

is not heavilY loaded, the desired entry will be found almost

immediately. •

Step 3 .can be implemented by putting some extra entries

into the càmbined table. If the look-up with <p,keyword> fails .

then we could perform a look-,up with a special combination siich•as

<p,"???"> 	which 	retrieVes 	the number(s). of page(s) 'Whose

-5 6-

associated table(s) are to be searched next.

Now a single combined table is .certain to-be very large.

We can get around this by implementing the table in two lévels as

was suggested for the page directory in Section .2.3 of this

report. Thus some of thé most frequently used <p,keyword>

combinations could be kept in main memory and the remainder are

kept on disk. Alternatively, the whole table could be held on disk

and if it is not compressed intO too small a Volume, almost all

keyword look-ups would require jiist - a single disk read. .

Again, there is little need for special purpose hardware

to speed up the -look-up. The-only advantage Of logic-per-track

deviceS is that they have read/write heads for each track. Thé

processing capability . associated with.,eaçh head would. belargély

wasted. We can Obtain ,the same search rate by . using a (cheaper)

fixedLhead disk or drum device, which also haa one.head per traCk.

4.4 Postcoordinate Keyword Access

• • 	Most bibliographic retrieval systems use postcoordinate

keyword access. Their mode of operation is not difficult to

• describe.. Initially, every document in the bibliographic databaàe

• • is provided with, a list of keywords. (Some systems would require

abstracts to be supplied for every document.) . The keyword lists

are normally provided by the authors of the documents. If a user

• wishes to retrieve documénts relating, to Greek Restaurants, say,

-57-

he would specify the keywords that he thinks would define the kigd

of document he wants. 	For example, he might simply 	type

'RESTAURANT GREEK'. The system then searches through all tlie

. keyword lists to find one or more • documents where both _keywords

appear in the associated keyword list. 	 .

It is possible that the author of the dodument did not.

provide a good selection of keywords or that he used some

synonyms. For example, an author might have usee:the keyword

"CAFETERIA" and our user's search would nôt:lôcate this document..

Some - systems permit the.user to specify choices . (diSjunritions) and

 this mechanism 'could be usèd by a susPicious-user.to wid -eh hig

search.: He mayi . -for example,,entér his keyWod liàt . as

"(RESTAURANT or CAFETERIA) (GREEK . or GREECK)". This possible lack

of appropriate keywords (or keyWords that.the user would expect)

is, 'perhaps, the biggest problem for postèoordinate keywoftd

syStéms.

The idea of postcoordinate keyword searches is easily

adapted to videotex systems. Every information provider would,

presumably, be required to supply keyword lists for his mot

important pages. Such pages would be "gateways" into particular

subjects and would usually be menu pages. These keyword lists ai. e

held on-line in the videotex system. When a user specifies solhe

keywords, the lists are searched. Very often, there is more than

one page in the system whose associated keyword list matches the

action seems search criteria. In this situation, an appropriate

-58-

to be to display the matched page that is highest in the page

hierarchy (and consequently has the shortest page number). 	From

this page, the user should be able to use normal menu selection to

find the specific information page that he desires.

We will explain why • the highest page out of many that

match the search criteria is the most appropriate to display.

Suppose that the hierarchy of pages on the subject of restaurants

is structured as below:

RESTAURANTS

GREEK . TURKISH 	FRENCH «ea etc.

MONTREAL TORONTO VANCOUVER 	etc.

That is,.the menu page on the subject of restaurants display& the

choice of cuisine. After a User has selected which cuisine

(Greek, Turkish, etc.) he wants, he is next shown a menu page that

displays a choice of locations (Montreal, Toronto, etc.). • After

he has specified the -location, he may then be able to access

particular restaurants..

Now, one of the lower level pages would likely have all

• three of: the keywords ,"GREEK",. "RESTAURANT" and "MONTREAL". The

menu page at the level above (where the user is asked • to ,select

-59-

location) would just have the keywords "GREEK1 and "RESTAURANT'.

Therefore, if the user requests a search on the kèywords "GRE,Ek

RESTAURANT", one Menu pag e . at the second level and many .pages et

the third level of this sub-tree in the hierarchy would match.

Clearly, it is the highest page in the hierarchy that is the most

appropriate (in the absence of any information that specifies the

desired location).

On the other hand, if the uaer were tà SpecifY.the

keyword cembination "RESTAURANT MONTREAL", thete Would be :many

pages at the same level« in the hierarchy that. match. That is, the

search should find pages on Greek restaurants, French restaurants,

TurkiWn restaurants, eté., all in Montreal.. Possibly the user

should . be shown the,lowest common ancestor of-all ,these pageà in

the hierarchy .(the initial menu page for.. 1RESTAURANT") . . The user

• would probably prefer to be shown the first of 'the pages«.thet

•match and be permitted•to• step thtough . all of' theSe matching

pages. 	However, this capability would either requite searehes)to

berepeated or It wOuld -require a - (possibly) . large àMonnt of extrà
,

context information to be retained (the list of page numbers).

