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1,0 INTRODUCTWII 

This report presents the reaulta of ae'Veral investiga-
tions concerning the application oe Viterbi dedoding to 
transmission ove  r the Syncompex binary FSK  modem. The report 
is organized as follows. Section 2 disousses the implemen-
tation of a real-time VI -de/15i decoder for use 'with the Syn-
compex modem. The organization of the software that implements 
the Viterbi decoder is discussed in detail and documentation 
is included in Appendices. Speed and memory requirements 
are also discussed. Section 3 considers several performance 
issues of Viterbi decoding. Experimental and simulation re-
sults are presented for the performance of the decoder for 
various settings of decoder parameters. Simulation results 
are also presented for the performance of Viterbi decoding 
when combined with internal interleaving. Finally Section 4 
considers the extension of the present  transmission  protocol 
to a system that utilizes a multi-FSK signal format. The 
present transmission protocol is analyzed to establish a 
basis for the evaluation of the other protocols. The trans-
mission protocol discussed by Lin is analyzed in detail in 
the context of Viterbi decoding. Methods are developed for 
evaluating the throughput performance. This protocol is then 
compared to selective repeat ARQ and to selective repeat ARQ 
with code diversity. A new adaptive protocol is proposed 
that achieves the performance of the Lin protocol while re-
quiring a simpler implementation. 
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2.0 REAL-TIME VITERBI DECODER 

The first objective of the project was the implementation of 
a 	real-time 	Viterbi decoder for use with 	code-diversity 
transmission on the Syncompex modem. This allowed us to verify 
the attainable decoding speeds and enabled us to undertake more 
comprehensive experimental studies on the performance of Viterbi 
decoding as various system parameters are varied. This chapter 
describes the hardware and software developed to accomplish these 
goals. 

The chapter is organized as follows. 	Section 2.1 gives an 
overview of the system. 	Section 2.2 describes the approach used 
in the software implementation of the Viterbi decoder. Section 
2.3 describes the organization of the system software includfng 
brief descriptions of the main modules. timing and memory requi-
rements are also discussee• The chapter concentrates on the main 
ideas only but details are included in the appendices. 

2.1 SYSTEM OVERVIEW 

Figure 1 summarizes  the signal processing required to obtain 
à sequence of discrete-channel outputs suitable for Viterb,i 
decoding. This processing is done by what we will refer to as the 
ADC board. The modem provides three analog output signals. The 
outputs of Chips #1 and #2 are the noncoherently-demodulated 
("eye") baseband  signais  corresponding to the binary sequences 
produced by the convolutional encoding at the transmitter. 	These 
signals have a baud rate of 75 symbols per second. 	Chip #3 
provides a clock signal recovered from the eye signals using 
selection diversity. This clock signal is offset with respect to 
the eye-signal baud period so a delay is introduced to obtain a 
clock signal suitable for controlling the integrate-and-dump 
operations. ihe integrator outputs are sampled at the appropriate 
instants and the digitized samples are then, passed to the 
Viterbi decoder. 

The Viterbi 	decoder is implemented in software using a 
Motorola 6809 microprocessor. 	The decoder software is written so 
that various system parameters, 	inclu the code, the channel- 
output quantization, and the decision depth, can be varied. The 
decoder outputs the estimates of the information sequence in a 
form suitable for analysis by a data error analyzer. The 6809 
microprocessor is also programmed to process these outputs in 
order to compile error statistics. These statistics are dis-
played on a computer terminal as the real-time decoding takes 
place. 
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2.2 DECODER IMPLEMENTATION APPROACH 

In this section we will first discuss the Viterbi 	decoding 
algorithm in general and then we will outline how it was 	imple- 
mented in software. 

The task of the Viterbi decoder is to estimate the informa-
tion sequence that was fed into the encoder at the transmitter. 
This  is equivalent to finding the sequence of encoder states that 
produces the encoded sequence that is closest to the observed 
channel output sequence according to some metric. The decoder 
stores two entries for each possible encoder state.  The  first 
entry contains the minimum-distance sequence of states leading to 
the given state up to the given time instant. 	We will refer to 
this entry as the "path history" of the given state. 	The second 
entry contains the distance of the corresponding encoded sequen-
ces to the observed channel output sequence. We will refer to 
this entry as the "state metric.' 

Each time a channel output pair is passed to the decoder, 
the entries for all  possible  states, 	henceforth referred to as 
the State Information Tables, 	are updated using the following 
sequence of steps (see Figure 2): 

1. Branch Metric Computation 

The distances ("branch metrics") of the new channel-output 
pair with respect to the four possible encoder outputs, 
namely 00,01,10,11, need to be found. This can be done_by 
computation or by table-lookup depending on the complexity 
of the metric used. The four branch metrics obtained in 
this step will be used in the subsequent steps. 

2. Add, Compare, Select (ACS) 

Each encoder state has only two possible ancestor states 
that can immediately precede it. 	The best new sequence 
leading to a given state is thus found by comparing these 
two ancestor states. 	The state metric of each ancestor 
state is added to the branch metric corresponding to the 
corresponding state transition; 	the two resulting metrics 
are compared; and the ancestor state with the smaller metric 
is selected. 	The best new sequ for the given state is 
found by concatenating the selected ancestor state to the 
path history of the selected ancestor state. 	The new state 
metric of the given state is given by the smaller of the two 
metrics used in the compare step. 	The ACS procedure is 
carried out for each of the possible encoder states. 

Upon completion of the above steps, 	the State Information Tables 
will 	be completely updated and the decoder will 	be ready for 
another channel output pair. 

The above two steps form the heart of the Viterbi decoding 
algorithm. 	Two 	additional 	steps are required because of 
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1 

practi  cal 	considerations: 

3. Truncation of Path History 

The length of the path histories need to be kept bounded in 
order to keep the decoding delay bounded and to keep the 
memory requirements reasonable. Periodically it becomes 
necessary to make a firm decision on the estimate for the 
oldest segment of past history currently stored in order to 
free up memory. The optimum procedure involves finding the 
state with the smallest state metric at that time instant 
and the required segment of past history is then set to the 
corresponding segment in the "winning" state's path history 
entry. The memory space allotted to storing this segment of 
path history then becomes available for storing new segments 
of path history. 	The amount of time "wasted" in searching 
for the best metric can be kept proportionally small 	by 
making each segment consist of several 	information bits. 
The above view also -Suggests the partitioning and handling 
of the path history as a ring buffer with each unit of path 
history equal to one segment. 	By selecting these segments 
to be close to one byte in length, 	the need to perform bit 
manipulation is completely circumvented. 	This is a very 
important consideration in software implementations. 

4. Scaling of State Metrics 

As decoding proceeds the range of values occupied by the 
state metrics will steadily increase. In order to keep 
these values within the range that  cari  be assumed within the 
finite precision of the machine, it becomes necessary to 
periodically reset the metric values so that they fall 
within the desired range. The rate at which the state 
metric values increase is proportional to the number of bits 
used in the branch metric calculations. If the number of 
bits is not too large, the state metrics will need rescaling 
very infrequently. 

From the above discussion it is clear that the principal 
factor in determining the attainable decoding speed is the at 
of time required to carry out the ACS operation. 	We now examine 
this 	operation more closely. 

Let the state of the encoder be given by the binary repre-
sentation of the contents of its shift register with the newest 
bit equal to the most significant bit. 	If the constraint length 
is v, the state is given by a v-1 bit binary number. 	To make the 
discussion concrete, 	consider the case v=7. The number of states 
is then 2**6=64. 	Consider a destination state in the range 0 to 
31, 	that is, a state with binary representation Ox, where x is 5 
bit number. 	(See figure 3.) The source states for this destina- 
tion state are x0 and xl. 	Furthermore note that destination 
state lx has the same set of source states. • Since the ACS opera- 



tion for both of these destinations involve the same state me-
trics and state histories it is efficient to process the pair of 
destination states together. 

Note  • that the source states in figure 3 have consecutive 
indices. 	Thus if the state metrics and path histories are 
arranged according to the numerical value of the state, 	the 
information required by the ACS operation of various states is 
obtained by working down the State Information Table. 

Before discussing how the State Information Table was 
organized we need one further property. 	Consider a destination 
state with representation 0y0, where y is a 4 bit number. Note 
that the state metric and path information of 0y0 and 0y1 will be 
required together when the next channel output is processed. It 
would thus be convenient to handle the ACS operations of 
destination states OyO and Oyl at about the same time so that the 
results of the operations can be stored together. This suggests 
handling the ACS operations in groups of four as shown in figure 
4. This is how the ACS operation was implemented in our project 
and it accounts for how tffè State'Information Table was formed. 

The State Information Table contains two entries for each 
state. 	The first entry is a two-byte word specifying the state 
metric. 	The second entry is a one-byte word of recent path 
history corresponding to one segment of path history. 	Long term 
history is stored in a separate ring buffer which is updated when 
a segment of recent history has accumulated. The state 
information for pairs of source states is bundled together as 
shown in figure 4. Two State Information Tables were used. 
These tables alternate between being sources and destinations of 
the information generated during the ACS operations. By using 
in-place storage techniques it is possible to function with only 
one State Information Table. We found however that the 
implementation of this approach implied memory requirements 
elsewhere larger than that of the Table itself. 

In omplementation of the Viterbi decoder, the ACS opera-
tion is driven by a State Organization Table that provides the 
addresses of locations where information is to be found or 
stored. 	Before explaining the State Organization Table we need 
to consider how the branch metric calculations are carried out. 
Let ab and cd be the two branch labels associated with the ACS 
operation of some given destination state as shown in figure 5. 
Each branch label can take on 4 possible values so there are a 
total of 16 possible pairs of branch labels. 	Let rs be the pair 
of channel 	output symbols that are to be processed. 	The ACS 
operation for the given destination state will then require the 
branch 	metrics d(ab,rs) and d(cd,rs), 	where d(.,.) denotes 	the 
metric function. 	The branch metric calculations are handled as 
follows. As soon as the channel outputs rs are read in, all 16 
possible pairs of branch metric values are computed and stored in 
some fixed locations where they can be readily accessed by the 
ACS operations. 
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As soon as the branch metric calculations have been com-
pleted and stored, the ACS operation for the states is initiated. 
The ACS operation for each state will require two sets of entries 
from a source State Information Table (SIT) and will generate two 
sets of entries to be stored in the destination SIT. The function 
of the State Organization Table (SOT) is to provide the addresses 
of memory locations where the appropriate branch metric labels 
are to be found and where the destination state information are 
to be stored. The State Organization Table consists of pairs of 
groups of 3 two-byte words. The first group provides the addres-
ses required by the ACS operation of states of the form OyO and 
1y0. 	The second group provides the address information for 
states of the form 0y1 and lyl. 	Two State Organization Tables 
are required since the addresses involved will depend on which 
SIT is acting as the source and which as the destination. The 
SOT structure and the flow of information is shown in figure 6. 

As indicated above the decoding of channel output symbols 
proceeds until one segment of recent history has accumulated. It 
is then necessary to output the oldest segment of history in 
order to free up enough miMory to store the next segment of path 
history. We now explain how this is done. It can be seen from 
figure 3 that the destination state and the source state have all 
but one bit in common in their binary representations. 	In a 
conventional 	approach to history updating the identity of the 
previous "winning" ancestor state is stuffed into the path histo- 
ry of a given destination state. 	This is shown in figure 7a for 
a constraint length 4 code. 	When the time  cornes 10 output seg- 
ments of history, 	a search is carried out for the state with the 
smallest metric, say state abc in the example, and then it is 
necessary to "trace back" to identify the segment that is to be 
output. The trace back is done by using the contents of the path 
history registers: the contents of abc point back to location 
bcd, 	which in turn points back to location cde, 	and so o 

Now consider the following different procedure. 	At time t+1 
we proceed as before and stuff the identity of the "winning" 
ancestor state into a recent path history register. 	However for 
the subsequent time instants up to t+v-I, 	we stuff the contents 
of the recent path history register of the the "winning" ancestor 
state. 	An example is shown in figure 7b. 	Note that figures 7a 
and 7b give the same information, 	namely the best sequence lea- 
ding to abc has the three most recent bits def. 	In tracing back, 
however, the second approach can jump immediately from abc to 
location def v-1 time units earlier. The trace back operation 
can thus be carried out much more quickly. 

Once the trace back operation has been completed and a 
segment of v-1 bits has been selected for output, the contents of 
the recent path history entries in the State Information Table  
are transferred to the newly freed memory locations in the ring 
buffer containing the  lông  term path history as shown in figure 
8. The decoder is then ready to undertake another cycle of 
processing another segment of v-1 channel output pairs. 
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2.3 SOFTWARE ORGANIZATION 

The system software consists of two parts. 	One part 
implements the real-time Viterbi decoder. 	The second part 
carries 	out the error checking functions as well 	as the 
compilation of error statistics. 

Figure 8 shows the hierarchy of software modules responsible 
for the real-time Viterbi decoding. 	The main program begins by 
calling the subroutine INIT to initialize program variables 	and 
storage areas, 	and it then enters a loop that defines one 
decoding cycle. 	One decoding cycle consists of the following 
subroutine calls: 

Call ACS1 
Call SCALE 
Call AC52 
Call ACS1 
Call ACS2 
Call ACS1 
Call ACS2 
Call SEARCH' 
.Call HIST 

The above decoding cycle assumes a path history segment of 6 bits 
corresponding to a constraint length 7 code. 	The modules ACS1 
and ACS2 implement the ACS operations. 	They differ only in which 
State Information Table and State Organization Table act as 
source and destination for the ACS operations. 	The module SCALE 
makes sure that the values of the state metrics remain within the 
range that can be handled. 	The module SEARCH identifies the 
state 	with the smallest path metric and the module HIST 
implements the traceback operation and the transfer of recent 
path history to long term path history. The module HIST returns 
the segment of 6 information bits that are selected for output 
after the traceback operation. In order to produce a nearly 
synchronous output of information bits, these bits are output one 
at a time during the subsequent 6 ACS Subroutine calls. 

The ACS subroutine begins by calling the module SHIFT. 	This 
module begins by calling PUTBIT and STROBUP in order to output an 
information bit and set the strobe up in order to indicate valid 
data to the data error analyzer. 	Note that PUTBIT calls ERRCHK 
which invokes the error checking and error compilation software 
modules. 	SHIFT then calls GETBIT which reads the channel outputs 
from the ADC board and then maps these vs through the table 
#MAP. 	The choice of entries in this table allows us to imple- 
ments 	nonlinear quantization in addition to the usual 	linear 
quantization. 	SHIFT then calculates the 16 possible branch me- 
tric entries and stores them in the direct page area starting 
with the address label T0000. 	Finally SHIFT calls STROBDN to 
lower the strobe while the data is still valid. 	Upon return from 
SHIFT the ACS module proceeds to carry out the ACS operation for 
all the states in groups of four as indicated in the previous 
section. 
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The number of instruction cycles required to carry out the 
above modules is given by: 

ACS 	371 + 289 x 2**(v-3) 
SEARCH 	31+ 55 x 2**(v-2) 
HIST 	138 + 32 x 2**(v-2) 
SCALE 	23 + 46 x'2**(v-2) 

and the number required by one decoding cycle is 

(v-1) x ACS + SEARCH + HIST + SCALE. 

The number of instruction cycles required by a decoding cycle for 
a constraint length 7 code is 34,418 which is equal to 35.9 ms. 
for the .96 MHz clock used in the current implementation. At the 
information rate of 75 bps, the 6 bits of a decoding cycle are 
produced in 80 ms. 	Thus for a constraint length 7 code the 
microprocessor is idle more than 50% of the time. 	(This was 
observed experimentally by observing the strobe signal on an 
oscilloscope.) If the constraint length is increased to 8, the 
number of cycles increases-  to 76,037 and the time to 79.2 ms. 
The 7 information bits aré- produced in 93.3 ms, so the micropro-
cessor is now busy decoding about 85% of the time. 

An upper bound on the information rate that can be handled 
with this software can be obtained by assuming that modifications 
are made so that SEARCH, HIST, and SCALE become negligible. For 
a constraint length 7 code, the maximum information rate that can 
be handled is then 192 bps. For a constraint length 8 code the 
maximum is 100 bps. 

