
TECHNIQUES FOR IMPROVING THE RELIABILITY OF

DATA TRANSMISSION OVER THE HF RADIO CHANNEL

FINAL REPORT

by

Alberto Leon-Garcia
Department of Electrical Engineering
University of Toronto
Toronto, Ontario

31 March, 1984

prepared for

Department of Communications, Canada
under Contract 0ST83-00101

I
Ups5
L 4

1/4f rhi4,6
"PL

—
Industry Canada
Library Queen

JUIL
JUL 2 1 1998

Industrie Canada
Bibliothèque Queen

v%11
91
C655
L455
1984

1,0 INTRODUCTWII

This report presents the reaulta of ae'Veral investiga-
tions concerning the application oe Viterbi dedoding to
transmission ove r the Syncompex binary FSK modem. The report
is organized as follows. Section 2 disousses the implemen-
tation of a real-time VI -de/15i decoder for use 'with the Syn-
compex modem. The organization of the software that implements
the Viterbi decoder is discussed in detail and documentation
is included in Appendices. Speed and memory requirements
are also discussed. Section 3 considers several performance
issues of Viterbi decoding. Experimental and simulation re-
sults are presented for the performance of the decoder for
various settings of decoder parameters. Simulation results
are also presented for the performance of Viterbi decoding
when combined with internal interleaving. Finally Section 4
considers the extension of the present transmission protocol
to a system that utilizes a multi-FSK signal format. The
present transmission protocol is analyzed to establish a
basis for the evaluation of the other protocols. The trans-
mission protocol discussed by Lin is analyzed in detail in
the context of Viterbi decoding. Methods are developed for
evaluating the throughput performance. This protocol is then
compared to selective repeat ARQ and to selective repeat ARQ
with code diversity. A new adaptive protocol is proposed
that achieves the performance of the Lin protocol while re-
quiring a simpler implementation.

lenk

Ul N
jUNE

S21 1284

.11BRP,11\1 -

2.0 REAL-TIME VITERBI DECODER

The first objective of the project was the implementation of
a 	real-time 	Viterbi decoder for use with 	code-diversity
transmission on the Syncompex modem. This allowed us to verify
the attainable decoding speeds and enabled us to undertake more
comprehensive experimental studies on the performance of Viterbi
decoding as various system parameters are varied. This chapter
describes the hardware and software developed to accomplish these
goals.

The chapter is organized as follows. 	Section 2.1 gives an
overview of the system. 	Section 2.2 describes the approach used
in the software implementation of the Viterbi decoder. Section
2.3 describes the organization of the system software includfng
brief descriptions of the main modules. timing and memory requi-
rements are also discussee• The chapter concentrates on the main
ideas only but details are included in the appendices.

2.1 SYSTEM OVERVIEW

Figure 1 summarizes the signal processing required to obtain
à sequence of discrete-channel outputs suitable for Viterb,i
decoding. This processing is done by what we will refer to as the
ADC board. The modem provides three analog output signals. The
outputs of Chips #1 and #2 are the noncoherently-demodulated
("eye") baseband signais corresponding to the binary sequences
produced by the convolutional encoding at the transmitter. 	These
signals have a baud rate of 75 symbols per second. 	Chip #3
provides a clock signal recovered from the eye signals using
selection diversity. This clock signal is offset with respect to
the eye-signal baud period so a delay is introduced to obtain a
clock signal suitable for controlling the integrate-and-dump
operations. ihe integrator outputs are sampled at the appropriate
instants and the digitized samples are then, passed to the
Viterbi decoder.

The Viterbi 	decoder is implemented in software using a
Motorola 6809 microprocessor. 	The decoder software is written so
that various system parameters, 	inclu the code, the channel-
output quantization, and the decision depth, can be varied. The
decoder outputs the estimates of the information sequence in a
form suitable for analysis by a data error analyzer. The 6809
microprocessor is also programmed to process these outputs in
order to compile error statistics. These statistics are dis-
played on a computer terminal as the real-time decoding takes
place.

Chip #2

t--a

Combiner

Error

Statistics

Chip #3 Delay

Chip #1

Integrate

§g Dump
F--31 Viterbi A/D

Decoder

Integrate

& Dump
K/D

ADC Board 	 ()809 Board Modem

FIGURE 1

Information

Strobe

Error
Report to
Terminal

VIII all MI MIMI INS MI an am 	 MI IIIIIIII UM Mil Mt IIIIIII MIS

2.2 DECODER IMPLEMENTATION APPROACH

In this section we will first discuss the Viterbi 	decoding
algorithm in general and then we will outline how it was 	imple-
mented in software.

The task of the Viterbi decoder is to estimate the informa-
tion sequence that was fed into the encoder at the transmitter.
This is equivalent to finding the sequence of encoder states that
produces the encoded sequence that is closest to the observed
channel output sequence according to some metric. The decoder
stores two entries for each possible encoder state. The first
entry contains the minimum-distance sequence of states leading to
the given state up to the given time instant. 	We will refer to
this entry as the "path history" of the given state. 	The second
entry contains the distance of the corresponding encoded sequen-
ces to the observed channel output sequence. We will refer to
this entry as the "state metric.'

Each time a channel output pair is passed to the decoder,
the entries for all possible states, 	henceforth referred to as
the State Information Tables, 	are updated using the following
sequence of steps (see Figure 2):

1. Branch Metric Computation

The distances ("branch metrics") of the new channel-output
pair with respect to the four possible encoder outputs,
namely 00,01,10,11, need to be found. This can be done_by
computation or by table-lookup depending on the complexity
of the metric used. The four branch metrics obtained in
this step will be used in the subsequent steps.

2. Add, Compare, Select (ACS)

Each encoder state has only two possible ancestor states
that can immediately precede it. 	The best new sequence
leading to a given state is thus found by comparing these
two ancestor states. 	The state metric of each ancestor
state is added to the branch metric corresponding to the
corresponding state transition; 	the two resulting metrics
are compared; and the ancestor state with the smaller metric
is selected. 	The best new sequ for the given state is
found by concatenating the selected ancestor state to the
path history of the selected ancestor state. 	The new state
metric of the given state is given by the smaller of the two
metrics used in the compare step. 	The ACS procedure is
carried out for each of the possible encoder states.

Upon completion of the above steps, 	the State Information Tables
will 	be completely updated and the decoder will 	be ready for
another channel output pair.

The above two steps form the heart of the Viterbi decoding
algorithm. 	Two 	additional 	steps are required because of

Branch Branch Metric

A

Ox

lx

x0

xl

FIGURE 3

,

00 	metric

01 	metric

10 	metric

11 	metric

Branch MetriC Table

branch A
New State

Ancestor
States

metric(A) + branch metric(A) 	metric(B) + branch metric(B)

FIGURE 2

1

practi cal 	considerations:

3. Truncation of Path History

The length of the path histories need to be kept bounded in
order to keep the decoding delay bounded and to keep the
memory requirements reasonable. Periodically it becomes
necessary to make a firm decision on the estimate for the
oldest segment of past history currently stored in order to
free up memory. The optimum procedure involves finding the
state with the smallest state metric at that time instant
and the required segment of past history is then set to the
corresponding segment in the "winning" state's path history
entry. The memory space allotted to storing this segment of
path history then becomes available for storing new segments
of path history. 	The amount of time "wasted" in searching
for the best metric can be kept proportionally small 	by
making each segment consist of several 	information bits.
The above view also -Suggests the partitioning and handling
of the path history as a ring buffer with each unit of path
history equal to one segment. 	By selecting these segments
to be close to one byte in length, 	the need to perform bit
manipulation is completely circumvented. 	This is a very
important consideration in software implementations.

4. Scaling of State Metrics

As decoding proceeds the range of values occupied by the
state metrics will steadily increase. In order to keep
these values within the range that cari be assumed within the
finite precision of the machine, it becomes necessary to
periodically reset the metric values so that they fall
within the desired range. The rate at which the state
metric values increase is proportional to the number of bits
used in the branch metric calculations. If the number of
bits is not too large, the state metrics will need rescaling
very infrequently.

From the above discussion it is clear that the principal
factor in determining the attainable decoding speed is the at
of time required to carry out the ACS operation. 	We now examine
this 	operation more closely.

Let the state of the encoder be given by the binary repre-
sentation of the contents of its shift register with the newest
bit equal to the most significant bit. 	If the constraint length
is v, the state is given by a v-1 bit binary number. 	To make the
discussion concrete, 	consider the case v=7. The number of states
is then 2**6=64. 	Consider a destination state in the range 0 to
31, 	that is, a state with binary representation Ox, where x is 5
bit number. 	(See figure 3.) The source states for this destina-
tion state are x0 and xl. 	Furthermore note that destination
state lx has the same set of source states. • Since the ACS opera-

tion for both of these destinations involve the same state me-
trics and state histories it is efficient to process the pair of
destination states together.

Note • that the source states in figure 3 have consecutive
indices. 	Thus if the state metrics and path histories are
arranged according to the numerical value of the state, 	the
information required by the ACS operation of various states is
obtained by working down the State Information Table.

Before discussing how the State Information Table was
organized we need one further property. 	Consider a destination
state with representation 0y0, where y is a 4 bit number. Note
that the state metric and path information of 0y0 and 0y1 will be
required together when the next channel output is processed. It
would thus be convenient to handle the ACS operations of
destination states OyO and Oyl at about the same time so that the
results of the operations can be stored together. This suggests
handling the ACS operations in groups of four as shown in figure
4. This is how the ACS operation was implemented in our project
and it accounts for how tffè State'Information Table was formed.

The State Information Table contains two entries for each
state. 	The first entry is a two-byte word specifying the state
metric. 	The second entry is a one-byte word of recent path
history corresponding to one segment of path history. 	Long term
history is stored in a separate ring buffer which is updated when
a segment of recent history has accumulated. The state
information for pairs of source states is bundled together as
shown in figure 4. Two State Information Tables were used.
These tables alternate between being sources and destinations of
the information generated during the ACS operations. By using
in-place storage techniques it is possible to function with only
one State Information Table. We found however that the
implementation of this approach implied memory requirements
elsewhere larger than that of the Table itself.

In omplementation of the Viterbi decoder, the ACS opera-
tion is driven by a State Organization Table that provides the
addresses of locations where information is to be found or
stored. 	Before explaining the State Organization Table we need
to consider how the branch metric calculations are carried out.
Let ab and cd be the two branch labels associated with the ACS
operation of some given destination state as shown in figure 5.
Each branch label can take on 4 possible values so there are a
total of 16 possible pairs of branch labels. 	Let rs be the pair
of channel 	output symbols that are to be processed. 	The ACS
operation for the given destination state will then require the
branch 	metrics d(ab,rs) and d(cd,rs), 	where d(.,.) denotes 	the
metric function. 	The branch metric calculations are handled as
follows. As soon as the channel outputs rs are read in, all 16
possible pairs of branch metric values are computed and stored in
some fixed locations where they can be readily accessed by the
ACS operations.

C) E-1

4-4
• (/3
O ,
41)

• 0 H 0 H
0 0 H H

d
e
s

t
i
n
a
t
io

n

I-4

1-1

0 0

C

›-n

r-4

I

>,

d(00,rs)

d(00,rs)

d(ab,rs)
. 	_

d(cd,rs)

••••••

ab

0000

abcd

1111 d(11,rs)
. _ .
d(11,rs)

Branch Metric Table

FIGURE 5

As soon as the branch metric calculations have been com-
pleted and stored, the ACS operation for the states is initiated.
The ACS operation for each state will require two sets of entries
from a source State Information Table (SIT) and will generate two
sets of entries to be stored in the destination SIT. The function
of the State Organization Table (SOT) is to provide the addresses
of memory locations where the appropriate branch metric labels
are to be found and where the destination state information are
to be stored. The State Organization Table consists of pairs of
groups of 3 two-byte words. The first group provides the addres-
ses required by the ACS operation of states of the form OyO and
1y0. 	The second group provides the address information for
states of the form 0y1 and lyl. 	Two State Organization Tables
are required since the addresses involved will depend on which
SIT is acting as the source and which as the destination. The
SOT structure and the flow of information is shown in figure 6.

As indicated above the decoding of channel output symbols
proceeds until one segment of recent history has accumulated. It
is then necessary to output the oldest segment of history in
order to free up enough miMory to store the next segment of path
history. We now explain how this is done. It can be seen from
figure 3 that the destination state and the source state have all
but one bit in common in their binary representations. 	In a
conventional 	approach to history updating the identity of the
previous "winning" ancestor state is stuffed into the path histo-
ry of a given destination state. 	This is shown in figure 7a for
a constraint length 4 code. 	When the time cornes 10 output seg-
ments of history, 	a search is carried out for the state with the
smallest metric, say state abc in the example, and then it is
necessary to "trace back" to identify the segment that is to be
output. The trace back is done by using the contents of the path
history registers: the contents of abc point back to location
bcd, 	which in turn points back to location cde, 	and so o

Now consider the following different procedure. 	At time t+1
we proceed as before and stuff the identity of the "winning"
ancestor state into a recent path history register. 	However for
the subsequent time instants up to t+v-I, 	we stuff the contents
of the recent path history register of the the "winning" ancestor
state. 	An example is shown in figure 7b. 	Note that figures 7a
and 7b give the same information, 	namely the best sequence lea-
ding to abc has the three most recent bits def. 	In tracing back,
however, the second approach can jump immediately from abc to
location def v-1 time units earlier. The trace back operation
can thus be carried out much more quickly.

Once the trace back operation has been completed and a
segment of v-1 bits has been selected for output, the contents of
the recent path history entries in the State Information Table
are transferred to the newly freed memory locations in the ring
buffer containing the lông term path history as shown in figure
8. The decoder is then ready to undertake another cycle of
processing another segment of v-1 channel output pairs.

•abcd
Metrics

efgh
metrics

source SIT

FIGURE 6

destination SIT

1

oyo --_--.4›. addressl 	oyo

metric

addressf Oyl
metric

OyO hist

Oyl 	I Oyl hist

et c .

ly0 1Y0

ly1

ly0
metric

lyl
metric

ly0 hist

lyl hist.

y00

y01

y10

yil

source
SOT

addressl

address2

address3

addressli

address2

address3

branch metric
table

addressl + offse

MI MI MI MI MI NB MI MI • • 	 MI UM 1111111 AIN IMF

(a)

(b)

FIGURE 7

.NNecde

t + 3 t + 2 t + 1

def def abc bcd

bcd

cde

abc

bcd

def

def

MI MI UM MIMI- IMP MI Mil MI 	 1111111 IMP 	 UZI 	IIMP

2.3 SOFTWARE ORGANIZATION

The system software consists of two parts. 	One part
implements the real-time Viterbi decoder. 	The second part
carries 	out the error checking functions as well 	as the
compilation of error statistics.

Figure 8 shows the hierarchy of software modules responsible
for the real-time Viterbi decoding. 	The main program begins by
calling the subroutine INIT to initialize program variables 	and
storage areas, 	and it then enters a loop that defines one
decoding cycle. 	One decoding cycle consists of the following
subroutine calls:

Call ACS1
Call SCALE
Call AC52
Call ACS1
Call ACS2
Call ACS1
Call ACS2
Call SEARCH'
.Call HIST

The above decoding cycle assumes a path history segment of 6 bits
corresponding to a constraint length 7 code. 	The modules ACS1
and ACS2 implement the ACS operations. 	They differ only in which
State Information Table and State Organization Table act as
source and destination for the ACS operations. 	The module SCALE
makes sure that the values of the state metrics remain within the
range that can be handled. 	The module SEARCH identifies the
state 	with the smallest path metric and the module HIST
implements the traceback operation and the transfer of recent
path history to long term path history. The module HIST returns
the segment of 6 information bits that are selected for output
after the traceback operation. In order to produce a nearly
synchronous output of information bits, these bits are output one
at a time during the subsequent 6 ACS Subroutine calls.

The ACS subroutine begins by calling the module SHIFT. 	This
module begins by calling PUTBIT and STROBUP in order to output an
information bit and set the strobe up in order to indicate valid
data to the data error analyzer. 	Note that PUTBIT calls ERRCHK
which invokes the error checking and error compilation software
modules. 	SHIFT then calls GETBIT which reads the channel outputs
from the ADC board and then maps these vs through the table
#MAP. 	The choice of entries in this table allows us to imple-
ments 	nonlinear quantization in addition to the usual 	linear
quantization. 	SHIFT then calculates the 16 possible branch me-
tric entries and stores them in the direct page area starting
with the address label T0000. 	Finally SHIFT calls STROBDN to
lower the strobe while the data is still valid. 	Upon return from
SHIFT the ACS module proceeds to carry out the ACS operation for
all the states in groups of four as indicated in the previous
section.

1. 0

MLOOP

1.1

INIT

1.3 *

SCALE

1.4

SEARCH

1

1.2.1.4

STROBDN

==3=_
1.2

ACS

1.2.1

SHIFT

1.5

HIST

1.2.1.1

GETBIT

1.2.1.2

PUTBIT

1. 2 . 1. 2 . 1

ERRCHK

1.2 . 1.3.

STROBUP

. FIGURE 8

MI 	 MIR BM OM MI MIR MI 	1111•1 	1•1111 MI MI MI 1113

The number of instruction cycles required to carry out the
above modules is given by:

ACS 	371 + 289 x 2**(v-3)
SEARCH 	31+ 55 x 2**(v-2)
HIST 	138 + 32 x 2**(v-2)
SCALE 	23 + 46 x'2**(v-2)

and the number required by one decoding cycle is

(v-1) x ACS + SEARCH + HIST + SCALE.