A postcoordinate keyword system is relatively easy for

the user to .understand and quite 'flexible. Users are ',lot

constrained to . predefined access paths information, as with

menu selection or with precoordinate keyword systems. However,

the flexibility comes at a price. Let us.firet estiMate the amàunt

of storage occupied by the keyWord. liSts and then estimate . the

-60-

search times,

a minimal size system of 50,000 pages, - there might 1:te

about 10,000 menu pages (assuming an average branching . degree of 5

at each level). .Pérhaps not all menu pages would have associated

keywords, so we will use a conservative estimate of 5,000 keyword

lists. An average of five keywords per list is another

conservative estimate. We wil l . guess thàt the. average keyWôrd

contains - 8 characters (keywords tend to be longer words than an

average word in English prose). - These numbers multiply . to give a

lower bound of 200,000 characters. In addition, there would .be

- extra storage needed to delimit the keywords and the correspànding

page numbers must be stored. Èresumably, total storage

requirements that reach a few megabytes .„and are not unreasonable

for keyword lists of larger videotex systems.

• 	According 	to 	one - - solirCé- 	[33],. , ' an 	ikplèmented .

bibliographic seatch system that runs on an IBW-370/1 :58 .computer •

searChes through text at a rate of 100,000 characters per second.-

 Even with our minimal estimate of a. 200,000 character list, , a

simple keyword search would take 2 seconds. If the keyword list

Can be held . entirely in main memory ,and if efficient search

.algorithms programmed in assembly. language are used, faster search

rates are possible. In one experiment on an Amdahl V7 computer

122], search rates - between 2 and 9 million characters' per second

were observed. (The range reflects dependance on the length of the

speed over the previàus 'keyword.) Much of. the iMprovement

-61-

measurement is due to the fact that an Amdahl V7 is about six

times as fast as an IBM-370/158. At a search rate of 5 million

characters per second, it would take 0.04 seconds of concentrated

CPU activity to search the small list.

-These search speeds are much too slow for a system like

videotex where hundreds of . users will be active at any time. If

postcoordinate keyword search services are to be provided tci the

majority of users, it is.clear that some hardware assistance :is

essential. We should now Consider how fast database machines, as

described earlier in Section 4.2, can perform keyword searches.

If.a . modified disk, a logic-per-track device, is .used

then all the devices described in the literature require et least

.one disk revolution per. - search. Most devices: requiré one

revolution per keyword if a çonjunction Of keyword's-is Specified.

The RAP system isaft exception becausè it Would be..able tà handle

k keywords.in one revolution.. Now most disks-reYolve'60f:tiMes per

second'. Thus, the- logic7per-track devices rePorted in the

 literature could handle fewer than'60 keyword look-ups per second.

 Possibly, this search rate can be improved if thé keyword lits

are replicated on the disk . . - For example, if the keyword lists

occupy less than 50% of the disk.capacity, the disk surfaces co4ld

be .divided into two semicircles, each containing . ail 	the

information. In this case, each search would require only half of

a revolution.

-62-

For faster search rates, it seemé necessary to use SoliA

state memory devices, such as CCD or Bubble memory. In fact, A

prototype of the RAP machine [28] has been built with CCD.memory.

These memory devices are normally too expensive for use in large

database systems. However, if our estimates are Correct, leap

than à megabyte of storage would .be. needed to support keyword

access in a moderate size videotex system. With this quantitY,

the cost is no longer an issue (about $10,000 for one megabyte of

CCD memory). 2 •

With such memoty .devices, the time teqùired to'locate,

retrieve and search , one 32 Kbyte segment of .kelaoty shoulcU bé

between' . 200 and 500 microseconds [4].: The time dependà on the

particular memoty configuration in use and" on how coMplex- the

search is. At this rate, :the system could perform betWeen 250 . and

600 searches per second through 256 Rbytes:of kèyword:infCtmation. .

Without any prior experience, it is difficult.to - gueSs

how frequently users will request keyword Aearches.. Presumably,

users will tend to rely on a keyword searchônly to - get to)a

suitable starting page in the hierarchy. From that Point on,

normal menu selection and sequencing through pages should be

:sufficient. • If we .envisage a system with 1000 *users who

collectively access pages. at a rate of 100 per second then a

search request rate of. around 20. per second should be reasonable.

This would probably be too much'.for the standard logic-per-traék

devices used in database machines (at best, it would be marginal) .

-63-

However, corresponding devices that use CCD or Bubble memory

should be quite fast enough.