A real-time dedicated microprocessor implementation of the 
decoding algorithm would have the following memory requirements. 
The principal components of ROM memory are the program, 	the, two 
State Organization Tables, and the quantization map. 	The respec- 
tive memory requirements are 600 bytes, 	2 x 3 x 2**(v-1) bytes, 
and 2**(v-1) bytes. 	For a constraint length 8 code, this adds up 
to approximately 1.5 kbytes. 	The principal components of RAM 
memory are the two State Information Tables, and the path history 
ring buffer. 	The respective memory •requirements are 2 x 3x 2** 
(v-1) and 8 x 2**(v-1), 	where a history depth of 8 segments has 
been assumed. 	This adds up to 1.8 kby 

Figure 9 shows the module hierarchy for the error checking 
and error compilation software. 	When synchronized to the infor- 
mation sequence, 	ERRCHK takes the information bit that has just 
been output and compares it to that predicted by the module 
NEXTPN which is designed to emulate the PN sequence generator 
that was used at the transmitter. 	The bit count and the bit 
error counts are then tallied. 	Statistics are compiled in blocks 
of length #BLOCKLEN. 	At the end of each block, 	a single 
character report is output to the terminal using module PUTC. 	At 
the end of each block, 	the number of bit errors is compared to 
-#ERRLIM. 	If the number of errors is greater than this threshold, 
the resynchronization procedures are begun in the next block by 
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resetting the contents of the PN sequence generator in NEXTPN to 
that of the last v-1 information bit estimates. 

The module REP implements the printing of the block error 
reports and counts on the terminal with.text explanations and 
decimal output. 

Appendix A coàtains the module descriptions and Appendix B 
contains the assembly language code along with detailed comments. 



3.0 VITERBI DECODER PERFORMANCE ISSUES 

In this section we present results of two investigations 
of Viterbi decoder performance. The first investigation 
deals with the dependence of decoder performance on the va-
lues of several algorithm parameter values. Experimental 
and simulation results are presented for decoders with dif-
ferent number of quantization levels, different history 
depth values, and with linear and nonlinear quantization. 
The second investigation considers the performance of Viterbi 
decoder performance when combined with internal interleaving. 
Simulation results are presented for systems of different 
interleaving depths and for channels with different burst 
error characteristics. We begin  the, section  by describing 
the simulation model used in our investigations. 

3.1 SIMULATION MODEL 

Simulation programs were written to provide a means for 
quickly and easily testing various Viterbi decoder configu-
rations as well as for simulating various channel transmis-
sion conditions. A Viterbi decoder program was written in 
BASIC to run on the IBM PC. The program completely parallels 
the implementation of the M6809 real-time decoder in order 
to allow the simulation of changes in the real-time system. 
The details of the program therefore do not need to be repeated 
here. 

A second program was written to simulate bursty channel 
conditions on dual parallel FSK channels. The model simu-
lates independent fading on the two channels'Nas well as 
simultaneous (flat) fading on the channels. At any given 
time instant each channel is in one of three states: Good, 
Bad, or Flat. At any given time instant the channel pair 
can be in one of five states: 

0 	Good-Good 
1 	Good-Bad 
2 	Bad-Good 
3 	Bad-Bad 
4 	Flat-Flat 

While a channel is in the good state, it randomly generates 
octal output symbols R for each binary input b according to 
the transition probability shown in Figure 1. The octal 
output is intended to represent the output of a 3-bit quan-
tizer. Similarly when a channel is in state bad or flat, 
it generates outputs according to predesignated transition 
probabilities. 
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The time evolution of the channel state pair follows 
a continous-time Markov chain with transition-rate diagram 
shown in Figure /. Here A is the rate at which an individual 
channel goes from the good state to the bad state, and p is 
the transition rate in the opposite direction; a id_ the 
rate at which  the  channel state  •pair goes jointly from the 
good-good state to the flat state. The simulation program 
generates random, exponentially distributed holding times X 
(in bits) for each state, and then rounds them up to the 
next integer greater than or equal to X. The next state is 
selected according to the state transition probabilities 
that correspond to the transition-rate diagram. 

All the simulations discussed in this report simulated 
independent fading only. The bad state was always represen-
ted by the 3-bit quantized Gaussian channel shown in Figure 
aa. This (single) channel has a raw bit error rate of .159 
and a 128-bit block error_rate of, essentially 1. The good 
channel was dhosen to be either that shown in Figure ab or 
that in âg. The channel in ab, hereafter called the good 
channel, has a raw bit error rate of .023 and a block error 
rate of 94.7%. The channel in 2g,'hereafter called the 
very good channel, has corresponding rates of .00135 and 15.9% 
respectively. It should be emphasized that the error rates 
for these channels are relatively high because they corres-
pond to single channels; when the two channels are combined 
the performance improves considerably. 

The channel parameters used in a given simulation will be 
specified by prefixing each state with its mean holding time. 
Thus 250G/50B denotes a channel in which the subchannels fade 
independently with the good state having a mean holding time 
of 250 bits, and the bad state a mean holding time of 50 bits. 
The mean holding time of a state pair is given by the recipro-
cal of the sum of the rates out of the state pair. Thus the 
mean holding time of the bad-bad state is 25 bits and that 
of the good-good state 125 bits. 

3.2 EFFECT OF DECODER PARAMETERS ON DECODER PERFORMANCE 

The software of the real-time decoder was written so that 
the number of quantization levels and the history depth could 
be changed easily. Instructions for carrying out these changes 
are included in the documentation. An arbitrary nonlinear 
quantization scheme can be produced by changing a 64-entry 
table through which the A/D samples are mapped. The convolu-
tional code can also be changed, but this requires changing 
the longer state organization tables. Here we will report 
on the results of experiments that vary the number of quanti-
zation bits, the history depth, and the quantization mapping. 
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The software of the real-time decoder includes modules 
that implement error counting and reporting functions. The 
block size for block error counts is programmable and was 
set to be 64 bits. The output of the decoder is arranged in•
blocks of this size and the number of errors counted. If no 
errors are found, a dot is printed on the screen and simulta-
neously stored on floppy disk of an IBM PC running CROSSTALK. 
If errors are found, the number of errors is compared to a 
threshold, ERRLIM, which is also programmable. 'If the threshold 
is exceeded, a resynchronization operation is initiated in the 
next block and an S' printed. Otherwise the number of errors 
is printed. The duration of the experiments is also program-
mable, and the error count is displayed at the end of each 
experiment. Figure 3 is a sample p,rintout of one of the expe-
riments. 

The present system has the following nominal settings: 
6-bit quantization, linear mapping, history depth 8, and 
133/171 rate 1/2 convolutional code. A series of experiments 
were conducted where the nominal system was compared to sys-
tems in which one of the settings was changed to: 

-- 1-bit quantization 
-- 3-bit quantization 
-- Mu-law mapping 
-- Inverse Mu-law mapping 
-- history depth 4 
-- history depth 6 

Each experiment involved changing the software and then demo-
dulating and decoding the (approximately) same segment of 
tape recorded audio signal corresponding to 1728 blocks 
of information. To control for fluctuations in the results 
due to factors other than the change in parameter, the nomi-
nal system was interspersed among the other experiments. 

Each experiment was run twice. Table 1 shows the results 
of each experiment. The experiments are listed in the order 
in which they were carried out because significant variations 
were observed in the performance of the control (nominal system) 
experiment. The results are also displayed in Figue 4 where 
it can be seen that the control experiment varied in error 
rate from 0.75 7  to 2.787e. The error rates of all the other 
experiment except one fell in this range. The one exception 
was for the system with l-bit quantization which A.7ais clearly 
inferior. The printout for one of the 1-bit experiments is 
shown in Figure 5. This printout can be compared to that 
of Figure 1 which corresponded to the control experiment that 
had the best performance. Thus the only conclusion that can 
be made from the experimental results is that 1-bit quantiza-
tion is significantly inferior to soft decision systems. 

The simulation programs were used to investigate the effect 
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of decoder parameter settings on the error rate performance. 
It was expected that the simulation results would give a 
better indication of the relative importance of each setting 
since it is easier to control for variations in each trial. 
Each simulation was run for 40,000 bits which had previously 
been established to be sufficient to produce a representative 
relative frequency count for each of the state pairs on the 
250G/50B channel introduced in section 3.1. The 40,000 bits 
correspond to approximately 330 128-bit blocks. The running 
time of each simulation on the IBM PC running compiler BASIC 
is approximately 4 and 1/2 hours. The performance of the 
decoder for the 171/133 code is shown below: 

setting: 	PB 	Pb 

1-bit qtn, hist 8 	9.25% 	8.00x10 -3 

3-bit qtn, hist 2 	7.76% 	2.90x10 -3 

-3 3-bit qtn, hist 4 	4.20% 	3.73x10 

3-bit qtn, hist 8 	4.52% 	2.88x10 -3 

Single bit quantization again has the worst performance 
•in both bit- and block-error rate. Decreasing the history 
depth from 4 to 2 results in an increase in block error 
rate, but decreasing from 8 to 4 does not result in a signi-
ficant change (the two simulations differ by 1 block error only). 
Decreasing the history depth does not necessarily increase 
the bit error rate. The printouts of the simulations revealed 
that the history depth 2 system had numerous short bursts of 

• errors whereas the longer history systems had fewer but much 
longer bursts. From a block error rate point of view a history 
depth 2 system is not unacceptable. As well, it appears that 
the history depth can be decreased from 8 without incurring a 
loss in block error rate performance. 

3.3 VITERBI DECODING WITH INTERLEAVING_ 

In this section we present results on the performance of 
Viterbi decoding with internal interleaving. The basic idea 
of internal interleaving is to split the transmission of data 
into a number of parallel streams that are encoded and decoded 
separately as shown in Figure 6a. In practice it is not nece-
sary to replicate the encoders and decoders, but instead the 
logic needed to carry out these operations is time-shared 
among the N streams. Consequently interleaving is achieved 
without introducing a frame structure and at only a linear 
increase in the memory requirements. Indeed the combined 
encoder-interleaver is equivalent to the longer constraint 
length code shown in figure 6b. It can be shown that this 
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code has the same minimum distance as the shorter code, so 
that its performance in a random error environment will be 
the same. In a burst erXor environment, however, the longer 
code will have the better performance. 

The same computer simulation programs discussed in the 
previous section were used to investigate Viterbi decoding 
with internal interleaving. It is clear that only one of 
the encoder-decoder pairs needs to be simulated so no change 
is required in the Viterbi decoder program. The only change 
required in the-channel simulation program is that only every 
L-th output of the channel is passed to the decoder if the 
degree of interleaving is L. 

In the simulation the channel was considered to be in a 
burst error mode if the channel was in the bad state. The 
burst error statistics were specified by fixing the mean 
holding time in the bad state, and the percent of the time 
spent in the nonburst mode was specified by selecting the 
mean holding time to be some multiple of that of the bad 
state. Each simulation conàisted of approximately 330 128-2Jait 
blocks. In the first set of simulations the mean burst error 
length was 50 bits and the proportion of time spent in the 
burst mode was 1/6. By introducing degree 5 interleaving, 
the effective channel seen by the decoder is approximately 
a 50G/10B channel. The block error rate is reduced by a 
factor of 3.5 and the bit error rate by a factor of 6.5. 
(See Table 2.) The third experiment in this set simulated 
a 50G/10B channel without interleaving. It can be seen that 
the results are quite close to those of the channel with the 
same effective parameters after degree 5 interleaving. 

In the second set of experiments, the mean burst length 
was increased to 100 bits and the proportion of the time 
spent in the burst mode was reduced to 1/3. The system without 
interleaving performs quite poorly and the introduction of 
interleaving introduces only some improvement. The degree 10 
interleaving system has a mean holding time of 5 bits in the 
bad-bad state, the same as the degree 5 system in the first 
set of experiments. The mean holding time in the good-good 
state however is only 10 bits so the decoder does not have 
enough good samples, on the average, to get back on the 
correct path. 

For a given fixed ratio of time spent in the good state 
to time spent in the bad state the Viterbi decoder will span 
the following two extremes. When the bursts are very long 
the decoder will encounter 4 modes of sustained duration 
corresponding to the 4 possible state pairs. The performance 
will be the weighted average of the performance dmxing each 
of these modes. For the cases considered above the performance 
will be dominated by that of the bad-bad state. The bit error 
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rate for this code has been found :tQ, be .14 by simulation. 
The proportion of tiee sPent in the bab-bad state for the 
first set of experiments- ia 1/36, so the average bit 
error rate should be about 3.9x10-3 when the burst length is 
very long. This is close to the figure obtained for the 
250B/50B system without interleaving. For the second set 
of experiments the predicted bit rate •is 1.55x10-2 which 
again is quite close to that of the system without interlea-* 
ving. 

As the degree of interleaving is increased until it exceeds 
the mean burst length, the decoder will reach a plateau with 
performance of that of a system in which the channel randomly 
selects one of the two modes (good or bad) with probability 
equal to the proportion of time spent in the given modes. No 
attempt was made to establish what the limiting performance 
for this extreme would be. 
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An objective Of the  proj e t  was to extend the present 
transmission protocol to increase the information rate that 
can be reliably achieved using a multi-FSK signal format and 
combining code diversity with ARQ techniques. In this section 
we present an analysis of the present transmission protocol; 
then we present an analysis of a protocol proposed by Shu Lin 
and an adaptive protocol that combines the Lin protocol with 
a code diversity ARQ system. 

4.1 PRESENT TRANSMISSION PROTOCOL 

The present transmission protocol defines a sequence of 
packet exchanges that effect the transfer of a message from 
a sender terminal to an acceptor terminal. The channel is 
shared by both terminals so transmissions are constrained to 
be half-duplex with packets travelling in opposite directions 
alternately accessing the channel. The terminals set up the 
transfer of a message by exchanging calling and response pac-
kets. The message transfer is carried out through the exchange 
of message and acknowledgment packets. The message transfer 
is ended with the sender terminal transmitting termination 
packets. 

The present protocol handles the transmission of one mes-
sage at a time. A message may consist of up to 1280 bytes. 
Prior to transmission the message is segmented into subblocks 
of 16 bytes. The acceptor terminal is given the number of 
such subblocks during the set up phasé. Each subblock has a 
sequence number byte and a CRC byte attached to it to form 
a subpacket, which forms the basic unit of retransmission. 
Subpackets are transferred to the acceptor terminal in fixed-
length frames that can accomodate 8 subpackets. Each frame 
consists of a header followed by 8 subpackets, with padding 
used to fill up unoccupied subpacket slots if necessary. Thus 
by design each subpacket is bundled separately and thus its 
retransmission can be handled separately from that of other 
subpackets. 

Fixed-length frames, càlled message packets, and fixed-
length acknowledgment packets alternate in using the channel. 
The message packets consists of an 11.5 byte header followed 
by the 8 subpackets. Of the 1244 bits in the message packet 
at most 1024 can be used for information. Acknowledgment 
packets of 148 bits follow each message packet transmission. 
The propagation ànd software delays add an equivalent of 10 
bits at 100 bps transmission rate. Barring errors, after the 
exchange of one message packet at most 1024 information bits 
will have been transferred in the time 1402 bits could have 
been transmitted on the channel. Thus the present protocol 
has a maximum throughput efficiency of 737e . 



We now present an  analysa of the present transmission 
protocol. The purpoae of carrying out such_ian analysis is 
to lay the framework within which_any - extended protocol should 
be evaluated. In this analysis we will neglect the effect of 
errors in the acknowledgment packets. Let Kbe the message 
length in subpackets, le_1(.80, and suppose that a frame can 
accomodate up to L subpackets. Let e be the probability that 
a subpacket is received in error (-using hard decisions) and 
assume that subpacket errors occur independently. The sequence 
of message packet transmission 'can be divided into two phases: 
in mode A the number of outstanding subpackets at the transr_ 
mitter is greater than or equal to L so frames carry a full 
set of subpackets in each transmission; in mode B the number 
outstanding is less than L so each frame transmitted is partly 
empty. Clearly mode B transmissions introduce inefficiencies 
in the use of bandwidth and the purpose of the analyses is to 
quantify these inefficiencies. 

Suppose that K = QL 4.-R, where 0 S.-.R.<L; then at least Q 
mode A transmissions will be required. Let MF(K) be the total 
number of mode A transmissions rquired for a message of length 
K. In Appendix C we show that the mean of MF(K) is: 

K-L 
E(MF(K))=Q+Z("ZPr(s.=...j) ) 

i=Q 	i=0  

where s $  is a Binomial random variable with parameters il. and 
e. The-over the Binomial terms can be approximated by the 
error function (i.e. integral over a Gaussian) and only a 
few terms in the infinite series turn out to be significant. 
Figure 1 displays the mean of MF(K) versus K. 

