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1.Q INTRODUCTION

This report presents the results of several investiga-
tions concerning the application of Viterbi decoding to _
transmission over .the Syncompex binary FSK modem. 'The report
is organized as follows. ' Section 2. discusses the “implemen-
tation of a real-time Viterbi decoder for use with. the Syn-
compex modem. The organization of the software that implements
the Viterbi decoder is discussed in detail and documentation
is included in Appendices. 'Speéd .and memory requirements -
are also discussed. Section 3 considers several performance
issues of Viterbi decoding. Experimental and simulation re-
sults are presented for the performance of the decoder for
various settings of decoder parameters. Simulation results
are also presented for the performance of Viterbi decoding
when combined with internal interleaving. Finally Section 4
considers the extension of._the present transmission protocol
to a system that utilizes a multi-FSK signal format. The
present transmission protocol is analyzed to establish a
basis for the evaluation of the other protocols. The trans-
mission protocol discussed by Lin is analyzed in detail in
the context of Viterbi decoding. . Methods are developed for
evaluating the throughput performance. This protocol is then
compared to selective repeat ARQ and to selective repeat ARQ
with code diversity. A new adaptive protocol is proposed
that achieves the performance of the Lin protocol while re-
quiring a simpler implementation. : :
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2.0 REAL-TIME VITERBI DECODER

The first objective of the project was the implementation of
a - real-time Viterbi decoder for use with code-diversity
transmission on the Syncompex moden. This allowed us to verify
the attainable decoding speeds and enabled us to undertake more
comprehensive experimental studies on the performance of Viterbi
decoding as various system parameters are varied. This chapter
describes the hardware and software developed to accomplish these
goals. _

The chapter is organized as follows. Section 2.1 gives an
overview of the systen. Section 2.2 describes the approach used
in the software implementation of the Viterbi decoder. Section
2.3 describes the organization of the system software including
brief descriptions of the main modules. Timing and memory requi-
rements are also discussed.” The chapter concentrates on the main
ideas only but details are included in the appendices.

2.1 SYSTEM OVERVIEW

~  Figure 1 summarizes the signal processing required to obtain
a sequence of discrete-channel outputs suitable for Viterbi
decoding. This processing is done by what we will refer to as the
ADC board. The modem provides three analog output signals. The
outputs of Chips #1 and #2 are the noncoherentiy-demodulated
("eye") baseband signals corresponding to the binary sequences
produced by the convolutional encoding at the transmitter. These
signals have a baud rate of 75 symbols per second. Chip #3
provides a <clock signal recovered from the eye signals using
selection diversity. This clock signal is offset with respect to

the eye-signal baud period so a delay is introduced to obtain a

clock signal suitable for controliling the integrate-and-dump
operations. The integrator outputs are sampled at the appropriate
instants and the digitized samples are then  passed to the
Viterbi decoder. ‘

The Viterbi decoder is impiemented in software using a
Motorola 6809 microprocessor. The decoder software is written so
that various system parameters, inciu the code, the channel-

" ‘output quantization, and the decision depth, can be varied. The

decoder outputs the estimates of the information sequence in a

form suitable for analysis by a data error analyzer. The 6809
microprocessor 1i1s also programmed to process these outputs in
order to compile error statistics. These statistics are dis-

played on a computer terminal as the real-time decoding takes
place. :: -
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2.2 DECODER IMPLEMENTATION APPROACH

Iﬁ this section we will first discuss the Viterbi decoding
algorithm 1in general and then we will outline how it was imple-
mented in software. :

The task of the Viterbi decoder is to estimate the informa-
tion sequence that was fed into the encoder at the transmitter.
This is equivalent to finding the sequence of encoder states that
produces the encoded sequence that is closest to the observed
channel output sequence according to some metric. The decoder
stores two entries for each possible encoder state. The first
entry contains the minimum-distance sequence of states leading to
the given state up to the given time instant. We will refer to
this entry as the "path history" of the given state. The second
entry contains the distance of the corresponding encoded sequen-
ces to the observed channel output sequence. We will refer to
this entry as the "state metric." : '

the entries for all possible states, henceforth referred to as
the State Information Tables, are updated using the following
sequence of steps (see Figure 2): :

1. Branch Metric Computation

The distances ("branch metrics") of the new "channel-output
pair with respect to the four possible encoder outputs,
namely 00,01,10,11, need to be found. This can be done . by
computation or by tabie-lookup depending on the complexity
of the metric used. The four branch metrics obtained in
this step will be used in the subsequent steps.

2. Add, Compare, Select (ACS)

Each encoder state has only two possible ancestor states

that <c¢an immediately precede it. The best new sequence
leading to a given state is thus found by comparing these
two ancestor states. The state metric of each ancestor

state 1is added to the branch metric corresponding to the
corresponding state transition; the two resulting metrics
are compared; and the ancestor state with the smaller metric
is selected. The best new sequ for the given state is

found by concatenating the selected ancestor state to the
path history of the selected ancestor state. The new state
metric of the given state is given by the smaller of the two

metrics used in the compare step. The ACS procedure is

carried out for each of the possible encoder states.

Upon complietion of the above steps, the State Information Tabies
will be cowpletely updated and the decoder will be ready for
another channel output pair.

The above two steps form the heart of the Viterbil decoding
algorithm. Two additional steps are required because of
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practical considerations:

3. Truncation of Path History

The 1length of the path histories need to be kept bounded in
order to keep the decoding delay bounded and to keep the
memory requirements reasonable. Periodically it becomes
necessary to make a firm decision on the estimate for the
oldest segment of past history currently stored in order to
free up memory. The optimum procedure involves finding the
state with the smallest state metric at that time instant
and " the required segment of past history is then set to the
corresponding segment in the "winning" state's path history
entry. The memory space allotted to storing this segment of
path history then becomes available for storing new segments
of path history. The amount of time "wasted" in searching
for the best metric can be kept proportionally small by
making each segment consist of several information bits.
The above view also Suggests the partitioning and handliing
of the path history as a ring buffer with each unit of path

history equal to one segment,. By selecting these segments
to be close to one byte in length, the need to perform bit
manipulation 1is completely circumvented. This is a very

important consideration in software implementations.
4. Scaling of State Metrics |

As decoding proceeds the range of values occupied by the
state metrics will steadily increase. In order to keep
these values within the range that can be assumed within the
finite precision of the machine, it becomes necessary ' to
periodically reset the metric values so that they fall

within the desired range. The rate at which the state
metric values increase is proportional to the number of bits
used in the branch metric calculations. If the number of

bits is not too large, the state metrics will need rescaling
very infrequently.

From the above discussion it is clear that the principal
factor in determining the attainable decoding speed is the at
of time required to carry out the ACS operation. We now examine
this operation more closely.

Let +the state of the encoder be given by the binary repre-
sentation of the contents of its shift register with the newest
bit equal to the most significant bit. If the constraint Jlength
is v, the state is given by a v-1 bit binary number. To make the
discussion concrete, consider the case v=7. The number of states
is then 2%+%6=64, Consider a destination state in the range 0 to
31, that is, a state with binary representation 0x, where x is 5
bit number. (See figure 3.) The source states for this destina-
tion state are x0 and xl1. Furthermore note that destination
state 1x has the same set of source states. Since the ACS opera-




tion for both of these destinations involve the same state me-
trics and state histories it is efficient to process the pair of
destination states together.

Note that the source states in figure 3 have consecutive
indices. Thus 1if the state metrics and path histories are

arranged according to the numerical value of the state, the

information required by the ACS operation of various states is
obtained by working down the State Information Tab]ef

Before discussing how the State Information Table was
organized we need one further property. Consider a destination
state with representation 0y0, where y is a 4 bit number. Note
that the state metric and path information of Oy0 and Oyl will be
required together when the next channel output is processed. It
would thus be convenient to handle the ACS operations of
destination states 0y0 and Oyl at about the same time so that the
results of the operations can be stored together. This suggests
handling the ACS operations in groups of four as shown in figure
4, -This is how the ACS operation was . implemented in our project
and it accounts For how thé State Information Table was formed.

The State. Information Table contains two entries for each
state. The first entry is a two-byte word specifying the state
metric. The second entry is a one-byte word of recent path
history corresponding to one segment of path history. Long term
history is stored in a separate ring buffer which is. updated when
a segment of recent history has accumulated. The state
information for -pairs of source states is bundled together as
shown in figure 4. Two State Information Tables were used.
These tables alternate between being sources and destinations of
the information generated during the ACS operations. By wusing
in-place storage techniques it is possible to function with only
one State Information Table. We found however that the
impiementation of this approach implied memory requirements
elsewhere larger than that of the Table itself. :

In~omp1ementa£ion‘o? the Viterbi decoder, the ACS opera-

“tion is driven by a State Organization Table that provides the

addresses of Tlocations where information is to be found or .
stored. Before explaining the State Organization Table we need
to consider how the branch metric calculations are carried out.
Let ab and cd be the two branch labels associated with the ACS
operation of some given destination state as shown in figure 5.
Each branch label can take on 4 possible values so there are a
total of 16 possible pairs of branch labels. Let rs be the pair
of channel output symbols that are to be processed. The ACS
operation for the given destination state will then require the
branch metrics d(ab,rs) and d(cd,rs), where d(.,.) denotes the
metric function. - The branch metric calculations are handled as
follows. As soon as the channel outputs rs are read in, all 16
possible pairs of branch metric values are computed and stored in

some fixed locations where they can be readily accessed by the
ACS operations. ' ‘
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As soon as the branch metric calculations have been <com-
pleted and stored, the ACS operation for the states is initiated.
The ACS operation for each state will require two sets of entries
from a source State Information Table (SIT) and will generate two
sets of entries to be stored in the destination SIT. The function
of the State Organization Table (SO0T) is to provide the addresses
of memory locations where the appropriate branch metric 1labels
are to be found and where the destination state information are
to be stored. The State Organization Table consists of pairs of
groups of 3 two-byte words. The first group provides the addres-
ses required by the ACS operation of states of the form 0y0  and
1y0. The second group provides the address information for
states of the form Oyl and 1yl. Two State Organization Tables
are required since the addresses involved will depend on which
SIT 1is acting as the source and which as the destination. The
SOT structure and the flow of information is shown in figure 6.