-64-

5. VIDEOTEX ACCESS MACHINES

5.1 Introduction

Any videotex system çonsidered so far has been physically

impleMented as a single CPU and data base serving a population of

. users. Like . any on-line computer system, such a configuration has

a Practical maximum number of simultaneous users, beyOnd which the

response time becomes intolerably long. The most obvious way of

serving à largerpopulation'of users is to ,duplicate the entire

system as many times as necessary, which leads to update problems

and offers nô economies of scale, since the cost per user remains

the same. A better solution is to have-users connected-to,a

,number of satellite machines which in .turn are connected t(i

central *machine containing the data base .; The satellites; or

Videotex Access Machines (VAM's) would contain temporary storage

for the most frequently accessed pages using the Memory hierarchy

idéaS of section 2. In this case however, the memory hièrarchy

exists.. between the VAN and the central machine with the - small.

subset of most frequently accessed pages stored in the VAN. For

example, consider once again . a videotex data base whose pattern of

accesses follows the 90-10 rule. The VAN c.ould therefore satisfy

90% of all requests made to it by storing the most frequently

accessed 10% of the data base. The remaining lp% of requests are

passed on to the central machine, and the pages when received ate

. used to keep the most popular .page list up to date using one of

the page replacement policies described in section 2.4.

-65-

Considering the user population as a whole,•the cost per: l

user for the VAN configuration can be shown to be lower than for

the replicated system.configuration. For simplicity, assume that

the MI and central system are identical except that the VAN disc

storage- is only 10% as large. USing again' the .90-10 ,rule, the;

Central system in the" VAN configuration can.then.support 10 VAM'a

since each one .passes on 10% of the requests it receives

Therefore eleven systems are used to increase the user population

tenfold. This is however less expensive than using.ten copies of

the :central system because the-smaller disc..storage On'the - VAM'is

considerably cheaper. • •

In additiOn many of the advantages of 'idistributed

computing apply' to the VAN configuration. 	The VAM's can bè

. 	.
located physically close.to the users, saving communication costs;

and the single connection to the pbssibly distantcentral . machiné

' 	•
is effectively shared Sy alruiers of the'VAM : The VAN

direct user interfacing and 'buffer 	handling ..a.à 	well 	as

housekeeping tasks such as logon, user identification and usage

statistics, so that the central 'machine need 	only 	accept

pre-processed page requests and return the pages demanded. Such a

distribution of functions over two -machines allows -each to be

optimized for its specific task, resulting in greated overali

efficiency.

Extended videotex features can also be -naturally handled

by the VAN configuration. Teleaoftware and action pages could be

-66-

executed on the VAM where extra CPU power can be provided as

needed. Keyword searches could be partially implemented on the

VAM using the same policy as used for temporary page storage, that

is the most popular keyword indices would be stored in the VAM so

that only a small portion of keyword lookups or searches would be

done on the central machine. The configuration also allows more

general networking since a VAM can access several central machines

as easily as one. This provides users with a gateway function

where access to remote data bases is provided as naturally as

access to the central machine. -

* The design and. implementatiOn Of a Videotex . AcceSS

Machine is a ctirrent research • topic at *the'Universit6 de Mcintr6ai.

It is to be implemented as a multi-Micro-CPU system with a single

disc and programmed in a programming language. The

disc implements , the: , local'storage-of most popular page:I, and as

many UPUs are Provided al needed.to . handle the user 'procesainà.

Modern concurrent.languages such as' COncurrent Pascal.ôr Modula 2

are - designed to allow efficient multi-programming . on a "bare"

machine, that is without the use of a general purpose operatilig

system and the overhead it requires. In this way the machine

dedicated precisely to the task represented by the concurrent

program. In the remainder of this section we will describe hOw

such a system might function and provide an analytic model of the

system capacity for a given hardware configuration.

I 	I
1 vAm 1
1 	I

I 	I
VAM

I
1 VAN 1
I I

User
. Terminals

User
: Terminals

•

•

User
1 VAM 1 	Terminals

I 	I

-67-

High speed lines 	Low speed lines

Central

System

Overall VAM System Configuration

Figure 5.1

User
Interface

User
Terminals

•
•

*MD MM.

I 	I 	I
1 	1 	I

11
-11 	1,

0.111

I 	I CPU 	I User

1 --- 1 	r--- 1 	I • Terminalà

I 	• I 	I 	I

User

Interface

".\\\

. [Page I
. 1MemoryI

-68-

High
Speed
Bus

	

I 	1 	I

	

1 	.1 	I

	

Interface I 	I—I
1 	1 	I

00 am nnn

Bus CPU

Bus
Interface

Communication
Interface Interface

To central 	 7--
System 	I 	1 	I . 	I I 	

Bus I

II I I I Interface
To remote
Systems
(Gateways)

A Possible VAM Configuration

Figure 5.2

-69-

5.2 System Configuration

The VAN machine is physically implemented as - a .single

disc drive and enough CPU's to handle user processing and I/O. If •

more than one CPU is used then the system components are linked

. together using' a shared high speed communication link. The

• components in thiS case are complete micro-computer systems

consisting of a CPU, memory and usually - sôme sort of I/O facility.

The concurrent program implementing" the VAN sYstem aSs. whole

Consists'of several concurrent processes that communicate amoung

themselves and, in a given implementation these processes'are

distributed over the CPU's. There is no conCeptuar différenèe

between inter-process COmmunicatiOn taking place-ôn - âne CPU or

between two CPU's so the structure of, the overall: concurrent

program is independent of the physical realizatiOn on one or more .