Mode B transmissions will commence when the number of sub-
packets remaining for transmission becomes less than L. Sup-
pose that this number is r, 	r<L. Partly empty frame 
transmissions will continue until all r subpackets have 
successfully been transferred to the acceptor terminal. Let 
MP(r) be the number of frame transmissions required to accom-
plish this. In Appendix C we also show that the mean of MP(r) 
is given by: 

E (MP (r)) = 1 ± 	ir 	ej 	i+i 

j=1 	1-
e3 

Figure 2 shows E(MP(r) as a function of r. As expected the 
number of transmission increases with r. Since the range of 
r depends on L, Figure 2 can be used to quantify the loss in 
efficiency due to too large a value of •L. 

The number of outstanding subpackets r during the first 
mode B transmision is a random variable that depends on K. 
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Zn the Appendi,z wederiye the digtrekuti„on 9f r .condiioned 
On K, and We .théri'deputethe: ..»!4en of: MP(r)..everaged.over - r. 
For large  .valbeSof-K, t . bedOMe.S mniforMly distrihùted  in  
thé 'interval 0L-l.  "Figure'l shliwS thiS-meàn as  -a. fdtiction 
of K.  

Thé two curves in figure 1  can be 'added to 'obtain the -mean 
number  of total frame 'transmissions required to transfer a 
message 	lengthiK, thàt 	E(M(K)).' The-throughput effi- 
ciehOy is theii .  given bY:' 

EFF= •nffleepplOeCIMn111 

E(M(K))(L+H) 

K/L  

E (M (K) ) ( L+H 

= EFFREL x MAX EFF 

where H is the overhead incurred in each message packet/acknow-
ledgment cycle, and where EFFREL is defined as the relative 
efficiency. Figure 3 shows the relative efficiency as a 
function of K. It can be seen that as K increases the relative 
efficiency approaches that of selective repeat ARQ, namely 
1 - e. In effect for large K, the inefficiencies due to mode 
B transmissions are negligible. 	Thus if we are considering 
very long messages, we can directly analyze the transmissions 
of subpackets and ignore the frame  •structure of the system. 

The relative efficiencies shown in Figure 3 correspond 
to three values of subpacket error probabilities, e=0,e=0.1, 
and e=0.2. It can be seen that for this range of values 
the relative efficiencies do not differ greatly. In experi-
ments conducted last year subblock etror rates of 10-2, 
10-1, and 2x10-1 were observed for code diversity, frequency 
diversity, and single channel transmissions. One concludes 
from Figure 3, that the combination of code diversity with 
selective repeat ARQ, henceforth denoted by ARQCD, for this 
range of error probabilities is not worthwhile since code 
diversity incurs 50% overhead, and thus a higher throughput 
is achievable if this overhead were replacekby additional 
subpacket transmissions. On the other hand, as the error 
rate increases diversity transmission can be expected to keep 
the througput from deteriorating to zero much longer than 
single channel FSK because of its ability to correct errors. 
Clearly what is needed is a transmission protocol that dyna- 
mically varies between these two extremes as the channel error 
conditions vary. We will introduce such a protocol in the 
last section. 
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4.2 A DIVERSITY-ON ,DEMAND TRANSMISSZON pROTOCOL 

Sbppose that  N FSK-  signals ere .availahle for information 
transmission and that eacit signaris organized as in the *exis-
ting transmission protocol but  with the headers dambined 
into one single header as shown in Figure 4. The first part 
of the header up to the software sync byte would remain the 
sanie; The sedond part would be capable of carrying more infor-
mation than presently required's° it cnuld be shortened or 
modified as neceSsary. Similar considerations would apply to 
the acknowledgment packets. 

Once the message packets header and acknowledgment packet 
lengths are seleceted (and here we are assuming that they will 
remain fixed), the maximum achievable throughput will be 
fixed and the particular form of ARQ will affect the perfor-
mance only through the relative efficiency. We will assume 
that the transmitted messages are very long so that mode B 
transmissions can be neglected. 	The relative efficiency will 
be given by E(N), where N is the number of transmissions re-
quired by a given subpacket. 

The basic mechanism of ARQ schemes, retransmision, is • 
essentially a diversity technique, namely time diversity with-
out combining. Viewed this way it is clear that ARQ schemes 
do not make use of all of the information available at the 
receiver and that better performance should be possible by 
using sone form of combining. We will consider the use of 
code diversity as the means of utilizing the extra information. , 
The scheme considered has been discussed by Wang and Lin 
(Trans. on Communications, May 1983). We will henceforth 
refer to the scheme as ARQDD. 

For throughput analyses purposes we can consider the pro-
tocol as if a single subpacket is being retransmitted at a 
time. The protocol employs a cyclic code for error detection 
and a rate 1/2 convolutional code for code diversity. Each 
information subpacket (including the sequence number) is enco-
ded Using the cyclic code. The resulting block is convolutio-
nally encoded with the encoder intialized to the zero state 
and enough zeros appended to the block so as to drive the 
encoder back to the zero state. Each subpacket is thus bundled 
separately so that its retransmission can be handled indepen-
dently of that of other subpackets. 

The upper and lower branches of the encoder output are 
buffered separately and only the upper branch is transmitted 
at first. At the receiver the received sequence is divided 
by the appropriate polynomial that allows the recovery of the 
cyclically encoded block when errors have not been. introduced 
in transmission. The outcome of this division and the subsequent 
check of the recoveit block are used to detect errors. If 
none are found the subpacket is accepted. If the block is found 
to have some errors, the receiver sends a negative anknowledg- 
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ment requesting a tranamigqiQn Qg the other branch. The second 
branch ig 1=cesged in the same'way; it is divided, checked 
for er;rors and accepted if none are found. 	If at this point 
errors are found, both received 'branches are -used to carry out 
Viterbi decoding. The sequence output by the decoder is then 
checked for errors using the cyclic code. At no extra cost 
in bandwidth we bave obtained an extra opportunity to correctly 
decode the information. Note that all decoding prior to Viterbi 
decoding uses hard decisions, but that Viterbi decoding itself 
can use soft decisions. 

If the second transmission and subsequent Viterbi decoding 
fail, a request for a retransmission of the first branch is 
made. The branch is processed as the second branch was processed 
in the previous step. In Li'n's  version of the protocol, the 
older version of a branch is discarded. However if soft deci-
sion decoding is used, the old and new versions of a branch 
could be combined prior to Viterbi -decoding. The alternate 
transmission of branches-continues until the subpacket is 
guccessfully transferred or until some upper limit is reached. 

The possible sequence of events for ARQDD is shown in Figure 
5 where Bc(i) is the event that the ith transmission is re-
ceived errorfree and Be(i) is the event that it is found in 
error. We will assume for simplicity that the probability 
of failing to detect errors is negligible relative to the 
probabilities of the other events. Gc(i) is the probability 
that Viterbi decoding successfully decodes a pair of erroneous 
branches after the ith transmission. Assume that block errors 
occur at independently and with the same probability: 

P c = Pr( Bc(i) ) 

and 

1 - P c = Pr( Be(i) ) 

Let Vo be the probability that the first Viterbi decoding is successful and let Vc  be the probability that subsequent Viterbi 
decodings are successful. Note that the first probability is 
conditioned on the two branches having had errors detected on 
them, whereas the second probability in addition has the condi-
tion that one of the bran4s participated in a previous unsuc-
cessful Viterbi decoding. Thus the second probability will 
be less than the first. The corresponding sequence of event 
probabilities is shown in Figure 6. To calculate the mean 
number of transmissions we need only consider the event Ec(i) 
and the event Ee(i) that correspond to the ith transmission 
being successful and unsuccessful respectively. Since Ee(i) 
occurs if the ith transmissions has errors and the subsequent 
Viterbi decoding fails, we have that 
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The simpler sequence of event probabilities is shown in 
Figure 7. The probabilities* of N are given by: 

i=1 

1-3 
P

B 
V

B 
V

B 	
(P + P

B  V
e  ) 	3 c  

where PB = 1 - P and Vn .=_1 - V . 	The mean ,  number of trans- - missions is then
c 
 found to be: 

E(N) = P c  + 2PB (Pc  + PBVcc) + 
1 + 2,(P c  + PBVC) 

P.+P V B c 

and the relative throughput efficiency is then 1/E(N). 

The evaluation of the throughput efficiency requires the 
transmission error probability PB , and the two probabilities 
of successful Viterbi decoding, 	Vc  and V. 	Note that PB is the error probability that results cusing hard decisions. 
Later in this section we will estimate these parameters for 
a bursty channel by computer simulation. We will find that 
V, requires much computation to estimate so it would be use-
fin to have bounds on E(N) that depend only on the other two 
parameters. 

An upper bound is obtained for E(N) by analyzing the infe-
rior system posed by Lin where Viterbi decoding always uses 
a new pair of branches and thus can take place only during 
every other transmission. The sequence of event probabilities 
is shown in Figure 8 and the resulting mean is an upper bound 
to E(N): 

E (N) <
• 

1 + P
B  

1 - P2 Vo 
B B 

We can also obtain a lower« bound as follows.. Since V is 
always leàs than Vc  , we: can replace V by Vc  in thé eact 
formula for E(N) and obtain an optimisEic eàeimate. 	Combining 
the Upper and lower' bounds we  have: ' 
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4 E (N).  

1- v  1 - V°  

Wheri the 'channel:  is  very .  good we  have P :Much:leàs than 1 and _ B thé bounds yield 

E(N) 	1 + PB  

which intuitively agrees with the fact that Viterbi decoding 
would seldom be réquired. When the channel is very noisy the 
PB approaches 1 and 

2 + V°  
E(N) ._<: 

In order to obtain the parameters required to estimate 
the performance of ARQDD, we modified the simulation programs 
to estimate the required parameters. An information block of 
120 bits (all zeros in the simlation) was "encoded" using the 
171/133 code and the resulting encoded branches (two blocks of 
126 zeros) were produced. The first branch was passed through 
the bursty channel. The resulting sequence was inspected for 
hard errors and if none was found the block was counted as 
correct on the first transmission. Otherwise a new branch 
was "requested." In producing the new branch  the. initial  state 
of the channel was reselected at random in order to simulate 
the time diversity nature of the retransmissions. The ARQ 
protocol was followed in the prescribed way and a tally of 
the various events was kept. Table 1 shows the results of three 
simulation experiments and Figure 9 shows the corresponding 
results in graphical form. 

In the first two experiments the channels alternate betWeen 
periods of good error conditions and periods of bad error con-
ditions. The first experiment corresponds to the 250VG/50B 
channel introduced earlier in the report. In this experiment 
the channel is relatively "very good" in that a significant 
(517 ) of the blocks are recieved error free after the first 
transmission. The bounds for ARQDD are very tight in this 
case and the throughput for ARQDD is 67%, a 16% improvement 
over selective repeat ARQ which would have a throughput of 
51%. In the second experiment the channel is 250G/50B and 
only 4% of the packets get through on the first transmission. 
Thus the throughput has collapsed to nearly zero for selective 
repeat ARQ. The bounds for ARQDD'are again very tight and 
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throughput is 51%, a tremendous i,mprovement over selective repeat 
ARQ. The difference of couree is due*to the error correcting 
capahility of the 'scheme. For  this  range of channel conditions 
the block error rate is nearly 1 with  error detection only, but 
the convolutional code is.  table of corredting most of the error 
patterns, so that most bloc s are recieved correctly after the 
two transmissions reciuired to carry out Viterbi decoding. Essen-
tially the 'system has switched to code diversity operation with 
the diversity branch being provided by time diversity. This 
is eqMivalent in throughput to ARQCD which provides the diver-
sity branch in simultaneous frequency .  diversity. Note however 
that ARQCD entails a smaller delay in delivering a given block 
to the receiver. 

The third experiment has the channel continously in the 
bad state. The throughput efficiency of selective repeat 
ARQ is zero, but the efficiency of ARQDD is 19%. Note that 
in this case, the bounds were not tight and it wes necessary 
to run a second simulation to estimate Vc . Because of the 
large nmmber of errors in the transmissions, many Viterbi 
decodings are required before a block is successfully deco- 
ded at the receiver. The simulation to estimate this parameter 
took about 11 hours on the IBM PC. This experiment demonstrates 
that ARQDD continues transmitting information through the 
very noisy channel way after ordinary ARQ schemes have collapsed. 
The system thus appears to be extremely well-suited to HF 
radio transmission where the ability to adapt to changing 
channel conditions is essential. 

4,3 AN ADAPTIVE - TRANSMISSION PROTOCOL 

The adaptivity of ARQDD to the changing channel conditions 
is accomplished through the automatic retransmission of erro-
neous subpackets. For the multi-FSK system under considera-
tion 	a large number of subpackets are transmitted in each 
frame. Under very noisy conditions this will require the 
retransmission of a large proportion of each frame. This will 
require considerable complexity in terms of the buffer manage-
ment and sequence numbering operations. Thus it is preferable 
if the protocol operates so that the number of retransmissions 
is kept low, while operating at a throughput efficiency close 
to that of ARQDD. As indicated in the previous section, when 
the throughput of ARQDD is near 50%, it is equivalent in through-
put to ARQCD which has a throughput of V°  and which is shown 

in Table 1 as well aî in Figure 9. It 
can be seen that by switching to ARQCD when the throughput of 
ARQDD falls to near 50%, significant simplifications in the 
implementation will be obtained at little loss in throughput. 
Since ARQCD has a throughput that never exceeds 50%, the proto-
col should switch to ARQDD and perhaps even ordinary ARQ when 
the channel conditions are favorable. 



The obvLous decion rule  10r eli,tchi,ng between the two 
protocols is to cOmpare Itite.  number of subpackets' that require 
retranamission to a threShold. The Switch_from ARQDD to ARQCD 
is effected-when the 'number of packets that require retrans-
mission ekceeds the 'threshold. The 'switch  in the 'reverse 
diredtion should be -based on the number of subp.ackets that arrive 
incorredtly pior to Viterbi decoding since we are trying to 
establish that the systeM can operate satisfactorily using 
eSsentially hard dedisions only. The  lre4uired cornt can be 
made by retaining the same subpacket format and predecoding 
procedures at the receiver. Each subpacket would first be 
divided and error checked prior to Viterbi decoding. If 
either of the branches received in two different frequencies 
is correct, then Viterbi decoding can be skipped,and as well 
the count required to implement the decision rule for switching 
can be carried out. The retention of this part of the ARQDD 
protocol also gives the receiver the option to handle many 
more subpackets per frame—than it would be able to decode in 
ARQCD where every branch pair would undergo Viterbi decoding. 

4.4 OPEN ISSUES 

The discussion in this section has concentrated only on 
the throughput performance of the various schemes for 
several relatively simple mndels. It has been established 
that code diversity significantly extends the range of channel 
conditions within which information can be reliably transmi-
ted. As well the combination of code diversity with mq makes 
it possible to operate at high throughput efficiencies when 
channel conditions are favorable. We expect that these conclu-
sions will hold for real channels as well because the schemes 
make no specific assumptions about the channel statistics 
and because the schemes are inherently adaptive to a coarse 
statistic, block error rate. 

The schemes need to be investigated further with attention 
paid to implementation details. The memory and processing 
requirements need to be estimated. The algorithm can then 
be optimized for maximum performance within the constraints 
placed on the processing and memory requirements. 
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MODULE 	 PAGE 

	

1.0 	MAIN LOOP 	 1 

	

1.1 	INIT 	 1 

	

1.2 	ACS1-2 	 1 

	

1.3 	SCALE 	 2 

	

1.4 	SEARCH 	 2 

	

1.5 	HIST 	 3 

1.2.1 	SHIFT 	 3 
1.2.1.1 	GETBIT 	 4 
1.2.1.2 	PUTBIT 	 4 
1.2.1.3 	STROBUP 	 5 
1.2.1.4 	STROBDN 	 5 

1.2.1.2.1 	ERRCHK 	 5 
1.2.1.2.1.1 	NEXTPN 	 6 
1.2.1.2.1.2 	REP 	 6 
1.2.1.2.1.2.1 	KEYCHK 	 7 
1.2.1.2.1.2.2 	PUTC 	 7 
1.2.1.2.1.2.3 	TEXT 	 7 
1.2.1.2.1.2.4 	PNUM 	 8 



MODULE NAME: MAIN LOOP (VITERBI) 
MNEM: 	MLOOP 
HIER: 	1.0 
DESC: 	This is the top level module of the hierarchy of 

the 	Real-Time Viterbi Decoder. 	Upon being 	entered, 	it 

initializes variables and storage areas. It then enters the main 

loop of the program that repetitively implements the decoding 

cycle. 