The number of instruction cycles required by a decoding cycle for
a constraint length 7 code is 34,418 which is equal to 35.9 ms.
for the .96 MHz clock used in the current implementation. At the
information rate of 75 bps, the 6 bits of a decoding cycle are
produced in 80 ms. 	Thus for a constraint length 7 code the
microprocessor is idle more than 50% of the time. 	(This was
observed experimentally by observing the strobe signal on an
oscilloscope.) If the constraint length is increased to 8, the
number of cycles increases- to 76,037 and the time to 79.2 ms.
The 7 information bits aré- produced in 93.3 ms, so the micropro-
cessor is now busy decoding about 85% of the time.

An upper bound on the information rate that can be handled
with this software can be obtained by assuming that modifications
are made so that SEARCH, HIST, and SCALE become negligible. For
a constraint length 7 code, the maximum information rate that can
be handled is then 192 bps. For a constraint length 8 code the
maximum is 100 bps.

A real-time dedicated microprocessor implementation of the
decoding algorithm would have the following memory requirements.
The principal components of ROM memory are the program, 	the, two
State Organization Tables, and the quantization map. 	The respec-
tive memory requirements are 600 bytes, 	2 x 3 x 2**(v-1) bytes,
and 2**(v-1) bytes. 	For a constraint length 8 code, this adds up
to approximately 1.5 kbytes. 	The principal components of RAM
memory are the two State Information Tables, and the path history
ring buffer. 	The respective memory •requirements are 2 x 3x 2**
(v-1) and 8 x 2**(v-1), 	where a history depth of 8 segments has
been assumed. 	This adds up to 1.8 kby

Figure 9 shows the module hierarchy for the error checking
and error compilation software. 	When synchronized to the infor-
mation sequence, 	ERRCHK takes the information bit that has just
been output and compares it to that predicted by the module
NEXTPN which is designed to emulate the PN sequence generator
that was used at the transmitter. 	The bit count and the bit
error counts are then tallied. 	Statistics are compiled in blocks
of length #BLOCKLEN. 	At the end of each block, 	a single
character report is output to the terminal using module PUTC. 	At
the end of each block, 	the number of bit errors is compared to
-#ERRLIM. 	If the number of errors is greater than this threshold,
the resynchronization procedures are begun in the next block by

1.2.1.2.1.2.2

PUTC

1.2.1.2.1.2.3

TEXT

1.2.1.2.1

ERRCHK

1.2.1.2.1.2.

PNUM

1.2.1.2.1.2.1

KEYCHK

1

1.2.1.2.1.2

REP
1.2.1.2.1.1

NEXTPN

FIGURE 9

IBM 1111111 	 11•111 	OM MI an 	 • MI MI MI 	OM MI UM

resetting the contents of the PN sequence generator in NEXTPN to
that of the last v-1 information bit estimates.

The module REP implements the printing of the block error
reports and counts on the terminal with.text explanations and
decimal output.

Appendix A coàtains the module descriptions and Appendix B
contains the assembly language code along with detailed comments.

3.0 VITERBI DECODER PERFORMANCE ISSUES

In this section we present results of two investigations
of Viterbi decoder performance. The first investigation
deals with the dependence of decoder performance on the va-
lues of several algorithm parameter values. Experimental
and simulation results are presented for decoders with dif-
ferent number of quantization levels, different history
depth values, and with linear and nonlinear quantization.
The second investigation considers the performance of Viterbi
decoder performance when combined with internal interleaving.
Simulation results are presented for systems of different
interleaving depths and for channels with different burst
error characteristics. We begin the, section by describing
the simulation model used in our investigations.

3.1 SIMULATION MODEL

Simulation programs were written to provide a means for
quickly and easily testing various Viterbi decoder configu-
rations as well as for simulating various channel transmis-
sion conditions. A Viterbi decoder program was written in
BASIC to run on the IBM PC. The program completely parallels
the implementation of the M6809 real-time decoder in order
to allow the simulation of changes in the real-time system.
The details of the program therefore do not need to be repeated
here.

A second program was written to simulate bursty channel
conditions on dual parallel FSK channels. The model simu-
lates independent fading on the two channels'Nas well as
simultaneous (flat) fading on the channels. At any given
time instant each channel is in one of three states: Good,
Bad, or Flat. At any given time instant the channel pair
can be in one of five states:

0 	Good-Good
1 	Good-Bad
2 	Bad-Good
3 	Bad-Bad
4 	Flat-Flat

While a channel is in the good state, it randomly generates
octal output symbols R for each binary input b according to
the transition probability shown in Figure 1. The octal
output is intended to represent the output of a 3-bit quan-
tizer. Similarly when a channel is in state bad or flat,
it generates outputs according to predesignated transition
probabilities.

I

o

1
• 1

I .

1

The time evolution of the channel state pair follows
a continous-time Markov chain with transition-rate diagram
shown in Figure /. Here A is the rate at which an individual
channel goes from the good state to the bad state, and p is
the transition rate in the opposite direction; a id_ the
rate at which the channel state •pair goes jointly from the
good-good state to the flat state. The simulation program
generates random, exponentially distributed holding times X
(in bits) for each state, and then rounds them up to the
next integer greater than or equal to X. The next state is
selected according to the state transition probabilities
that correspond to the transition-rate diagram.

All the simulations discussed in this report simulated
independent fading only. The bad state was always represen-
ted by the 3-bit quantized Gaussian channel shown in Figure
aa. This (single) channel has a raw bit error rate of .159
and a 128-bit block error_rate of, essentially 1. The good
channel was dhosen to be either that shown in Figure ab or
that in âg. The channel in ab, hereafter called the good
channel, has a raw bit error rate of .023 and a block error
rate of 94.7%. The channel in 2g,'hereafter called the
very good channel, has corresponding rates of .00135 and 15.9%
respectively. It should be emphasized that the error rates
for these channels are relatively high because they corres-
pond to single channels; when the two channels are combined
the performance improves considerably.

The channel parameters used in a given simulation will be
specified by prefixing each state with its mean holding time.
Thus 250G/50B denotes a channel in which the subchannels fade
independently with the good state having a mean holding time
of 250 bits, and the bad state a mean holding time of 50 bits.
The mean holding time of a state pair is given by the recipro-
cal of the sum of the rates out of the state pair. Thus the
mean holding time of the bad-bad state is 25 bits and that
of the good-good state 125 bits.

3.2 EFFECT OF DECODER PARAMETERS ON DECODER PERFORMANCE

The software of the real-time decoder was written so that
the number of quantization levels and the history depth could
be changed easily. Instructions for carrying out these changes
are included in the documentation. An arbitrary nonlinear
quantization scheme can be produced by changing a 64-entry
table through which the A/D samples are mapped. The convolu-
tional code can also be changed, but this requires changing
the longer state organization tables. Here we will report
on the results of experiments that vary the number of quanti-
zation bits, the history depth, and the quantization mapping.

.i. 3 3 y

• oz14-r) 6

• osE, s--eb

-0 04-86.

00 Ilz-

ô0oZ D

Ir`

, 0 0 0 03

tre

Co Col

• 0 00 3

MIN UM MI MU MU 	111111 	1111111 OM MR UN MS MU II•111 	41/Ne

0

. 0144

•

defier

c)4404

toiGs-4-

.004-?&

, 00 ti 2—

• n

345? 54-

019,14C

,I4i9g

0

.0 4.1-A4)

.616S-4-

o

The software of the real-time decoder includes modules
that implement error counting and reporting functions. The
block size for block error counts is programmable and was
set to be 64 bits. The output of the decoder is arranged in•
blocks of this size and the number of errors counted. If no
errors are found, a dot is printed on the screen and simulta-
neously stored on floppy disk of an IBM PC running CROSSTALK.
If errors are found, the number of errors is compared to a
threshold, ERRLIM, which is also programmable. 'If the threshold
is exceeded, a resynchronization operation is initiated in the
next block and an S' printed. Otherwise the number of errors
is printed. The duration of the experiments is also program-
mable, and the error count is displayed at the end of each
experiment. Figure 3 is a sample p,rintout of one of the expe-
riments.

The present system has the following nominal settings:
6-bit quantization, linear mapping, history depth 8, and
133/171 rate 1/2 convolutional code. A series of experiments
were conducted where the nominal system was compared to sys-
tems in which one of the settings was changed to:

-- 1-bit quantization
-- 3-bit quantization
-- Mu-law mapping
-- Inverse Mu-law mapping
-- history depth 4
-- history depth 6

Each experiment involved changing the software and then demo-
dulating and decoding the (approximately) same segment of
tape recorded audio signal corresponding to 1728 blocks
of information. To control for fluctuations in the results
due to factors other than the change in parameter, the nomi-
nal system was interspersed among the other experiments.

Each experiment was run twice. Table 1 shows the results
of each experiment. The experiments are listed in the order
in which they were carried out because significant variations
were observed in the performance of the control (nominal system)
experiment. The results are also displayed in Figue 4 where
it can be seen that the control experiment varied in error
rate from 0.75 7 to 2.787e. The error rates of all the other
experiment except one fell in this range. The one exception
was for the system with l-bit quantization which A.7ais clearly
inferior. The printout for one of the 1-bit experiments is
shown in Figure 5. This printout can be compared to that
of Figure 1 which corresponded to the control experiment that
had the best performance. Thus the only conclusion that can
be made from the experimental results is that 1-bit quantiza-
tion is significantly inferior to soft decision systems.

The simulation programs were used to investigate the effect

•

• •

IIIIIII URI tarn MU • MI • IIIIIII MI MU Be 	 1•111 11111111 IMO

*EXPT. 6.1; NOMINAL, MAPPING = LINEAR.
*J
SSS1S
	 éé eéié e é;• é4646 444 444444716•40444•4*.o.o.

••••• ***************** és 	 e, y,.›. ,ét 	eiswes• *** e **** 46.4411•6•0*.er .

• 1. *********** *a* of 4 4 .44,46 4 4•4 ********************** 444 46+64864 e

6 é,466 4 6441119469 ***************** if ef f ef f *me* f 	 etas++. 44

• 44 of oes* 4 **** 	********** 1,4 ************************ 464* e 6+44 44, 6f,

* ******** as1.4499ose.••••.#1.4 ***** 40 ****************** 44•4 	4 44.94.•

8 	f .4 ********* 9 é411. • 	•

9

• '1
•

• I

* ********** • ******** 449490 I 497 91:4 44496 4•444 49404 440444444444W

. 44, 4 *********** 4111.6442441e. 	

44 ***** 4.444—i4444444484.044.44.444 ***** • ****** f ******** * ** +44+4444

64449S4 i4ss4444404 f if{ 44+4 ***** 4 ***** 4 ****** 6 4 460417064444444éfif

1,444 4 1•41—ete 4 e 4 é4e ****** éses** ******** 444e+414 4 444o+ 46 éée•6:******

	 y ******** ese4696944••••••••44:see144

444444444444419 ******* .99444444114, 64449.40991.444447.14. ***** ******

****** ewe ******* • ***** 444 4 699999464444494 ********** 4 ******** 44

 6444494641

********* 0994444994449 *****

	 yeoé4664 ************ 4**,9.2 	

f eee ***** este• ********* 	******** 4n 64424 ******** 4446 ********* 4-41 .4 	9

* ********** 60444614444444444404471464 4 4444f.4 4 466499449 ***** 3 4444

	 3.........
..5 	 944 ************ 4.4444 ***** 	***** 44 ********* 446014 . 11,46

* **** 444444441, • 	

* ********* 4104 ****** 444444494404404464.4444444 ********* effffffff

if ******* 044464449 ******* 46 ****** f **** 1111 **** 444666444 ***** 444644

	 5, 4 e 64 ********** 4444464f ********* 1164144114.44 ,144.44717111444444

TOTAL BLOCKS READ 1728
NUMBER OF ERROR FREE BLOCKS 1715
NUMBER THAT HAD BAD BITS 12

NUMBER THAT CAUSED RE' SYNC 1

• 1

•

CoN re) i_. 	48/1 176

	

447/72S 	C7o

111/172-g-

+// 72,

3, 3 ek 	2.0 /i1z 	I Iwo

	

2_/l7?_ 	I, 275

4, ce kr.) 1- 	 ve 	1.33%

3+117 7A

MO->Ità/ 	3S'71114 	‘02,4,0

7--q /17 2-g-

C MO tAv\I

1Ç Alz-r

7, cou-reot- 	 ec /1724 7- 0,7s*

14-/ i -724 = 0,V °70

gt, Hts7z--- 4- 	 33A7 	0/Y0

2-0 A7 2 	
f jO,

-7_0/1 7zq 	h 4 (Y0

ZVI 7 Z-f

/0, Cos-J-rteoL, 	 33/iii r = 	%

	

e 	7 2..

--raiefe

•

•

•

*EXPT. 1.2: 1 BIT.

44444.44006.44.16.42SA00.0.44.4.4.44.4.044428.4.44 ***** 44.......

4.4.444.4.....444.4590..4646St44.4.4.60600 	 4 6 4.40.4044. 4.4 6. 4 . 4 ..

*4444 +404+ 	41.ea ********* ** 	** 4 **************** 404.d...04 4 4***: 4 f

4.49.......71......3....... +4 44. *************** 60 ***** 2 00.636d..

4 **a eee al.8******4440.600044464 4 44 4 4..........** . ***44.4.4*********

t ees.* e.****5***4.4.0.064.044 f f4t. eft,,,w,a. 3 ********S.8. +et

	 2 ******* 	**** 006660+1

4. 40************049.0.04040* *************** .40444S444.4..44.640 4 4 f

* 4044004004344 4, 04+ 9 ****** ..6. d 	 *****.04 &Of*

O 4374 4....SS. 	 3..3 44.4**4.55 *********** 444 .094 	 4

* **** 4 06. .4.0 A+ 60f .0 ****** 3 ******* SS 	; . '404440.660 6SS • 	. . , t 4***4

* *****lat, 3 ********** 	. 2 	 S 	444443 . . 60404046*d:4a 3 este

* , 404 f A 4.43 	 f 	********** 	******* 40000004.****S*ala+ 4 4.04

44404444404. a t s ,+,S,, e t is t 4.46.174 ***** • *************** t 4 t ' ib.+. 4.

* **** 4.44+ 73 . 	. 40.44.4.4.44 400.0,4 +0.4.easee ***ta**. f +bd a • a 7444.4

* **** * +44......... f *004 4+++9 	******** 	 4444444 40 ****** 444a

O 44 a eeA.**1SS 	21a*** a* ***** 4 	4 ******* 95.... ..4 4'4 4 414 ,4,74 aai.

* ***** 044SS 	 Sb ********** .406904.6444......44..fiff.

.6 	 SS... *****8 ********** 4.44444.........44049.4.è4+

* ***** 4**********6feeeeas*Sea ***** ****************6*******aa****.

.8 ******* 7...... ************* ************ *****SSS******a*S5***3,*

o eee02,0**********4*********** ******* eeeeaeee****3**************

f a ***** 4 ***************** e******4 ***** 44604.44.0 ******* .4.4.404.

* ******* 44++.4.44S444.** ***** 4 ******* 04.6 . ***** 4.4. *****

* ******** eeateeoetoaeeoeSSeeatooareaeeeeeeee********** . *** . aeed.'4**

* ********** **.e ********* a*************************** ** 	** ********.

TOTAL BLOCKS READ 1728
NUMBER OF ERROR FREE BLOCKS 1634

• NUMBER THAT HAD BALI BITS 60

NUMBER THAT CAUSED RE SYNC 34

Mo eu tau am am sr mi sas am am ami am am as as su sas am ms

of decoder parameter settings on the error rate performance.
It was expected that the simulation results would give a
better indication of the relative importance of each setting
since it is easier to control for variations in each trial.
Each simulation was run for 40,000 bits which had previously
been established to be sufficient to produce a representative
relative frequency count for each of the state pairs on the
250G/50B channel introduced in section 3.1. The 40,000 bits
correspond to approximately 330 128-bit blocks. The running
time of each simulation on the IBM PC running compiler BASIC
is approximately 4 and 1/2 hours. The performance of the
decoder for the 171/133 code is shown below:

setting: 	PB 	Pb

1-bit qtn, hist 8 	9.25% 	8.00x10 -3

3-bit qtn, hist 2 	7.76% 	2.90x10 -3

-3 3-bit qtn, hist 4 	4.20% 	3.73x10

3-bit qtn, hist 8 	4.52% 	2.88x10 -3

Single bit quantization again has the worst performance
•in both bit- and block-error rate. Decreasing the history
depth from 4 to 2 results in an increase in block error
rate, but decreasing from 8 to 4 does not result in a signi-
ficant change (the two simulations differ by 1 block error only).
Decreasing the history depth does not necessarily increase
the bit error rate. The printouts of the simulations revealed
that the history depth 2 system had numerous short bursts of

• errors whereas the longer history systems had fewer but much
longer bursts. From a block error rate point of view a history
depth 2 system is not unacceptable. As well, it appears that
the history depth can be decreased from 8 without incurring a
loss in block error rate performance.

3.3 VITERBI DECODING WITH INTERLEAVING_

In this section we present results on the performance of
Viterbi decoding with internal interleaving. The basic idea
of internal interleaving is to split the transmission of data
into a number of parallel streams that are encoded and decoded
separately as shown in Figure 6a. In practice it is not nece-
sary to replicate the encoders and decoders, but instead the
logic needed to carry out these operations is time-shared
among the N streams. Consequently interleaving is achieved
without introducing a frame structure and at only a linear
increase in the memory requirements. Indeed the combined
encoder-interleaver is equivalent to the longer constraint
length code shown in figure 6b. It can be shown that this

>€C. 11—e

1 r%

=NI

C6-.)