CPU's. It is practical considerations that 	determine 	the

distribution of proceSses over the CPU's ; for inStancé the

prOceSsing and I/O capacity Of à Single CPU and the SPèee . lienalty

of cOmmunicating between twO - CPU'.'s.

Since as many CPU's are used as needed, the throughput of

the system is limited by the average service time of the disc. If

the requests to the disc are treated in the order received, this

time is dominated by the average seek time of the disc. However

disc scheduling algorithms, which take into account the current

head position of the disc, allow a reduced average service time at

the cost of a greater variance since requests are not treated

-7 0-

the order in which they are received. According to Teorey [43] the

SCAN algorithm, where the head shuttles back and forth servicing

requests waiting along the way, is the best method for low ,to

moderate disc loading. We will assume in our model that all VAM

disc accesses are made using this method. •

Although the VAM stores only the Most popular pages ,in

the system, the memory hierarchy ideas of section 2 apply as Well

to the VAN taken by itself. Of the pages stored on the VAM, the

most popular of these in turn can . be stored-ta. memory to reduce

the load on the disc. However the direCtory . storage cannot be

handled exactly as considered before because the set of pages on

the VAM is continually being updated. When a new page is 'stored

In the VAM, an old one must be. deleted. If the corresponding

directory entries were stored . on disc, this would require two

extra disc writes to bring them up to date. Conàidering.alSoltat

the set of pages on the VAM is already fairly small, wé propose

storing the entire'VAM page directory in memory.. .

Estimating the number of CPU's required for a given

configuration is difficult because the CPU processing required , is

low while the I/O throughput required is relatively high. For

example, if each user request needed 5 ms of CPU time (1000

instructions on a slow machine) then 200 users each generating one

request every 10 seconds on the average would present only a 10%

load on the CPU. On the other hand, assuming an average page size

of. 1000 bytes, the same population of uiers would present' an I/O

-71-

load of two times 20 Kbytes per second, assuming the CPU must

receive the data from somewhere (disc or another CPU) and send it

to the user terminals. While this is well within the overall DMA •

range of even a slow machine, it is still not necessarily true

that a given CPU could support that many users, given such

practical constraints as the number, of I/0 boards that can,be

plugged in or how many devices can contend for DMA. In addition,

extended features such as telesoftware and keyword searches

require CPU processing. However it is difficult to estimate how

much they require until usage statistics on,„these features become

available. It is for these reasons that the VAM is conceived as- a

multi-CPU system with the flexibility of adding processors to the

- system as needed. 	•

Figure 5 ..2 gives a possible Configuration where the 1.1fier

terminalS are divided between - twO - CPU's and a third . CPU is usedli to

manage - the local storage and intèrfaCe with the central Systeiné.

In -this instance additional user interface . CPU's . may ,- be addéd

•without changing the basic structure..

5.3 System Modelling.

The VAM system model is based on three input parameters.

Firstly, the capacity of the disc determines what proportion (:)f

requests can be satisfied locally without accessing the central

system. The larger the disc, the greater this proportion and 'so

greater is the number of VAM's the central sYstem can support.

-72-

• Secondly, the size of page 'storage in memory determines what

proportion of requests serviced by the - VAM can avoid acceSsing the

disc. Increasing the size of this storage reduces disc'accésses

and therefore increases the potential number of 'on-line users..

Finally, the disc characteristics.determine the practical limiton

the rate of accesses to the disc which along with the prevIous

point determines the number of users.that the system can handle.

We use queuing system analysis to model the performance of the

system for various user loads.' To determine the relationship

. between the size of local storage and the proportion of reqUeSts

that it can satisfy, we use the Yield formula, introduced Un

section 2.5.2.

Taking the VAM and centrai 'system as a Whole,.the

response time for various user request rates can be modelled by

:queuing system analysis. The usual measures are average resPénàe

• time and 90% time,' the time in whiéh 90% of all requests are

satisfied. 	Putting a given limit on the response time imposes

through the model a limit on the user request rate. • In the VAM

system, the response' time distribution is a weighted'sum of twd

disjoint cases: the response time of the VAM for pages it stores

locally and that of the central system for requests it receives

from the VAM.

The response time of the VAM for locally stored pages .is

the more important of the two since we expect most page requests

to be satisfied locally. We will model this as just the disc

- demanded.-

-73-

response time since the CPU processing'time is insignificant in

comparison. Although a queuing model analysis of a disc - using the

SCAN algorithm is very-complicated, Teorey [43] proidès depen . form
•

equations-that can be used to numerically determine the mean and

variance of the response time as a function of the request rate,

given the characteristics of the disc drive in question.