CALLED MODULES: 

	

NAME: 	INITIALIZE 

	

.MNEM: 	INIT 	HIER: 	1.1 

NAME: ADD, COMPARE, SELECT 
MNEM: 	ACS1, ACS2 	HIER: 	1.2 

NAME: SCALE METRICS 
MNEM: 	SCALE 	HIER: 	1.3 

NAME: SEARCH FOR BEST STATE 
MNEM: 	SEARCH 	HIER: 	1.4 

NAME: HISfORY UPDATE 
MNEM: 	HIST 	HIER: 	1.5 

MODULE NAME: 	INITIALIZE 
MNEM: 	INIT 
HIER: 	• 	1.1 
DESC: 	Initialize 	input ports. 	Initialize output port. 
Set long term history to zeros. 	Setup PN generators. 	Zero block 
variables. 

COMMON DATA: 
BF1 	(WRITE) 
ALLOK, NOBLOCK, ERRS, RESYNC, 	(WRITE) 
PN1, GPN 	(WRITE) 
OUT (WRITE) 
OUTPORT, PCR, ACR, IFR, OUTDDR, DDRA, DDRB 	(WRITE) 
HO 	(WRITE) 

CALLED FROM: 
NAME: 	MAIN LOOP (VITERBI) 
MNEM: 	MLOOP 	HIER: 	1.0 

MODULE NAME: ADD, COMPARE, SELECT 
MNEM: 	ACS1, ACS2 
HIER: 	1.2 
DESC: 	These two routines each update one of the state 
information tables. 	ACS1 uses State Organization Table #1 (SOT1) 
to update the information in buffe #1 (BF1), 	the results being 
put in buffer #2. 	ACS2 uses S 01 2 to update BF2 and the results 
are put in BF2. 	The states are updated in groups of four states 
until 	all 	states are done. 	At the start of the ACS operation 



data output, data input, and metric distances are calculated. 

LOCAL DATA: 
SPSAVE (READ/WRITE) 

COMMON DATA: 
FOR ACS1: 	BF2, SOT1 	(READ) 

BF2 (READ/WRITE) 
FOR ACS2: 	8 F2, SOT2 (READ) 

BF1 	(READ/WRITE) 
T0000,T0001,...T1111 	(READ) 

CALLED FROM: 
NAME: 	MAIN LOOP (VITERBI) 
MNEM: 	MLOOP 	HIER: 	1.0 

CALLED MODULES: 
NAME: SHIFT OUT DATA, GET DATA 
MNEM: 	SHIFT 	HIER: 	1.2.1 

MODULE NAME: SCALE METRICS 
MNEM: 	SCALE 
HIER: 	1.3 
DESC: 	Subtracts previous best metric from all state 
metrics. 	Also, if any metric gets above 32000 then it is reduced 
to approximately 16000. 	The truncation should not be required if 
calls are made frequently to this routine. 

CALLING PARAMETERS: 
Register U contains the address of the buffer to be scaled • 

(BF1 OR BF2). 
Variable: 	BESTM should be equal to or less than the best 

metric. 

LOCAL DATA: 
SCOUNT (READ/WRITE) 

COMMON DATA: 
BF1, BF2 	(READ/WRITE) 
BESTM (READ) 

CALLED FROM: 
NAME: 	MAIN LOOP (VITERBI) 
MNEM: 	MLOOP 	HIER: 	1.0 

MODULE NAME: SEARCH FOR BEST STATE 
MNEM: 	SEARCH 
HIER: 	1.4 
DESC: 	Loop through all states to find the lowest metric. 
Save the metric and path pointer for later use. 

CALLING PARAMETERS: 
Register U should point to buffer to be searched. 



LOCAL DATA: 
COUNT (READ/WRITE) 

COMMON DATA: 
BESTM, BESTV (READ/WRITE) 
BF1, BF2 	(READ) 

CALLED FROM: 
NAME: MAIN LOOP (VITERBI) 
MNEM: 	MLOOP 	HIER: 1.0 

MODULE NAME: HISTORY UPDATE 
MNEM: 	HIST 
HIER: 	1.5 
DESC: 	Trace back operation using best path pointer to 
find most likely output. 	Move recent history (path pointers) to 
long term history. 	Create new path pointers. 

CALLING PARAMETERS: 	-- 
Register X contains a pointer to the first path pointer in 

whichever buffer is selected. 
BESTV should contain the best path pointer found by SEARCH. 

LOCAL DATA: 
CURCOL (READ/WRITE) 

COMMON DATA: 
BESTV (READ) 

CALLED FROM: 
NAME: MAIN LOOP (VITERBI) 
MNEM: 	MLOOP 	HIER: 	1.0 

MODULE NAME: SHIFT OUT DATA, GET DATA 
MNEM: 	SHIFT 
HIER: 	1.2.1 
DESC: 	Output data. 	Raise strobe to indicate data valid. 
Get eye values. 	Rotate eye values into position. 	Calculate 
branch distances. 	Lower strobe. 

LOCAL DATA: 
TEMPA, TEMPB (READ/WRITE) 
COMA,COMB (READ/WRITE) 

CALLED FROM: 
NAME: ADD,COMPARE, SELECT 
MNEM: 	ACS1, ACS2 	HIER: 	1.2 

CALLED MODULES: 
NAME: GET DATA FROM ADC BOARD 
MNEM: 	GETBIT 	HIER: 	1.2.1.1 



NAME: 
MNEM: 

NAME: 
MNEM: 

NAME: 
MNEM: 

OUTOUT BIT 
PUTBIT 	HIER: 	1.2.1.2 

RAISE STROBE 
STROBUP 	HIER: 	1.2.1.3 

LOWER STROBE 
STROBDN 	HIER: 	1.2.1.4 

• -\ 

MODULE NAME: GET DATA FROM ADC BOARD 
MNEM: 	GETBIT 
HIER: 	1.2.1.1 
DESC: 	Wait for data ready from ADC board. 	Read value 
from ADC board. 	After isolating lower seven bits run value 
through the quantization map. 

LOCAL DATA: 
MAP (READ) 
Register A & B each nod one of the mapped, integrated eye 

values. 

COMMON DATA: 
IFR 	(READ/WRITE) 
ADAT, BOAT (READ) 

CALLED FROM: 
NAME: SHIFT OUT DATA, GET DATA 
MNEM: 	SHIFT 	HIER: 	1.2.1 

MODULE NAME: OUTPUT BIT 
MNEM: 	PUTBIT 
HIER: 	1.2.1.2 
DESC: 	Shift out a bit from the variable OUT. 	This value 
is placed on the output port. 

CALLING PARAMETERS: 
OUT should contain the most likely output bits found in the 

routine HIST. 

COMMON DATA: 
OUT (READ/WRITE) 

• OUTPORT (READ/WRITE) 
DOUT (WRITE) 

CALLED FROM: 
NAME: SHIFT OUT DATA, GET DATA 
MNEM: 	SHIFT 	HIER: 	1.2.1 

CALLED MODULE: 
NAME: DO BLOCK ERROR CHECKING 
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1 



MODULE NAME: RAISE STROBE 
MNEM: 	STROBUP 
HIER: 	1.2.1.3 
DESC: 	Raise strobe to indicate output data valid. 

COMMON DATA: 
OUTPUT (READ/WRITE) 
DOUT (WRITE) 

CALLED FROM: 
NAME:  SHIFT  DATA OUT, GET DATA 
MNEM: 	SHIFT 	HIER: 	1.2.1 

MODULE NAME: LOWER STROBE 
MNEM: 	STROBDN 
HIER: 	1.2.1.4 
DESC: 	Lower strobe on data output port. 

COMMON DATA: 
OUTPUT (READ/WRITE) 
DOUT (WRITE) 

CALLED FROM: 
NAME: SHIFT DATA OUT, GET DATA 
MNEM: 	SHIFT 	HIER: 	1.2.1 

MODULE NAME: DO BLOCK ERROR CHECKING 
MNEM: 	ERRCHK 
HIER: 	1.2.1.2.1 
DESC: 	Keeps a running record of the most recent output 
bits so that the internal shift register can be reloaded if 
synchronization is lost. 	The bit to be output is compared to the 
internal PN generator and any differences are counted. 	When the 
block is done, one of three characters is printed: 

u - no errors in block 
less than ERRLIM errors 

H S U 	ERRLIM or more errors 	(Reload shift register) 

The appropriate counter is also incremented. 

CALLING PARAMETERS: 
BITOUT should contain bit just output. 

LOCAL DATA: 
BCOUNT (READ/WRITE) 
STOR1, STOR2 (READ/WRITE) 

COMMON DATA: 
BITOUT (READ) 
ERRS, RESYNC, ALLOK, NOBLOCKS (READ/WRITE) 



CALLED FROM: 
NAME: OUTPUT BIT 
MNEM: PUTBIT  HIER: 	1.2.1.2 

CALLED MODULES: 
NAME: NEXT PSEUDO-NOISE BIT 
MNEM: 	NEXTPN 	HIER: 	1.2.1.2.1.1 

NAME: REPORT BLOCK ERRORS 
MNEM: 	REP 	HIER: 	1.2.1.2.1.2 

NAME: CHECK KEYBOARD 
MNEM: 	KEYCHK 	HIER: 	1.2.1.2.1.2.1 

NAME: PRINT CHARACTER 
MNEM: 	PUTC 	HIER: 	1.2.1.2.1.2.2 

MODULE NAME: NEXT PSEUDO-NOISE BIT 
MNEM: 	NEXTPN 	-- 
HIER: 	1.2.1.2.1.1 
DESC: 	Generate next pseudo-noise value from internal 
shift register and feed it into the shift register to carry on. 
The sequence generated is 511. 

LOCAL DATA: 
CHECK (READ/WRITE) 
PN1, PN2 (READ/WRITE) 
Register A returns the PN bit. 

CALLED FROM: 
NAME: DO BLOCK ERROR CHECKING 
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1 

MODULE NAME: REPORT BLOCK ERRORS 
MNEM: 	REP 
HIER: 	1.2.1.2.1.2 
DESC: 	Report on the block errors encountered. 	Report 
includes: 	total blocks read; number of error free blocks; number 
that had bad bits; and number that caused resynchronization. 

CALLING PARAMETERS: 
• NOBLOCK, 	ALLOK, 	ERRS, 	RESYNC should contain appropriate 

block error values. 

LOCAL DATA: 
TB, OK, NB, RS, MEND 	(READ) 

COMMON DATA: 
NOBLOCK, ALLOK, ERRS, RESYNC (READ) 

CALLED FROM: 
NAME: DO BLOCK ERROR CHECKING 
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1 



CALLED MODULES: 
NAME: OUTPUT STRING 
MNEM: 	TEXT 	HIER: 	1.2.1.2.1.2.3 

NAME: PRINT DECIMAL NUMBER 
MNEM: 	PNUM 	HIER: 	1.2.1.2.1.2.4 

MODULE NAME: CHECK KEYBOARD 
MNEM: 	KEYCHK 
HIER: 	1.2.1.2.1.2.1 
DESC: 	Get a character from the keyboard if one .is 
waiting, else return zero (null). 

LOCAL DATA: 
Returns the read character in register A. 

COMMON DATA: 
STATUS, DATA (READ) 

CALLED FROM: 
NAME: DO BLOCK ERROR CHECKING 
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1 

MODULE NAME: PRINT CHARACTER 
MNEM: 	PUTC 
HIER: 	1.2.1.2.1.2.2 
DESC: 	Print a character on the terminal. 

CALLING PARAMETERS: 
Register A contains ASCII value to be printed. 

COMMON DATA: 
STATUS (READ) 
DATA (WRITE) 

CALLED FROM: 
NAME: DO BLOCK ERROR CHECKING 
MNEM: 	ERRCHK 	HIER: 	1.2.1.2.1 

NAME: OUTPUT STRING 
MNEM: 	TEXT 	HIER: 	1.2.1.2.1.2.3 

NAME: PRINT DECIMAL NUMBER 
MNEM: 	PNUM 	HIER: 	1.2.1.2.1.2.4 

MODULE NAME: OUTPUT STRING 
MNEM: 	TEXT 
HIER: 	1.2.1.2.1.2.3 
DESC: 	Print a string on the terminal 	until a zero (null) 
is encountered. 



CALLING PARAMETERS: 
Register X holds starting address of string. 

CALLED FROM: 
NAME: REPORT BLOCK ERRORS 
MNEM: 	REP 	HIER: 	1.2.1.2.1.2 

CALLED MODULE: 
NAME: PRINT CHARACTER 
MNEM: 	PUTC 	HIER: 	1.2.1.2.1.2.2 

MODULE NAME: PRINT DECIMAL NUMBER 
MNEM: 	PNUM 
HIER: 	1.2.1.2.1.2.4 
DESC: 	The D register is printed on the terminal 	as a 
decimal number with zero blanking. 	Unsigned. 

CALLING PARAMETERS: 
Register D contains value to be printed. 

LOCAL DATA: 
K10000, K1000, K100, K10, K1 	(READ) 
ZBLANK, DCOUNr, TEMP (READ/WRITE) 

CALLED FROM: 
NAME: REPORT BLOCK ERRORS 
MNEM: 	REP 	HIER: 	1.2.1.2.1.2 

CALLED MODULE: 
NAME: PRINT CHARACTER 
MNEM: 	PUTC 	HIER: 	1.2.1.2.1.2.2 
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TEST PROGRAM TO VERIFY THE OPERATION OF THE 
NEW  VITERBI DECODER ROUTINES. 
HAS REAL I/O  ROUTINES TO INTERFACE. TO THE ABC  BOARD 

BLOCK ERROR REPORTING INSERTED !  

****************************************************************** 

* 

MARCH 8Y 1984 ,  
* 
***************************************************************** 
BLOCKLEN 	EOU 	64 
ERRLIM 	EUU. 	10 
BLIMIT 	EOU 	1728.„ 

BF1 	EQU 	MOB1 
BF2 	EGU 	MOB2 

SETD 	1 
ORG 	$200 	; START PROGRAM AT $200 

START 	LDS 	t$100 	; LOAD STACK POINTER TO USE REGION $000->$100 
LDA 	. 0$01 	; MOVE DIRECT PAGE TO $0100 (AWAY FROM STACK) 

.TFR 	APDP 
LBSR 	INIT 	•  INITIAI  IZE VARIABLES AND STORAGE AREAS 

MLOOP 	BSR 	ACS1 	; ADD COMPARE SELECT CYCLE 
LDU 	tBF2 
LBSR 	SCALE 
8SR 	ACS2 	; ADD COMPARE SELECT CYCLE 
BSR 	ACS1 	; ADD COMPARE SELECT CYCLE 
BSR 	ACS2 	; ADD COMPARE SELECT  CYCLE  
BSR 	ACS1 	; ADD COMPARE SELECT CYCLE 	. 
BSR 	ACS2 	; ADD COMPARE SELECT CYCLE 
LDU , *BFi 
BSR 	- SEARCH ; LOCATE BEST METRIC AND POINTER 
L PU 	OBF14.4 
LBSR 	HIST ; TRACE BACK AND UPDATE POINTERS 
BRA 	MLOOP 



******************************************************************** 

INLILAI VIE THE DA TA AREAS AND I/O PORTS. 
ims ROUT[NE INSURES THAT  THE  PROGRAM CAN BE RESTARTED 
FROM ANY POINT AND THE SYSTEM WILL FUNCTION PROPERLYe 
NOTE  : (mumEs Tur INTERRUPTS  ARE  ALREADY DISABLED. 