1

(e.

11

(

1

1

code has the same minimum distance as the shorter code, so
that its performance in a random error environment will be
the same. In a burst erXor environment, however, the longer
code will have the better performance.

The same computer simulation programs discussed in the
previous section were used to investigate Viterbi decoding
with internal interleaving. It is clear that only one of
the encoder-decoder pairs needs to be simulated so no change
is required in the Viterbi decoder program. The only change
required in the-channel simulation program is that only every
L-th output of the channel is passed to the decoder if the
degree of interleaving is L.

In the simulation the channel was considered to be in a
burst error mode if the channel was in the bad state. The
burst error statistics were specified by fixing the mean
holding time in the bad state, and the percent of the time
spent in the nonburst mode was specified by selecting the
mean holding time to be some multiple of that of the bad
state. Each simulation conàisted of approximately 330 128-2Jait
blocks. In the first set of simulations the mean burst error
length was 50 bits and the proportion of time spent in the
burst mode was 1/6. By introducing degree 5 interleaving,
the effective channel seen by the decoder is approximately
a 50G/10B channel. The block error rate is reduced by a
factor of 3.5 and the bit error rate by a factor of 6.5.
(See Table 2.) The third experiment in this set simulated
a 50G/10B channel without interleaving. It can be seen that
the results are quite close to those of the channel with the
same effective parameters after degree 5 interleaving.

In the second set of experiments, the mean burst length
was increased to 100 bits and the proportion of the time
spent in the burst mode was reduced to 1/3. The system without
interleaving performs quite poorly and the introduction of
interleaving introduces only some improvement. The degree 10
interleaving system has a mean holding time of 5 bits in the
bad-bad state, the same as the degree 5 system in the first
set of experiments. The mean holding time in the good-good
state however is only 10 bits so the decoder does not have
enough good samples, on the average, to get back on the
correct path.

For a given fixed ratio of time spent in the good state
to time spent in the bad state the Viterbi decoder will span
the following two extremes. When the bursts are very long
the decoder will encounter 4 modes of sustained duration
corresponding to the 4 possible state pairs. The performance
will be the weighted average of the performance dmxing each
of these modes. For the cases considered above the performance
will be dominated by that of the bad-bad state. The bit error

PI Cit
Ceas h iJe

Btocitîpwv

- z, 41x1 3o

- 4-

41 3 x /0

-

2 1 7 X/6

1

-3
/0

-
à

1,2%

I 	5'/G,

e.4

5-, 4 43,e

zs-DcrAbs 	 e_ 	zsti erA-D.E

2 ru A-De 	 sbe/ioe 2 e /sDe

4-jsb£3 	
stek/i 03

z o erbe 	 zoOkbo

2oGeboaiii 	s— 	 itoer /2.0

2.4o41/00 ,8 	I 	 zoebo

-ra hie-

UM MP MI UM UM 	1111111 	MN SIM MI Mil I•1II OBI 1•111 	 ill UM

rate for this code has been found :tQ, be .14 by simulation.
The proportion of tiee sPent in the bab-bad state for the
first set of experiments- ia 1/36, so the average bit
error rate should be about 3.9x10-3 when the burst length is
very long. This is close to the figure obtained for the
250B/50B system without interleaving. For the second set
of experiments the predicted bit rate •is 1.55x10-2 which
again is quite close to that of the system without interlea-*
ving.

As the degree of interleaving is increased until it exceeds
the mean burst length, the decoder will reach a plateau with
performance of that of a system in which the channel randomly
selects one of the two modes (good or bad) with probability
equal to the proportion of time spent in the given modes. No
attempt was made to establish what the limiting performance
for this extreme would be.

• 4-Q TeANSMIS.S,Mn ?ROM-COLS: FQR MULTZTONE MODEly1

An objective Of the proj e t was to extend the present
transmission protocol to increase the information rate that
can be reliably achieved using a multi-FSK signal format and
combining code diversity with ARQ techniques. In this section
we present an analysis of the present transmission protocol;
then we present an analysis of a protocol proposed by Shu Lin
and an adaptive protocol that combines the Lin protocol with
a code diversity ARQ system.

4.1 PRESENT TRANSMISSION PROTOCOL

The present transmission protocol defines a sequence of
packet exchanges that effect the transfer of a message from
a sender terminal to an acceptor terminal. The channel is
shared by both terminals so transmissions are constrained to
be half-duplex with packets travelling in opposite directions
alternately accessing the channel. The terminals set up the
transfer of a message by exchanging calling and response pac-
kets. The message transfer is carried out through the exchange
of message and acknowledgment packets. The message transfer
is ended with the sender terminal transmitting termination
packets.

The present protocol handles the transmission of one mes-
sage at a time. A message may consist of up to 1280 bytes.
Prior to transmission the message is segmented into subblocks
of 16 bytes. The acceptor terminal is given the number of
such subblocks during the set up phasé. Each subblock has a
sequence number byte and a CRC byte attached to it to form
a subpacket, which forms the basic unit of retransmission.
Subpackets are transferred to the acceptor terminal in fixed-
length frames that can accomodate 8 subpackets. Each frame
consists of a header followed by 8 subpackets, with padding
used to fill up unoccupied subpacket slots if necessary. Thus
by design each subpacket is bundled separately and thus its
retransmission can be handled separately from that of other
subpackets.

Fixed-length frames, càlled message packets, and fixed-
length acknowledgment packets alternate in using the channel.
The message packets consists of an 11.5 byte header followed
by the 8 subpackets. Of the 1244 bits in the message packet
at most 1024 can be used for information. Acknowledgment
packets of 148 bits follow each message packet transmission.
The propagation ànd software delays add an equivalent of 10
bits at 100 bps transmission rate. Barring errors, after the
exchange of one message packet at most 1024 information bits
will have been transferred in the time 1402 bits could have
been transmitted on the channel. Thus the present protocol
has a maximum throughput efficiency of 737e .

We now present an analysa of the present transmission
protocol. The purpoae of carrying out such_ian analysis is
to lay the framework within which_any - extended protocol should
be evaluated. In this analysis we will neglect the effect of
errors in the acknowledgment packets. Let Kbe the message
length in subpackets, le_1(.80, and suppose that a frame can
accomodate up to L subpackets. Let e be the probability that
a subpacket is received in error (-using hard decisions) and
assume that subpacket errors occur independently. The sequence
of message packet transmission 'can be divided into two phases:
in mode A the number of outstanding subpackets at the transr_
mitter is greater than or equal to L so frames carry a full
set of subpackets in each transmission; in mode B the number
outstanding is less than L so each frame transmitted is partly
empty. Clearly mode B transmissions introduce inefficiencies
in the use of bandwidth and the purpose of the analyses is to
quantify these inefficiencies.

Suppose that K = QL 4.-R, where 0 S.-.R.<L; then at least Q
mode A transmissions will be required. Let MF(K) be the total
number of mode A transmissions rquired for a message of length
K. In Appendix C we show that the mean of MF(K) is:

K-L
E(MF(K))=Q+Z("ZPr(s.=...j))

i=Q 	i=0

where s $ is a Binomial random variable with parameters il. and
e. The-over the Binomial terms can be approximated by the
error function (i.e. integral over a Gaussian) and only a
few terms in the infinite series turn out to be significant.
Figure 1 displays the mean of MF(K) versus K.

Mode B transmissions will commence when the number of sub-
packets remaining for transmission becomes less than L. Sup-
pose that this number is r, 	r<L. Partly empty frame
transmissions will continue until all r subpackets have
successfully been transferred to the acceptor terminal. Let
MP(r) be the number of frame transmissions required to accom-
plish this. In Appendix C we also show that the mean of MP(r)
is given by:

E (MP (r)) = 1 ± 	ir 	ej 	i+i

j=1 	1-
e3

Figure 2 shows E(MP(r) as a function of r. As expected the
number of transmission increases with r. Since the range of
r depends on L, Figure 2 can be used to quantify the loss in
efficiency due to too large a value of •L.

The number of outstanding subpackets r during the first
mode B transmision is a random variable that depends on K.

1

1

I 	,

;

!

: 1

L_

.1 I • • 	 	 • •

:
T .

 	•

.oe

I

I

.. : ..

• ; 	 .

•n • • -1-

I :

;

_L 	•

I 	I :

-J_

Zn the Appendi,z wederiye the digtrekuti„on 9f r .condiioned
On K, and We .théri'deputethe: ..»!4en of: MP(r)..everaged.over - r.
For large .valbeSof-K, t . bedOMe.S mniforMly distrihùted in
thé 'interval 0L-l. "Figure'l shliwS thiS-meàn as -a. fdtiction
of K.

Thé two curves in figure 1 can be 'added to 'obtain the -mean
number of total frame 'transmissions required to transfer a
message 	lengthiK, thàt 	E(M(K)).' The-throughput effi-
ciehOy is theii . given bY:'

EFF= •nffleepplOeCIMn111

E(M(K))(L+H)

K/L

E (M (K)) (L+H

= EFFREL x MAX EFF

where H is the overhead incurred in each message packet/acknow-
ledgment cycle, and where EFFREL is defined as the relative
efficiency. Figure 3 shows the relative efficiency as a
function of K. It can be seen that as K increases the relative
efficiency approaches that of selective repeat ARQ, namely
1 - e. In effect for large K, the inefficiencies due to mode
B transmissions are negligible. 	Thus if we are considering
very long messages, we can directly analyze the transmissions
of subpackets and ignore the frame •structure of the system.

The relative efficiencies shown in Figure 3 correspond
to three values of subpacket error probabilities, e=0,e=0.1,
and e=0.2. It can be seen that for this range of values
the relative efficiencies do not differ greatly. In experi-
ments conducted last year subblock etror rates of 10-2,
10-1, and 2x10-1 were observed for code diversity, frequency
diversity, and single channel transmissions. One concludes
from Figure 3, that the combination of code diversity with
selective repeat ARQ, henceforth denoted by ARQCD, for this
range of error probabilities is not worthwhile since code
diversity incurs 50% overhead, and thus a higher throughput
is achievable if this overhead were replacekby additional
subpacket transmissions. On the other hand, as the error
rate increases diversity transmission can be expected to keep
the througput from deteriorating to zero much longer than
single channel FSK because of its ability to correct errors.
Clearly what is needed is a transmission protocol that dyna-
mically varies between these two extremes as the channel error
conditions vary. We will introduce such a protocol in the
last section.

a
fa

4.2 A DIVERSITY-ON ,DEMAND TRANSMISSZON pROTOCOL

Sbppose that N FSK- signals ere .availahle for information
transmission and that eacit signaris organized as in the *exis-
ting transmission protocol but with the headers dambined
into one single header as shown in Figure 4. The first part
of the header up to the software sync byte would remain the
sanie; The sedond part would be capable of carrying more infor-
mation than presently required's° it cnuld be shortened or
modified as neceSsary. Similar considerations would apply to
the acknowledgment packets.

Once the message packets header and acknowledgment packet
lengths are seleceted (and here we are assuming that they will
remain fixed), the maximum achievable throughput will be
fixed and the particular form of ARQ will affect the perfor-
mance only through the relative efficiency. We will assume
that the transmitted messages are very long so that mode B
transmissions can be neglected. 	The relative efficiency will
be given by E(N), where N is the number of transmissions re-
quired by a given subpacket.

The basic mechanism of ARQ schemes, retransmision, is •
essentially a diversity technique, namely time diversity with-
out combining. Viewed this way it is clear that ARQ schemes
do not make use of all of the information available at the
receiver and that better performance should be possible by
using sone form of combining. We will consider the use of
code diversity as the means of utilizing the extra information. ,
The scheme considered has been discussed by Wang and Lin
(Trans. on Communications, May 1983). We will henceforth
refer to the scheme as ARQDD.

For throughput analyses purposes we can consider the pro-
tocol as if a single subpacket is being retransmitted at a
time. The protocol employs a cyclic code for error detection
and a rate 1/2 convolutional code for code diversity. Each
information subpacket (including the sequence number) is enco-
ded Using the cyclic code. The resulting block is convolutio-
nally encoded with the encoder intialized to the zero state
and enough zeros appended to the block so as to drive the
encoder back to the zero state. Each subpacket is thus bundled
separately so that its retransmission can be handled indepen-
dently of that of other subpackets.

The upper and lower branches of the encoder output are
buffered separately and only the upper branch is transmitted
at first. At the receiver the received sequence is divided
by the appropriate polynomial that allows the recovery of the
cyclically encoded block when errors have not been. introduced
in transmission. The outcome of this division and the subsequent
check of the recoveit block are used to detect errors. If
none are found the subpacket is accepted. If the block is found
to have some errors, the receiver sends a negative anknowledg-

1

2

2,

E

A ,

.D 	
. 	• 	 t

 E 	 , 	, 	, 	 t
o

e

a

4,e. 4- .

ment requesting a tranamigqiQn Qg the other branch. The second
branch ig 1=cesged in the same'way; it is divided, checked
for er;rors and accepted if none are found. 	If at this point
errors are found, both received 'branches are -used to carry out
Viterbi decoding. The sequence output by the decoder is then
checked for errors using the cyclic code. At no extra cost
in bandwidth we bave obtained an extra opportunity to correctly
decode the information. Note that all decoding prior to Viterbi
decoding uses hard decisions, but that Viterbi decoding itself
can use soft decisions.

If the second transmission and subsequent Viterbi decoding
fail, a request for a retransmission of the first branch is
made. The branch is processed as the second branch was processed
in the previous step. In Li'n's version of the protocol, the
older version of a branch is discarded. However if soft deci-
sion decoding is used, the old and new versions of a branch
could be combined prior to Viterbi -decoding. The alternate
transmission of branches-continues until the subpacket is
guccessfully transferred or until some upper limit is reached.

The possible sequence of events for ARQDD is shown in Figure
5 where Bc(i) is the event that the ith transmission is re-
ceived errorfree and Be(i) is the event that it is found in
error. We will assume for simplicity that the probability
of failing to detect errors is negligible relative to the
probabilities of the other events. Gc(i) is the probability
that Viterbi decoding successfully decodes a pair of erroneous
branches after the ith transmission. Assume that block errors
occur at independently and with the same probability:

P c = Pr(Bc(i))

and

1 - P c = Pr(Be(i))

Let Vo be the probability that the first Viterbi decoding is successful and let Vc be the probability that subsequent Viterbi
decodings are successful. Note that the first probability is
conditioned on the two branches having had errors detected on
them, whereas the second probability in addition has the condi-
tion that one of the bran4s participated in a previous unsuc-
cessful Viterbi decoding. Thus the second probability will
be less than the first. The corresponding sequence of event
probabilities is shown in Figure 6. To calculate the mean
number of transmissions we need only consider the event Ec(i)
and the event Ee(i) that correspond to the ith transmission
being successful and unsuccessful respectively. Since Ee(i)
occurs if the ith transmissions has errors and the subsequent
Viterbi decoding fails, we have that

I

E

4..

c.
E

4

e-

Pr(N=i) P (P + Vc)
B 	c 	o

1=2

pr (Ea(5.)) 	grUae(1-) 1 gr(_Ge(i))

c 	p c) 	 -ve
The simpler sequence of event probabilities is shown in
Figure 7. The probabilities* of N are given by:

i=1

1-3
P

B
V

B
V

B 	
(P + P

B V
e) 	3 c

where PB = 1 - P and Vn .=_1 - V . 	The mean , number of trans- - missions is then
c
 found to be:

E(N) = P c + 2PB (Pc + PBVcc) +
1 + 2,(P c + PBVC)

P.+P V B c

and the relative throughput efficiency is then 1/E(N).

The evaluation of the throughput efficiency requires the
transmission error probability PB , and the two probabilities
of successful Viterbi decoding, 	Vc and V. 	Note that PB is the error probability that results cusing hard decisions.
Later in this section we will estimate these parameters for
a bursty channel by computer simulation. We will find that
V, requires much computation to estimate so it would be use-
fin to have bounds on E(N) that depend only on the other two
parameters.

An upper bound is obtained for E(N) by analyzing the infe-
rior system posed by Lin where Viterbi decoding always uses
a new pair of branches and thus can take place only during
every other transmission. The sequence of event probabilities
is shown in Figure 8 and the resulting mean is an upper bound
to E(N):

E (N) <
•

1 + P
B

1 - P2 Vo
B B

We can also obtain a lower« bound as follows.. Since V is
always leàs than Vc , we: can replace V by Vc in thé eact
formula for E(N) and obtain an optimisEic eàeimate. 	Combining
the Upper and lower' bounds we have: '

1

•

1;'sre- 7

Ft.2\e?›i't

2 0

173 V 13 Pc.

4_o 	0

v
11 	c-

ra(. 17.4- 11\ec)

rc+
1:1,10

Ni

%Pc>

u o

Ve,

4 E (N).

1- v 1 - V°

Wheri the 'channel: is very . good we have P :Much:leàs than 1 and _ B thé bounds yield

E(N) 	1 + PB

which intuitively agrees with the fact that Viterbi decoding
would seldom be réquired. When the channel is very noisy the
PB approaches 1 and

2 + V°
E(N) ._<:

In order to obtain the parameters required to estimate
the performance of ARQDD, we modified the simulation programs
to estimate the required parameters. An information block of
120 bits (all zeros in the simlation) was "encoded" using the
171/133 code and the resulting encoded branches (two blocks of
126 zeros) were produced. The first branch was passed through
the bursty channel. The resulting sequence was inspected for
hard errors and if none was found the block was counted as
correct on the first transmission. Otherwise a new branch
was "requested." In producing the new branch the. initial state
of the channel was reselected at random in order to simulate
the time diversity nature of the retransmissions. The ARQ
protocol was followed in the prescribed way and a tally of
the various events was kept. Table 1 shows the results of three
simulation experiments and Figure 9 shows the corresponding
results in graphical form.