As indicated above the decoding of channel outbut symbols
proceeds until one segment of recent history has accumulated. It
is then necessary to output the oldest segment of history in

order to free up enough memory to store the next segment of path

history. We now explain how this is done. It can be seen fronm
figure 3 that the destination state and the source state have all
but one bit in common in their binary representations. In a

conventional approach to history updating the identity of the
previous “winning" ancestor state is stuffed into the path histo-
ry of a given destination state. This is shown in figure 7a for
a constraint length 4 code. When the time comes to output seg-
ments of history, a search is carried out for the state with the
smallest metric, say state abc in the example, and then it is
necessary to "trace back" to identify the segment that is to be
output. The trace back is done by using the contents of the path
history registers: the contents of abc¢ point back to location
bcd, which in turn points back to location c¢de, and so o

Now consider the following different procedure. At time t+1
we proceed as before and stuff the identity of the '"winning"
ancestor state into a recent path history register. However for
the subsequent time instants up to t+v-1, we stuff the contents
of the recent path history register of the the "winning" ancestor
state. An example is shown in figure 7b. Note that figures 7a
and 7b give the same information, namely the best sequence lea-
ding to abc has the three most recent bits def. In tracing back,
however, the second approach c¢an jump immediately from abc to
location def v-1 time units earlier. The trace back operation
¢an thus be carried out much more quickly.

Once the trace back operation has been completed and a
segment of v-1 bits has been selected for output, the contents of
the recent path history entries in the State Information Table
are transferred to the newly freed memory locations in the ring
buffer containing the long term path history as shown in figure
8. The decoder is then ready to undertake another <c¢ycle of
processing another segment of v-1 channel output pairs.
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2.3 SOFTWARE ORGANIZATION

The system software consists of +two parts. - One part
implements the real-time Viterbi decoder. The second part
carries out the error checking functions as well as the
compilation of error statistics.

Figure 8 shows the hierarchy of software modules responsible
for the real-time Viterbi decoding. The main program-begins by

"calling the subroutine INIT to initialize program variables and

storage -areas, .and it then enters a 1loop that defines one

decoding cycle. One decoding cycle consists of the following
subroutine calls: : :

Call ACS1
Call SCALE
Call ACS2
Call ACS1
Call ACS2
Call ACS1
Call ACS2
Call SEARCH
-Call HIST

The above decoding cycle assumes a path history segment of 6 bits
corresponding to a constraint length 7 code. The modules ACS1
and ACS2 implement the ACS operations. They differ only in which
State Information Table and State Organization Table act as
source and destination for the ACS operations. The module SCALE
makes sure that the values of the state metrics remain within the
range that can be handled. The module SEARCH identifies the
state with the smallest path metric and the module HIST
implements the traceback operation and the transfer of recent
path history to long term path history. The module HIST returns
the segment of 6 information bits that are selected for output
after the traceback operation. In order to produce a nearly
synchronous output of information bits, these bits are output one
at a time during the subsequent 6 ACS Subroutine calls.

The ACS subroutine begins by calling the module SHIFT. This
module begins by calling PUTBIT and STROBUP in order to output an
information bit and set the strobe up in order to indicate valid
data to the data error analyzer. Note that PUTBIT calls ERRCHK
which invokes the error checking and error compilation software
modules. SHIFT then calls GETBIT which reads the channel outputs
from the ADC board and then maps these vs through the table
#MAP. The <choice of entries in this table allows us to imple-
ments nonlinear quantization  in addition to the wusual 1linear

" quantization. SHIFT then calculates the 16 possible branch me-

tric entries and stores them in the direct page -area starting
with the address label T0000. Finally SHIFT calls STROBDN to
lower the strobe while the data is still valid. Upon return fronm
SHIFT the ACS module proceeds to carry out the ACS operation for

all the states in groups of four as indicated in the previous
section. :
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The number of instruction cyc1es requ1red to carry out ' the
above modules is given by: .

ACS 371 + 289 x 2#%(v-3)
SEARCH 31 + 55 x 2#x(v-2)
HIST 138 + 32 x 2%*%x(v-2)
SCALE 23 + 46 x 2%=(v-2)

and the number required by one decodfng cycle is
(v-1) x ACS + SEARCH + HIST + SCALE.

The number of instruction cycles required by a decoding cycle for
a constraint length 7 code is 34,418 which is equal to 35.9 ms.

for the .96 MHz clock used in the current implementation. At the
information rate of 75 bps, - the 6 bits of a decoding cycle are
produced in 80 ms. Thus for a constraint length 7 code the
microprocessor is idle more than 50% of the ¢time. (This was
observed experimentally by observing the strobe signal on  an
oscilloscope.) If the constraint length is increased to 8, the
number of cycles increases to 76,037 and the time to 79.2 wms.

The 7 information bits aré“produced in 93.3 ms, so0.the micropro-
cessor is now busy decoding about 85% of the time. ‘

An upper bound on the information rate that can be handled
with this software can be obtained by assuming that modifications
are made so that SEARCH, HIST, and SCALE become negligible. For
a constraint length 7 code, the maximum information rate that can

- be handled is then 192 bps. For a constraint length 8 code the

maximum is 100 bps.

A real-time dedicated microprocessor implementation of the
decoding algorithm would have the following memory requirements.
The principal components of ROM memory are the program, the two
State Organization Tables, and the quantization map. The respec-
tive memory requirements are 600 bytes, 2 x 3 x 2#%(v-1) bytes,
and 2+#%(y-1) bytes. For a constraint length 8 code, this adds up
to approximately 1.5 kbytes. The principal components of RAM
memory are the two State Information Tables, and the path history
ring buffer. The respective memory requirements are 2 X 3 - x 2%«
(v-1) and B x 2%%(v-1), where a history depth of B segments has
been assumed. This adds up to 1.8 Kkby : _ ,

Figure 9 shows the module hierarchy for the error  checking
and error compilation software. When synchronized to the infor-
mation sequence, ERRCHK takes the information bit that has just
been output and compares it to that predicted by the module
NEXTPN which 1is designed to emulate the PN sequence gdgenerator
that was wused at the transmitter. The bit count and the bit
error counts are then tallied. Statistics are compiled in blocks
of = lTength #BLOCKLEN. At the end of each block, a single
character report is output to the terminal using module PUTC. At
the end of each block, the number of bit errors is compared ¢to

-#ERRLIM. If the number of errors is greater than this threshold,

the resynchronization procedures are begun in the next block by
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resetting the contents of the PN sequence generator in NEXTPN to
that of the last v-1 information bit estimates.

The module REP implements the printing of the block error
reports .and counts on the terminal with text explanations and
decimal output.

Appendix A contains the module descriptions and Appendix B

contains the}assemb1y language code along with detailed comments.




3.0 VITERBI DECODER PERFORMANCE ISSUES

In this section we present results of two investigations
of Viterbi decoder performance. The first investigation
deals with the dependence of decoder performance on the va-
lues of several algorithm parameter values. Experimental
and simulation results are presented for decoders with dif-
ferent number of quantization levels, different history
depth values, and with linear and nonlinedr quantization.

The second investigation considers the performance of Viterbi
decoder performance when combined with internal interleaving.
Simulation results are presented for systems of different
interleaving depths and for channels with different burst
error characteristics. We begin the, section by describing
the simulation model used in our investigations.

3.1 SIMULATION MODEL

Simulation programs were written to provide a means for
quickly and easily testing various Viterbi decoder configu-
rations as well as for simulating various channel transmis-
sion conditions. A Viterbi decoder program was written in
BASIC to run on the IBM PC. The program completely parallels
the implementation of the M6809 real-time decoder in order
to allow the simulation of changes in the real-time system.

The details of the program therefore do not need to be repeated
here.

A second program was written to simulate bursty channel
conditions on dual parallel FSK channels. The model simu-
lates independent fading on the two channels@was well as’
simultaneous (flat) fading on the channels. At any given
time instant each channel is in one of three .states: Good,
Bad, or Flat. At any given time instant the channel pair
can be in one of five states:

0 Good-Good
1 Good-Bad

2 Bad-Good

3 Bad-Bad

4 Flat-Flat

While a channel is in the good state, it randomly generates
octal output symbols R for each binary input b according to
the transition probability shown in Figure 1. The octal
output is intended to represent the output of a 3-bit quan-
tizer. Similarly when a channel is in state bad or flat,
it generates outputs according to predesignated transition
probabilities. ‘







The time evolution of the channel state pair follows
a continous-time Markov chain with transition-rate diagram
shown in Figure 4. Here A is the rate at which an individual
channel goes from the good state to the bad state, and u is
the transition rate in the opposite direction; a i the
rate at which the channel state pair goes 301nt1y from the
_good-good state to the flat state. The simulation program
~generates random, exponentially distributed holding times X
(in bits) for each state, and then rounds them up to the -
next integer greater than or equal to X. The next state is
selected according to the state transition probabilities
that correspond to the transition-rate diagram.

All the simulations discussed in this report simulated
independent fading only. The bad state was always represen-
ted by the 3-bit quantized Gaussian channel shown in Figure
da. This (single) channel has a raw bit error rate of .159
and a 128-bit block error.rate of essentially 1. The good
channel was chosen to be either that shown in Figure &b or
that in §c. The channel in 8p, hereafter called the good
channel, has a raw bit error rate of .023 and a block error
rate of 94.7%. The channel in R2c, hereafter called the
very good channel, has corresponding rates of .00135 and 15.9%
respectively. It should be emphasized that the error rates
for these channels are relatively high because they corres-
pond to single channels; when the two channels are combined
the performance improves considerably.

The channel parameters used in a given simulation will be
specified by prefixing each state with its mean holding time.
- Thus 250G/50B denotes a channel in which the subchannels fade
independently with the good state having a mean holding time
of 250 bits, and the bad state a mean holding time of 50 bits.
The mean holding time of a state pair is given by the recipro-
cal of the sum of the rates out of the state pair. Thus the
mean holding time of the bad-bad state is 25 bits and that
of the good-good state 125 bits.