******************************************************************* 

INIT 	CLR 	OUTPORT 9 CLEAR OUTPUT PORT IMAGE 
LDA 	e$00 	9 LOAD PERIPHERAL CONTROL REGISTER CODE 
STA 	PCR 	9 INITIALIZE THE I/O PORTS 
CL R . 	ACR 
LDA 	0$FF 	; CLEAR ALL INTERRUPT FLAGS 
STA 	IFR 
STA 	OUTDDR ; SET DECODED OUTPUT PORT TO ALL OUTPUTS 

LDA 	$0 	; A ZERO ON EACH BIT INDICATES ALL INPUTS 
STA 	DDRA 	; SET—A/D INPUT PORTS TWALL INPUTS (8 BITS) 
STA 	DDRB 

LDX 	4H0 	; INITIALIZE HISTORY TO ZEROS 
LB)) 	e512 	9 SET COUNTER TO NUMBER OF BYTES IN 

; LONG TERM HISTORY (ASSUMES  4H3TATES=64y 
* 	 9 LONG TERM HISTORY DEPTH=8) 

LOOP1 CLR 	1, X+ 

- SUBI' 	el 	9 COUNT=COUNT-1 
BNE 	LOOP1 	; REPEAT TILL COUNT=0 

LDX 	epri 	; INITIALIZE FIRST BUFFER OF STATE INFO 
LB!) 	el 	9 SET A=0 AND B=1 

L00P2 	CLR . 	yX4. 	9 CLEAR BOTH METRICS (4 BYTES) 
CLR  
CLR 	yX4- 
CLR  
STD 	,X+4. 	9 SET PATH POINTERS (SEQUENTIAL) 

. ADDD 	e$202 	9 ADD 2 TO A AND B 
CMPA 	$64 	9 CHECK IF A= LAST STATE 
BNE 	L00P2 	9 REPEAT TILL DONE 

CLR 	OUT 	; CLEAR CURRENT OUTPUT SHIFT REGISTER 
LDA 	e$FF 	9 PUT A SOMETHING IN THE PN PENERATOR 
STA 	PN1 	9 TO MAKE SURE THAT IT STARTS OK 
STA 	SFLAG 	9 SET START FLAGy(RESET ON 1ST OK BLOCK) 

LDD 	#0 	9 CLEAR BLOCK COUNT STUFF QUICK 
STD 	ALLOK 	9  NUMBER OF CORRECT BLOCKS 
SIT 	NOBLOCK .9 TOTAL NUMBER OF BLOCKS 
STD 	ERRS 	9 NUMBER OF BLOCKS WITH ERRORS<ERRLIM' 
STD 	RESYNC  9  NUMBER OF BLOCKS WITH ERRORS>ERRLIM 
RIS 



******************************************************************** 

THIS IS THE STANDARD DECODING ROUTINE. DOES ALL REQUIRED 
STATE INFORMATION UPDATING FOR A SINGLE BIT. 

ACS1 	USES BUFFER 1 (BF1) AS SOURCE AND BF2 AS DESTINATION 
ACS2 	USES BUFFER 2 (BF2) AS SOURCE AND BF1 AS DESTINATION 

>,e 	ON ENTRY: NO PARAMETERS REQUIRED 
ON EXIT: CONTENTS OF DESTRINATION BUFFER MODIFIED 

NO SPECIAL INFO IS RETURNED 
. 	 . . 	 . * 	 . 

. 	 . 

******************************************************************** 
DONE 	LDS 	SPSAVE ; RESTORE STACK POINTER 

RIS 	 ; AND RETURN TO MAIN:LINE 

ACS1 	LBSR 	SHIFT 	; OUTPUT A BIT AND WAIT FOR NEW INPUT 
STS 	SPSAVE ; PRESERVE STACK POINTER 
LOS, ' 	9:SOT1-12 9  sulg. POINTER TO INSTRUCTIONS 
I. 	OBF1-12 ; SETUP -STATE INFO POINTER (SOURCE)' 
T1RA 	EVEACS: ; JUMP INTO—THE ACS ROUTINE 	• 

ACS2 	LBSR 	SHIFT 	; OUTPUT A BIT AND WAIT FOR NEW INPUT 
STS 	SPSAVE ; PRESERVE STACK POINTER 
LOS 	4S0T2-12 ; SETUP POINTER TO INSTRUCTIONS 
LOU 	*BF2-12 ; SETUP STATE INFO POINTER (SOURCE) 

EVEACS LEAU 	127U 	; UPDATE STATE INFORMATION 
LEAS • 127S 	; AND STATE ORGANIZATION POINTERS 
LDY r 9 ,..) 	9 LOAD POINTER TO . DESTINATION 
BEG 	DONE 	; IF DESTINATION POINTER=P THEN DONE 
LDX 	' 7U 	; GET METRIC A 
LDD 	E275] 	; GET BRANCH DISTANCES TO NEW STATE A 

. 	LEAX 	AeX 	9. ADD , MEtRIC .  A TO BRANCH DISTANCE 
STX 	7Y 	9 TENATIVE WINNER: SAVE AT DESTINATION 

LDX 	27U 	; GET METRIC B 
ABX 	9 ADD BRANCH DISTANCE Ta METRIC B . 
CMPX 	7Y 	9 COMPARE TO TENATIVE WINNER 
LDD 	47U 	9 GET PATH POINTERS FOR  FUTURE USE 	- 
BCC 	ATOAE 	;. FROM COMPARE ADJUST  NEW. STATE INFO ACCORDINGLY 

mmic B  SETTER : ALL STATE INFO MUST BE UPDATED 
SIX 	.Y 	; SAVE METRIC 
STB 	4. 	3 sAvr PATH POINTER 
DI<A 	NXTFACS  9 00TO NhXT ACS OPERATION 

MEIRIC A BETTER: JUST UPDATE PATH SINCE METRIC DONE 
ATOME 	STA. 	4.Y 	; SAVE PATH  POINTER 

NXTEACS LEAY 	967Y 	; CALC NEW DESTINATION ,POINTER ((OSTATES/2)*3) 
LDX 	7U 	; GET METRIC A 
LDD 	I4 S] 	; GET BRANCH DISTANCES TO NEW STATE B 

• 	LEAX 	A7X 	9 ADD MÉTRIC A TO BRANCH DISTANCE 	. 
STX 	7Y 	9 TENAT  IVE  WINNER:.  SAVE AT DESTINATION. 



1 

1 

' LDX 	2yU 	; GET METRIC B 
ABX 	; ADD BRANCH DISTANCE TO METRIC B 
CMPX 	7Y 	; COMPARE TO TENATIVE WINNER 
LDD 	4,11 	P GET PATH POINTERS FOR FUTURE USE ' 
BCC - ' ATOBE 	; FROM COMP-ARE -A-DJUer-  NEW STATE INFO ACCORDINGLY 

e METRIC B BETTER: ALL STATE INFO MUST BE UPDATED 
SIX 	yY 	; SAVE METRIC 
STB 	47Y 	; SAVE PATH POINTER 
BRA 	OBBACS  I  GOTO NEXT ACS OPERATION 

* 	 ; METRIC A BETTER: JUST PATH SINCE METRIC DONE 
ATOBE 	STA 	47Y 	; SAVE PATH POINTER 

' 	 II 
ODDACS LDY 	. 67S 	; LOAD POINTER TO DESTINATION 

LDX 	67U 	; GET METRIC A  
LDD 	E878:1 	; GET. BRANCH DISTANCES TO NEW STATE A 	'- 

LEAX 	AyX 	; ADD BRANCH DISTANCE TO METRIC A ' 
STX 	7Y 	.; TENATrVE WINNER: SAVE AT DESTINATION 

' 	II --... 
LDX, 	87U 	; GET METRIC B 	. 
ABX 	; ADD BRANCH DISTANCE TO METRIC B 
CMPX 	7Y 	; COMPARE TO TENATIVE WINNER 
LDD 	1071J 	; GET PATH POINTERS FOR FUTURE USE 
BCC 	ATOAO 	; FROM COMPARE ADJUST STATE.INFO ACCORDINGLY 

* 	 ; METRIC B BETTER: ALL SrATE INFO MUST BE UPDATED 
srx 	yy 	; SAVE METRIC 
su 	37Y 	; SAVE PA1H POINTER 
DRA 	NXTOACS ; GOTO NEXT ACS OPERATION 

; MEFRIC A BETTER: JUST UPDATE PATH SINCE METRIC DONE 
AIOAO 	srn 	3yY 	; SAVE PAIN POINTER 

«mhos LEAY 	967Y 	CALC NEW DESTINATION POINTER ((IPSTATES/2)(3) 
iDX 	67U 	GEr METRIC A 
I DD 	FlOyS3 ; GET BRANCH DISTANCE ro NEW STATE B 
LEAX 	AyX 	; ADD METRIC A TO BREACH DISTANCE 
SIX 	1  TENATIVE WINNER: SAVE nr  DESTINATION  

LDX 	S7U 	; GET METRIC B 
ABX 	; ADD BRANCH DISTANCE TO METRIC B 
CMPX 	7Y 	,1 COMPARE TO TENATIVE WINNER 	. 

, 
LDD 	10711 	; GET PATH POINTERS FOR FUTURE 
BCC 	ATOBO 	FROM COMPARE ADJUST STATE INFO ACCORDINGLY 

; METRIC B BETTER: ALL STATE INFO MUST BE UPDATED 
SIX 	7Y 	; SAVE METRIC 	, 
STB 	37Y 	; SAVE PATH POINTER 
LBRA 	EVEACS 	GOTO NEXT ACS OPERATION 

METRIC A BETTER: JUST UPDATE PATH SINCE PATH DONE 
ATOBO 	STA 	37Y 	; SAVE PATH POINTER 

LBRA 	EVEACS 



INSURE THAT METRICS NEVER OVERFLOW ,  MUST BE CALLED BEFORE 
* 	- 	BEST METRICS REACH 16000 ,  

SUBTRACT BESTM FROM ALL METRICS. HALVE ANY METRIC GREATER 
THAN 32k TO PREVENT OVERFLOW. 

ON ENrRY: REG. U POINTS TO INFO BUFFER TO BE SCALED 
*•  ON Fnr: THE INDICATED BUFFER HAS BEEN MODIFIED 

NO SPECIAL INFO IS RETURNED 

******************************************************************** 

SCALE 	IDA 	032 	; SET COUNT= NUMBER OF STATE PAIRS (eSTATES/2) 
STA 	SCOUNT 	 . 

SCLOOP PULU 	D 	; GET_ FIRST. METRIC OF PAIR 
SUBD 	BESTM 	SCALE-METRIC 
BPI. 	NOTRC1 ; CHECK IF CLOSE TO OVERFLOW 
LSRA 	; CHOP IF CLOSE TO OVERFLOW 

NOTRC1  Sit! 	-2,U 	; SAVE UPDATED METRIC'BACK 

PULU 	DrY 	; GET METRIC (Y = PATH  POINTERS 	UNUSED) 
SUBD 	BESTM 	; SCALE METRIC 
BPL 	NOTRC2 ; CHECK IF CLOSE TO OVERFLOW , 
LSRA 	; CHOP IF CLOSE TO OVERFLOW 

NOTRC2 STD 	; SAVE UPDATED METRIC BACK 

DEC 	SCOUNT 	COUNT=COUNT-1 
BNE 	SCLOOP. ; REPEAT 
RIS 	; RETURN TO MAIN LINE 



*****=e************************************************************ 

LoceirE STATE WITH LOWEST METRIC. THE METRIC AND PATH 
-* 	POINTER FOR rms STATE ARE SAVED IN BESTM AND puirv. 

* 	ON ENTRY: REG, U POINTS TO THE INFO BUFFER TO BE SEARCHED 
ON EMI : LOCATIONS DESTM, BFSTV CONTAIN PEST METRIC AND 

PATH POINTER RESPECTIVELY. 
Norn corirrNrs OF ALL REGISTERS LOST 

******************************************************************** 
SEARCH LDX , 	OSOFFFF ; SET BEST METRIC = WORST POSSIBLE 

STX 	BESTM 
LDA 	032 	; SET COUNT= NUMBER OF STATE PAIRS (4ISTATES/2) 
STA. 	COUNT 	--- 
PULU 	XvY 	; GET FIRST TWO'NETRICS FROM STATE INFO BUFFER 
BRA 	SMID 	GOTO COMPARE 

SLOOP 	PULU 	DvXvY 	; OFT TWO METRICS (D = PREVIOUS PATH  POINTERS v UNUSED) 
SMID 	CMPX 	-2vU 	COMPARE JUST FETCHED METRICS TO EACH OTHER 

BCC 	YBEST 	SELECT  WHICHEVER IS BETTER 

XPEST 	CMPX 	BBsrm 	; COMPARE FIRST METRIC TO BEST METRIC 
BCC 	LCHK 	; IF NO NEW BEsr METRIC THEN SKIP TO END 

; &LSE NEW BEST METRIC: UPDATE BEST METRIC 
LDA 	vU 	oEr PATH POINTER CORRESPONDING TO NEW BEST METRIC 
STA 	BEsrv 	; SAVE IT AWAY 
SIX 	BESTM 	; UPDATE BEST METRIC 
PNA 	LCHK 	; SKIP TO END 

yBp,r 	CMPY 	DESTM 	; COMPARE. SECOND METRIC TO BEST METRIC 
DCC 	LCHN 	; IF NO NEW BEST METRIC THEN SKIP TO END 

; ELSE NEW BEST METRIC: UPDATE BEST METRIC 
LDA 	1vU 	; GET PATH POINTER CORRESPONDING TO NEW BEST METRIC 
ETTA 	BESTV 	; SAVE IT AWAY 
SfY 	BESTM 	; UPDATE BEST mEruc 

LCHK 	DEC 	COUNT 	; COUNT=COUNT-1 
BNE 	SLOOP 	; AND REPEAT 
RTS 



******************************************************************* 
* 
* THE HISTORY UPDATE SECTION . 
* THE PATH POINTER FOUND BY SEARCH IS USED TO LOOKUP - THE 
* ' BEST OUTPUT FROM THE LONG TERM HISTORY. THIS SETION ALSO. 
* UPDATES THE LONG TERM HISTORY BY MOVING THE POINTERS STORED 
* IN THE STATE INFORMATION INTO THE LONG TERM HISTORY AND 
* CREATING NEW POINTERS TO REFERENCE.THE HISTORY. * 
* , ON ENTRY: BESTV IS THE INITIAL POINTER TO LONG TERM HISTORY 
* . 	ON EXIT: OUT HOLDS THE BITS (ONE CONSTRAINT LENGTH) THAT 
* ARE THE MOST LIKELY OUTPUT 
* , 
******************************************************************* 

	

HIST . LDY 	CURCOL ; GET CURRENT STARTING COLUMN OF HISTORY'(CURCOL) 

	

LDA 	BESTV .; GET INITIAL PATH POINTER (CORRISPONDS TO BESTM) 

	

LDX 	.rY 	; GET ADDRESS OF FIRST COLUMN'OF HISTORY 

	

LDA 	ArX 	; LOOKUP NEXT PATH  POINTER .N  THAT COLUMN 

	

LDX 	-9 rY 	; GET...ADDRESS OF PREVIOUS-CdLUMN OF HISTORY ' 

	

LDA 	ArX 	; LOOKUP NEXt POINTER IN THAT COLUMN 

	

- .LDX 	• 	-4PY 

	

LDA 	AvX 	; THIS PROCESS CONTINUES FOR HOWEVER MANY 

	

LDX 	. -6,Y 	; COLUMNS OF HISTORY ARE BEING USED (8) 
AyX 

	

LDX 	-8,Y 	; FOR A DEPTH OF 9 LEVELS THE LAST'COLUMN IS 

	

LDA 	AyX 	.; REFERENCED BY  -14Y IF ONLY 6.LEVELS WERE 

	

LOX 	-10,Y 	; BEING USED THE LAST REFERENCE WOULD BE -10rY 

	

LDA 	AYX 

	

. L IX 	-12yY 
. 	L LIA 	AyX 	 . 

LDX  

	

LDA 	AyX 	; FINAL POINTER IS  MOST  LIKELY OUTPUT 

	

. STA 	OUT 	; FOR TESTING SAVE IN THE OUTPUT LOCATION 

LEAY 	2rY 	; MOVE CURRENT COLUMN POINTER TO NEXT COLUMN 
CMPY 	4PCOLLIM ; IF END OF LIST REACHED THEN 
Be 	NXCOL 

LDY 	$COLBEG ; START  Ai' BEGINNING AGAIN 
MXCOL 	STY 	. CURCOL 9 SAVE BACK AS CURRENT COLUMN 

* 	; MOVE PATH POINTERS INTO LONG TERM HISTORY 
LDY 	YY 	; GET POINTER TO ST ART OF NEW CURRENT. COLUMN 
LUX) 	*1 	9 SET D=1 

HLOOP 	LUX 	yU 	9 GET PAIR OF PATH POINTERS 
STD 	yU 	e PUT IN NEW PAIR OF PATH POINTERS 
STX 	PY.f.i. 	9 SAVE OLD  PAIR IN  HiSTORY 
LEAU 	6YU 	; ADVANCE BUFFER POINTER 
ADDD 	t$202 	; INCREMENT NEW PAIR OF PATH POINTERS 
CMPA 	t64 	; CHECK FOR DONE 
UNE 	HLOOP 	; REPEAT 
RIS 	; RETURN TO MAIN LINE 



SHIFT 

* - 

* 

* 
* 
:e 

LBSR 
LBSR 
BSR 

LSRA 
LSRA 
'LSRA 
LSRA 
LSRA 
LSRA 

L. S R 

L.SR 
I . 