For requests made to the central system, we will model

the response time as the sum of the central disc response time and

the communication time between the two systems, again ignoring the

CPU processing time. Since we are just concerned here with the

configuration of the VAM and since this class of requests

represents only a small proportion of the total we will simply

estimate a value for the central system disc response time. The

communication time will be twice the transmission delay between

the two systems, for sending the request and receiving the page

	

Letting 	El"; be the average reèponàe•time of'the•VAM for

local requests , n the average response .time of the central •

- system and 	pv 	the proportion of requests serviced by the VAM,

then the average combined response time is . :

(Eqn. 9)

Ifwe specify an acceptable response -time_ for the system, the

value of tv can be found given pv . and . an estimateof - tc.• The

.queuing model then givesthe corresponding disc accese rate •from

Which -the maximum number Of on-line Users can be determined.

tr = pv-tv. 	+ 	- pv).tc

-74-

In order to calculate the 90% time we use Allen's

extension to Martin's estimate which states that the 90% time is

equal to the mean plus 1:3 times the standard deviation [44]. For

this we need the variance of the combined response time which is:

var(tr) = pv.Var(tv) + (1 - pv).Var(tc)

+ pv.(1 - pv).(tv - re)a 	(Eqn. 10)

In order to determine how much - local page store sh6uld

be allocated on the VAM, we need to know the frequency

distribution of page accesses. For a small set of .test,-.data, this

was modelled quit e . well using the Yield formula,.at 'least up-to

about the •85th percentile of :accesses

However, no data was available to the authors for a more realistic

siied data base of say 50,000 : pages. Therefore we 'present in

Appendix A2 a meèhod of extrapolating the formula alreadydbtaj:ned

to apply to a larger sized data base.

Here we repeat the new Yield formula derived for a data

base of 50,000 pages:

,

fb2(m) = 0.114 log(m/0.731 +1) - 0.069 	(Eqn. 11)

Note that as. in the -case of the original formula, if we set fb2(m)

to 0.85 or greater and solve for m ,,we get values that - aretoo

small because of the non-linearity of the data in this range.

This new formula corresponds however to a 92-8 rule, so we will

revise this downward to. the more conservative, 90-10 used in

previous . examples. Obvlously more-work is needed to fit, a formula

-75-

to the non-linear part of the curve in order to determine such

values with some confidence.

Letting pv be the proportion of requests to be serviced

locally by the VAM then the Yield formula gives the amount of disc

storage necessary. Similarly, letting pm be the proportion of

requests to be serviced directly from VAM memory, avoiding disc

accesses, we can calculate the amount of page storage necessary.

Given the bove proportions, we can calculate the average

number of disc accesses per user request. This gives Us the

maximum user request rate given the maximum disc access 'rate

determined from queuing analysis. The maximum:number of on-line

users can then be found from the average rate at,Which each 'User

makes requests to the system. Each user request generates

pm)' page reads on the average becaUse Pm - O'f''the reads go

memory and 	7 pv) go to the Central systeM. in addition it

generates (1 - pv) disc writes becausu pages from thé centrel

 system are kept on the VAM disc to keep - its pages list up tO'date.

The total number of disc:accesses on the average is then:

pd = (pv - pm) + (1 - pv) = 1 - pm 	'(Eln. 12)

This turns out to be independent of pv, decreàsing as'

increases.

(pv

5.4 A System Example

-76-

In modelling a hypothetical VAM system, we will use the

following parameters:

Data base size 	= 50,000 pages

Average page size 	= 1,000 bytes

Average user request rate 	= 1 page per 10 seconds

per user

Average system response time = 	= 1 second

90% response time 	= 2 seconds

We specify the proportion oe requests to be serviced by

the-NAM and the smaller - proportion to be serviced from VAM 111Mory

. Q.9

pm = 0.4

As mentioned earlier, increasing 	pv . increases the

number of VAM's that can be connected to the central system but

costs VAM disc storage and directory space, while increasing

increases the number of users that can be connected to the VAM but

costs VAM memory space. If the costs of all system components

were known, including the central system and the communication

links, it should be possible to minimize the cost per user as a

• function of pv and pm . However we simply specify what seem to

• be reasonable values, since we are concerning ourselves here with

the VAM system alone.

Pm

-77-

Given the value of pv we can use the 90-10 tuIeto

predict that the VAM disc must have a capacity of 5,000 pages or 5

Mbytes. This is in the range of Winchester type discs dow

available, which also have the virtue of being compact and fairly

inexpensive. Using the estimate in section 2.3 of 14 bytes per

directory entry then we also need 70 Kbytes. memory for

directory space. To find the memory. space needed for 'pages . we

.solve fb2(m) .= pm (Equation 11) which gives a value of. m = 44.-

Therefore the 44 most popular pages in the data base will satiàfy

40%.of all aCcesses. This reqUires a - memory space Of 44 Kbytes.':

To 	model the disC. responSe- time' we will use the

characteriètics of the IBM 2314 : type' disc becauSe Teorey:' . (43]

provides complete data on it and because its average access time

of 72 ms is within the range of current Winchester type discs. A

more detailed analysis based on a particular disc would use the

explicit formulas Teorey provides. '

Using a central system response time of 1 second andi a

data transmission delay of 1/4 second we have n = 1.5 second.

Using the values of tr and •pv given we can solve Equation 9'to

yield tv = .94 second, the required average response time of the

VAN disc. From Teorey's Figure .8 this gives a disc access rate.'of .