3.2 EFFECT OF DECODER PARAMETERS ON DECODER PERFORMANCE

The software of the real-time decoder was written so that
the number of quantization levels and the history depth could
be changed easily. Instructions for carrying out these changes
are included in the documentation. An arbitrary nonlinear
quantization scheme can be produced by changing a 64-entry
table through which the A/D samples are mapped. The convolu-
tional code can also be changed, but this requires changing
the longer state organization tables. Here wé will report
on the results of experiments that vary the number of quanti-
zation bits, the history depth, and the quantization mapping.
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The software of the real-time decoder includes modules
that implement error counting and reporting functions. The
block size for block error counts is programmable and was
set to be 64 bits. The output of the decoder is arranged in
blocks of this size and the number of errors counted. If no
errors are found, a dot is printed on the screen and simulta-
neously stored on floppy disk of an IBM PC running CROSSTALK.
If errors are found, the number of errors is compared to a '
threshold, ERRLIM, which is also programmable. 'If the threshold
is exceeded, a resynchronization operation is initiated in the
next block and an 'S' printed. Otherwise the number of errors
is printed. The duration of the experiments is also program-
mable, and the error count is displayed at the end of each
experiment. Figure 3 is a sample printout of one of the expe-
riments. !

The present system has the following nominal settings:
6-bit quantization, linear mapping, history depth 8, and
133/171 rate 1/2 convolutional code. A series of experiments
were conducted where the nominal system was compared to sys-
tems in which one of the settings was changed to:

-~ l-bit quantization

-- 3-bit quantization

-~ Mu-law mapping

-- Inverse ‘Mu-law mapping
-~ history depth 4

-- history depth 6

Each experiment involved changing the software and then demo-
dulating and decoding the (approximately) same segment of
tape recorded audio signal corresponding to 1728 blocks

of information. To control for fluctuations in the results
due to factors other than the change in parameter, the nomi-
nal system was interspersed among the other experiments.

Each experiment was run twice. Table 1 shows the results
of each experiment. The experiments are listed in the order
in which they were carried out because significant variations
were observed in the performance of the control (nominal system)
experiment. The results are also displayed in Figue 4 where
‘it can be seen that the control experiment varied in error
rate from 0.75% to 2.78%. The error rates of all the other
experiment except one fell in this range. The one exception
was for the system with 1-bit quantization which was clearly
inferior. The printout for one of the 1l-bit experiments is
shown in Figure 5. This printout can be compared to that
of Figure 1 which corresponded to the control experiment that
had the best performance. Thus the only conclusion that can
be made from the experimental results is that l-bit quantiza-
tion is significantly inferior to soft decision systems.

The simulation programs were used to investigate the effect
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of decoder parameter settings on the error rate performance.
It was expected that the simulation results would give a
better indication of the relative importance of each setting
since it is easier to control for variations in each trial.
Each simulation was run for 40,000 bits which had previously
been established to be sufficient to produce a representative
~relative frequency count for each of the state pairs on the
250G/50B channel introduced in section 3.1. The 40,000 bits
correspond to approximately 330 128-bit blocks. The running
time of each simulation on the IBM PC running compiler BASIC
is approximately 4 and 1/2 hours. The performance of the
decoder for the 171/133 code is shown below:

setting: Py P

b

1-bit qtn, hist 8 9.25%  8.00x107°
3-bit qtn, hist 2 7.76% 2.90x1073
3-bit qtn, hist 4 “4.20% 3.73x1073
3-bit qtn, hist 8 4.52% 2.88x107 3

Single bit quantization again has the worst performance
in both bit- and block-error rate. Decreasing the history
‘depth from 4 to 2 results in an increase in block error
rate, but decreasing from 8 to 4 does not result in a signi-
ficant change (the two simulations differ by 1 block error only).
Decreasing the history depth does not necessarily increase
the bit error rate. The printouts of the simulations revealed
that the history depth 2 system had numerous short bursts of
errors whereas the longer history systems had fewer but much
longer bursts. From a block error rate point of view a history
depth 2 system is not unacceptable. As well, it appears that
the history depth can be decreased from 8 without incurring a
loss in block error rate performance.

3.3 VITERBI DECODING WITH INTERLEAVING.

In this section we present results on the performance of
Viterbi decoding with internal interleaving. The basic idea
of internal interleaving is to split the transmission of data
into a number of parallel streams that are encoded and decoded
separately as shown in Figure 6a. 1In practice it is not nece-
sary to replicate the encoders and decoders, but instead the -
logic needed to carry out these operations is time-shared
among the N streams. Consequently interleaving is achieved
without introducing a frame structure and at only a linear
increase in the memory requirements. Indeed the combined
encoder-interleaver is equivalent to the longer constraint
length code shown in figure 6b. It can be shown that this
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code has the same minimum distance as the shorter .code, so
that its performance in a random érrox environment will be
the same. In a burst error environment, however, the longer
code will have the better performance.” S '

The same computer simulation programs discussed in the
previous section were used to investigate Viterbi decoding
with internal interleaving. It is clear that only one of
the encoder-decoder pairs needs to be simulated so no change
is required in the Viterbi decoder program. The only change
required in the -channel simulation program is that only every
L-th output of the channel is passed to the decoder if the
degree of interleaving is L. ‘ ‘

In the simulation the channel was considered to be in a
burst error mode if the channel was in the bad state. The
burst error statistics were specified by fixing the mean

"holding time in the bad state, and the percent of the time

spent in the nonburst mode-was specified by selecting the
mean holding time to be some multiple of that of the bad
state. Each simulation consisted of approximately 330 128=bhit
blocks. 1In the first set of simulations the mean burst error
length was 50 bits and the proportion of time spent in the
burst mode was 1/6. By introducing degree 5 interleaving,
the effective channel seen by the decoder is .approximately

a 50G/10B channel. 'The block error rate is reduced by a
factor of 3.5 and the bit error rate by a factor of 6.5.

(See Table 2.) The third experiment in this set simulated

a 50G/10B channel without interleaving. It can be seen that
the results are quite close to those of the channel with the
same effective parameters after degree 5 interleaving.

In the second set of experiments, the mean burst length
was increased to 100 bits and the proportion of the time
spent in the burst mode was reduced to 1/3. The system without
interleaving performs quite poorly and the introduction of
interleaving introduces only some improvement. The degree 10
interleaving system has a mean holding time of 5 bits in the
bad-bad state, the same as the degree 5 system in the first
set of experiments. The mean holding time in the good-good
state however is only 10 bits so. the decoder does not have
enough good samples, on the average, to get back on the
correct path. : :

For a given fixed ratio of time spent in the good state
to time spent in the bad state, the Viterbi decoder will span
the following two extremes. When the bursts are very long
the decoder will encounter 4 modes of sustained duration
corresponding to the 4 possible state pairs. The performance
will be the weighted average of the performance during each
of these modes. For the cases considered above ‘the performance
will be dominated by that of the bad-bad state. The bit error
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rate for this code has been found to be .14 by simulation.
The proportion of time spent in the hahnbad state fox” the:
first set of experiments is 1/36, §o the average bit

error rate should be ‘about. 3. 9x10 3 wher the burst length is
very long. This is close to the flgure ‘obtained for the”
250B/50B system without interleaving. For the second set

of experiments the predicted bit rate is 1.55x10-2 which
agaln is quite close to that of the system without interlea="
v1ng :

As the- degree of interleaving is 1ncreased until it exceeds
the mean burst length, the decoder will reach a plateau with
performance of that of a system in which the channel randomly
selects one of the two modes (good or bad) with probability
equal to the proportion of time spent in the given modes. No

- attempt was made to establish what the limiting performance

for this extreme would be.



 4.Q TRANSMISSION PROTOCOLS FOR MULTITONE MODEM

An objective of the project was to extend the present
transmission protocol to Increase the information rate that
can be reliably achieved using a multi-FSK signal format and
combining code diversity with ARQ techniques. In this section
we ‘present an analysis of the present transmission protocol; .
then we present an -analysis of a protocol proposed by Shu Lin
and an adaptive protocol that combines the Lin protocol with
a code diversity ARQ system.

4.1 PRESENT TRANSMISSION PROTOCOL

The present transmission protocol defines a sequence of
packet exchanges that effect the transfer of a message from
a sender terminal to an acceptor terminal. The channel is
shared by both terminals so transmissions are constrained to
be half-duplex with packets travelling in opposite directions
alternately accessing the channel. The terminals set up the
transfer of a message by exchanging calling and response pac-
kets. The message transfer is carried out through the exchange
of message and acknowledgment packets. The message transfer
is ended with the sender terminal transmitting termination
packets,

The present protocol handles the transmission of one mes-
sage at a time. A message may consist of up to 1280 bytes.
Prior to transmission the message is segmented into subblocks
of 16 bytes. The acceptor terminal is given the number of
such subblocks during the set up phaseé... Each subblock has a
sequence number byte and a CRC byte attached to .it to form
a subpacket, which forms the basic unit of retransmission.
Subpackets are transferred to the acceptor terminal in fixed-
length frames that can accomodate 8 subpackets. Each frame
consists of a header followed by 8 subpackets, with padding
used to fill up unoccupied subpacket slots 1f necessary. Thus
by design each subpacket is bundled separately and thus its
retransmission can be handled separately from that of other
subpackets.

Fixed-length frames, cdlled message packets, and fixed-
length acknowledgment packets alternate in using the channel.
The message packets consists of an 11.5 byte header followed
by the 8 subpackets. Of the 1244 bits in the message packet
at most 1024 can be used for information. Acknowledgment
packets of 148 bits follow each message packet transmission.
The propagation dnd software delays add an equivalent of 10
bits at 100 bps transmission rate. Barring errors, after the
exchange of one message packet at most 1024 information bits
will have been transferred in the time 1402 bits could have
been transmitted on the channel. Thus the present protocol
has a maximum throughput efficiency of 73%. :
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We now present an analysis of the present transmission
pretocol. The puipose of carrying out such an analysis is
to 'lay the framework within which. any externded protocal should
be"evaIUated._'In’this analysis we will neglect the effect of
errors in the acknowledgment packets. Let Kbe the message
length in subpackets, 14£K<£80, and suppose that a frame can
accomodate up to L subpackets. Let’e'ge'thé'probability that
a subpacket is received in error (using hard decisions) and
assume that subpacket errors occur independently. The sequence
of message packet transmissions can be divided into two phases:
in mode A the number of outstanding subpackets at the ‘trans=
mitter is gredter than or equal to L so frames carry a full
set of subpackets in edch transmission; in mode B the number
outstanding is less than L so each frame transmitted is partly
empty. Clearly mode B transmissions introduce inefficiencies
in the use of bandwidth and the purpose of the analyses is to
quantify these inefficiencies.