**************************************************************** 

THE SHIFT ROUTINE COORDINATES ALL THE PARALLEL I/O 
.* 

 
ROUTINES e 
THE BRANCH DISTANCES ARE ALSO CALCULATED AS SÔON AS 
THE INTEGRATED EYE VALUES ARE READ IN, 

***************************************************************** 

; SELECT APPROPRIATE MASK BY COMMENTING (*) 
; ALL UN—NEEDED MASKS 

	

:*MASK 	EQU 
MASK 	EQU 
*MASK EQU 

:" —*MASK--- EQU 

	

; *MASK 	EQU 

	

' *MASK 	EQU 
*MASK—-  ECM 

%11 11111 

%0111111 
Z0011111 

Z0001111 
%0000111 
U000011 
%0000001 

; MASK FOR 7 BIT QUANTIZATION 
; MASK FOR 6 BIT QUANTIZATION 
; MASK FOR 5 BIT QUANTIZATION 
; MASK FOR 4 BIT QUANTIZATION 
; MASK FOR 3 BIT QUANTIZATION 

. 9 MASK FOR 2 BIT QUANTIZATION 
; MASK :FOR HARD DECODING 

; REMEMBER TO ADJUST THE ASTRISKS BELOW 
; TO AGREE  WITH  ABOVE SELECTED MASK 

PUTBIT  9  OUTPUT 'DATA 
STROBUP ;• ACTIVE STROBE TO INDICATE OUTPUT DATA VAL ID 
GETBIT ; GET DATA AND ROTATE INTO POSITION 

7 BIT SOFT DECODING IF LAST * IS HERE 
; 6 BIT SOFT DECODING IF LAST * IS HERE 

5 BIT SOFT DECODING IF LAST *'TS HERE 
; 4 BIT .SOFT DECODING IF LAST * IS HERE 
; 3 BIT SOFT DECODING IF LAST * IS HERE 
; 2 BIT SOFT DECODING IF LAST * IS HERE 

NO SOFT DECODING ,USED (HARD DECISION) 
IF NO ASTRI'CKS APPEAR OPPOSITE THE LSRA 

THE ASTRISK(S) FOR THE APOuE 	LIMES SMOUI.fl 
• FOLLOW THE SAME PATTEPN AS FOP THE  L. SPA  

STA 
STD 
EORA 
STA 

TEMPA 
TEMPD 
WIAK 
COM 

SAuF CYFO vnLuE FOR !ATER CALCULATIONS 
sAUE EYE1 VMUE FOR LATER CALCULATIONS 
CALCULATE PEi*:;ATFVE OF EYE1 uALUE 
SAUF TT FOP LATER CALCULATION 



• 
ADDA 	TEmpB 	;, CALCULATE THE BRANCH DISTANCE FOR THE1.:»EL.4.9 
STA. 	-- 11000 	 . 
STA 	T1001 
STA 	1 10 1 0 	• 
STA 	T1011 - 	

_ _ 

STA 	T0010+1 
sTA 	T0110+1 
sTA 	1 1010+ 1 	 • 	 . • 

sTA 	T1110+1 

	

FORB 	*MASK 	; CALCULATE NEGATIVE OF EYE0 VALUE 
COMB 	; SAVE IT FOR CALCULATIONS 

	

,ADDP 	TEMPA 	CALCULATE,THE BRAN CH DISTANCE FOR THE LABEL 01 › 

• 
- • -- S"rrf 	 ''''' 
STD 

 

11:101+1 

LDA -- IEMPA - 
ADDA 	›TEMPB 	; CALCULATE THE BRANCH DISTANCE FOR THE LABEL  90 ' 
sTA 	10000 - 
sTA 

 

10001 

 sTA T0010 
STA 

 
10011 	• 

sTA 	T0000+1' 	
. . 	. 	_ 

STA 	TO100+1 
STA 	T1000+1  
STA 	T1100+1 - 

•LDA 	COMA 	 " 

ADDA-- .come--  -F-CALCULATE-THE-BRANCW-DISTANCE-FORTFIEtABEL 

sTB 	T0100 
STD 

 
10101  

STD 	T0110 
STD 	T0111 
sTD 

 

10001+1 
STB 

 
10101+1 

7.77. 

STA 	T11.00 
STA. 	11101  

. 	STA 	• 1 1111. 
SLA_ 	- 10011+1 

. 	T1011+1 
STA 	T1111+1 

LBSR 	STROBDN ; LOWER STROBE WHILE DATA STILL VALID 
LBSR 	KEYCHK: 

*-- • 	DEO" 
RTN 

TEMPO US 



". 

" 	 . 

****************************************************************** 

• * 	: WAIT FOR ABC BOARD TOANDICATE THAT-  STABLE EYE DATA 

	

. IS AVAILABLE ON THE P .ARALLEL PORTS , 	ROUTINE USES 
.* -----THE-INTERNAL- (PIA) - EDGE- TRIGGERED- FUAG7TO- DETECT-----  - - 
* . IF DATA IS WAITING.. LESS RELIABLE LEVEL TRIGGERING 
* . 	COULD BE USED AS BIT 7 OF ABAT  IS CONNECTED:T.0 THE ABC  
* -- BOARD -READY SIGNAL . 	- 
* 
* NOTE: THERE ARE TWO GETBIT ROUTINES, ONE FOR REAL DATA 
* 	AND ONE FOR TESTING SOFTWARE, GETBIT (TEST). - 	- 
* ONE OF THE ROUTINES SHOULD-BE COMENTED OUT AT 

ALL TIMES. 
* - 
* ON ENTRY: NO PARAMETERS 
* ON EXIT:  ArD HOLD MAPPED VALUES OF THE EYE SIGNALS 

****************************************************************** 

; 

GETBIT LDA 	IFR 	; CHECK IF BOTH PORTS HAVE DATA COMING IN 
'CMPA 	•111,2 › 	- 
BNE 	GETBIT ; IF NOT THEN WAIT UNTIL DATA COMING IN 
STA 	IFR 	; CLEAR FLAGS 
LDB 	ADAT 	; READ ONE OF THE 'INTEGRATED EYE VALUES 
LDA 	BDAT 	; READ THE OTHER INTEGRATED EYE VALUE 
COMA 	• 	; COMPLEMENT TO MAKE - 00i1PATIBLE WITH SOFTWARE 
COMB 	

• 

ANDA. 	4$7F 	; GET RID OF BIT 7 SINCE IT IS UNDEFINED 
ANDB 	1:$7F . 	; GET RID OF BIT 7 SINCE IT IS UNDEFINED 

------LDX 	. *MAP 	1 GET- POINTER TO - START .  OF- MAPPING  AREA  
LDA 	ArX 	; RUN BOTH EYE VALUES THROUGH THE MAPPING 
LDB 	B,X 	; REGION OF MEMORY 

• RTS 	; RETURN 	_ 



* 
EXTRACTS AN OUTPUT BIT FROM THE 'SHIFT REGISTER (OUT) 
WHICHe SETUP-BY HISTe CONTAINS  THE  • MOST LIKELY OUTPUT 

* 	SEQUENCE. THIS DATA IS SENT TO THE OUTPUT PORT. 

******************************************************************* 

PUTBIT LDA 	4$18 	.; CONVERT TO ASCII SO THAT THE VALUE MAY 
LSR 	OUT 	; EASILY BE PRINTED ON THE TERMINAL IF NEEDED 
ROLA 

LBSR 	PUTC 	; OPTIONAL! OUTPUT BIT MAY BE PRINTED 

ANDA 	P$01 	; CONVERT BACK TO BINARY 
LDB 	OUTPORT ; GET PREVIOUS VALUE 
STA 	BITOUT • STORE CURRENT AND SET STATUS BITS 
BNE 	SETING ; CHECK IF OUTPUT IS 1 OR 0 
ANDB 	*$FE 	; ZERO IS.OUTPUT: 'CLEAR LOW BIT 
BRA 	PUTDONE 

SETING ORB 	P1 	; ONE IS OUTPUT! .:;Ei:T• LOW BIT 
PUTDONE STB 	OUTPORT ; SAVE PORT VALUE 

STB 	DOUT 	; ACTUALLY OUTPUT VALUE 
LBSR 	ERRCHK ; DO ERROR CHECKING 
RIS  

	

STROBUP LDA 	OUTPORT ; RAISE STROBE',  INDICATING  DATA OUTPUT  VALID 

	

ORA 	P$2 

	

STA 	BOUT 
• 

	

STA 	OUTPORT 
RTS 

	

STROM LDA 	OUTPORT ; LOWER STROBEe COMPLETING THE CLOCK, PULSE 
ANDA 	.*$FD 

	

STA 	DOUT 

	

.STA 	OUTPORT 
RTS 



***************************************************************** 

THE IS THE BLOCK ERROR CHECKING SECTIONy WITH ITS OWN 
PN SEOUENCE GENERATOR. 

ON ENTRY: USES VARIABLE: BITOUT TO SAMPLE OUTPUT 
ON EXIT: OUTPUT IS ON TERMINAL 

NO SPECIAL INFO RETURNED 

***************************************************************** 
ERRCHK LDA 	BITOUT ; ROTATE DECODED BIT INTO STORAGE IN CASE 

RORA 	PN SHIFT REGISTER NEEDS RELOADING LATER 
ROL 	STORI 
ROI.. 	STOR2 

LDD 	BCOUNT ; ADD ONE TO BLOCK BIT COUNT 
ADDD 	#1 
STD 	BCOUNT 

. NO 	LBSR 	NEXTPN ; PREDICT WHAT THIS BIT SHOULD BE 
FORA 	BITOUT ; COMPARE ACTUAL AND PREDICTED BITS 
BE0 	El 	; JUMP TO NORMAL SECTION IF THEY ARE THE SAME 
LDD 	ERRORS ; ADD ONE TO THE ERROR COUNT OTHERWISE 
ADDD 	:11: :1.  
STD 	ERRORS 

El 	LDD 	BCOUNT ; CHECK FOR END OF BLOCK 
CMPD 	#BLOCKLEN ; ,USING BLOCKLEN 
LBNE 	EINI 	; JUMP TO END OF ROUTINE IF NOT END OF BLOCK 

ERRORS ; DO END OF BLOCK REPORT 
BEU 	E2 	GOTO NO ERRORS SECTION IF NO ERRORS 
CMPD 	*ERRLIM 	CHECK IF RESYNCING NEEDED 
BCC 	E7 	GOTO RESYNCING SECTION 
LDD 	ERRS 	; ADD ONE TO BAD BLOCK COUNT 
ADDD 	el 
STD 	ERRS 
LDD 	ERRORS ; SET  THE NUMBER OF BIT ERRORS 
TER 

 
• ByA 	; ( IGNORE MSB AY .z0 SINCE BLOCKLEN..16) 

ADDA 	el() 	; PRINT OUT e OF ERRORS 
CMPA 	0'9 	; USE ALPHABIT IF DIGITS 0-9 INSUFFICIENT 
BLS 	F3 	; 0 • 9 IS SUFFICIENT 
ADDA 	*7 	; ADD OFFSET INTO A-Z SYMBOLS 
BRA 	F3 	; PRINT STUFF 

1E7 	LDA 	610R2 	oEr RID OF  DON ''T  CARE BITS 
• ANDA 	IIi. 	; 	SAVING ONLY THE LSB 

STA 	STOR2 
LDD 	STORI 	; USE STORAGE TO RESYNC 
BEU 	ES 	; DON ''T  FILL PN511 REGISTER WITH 0-STATE! 
STD 	PNI 

ES 	LDD 	RESYNC ; ADD ONE TO RE SYNC COUNT 
ADDD 	el. 	• 	. 

STD 	RESYNC 
IDA 	e's 	; LOAD CHARACTER INDICATING RESYNC • 

BRA 	E3 	; PRINT STUFF 



F2 	LDD 	ALLOK 	; THE BLOCK IS PERFECT: ADD ONE TO PERFECT COUNT 
ADDD 	*1 
STD 	ALLOK 

SFLAG 	;  SET  RE-SYNC FLAG 
BEG 	ES 	; JUST FINISHED INITIAL RE-SYNC? 
CL R 	SFLAG 	yEse INITIALIZE STATISTICS 
LDD 	eo 
STD 	RESYNC 
STD 	NOBLOCKS 
•STD . 	ERRS • 
• LDX 	*MEND 	; OUTPUT CR-LF TO ISOLATE iSt RE-SYNC 
LBSR 	TEXT 

ES 	LDA 	*/* 	; PRINT A 'DOT TO INDICATE PERFECT BLOCK 
E3 	LBSR 	PUTC 

CLR 	ERRORS ; CLEAR BLOCK COUNTERS . • -• 
CLR 	ERRORS+1•; ERR-OR COUNT 
CLR 	BCOUNT 
CLR 	BCO1JNT+1  9  BLOCK -BIT COUNTER 
LDD 	NOBLOCKS,; ADD ONE TO NUMBER OF BLOCKS PROCESSED 
ADDD 	41 	' 
STD 	NOBLOCKS 
CMPD 	4BLIMIT 
nEo 	E6 	9  IF DONE ALL BLOCKS!,  STOP AND REPORT 

ANDB 	I:zoo -111111 ; HAVE PROCESSED MOD 64 BLOCKS?. 
BNE 	E4 	9  NOPE 
LDX 	MEND 	; YEP, OUTPUT A CRLF 
LBSR 	TEXT 

E4 	• LBSR 	NEYCHK ; CHECK FOR KEYBOARD COMMAND 
BEG 	FINI 	•; JUMP TO RETURN IF NO KEY PUSHED 

E6 	. 	LBSR 	REP • 	; DO REPORT. 	. 
RTN 	; STOP AND RETURN TO MONITOR 	' 

FINI 	RTS 	9  RETURN 



***************************************************************** 

THIS [S A PN SEQUENCE GENERATOR USED BY THE BLOCK ERROR 
CHECKING ROUTINES. SETUP FOR PN SEQUENCE 511 

* 
ON ENTRY: NO ENRTY PARAMETERS 
ON EXIT: REG. A HOLDS A SINGLE BIT EXPECTED OUTPUT 

***************************************************************** 
NEXTPN CLRA 	; CLEAR BIT PARITY COUNT 

LDB 	PN1 	;  I. 	B WI TH SHIFT REGISTER 
BITB 	1$10 	; CHECK TAP AT BIT 5 
BEG 	N1 
INCA 	; ADD ONE IF BIT SET 

N1 	LDB 	PN2 	; LOAD B WITH REST OF SHIFT REGISTER 
BITB 	e$1 	; CHECK TAP AT BIT 9 OF SHIFT REGISTER 
BEG) 	N2 
INCA • 	; ADD ONE IF BIT SET 

N2 	ANDA 	:11: 1 	ISOLATE LOWEST BIT OF TOTAL 
STA 	CHECK 	9 .  SAVE RESULT FOR LATER 
RORA 	; ROTATE RESULT INTO THE CARRY 
ROL 	PN1 	; ROTATE CARRY INTO PN SHIFT REGISTER 
ROL 	PN2 

N3 	. LDA 	CHECK • ; RELOAD RESULT INTO A REGISTER 

RTS 



****************************************************************** 

ON ENrRY: NO PARAMETERS EXCEP1 ERROR COUN1S IN MEMORY 
ON EXE1: 	AYPYX LOST 

******************************************************************* 

NEP 	1DX 	UTB 	; PRINT NUMBER OF BLOCKS MESSAGE 
LBSR 	1EXI 
I BP 	NOW OCK 	ruNr NUMBER OF BLOCKS READ 1N DECIMAL 
tbSk 	PNUM 
I FIX 	UOK 	; PRINT NUMBER OF CORRECT BLOCKS MESSAGE 
LBSR 	rrxr 
LDP 	ALLON 	; PRINT NUMBER OF BLOCKS THAr WERE CORRECT 
LBSP 	PNUM 
IDX 	; PRINT BAB BLOCKS MESSAGE (ERRORS..ERRLIM) 
LBSR 	1EXT 
LDP 	ERRS 	e PRENT NUMBER OF BLOCKS wrrH A FEW ERRORS 
LBSR 	PNUM 
LOX 	nRs 	PREN1 NUMBER OF RESYNCS MESSAGE 
LBSR 	IFxr 
I DU 	RE-SYNC 	PRENr NUMBER OF BLOCKS CAUSING RESYNCINO 
LBSR 	PNUM 
10X 	gMEND 	; ADVANCE Tn NEX1 DISPLAY LANE 

TEXT 

; TEXT USED IN THE REPORT FUNCTION 

TB 	FCB. 	1310Y13,10 

	

FCC 	"TOTAL BLOCKS READ " 

	

FCB 	0 
- OK 	13Y10 

	

FCC 	"NUMBER,OF ERROR FREE BLOCKS  

	

FCB 	0 
NB 	FCB 	13./10 

	

FCC 	"NUMBER THAT HAD BAD BITS " 
O  FCB 

RS 	FCB 	1•./10 

	

FCC 	"NUMBER THAT CAUSED RE SYNC " 
o  • 	' FCB 

MEND 	FCB 	13./10Y0 

THE REPORT FUNCTION PRINTS THE BLOCK•ERROR VARIABLES ON 
THE SCREEN WI TH TEXT EXPLAINATIONS AND DECIMAL OUTPUT 



******************************************************************* 

THES  SECTION  CONTAINS THE I/O  ROUTINES USED TO COMMUNICATE 
WITH 1HE THE rERMENAL. 