27 requests per second. His formulas give also var(tv) = .602 V.

Estimating the variance of the central system to be 1 second

(exponential case), Equation 10 gives var(tr) = .607. The 90%

time is then tr + 1.3 s.d.(tr) =1.95 seconds, which is within

-78-

the required range.

Equation 12 gives pd = 0.6 disc accesses on the average

per user request. Therefore the system will support 27/0.6 = 45

user requests per second. Using the user request rate given of

one per 10 seconds, then the system can support 450 on-line users.

With the estimate in section 2.2 of 34 bytes for the user context

this requires a total of 15.3 Kbytes of storage.

As we saw in section 5.2, even 450 users would'nt

present much of a load to a single 	CPU, 	but 	practicàl

ttl, be considerations would probably cause the user interfaces

divided amoung two or more CPU's.

In summary then . a VAM system can service 1 90% of requests

to a 50,000 page data base -. using a Winchester type disc with 5

Mbytes of storage. The system can support '450 on-line us'ers

about 130 Kbytes of memory for data storage. The exact number

CPU's and the ammount of memory needed foi ii. rograM stOrage -kuat be

determined experimentally.

of

-79-

6. CONCLUSIONS

The main conclusions from this work may be summerized ,as

follows:

Conclusions 	relating 	to 	storage 	structures 	of

page-oriented databases:

The memory space required in central memory for the

storage of the user context information for the active subscribers

is small compared to the size of the page directory, and . to the

space that.may be occupied by.moSt frequently accessed information

pages. 	 • _

Among the different replacement strategies for deciding

which pages to put from the fast buffer memory into the slower

disk storage, such as "last recently used", "least frequently

used", or ".CLIMB", the CLIMB algorithm seems to be the the best.

However, further reseach is required to determine how it could be

best adapted to the videotex environment, including the

det«mination of certain operational parameters.

Optimal allocation of the information pages onto fast

buffer memory and slower disk storage.can be determined based'on

the non-uniform access pattern, of the subscribers to the data.

However, not enough statistical data is currently available on

such usage patterns to makdgeneral conclusions' on such optimal

-80-

allocations.

A hashing technique seems appropriate 	for 	finding

requested pages in the database. Part of the hashing directory.may

be resident in the main memory of the computer.

The memory allocation strategies discussed above are

applicable for both telephone and TV channel transmission, as long

as pages can be arbitrarily requested by the subscibers.

In the case of a broadcast cycle combined with directly

requested pages, the strategy for placing certain pages on .the

broadcast cycle or not may be determined by the same method as for

the question or placing pages in fast or slower memory. (see

above).

types

Allocating the memory storage . hierarchïover twO separate

'machine results in'à distributed'videoréx . system.with

several advantages over a centralized system. The user interface

machines can service large numbers of subscribers using relatively

cheap hardware.

Conclusions relating to keywords.

For the implementation of simple keyword ac.cess, theuse

of hashing techniques seems quite appropriate.

-81-

• For the implementation of keyword search with boôlean

conditions, the use of special-purpose. hardware, . such #s“CCD

devices or bubble memory may be useful, but it is not - clear

whether its use would be economicàlly advantageous at this tiMe.

-82-

BIBLIOGRAPHY

	

(1] 	Aho, A.T., Denning, P.J., and Ullman, J.D.."Brinciples:of

Optimal Page Replacement". Journal of ACM, 18, 1 . (Jan.

1971), pp. 80-93.

	

•[2] 	Babb, E., "Implementing a Relational Database by Meàns . of

Specialized Hardware". ACM Trans.-on Database . Systems, 4, 1

(March 1979).

[3] Banerjée, J., and•Hsaio, D.K.."DBC - A Databàse Computer for

. 	Very , Large Databases". IEEE Trans. on Computers, 	3

(1979).

[4] Berra, p.B., and Oliver, E.. "The . Role': of. Associative

Processors in Data Base Machine Architècture"..Computer, 12,

3 (March 1979),. PP • 53-61.

[5] Bhandarkar, 	D.P., 	Barton, J.B., and Tasch, A.F.. Jr.

"Chargé-Coupled Device Memories:' A Perspective". Computer,

12, 1 (Jan. 1979), pp. 16-24. 	 • 	•

[6] Bird, R.M., Tu, J.C., and Worthy, R.W. "ÀasociativeParallel

Processors for Searching .:Very. Large TextualData Bases".

Proceedingi of 3rd Workshop on Comp. Arch. for Nonnumeric-

Processing, (May 1977), pp. 8-16.

[7] Brookes, 'B.C. "Bradford's Law and the BibliograPhy

Science". Nature, vol. 224 (Dec. 1969), pp. 953-956.

[8] Bunt, Ra., and 11arbus, R.S. "An Evaluation of Paging

Storage 	Hierarchies". 	Tech. 	Report 	80-8, 	Dept. of

 Computationaï Science, University of Saskatchewan, 1980.