Suppose that K = QL +-R, where 0 2R< L; then at least Q
mode A transmissions will be required. Let MF(K) be the total
number of mode ‘A transmissions rquired for a message of length
K. In Appendix C we show that the mean of MF(K) is:

o0 K-1, ,
EMF(K)) = Q + = ( =t Pr(s;=}) )
i=Q j=0 g

where s, is a Binomial random variable with parameters il. and
e. The over the Binomial terms can be approximated by the
error function (i.e. integral over a Gaussian) and only a

few terms in the infinite series turn out to be significant.
Figure 1 displays the mean of MF(K) versus K.

Mode B transmissions will commence when the number of sub-
packets remaining for transmission becomes less than L. Sup-
pose that this number is r, 04 r<{L. Partly empty frame
transmissions will continue until all r subpackets have
successfully been transferred to the acceptor terminal. Let
MP(r) be the number of frame transmissions required to accom-
plish this. 1In Appendix C we also show that the mean of MP(r)
is given by: o

T j s
= (3 — (-1)I*

EMP(r)) = 1 + =
I-ed

J

Figure 2 shows E(MP(r) as a function of r. As expected the
number of transmission increases with r.  Since the range of
r depends on L, Figure 2 can be used to quantify the loss in
efficiency due to too large a value of L.

' The number of outstanding subpackets r during the first
mode B transmision is a random variable that depends on K.
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In the Appendix we .dexive the distribution of r conditioned

on K, and we then’compute the mean of MP(r) ayeraged over r.
For large values of K, ¥ becomes -uniformly distributed in

the interval Q%vr£L-1. Figure 1 shows this mean as a function
of K. =~ ' : '

The two curves in figure 1 can be added to obtain the mean
number of total frame transmissions required to transfer a
message of length K, that is EM(K)). The throughput effi-
ciency is then given by: ' ‘

EFF = K

EM(K)) (L+H)

-/ K/L ( L >
=(E(M(K)) P\ TAH

EFFREL x MAX EFF

where H is the overhead incurred in each message packet/acknow-
ledgment cycle, and where EFFREL is defined as the relative
efficiency. Figure 3 shows the relative efficiency as a

function of K. It can be seen that as K increases the relative -

efficiency approaches that of selective repeat ARQ, namely
1l - e. In effect for large K, the inefflciencies due to mode
B transmissions are negligible. Thus if we are considering,
very long messages, we can directly analyze the transmissions
of subpackets and ignore the frame structure of the system.

The relative efficiencies shown in Figure 3 correspond
to three values of subpacket error probabilities, e=0,e=0.1,
and e=0.2. It can be seen that for this range of values
the relative efficiencies do not differ greatly. In experi-
ments conducted last year subblock error rates of 10-2,
10-1, and 2x10-1 were observed for code diversity, frequency
diversity, and single channel transmissions. One concludes
from Figure 3, that the combination of code diversity with
selective repeat ARQ, henceforth denoted by ARQCD, for this
range of error probabilities is not worthwhile since code
diversity incurs 50% overhead, and thus a higher throughput
is achievable if this overhead were replacedby additional
subpacket transmissions. On the other hand, as the error
rate increases diversity transmission can be expected to keep
the througput from deteriorating to zero much longer than
single channel FSK because of its ability to correct errors.
Clearly what is needed is a transmission protocol that dyna-
mically varies between these two extremes as the channel error
conditions vary. We will introduce such a protocol in the
last section.

’ 1
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4.2 A DIVERSITY-QNEDEMAND TRANSMISSION-PRQTQCOL

Suppose that M FSK signals are available .for 1nformatlon
transmission’ and that each signal is organlzed as in the exis-
' ting transmission protocol but with the headers combined
into one single header as shown in Figure 4. The first part
of the header up to the software sync Byte would remain the
same. The second part would be capable of carrying more infor-
mation than presently requlred so it cauld be shortened or
modified as necessary. Similar con51deratlons would apply to
the ‘acknowledgment packets.

Once the message packets header and acknowledgment packet
lengths are seleceted (and here we are assuming that they will
remain fixed), the maximum achievable throughput will be
fixed and the particular form of ARQ will affect the perfor-
mance only through the relative efficiency. We will assume
that the transmitted messages are very long so that mode B
transmissions can be neglécted. - The relative efficiency will
be given by E(N), where N is the numbe¥ of transmissions re-
quired by a given subpacket.

The basic mechanism of ARQ schemes, retransmision, is
essentially a diversity technique, namely time diversity with=-
out combining. Viewed this way it is clear that ARQ schemes
do not make use of all of the information available at the
receiver and that better performance should be possible by
using some form of combining. We will consider the use of
code diversity as the means of utilizing the extra information.
The scheme considered has been discussed by Wang and Lin
(Trans. on Communications, May 1983). We will henceforth
refer to the scheme as ARQDD.

For throughput analyses purposes we can consider the pro-
tocol as if a single subpacket is being retransmitted at a
time. The protocol employs a cyclic code for error detection
and a rate 1/2 convolutional code for code diversity. Each
information subpacket (including the sequence numbeér) is enco-
ded using the cyclic code. The resulting block is convolutio-
nally encoded with the encoder intialized to the zero state
and enough zeros appended to the block so as to drive the
encoder back to the zero state. Each subpacket is thus bundled
separately so that its retransmission can be handled 1ndepen—
dently of that of other subpackets.

The upper and lower branches of the encoder output are
buffered separately and only the upper branch is transmitted
at first. At the receiver the received sequence is divided
by the appropriate polynomial that allows the recovery of the
cyclically encoded block when errors have mnot been . introduced

in transmission. The outcome of this division and the subsequent

check of the recoverd block are used to detect errors. If

none are found the subpacket is accepted. If the block is found

to have some errors, the receiver sends a negative acknowledg-
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ment requesting a transmission of the other branch. . The second
branhch is processed in the sdgme ‘way:; it is divided, checked
for errors and accepted if. non@ ‘are found. =~ TIf at this point
errots are. found, Bdth reeeived branches are. used to carry out
Viterbi decoding. ' The sequence output by the decoder is then
checked for errors using the cyclic code. At no extra cost

in bandwidth we have obtained an extra opportunity to correctly
decode the information. Note that all decoding prior to Viterbi
decoding uses hard decisions, but that Viterbi decoding itself
can use soft decisions. ‘ : '

If the second tramsmission and subsequent Viterbi decodlng
fail, a request for a retransmission of the first branch is
made. The branch is processed as theiseeond branch was processed
in the prev10us step. In Lin's version of the protocol, the
older version of a branch is discarded. However if soft deci-
sion decoding is used, the old and new versions of a branch
could be combined prior to Viterbi -decoding. The alternate
transmission of branches continues until the subpacket is
guccessfully transferred or until some upper limit is reached.

The possible sequence of events for ARQDD is shown in Figure
5 where Bec(i) is the event that the ith transmission is re-’
ceived errorfree and Be(i) is the ewvent that it is found in
error. We will assume for SlmpllCLEY that the probability
of failing to detect errors is negligible relative to the
probabilities of the other events. Gc(i) is the probability
that Viterbi decoding successfully decodes a pair of erroneous
branches after the ith transmission. Assume that block errors
occur at independently and with the same probability:

P, = Pr( Be(i) )

and
1-P,= Pr( Be (i) )

Let VO be the probablllty that the first Viterbi decodlng is
succeSsful and let V© be the probability that subsequent Viterbi
decodings are successful. Note that the first probability is
conditioned on the two branches hav1ng had errors detected on
them, whereas the second probability in addition has the condi-
tion that one of the brandks participated in a previous unsuc-
cessful Viterbi decoding. Thus the second probability will

be less than the first. The corresponding sequence of event
probabilities is shown in Figure 6. To calculate the mean
number of transmissions we need only consider the event Ec(i)
and the event Ee(i) that correspond to the ith transmission

- being successful and unsuccessful respectively. Since Ee(i)
occurs if the ith transmissions has errors and the subsequent
Viterbi decoding fails, we have that
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The simpler séQueﬁcé”of'eVeﬁt probabilities is shown in

Figure 7. The probabilities of N are given by:

P - o i=1

, » 3
Pr(N=i) = PB( P, ¥ Vo ) i=2

PRV v e+, VO ) im3

where PB =1 ~-P and V, =1 - V . The mean. number 6f trans-
. . - : c . ~
missions is then found go be:

S 1+ 2@ +P.V)
o) ] B c
+ 2Py(P, + PRV +

E(N) = P

‘PC + PBVc

and the relative throughput efficiency is then 1/E(N).

The evaluation of the throughput efficiency requires the
transmission error probability PB,,and the two probabilities
of successful Viterbi decoding, ve and V_. Note that P
is the error probability that results using hard decisiomns.
Later in this section we will estimate these parameters for
a bursty channel by computer simulation. We will find that
V., requires much computation to estimate so it would be use-
fil to have bounds on E(N) that depend only on the other two
parameters. : '

B

An upper bound is obtained for E(N) by analyzing the infe-
rior system posed by Lin where Viterbi decoding always uses
a new pair of branches and thus can take place only during
every other transmission. The sequence of event probabilities
is s?oyn in Figure 8 and the resulting mean is an upper bound
to E(N):

EQN) ¢ L+ Py

2 0
1 —.PB VB

We can also obtain_a lower  bound as follows, Since V_ is
always less than V- , we can replace V_ by V- in the eXact
formula for E(N) afld obtain an’0ptimis%ic esPimate. Combining
the upper and lower bounds we have:
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When the channel is.very.good'we’have'PB'mucthéSS than 1 and
the bounds yield ‘ - ‘

EN) o~ 1 + PB‘

which intuitively agrees with the fact that Viterbi decoding
would seldom be required. When the channel is very noisy the
PB approaches 1 and ,

2 + Vg |
o< EM L& - —

° 10}
B 1 - Vg

1 -V

In order to obtain the parameters required toO estimate
the performance of ARQDD, we modified the simulation programs
to estimate the required parameters. An information block of
120 bits (all zeros in the simlation) was "encoded" using the
171/133 code and the resulting encoded branches (two blocks of
126 zeros) were produced. The first branch was passed through
the bursty channel. The resulting sequence was inspected for
hard errors and if none was found the block was counted as
correct on the first transmission. Otherwise a new branch
was ''requested." In producing the new branch the. initial state
of the channel was reselected at random in order to simulate
the time diversity nature of the retransmissions. The ARQ
protocol was followed in the prescribed way and a tally of

the various events was kept. Table 1 shows the results of three

simulation experiments and Figure 9 shows the corresponding
results in graphical form.