In the first two experiments the channels alternate betWeen
periods of good error conditions and periods of bad error con-
ditions. The first experiment corresponds to the 250VG/50B
channel introduced earlier in the report. In this experiment
the channel is relatively "very good" in that a significant
(517) of the blocks are recieved error free after the first
transmission. The bounds for ARQDD are very tight in this
case and the throughput for ARQDD is 67%, a 16% improvement
over selective repeat ARQ which would have a throughput of
51%. In the second experiment the channel is 250G/50B and
only 4% of the packets get through on the first transmission.
Thus the throughput has collapsed to nearly zero for selective
repeat ARQ. The bounds for ARQDD'are again very tight and

n
n 	o 	0. 	0

r°1 	I r: 	ZN
â

-z

1.1
-

ea

CT-

a

,4
q

z
<

 g
p
i

<
 h

4
q
 7

cc)
o
te

0

7

4
3
3

<

 g1
;43

 <
 G.

C
T

ellI
. 	

00 	c o
el

\S°

11 	-...

, C)) 	Z;n:: 	AV, t1

en 	es 	 it 	n t) * 	1,1

il 	
o d 	›

cX
rt

V 	en

41.

V 	.0
1-4

tX • 	ç'4

"r1

1/40 l- e' 	
00

1 I 1 	
%).>

 Ne \i 	
n 0
ON 	°n,.....

ç' o 	
‘W «* ti — 	elm en

	 tjt ---i 	4° 	 , j va 	ri 	a
0. 	 n 	il 	> 	.. ,

o- 	 Al 	 -v 	,--' 	('4

u-
r-

• 	'LI°

-...,

Lry

o

oN
n

sre›i 	Ggit
« - 1,; 	—I—) 1

Il 	o J
II 0 0
(1-1) 	 -

ar

-.c

1

throughput is 51%, a tremendous i,mprovement over selective repeat
ARQ. The difference of couree is due*to the error correcting
capahility of the 'scheme. For this range of channel conditions
the block error rate is nearly 1 with error detection only, but
the convolutional code is. table of corredting most of the error
patterns, so that most bloc s are recieved correctly after the
two transmissions reciuired to carry out Viterbi decoding. Essen-
tially the 'system has switched to code diversity operation with
the diversity branch being provided by time diversity. This
is eqMivalent in throughput to ARQCD which provides the diver-
sity branch in simultaneous frequency . diversity. Note however
that ARQCD entails a smaller delay in delivering a given block
to the receiver.

The third experiment has the channel continously in the
bad state. The throughput efficiency of selective repeat
ARQ is zero, but the efficiency of ARQDD is 19%. Note that
in this case, the bounds were not tight and it wes necessary
to run a second simulation to estimate Vc . Because of the
large nmmber of errors in the transmissions, many Viterbi
decodings are required before a block is successfully deco-
ded at the receiver. The simulation to estimate this parameter
took about 11 hours on the IBM PC. This experiment demonstrates
that ARQDD continues transmitting information through the
very noisy channel way after ordinary ARQ schemes have collapsed.
The system thus appears to be extremely well-suited to HF
radio transmission where the ability to adapt to changing
channel conditions is essential.

4,3 AN ADAPTIVE - TRANSMISSION PROTOCOL

The adaptivity of ARQDD to the changing channel conditions
is accomplished through the automatic retransmission of erro-
neous subpackets. For the multi-FSK system under considera-
tion 	a large number of subpackets are transmitted in each
frame. Under very noisy conditions this will require the
retransmission of a large proportion of each frame. This will
require considerable complexity in terms of the buffer manage-
ment and sequence numbering operations. Thus it is preferable
if the protocol operates so that the number of retransmissions
is kept low, while operating at a throughput efficiency close
to that of ARQDD. As indicated in the previous section, when
the throughput of ARQDD is near 50%, it is equivalent in through-
put to ARQCD which has a throughput of V° and which is shown

in Table 1 as well aî in Figure 9. It
can be seen that by switching to ARQCD when the throughput of
ARQDD falls to near 50%, significant simplifications in the
implementation will be obtained at little loss in throughput.
Since ARQCD has a throughput that never exceeds 50%, the proto-
col should switch to ARQDD and perhaps even ordinary ARQ when
the channel conditions are favorable.

The obvLous decion rule 10r eli,tchi,ng between the two
protocols is to cOmpare Itite. number of subpackets' that require
retranamission to a threShold. The Switch_from ARQDD to ARQCD
is effected-when the 'number of packets that require retrans-
mission ekceeds the 'threshold. The 'switch in the 'reverse
diredtion should be -based on the number of subp.ackets that arrive
incorredtly pior to Viterbi decoding since we are trying to
establish that the systeM can operate satisfactorily using
eSsentially hard dedisions only. The lre4uired cornt can be
made by retaining the same subpacket format and predecoding
procedures at the receiver. Each subpacket would first be
divided and error checked prior to Viterbi decoding. If
either of the branches received in two different frequencies
is correct, then Viterbi decoding can be skipped,and as well
the count required to implement the decision rule for switching
can be carried out. The retention of this part of the ARQDD
protocol also gives the receiver the option to handle many
more subpackets per frame—than it would be able to decode in
ARQCD where every branch pair would undergo Viterbi decoding.

4.4 OPEN ISSUES

The discussion in this section has concentrated only on
the throughput performance of the various schemes for
several relatively simple mndels. It has been established
that code diversity significantly extends the range of channel
conditions within which information can be reliably transmi-
ted. As well the combination of code diversity with mq makes
it possible to operate at high throughput efficiencies when
channel conditions are favorable. We expect that these conclu-
sions will hold for real channels as well because the schemes
make no specific assumptions about the channel statistics
and because the schemes are inherently adaptive to a coarse
statistic, block error rate.

The schemes need to be investigated further with attention
paid to implementation details. The memory and processing
requirements need to be estimated. The algorithm can then
be optimized for maximum performance within the constraints
placed on the processing and memory requirements.

APPENDIX A

MODULE 	 PAGE

	

1.0 	MAIN LOOP 	 1

	

1.1 	INIT 	 1

	

1.2 	ACS1-2 	 1

	

1.3 	SCALE 	 2

	

1.4 	SEARCH 	 2

	

1.5 	HIST 	 3

1.2.1 	SHIFT 	 3
1.2.1.1 	GETBIT 	 4
1.2.1.2 	PUTBIT 	 4
1.2.1.3 	STROBUP 	 5
1.2.1.4 	STROBDN 	 5

1.2.1.2.1 	ERRCHK 	 5
1.2.1.2.1.1 	NEXTPN 	 6
1.2.1.2.1.2 	REP 	 6
1.2.1.2.1.2.1 	KEYCHK 	 7
1.2.1.2.1.2.2 	PUTC 	 7
1.2.1.2.1.2.3 	TEXT 	 7
1.2.1.2.1.2.4 	PNUM 	 8

MODULE NAME: MAIN LOOP (VITERBI)
MNEM: 	MLOOP
HIER: 	1.0
DESC: 	This is the top level module of the hierarchy of

the 	Real-Time Viterbi Decoder. 	Upon being 	entered, 	it

initializes variables and storage areas. It then enters the main

loop of the program that repetitively implements the decoding

cycle.

CALLED MODULES:

	

NAME: 	INITIALIZE

	

.MNEM: 	INIT 	HIER: 	1.1

NAME: ADD, COMPARE, SELECT
MNEM: 	ACS1, ACS2 	HIER: 	1.2

NAME: SCALE METRICS
MNEM: 	SCALE 	HIER: 	1.3

NAME: SEARCH FOR BEST STATE
MNEM: 	SEARCH 	HIER: 	1.4

NAME: HISfORY UPDATE
MNEM: 	HIST 	HIER: 	1.5

MODULE NAME: 	INITIALIZE
MNEM: 	INIT
HIER: 	• 	1.1
DESC: 	Initialize 	input ports. 	Initialize output port.
Set long term history to zeros. 	Setup PN generators. 	Zero block
variables.

COMMON DATA:
BF1 	(WRITE)
ALLOK, NOBLOCK, ERRS, RESYNC, 	(WRITE)
PN1, GPN 	(WRITE)
OUT (WRITE)
OUTPORT, PCR, ACR, IFR, OUTDDR, DDRA, DDRB 	(WRITE)
HO 	(WRITE)

CALLED FROM:
NAME: 	MAIN LOOP (VITERBI)
MNEM: 	MLOOP 	HIER: 	1.0

MODULE NAME: ADD, COMPARE, SELECT
MNEM: 	ACS1, ACS2
HIER: 	1.2
DESC: 	These two routines each update one of the state
information tables. 	ACS1 uses State Organization Table #1 (SOT1)
to update the information in buffe #1 (BF1), 	the results being
put in buffer #2. 	ACS2 uses S 01 2 to update BF2 and the results
are put in BF2. 	The states are updated in groups of four states
until 	all 	states are done. 	At the start of the ACS operation

data output, data input, and metric distances are calculated.

LOCAL DATA:
SPSAVE (READ/WRITE)

COMMON DATA:
FOR ACS1: 	BF2, SOT1 	(READ)

BF2 (READ/WRITE)
FOR ACS2: 	8 F2, SOT2 (READ)

BF1 	(READ/WRITE)
T0000,T0001,...T1111 	(READ)

CALLED FROM:
NAME: 	MAIN LOOP (VITERBI)
MNEM: 	MLOOP 	HIER: 	1.0

CALLED MODULES:
NAME: SHIFT OUT DATA, GET DATA
MNEM: 	SHIFT 	HIER: 	1.2.1

MODULE NAME: SCALE METRICS
MNEM: 	SCALE
HIER: 	1.3
DESC: 	Subtracts previous best metric from all state
metrics. 	Also, if any metric gets above 32000 then it is reduced
to approximately 16000. 	The truncation should not be required if
calls are made frequently to this routine.

CALLING PARAMETERS:
Register U contains the address of the buffer to be scaled •

(BF1 OR BF2).
Variable: 	BESTM should be equal to or less than the best

metric.

LOCAL DATA:
SCOUNT (READ/WRITE)

COMMON DATA:
BF1, BF2 	(READ/WRITE)
BESTM (READ)

CALLED FROM:
NAME: 	MAIN LOOP (VITERBI)
MNEM: 	MLOOP 	HIER: 	1.0

MODULE NAME: SEARCH FOR BEST STATE
MNEM: 	SEARCH
HIER: 	1.4
DESC: 	Loop through all states to find the lowest metric.
Save the metric and path pointer for later use.

CALLING PARAMETERS:
Register U should point to buffer to be searched.

LOCAL DATA:
COUNT (READ/WRITE)

COMMON DATA:
BESTM, BESTV (READ/WRITE)
BF1, BF2 	(READ)

CALLED FROM:
NAME: MAIN LOOP (VITERBI)
MNEM: 	MLOOP 	HIER: 1.0

MODULE NAME: HISTORY UPDATE
MNEM: 	HIST
HIER: 	1.5
DESC: 	Trace back operation using best path pointer to
find most likely output. 	Move recent history (path pointers) to
long term history. 	Create new path pointers.

CALLING PARAMETERS: 	--
Register X contains a pointer to the first path pointer in

whichever buffer is selected.
BESTV should contain the best path pointer found by SEARCH.

LOCAL DATA:
CURCOL (READ/WRITE)

COMMON DATA:
BESTV (READ)

CALLED FROM:
NAME: MAIN LOOP (VITERBI)
MNEM: 	MLOOP 	HIER: 	1.0

MODULE NAME: SHIFT OUT DATA, GET DATA
MNEM: 	SHIFT
HIER: 	1.2.1
DESC: 	Output data. 	Raise strobe to indicate data valid.
Get eye values. 	Rotate eye values into position. 	Calculate
branch distances. 	Lower strobe.

LOCAL DATA:
TEMPA, TEMPB (READ/WRITE)
COMA,COMB (READ/WRITE)

CALLED FROM:
NAME: ADD,COMPARE, SELECT
MNEM: 	ACS1, ACS2 	HIER: 	1.2

CALLED MODULES:
NAME: GET DATA FROM ADC BOARD
MNEM: 	GETBIT 	HIER: 	1.2.1.1

NAME:
MNEM:

NAME:
MNEM:

NAME:
MNEM:

OUTOUT BIT
PUTBIT 	HIER: 	1.2.1.2

RAISE STROBE
STROBUP 	HIER: 	1.2.1.3

LOWER STROBE
STROBDN 	HIER: 	1.2.1.4

• -\

MODULE NAME: GET DATA FROM ADC BOARD
MNEM: 	GETBIT
HIER: 	1.2.1.1
DESC: 	Wait for data ready from ADC board. 	Read value
from ADC board. 	After isolating lower seven bits run value
through the quantization map.

LOCAL DATA:
MAP (READ)
Register A & B each nod one of the mapped, integrated eye

values.

COMMON DATA:
IFR 	(READ/WRITE)
ADAT, BOAT (READ)

CALLED FROM:
NAME: SHIFT OUT DATA, GET DATA
MNEM: 	SHIFT 	HIER: 	1.2.1

MODULE NAME: OUTPUT BIT
MNEM: 	PUTBIT
HIER: 	1.2.1.2
DESC: 	Shift out a bit from the variable OUT. 	This value
is placed on the output port.

CALLING PARAMETERS:
OUT should contain the most likely output bits found in the

routine HIST.

COMMON DATA:
OUT (READ/WRITE)

• OUTPORT (READ/WRITE)
DOUT (WRITE)

CALLED FROM:
NAME: SHIFT OUT DATA, GET DATA
MNEM: 	SHIFT 	HIER: 	1.2.1

CALLED MODULE:
NAME: DO BLOCK ERROR CHECKING
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1

MODULE NAME: RAISE STROBE
MNEM: 	STROBUP
HIER: 	1.2.1.3
DESC: 	Raise strobe to indicate output data valid.

COMMON DATA:
OUTPUT (READ/WRITE)
DOUT (WRITE)

CALLED FROM:
NAME: SHIFT DATA OUT, GET DATA
MNEM: 	SHIFT 	HIER: 	1.2.1

MODULE NAME: LOWER STROBE
MNEM: 	STROBDN
HIER: 	1.2.1.4
DESC: 	Lower strobe on data output port.

COMMON DATA:
OUTPUT (READ/WRITE)
DOUT (WRITE)

CALLED FROM:
NAME: SHIFT DATA OUT, GET DATA
MNEM: 	SHIFT 	HIER: 	1.2.1

MODULE NAME: DO BLOCK ERROR CHECKING
MNEM: 	ERRCHK
HIER: 	1.2.1.2.1
DESC: 	Keeps a running record of the most recent output
bits so that the internal shift register can be reloaded if
synchronization is lost. 	The bit to be output is compared to the
internal PN generator and any differences are counted. 	When the
block is done, one of three characters is printed:

u - no errors in block
less than ERRLIM errors

H S U 	ERRLIM or more errors 	(Reload shift register)

The appropriate counter is also incremented.

CALLING PARAMETERS:
BITOUT should contain bit just output.

LOCAL DATA:
BCOUNT (READ/WRITE)
STOR1, STOR2 (READ/WRITE)

COMMON DATA:
BITOUT (READ)
ERRS, RESYNC, ALLOK, NOBLOCKS (READ/WRITE)

CALLED FROM:
NAME: OUTPUT BIT
MNEM: PUTBIT HIER: 	1.2.1.2

CALLED MODULES:
NAME: NEXT PSEUDO-NOISE BIT
MNEM: 	NEXTPN 	HIER: 	1.2.1.2.1.1

NAME: REPORT BLOCK ERRORS
MNEM: 	REP 	HIER: 	1.2.1.2.1.2

NAME: CHECK KEYBOARD
MNEM: 	KEYCHK 	HIER: 	1.2.1.2.1.2.1

NAME: PRINT CHARACTER
MNEM: 	PUTC 	HIER: 	1.2.1.2.1.2.2

MODULE NAME: NEXT PSEUDO-NOISE BIT
MNEM: 	NEXTPN 	--
HIER: 	1.2.1.2.1.1
DESC: 	Generate next pseudo-noise value from internal
shift register and feed it into the shift register to carry on.
The sequence generated is 511.

LOCAL DATA:
CHECK (READ/WRITE)
PN1, PN2 (READ/WRITE)
Register A returns the PN bit.

CALLED FROM:
NAME: DO BLOCK ERROR CHECKING
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1

MODULE NAME: REPORT BLOCK ERRORS
MNEM: 	REP
HIER: 	1.2.1.2.1.2
DESC: 	Report on the block errors encountered. 	Report
includes: 	total blocks read; number of error free blocks; number
that had bad bits; and number that caused resynchronization.

CALLING PARAMETERS:
• NOBLOCK, 	ALLOK, 	ERRS, 	RESYNC should contain appropriate

block error values.

LOCAL DATA:
TB, OK, NB, RS, MEND 	(READ)

COMMON DATA:
NOBLOCK, ALLOK, ERRS, RESYNC (READ)

CALLED FROM:
NAME: DO BLOCK ERROR CHECKING
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1

CALLED MODULES:
NAME: OUTPUT STRING
MNEM: 	TEXT 	HIER: 	1.2.1.2.1.2.3

NAME: PRINT DECIMAL NUMBER
MNEM: 	PNUM 	HIER: 	1.2.1.2.1.2.4

MODULE NAME: CHECK KEYBOARD
MNEM: 	KEYCHK
HIER: 	1.2.1.2.1.2.1
DESC: 	Get a character from the keyboard if one .is
waiting, else return zero (null).