-83-

(9] 	Bunt, R.B., Harbus, R.S., and Plumb, S.J. "The Effective

Management of Paging Storage Hierarchies". Tech. Report

82-3, Dept. of Computational Science, University of

Saskatchewan, 1982.

[10] Chang, E. "Sending Pages" (page 165) in The Telidon Book

edited by D. Godfrey and E. Chang, Press Porcepic, .Toronto,

1981.

[11] Chen, T.C., Lum, V.W., and Tung, C. "The Rebound SortertAn

Efficient Sort Engine for Large Files". Proc. 4th Intl.

Conf. on Very Large Data Bases, (1978), pp. 312-315.

[12] Chi, C.S. "Advances in Computer Mass Storage Technology".

Computer, 15, 5 (May 1982), pp. 60-74.

[13] Denning, P.J. "Virtual Memory". Computing Surveys,

(Sept. 1970), pp. 153-189.

[14] Edelberg, M., and Schissler, L.R. "Intelligent Memory".

Proceedings of 1976 NCC. AFIPS Press, pp. 393-400. 	?

[15] Franaszek, P.A., and Wagner, T.J. "Some Distribution-Free

Aspects of Paging Algorithm Performance". Journal of ACM 21,

1 (Jan. 1974), pp. 31-39.

[16] Fredkin, E.H. "Trie Memory". Communications of ACM, 3; 9

(Sept. 1960), PP- 490-499.

[17] Gecsei, J. "Montreal Keyword System". Technical Report 431,

Département d'informatique et de recherche opérationnelle,

Université de Montréal (Dec. 1981). 	,

[18] Godfrey, D. "Hardware Configurations for Telidon Videotex

Systems" (page 98) in The Telidon Book edited by D. Godfrey

and E. Chang, Press Porcepic, Toronto, 1981.

-84-

(19] Groos, 0.V. "Bradford's Law and the Keenan-Atherton 'Datel.

American Documentation, 18, 1 (Jan. 1967), P. 46.

[20] Haspers, J.H. "The Yield Formula and Bradford's Law". J. Am.

Soc. Inf. Sei., 27, 5 (Sept. 1976), pp. 281-287. 	6

[21] Healy, 	L.D. 	"A Character-Oriented 	Context-Addressed

Segment-Sequential Storage". Proceedings of Third 	Ann.

Symposium 	on 	Computer Architecture, (Jan. 1976), pp.

172-177.

[22] Horspool, R.N. "Practical Fast Searching in 	Strings".

Software - Practice and Experience, vol. 10 (1980), pp.

501-506.

[23] Houle, J.L., personal communication, 1982.

[24] Lafitte, C. "Simulation de Réseaux de Télécommunications

Domestiques". 	M.A.Sc. 	thesis, 	Département 	de 	Génie

Electrique, Ecole Polytechnique, Montreal, May 1980.

[25] Lin, C.S., Smith, D.C.P., and Smith, J.M. "The Design of

• 	 Rotating Associative Memory 	for 	Relational Databaée

Applications". ACM Trans. on Database Systems, 1, 1 (MarCh

1976), pp. 53-65.

[26] McGill University Computing Centre "Introduction to Disk and

Tape Usage", 1982.

[27] McGregor, D.R., Thomson, R.G., and Dawson, W.N., "High

Performance for Database Systems". Systems 	for 	Lare

• Databases, North-Holland, 1976, pp. 103-116. 	;

[28] Ozkarahan, B.A., Schuster, S.A., and Smith, K.C., "RAP - An

Associative Processor for Data Base Management". AFIPS

Conference Proceedings, 1975 NCC, pp. 370-387. 	•

-85-

(29] Parhami, 	B. 	"A Highly Parallel Computing System for

Information Retrieval". AFIPS Conference Proceedings, 1972

FJCC, vol. 41, pp. 681-690.

DO] Parker, 	J.L. 	"A Logic per Track Retrieval System".

Proceedings of IFIP Congress (1971), pp. TA-4-146

TA-4-150.

[31] Peachey, J.B. "The Bradford-Zipf Distribution and Program

Behaviour". Tech. Report 82-1, Dept. of 	Computational

Science, University of Saskatchewan (1982).

[32] Rivest, 	R. 	"On 	Self-Organizing 	Sequential 	Searoh

Heuristics". Communications of ACM, 19, 2 (Feb. 1976), pp.

63-67.

[33] Roberts, D.C. "A Specialized Computer Architecture for Text

Retrieval". Proc. of Fourth Non-Numeric Workshop, (Aug.

1978), pp. 51-59.

[34] Rudolph, J.A. "A Production Implementation of an Associative

Processor: STARAN", AFIPS Conference Proceedings, 1972 FJCC,

vol. 41, pp. 229-241.

[35] Smith, 	D.C.P., and Smith, J.M. "Relational Data Base

Machines". Computer, 12, ,3 (March 1979), PP. 28-38.

[36] Standish, T.A. Data Structure TechniqIues, Addison-Wesley,

1980.