In the first two experiments the channels alternate between
periods of good error conditions and periods of bad error con-
ditions. The first experiment corresponds to the 250VG/50B
channel introduced earlier in the report. In this experiment
the channel is relatively "very good" in that a significant
(51%) of the blocks are recieved error free after the first
transmission. The bounds for ARQDD are very tight in this
case and the throughput for ARQDD is 67%, a 16% improvement
over selective repeat ARQ which would have a throughput of
51%. In the second experiment the channel is 250G/50B and
only 47 of the packets get through on the first transmission.
Thus the throughput has collapsed to nearly zero for selective
repeat ARQ. The bounds for ARQDD! are again very tight and
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throughput is 31%, a tremendous improvement over selective repeat
ARQ. "The difference of" courSe is due ‘o the ‘error correctlng :
capahlllty of the scheme For this tahge of clannel conditions
the Black error rate is ‘nearly 1 with error detection only, but
the convolutional code is cpable of cotredting most of the error
patterns, so that most bloéﬁs are recieved correctly after the
two transmissions required to carry out Viterbi deceding. Essen-
tially the 'system has switched to code diversity operation with
the diversity branch being ptrovided by time diversity. This

is equlvalent in throughput to ARQCD which provides the diver-
sity branch in simultaneous frequency diversity. Note however
that ARQCD entails a smaller delay in delivering a given block .
to the receiver.

The third experiment has the channel continously in the
bad state. The throughput efficiency of selectlve repeat
ARQ is zero, but the efficiency of ARQDD is 19%. Note that
in this case; the bounds were not tight and it was necessary
to run a second simulation to eStlmate'VC Because of. the
large number of errors in the transmissidns, many Viterbi
decodings are requlred before a block is successfully deco-
ded at the receiver. The simulation to estimate this parameter .
took about 11 hours on the IBM PC. This experiment demonstrates
that ARQDD continues transmitting information through the

very noisy chamnel way after ordinary ARQ schemes have collapsed.

The system thus appears to be extremely well-suited to HF

.radio transmission where the ability to adapt to changing

channel conditions is essential.

4.3 AN ADAPTIVE'TRANSMISSION PROTOCOL

The adaptivity of ARQDD to the changing channel condltlons
is accomplished through the automatic retransmission of erro-
neous subpackets. TFor the multi-FSK system under considera-
tion - a large number of subpackets are transmitted in each
frame. Under very noisy conditions this will require the
retransmission of a large proportion of each frame. This will
require considerable complexity in terms of the buffer manage-
ment and sequence numbering operations. - Thus it is preferable
if the protocol operates so that the number of retransmissions
is kept low, while operating at a throughput efficiency close

. to that of ARQDD As indicated in the previous section, when

the throughput of ARQDD is near 50%, it is equivalent in through-

put to ARQCD which has a throughput of V- .and which is shown. '
in Table l.as well as in Figure 9. It

can be seen that by switching to ARQCD when the throughput of

ARQDD falls to near 50%, significant simplifications in the

implementation will be obtained at little loss in throughput.

Since ARQCD has a throughput that never exceeds 50%, the proto-

col should switch to ARQDD and perhaps even ordinary ARQ when

the channel condltlons are favorable.



The obyious decision yule for switching between the two
protqcols s to cOmpare the numBer of" subpackets that require
retransmission to 'a threghgld. The ‘switch Efrom ARQDD to. ARQCD
is effected. when the number of packetls that require retrans-
misgion eXceeds the threshold. The switch in’the treverse

direction should be Based on the number of subpackets that arrive

incorrectly prior to Viterbi decdoding since we ‘are trylng to
estahlish that the system can operate satisfactorily using
essentially hard decisions only. The required count.can be ’
made by retaining the same ‘subpacket format and predecoding
procedures at the receiver. Each subpacket would first be
divided and error checked prior to Viterbi decoding. If
either of the branches received in two different frequencies
is correct, then Viterbi decoding can be skipped,and as well
the count requlred to implement the decision rule for switching
can be carried out. The retention of this part of the ARQDD
protocol also gives the receiver the option to handle many
more subpackets per frame-than it would be able to decode. in
ARQCD where every branch pair would undergo Viterbi decoding.

4.4 OPEN ISSUES

The discussion in this section has concentrated only on
the throughput performance of the wvarious schemes for
several relatively simple models. It has been established
that code diversity significantly extends the range of channel
conditions within which information can be reliably transmi-
ted.. As well the combination of code diversity with ARQ makes.
it possible to operate at high throughput efficiencies when
channel conditions are favorable. We expect that these conclu-
sions will hold for real channels as well because the schemes
make no specific assumptions about the channel statistics
and because the schemes are inherently adaptive to a coarse
statistic, block error rate

. The schemes need to be investigated further with attention
paid to implementation details. The memory and processing
requirements need to be estimated. The algorithm can then
be optimized for maximum performance within the constraints
placed on the processing and memory requirements.
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MODULE NAME: MAIN LOOP (VITERBI)

MNEM: MLOOP

HIER: 1.0 .

DESC: This 1is the top level module of the hierarchy of
the Real-Time Viterbi Decoder. Upon being entered, it

initializes variables and storage areas. It then enters the main
.~ loop of the program that repetitively implements the decoding
cycle. - }

CALLED MODULES:
NAME: INITIALIZE
“MNEM:  INIT HIER: 1.1

NAME: ADD, COMPARE, SELECT
MNEM: ACS1, ACS2  HIER: 1.2

NAME: SCALE METRICS

MNEM: SCALE HIER: 1.3
NAME: SEARCH FOR BEST-STATE.
MNEM: SEARCH HIER: 1.4
NAME: HISTORY UPDATE

MNEM: HIST HIER: 1.5

MODULE NAME: INITIALIZE

MNEM: INIT
HIER: - 1.1 .
DESC: Initialize . input ports.  Initialize output port.

Set long term history to zeros. Setup PN generators. Zero block
variables. -

COMMON DATA:
BFL (WRITE)
ALLOK, NOBLOCK, ERRS, RESYNC, (WRITE)
PN1, GPN (WRITE)
OUT  (WRITE)
OUTPORT, PCR, ACR, IFR, OUTDDR, DDRA, DDRB (WRITE)
HO (WRITE)

CALLED FROM:

NAME: MAIN LOOP (VITERBI)
MNEM: MLOOP HIER: 1.0

MODULE NAME: ADD, COMPARE, SELECT

MNEM: ACS1, ACS2
HIER: 1.2 .
DESC: These two routines each update one of the state

information tables. ACS1 uses State Organization Table #1 (S0T1)
to update the information in buffer #1 (BFLl), the results being
put in buffer #2. ACS2 uses SO0T2 to update BF2 and the results
are put in BF2. The states are updated in groups of four states
until all states are done. At the start of the ACS operation




. data oytput, data input, and metric distances are calculated.

LOCAL DATA:
~ SPSAVE (READ/WRITE)

COMMON DATA:
: FOR ACS1: BF2, SOT1 (READ)
BF2 (READ/WRITE)
FOR ACS2: BF2, SOT2 (READ)
BF1 (READ/WRITE)
T0000,T0001,...T1111 (READ)

CALLED FROM:
NAME: MAIN LOOP (VITERBI)
MNEM: MLOOP HIER: 1.0

CALLED MODULES:

NAME: SHIFT OUT DATA, GET DATA
MNEM: SHIFT HIER: 1.2.1

MODULE NAME: SCALE METRICS

MNEM: SCALE
HIER: 1.3 . _
DESC: Subtracts previous best metric from all state

metrics. Also, if any metric gets above 32000 then it is reduced
to approximately 16000. The truncation should not be required if
calls are made frequently to this routine.

CALLING PARAMETERS:
Register U contains the address of the buffer to be scaled
(BF1 OR BF2).
Variable: BESTM should be equal to or less than the best
metric.

LOCAL DATA: '
SCOUNT  (READ/WRITE)

COMMON DATA:
BF1, BF2 (READ/WRITE)
BESTM (READ)

CALLED FROM:

NAME: MAIN LOOP (VITERBI)
MNEM: MLOOP HIER: 1.0

MODULE NAME: SEARCH FOR BEST STATE

- MNEM: . SEARCH
HIER: 1.4 ~ -
DESC: Loop through all states to find the lTowest metric.

Save the metric and path pointer for later use.

CALLING PARAMETERS:
Reg1ster U should point to buffer to be searched.




LOCAL DATA:
COUNT (READ/WRITE)

COMMON DATA:
BESTM, BESTV (READ/WRITE)

BF1, BF2 (READ)

CALLED FROM:
NAME: MAIN LOOP (VITERBI)
MNEM: MLOOP HIER: 1.0

MODULE NAME: HISTORY UﬁDATE

MNEM: HIST

HIER: 1.5 ,

DESC: Trace back operation using best path pointer to
find most likely output. Move recent history (path pointers) to

long term history. Create new path pointers,

CALLING PARAMETERS: S . -
Register X contains a pointer to the first path pointer in

whichever buffer is selected. ,
BESTV should contain the best path pointer found by SEARCH.

LOCAL DATA:
CURCOL (READ/WRITE)

COMMON DATA:
BESTV  (READ)

CALLED FROM:

NAME: MAIN LOOP (VITERBI)
MNEM: MLOOP HIER: 1.0

MODULE NAME: SHIFT OUT DATA, GET DATA

MNEM: SHIFT

HIER: 1.2.1 ‘

DESC: Qutput data. Raise strobe to indicate data valid.
Get eye values. Rotate eye values into position. Calculate

branch distances. Lower strobe.