LOCAL DATA:
Returns the read character in register A.

COMMON DATA:
STATUS, DATA (READ)

CALLED FROM:
NAME: DO BLOCK ERROR CHECKING
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1

MODULE NAME: PRINT CHARACTER
MNEM: 	PUTC
HIER: 	1.2.1.2.1.2.2
DESC: 	Print a character on the terminal.

CALLING PARAMETERS:
Register A contains ASCII value to be printed.

COMMON DATA:
STATUS (READ)
DATA (WRITE)

CALLED FROM:
NAME: DO BLOCK ERROR CHECKING
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1

NAME: OUTPUT STRING
MNEM: 	TEXT 	HIER: 	1.2.1.2.1.2.3

NAME: PRINT DECIMAL NUMBER
MNEM: 	PNUM 	HIER: 	1.2.1.2.1.2.4

MODULE NAME: OUTPUT STRING
MNEM: 	TEXT
HIER: 	1.2.1.2.1.2.3
DESC: 	Print a string on the terminal 	until a zero (null)
is encountered.

CALLING PARAMETERS:
Register X holds starting address of string.

CALLED FROM:
NAME: REPORT BLOCK ERRORS
MNEM: 	REP 	HIER: 	1.2.1.2.1.2

CALLED MODULE:
NAME: PRINT CHARACTER
MNEM: 	PUTC 	HIER: 	1.2.1.2.1.2.2

MODULE NAME: PRINT DECIMAL NUMBER
MNEM: 	PNUM
HIER: 	1.2.1.2.1.2.4
DESC: 	The D register is printed on the terminal 	as a
decimal number with zero blanking. 	Unsigned.

CALLING PARAMETERS:
Register D contains value to be printed.

LOCAL DATA:
K10000, K1000, K100, K10, K1 	(READ)
ZBLANK, DCOUNr, TEMP (READ/WRITE)

CALLED FROM:
NAME: REPORT BLOCK ERRORS
MNEM: 	REP 	HIER: 	1.2.1.2.1.2

CALLED MODULE:
NAME: PRINT CHARACTER
MNEM: 	PUTC 	HIER: 	1.2.1.2.1.2.2

MODULE PAGE

APPENDIX B

1.0 	MAIN LOOP 	 1
1.1 	INIT 	 2
1.2 	ACS1-2 	 3
1.3 	SCALE 	 5
1.4 	SEARCH 	 6
1.5 	HIST 	 , 	7

1.2.1 	SHIFT 	 8
1.2.1.1 	6EFBIT 	 10
1.2.1.2 	PUTBIT 	. 	11
1.2.1.3 	STROBUP 	 11
1.2.1.4 	STROBDN 	 11

1.2.1.2.1 	ERRCHK
1.2.1.2.1.1 	NEXTPN
1.2.1.2.1.2 	REP
1.2.1.2.1.2.1 	KEYCHK
1.2.1.2.1.2.2 	PUTC
1.2.1.2.1.2.3 	TEXT
1.2.1.2.1.2.4 	PNUM

TABLES

Labels for I/O Registers 	 16
State Organization Table 	 17
State Information Table 	 19
Quantization Map 	 20
Ring Buffer Addresses 	 27
Direct Page Area 	 28

12
13
14
15
15
15
16

TEST PROGRAM TO VERIFY THE OPERATION OF THE
NEW VITERBI DECODER ROUTINES.
HAS REAL I/O ROUTINES TO INTERFACE. TO THE ABC BOARD

BLOCK ERROR REPORTING INSERTED !

**

*

MARCH 8Y 1984 ,
*

BLOCKLEN 	EOU 	64
ERRLIM 	EUU. 	10
BLIMIT 	EOU 	1728.„

BF1 	EQU 	MOB1
BF2 	EGU 	MOB2

SETD 	1
ORG 	$200 	; START PROGRAM AT $200

START 	LDS 	t$100 	; LOAD STACK POINTER TO USE REGION $000->$100
LDA 	. 0$01 	; MOVE DIRECT PAGE TO $0100 (AWAY FROM STACK)

.TFR 	APDP
LBSR 	INIT 	• INITIAI IZE VARIABLES AND STORAGE AREAS

MLOOP 	BSR 	ACS1 	; ADD COMPARE SELECT CYCLE
LDU 	tBF2
LBSR 	SCALE
8SR 	ACS2 	; ADD COMPARE SELECT CYCLE
BSR 	ACS1 	; ADD COMPARE SELECT CYCLE
BSR 	ACS2 	; ADD COMPARE SELECT CYCLE
BSR 	ACS1 	; ADD COMPARE SELECT CYCLE 	.
BSR 	ACS2 	; ADD COMPARE SELECT CYCLE
LDU , *BFi
BSR 	- SEARCH ; LOCATE BEST METRIC AND POINTER
L PU 	OBF14.4
LBSR 	HIST ; TRACE BACK AND UPDATE POINTERS
BRA 	MLOOP

**

INLILAI VIE THE DA TA AREAS AND I/O PORTS.
ims ROUT[NE INSURES THAT THE PROGRAM CAN BE RESTARTED
FROM ANY POINT AND THE SYSTEM WILL FUNCTION PROPERLYe
NOTE : (mumEs Tur INTERRUPTS ARE ALREADY DISABLED.

INIT 	CLR 	OUTPORT 9 CLEAR OUTPUT PORT IMAGE
LDA 	e$00 	9 LOAD PERIPHERAL CONTROL REGISTER CODE
STA 	PCR 	9 INITIALIZE THE I/O PORTS
CL R . 	ACR
LDA 	0$FF 	; CLEAR ALL INTERRUPT FLAGS
STA 	IFR
STA 	OUTDDR ; SET DECODED OUTPUT PORT TO ALL OUTPUTS

LDA 	$0 	; A ZERO ON EACH BIT INDICATES ALL INPUTS
STA 	DDRA 	; SET—A/D INPUT PORTS TWALL INPUTS (8 BITS)
STA 	DDRB

LDX 	4H0 	; INITIALIZE HISTORY TO ZEROS
LB)) 	e512 	9 SET COUNTER TO NUMBER OF BYTES IN

; LONG TERM HISTORY (ASSUMES 4H3TATES=64y
* 	 9 LONG TERM HISTORY DEPTH=8)

LOOP1 CLR 	1, X+

- SUBI' 	el 	9 COUNT=COUNT-1
BNE 	LOOP1 	; REPEAT TILL COUNT=0

LDX 	epri 	; INITIALIZE FIRST BUFFER OF STATE INFO
LB!) 	el 	9 SET A=0 AND B=1

L00P2 	CLR . 	yX4. 	9 CLEAR BOTH METRICS (4 BYTES)
CLR
CLR 	yX4-
CLR
STD 	,X+4. 	9 SET PATH POINTERS (SEQUENTIAL)

. ADDD 	e$202 	9 ADD 2 TO A AND B
CMPA 	$64 	9 CHECK IF A= LAST STATE
BNE 	L00P2 	9 REPEAT TILL DONE

CLR 	OUT 	; CLEAR CURRENT OUTPUT SHIFT REGISTER
LDA 	e$FF 	9 PUT A SOMETHING IN THE PN PENERATOR
STA 	PN1 	9 TO MAKE SURE THAT IT STARTS OK
STA 	SFLAG 	9 SET START FLAGy(RESET ON 1ST OK BLOCK)

LDD 	#0 	9 CLEAR BLOCK COUNT STUFF QUICK
STD 	ALLOK 	9 NUMBER OF CORRECT BLOCKS
SIT 	NOBLOCK .9 TOTAL NUMBER OF BLOCKS
STD 	ERRS 	9 NUMBER OF BLOCKS WITH ERRORS<ERRLIM'
STD 	RESYNC 9 NUMBER OF BLOCKS WITH ERRORS>ERRLIM
RIS

**

THIS IS THE STANDARD DECODING ROUTINE. DOES ALL REQUIRED
STATE INFORMATION UPDATING FOR A SINGLE BIT.

ACS1 	USES BUFFER 1 (BF1) AS SOURCE AND BF2 AS DESTINATION
ACS2 	USES BUFFER 2 (BF2) AS SOURCE AND BF1 AS DESTINATION

>,e 	ON ENTRY: NO PARAMETERS REQUIRED
ON EXIT: CONTENTS OF DESTRINATION BUFFER MODIFIED

NO SPECIAL INFO IS RETURNED
. 	 . . 	 . * 	 .

. 	 .

**
DONE 	LDS 	SPSAVE ; RESTORE STACK POINTER

RIS 	 ; AND RETURN TO MAIN:LINE

ACS1 	LBSR 	SHIFT 	; OUTPUT A BIT AND WAIT FOR NEW INPUT
STS 	SPSAVE ; PRESERVE STACK POINTER
LOS, ' 	9:SOT1-12 9 sulg. POINTER TO INSTRUCTIONS
I. 	OBF1-12 ; SETUP -STATE INFO POINTER (SOURCE)'
T1RA 	EVEACS: ; JUMP INTO—THE ACS ROUTINE 	•

ACS2 	LBSR 	SHIFT 	; OUTPUT A BIT AND WAIT FOR NEW INPUT
STS 	SPSAVE ; PRESERVE STACK POINTER
LOS 	4S0T2-12 ; SETUP POINTER TO INSTRUCTIONS
LOU 	*BF2-12 ; SETUP STATE INFO POINTER (SOURCE)

EVEACS LEAU 	127U 	; UPDATE STATE INFORMATION
LEAS • 127S 	; AND STATE ORGANIZATION POINTERS
LDY r 9 ,..) 	9 LOAD POINTER TO . DESTINATION
BEG 	DONE 	; IF DESTINATION POINTER=P THEN DONE
LDX 	' 7U 	; GET METRIC A
LDD 	E275] 	; GET BRANCH DISTANCES TO NEW STATE A

. 	LEAX 	AeX 	9. ADD , MEtRIC . A TO BRANCH DISTANCE
STX 	7Y 	9 TENATIVE WINNER: SAVE AT DESTINATION

LDX 	27U 	; GET METRIC B
ABX 	9 ADD BRANCH DISTANCE Ta METRIC B .
CMPX 	7Y 	9 COMPARE TO TENATIVE WINNER
LDD 	47U 	9 GET PATH POINTERS FOR FUTURE USE 	-
BCC 	ATOAE 	;. FROM COMPARE ADJUST NEW. STATE INFO ACCORDINGLY

mmic B SETTER : ALL STATE INFO MUST BE UPDATED
SIX 	.Y 	; SAVE METRIC
STB 	4. 	3 sAvr PATH POINTER
DI<A 	NXTFACS 9 00TO NhXT ACS OPERATION

MEIRIC A BETTER: JUST UPDATE PATH SINCE METRIC DONE
ATOME 	STA. 	4.Y 	; SAVE PATH POINTER

NXTEACS LEAY 	967Y 	; CALC NEW DESTINATION ,POINTER ((OSTATES/2)*3)
LDX 	7U 	; GET METRIC A
LDD 	I4 S] 	; GET BRANCH DISTANCES TO NEW STATE B

• 	LEAX 	A7X 	9 ADD MÉTRIC A TO BRANCH DISTANCE 	.
STX 	7Y 	9 TENAT IVE WINNER:. SAVE AT DESTINATION.

1

1

' LDX 	2yU 	; GET METRIC B
ABX 	; ADD BRANCH DISTANCE TO METRIC B
CMPX 	7Y 	; COMPARE TO TENATIVE WINNER
LDD 	4,11 	P GET PATH POINTERS FOR FUTURE USE '
BCC - ' ATOBE 	; FROM COMP-ARE -A-DJUer- NEW STATE INFO ACCORDINGLY

e METRIC B BETTER: ALL STATE INFO MUST BE UPDATED
SIX 	yY 	; SAVE METRIC
STB 	47Y 	; SAVE PATH POINTER
BRA 	OBBACS I GOTO NEXT ACS OPERATION

* 	 ; METRIC A BETTER: JUST PATH SINCE METRIC DONE
ATOBE 	STA 	47Y 	; SAVE PATH POINTER

' 	 II
ODDACS LDY 	. 67S 	; LOAD POINTER TO DESTINATION

LDX 	67U 	; GET METRIC A
LDD 	E878:1 	; GET. BRANCH DISTANCES TO NEW STATE A 	'-

LEAX 	AyX 	; ADD BRANCH DISTANCE TO METRIC A '
STX 	7Y 	.; TENATrVE WINNER: SAVE AT DESTINATION

' 	II --...
LDX, 	87U 	; GET METRIC B 	.
ABX 	; ADD BRANCH DISTANCE TO METRIC B
CMPX 	7Y 	; COMPARE TO TENATIVE WINNER
LDD 	1071J 	; GET PATH POINTERS FOR FUTURE USE
BCC 	ATOAO 	; FROM COMPARE ADJUST STATE.INFO ACCORDINGLY

* 	 ; METRIC B BETTER: ALL SrATE INFO MUST BE UPDATED
srx 	yy 	; SAVE METRIC
su 	37Y 	; SAVE PA1H POINTER
DRA 	NXTOACS ; GOTO NEXT ACS OPERATION

; MEFRIC A BETTER: JUST UPDATE PATH SINCE METRIC DONE
AIOAO 	srn 	3yY 	; SAVE PAIN POINTER

«mhos LEAY 	967Y 	CALC NEW DESTINATION POINTER ((IPSTATES/2)(3)
iDX 	67U 	GEr METRIC A
I DD 	FlOyS3 ; GET BRANCH DISTANCE ro NEW STATE B
LEAX 	AyX 	; ADD METRIC A TO BREACH DISTANCE
SIX 	1 TENATIVE WINNER: SAVE nr DESTINATION

LDX 	S7U 	; GET METRIC B
ABX 	; ADD BRANCH DISTANCE TO METRIC B
CMPX 	7Y 	,1 COMPARE TO TENATIVE WINNER 	.

,
LDD 	10711 	; GET PATH POINTERS FOR FUTURE
BCC 	ATOBO 	FROM COMPARE ADJUST STATE INFO ACCORDINGLY

; METRIC B BETTER: ALL STATE INFO MUST BE UPDATED
SIX 	7Y 	; SAVE METRIC 	,
STB 	37Y 	; SAVE PATH POINTER
LBRA 	EVEACS 	GOTO NEXT ACS OPERATION

METRIC A BETTER: JUST UPDATE PATH SINCE PATH DONE
ATOBO 	STA 	37Y 	; SAVE PATH POINTER

LBRA 	EVEACS

INSURE THAT METRICS NEVER OVERFLOW , MUST BE CALLED BEFORE
* 	- 	BEST METRICS REACH 16000 ,

SUBTRACT BESTM FROM ALL METRICS. HALVE ANY METRIC GREATER
THAN 32k TO PREVENT OVERFLOW.

ON ENrRY: REG. U POINTS TO INFO BUFFER TO BE SCALED
*• ON Fnr: THE INDICATED BUFFER HAS BEEN MODIFIED

NO SPECIAL INFO IS RETURNED

**

SCALE 	IDA 	032 	; SET COUNT= NUMBER OF STATE PAIRS (eSTATES/2)
STA 	SCOUNT 	 .

SCLOOP PULU 	D 	; GET_ FIRST. METRIC OF PAIR
SUBD 	BESTM 	SCALE-METRIC
BPI. 	NOTRC1 ; CHECK IF CLOSE TO OVERFLOW
LSRA 	; CHOP IF CLOSE TO OVERFLOW

NOTRC1 Sit! 	-2,U 	; SAVE UPDATED METRIC'BACK

PULU 	DrY 	; GET METRIC (Y = PATH POINTERS 	UNUSED)
SUBD 	BESTM 	; SCALE METRIC
BPL 	NOTRC2 ; CHECK IF CLOSE TO OVERFLOW ,
LSRA 	; CHOP IF CLOSE TO OVERFLOW

NOTRC2 STD 	; SAVE UPDATED METRIC BACK

DEC 	SCOUNT 	COUNT=COUNT-1
BNE 	SCLOOP. ; REPEAT
RIS 	; RETURN TO MAIN LINE

*****=e**

LoceirE STATE WITH LOWEST METRIC. THE METRIC AND PATH
-* 	POINTER FOR rms STATE ARE SAVED IN BESTM AND puirv.