ROUTINES  JNCLUDF: 

KEYCHK - FETCH CHAR. FROM KEYBOARD OR NULL IF NONE 
RETURN VALUE IN REG A 

OEFC 	- WALT FOR KEYBOARD CHAR. RETURN VLAUE IN REG A 
(C(JRRENILY UNUSED BUT IS AVAILABLE) 

PU1C 	PRENT CHAR IS REG A ON TERMINAL. REG B LOST 

TEX T 	- PRINT NULL TERMATED  STRING  POINTED TO BY 
REG  X. VALUE OF REG Avb LOST 

PMUM 	- PRIN1 THE VALUE OF REG D AS AN UNSIGNED rNTEGER. 
• 	ZERO BLANKING IS DONE. VALUE OF REG AyByX LOST. 

************************************************************ )K****** 

TERMINAL DRIVER ROUTINES 

STATUS EOU 	SCFDD 	; TERMINAL STATUS REGISTER 
DATA 	ECU 	SCEDC 	; TERMINAL DATA REGISTER 

KEYCHK LDA 	STATUS ; CHECK STATUS FOR KEY PUSH 
AMDA 	4$08 
BEP 	CDONE 	; IF NO KEY PUSHED THEN JUST RETURN 
LDA 	DATA 	; ELSE GET THE KEY'S VALUE AND RETURN 

CDONE 	RTS 

GETC 	BSR 	KEYCHK ; KEEP CHECKING THE KEYBOARD TILL 
BEC] 	GETC 	; A KEY IS PUSHED. 
RTS 

PUTC LDB 	STATUS ; CHECK STATUS TO SEE IF TERMINAL READY 
ANDB 	f$10 

PUTC 	; WAIT UNI IL  SPACE AVAILABLE TO OUTPUT CHAR 
STA 	DATA 	; OUTPUT CHARACTER AND RETURN 
RTS 

TEXT 	LDA 	rX-1. 	; GET CHARACTER.  AT POINTER 
BEC] 	TDONE 	; CHECK TO SEE IF ITS THE LAST CHAR. (NULL) 
BSR 	PUiC 	; PRINT THE CHARACTER AND LOOP IF NOT NULL , 
BRA 	TEXT 

TDONE 	RTS 	; NULL ENCOUNTERED SO RETURN 



PNUM 	LDX 	eiffl000 ; GET START OF POWERS LIST 
CLR 	ZBLANK ; SET FOR ZERO BLANKING 

NLOOP 	CLR 	DCOUNT '; CLEAR DIGIT COUNT 
ILOOP 	SUBD 	yX - 	SUBTRACT THE CURRENT POWER 

INC 	DCOUNT ; DCOUNT SHOWS HOW MANY TIMES CURRENT POWER FITS 
BCC 	ILOOP 	9  REPEAT IF THE POWER  FIT . • 
DEC 	DCOUNT  9  ACTUALLY FIT ONE LESS THAN DCOUNT 
At [ID 	9X 	; ADD POWER CAUSE WENT TOO FAR 

• STD 	TEMP 	; SAVE It AWAY WHILE THE DIGIT IS PRINTED 
LDA 	DCOUNT • 9  PREPARE DIGIT 
BNE 	PDIGIT ;- IF DIGIT IS NOT ZERO:. PRINT REGARDLESS 
TST 	ZBLANK ; ELSE TEST IF'  ZEROS ARE BEING BLANKED • 
BE0 	SKIPDGT  9 BLANK IT 

POIOU ADDA 	4'0 	; CONVERT DIGIT TO ASCII 
BSR 	PUTC 	; PRINT IT ON THE TERMINAL 
INC 	ZBLANK ; NOW THAT A DIGIT'HAS BEEN PRINTED DISABLE BLANKING' 

SKIPDGT LEAX 	2yX 	; MOVE TO NEXT POWER ON THE LIST 
LDD 	TEMP 	; GET REMAINDER OF TRHE NUMBER 
CMPX 	0K1 	_.; REPEAT IF NI)! AT END OF POWER LIST 
BNE 	NLOOP 

. 	LDA 	TEMP1.1 ; THE REMAINDER IS NOW THE LAST DIGIT - 
ADDA 	.U0 	; CONVERT TO ASCII 
BSR 	PUTC 	; -PRINT  Ii' AND RETURN 
RIS  

CONSTANTS USED IN THE ROUTINE PNUM 

K10000 FDB 	10000' 
K1000 	FDB- 	1000 
K100 	FDB 	100 
K10 	etIÈ: 	10 	• 
K1 	FDB 	1 

***************************************************************** 

I/O  ROUTINES THAT USE THE I/O PORT TO GET INPUT EYE 
VALUES AND OUTPUT DECODED DATA TO DATA .ERROR ANALYZER. 

***************************************************************** 

BOAT 	COI.! 	$CFE0 	; PORT B DATA REGISTER 
ABAT 	EGO 	$CFE1 	; PORT A DATA REGISTER 
DDRB 	EGO • *CFE2 	9 PORT B DATA DIRECTION REGISTER - 
DDRA 	EGO 	$CFE3 	; PORTT-A DATA DIRECTION REGISTER' 
ACR 	EAU 	$CFEB 	; BOTH PORTS AUXILLARY CONTROL REGISTER 
PCR 	EGO 	$CFEC 	; BOTH PORTS PERIPHERAL CONTROL REGISTER 
IFR 	EOU 	$CFED 	9  BOTH-PORTS INTERRUPT FLAG 'REGISTER 
IER 	EGO 	$CFEE 	; BOTH PORTS INTERRUPT CONTROL REGISTER 

DOUT 	EQU 
OUTDDR EOU 

$CFF1 	; OUTPUT REGISTER FOR DECODED DATA AND CLOCK 
$CFF3 , 9  DATA DIRECTION REGISTER FOR ABOVE 	' 
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ORG 	$0000 

SOTI 	EDP 	MOB2..›.TOOltyT1100 

	

FDE 	M1P2vT1001.., T0110 

	

FDE 	•M2E2v 1110ÔvT001.1 

	

EDP 	M3D2vT0110 , 1 1001 

	

EDP 	M4B2?T1100 , 10011 	• 

	

FDB 	M5B29T0110yT1001 

	

FDB 	M6B2YTOOlirT1100 

	

EDP 	M7B2rT1001yT0110 
• FDB 	MSB2YT0011rT1100 

	

EDE 	M9B2p 11001,T0110 
• EDP 	Mi0B2s.T1100iT0011.. 

'EDE' 	M11B2jT0-1:107Tt001 .  

	

FEB 	M12B2YT1100Y1. 0011 

	

FDB 	M13B2pT0110 ,., T1001 

	

EDE 	M14B2yT00111, T1100 

	

EDP 	Ml5P2pT1001e1'0110 

	

EDP 	M16B25.T0110vT1001 

	

up, 	M17E2T1100eT0011 

	

- FDP. 	M10B21.T1001eT0110 

	

FDP 	M19B2yT0011FT1100 

	

Up 	M2002YT1001eT0110 
M21B2vT0011T1100 

	

Fre 	M22B2.., T0110!, 11001 _ 

	

FDE 	M2302vT1100vT0011 

	

FOB 	M24B2y 10110eT1001 
• EDP 	M25E2eT1100yT0011 

	

--" -- EDP 	M 2AB2yT10019T0110 

	

EDB 	M2702”T 00119T1100 
M2802./ 11001yT0110 

M30B2rT0110yT1001 

	

FIJB 	. M31B2,T1100rT0011 	_ 



a 

B 	10BlyT001  1 y T11.00 

Ft' B 	M1 B1.5.T1001, TO11.0 

D I 	M2B1  '11 100:1'0011 

F 	M3B:l. T0110 y 11. 001 

FrIB 	M4B1 T11.00 r T0011 

FD B 	M B1 e 	 MO 0 1 
I,: DB 	M6B1 y T0011 T1100 

D B 	M7B 1. y 1 1001 x 1 0110 

F B 	MOB:I 9 TO011  Ti 100  
F.  DB 	M9B1 711.001. y T0110 

FDB 	M:10B1 ,T11.00r TO01.1 

M1 1B1 y T011.0y T1001 

E 1:1B 	M12B1 y T1100 rT00.1.1 

FDB 	M13B1 T0110 r T1001 

FDB 	— 1114Br r«):[1. T1100 

FDB 	M15B1 y T1001 rT0110 

FDB 	M16B1yTO11O,T1001 

FDri 	M17B1 rT1109 yT0011 
FEIB 	M18B1 y1"1001 T0110 

FrIB • 	M19B1 r T0011 ?MOO 
FDB 	M20B1 r T1001 r 10110 

FEIB 	M21B1 T0011 y T1100 

FDB 	M22B1 TO1107T1001 

FDB 	M23B1 Ti.100 TO011 

FDB 	M24B1rT0110 r T1001 

FEIB 	M25B1 yillIDOrT0011 

FOB 	M26B1 T1001 r T0110 
FDB 	M27:81,1- 0011 r T1100 

FOB' 	M2PB1 r T1001 r TO110 

FOB 	M29B1 TO011 T1100 
FOB 	M30B1 :T0110 r T1001 

FOB. 	ii31B1 ? T1100 eT0011 

FOB 	00,0 



******************************************************************** * • 
THIS IS THE STATE INFORMATION TABLE. IT CONTAINS A TWO 
BYTE METRIC AND A ONE BYTE POINTER FOR EACH OF THE 64 STATES. * 

******************************************************************** 
ORG 	$0E00 

MOB1 	FDB 	0 
M1B1 	FDB 	0 
POB1 	FCB 	0 
P1B1 	FCB 	1 
M2B1 	FDB 	0 
M3B1 	FDB 	0 
P2B1 	FCB 	9 
P3B1 	FCB 	3 

0 
M5B1 	FDB 	0 
P4B1 	FCB 	4 
P5B1 	"FCB 	5 
M6B1 	FDB 	0 
M7B1 	FDB 	0 
P6B1 	FCB 	6 
P7B1 	FCB 	7 
M8B1 	FDB 	0 
M9B1 	FDB 	0 
P8B1 	FCB 	8 
P9B1 	FCB 	9 
M10B1 -  FDB - 	0 
M11B1 	FDB 	0 
P1OB1 	FCB 	10 
PilBi 	FCB 	11 
M12B1 	FDB 	0 
M13B1 	FDB 	0 
P12B1 	FCB 	12 
P13B1 	FCB 	. 13 
M14B1 	FDB 	0 
M15B1 	FDB 
P14B1 	FCB 	14 
P15B1 	FCB 	15 
M16B1 	FDB 	0 
M17B1 	FDB 	0 
P16B1 › FCB 	16 
P17B1 	FCB 	17 
M18B1 	FDB 	0 
M19B1 	FDB 	0 
P18B1 	FCB 	18 
P19B1 	FCB 	19 
M20B1 	FDB 	0 
M21B1 	FDB 	0 
P20B1 	FCB 	20 
P21B1 	FCB 	21 
M22B1 	FDB 	0 
M23B1 	FDB 	0 
P22B1 	FCB 
P23B1 	FCB 	23 



M24 Bi 	FDB 	0 
M25B 1 	F I) B 	0 

P24 13 1 	17  CB 	24 

P25 131 	FCB 	
..).- 
......., 

M26 13 1 	FDB 	0.  

M27B1 	F D B ' 	0 
:26131 	F.:TB 	26 

P27 13 1 	FCB 	27 

M2 8 B 1 	FOB 	0 

M 29 Bl. 	F D B • 	0 
P 28 B1 	F C B 	28 

P29B1. 	F CB 	29 

M30 13  :1 	F DB 	0 

M 31 13 1 	F D B 	0 

P30 13 1 	F CB 	30 

P 31131 	F CB 	31 
M 32 B 1 	F I) B 	0 

M33B1 	F DB 	0 

1::. 32 B1 	FCB 	32 

P 33 B 1 	FCB 	. 33 

M34 13 1 	rulti 	•O 

M3513:l. 	FDB 	' 	0 

P 34 B 1 	F CB 	34 

P35131  • 	F CB 	35 

M36B1 • F DB . 	0 
M37 13 1 	F1313 	0 

P 36 B1 	FCB 	36 

P 37 Bl. 	F C. B 	37 
M38B1 	F1313 	0 
M  3913  1 	F I) B 	0 

P 38 Bl. 	FCB 	38 
P39 131 	F CB 	39 

M40B1 	FDB 	0 

M41B1 	FDB 	0 
P40 13 1 	F CB 	40 

P41 13 1 	F CB 	41 

M42 13 1 	FDB 	0 

M43 13 1. 	F DB 	0 

P42 13 1 	F CB 	. 42 

P43 13 1 	F CB 	43 

M44B1 	Fie 	0 . 

M45B1 	F DB 	0 

F'44 B :I. 	F.  C B 	44 
P 45 B1 	FCB 	45 

M 46 Bl. 	FDB 	0 

M47B1 	F DB 	0 
'46131 	FCI.: 	46 

P 47 B 1 	F CB 	47 

M48 13 1 	FDB 	0 

M•9B1 	F DB 	0 

P 48 Bl. 	FCB 	48 

P 49 B1 	F CB 	49 

M50 13 1 	F1313 	0 

M 51 B J. 	F I) B 	0 



	

P5081 	FCB 	50 

	

P5181 	FCB 	51 

	

M5281 	F88 	0 

	

M1*-5381 	F118 	0 

	

1:: . 5281 	FCB 	52 

	

1::5381 	F CB 	53 

	

M548:I 	F1)8 	0 

	

M5581 	B 	0 

	

P3481 	FCB 	54 

	

:.35 B :1. 	F C 	55 

	

115681. 	F88 	0 

	

M5781. 	EBB 	0 

	

é.)8 1. 	F.  C 8 	56 

	

P5781 	FF8 	5 •  

	

M5881 	3:: I:18 	0 

	

M5981 	F118 	0 

	

P3881. 	CB 

	

P39811 	::'ç' 	59  

	

M6081 	1'7  D8 	0 

	

1161.81. 	F88 	0 

	

1:'6081 	FC, 8 	60 

	

P6181 	F.  C8 	61 

	

11 6281 	F88 	0 

	

M6381 	F88 	0 

	

P6281 	FC8 	62 

	

P63 8 1 	F CB 	63 .  