[37] Su. S.Y.W., and Lipovski,HG.J. "ÇASSM: A Cellular System for
. 	_

Very Large Data Bases". Proceeding's of Conf. on Very Lar:ge

Data Bases, (Sept. 1975), pp. 456-472.

[38] Zipf, G.K. Human Behaviour and the Principle of Least

Effort, Addison-Wesley, 1949.

-86-

(39] Bochmann, G.v., Gecsei, J., and Lin, E. (BC Telephone

Comp.), "Keyword access in Telidon: An experiment", Proc.

Videotex 82, to appear.

[40] Ball, 	A., 	Bochmann, G.v., and Gecsei, J. 	"Videotex

Networks", IEE Computer, vol. 13,no. 12 (December 1980),

pp. 8-14.

[41] Ball, A., Bochmann, C.v., and Gecsei, J., "User interfaces

for videotex", Techn. Report, Univ. of Montreal, 1981.

[42] Tompa, F.W., Bochmann, G.v., and Gecsei, J., "AlternatiYe

database strategies for videotex", chap. 8.5 in The Telidon

Book, ed. D.Godfrey and E. Chang, Press Porcepic Ltd.,

Toronto, 1981.

[43] Teorey, T,J., "Properties of disk scheduling policies in

multiprogrammed 	computer 	systems", 	AFIPS 	Conference

Proceedings, Fall Joint Computer Conference, vol. 41, 1972%

[44) Allen, A.O., "Elements of Queuing theory for system design°,

IBM System Journal, vol. 14, no. 2, pp. 161-187 (1975).

-87-

APPENDIX Al - FITTING THE BRADFORD-ZIPF DISTRIBUTION

The following equations provide a convenient method of

finding the parameters of the Yield Formula used to describe the

Bradford-Zipf distribution.

The general form of the Yield Formula is:

fb(m) = h log(m/u + 1) + fb 	'

,
Initially, we find three values for m such thatthe

corresponding fb(m) values are equally spaced. That is, we find

ml, m2 and m3 such that:

fb(m1) = A

fb(m2) = A + B

fb(m3) = A + 2B

Then we compute h, u and fb(0) as follows:

m2**2 - ml*m3

ml - 2*m2 + m3

h = B / log(b) where b = (m2+u)/(ml+u)

A 	 fb(0) = A - h*log(m l/u + 1)

-88-

APPENDIX A2 - EXTRAPOLATING THE YIELD FORMULA

Given that we have a yield formula that applies-to a

small test data base, we propose to extrapolate this formula for a

larger sized data base by changing the parameters of Equation 2.

First we note that the factor h appears 	in 	the

calculation of fb(m) for all values of m except m=0. Setting b0 =

fb(0)/h we have the more natural form

fb(m) = h (log(eu + 1) + b0)

= h (log(m + u) 	log u + b0) 	(Eqn. Al)

Here the equation is seen to be linear in log(m + u)

• with slope h. Letting M1 be the data base size, we should have

fb(M1) = 1, a cumulative access probability of unity. For a larger

data base size of M2 , we would have another Yield formula fb2

such that 	fb2(M2) = 1. The second formula can then be derived

from the first by Changing the Value - of -h.

-89-

1.0 +

I 	slope
Cumulative 	1 	= hl
Probability

= fb(m) 	0.5 + 	
slope
= h2

	

0.0 tre- 	
log(Ml+u) log(M2+u)

m = Number of Pages

Expected Yield formulas for data base sizes MI and M2

Figure Al

If we keep u and b0 constant then h 	is determined

solely from the value of M , the data base size. The real data

however is only linear for low values of 	m , after which the

curve falls off (the "Groos Droop"), so the slope h calculated

from the data is larger than we would expect.

ideal ,
curve 0.5 +

- -90--

1.0 +
. I 	real

Curve

.1
0.0

log(M+u)

Comparison between the Yield formula and the actual data

Figure A2

If however we postulate that the slope calculated from

the data is proportional to -i the ideal slope calculated from the

data base size, then this proportionality can be maintained for

the extrapolated equation by multiplying by.the ratio of the. idèal

slopes. For this we need an expression for the ideal slôpe h° :as

a function of the data base size M. USing fb(M) = l'as before - we

have: .

1
h ° = 	(Eqn. A2)

log(M + u) - log u + b0

Letting hl be the slope calculated from the data gor

the test data base of size M1 , we calculate h2 the slope for a

data base of size M2 using a factor k such that h2 = k hl.

The factor k is then

log(M1 + u) - log u+ b0
k 	(Eqn. A3)

log(M2 + u) - log u + b0

-91-

Substituting values from the equation' ln section 2.5 ànd

using M1 = 3795 and M2 = 50,000 we get k = .755 'which gives a

new Yield formula applicable to a data base of 50,000 pages,

fb2(m) = 0.114 log(m / 0.731 + 1) 	0.069 	(Eqn. A4)

ii iii 	liii

nORSPOOL, R. NIGEL
Memory structures for videotex

ayatems

DATE DU E
DATE DE RETOUR

91
C655
R67

1982

LOWE-MARTIN No. 1137