* 	ON ENTRY: REG, U POINTS TO THE INFO BUFFER TO BE SEARCHED
ON EMI : LOCATIONS DESTM, BFSTV CONTAIN PEST METRIC AND

PATH POINTER RESPECTIVELY.
Norn corirrNrs OF ALL REGISTERS LOST

**
SEARCH LDX , 	OSOFFFF ; SET BEST METRIC = WORST POSSIBLE

STX 	BESTM
LDA 	032 	; SET COUNT= NUMBER OF STATE PAIRS (4ISTATES/2)
STA. 	COUNT 	---
PULU 	XvY 	; GET FIRST TWO'NETRICS FROM STATE INFO BUFFER
BRA 	SMID 	GOTO COMPARE

SLOOP 	PULU 	DvXvY 	; OFT TWO METRICS (D = PREVIOUS PATH POINTERS v UNUSED)
SMID 	CMPX 	-2vU 	COMPARE JUST FETCHED METRICS TO EACH OTHER

BCC 	YBEST 	SELECT WHICHEVER IS BETTER

XPEST 	CMPX 	BBsrm 	; COMPARE FIRST METRIC TO BEST METRIC
BCC 	LCHK 	; IF NO NEW BEsr METRIC THEN SKIP TO END

; &LSE NEW BEST METRIC: UPDATE BEST METRIC
LDA 	vU 	oEr PATH POINTER CORRESPONDING TO NEW BEST METRIC
STA 	BEsrv 	; SAVE IT AWAY
SIX 	BESTM 	; UPDATE BEST METRIC
PNA 	LCHK 	; SKIP TO END

yBp,r 	CMPY 	DESTM 	; COMPARE. SECOND METRIC TO BEST METRIC
DCC 	LCHN 	; IF NO NEW BEST METRIC THEN SKIP TO END

; ELSE NEW BEST METRIC: UPDATE BEST METRIC
LDA 	1vU 	; GET PATH POINTER CORRESPONDING TO NEW BEST METRIC
ETTA 	BESTV 	; SAVE IT AWAY
SfY 	BESTM 	; UPDATE BEST mEruc

LCHK 	DEC 	COUNT 	; COUNT=COUNT-1
BNE 	SLOOP 	; AND REPEAT
RTS

*
* THE HISTORY UPDATE SECTION .
* THE PATH POINTER FOUND BY SEARCH IS USED TO LOOKUP - THE
* ' BEST OUTPUT FROM THE LONG TERM HISTORY. THIS SETION ALSO.
* UPDATES THE LONG TERM HISTORY BY MOVING THE POINTERS STORED
* IN THE STATE INFORMATION INTO THE LONG TERM HISTORY AND
* CREATING NEW POINTERS TO REFERENCE.THE HISTORY. *
* , ON ENTRY: BESTV IS THE INITIAL POINTER TO LONG TERM HISTORY
* . 	ON EXIT: OUT HOLDS THE BITS (ONE CONSTRAINT LENGTH) THAT
* ARE THE MOST LIKELY OUTPUT
* ,

HIST . LDY 	CURCOL ; GET CURRENT STARTING COLUMN OF HISTORY'(CURCOL)

	

LDA 	BESTV .; GET INITIAL PATH POINTER (CORRISPONDS TO BESTM)

	

LDX 	.rY 	; GET ADDRESS OF FIRST COLUMN'OF HISTORY

	

LDA 	ArX 	; LOOKUP NEXT PATH POINTER .N THAT COLUMN

	

LDX 	-9 rY 	; GET...ADDRESS OF PREVIOUS-CdLUMN OF HISTORY '

	

LDA 	ArX 	; LOOKUP NEXt POINTER IN THAT COLUMN

	

- .LDX 	• 	-4PY

	

LDA 	AvX 	; THIS PROCESS CONTINUES FOR HOWEVER MANY

	

LDX 	. -6,Y 	; COLUMNS OF HISTORY ARE BEING USED (8)
AyX

	

LDX 	-8,Y 	; FOR A DEPTH OF 9 LEVELS THE LAST'COLUMN IS

	

LDA 	AyX 	.; REFERENCED BY -14Y IF ONLY 6.LEVELS WERE

	

LOX 	-10,Y 	; BEING USED THE LAST REFERENCE WOULD BE -10rY

	

LDA 	AYX

	

. L IX 	-12yY
. 	L LIA 	AyX 	 .

LDX

	

LDA 	AyX 	; FINAL POINTER IS MOST LIKELY OUTPUT

	

. STA 	OUT 	; FOR TESTING SAVE IN THE OUTPUT LOCATION

LEAY 	2rY 	; MOVE CURRENT COLUMN POINTER TO NEXT COLUMN
CMPY 	4PCOLLIM ; IF END OF LIST REACHED THEN
Be 	NXCOL

LDY 	$COLBEG ; START Ai' BEGINNING AGAIN
MXCOL 	STY 	. CURCOL 9 SAVE BACK AS CURRENT COLUMN

* 	; MOVE PATH POINTERS INTO LONG TERM HISTORY
LDY 	YY 	; GET POINTER TO ST ART OF NEW CURRENT. COLUMN
LUX) 	*1 	9 SET D=1

HLOOP 	LUX 	yU 	9 GET PAIR OF PATH POINTERS
STD 	yU 	e PUT IN NEW PAIR OF PATH POINTERS
STX 	PY.f.i. 	9 SAVE OLD PAIR IN HiSTORY
LEAU 	6YU 	; ADVANCE BUFFER POINTER
ADDD 	t$202 	; INCREMENT NEW PAIR OF PATH POINTERS
CMPA 	t64 	; CHECK FOR DONE
UNE 	HLOOP 	; REPEAT
RIS 	; RETURN TO MAIN LINE

SHIFT

* -

*

*
*
:e

LBSR
LBSR
BSR

LSRA
LSRA
'LSRA
LSRA
LSRA
LSRA

L. S R

L.SR
I .

**

THE SHIFT ROUTINE COORDINATES ALL THE PARALLEL I/O
.*

ROUTINES e
THE BRANCH DISTANCES ARE ALSO CALCULATED AS SÔON AS
THE INTEGRATED EYE VALUES ARE READ IN,

; SELECT APPROPRIATE MASK BY COMMENTING (*)
; ALL UN—NEEDED MASKS

	

:*MASK 	EQU
MASK 	EQU
*MASK EQU

:" —*MASK--- EQU

	

; *MASK 	EQU

	

' *MASK 	EQU
*MASK—- ECM

%11 11111

%0111111
Z0011111

Z0001111
%0000111
U000011
%0000001

; MASK FOR 7 BIT QUANTIZATION
; MASK FOR 6 BIT QUANTIZATION
; MASK FOR 5 BIT QUANTIZATION
; MASK FOR 4 BIT QUANTIZATION
; MASK FOR 3 BIT QUANTIZATION

. 9 MASK FOR 2 BIT QUANTIZATION
; MASK :FOR HARD DECODING

; REMEMBER TO ADJUST THE ASTRISKS BELOW
; TO AGREE WITH ABOVE SELECTED MASK

PUTBIT 9 OUTPUT 'DATA
STROBUP ;• ACTIVE STROBE TO INDICATE OUTPUT DATA VAL ID
GETBIT ; GET DATA AND ROTATE INTO POSITION

7 BIT SOFT DECODING IF LAST * IS HERE
; 6 BIT SOFT DECODING IF LAST * IS HERE

5 BIT SOFT DECODING IF LAST *'TS HERE
; 4 BIT .SOFT DECODING IF LAST * IS HERE
; 3 BIT SOFT DECODING IF LAST * IS HERE
; 2 BIT SOFT DECODING IF LAST * IS HERE

NO SOFT DECODING ,USED (HARD DECISION)
IF NO ASTRI'CKS APPEAR OPPOSITE THE LSRA

THE ASTRISK(S) FOR THE APOuE 	LIMES SMOUI.fl
• FOLLOW THE SAME PATTEPN AS FOP THE L. SPA

STA
STD
EORA
STA

TEMPA
TEMPD
WIAK
COM

SAuF CYFO vnLuE FOR !ATER CALCULATIONS
sAUE EYE1 VMUE FOR LATER CALCULATIONS
CALCULATE PEi*:;ATFVE OF EYE1 uALUE
SAUF TT FOP LATER CALCULATION

•
ADDA 	TEmpB 	;, CALCULATE THE BRANCH DISTANCE FOR THE1.:»EL.4.9
STA. 	-- 11000 	 .
STA 	T1001
STA 	1 10 1 0 	•
STA 	T1011 - 	

_ _

STA 	T0010+1
sTA 	T0110+1
sTA 	1 1010+ 1 	 • 	 . •

sTA 	T1110+1

	

FORB 	*MASK 	; CALCULATE NEGATIVE OF EYE0 VALUE
COMB 	; SAVE IT FOR CALCULATIONS

	

,ADDP 	TEMPA 	CALCULATE,THE BRAN CH DISTANCE FOR THE LABEL 01 ›

•
- • -- S"rrf 	 '''''
STD

11:101+1

LDA -- IEMPA -
ADDA 	›TEMPB 	; CALCULATE THE BRANCH DISTANCE FOR THE LABEL 90 '
sTA 	10000 -
sTA

10001

 sTA T0010
STA

10011 	•

sTA 	T0000+1' 	
. . 	. 	_

STA 	TO100+1
STA 	T1000+1
STA 	T1100+1 -

•LDA 	COMA 	 "

ADDA-- .come-- -F-CALCULATE-THE-BRANCW-DISTANCE-FORTFIEtABEL

sTB 	T0100
STD

10101

STD 	T0110
STD 	T0111
sTD

10001+1
STB

10101+1

7.77.

STA 	T11.00
STA. 	11101

. 	STA 	• 1 1111.
SLA_ 	- 10011+1

. 	T1011+1
STA 	T1111+1

LBSR 	STROBDN ; LOWER STROBE WHILE DATA STILL VALID
LBSR 	KEYCHK:

*-- • 	DEO"
RTN

TEMPO US

".

" 	 .

**

• * 	: WAIT FOR ABC BOARD TOANDICATE THAT- STABLE EYE DATA

	

. IS AVAILABLE ON THE P .ARALLEL PORTS , 	ROUTINE USES
.* -----THE-INTERNAL- (PIA) - EDGE- TRIGGERED- FUAG7TO- DETECT----- - -
* . IF DATA IS WAITING.. LESS RELIABLE LEVEL TRIGGERING
* . 	COULD BE USED AS BIT 7 OF ABAT IS CONNECTED:T.0 THE ABC
* -- BOARD -READY SIGNAL . 	-
*
* NOTE: THERE ARE TWO GETBIT ROUTINES, ONE FOR REAL DATA
* 	AND ONE FOR TESTING SOFTWARE, GETBIT (TEST). - 	-
* ONE OF THE ROUTINES SHOULD-BE COMENTED OUT AT

ALL TIMES.
* -
* ON ENTRY: NO PARAMETERS
* ON EXIT: ArD HOLD MAPPED VALUES OF THE EYE SIGNALS

**

;

GETBIT LDA 	IFR 	; CHECK IF BOTH PORTS HAVE DATA COMING IN
'CMPA 	•111,2 › 	-
BNE 	GETBIT ; IF NOT THEN WAIT UNTIL DATA COMING IN
STA 	IFR 	; CLEAR FLAGS
LDB 	ADAT 	; READ ONE OF THE 'INTEGRATED EYE VALUES
LDA 	BDAT 	; READ THE OTHER INTEGRATED EYE VALUE
COMA 	• 	; COMPLEMENT TO MAKE - 00i1PATIBLE WITH SOFTWARE
COMB 	

•

ANDA. 	4$7F 	; GET RID OF BIT 7 SINCE IT IS UNDEFINED
ANDB 	1:$7F . 	; GET RID OF BIT 7 SINCE IT IS UNDEFINED

------LDX 	. *MAP 	1 GET- POINTER TO - START . OF- MAPPING AREA
LDA 	ArX 	; RUN BOTH EYE VALUES THROUGH THE MAPPING
LDB 	B,X 	; REGION OF MEMORY

• RTS 	; RETURN 	_

*
EXTRACTS AN OUTPUT BIT FROM THE 'SHIFT REGISTER (OUT)
WHICHe SETUP-BY HISTe CONTAINS THE • MOST LIKELY OUTPUT

* 	SEQUENCE. THIS DATA IS SENT TO THE OUTPUT PORT.

PUTBIT LDA 	4$18 	.; CONVERT TO ASCII SO THAT THE VALUE MAY
LSR 	OUT 	; EASILY BE PRINTED ON THE TERMINAL IF NEEDED
ROLA

LBSR 	PUTC 	; OPTIONAL! OUTPUT BIT MAY BE PRINTED

ANDA 	P$01 	; CONVERT BACK TO BINARY
LDB 	OUTPORT ; GET PREVIOUS VALUE
STA 	BITOUT • STORE CURRENT AND SET STATUS BITS
BNE 	SETING ; CHECK IF OUTPUT IS 1 OR 0
ANDB 	*$FE 	; ZERO IS.OUTPUT: 'CLEAR LOW BIT
BRA 	PUTDONE

SETING ORB 	P1 	; ONE IS OUTPUT! .:;Ei:T• LOW BIT
PUTDONE STB 	OUTPORT ; SAVE PORT VALUE

STB 	DOUT 	; ACTUALLY OUTPUT VALUE
LBSR 	ERRCHK ; DO ERROR CHECKING
RIS

	

STROBUP LDA 	OUTPORT ; RAISE STROBE', INDICATING DATA OUTPUT VALID

	

ORA 	P$2

	

STA 	BOUT
•

	

STA 	OUTPORT
RTS

	

STROM LDA 	OUTPORT ; LOWER STROBEe COMPLETING THE CLOCK, PULSE
ANDA 	.*$FD

	

STA 	DOUT

	

.STA 	OUTPORT
RTS

THE IS THE BLOCK ERROR CHECKING SECTIONy WITH ITS OWN
PN SEOUENCE GENERATOR.

ON ENTRY: USES VARIABLE: BITOUT TO SAMPLE OUTPUT
ON EXIT: OUTPUT IS ON TERMINAL

NO SPECIAL INFO RETURNED

ERRCHK LDA 	BITOUT ; ROTATE DECODED BIT INTO STORAGE IN CASE

RORA 	PN SHIFT REGISTER NEEDS RELOADING LATER
ROL 	STORI
ROI.. 	STOR2

LDD 	BCOUNT ; ADD ONE TO BLOCK BIT COUNT
ADDD 	#1
STD 	BCOUNT

. NO 	LBSR 	NEXTPN ; PREDICT WHAT THIS BIT SHOULD BE
FORA 	BITOUT ; COMPARE ACTUAL AND PREDICTED BITS
BE0 	El 	; JUMP TO NORMAL SECTION IF THEY ARE THE SAME
LDD 	ERRORS ; ADD ONE TO THE ERROR COUNT OTHERWISE
ADDD 	:11: :1.
STD 	ERRORS

El 	LDD 	BCOUNT ; CHECK FOR END OF BLOCK
CMPD 	#BLOCKLEN ; ,USING BLOCKLEN
LBNE 	EINI 	; JUMP TO END OF ROUTINE IF NOT END OF BLOCK

ERRORS ; DO END OF BLOCK REPORT
BEU 	E2 	GOTO NO ERRORS SECTION IF NO ERRORS
CMPD 	*ERRLIM 	CHECK IF RESYNCING NEEDED
BCC 	E7 	GOTO RESYNCING SECTION
LDD 	ERRS 	; ADD ONE TO BAD BLOCK COUNT
ADDD 	el
STD 	ERRS
LDD 	ERRORS ; SET THE NUMBER OF BIT ERRORS
TER

• ByA 	; (IGNORE MSB AY .z0 SINCE BLOCKLEN..16)

ADDA 	el() 	; PRINT OUT e OF ERRORS
CMPA 	0'9 	; USE ALPHABIT IF DIGITS 0-9 INSUFFICIENT
BLS 	F3 	; 0 • 9 IS SUFFICIENT
ADDA 	*7 	; ADD OFFSET INTO A-Z SYMBOLS
BRA 	F3 	; PRINT STUFF

1E7 	LDA 	610R2 	oEr RID OF DON ''T CARE BITS
• ANDA 	IIi. 	; 	SAVING ONLY THE LSB

STA 	STOR2
LDD 	STORI 	; USE STORAGE TO RESYNC
BEU 	ES 	; DON ''T FILL PN511 REGISTER WITH 0-STATE!
STD 	PNI

ES 	LDD 	RESYNC ; ADD ONE TO RE SYNC COUNT
ADDD 	el. 	• 	.