11 082 	F D8 	0 

11 1.82 	F88 	0 

	

C 8 	0 

Pl. B 2 	F C8 	. 	0 

11282 	F88 	0 

11382 	F88 	0 

	

 

FCB 	0 

P382 	r-- CB 
11482 	F88 	0 

11582. 	D8 	0 

P482 	F CB 	0 

P582 	F CB 	0 

11682 	EBB 	0 

11782 	F813 	0 

P682 	FF8 	0 

P782 	F.- CB 	0 

11882 	 0 

1 982 	" Fri B 	0 

P882 	FF8 	0 

P982 	FF8 	0 

	

D8 	0 

:182 	FE18 	0 

P :1. 0 B2 	FF8 	0 

P1.1.82 	1;7  CB 	0 

111282 	rrni 
M1.382 	D 8 	0 

P:1.282 	1.7  CB 	0 

P:1.382 	F CB 	0 



	

M1 4B2 	. EBB 	0 

	

M 1 5 B 2 	F D B 	0 

	

Pl. 4B2 	FCB 	0 

	

' P15B2 	FCB 	0 

	

M16B2 	FDB 	0 

	

M17B2 	FDB 	0 

	

P 1 6192 	FCB 	0 

	

P 1 7 B 2 	F C B 	0 

	

M:18B2 	FDB 	0 

	

M 1. 9 B 2 	' F D B 	0 

	

P 1 8 B 2 	F C B 	0 

	

pl. 9 B2 	FCB 	0 

	

M 2 0 B 2 	F ri B 	- 0 

	

M2  1  B2 	I"' D B 	0 

	

P2 0 B2 	FCB 	0 

	

P21 B2 	FCB 	0 

	

M '2 2 B 2 	F D B 	0 

	

M23F.(2 	F DB 	0 

	

P 2 2 B '.2 	F C B - 	0 

	

P23B2 	FCB 	0 

	

11 24B2 	FDB 	0 

	

• M25B2 	. F DB 	0 

	

P24B2 	FCB 	0 

	

P25B2 	FCB 	0 

	

M26B2 	FDB 	0 

	

M27B2 	FDB 	0 

	

P26B2 	FCB 	0 

	

P27B2 	FCB 	' 0 

	

M28B2 	' FDB 	0 

	

M 2 9 F.i 2 	F D B 	0 

	

P28B2 	F CB 	0 

	

P29 B2 	FCB 	0 

	

M30B2 	prIB 	p 

	

M 3 1 B 2 	F D B 	0 

	

P30B2 	FCB. 	0 

	

P31B2 	. FCB 	0 

	

M32B2 	priri 	0 

	

M33B2 	FDB 	0 

	

P32B2 	FCB 	0 

	

P33B2 	FCB 	0 
M 3 4 B.2. 	F I:1B 	0 
'M35B2 	FDB ' 	0 
P34B2 	FCB 	0 
P 35B2 	FCB 	0 
M36B2 	FDB 	0 
M37B2 	FDB 	0 
P36B2 	I:: CB 	0 

	

P 3 7 B 2 , F C B 	0 
M 38 B 2. 	I"' D It‘ - 	0 
M 3 9 TI 2 	F D B 	0 

	

FCB 	0 
P 3 9 B 2 	F C B 	O 
M40B2 	F DB 	0 
NI41B2 	FDB 	0 
P 4 0E12 	F CB 	' 0 
P4 1 B2 	F CB 	0 



	

M42B2 	FDB 	0 

	

M 4 7.5 r2 	FEIB 	0 

	

P 42B2 	FCB 	0 

	

P43B2 	FCB 	() 

	

1144B2 	FEIB 	0 

	

M45B2 	FDB 	0 

	

P 44 B2 	FCB 	0 

	

P 4 5B2 	F CB 	0 

	

11 46B2 	FrIB 	0 

	

M 4 7 B 2 	F 1:1 B 	0 

	

P4 6 B2 	F(.- B 	0 

	

P4 7B2. 	FCB 	0 

	

4 8 B 2 	FtIJ3 	0 

	

M 4 9 B 2 	FEIB 	0 

	

P 48B2 	FCB 	0 

	

P 49B2 	FCB 	0 

	

M 5 0 B 2 	Fr DB 	0 

	

M 5 1 B 2 	D B 	() 

	

P50B2 	FCB 	0 

	

5j7 	FCB 	0 

	

M52 B 2 	FDB 	0 

	

M53B2 	Frifi 	0 

	

P 5 2 B 2 	FCB 	0 

	

P53B2 	FCB 	0 

	

5 4 B 2 	F D B 	0 

	

M55B2 	FDB 	0 

	

154B2 	FCB 	0 

	

F5B2 	FCB 	0 

	

M56B2 	FDB 	0 

	

5 7 B 2 	F D B 

	

P56B2 	FCB 	0 

	

P57B2 	FCB 	0 

	

M58B2 	FDB 	0 

	

1 59B2 	FDB 	0 

	

P58B2 	FCB 	0 

	

K.59B2 	Ecr 	0 

	

M60B2 	FDB 	0 

	

M61. B2 	FEIB 	0 

	

P60B2 	FCB 	0 

	

P61B2 	FCB 	0 

	

M62B2 	FEIB 	0 

	

M63B2 	FEIB 	0 

	

P62B2 	FCB 	0 

	

P63B2 	FCB 	0 



******************************************************************** •* 

CURRENT PROFILE IS A ONE TO ONE MAPPING ( >(=>X ) 

******************************************************************* 

MAP 	FOB 	0P1,2r3r4y5r6,7 
FOB 	13r9,10r11,12,13y14).15 	• 
FOB 	16,17v18p1.9e20,21,22,23. 
FOB 	24$.251, 26y27r28/29y30,31 
FOB 	32Y33r34p35r36,37r3E439 
FOB 	40,41,42,43,44,454607 -  
FOB 	48,49Y50,51r32p53,54e55 
FOB 	56p57,59,59,60.1, 61e6263 
FOB 	64,65766r62Y68,69$.70p71 	. 
FOB 	72,735, 74,75y76y7r78e79 . 
FOB 	80rels.82p83y84,85 .Y86e87 
FOB 	. 88y89r90,91r92m9394 .e95 
FOB 	96r971.98y99r1007101y1023, 103 
FOB 	104v105p106?107r1081.109110r111 
FOB 	112y113,114,115r116P117Y1185.119 
FOB 	120p121r122r123y124p125r126r127 

AUFP'MATE MAPy MU—LAW: MU = 100 

	

>MAP FOP 	0!, 0v0y11.15.191y2 
FOB 2y2y2Y3Y3y3y3r-4 

• 

	

FOB 	4y45y5!..51.6r6 
FOB 6y7y7y8y9y85.9r9 

, FOB, 10p1040!..11e1ly121, 12713 

	

FOB 	13y14y1SPI.Srl6y17P17Y18 

	

FOB 	191.20 ,)21!.22,23y24y25727 
FOB285.307321, 35738›, 42v47P56 

	

FOB 	—71-re0Ï8589y92p95v97v99 	-- 
FOB 100y102r1037104..10:55, 106Y107y108 

	

- FOB 	109p110sIlOy111 , 112v1121.113,114 

	

FOB 	114115e115116y116y117,1:175;117 

	

FOB 	11B!, 118e119,119v119r120p120121 
FOB 1211.121e122Y122r122.122r123g123 

• r1.-24-rf24 1-24—n2. y 125 ri25t25 •- 

. 	 " 

>!e 
• 

128 BYTE AREA USED TO MAP THE EYE VALUES RECIEVED - FROM 
THE ADC BOARD. 



*MAP FCB 
FCB 

17UB -
FCB 

FCB 

FCB 

FCB 
FCB 

FCB . 

 FCB 
FCB 

FU.? . 

FCB 
FCB -

FCB 

• 

*'ALTERMATE MAPv INVERSE MU—LAW: MU 100 

014,9913 5, 16 y20,23,26 

28 y 31 Y 33 y 35  , :37 y 39  y  41 r 43 

44 y '45747 r 4S-y-49 -r 50 Y 51 Y 52 

53 Y 5 4 Y 54 v 55 Y 56 Y 56 y 57 
y 59 y 59 Y 59  y 0 Y n•!:. 0 9 n 

6 1.r61  e 61  r61 . Y 62 y 62. 62 Y 62 

62 Y 62 62 r 63 y 63 y 63 y 63 y 63 

63 y 63 	y 63 e  431  63  r63 Y 63 

64 7 64 y 64 r 64 y 64' 	- 6 4. y 64 

64 y 6,4 64 s.  44 r 44 65 y 6!'3 y 65 
65  u 65  r 65 r  65 r 66 r 66  y 66 r 66 
4 7v 67r  6 796F3!7687e.re!..  49,69 

 70 Y 70 y 71. 71. Y 72 y 73 73 74 

75-  y 7 78  y 79  Y 8 0 r 82 y 83 

84 y . 96 :,-88 y 90 y 92r 94 - 996 Y 99 

101.  r 104 y 107 r 111-1114 r1-18/ 123 r 127 



******************************************************************** 

THIS IS THE LIST OF ADDRESSES USED TO REFERNCE THE VARIOUS 
COLUMNS OF HISTORY DURING HISTORY UPDATING. CURCOL REFERS 
TO THIS TABLE TO FI ND THE LOCATION OF THE CURRENTLY ACTIVE 
COLUMN OF HTSTORY. 

******************************************************************** 

	

FD5 	H1 

	

FDD 	H2 

	

. FD5 	H3 

	

FD5 	H4 

	

F5B 	H5 

	

FDB 	416 

	

FDB 	H7 

	

COLBEG F 55 	HO 

	

F5B 	Hi 

	

F55 	H2 

	

FDB 	H3 

	

F5B 	H4 

	

FD5 	H5 

	

F5B 	H6 

	

F55 	H7 

	

COLLIM FDB 	HO 

	

F55 	Hl. 

	

F55 	H2 
H3 

	

F55 	H4 

	

F55 	H5 

	

FD5 	H6 

	

F55 	H7 

******************************************************************** 

THIS IS THE AREA RESERVED FOR THE STORAGE 13F. LONG TERM 
HISTORY÷ THERE ARE CURRENTLY 8 COLUMNS WHICH EACWHOLD 

* 	, 	6 BITS (CONSTRAINT LENGTH) OF HISTORY. 

******************************************************************** 
ORG 	$1000 

	

HO 	› RM5 	64 

	

• H1 	RMS 	64 

	

42 	RM5 	64 

	

H3 	RM5 	64 

	

H4 	RM5 	64 

	

HS 	• RM5 	64 

	

116 	RM5 	64- 

	

H7 	RM5 	64 



******************************************************************** 

* 	THIS IS THE DIRECT PAGE AREA. THIS IS WHERE ALL VARIABLES 
ARE STORED SINCE ACCESS IS SLIGHTLY FASTER. 

* 	. 
******************************************************************** 

ORG 	$100 

SPSAVE EDP 	0 	9 tocm: ACS TEMP. STORAGE FOR SYSTEM SP 
TEMP 	FDD 	0 	9 LOCAL: PNUM TEMP. NUMBER STORAGE 
COUNT 	FOB 	0 	9 LOCAL: SEARCH LOOP COUNTER 
3C1JUNT FCB 	0 	9 LOCAL: SCALE LOOP COUNTER 

BEsrm 	FDD 	0 	9 COMMON: SEARCH & SCALE BEST METRIC VALUE 
REETV 	FCD 	0 	9 COMMON: SEARCH & HIST POINTER TO BEST PATH 
rEmpn 	1CP 	0 	9 LOCAL: SHIFT STORAGE FOR EYEO 
TEMPB 	FCB 	0 	9 loom: swirl* siopnoE FOR EYE1 
immn 	FOB 	0 	9 LOCAL: SHIFT STORAGE FOR NEG. EYE() 
COMB 	FCB 	0 	9 LOCAL: SHIFT STORAGE FOR NEG , EYE1 

FDB 	0 	9 COMMON TO SHIFT AND ACS 
10001 	FDB 	0 	9 THESE 16 LOCATIONS HOLD THE PRE-CALCULATED 
T0010 	FDB 	0 	9 BRANCH DISTANCES 
10011 	FDB 	0 
T 0 100 	FDB 	0 
10 101 	FDB 	0 

- T0110 	FDB 	0 
TO111 	FDB 	0 
1' 1000 	FDB 	0 
T1001 	FDB 	0 
T1010 	FDB 	0 
T1011 	FDB 	0 
T1100 	FDB 	0 • 
T1101 	FDB 	0 
T1110 	EBB • 	0 
T1111 	FDB 	0 

• 
CURCOL FDB 	COLBEG 9 LOCAL: HIST POINTER TO POSITION IN RING BUFFER 

ERRORS EBB 	0 	9 LOCAL: ERRCHN BLOCK ERROR COUNTER 
BCOUNT FDB 	0 	9 LOCAL: ERRCHN BLOCK BIT COUNTER 
sroPi 	FCB 	0 	9 LOCAL: ERRCHN 2 BYTES MOST RECENT 'errs 
srop2 	FCB 	0 	9 	(SHIFT REGISTER) 
PM! 	FCB 	0 	9 LOCAL: NEXTPN  1 /2 OF PN SHIFT REGJSTER 
PW 	FCB 	0 	9 LOCAL: NEX1PN OTHER 1/2 OF PN SHIFT REGISTER 
CHECK 	FCB 	0 	9 LOCAL: NEX1PN PN ourpul  BIT  TEMP. S1ORAGE 
BITOUI FOP 	0 	9 COMMON: PLUDIT & ERRCHN RECENT DECODED OUTPUT DIT 

SFLAG 	FCB 	0 	9 LOCAL: .  ERRCHK FLAGS 1 91  RESYNC END 

RESYNC FDB 	0 	'9 LOCAL: ERRCHK RESYNC COUNT 
NOBLOCK FDB 	0 	9 LOCAL: ERRCHK TOTAL BLOCK COUNT 
ERRS 	FDB 	0 	9 LOCAL: ERRCHK BAD BLOCK COUNT 
ALLOK 	FDB 	0 	9 LOCAL: ERRCHK NUMBER OF GOOD BLOCKS 
DCOUNT FCB 	0 	9 LOCAL: PNUM DIGIT COUNT 
ZBLANK FOB 	0 	9 LOCAL:. PNUM ZERO BLANKING FLAG 
OUT 	FCB 	0 	9 COMMON: HIST & PUTBIT 6 BIT OUTPUT SR FOUND BY HIST 
OUTPORT FOB 	0 	9 COMMON: PUTOUTy STROBUP & STROBDN IMAGE OF OUT PORTI 

END START 



I  
K-L 

=Q 
+ 	2.k ? 	Pr( s i  

i=Q 	• 

APPENDIX. C _ 

Let K. he  the jerle,ege 1exigth:and L the .niimher qf .  eub„Packèts 
thÀt - can 15.6 -acèbiliodatêd. in. a fralle:: 'le.  made 'A '6ach:fraitê, 
tranemiseon' reducee the. Uracklog, B.Ï.0 :to L .âuhpàckets. In 
mode S èach-frême tranâMisseon'reducès thè backlog by no 
more than  thé  il'umbèr of subPackàts Outstanding just prior 
to the 'frame tranbmission 	- 

Mode A Analysis: 

Let MF(K) be the number of mode A • transmission required for 
a message of length K. If K=QL+R, then at least Q mode A 
transmissions will be required. Let s i  be the number of 
successful subpackets transmitted aftei.  i frame transmissions. 
Then s i  is the sum of i independent Binomial random variables 
ând is -thus itself Binomial with parameters iL and e, since 
the number of successful transmissions per frame is Binomial 
with parameters L and e. - Mode A transmissions will cease after 
s i  first exceeds K-L since the backlog will then be less than L. 
Tnus: 

Pr( MF(K)>1) 	= 	Pr(' s., 	K 	L ) 

K-L 
= 	IT; Pr( s i  = j ) 

j=0 

K-L 

(
L
)  CL-j - (le) j 

j=0 

The expected value of MF(K) is given by 

oA 

	

E(M(K)) = 	:5--î Pr( MF(K) 1.7e. k) 
k=1 

	

= 	Q + 	Pr( MF(K)?... i) 
i=Q+1 

The expression inside the  'brackets  can be evaluated exactly 
for Q=1,2. For larger values of i the Gaussian approximation 
for a Binomial random variable '  'can  be used: 



K-L 
 

";:d,  
j=0.. . 	. -72-711- e 

 

—Qe 

The terms in thé infinite.  SerieS .vanishvery. quIckiy so Only 
à feW -terms are 'required to:evàluate 

Mode B Analysis 

Let r be the number of outstanding packets just prior to the 
first mode B transmission, 0 	L-l.  Each of these subpackets 
will have one chance per frame 'transmission as long as they 
have not been received correctly at the receiver. Thus the 
number of transmissions required by each of these subpackets 
is geometrically distributed with probability of success I-e. 
Mode B transmissions will continue as long as there are 
outstanding packets. Thus the total number of mode B trans-
missions is given by: 

MP(r) = max( N1 , N2 , 	,Nr) 

where Ni are geometrically distributed random variables with 
parametér 1-e. Since the subpacket errors are assumed to be 
independent: 

P( MP(r) 	j ) = Pr( Ni tEj, N2  ±:j, 	Nr 14..j 

7r Pr( Nk  i  ) 
-fte.8 

= 	( 1 - ej ) r  

The mean number.of mode B transmissions is then given by 

E( MP(r) ) 	=. 	Pr( MP(r) k ) 
k=1 

: = 1 + 	(r)(-1) k+1 k1 k 
ek-1 

1-ek-1  

The probability distribution that the residual is r as a func-
tion of K is found as follows. For i 	Q, and 0 -4 r < L, 



Pr (r) = 
Pr( s i  = Kr ) 

Pr( K-L 	K ) 

«se 

L=Q 
Pr(MF(K)=i) 

Pr (r / MF(K)_ = 	-= Pr (r K-L <. 	K 

Pr( 	= K-r ) 

Pr(TC--L <  s 	K ) 

By unconditioning  ove r MF(K) .  we 'obtait: 

This expression is wieghted average of overlapped length-L 
segments of the probability mass function of s. for values 
exceeding K-L. As K increases the overlapped  segments  
approach a uniform distribution and Pr(r) will approach 1/L. 
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