LOCAL DATA:
TEMPA, TEMPB (READ/WRITE)
COMA,COMB (READ/WRITE)

CALLED FROM:
NAME: ADD,COMPARE, SELECT
MNEM:. ACS1, ACS2 HIER: 1.2

CALLED MODULES:
NAME: GET DATA FROM ADC BOARD
MNEM: GETBIT . HIER: 1.2.1.1




NAME: OUTOUT BIT

MNEM: PUTBIT HIER: 1.2.1.2
NAME: RAISE STROBE

MNEM: STROBUP HIER: 1.2.1.3
NAME: LOWER STROBE 4

MNEM: STROBDN HIER: 1.2.1.4

MODULE NAME: GET DATA FROM ADC BOARD

MNEM: GETBIT '
HIER: _ 1.2.1.1 :
DESC: Wait for data ready from ADC board. Read = value
from ADC board. After isolating lower seven bits run value
through the quantization map.
LOCAL DATA: ‘

MAP  (READ) _

Register A & B each hold one of the mapped integrated eye

values.

COMMON DATA:
IFR (READ/NRITL)
"ADAT, BDAT (READ)

CALLED FROM:

NAME: SHIFT OUT DATA, GET DATA
MNEM: SHIFT HIER: 1.2.1

MODULE NAME: OQUTPUT BIT

MNEM: PUTBIT .
HIER: 1.2.1.2 ‘ _
DESC: - Shift out a bit from the variable QUT. - This value

1s‘p1aced on the output port.

CALLING PARAMETERS: '
QUT should contain the most 11kely output bits found in the
routine HIST.

COMMON DATA:
OUT  (READ/WRITE)
OUTPORT (READ/WRITE)
DOUT  (WRITE)

CALLED FROM:
NAME: SHIFT 0UT DATA GET DATA
MNEM: SHIFT HIER: 1.2.1

CALLED MODULE:
NAME: DO BLOCK ERROR CHECKING
MNEM: ERRCHK HIER: 1.2.1.2. 1



MODULE NAME: RAISE STROBE

MNEM: STROBUP
HIER: 1.2.1.3 '
DESC: Raise strobe to indicate output data valid.

COMMON DATA:
OUTPUT (READ/WRITE)
DOUT (WRITE)

CALLED FROM:
NAME: SHIFT DATA OUT, GET DATA
MNEM: SHIFT HIER: 1.2.1

MODULE NAME: LOWER STROBE

- MNEM: STROBDN
HIER: ' 1.2.1.4

- DESC: Lower strobe on data output port.

COMMON DATA:
OUTPUT (READ/WRITE)
DOUT (WRITE)

‘CALLED FROM:

NAME: SHIFT DATA OUT, GET DATA
MNEM: SHIFT HIER: 1.2.1

MODULE NAME: DO BLOCK ERROR CHECKING

MNEM: ERRCHK
HIER: 1.2.1.2.1 : ,
DESC: Keeps a running record of the most recent output

bits so that the internal shift register can be reloaded if
synchronization is lost. The bit to be output is compared to the
internal PN generator and any differences are counted. When the
block is done, one of three characters is printed:

"." - 1o errors in block
"x" - Jess than ERRLIM errors
"s® - ERRLIM or more errors (Reload shift register)

The appropriate counter is also incremented.

CALLING PARAMETERS:
BITOUT should contain bit just output.

LOCAL DATA: ,
BCOUNT (READ/WRITE) .
STORL, STOR2 (READ/WRITE)

COMMON DATA:
BITOUT (READ)
ERRS, RESYNC, ALLOK, NOBLOCKS (READ/WRITE)




CALLED FROM:
‘NAME: QUTPUT BIT
MNEM: PUTBIT HIER: 1.2.1.2

CALLED MODULES:
NAME: NEXT PSEUDO-NOISE BIT

MNEM: NEXTPN HIER: 1.2.1.2.1.1
NAME: REPORT BLOCK ERRORS

MNEM: REP : HIER: 1.2.1.2.1.2
NAME: CHECK KEYBOARD

MNEM: KEYCHK ‘HIER: - 1.2.1.2.1.2.1

NAME: PRINT CHARACTER
MNEM: PUTC HIER: 1.2.1.2.1.2.2

MODULE NAME: NEXT PSEUDO- NOISE BIT

MNEM: ' NEXTPN
HIER: 1.2.1.2.1.1 ‘
-DESC: Generate next pseudo-noise value from internal

shift register and feed it into the shift register to carry on.
The sequence generated is 511.

LOCAL DATA:
CHECK (READ/WRITE)
PN1, PN2 (READ/WRITE)
Reg1ster A returns the PN bit.

CALLED FROM:

NAME: DO BLOCK ERROR CHECKING :
MNEM: ERRCHK HIER: 1.2.1.2.1

MODULE NAME: REPORT BLOCK ERRORS

MNEM: REP
HIER: 1.2.1.2.1.2
DESC: Report on the block errors encountered. Report

includes: total blocks read; number of error free blocks; number
that had bad bits; and number that caused resynchron1zat1on

CALLING PARAMETERS: :
- NOBLOCK, ALLOK, ERRS, RESYNC should contain appropriate
block error values. '

LOCAL DATA:
T8, 0K, NB, RS, MEND - (READ)

COMMON DATA: '
NOBLOCK, ALLOK, ERRS, RESYNC (READ)

CALLED FROM:
NAME: DO BLOCK ERROR CHECKING
MNEM: ERRCHK HIER: 1.2.1.2.1



'CALLED MODULES:
NAME: OUTPUT STRING
MNEM: TEXT HIER: 1.2.1.2.1.2.3

NAME: PRINT DECIMAL NUMBER :
MNEM: PNUM HIER: 1.2.1.2.1.2.4

MODULE NAME: CHECK KEYBOARD

MNEM: A KEYCHK

HIER: 1.2.1.2.1.2.1 -
DESC: Get a character from the keyboard 1if one
waiting, else return zero (null).

LOCAL DATA:
Returns the read character in register A.

COMMON DATA:
STATUS, DATA (READ)

CALLED FROM: :
NAME: DO BLOCK ERROR CHECKING
MNEM: ERRCHK HIER: 1.2.1.2.1

MODULE NAME: PRINT CHARACTER

MNEM: PUTC

HIER: 1.2.1.2.1.2.2

DESC: Print a character on the terminal.

CALLING PARAMETERS: .
Register A contains ASCII value to be printed.

COMMON DATA:
STATUS (READ)
DATA  (WRITE)

CALLED FROM:
: NAME: DO BLOCK ERROR CHECKING
MNEM: ERRCHK HIER: 1.2.1.2.1

NAME: OUTPUT STRING
MNEM:  TEXT HIER: 1.2.1.2.1.2.3

NAME: PRINT DECIMAL NUMBER
MNEM: PNUM - HIER: 1.2.1.2.1.2.4

MODULE NAME: OUTPUT STRING
MNEM: TEXT
HIER: 1.2.1.2.1.2.3

.is

DESC: Print a string on the terminal uhtil a zero (null)

is encountered.




CALLING PARAMETERS: ~
Register X holds starting address of string.

CALLED FROM:
NAME: REPORT BLOCK ERRORS
MNEM: REP - HIER: 1.2.1.2.1.2

CALLED MODULE:

NAME: PRINT CHARACTER
MNEM: PUTC HIER: 1.2.1.2.1.2.2

MODULE NAME: PRINT DECIMAL NUMBER

MNEM: PNUM :
HIER: 1.2.1.2.1.2.4 .
DESC: The D register is printed on the terminal as a

decimal number with zero blanking. .Unsigned.

CALLING PARAMETERS: ,
Register D contains value to be printed.

LOCAL DATA: ~
K10000, K1000, K100, K10, K1 (READ)
~ZBLANK, DCOUNT, TEMP (READ/WRITE)

CALLED FROM: :
NAME: REPORT BLOCK ERRORS
MNEM: REP HIER: 1.2.1.2.1.2

CALLED MODULE: :
NAME: PRINT CHARACTER
MNEM: PUTC HIER: 1.2.1.2.1.2.2
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TRACE BACK AND UFDATE EOINTERS
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CLEAR QUTPUT FORT IMAGE
LOAD PERIFHERAL CONTROL REGISTER CODE
INITIALIZE THE I/0 FORTS

CLEAR ALL INTERRUFT FLAGS
SET DECODED OUTFUT FORT TO AlLL QUTFUTS

A ZERD ON EACH RIT INDICATES ALl INFUTS
SET-A/ZD INFUT FORTS TO-ALL INPUTS (8 RITS)

INITIALLZE HISTORY TO ZEROS

SET COUNTER TO NUMRER OF BYTES IN
LONG TERM HISTORY (ASSUMES #5TATES=644y
LONG TERM HISTORY DEFTH=8)

COUNT=COUNT -1 ,
REFEAT TILL COUNT=0

INITIALIZE FIRST BUFFER OF STATE INFO
SET A=0 AND E=1
CLEAR BOTH METRICS (4 RYTES)

SET FATH FOINTERS (SEQUENTIAL)
ADD 2 TO A AND R

CHECK IF A= LAST STATE

REFEAT TILL DONE

CLEAR CURRENT OUTFUT SHIFT REGISTER
FUT & SOMETHING IN THE FN GENERATOR

T MAKE SURE THAT 1T S8TARTS 0K

SET START FLAG, (RESET ON 18T OK BLOCK)