STD 	RESYNC
IDA 	e's 	; LOAD CHARACTER INDICATING RESYNC •

BRA 	E3 	; PRINT STUFF

F2 	LDD 	ALLOK 	; THE BLOCK IS PERFECT: ADD ONE TO PERFECT COUNT
ADDD 	*1
STD 	ALLOK

SFLAG 	; SET RE-SYNC FLAG
BEG 	ES 	; JUST FINISHED INITIAL RE-SYNC?
CL R 	SFLAG 	yEse INITIALIZE STATISTICS
LDD 	eo
STD 	RESYNC
STD 	NOBLOCKS
•STD . 	ERRS •
• LDX 	*MEND 	; OUTPUT CR-LF TO ISOLATE iSt RE-SYNC
LBSR 	TEXT

ES 	LDA 	*/* 	; PRINT A 'DOT TO INDICATE PERFECT BLOCK
E3 	LBSR 	PUTC

CLR 	ERRORS ; CLEAR BLOCK COUNTERS . • -•
CLR 	ERRORS+1•; ERR-OR COUNT
CLR 	BCOUNT
CLR 	BCO1JNT+1 9 BLOCK -BIT COUNTER
LDD 	NOBLOCKS,; ADD ONE TO NUMBER OF BLOCKS PROCESSED
ADDD 	41 	'
STD 	NOBLOCKS
CMPD 	4BLIMIT
nEo 	E6 	9 IF DONE ALL BLOCKS!, STOP AND REPORT

ANDB 	I:zoo -111111 ; HAVE PROCESSED MOD 64 BLOCKS?.
BNE 	E4 	9 NOPE
LDX 	MEND 	; YEP, OUTPUT A CRLF
LBSR 	TEXT

E4 	• LBSR 	NEYCHK ; CHECK FOR KEYBOARD COMMAND
BEG 	FINI 	•; JUMP TO RETURN IF NO KEY PUSHED

E6 	. 	LBSR 	REP • 	; DO REPORT. 	.
RTN 	; STOP AND RETURN TO MONITOR 	'

FINI 	RTS 	9 RETURN

THIS [S A PN SEQUENCE GENERATOR USED BY THE BLOCK ERROR
CHECKING ROUTINES. SETUP FOR PN SEQUENCE 511

*
ON ENTRY: NO ENRTY PARAMETERS
ON EXIT: REG. A HOLDS A SINGLE BIT EXPECTED OUTPUT

NEXTPN CLRA 	; CLEAR BIT PARITY COUNT

LDB 	PN1 	; I. 	B WI TH SHIFT REGISTER
BITB 	1$10 	; CHECK TAP AT BIT 5
BEG 	N1
INCA 	; ADD ONE IF BIT SET

N1 	LDB 	PN2 	; LOAD B WITH REST OF SHIFT REGISTER
BITB 	e$1 	; CHECK TAP AT BIT 9 OF SHIFT REGISTER
BEG) 	N2
INCA • 	; ADD ONE IF BIT SET

N2 	ANDA 	:11: 1 	ISOLATE LOWEST BIT OF TOTAL
STA 	CHECK 	9 . SAVE RESULT FOR LATER
RORA 	; ROTATE RESULT INTO THE CARRY
ROL 	PN1 	; ROTATE CARRY INTO PN SHIFT REGISTER
ROL 	PN2

N3 	. LDA 	CHECK • ; RELOAD RESULT INTO A REGISTER

RTS

**

ON ENrRY: NO PARAMETERS EXCEP1 ERROR COUN1S IN MEMORY
ON EXE1: 	AYPYX LOST

NEP 	1DX 	UTB 	; PRINT NUMBER OF BLOCKS MESSAGE
LBSR 	1EXI
I BP 	NOW OCK 	ruNr NUMBER OF BLOCKS READ 1N DECIMAL
tbSk 	PNUM
I FIX 	UOK 	; PRINT NUMBER OF CORRECT BLOCKS MESSAGE
LBSR 	rrxr
LDP 	ALLON 	; PRINT NUMBER OF BLOCKS THAr WERE CORRECT
LBSP 	PNUM
IDX 	; PRINT BAB BLOCKS MESSAGE (ERRORS..ERRLIM)
LBSR 	1EXT
LDP 	ERRS 	e PRENT NUMBER OF BLOCKS wrrH A FEW ERRORS
LBSR 	PNUM
LOX 	nRs 	PREN1 NUMBER OF RESYNCS MESSAGE
LBSR 	IFxr
I DU 	RE-SYNC 	PRENr NUMBER OF BLOCKS CAUSING RESYNCINO
LBSR 	PNUM
10X 	gMEND 	; ADVANCE Tn NEX1 DISPLAY LANE

TEXT

; TEXT USED IN THE REPORT FUNCTION

TB 	FCB. 	1310Y13,10

	

FCC 	"TOTAL BLOCKS READ "

	

FCB 	0
- OK 	13Y10

	

FCC 	"NUMBER,OF ERROR FREE BLOCKS

	

FCB 	0
NB 	FCB 	13./10

	

FCC 	"NUMBER THAT HAD BAD BITS "
O FCB

RS 	FCB 	1•./10

	

FCC 	"NUMBER THAT CAUSED RE SYNC "
o • 	' FCB

MEND 	FCB 	13./10Y0

THE REPORT FUNCTION PRINTS THE BLOCK•ERROR VARIABLES ON
THE SCREEN WI TH TEXT EXPLAINATIONS AND DECIMAL OUTPUT

THES SECTION CONTAINS THE I/O ROUTINES USED TO COMMUNICATE
WITH 1HE THE rERMENAL.

ROUTINES JNCLUDF:

KEYCHK - FETCH CHAR. FROM KEYBOARD OR NULL IF NONE
RETURN VALUE IN REG A

OEFC 	- WALT FOR KEYBOARD CHAR. RETURN VLAUE IN REG A
(C(JRRENILY UNUSED BUT IS AVAILABLE)

PU1C 	PRENT CHAR IS REG A ON TERMINAL. REG B LOST

TEX T 	- PRINT NULL TERMATED STRING POINTED TO BY
REG X. VALUE OF REG Avb LOST

PMUM 	- PRIN1 THE VALUE OF REG D AS AN UNSIGNED rNTEGER.
• 	ZERO BLANKING IS DONE. VALUE OF REG AyByX LOST.

**)K******

TERMINAL DRIVER ROUTINES

STATUS EOU 	SCFDD 	; TERMINAL STATUS REGISTER
DATA 	ECU 	SCEDC 	; TERMINAL DATA REGISTER

KEYCHK LDA 	STATUS ; CHECK STATUS FOR KEY PUSH
AMDA 	4$08
BEP 	CDONE 	; IF NO KEY PUSHED THEN JUST RETURN
LDA 	DATA 	; ELSE GET THE KEY'S VALUE AND RETURN

CDONE 	RTS

GETC 	BSR 	KEYCHK ; KEEP CHECKING THE KEYBOARD TILL
BEC] 	GETC 	; A KEY IS PUSHED.
RTS

PUTC LDB 	STATUS ; CHECK STATUS TO SEE IF TERMINAL READY
ANDB 	f$10

PUTC 	; WAIT UNI IL SPACE AVAILABLE TO OUTPUT CHAR
STA 	DATA 	; OUTPUT CHARACTER AND RETURN
RTS

TEXT 	LDA 	rX-1. 	; GET CHARACTER. AT POINTER
BEC] 	TDONE 	; CHECK TO SEE IF ITS THE LAST CHAR. (NULL)
BSR 	PUiC 	; PRINT THE CHARACTER AND LOOP IF NOT NULL ,
BRA 	TEXT

TDONE 	RTS 	; NULL ENCOUNTERED SO RETURN

PNUM 	LDX 	eiffl000 ; GET START OF POWERS LIST
CLR 	ZBLANK ; SET FOR ZERO BLANKING

NLOOP 	CLR 	DCOUNT '; CLEAR DIGIT COUNT
ILOOP 	SUBD 	yX - 	SUBTRACT THE CURRENT POWER

INC 	DCOUNT ; DCOUNT SHOWS HOW MANY TIMES CURRENT POWER FITS
BCC 	ILOOP 	9 REPEAT IF THE POWER FIT . •
DEC 	DCOUNT 9 ACTUALLY FIT ONE LESS THAN DCOUNT
At [ID 	9X 	; ADD POWER CAUSE WENT TOO FAR

• STD 	TEMP 	; SAVE It AWAY WHILE THE DIGIT IS PRINTED
LDA 	DCOUNT • 9 PREPARE DIGIT
BNE 	PDIGIT ;- IF DIGIT IS NOT ZERO:. PRINT REGARDLESS
TST 	ZBLANK ; ELSE TEST IF' ZEROS ARE BEING BLANKED •
BE0 	SKIPDGT 9 BLANK IT

POIOU ADDA 	4'0 	; CONVERT DIGIT TO ASCII
BSR 	PUTC 	; PRINT IT ON THE TERMINAL
INC 	ZBLANK ; NOW THAT A DIGIT'HAS BEEN PRINTED DISABLE BLANKING'

SKIPDGT LEAX 	2yX 	; MOVE TO NEXT POWER ON THE LIST
LDD 	TEMP 	; GET REMAINDER OF TRHE NUMBER
CMPX 	0K1 	_.; REPEAT IF NI)! AT END OF POWER LIST
BNE 	NLOOP

. 	LDA 	TEMP1.1 ; THE REMAINDER IS NOW THE LAST DIGIT -
ADDA 	.U0 	; CONVERT TO ASCII
BSR 	PUTC 	; -PRINT Ii' AND RETURN
RIS

CONSTANTS USED IN THE ROUTINE PNUM

K10000 FDB 	10000'
K1000 	FDB- 	1000
K100 	FDB 	100
K10 	etIÈ: 	10 	•
K1 	FDB 	1

I/O ROUTINES THAT USE THE I/O PORT TO GET INPUT EYE
VALUES AND OUTPUT DECODED DATA TO DATA .ERROR ANALYZER.

BOAT 	COI.! 	$CFE0 	; PORT B DATA REGISTER
ABAT 	EGO 	$CFE1 	; PORT A DATA REGISTER
DDRB 	EGO • *CFE2 	9 PORT B DATA DIRECTION REGISTER -
DDRA 	EGO 	$CFE3 	; PORTT-A DATA DIRECTION REGISTER'
ACR 	EAU 	$CFEB 	; BOTH PORTS AUXILLARY CONTROL REGISTER
PCR 	EGO 	$CFEC 	; BOTH PORTS PERIPHERAL CONTROL REGISTER
IFR 	EOU 	$CFED 	9 BOTH-PORTS INTERRUPT FLAG 'REGISTER
IER 	EGO 	$CFEE 	; BOTH PORTS INTERRUPT CONTROL REGISTER

DOUT 	EQU
OUTDDR EOU

$CFF1 	; OUTPUT REGISTER FOR DECODED DATA AND CLOCK
$CFF3 , 9 DATA DIRECTION REGISTER FOR ABOVE 	'

.. 	 ... 	_... 	.. .

' ' • 	.4:::: 	" 	,,I , `,1*::'.- --, ''''.: 	 - !:e.:'‘,.-Y,'-'": , 9, i',!,.77;n 	 ;i.r. 	 ': 	-,.: -.‘es,,e;:, à
. e «.'f•`.'tet- igeker ' * 	 : • - 	

--
' ...- ye*.efe-fel:.'''''

* THE STATE ORGANIZATION TABLE IS CURRENTLY SET UP TOBÉ.00e—' ..,. 	,:-•, 	• 	...- 	- THE OUTPUT FROM A DE C.'.0DER THAT I MPLEME.NTS 171. /133 -CODeillet..:A *
*: 	THE FOLLOWING WAY,

* '

	

	SEE FOPTPAN PROGRAM 'NEWSOT 1 TO CALCULATE THE STATE
ORGANIZATION TABLE FOR OTHER CODES,

* ,
*
* : 	171 ENCODER

	

1 	
,

II
à

\ 	\ 	\ 	\ >:,..
* TmpuT,,,..,,,, à/ . , 	• 	à 	à 	, à 	, 	à 1 . 	à 	à 	à 	à

1 * • • ,

	

. 	, 	à
* 	 • 	•

à 	
/

11
à 	à

* \ 	\ 	à à 	. 	• à 	/

133 ENCODER
*. 	: .. 	

- 	
: 	

.

..e
• W.

*>!.'*9!***********************.**e**-11

e.P.;•,/

,

ORG 	$0000

SOTI 	EDP 	MOB2..›.TOOltyT1100

	

FDE 	M1P2vT1001.., T0110

	

FDE 	•M2E2v 1110ÔvT001.1

	

EDP 	M3D2vT0110 , 1 1001

	

EDP 	M4B2?T1100 , 10011 	•

	

FDB 	M5B29T0110yT1001

	

FDB 	M6B2YTOOlirT1100

	

EDP 	M7B2rT1001yT0110
• FDB 	MSB2YT0011rT1100

	

EDE 	M9B2p 11001,T0110
• EDP 	Mi0B2s.T1100iT0011..

'EDE' 	M11B2jT0-1:107Tt001 .

	

FEB 	M12B2YT1100Y1. 0011

	

FDB 	M13B2pT0110 ,., T1001

	

EDE 	M14B2yT00111, T1100

	

EDP 	Ml5P2pT1001e1'0110

	

EDP 	M16B25.T0110vT1001

	

up, 	M17E2T1100eT0011

	

- FDP. 	M10B21.T1001eT0110

	

FDP 	M19B2yT0011FT1100

	

Up 	M2002YT1001eT0110
M21B2vT0011T1100

	

Fre 	M22B2.., T0110!, 11001 _

	

FDE 	M2302vT1100vT0011

	

FOB 	M24B2y 10110eT1001
• EDP 	M25E2eT1100yT0011

	

--" -- EDP 	M 2AB2yT10019T0110

	

EDB 	M2702”T 00119T1100
M2802./ 11001yT0110

M30B2rT0110yT1001

	

FIJB 	. M31B2,T1100rT0011 	_

a

B 	10BlyT001 1 y T11.00

Ft' B 	M1 B1.5.T1001, TO11.0

D I 	M2B1 '11 100:1'0011

F 	M3B:l. T0110 y 11. 001

FrIB 	M4B1 T11.00 r T0011

FD B 	M B1 e 	 MO 0 1
I,: DB 	M6B1 y T0011 T1100

D B 	M7B 1. y 1 1001 x 1 0110

F B 	MOB:I 9 TO011 Ti 100
F. DB 	M9B1 711.001. y T0110

FDB 	M:10B1 ,T11.00r TO01.1

M1 1B1 y T011.0y T1001

E 1:1B 	M12B1 y T1100 rT00.1.1

FDB 	M13B1 T0110 r T1001

FDB 	— 1114Br r«):[1. T1100

FDB 	M15B1 y T1001 rT0110

FDB 	M16B1yTO11O,T1001

FDri 	M17B1 rT1109 yT0011
FEIB 	M18B1 y1"1001 T0110

FrIB • 	M19B1 r T0011 ?MOO
FDB 	M20B1 r T1001 r 10110

FEIB 	M21B1 T0011 y T1100

FDB 	M22B1 TO1107T1001

FDB 	M23B1 Ti.100 TO011

FDB 	M24B1rT0110 r T1001

FEIB 	M25B1 yillIDOrT0011

FOB 	M26B1 T1001 r T0110
FDB 	M27:81,1- 0011 r T1100

FOB' 	M2PB1 r T1001 r TO110

FOB 	M29B1 TO011 T1100
FOB 	M30B1 :T0110 r T1001

FOB. 	ii31B1 ? T1100 eT0011

FOB 	00,0

** * •
THIS IS THE STATE INFORMATION TABLE. IT CONTAINS A TWO
BYTE METRIC AND A ONE BYTE POINTER FOR EACH OF THE 64 STATES. *

**
ORG 	$0E00

MOB1 	FDB 	0
M1B1 	FDB 	0
POB1 	FCB 	0
P1B1 	FCB 	1
M2B1 	FDB 	0
M3B1 	FDB 	0
P2B1 	FCB 	9
P3B1 	FCB 	3

0
M5B1 	FDB 	0
P4B1 	FCB 	4
P5B1 	"FCB 	5
M6B1 	FDB 	0
M7B1 	FDB 	0
P6B1 	FCB 	6
P7B1 	FCB 	7
M8B1 	FDB 	0
M9B1 	FDB 	0
P8B1 	FCB 	8
P9B1 	FCB 	9
M10B1 - FDB - 	0
M11B1 	FDB 	0
P1OB1 	FCB 	10
PilBi 	FCB 	11
M12B1 	FDB 	0
M13B1 	FDB 	0
P12B1 	FCB 	12
P13B1 	FCB 	. 13
M14B1 	FDB 	0
M15B1 	FDB
P14B1 	FCB 	14
P15B1 	FCB 	15
M16B1 	FDB 	0
M17B1 	FDB 	0
P16B1 › FCB 	16
P17B1 	FCB 	17
M18B1 	FDB 	0
M19B1 	FDB 	0
P18B1 	FCB 	18
P19B1 	FCB 	19
M20B1 	FDB 	0
M21B1 	FDB 	0
P20B1 	FCB 	20
P21B1 	FCB 	21
M22B1 	FDB 	0
M23B1 	FDB 	0
P22B1 	FCB
P23B1 	FCB 	23

M24 Bi 	FDB 	0
M25B 1 	F I) B 	0

P24 13 1 	17 CB 	24

P25 131 	FCB 	
..).-
.......,

M26 13 1 	FDB 	0.

M27B1 	F D B ' 	0
:26131 	F.:TB 	26

P27 13 1 	FCB 	27

M2 8 B 1 	FOB 	0

M 29 Bl. 	F D B • 	0
P 28 B1 	F C B 	28

P29B1. 	F CB 	29

M30 13 :1 	F DB 	0

M 31 13 1 	F D B 	0

P30 13 1 	F CB 	30

P 31131 	F CB 	31
M 32 B 1 	F I) B 	0

M33B1 	F DB 	0

1::. 32 B1 	FCB 	32

P 33 B 1 	FCB 	. 33

M34 13 1 	rulti 	•O

M3513:l. 	FDB 	' 	0

P 34 B 1 	F CB 	34

P35131 • 	F CB 	35

M36B1 • F DB . 	0
M37 13 1 	F1313 	0

P 36 B1 	FCB 	36

P 37 Bl. 	F C. B 	37
M38B1 	F1313 	0
M 3913 1 	F I) B 	0

P 38 Bl. 	FCB 	38
P39 131 	F CB 	39

M40B1 	FDB 	0

M41B1 	FDB 	0
P40 13 1 	F CB 	40

P41 13 1 	F CB 	41

M42 13 1 	FDB 	0

M43 13 1. 	F DB 	0

P42 13 1 	F CB 	. 42

P43 13 1 	F CB 	43

M44B1 	Fie 	0 .

M45B1 	F DB 	0

F'44 B :I. 	F. C B 	44
P 45 B1 	FCB 	45

M 46 Bl. 	FDB 	0

M47B1 	F DB 	0
'46131 	FCI.: 	46

P 47 B 1 	F CB 	47

M48 13 1 	FDB 	0

M•9B1 	F DB 	0

P 48 Bl. 	FCB 	48

P 49 B1 	F CB 	49

M50 13 1 	F1313 	0

M 51 B J. 	F I) B 	0

	

P5081 	FCB 	50

	

P5181 	FCB 	51

	

M5281 	F88 	0

	

M1*-5381 	F118 	0

	

1:: . 5281 	FCB 	52

	

1::5381 	F CB 	53

	

M548:I 	F1)8 	0

	

M5581 	B 	0

	

P3481 	FCB 	54

	

:.35 B :1. 	F C 	55

	

115681. 	F88 	0

	

M5781. 	EBB 	0

	

é.)8 1. 	F. C 8 	56

	

P5781 	FF8 	5 •

	

M5881 	3:: I:18 	0

	

M5981 	F118 	0

	

P3881. 	CB

	

P39811 	::'ç' 	59

	

M6081 	1'7 D8 	0

	

1161.81. 	F88 	0

	

1:'6081 	FC, 8 	60

	

P6181 	F. C8 	61

	

11 6281 	F88 	0

	

M6381 	F88 	0

	

P6281 	FC8 	62

	

P63 8 1 	F CB 	63 .

11 082 	F D8 	0

11 1.82 	F88 	0

	

C 8 	0

Pl. B 2 	F C8 	. 	0

11282 	F88 	0

11382 	F88 	0

	

FCB 	0

P382 	r-- CB
11482 	F88 	0

11582. 	D8 	0

P482 	F CB 	0

P582 	F CB 	0

11682 	EBB 	0

11782 	F813 	0

P682 	FF8 	0

P782 	F.- CB 	0

11882 	 0

1 982 	" Fri B 	0

P882 	FF8 	0

P982 	FF8 	0

	

D8 	0

:182 	FE18 	0

P :1. 0 B2 	FF8 	0

P1.1.82 	1;7 CB 	0

111282 	rrni
M1.382 	D 8 	0

P:1.282 	1.7 CB 	0

P:1.382 	F CB 	0

	

M1 4B2 	. EBB 	0

	

M 1 5 B 2 	F D B 	0

	

Pl. 4B2 	FCB 	0

	

' P15B2 	FCB 	0

	

M16B2 	FDB 	0

	

M17B2 	FDB 	0

	

P 1 6192 	FCB 	0

	

P 1 7 B 2 	F C B 	0

	

M:18B2 	FDB 	0

	

M 1. 9 B 2 	' F D B 	0

	

P 1 8 B 2 	F C B 	0

	

pl. 9 B2 	FCB 	0

	

M 2 0 B 2 	F ri B 	- 0

	

M2 1 B2 	I"' D B 	0

	

P2 0 B2 	FCB 	0

	

P21 B2 	FCB 	0

	

M '2 2 B 2 	F D B 	0

	

M23F.(2 	F DB 	0

	

P 2 2 B '.2 	F C B - 	0

	

P23B2 	FCB 	0

	

11 24B2 	FDB 	0

	

• M25B2 	. F DB 	0

	

P24B2 	FCB 	0

	

P25B2 	FCB 	0

	

M26B2 	FDB 	0

	

M27B2 	FDB 	0

	

P26B2 	FCB 	0

	

P27B2 	FCB 	' 0

	

M28B2 	' FDB 	0

	

M 2 9 F.i 2 	F D B 	0

	

P28B2 	F CB 	0

	

P29 B2 	FCB 	0

	

M30B2 	prIB 	p

	

M 3 1 B 2 	F D B 	0

	

P30B2 	FCB. 	0

	

P31B2 	. FCB 	0

	

M32B2 	priri 	0

	

M33B2 	FDB 	0

	

P32B2 	FCB 	0

	

P33B2 	FCB 	0
M 3 4 B.2. 	F I:1B 	0
'M35B2 	FDB ' 	0
P34B2 	FCB 	0
P 35B2 	FCB 	0
M36B2 	FDB 	0
M37B2 	FDB 	0
P36B2 	I:: CB 	0

	

P 3 7 B 2 , F C B 	0
M 38 B 2. 	I"' D It‘ - 	0
M 3 9 TI 2 	F D B 	0

	

FCB 	0
P 3 9 B 2 	F C B 	O
M40B2 	F DB 	0
NI41B2 	FDB 	0
P 4 0E12 	F CB 	' 0
P4 1 B2 	F CB 	0

	

M42B2 	FDB 	0

	

M 4 7.5 r2 	FEIB 	0

	

P 42B2 	FCB 	0

	

P43B2 	FCB 	()

	

1144B2 	FEIB 	0

	

M45B2 	FDB 	0

	

P 44 B2 	FCB 	0

	

P 4 5B2 	F CB 	0

	

11 46B2 	FrIB 	0

	

M 4 7 B 2 	F 1:1 B 	0

	

P4 6 B2 	F(.- B 	0

	

P4 7B2. 	FCB 	0

	

4 8 B 2 	FtIJ3 	0

	

M 4 9 B 2 	FEIB 	0

	

P 48B2 	FCB 	0

	

P 49B2 	FCB 	0

	

M 5 0 B 2 	Fr DB 	0

	

M 5 1 B 2 	D B 	()

	

P50B2 	FCB 	0

	

5j7 	FCB 	0

	

M52 B 2 	FDB 	0

	

M53B2 	Frifi 	0

	

P 5 2 B 2 	FCB 	0

	

P53B2 	FCB 	0

	

5 4 B 2 	F D B 	0

	

M55B2 	FDB 	0

	

154B2 	FCB 	0

	

F5B2 	FCB 	0

	

M56B2 	FDB 	0

	

5 7 B 2 	F D B

	

P56B2 	FCB 	0

	

P57B2 	FCB 	0

	

M58B2 	FDB 	0

	

1 59B2 	FDB 	0

	

P58B2 	FCB 	0

	

K.59B2 	Ecr 	0

	

M60B2 	FDB 	0

	

M61. B2 	FEIB 	0

	

P60B2 	FCB 	0

	

P61B2 	FCB 	0

	

M62B2 	FEIB 	0

	

M63B2 	FEIB 	0

	

P62B2 	FCB 	0

	

P63B2 	FCB 	0

** •*

CURRENT PROFILE IS A ONE TO ONE MAPPING (>(=>X)

MAP 	FOB 	0P1,2r3r4y5r6,7
FOB 	13r9,10r11,12,13y14).15 	•
FOB 	16,17v18p1.9e20,21,22,23.
FOB 	24$.251, 26y27r28/29y30,31
FOB 	32Y33r34p35r36,37r3E439
FOB 	40,41,42,43,44,454607 -
FOB 	48,49Y50,51r32p53,54e55
FOB 	56p57,59,59,60.1, 61e6263
FOB 	64,65766r62Y68,69$.70p71 	.
FOB 	72,735, 74,75y76y7r78e79 .
FOB 	80rels.82p83y84,85 .Y86e87
FOB 	. 88y89r90,91r92m9394 .e95
FOB 	96r971.98y99r1007101y1023, 103
FOB 	104v105p106?107r1081.109110r111
FOB 	112y113,114,115r116P117Y1185.119
FOB 	120p121r122r123y124p125r126r127

AUFP'MATE MAPy MU—LAW: MU = 100

	

>MAP FOP 	0!, 0v0y11.15.191y2
FOB 2y2y2Y3Y3y3y3r-4

•

	

FOB 	4y45y5!..51.6r6
FOB 6y7y7y8y9y85.9r9

, FOB, 10p1040!..11e1ly121, 12713

	

FOB 	13y14y1SPI.Srl6y17P17Y18

	

FOB 	191.20 ,)21!.22,23y24y25727
FOB285.307321, 35738›, 42v47P56

	

FOB 	—71-re0Ï8589y92p95v97v99 	--
FOB 100y102r1037104..10:55, 106Y107y108

	

- FOB 	109p110sIlOy111 , 112v1121.113,114

	

FOB 	114115e115116y116y117,1:175;117

	

FOB 	11B!, 118e119,119v119r120p120121
FOB 1211.121e122Y122r122.122r123g123

• r1.-24-rf24 1-24—n2. y 125 ri25t25 •-

. 	 "

>!e
•

128 BYTE AREA USED TO MAP THE EYE VALUES RECIEVED - FROM
THE ADC BOARD.

*MAP FCB
FCB

17UB -
FCB

FCB

FCB

FCB
FCB

FCB .

 FCB
FCB

FU.? .

FCB
FCB -

FCB

•

*'ALTERMATE MAPv INVERSE MU—LAW: MU 100

014,9913 5, 16 y20,23,26

28 y 31 Y 33 y 35 , :37 y 39 y 41 r 43

44 y '45747 r 4S-y-49 -r 50 Y 51 Y 52

53 Y 5 4 Y 54 v 55 Y 56 Y 56 y 57
y 59 y 59 Y 59 y 0 Y n•!:. 0 9 n

6 1.r61 e 61 r61 . Y 62 y 62. 62 Y 62

62 Y 62 62 r 63 y 63 y 63 y 63 y 63

63 y 63 	y 63 e 431 63 r63 Y 63

64 7 64 y 64 r 64 y 64' 	- 6 4. y 64

64 y 6,4 64 s. 44 r 44 65 y 6!'3 y 65
65 u 65 r 65 r 65 r 66 r 66 y 66 r 66
4 7v 67r 6 796F3!7687e.re!.. 49,69

 70 Y 70 y 71. 71. Y 72 y 73 73 74

75- y 7 78 y 79 Y 8 0 r 82 y 83

84 y . 96 :,-88 y 90 y 92r 94 - 996 Y 99

101. r 104 y 107 r 111-1114 r1-18/ 123 r 127

**

THIS IS THE LIST OF ADDRESSES USED TO REFERNCE THE VARIOUS
COLUMNS OF HISTORY DURING HISTORY UPDATING. CURCOL REFERS
TO THIS TABLE TO FI ND THE LOCATION OF THE CURRENTLY ACTIVE
COLUMN OF HTSTORY.

**

	

FD5 	H1

	

FDD 	H2

	

. FD5 	H3

	

FD5 	H4

	

F5B 	H5

	

FDB 	416

	

FDB 	H7

	

COLBEG F 55 	HO

	

F5B 	Hi

	

F55 	H2

	

FDB 	H3

	

F5B 	H4

	

FD5 	H5

	

F5B 	H6

	

F55 	H7

	

COLLIM FDB 	HO

	

F55 	Hl.

	

F55 	H2
H3

	

F55 	H4

	

F55 	H5

	

FD5 	H6

	

F55 	H7

**

THIS IS THE AREA RESERVED FOR THE STORAGE 13F. LONG TERM
HISTORY÷ THERE ARE CURRENTLY 8 COLUMNS WHICH EACWHOLD

* 	, 	6 BITS (CONSTRAINT LENGTH) OF HISTORY.

**
ORG 	$1000

	

HO 	› RM5 	64

	

• H1 	RMS 	64

	

42 	RM5 	64

	

H3 	RM5 	64

	

H4 	RM5 	64

	

HS 	• RM5 	64

	

116 	RM5 	64-

	

H7 	RM5 	64

**

* 	THIS IS THE DIRECT PAGE AREA. THIS IS WHERE ALL VARIABLES
ARE STORED SINCE ACCESS IS SLIGHTLY FASTER.

* 	.
**

ORG 	$100

SPSAVE EDP 	0 	9 tocm: ACS TEMP. STORAGE FOR SYSTEM SP
TEMP 	FDD 	0 	9 LOCAL: PNUM TEMP. NUMBER STORAGE
COUNT 	FOB 	0 	9 LOCAL: SEARCH LOOP COUNTER
3C1JUNT FCB 	0 	9 LOCAL: SCALE LOOP COUNTER

BEsrm 	FDD 	0 	9 COMMON: SEARCH & SCALE BEST METRIC VALUE
REETV 	FCD 	0 	9 COMMON: SEARCH & HIST POINTER TO BEST PATH
rEmpn 	1CP 	0 	9 LOCAL: SHIFT STORAGE FOR EYEO
TEMPB 	FCB 	0 	9 loom: swirl* siopnoE FOR EYE1
immn 	FOB 	0 	9 LOCAL: SHIFT STORAGE FOR NEG. EYE()
COMB 	FCB 	0 	9 LOCAL: SHIFT STORAGE FOR NEG , EYE1

FDB 	0 	9 COMMON TO SHIFT AND ACS
10001 	FDB 	0 	9 THESE 16 LOCATIONS HOLD THE PRE-CALCULATED
T0010 	FDB 	0 	9 BRANCH DISTANCES
10011 	FDB 	0
T 0 100 	FDB 	0
10 101 	FDB 	0

- T0110 	FDB 	0
TO111 	FDB 	0
1' 1000 	FDB 	0
T1001 	FDB 	0
T1010 	FDB 	0
T1011 	FDB 	0
T1100 	FDB 	0 •
T1101 	FDB 	0
T1110 	EBB • 	0
T1111 	FDB 	0

•
CURCOL FDB 	COLBEG 9 LOCAL: HIST POINTER TO POSITION IN RING BUFFER

ERRORS EBB 	0 	9 LOCAL: ERRCHN BLOCK ERROR COUNTER
BCOUNT FDB 	0 	9 LOCAL: ERRCHN BLOCK BIT COUNTER
sroPi 	FCB 	0 	9 LOCAL: ERRCHN 2 BYTES MOST RECENT 'errs
srop2 	FCB 	0 	9 	(SHIFT REGISTER)
PM! 	FCB 	0 	9 LOCAL: NEXTPN 1 /2 OF PN SHIFT REGJSTER
PW 	FCB 	0 	9 LOCAL: NEX1PN OTHER 1/2 OF PN SHIFT REGISTER
CHECK 	FCB 	0 	9 LOCAL: NEX1PN PN ourpul BIT TEMP. S1ORAGE
BITOUI FOP 	0 	9 COMMON: PLUDIT & ERRCHN RECENT DECODED OUTPUT DIT

SFLAG 	FCB 	0 	9 LOCAL: . ERRCHK FLAGS 1 91 RESYNC END

RESYNC FDB 	0 	'9 LOCAL: ERRCHK RESYNC COUNT
NOBLOCK FDB 	0 	9 LOCAL: ERRCHK TOTAL BLOCK COUNT
ERRS 	FDB 	0 	9 LOCAL: ERRCHK BAD BLOCK COUNT
ALLOK 	FDB 	0 	9 LOCAL: ERRCHK NUMBER OF GOOD BLOCKS
DCOUNT FCB 	0 	9 LOCAL: PNUM DIGIT COUNT
ZBLANK FOB 	0 	9 LOCAL:. PNUM ZERO BLANKING FLAG
OUT 	FCB 	0 	9 COMMON: HIST & PUTBIT 6 BIT OUTPUT SR FOUND BY HIST
OUTPORT FOB 	0 	9 COMMON: PUTOUTy STROBUP & STROBDN IMAGE OF OUT PORTI

END START

I
K-L

=Q
+ 	2.k ? 	Pr(s i

i=Q 	•

APPENDIX. C _

Let K. he the jerle,ege 1exigth:and L the .niimher qf . eub„Packèts
thÀt - can 15.6 -acèbiliodatêd. in. a fralle:: 'le. made 'A '6ach:fraitê,
tranemiseon' reducee the. Uracklog, B.Ï.0 :to L .âuhpàckets. In
mode S èach-frême tranâMisseon'reducès thè backlog by no
more than thé il'umbèr of subPackàts Outstanding just prior
to the 'frame tranbmission 	-

Mode A Analysis:

Let MF(K) be the number of mode A • transmission required for
a message of length K. If K=QL+R, then at least Q mode A
transmissions will be required. Let s i be the number of
successful subpackets transmitted aftei. i frame transmissions.
Then s i is the sum of i independent Binomial random variables
ând is -thus itself Binomial with parameters iL and e, since
the number of successful transmissions per frame is Binomial
with parameters L and e. - Mode A transmissions will cease after
s i first exceeds K-L since the backlog will then be less than L.
Tnus:

Pr(MF(K)>1) 	= 	Pr(' s., 	K 	L)

K-L
= 	IT; Pr(s i = j)

j=0

K-L

(
L
) CL-j - (le) j

j=0

The expected value of MF(K) is given by

oA

	

E(M(K)) = 	:5--î Pr(MF(K) 1.7e. k)
k=1

	

= 	Q + 	Pr(MF(K)?... i)
i=Q+1

The expression inside the 'brackets can be evaluated exactly
for Q=1,2. For larger values of i the Gaussian approximation
for a Binomial random variable ' 'can be used:

K-L

";:d,
j=0.. . 	. -72-711- e

—Qe

The terms in thé infinite. SerieS .vanishvery. quIckiy so Only
à feW -terms are 'required to:evàluate

Mode B Analysis

Let r be the number of outstanding packets just prior to the
first mode B transmission, 0 	L-l. Each of these subpackets
will have one chance per frame 'transmission as long as they
have not been received correctly at the receiver. Thus the
number of transmissions required by each of these subpackets
is geometrically distributed with probability of success I-e.
Mode B transmissions will continue as long as there are
outstanding packets. Thus the total number of mode B trans-
missions is given by:

MP(r) = max(N1 , N2 , 	,Nr)

where Ni are geometrically distributed random variables with
parametér 1-e. Since the subpacket errors are assumed to be
independent:

P(MP(r) 	j) = Pr(Ni tEj, N2 ±:j, 	Nr 14..j

7r Pr(Nk i)
-fte.8

= 	(1 - ej) r

The mean number.of mode B transmissions is then given by

E(MP(r)) 	=. 	Pr(MP(r) k)
k=1

: = 1 + 	(r)(-1) k+1 k1 k
ek-1

1-ek-1

The probability distribution that the residual is r as a func-
tion of K is found as follows. For i 	Q, and 0 -4 r < L,

Pr (r) =
Pr(s i = Kr)

Pr(K-L 	K)

«se

L=Q
Pr(MF(K)=i)

Pr (r / MF(K)_ = 	-= Pr (r K-L <. 	K

Pr(= K-r)

Pr(TC--L < s 	K)

By unconditioning ove r MF(K) . we 'obtait:

This expression is wieghted average of overlapped length-L
segments of the probability mass function of s. for values
exceeding K-L. As K increases the overlapped segments
approach a uniform distribution and Pr(r) will approach 1/L.

ii f6c011

9

1

LEON-GARCIA, ALBERTO

Techniques, for tmnroving the relia-
hility of data tranession aver...

1

DATE DUE
DATE DE RETOUR

LOWE-MARTIN No. 1137

655
455
984