CLEAR RLOCK COUNT STUFF QUICK
NUMBEFR OF CORRECT BLOCKS

TOTAL NUMBER OF BLOCKS

NUMRBER (OF BLOCKS WITH thURbirthIM
NUMBER OF EBELOCKS WITH ERRORSHER
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* : .
X THIS IS THE STANDARD DECONING ROUTINE. TDOES ALl REQUIRED
M STATE INFORMATION UFDATING FOR A SINGLE RIT.
X aes USES RUFFER 1 (BF1) AS SOURCE AND BF2 AS NESTINATION
* ALS2 USES RUFFER 2 (BF2) AS SOURCE AND BF1 AS DESTINATION
X ’ '
% ON ENTRY?! ND PARAMETERS REQUIRED
X CON EXIT! CONTENTS OF DESTRINATION RUFFER MODIFIED
& NO SFECIAL INFO IS RETURNED
X
:mxx*mw**«**k*xw*«********x*****k**********************************
NONE LTS SPSAVE ¢ RESTORE STACK FOINTER
RTS # AND RETURN TO MAIN LINE
ACE1 LRSE SHIFT $ OUTFUT A RIT AND WAIT FOR NEW INFUT
5TH SFSAVE 3 PRESERVE STACK FOINTER
LIS $80TL-12 # SETUF FOINTER TO INSTRUCTIONS
1.1 FREL-12 3 SETUF STATE INFO FOINTER (SOQURCE)"
BRA EVEACS, § JUMF INTD-THE AGS ROUTINE
ACE2 LESR SHIET §OOUTFUT A RIT AND WAIT FOR NEW INFUT
5TH BESAVE 3 PRESERVE STACK POINTER _
LS FEOTR-12 5 BETUR FOINTER TO INSTRUCTIONS
.o FEF2-12 3 SETUF STATE INFD FOINTER (SOURCE)
EVEAcSs  LEal 124U § UFDATE STATE INFORMATION
» LEAS 12¢5  OAND STATE ORGANIZATION FOINTERS
Loy s & i LOAD FOINTER TO UESTINATION
BER TONE i OIF LESTINATION PDINTER=0 THEN DONE-
LUX sl i GET METRIC A :
LI L2e¢5] } GET BRANCH DISTANCES TO NEW STATE A
LEAX Ay X i ADDCMETRIC A TO BRANCH DISTANCE
5TX oY i TENATIVE WINNER! SAVE AT DESTINATION
LIIX 24U i BET METRIC ®
ARX ; ADD BRANGH DISTANCE TO METRIC E
NI p Y i COMPARE TO TENATIVE WINNER
LD Ayl § GET PATH FOINTERS FOR FUTURE USE
BCE ATOAE i, FROM COMPARE ADJUST NEW. STATE INFO nCFURHINGLY
K ¢ METRIC B BETTER? ALL STATE INFO MUST BE UPDATED
HTX s Y i OSAVE METRIC
8TR QY } SAVE FATH FOINTER
BRA NXTEACS 3 GOTO NEXT ACS OFERATION
% FOMETRIC A BETTERD JUST URDATE PATH SINCE METRIC DONE
ATOAE 5TA de¥ i OHAVE FATH FOINTER :
NXTEAGS LEAY FEeY i OCALE NEW DESTINATION FOINTER ((HSTATES/2)X3)
L.TX vl j OGET METRIC A _
IUU [4e87 $OGET BRANCH DISTANCES TO NEW STATE R
X X POADD METRIC A& TO BRANCH DISTANCE
pY 3

TENATIVE WINNERY SAVE AT HLSTthTIUN



p:d ’
ATOBE

QUAaCs

%

X
ATOAD

NXTOACS

%
ATORD

11X
ARX
CMPX

LI
TRCCT T

5TX
STR
BRA

RGE

8TX
ETR
BRA

5TA

LEAY

L.IX
LI

LEAX
BTX

LIEX
“aBX
OMP K
(O

RGO

8TX
STH
LB

8ThA
LERA

2l

v Y
491)

- ATORE

s Y
45Y

QUnACS

4yY

by 5
Grl
(8851
Ay X
2 Y

gyl

oY
1090
ATOAD

;Y
30Y
NXTOALS

3yY

Dby Y
Gyl)
L10+857
Ay X

y Y

Sl

v Y
109U
ATORG

v Y
XY
EVEACS

IvyY
EVEALS

w> @y oy x>

wF an D Er ey

D R e L

R TR T TR 1

N> N MR E> e “r Wy Er ws 2> ar or

AR e v e

~r e

GET METRIC R

ALY BRANCH DISTANCE TO METRIC R

COMFARE TO TENATIVE WINNER

GET FATH FOINTERS FOR FUTURE USE

FROM COMFARE "ADJUST NEW STATE INFO ACCORDINGLY

METRIC B BETTER: aAlLL STATE INFO MUST BE UFDATED
SAVE METRIC

SAVE FATH POINTER

GOTO NEXT ACS OFERATION

METRIC A BETTER! JUST FATH SINCE METRIC DONE
SAVE FATH FOINTER

LOATI FOINTER TO DESTINATION

GET METRIC A

GET. BRANCH DISTANCES TO NEW STATE A
ADD BRANCH DISTANCE TO METRIC A -
TENATIVE WINNER?: SAVE AT DESTINATION

GET METRIC R :

AL BRANCH DISTANCE TO METRIC B

COMFARE TO TENATIVE WINNER

GET FATH FOINTERS FOR FUTURE USE

FROM COMFARE ADJUST STATE -INFO ACCORDINGLY

METRIC B BETTER! All STATE INFO MUST BE UFDATED
5AVE METRIC

SAVE F&aTH FPOINTER

GOTO NEXT ACS OFERATION

METRIC A BETTER! JUST UFDATE FATH SINCE METRIC IONE

SAVE FATH FOINTER

CALC NEW DESTINATION FOINTER ((ESTATES/2)X3)
GET METRIC A

GET BRANCH DISTANCE TO NEW STATE & |

AND METRIC A TO BREACH DISTANCE

TENATIVE WINNER? SAVE AT DESTINATION

GET METRIC ®

AL RRANGCH DISTANCE TO METRIC E

COMFARE TD TENATIVE WINNER

GET FATH FOINTERS FOR FUTURE

FROM COMPARE ADJUST STATE INFO ACCORDINGLY

METRIC R RETTER? ALL STATE INFO MUST EBE UFDATED
SAVE METRIE ,

SAVE FATH FOINTER

GOTO NEXT ACS OFERATION

METRIC A& BETTERD JUST UFDATE PATH SINCE FATH DONE

8AVE FATH POINTER




X
X
X
X
X
X
X
X
X
*
*

SCALE

SCLOOF

NOTRG1

NOTREZ2

********************************************************************

INSURE THAT METRICS NEUER DUERFLDN. MUST BRE CALLELD BEFDRE
REST METRICS REACH 16000. ‘

SUBTRHCT EESTM FROM ALL METRICS. HALVE ANY METRIC GREATER
THAN 32K TO FREVENT OVERFLOW. ' :

ON ENTRY: REG. U FOINTS TO INFO RUFFER TO RE SCALED

CON EXIT:  THE INDICATED BUFFER HAS BEEN MODIFIEH

NO SFECIAL INFO IS RETURNELD

********M***#*******************************************************

L1 #32 # GET COUNT" NUMEER OF STATE FAIRS (#8TATES/Z)
8Ta SCOUNT - ‘

FULU Il # GET.FIRST METRIC OF FAIR

SURI BRESTM ¢ SCALE. METRIC

EFI. NOTRCL ¢ CHECK IF CLOSE TO OVERFLOW

L.SRA ¢+ CHOF IF CLOSE TO OQVERFLOW

8TH -2yU ¢ SAVE UFDATED METRIC RACK

FULU IeY GET METRIC (Y = FATH FOINTERS UNUSETID

’
SURD RESTM ¢ 8CALE METRIC
EBFL NOTRCZ2 3 CHECK IF CLOSE TO OVERFLOW
L.SRA § CHOF IF CLOSE TO QVERFLOW
STH ~4 5l ¢ SAVE UFIATED METRIC BACK
DEC SCOUNT  § COUNT=COUNT-1
RNE SCLOOF. - 3+ REFEAT
RTS ' § RETURN TO MQIN LINE
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Tk
X
b
*
x
x
*

SE&RIH

SLO0F
SMID

XBEST

&

YREST

x

LCHK

LOCATE

FOINTER

20K S s ob e e Aol OK 0K Sl KKK K SRR K K s KK s s st o6 oo KIOR Sk o Rl sk oK sk sk sk ok ok skoRoR sk sl skofok st ko

STATE WITH LOWEST METRIC. THE METRIC AND PATH

FOR THIS STATE ARE SAVED IN RESTM AND RESTV.

ON ENTRY? REG. U FOINTS TO THE INFO RUFFER TO RE SEARCHED

ON EXIT

L 13K
8TX
(4]
8ThA.
FuULU
BRA

FULU
CHFPX
BCC

©LMEX

BCO

LIA
ETa
8TX
TN

CMPY
BCC

LDA
8TA
STY

DEC
BNE
RTS

¢ LOCATIONS RESTMs RESTY CONTAIN REST METRIC AND
FATH FOINTER RESFECTIVELY.,
NOTES CONTENTS 0OF all. REGISTERS LOST

#%***%**$%**$%$***%*************************************************

FEOFFFF 3 SET BEST METRIC = WORST FOSSIBLE
BESTM

#32 $ BET COUNT= NUMEER OF STATE FAIRS (#STATES/2)
COUNT S .
XyY ' §# GET FIRST TWO METRICS FROM STATE INFO RUFFER
SMII # GOTO COMFARE
DyXsY i GET TWO METRICS (It = PREVIOUS FATH FOINTERS»
-2l i COMFARE JUST FETOHED METRICS TO EACH OTHER
YREGT i BELECT WHICHEVER IS BETTER
RESTM 7 COMPARE FIRST METRIC TO BEST METRIC
LOCHK § IF NO NEW BEST METRIC THEN SKIF TO END

‘ i ELSE NEW BEST METRICY UPDATE RBEST METRIC
ylJ # GET FATH FOINTER CORRESFONDING TO NEW BEST METRIC
BmEgTY i SAVE IT AlWAy
RESTH i UFDATE BEST METRIC
LOHK § BRIF TO END
RESTM § COMFARE SECOND METRIC TO RBEST METRIC
L.GHK # IF NO NEW BEST METRIC THEN SKIF TO END

# ELSE NEW REST METRIC?! UFDATE BEST METRIC

sl i GET FATH FOINTER CORRESPONDING TO NEW BEST METRIC
RESTV .3 SaAVE IT AlWAY
RESTM i UFDATE BEST METRIC
COUNT o COUNT=COUNT-1
§1.00F § AND! REFEAT
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HIST LIy CURCOL. 3 GET CURRENT STARTING COLUMN OF HISTORY (CURCOL)
L.IA RESTV 3 GET INITIAL FATH FOINTER (CORRISFONIS TD RESTM)
10X Y $ GET ADDRESS OF FIRST COLUMN OF HISTORY
LA Ay X $ LDOKUF NEXT FATH FOINTER IN THAT COLUMN
LIX -2yY 3 GET_ANDRESS OF FREVIOUS.COLUMN OF HISTORY
LA As X i LODOKUF NEXT FOINTER IN THAT COLUMN
S LIX sty Y : : _
LA Ay X $OTHIS PROCESS CONTINUES FOR HOWEVER MANY
LIIX ~4rY  § COLUMNS OF HISTORY ARE REING USED (8)
LA fy X : ’ : ,
LIX ~RyY # FOR A DEPTH OF 8 LEVELS THE LAST COLUMN IS
LA Ay X 3 REFERENCED RY =14sY  IF ONLY & LEVELS WERE
LIX =05 Y ¢ REING USED THE LAST REFERENCE WOULD RE -10sY
LA Ay X :
LY —1 Y

CLUA & e X

LXK iy « _
LIA Ay X 5 FINAL FOINTER IS MOST LIKELY OUTFUT
5TA ouT 3 FOR TESTING SAVE IN THE QUTFUT LOCATION
LEAY 2rY 3 MOVE CURRENT COLUMM FOINTER TO NEXT COLUMN
OMPY FCOLLIM 3 IF END OF LIST REACHED THEN
EBNIE NXCOL.
LIy FOROLEEG 3 START AT BEGINNING AGAIN

NXCOL. 8TY CURCOL # SAVE RACK AS CURRENT COLUMN

% : FOMOVE PATH FOINTERS INTO LONG TERM HISTORY
LIY oY POGET FOINTER TO START OF NEW CURRKENT COLUMN
Lo I 1. ¢ OBET I ’

ML O L.I1X vl bOGET FATR OF FATH FOINTERS
aTn 2 U FOPUT IN NEW FAIR OF FATH FOINTERS
aTX v Yok POSAVE OLD FATR-IN HISTORY
LEAU byl i ADVANCE RUFFER FOINTER
AL FHR02 i INCREMENT NEW FAIR OF FATH FOINTERS
CMFA b4 ¢ CHECK FOR DONE :
BNE HL.OOF i REFEAT
KTS 3 RETURN TO MAIN LLINE

THE HISTORY UFDATE SECTION .

THE FATH FOINTER FOUNIN RY SEARCH IS USED TO LOOKUF THE

REST QUTFUT FROM THE LONG TERM HISTORY. THIS SETION ALSO.
URDATES THE LONG TERM HISTORY RY MOVING THE FOINTERS STORED
IN THE STATE INFORMATION INTO THE LONG TERM HISTORY AN
CREATING NEW FOINTERS T0O REFERENCE: THE HISTORY.

DN ENTRY?! RESTV I8 THE INITIAL POINTER TO LONG TERM HISTORY
ON EXTT?  OUT HOLLS THE EBITS (ONE CONSTRAINT LENGTH) THAT

ARE THE M08T LIKELY QUTFUT
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X

X THE SHIFT ROUTINE COORDINATES AlL THE FARALLEL I/0
K ’ ROUTINES . : o
* THE RRANCH DISTANCES ARE ALSO CALCULATED AS S00N AS
X THE INTEGRATED EYE VALUES ARE READ IN,

¥ .
SRIKSK KR 3K 3K KKK KK KKK KR 3K K K 3K KK oK K K K 3K KK 3K K K 3K oK 3K K K 3K 3K 3K K 3K 3K 3K 3K K K 3K K 3K KK KoK oK K K K KKK KK K

X § SELECT APPRDPRIATE MASK RY COMMENTING (%)
* 3 ALL UM-NEEDED MASBKS

BIT QUANTIZATION
BIT QUANTIZATION
BIT QUANTIZATION
BIT QUANTIZATION
MABK FOR BIT QUANTIZATION
MABK FOR 2 BIT QUANTIZATION
MASK FOR HARD DECODING '

KMASK EQuU Z1111111
MASK EQU 40111111
¥MABK EQU 420011111
i TRMABRT TTERU 40001111
o XMASBK EQU 40000111
KMASK EQU 20000011
*¥MABK © EQU 40000001

MASK FOR
MASK FOR
MABK FOR
MASBK FOR

WD o N

P €5 €F 6P €> €5 “€b

REMEMBER TO ADMUST THE ASTRISKS BELOW
TO AGREE WITH ABOVE SELECTED MASK

X
. .,‘.:".f’n'.'.-.,.»

s .>

SHIFT .RSR FUTBEIT
LESK STROBURF
BSR GETRIT

OQUTFUT DATA
CACTIVE STROBE TO INDICATE QUTRFUT DATA VALID
GET DATA AND ROTATE INTO FOSITION

<y s ar

-8RA
X LSRA
% L8RA
¥ L8RA
X
¥

BRIT SOFT DECODING IF LAST % I8 HERE
BRIT SOFT DECODING IF LAST %X IS
BIT SOFT DECODING IF LAST XIS
BIT S0FT DECODING TF LASBT % I8
BET BOFT DECONTNG TF LAST % I8
BRIT SOFT DECODINMG IF LABT X I8

LSRA
LBRA

A car cer vk Gy Cr
S IREM RS 3% SN

X MOOSOFT DECODEMG USED (HAaRD DECLSETOM
¥ : TF MO ASTRICKS APFEAR OFFOSTTE THE L SREA

* THE ASTRISKEY FOR THE 6ROUVE 4
* CREOLLOE THE SAME PFATTERN A48 FOP

<k

SAUE EYEG UALLIE FOR DATER OALCULATTIONS
EOGAVE EYEL walUF FOR LATER CALCULATIONG
Sel UL ATE MEGATT TUE OF EYE) UsLUE

AU TT FOR CATER CALCULATION

3% alk
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A ——————— b S g Anas -

B A

TEMFO

AT

8T
STH
SThH
HTA
5Th
BTA
GTA
STH

CENRR

BT

CATITE

GTE
STh
8TH
BTk
BTH

QTR

STh

CLna

AU0A
870
STo
BT
ST
8Th
STy
STA
8TA

- LTIA
ADDIA™

STA
STA .

8TA T

8TA
8TA.

BTA
8TA
LESR
LEGR

BTN

L

o COMET

CTUTIIT

TEMFH
CTI000
T1001
T1010
TiO0t1 -
TOOL041
THL1L041
TLO1L0O41
T111041

EMASK  $
COME ;
TEMPA 8
TO1LO0
TOLO1
TOLL0

S TO11
TEOOL+1,
TOLOL 41

sl:)\ 'r IE{ .-.». e —— -\_--T.—J;—()-O1-7*:1:._“*‘”v~ L R .‘:-M.Jv-wn‘_—,.—‘“. v u.....‘--..- --.-._.4«--...,. . . TPt g

TILGT+1

S TEMPA
CTEMEER §
TOOOO
CT0001
TOOLC
TOOLL
TOOOO+HL
TOLGO+1
T1OOOH,

CTL10041

COMaA

T1100
T1101

TL111L
S TOOLL+L

TLO11+1

P14

STROBON
KEYCHK

o CALCULATE THE HﬁﬁNCH DISTANCE FOR THE

CALCULATE MEGATIVE OF EYEQ VALUE
SAVE TT FOR CALCULATIONS
CalCULATE  THE BRANCH DIETANCE FOR THE

LAREL 01

CALCULATE THE BRANCH DISTANCE FOR THE

LABEL 00

T T QLR

LOWER STRORE WHILE DATA STILL VALID

REQ ™7 TEMPD ™73 OF TIONAL $ T IF TKEY FUSHED ™ GTQR e

D e I




+f

.....

wth FUR ATIC HDQ&H TU IND]P ATE THﬂT STAB! FYF DATA
I8 AVAILABLE ON THE PARALLEL FORTS, “THIS ﬁOUTINE UQEQ
T TTTHE TINTERNAL (R ITA) TEDGE” TRIGGERED FLAG"TD DETECT ™ ’
. IF DATA IS WAITING., LESS RELIARLE LEVEL TRIGGERING
COULD BE USED AS RIT 7 OF ADAT Iq CDNNECTED TO THE ADC
'”“BDARH "REATY™ GIGNAL'”'““*“"”“”' P T T

NOTE! THERE ARE TWD GETEIT RDUTINEQ, DNE FOR REAL DATA

U7 UAND DNE FOR TESTING SOFTWARE; GETBIT (TEST) ™7~
ONE ‘OF THE ROUTINES QHUULD RE COMENTED OUT AT -

‘ S ALL TIMES. - e
-—.....',..* ’ : ™ A_ T st e C e ememameiwane e e e e bt
T K . ON ENTRY: NO FARAMbTER

g

****-\-%v&v’é**‘é*

X S - . ‘
X ON- FXIT’ AyB HOLD MAPFED VALUES OF THE EYE SIGNALS
g e LT T RPN s s s st
¥
X

**#**R*******M***************************************************

e petp e [P

GETRIT LA IFR $ CHECK IF ROTH PDRTS HAVE DATA COMING IN
S COMEA  RBLR o e oee e
ENE GETRIT § IF NOT THEN WAIT UNTIL DATA COMING IN
57TA IFR i CLEAR FLAGS
' LD ADAT § READ ONE OF THE INTEGRATED EYE VALUES
f LoA BUAT 7 READ THE OTHER INTEGRATED EYE VALUE
COMaA ' i COMPLEMENT TO MAKE COMFPATIRLE WITH SOFTWARE
e e Al e L T Sl
‘ ANDA . FH7F § GET RID OF RIT 7 SINCE IT IS UNDEFINED
ANDE FE7F # GET RID OF RIT 7 BINCE IT IS UNDEFINED
TTERX T #MAP $. GET FOINTER TO START OF MAFFING AREA
LIA ArX # RUN BOTH EYE VALUES THRDUGH THE MAFPING
LDEB By X # REGION OF MEMDR
RTS o §

RETURN e
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¥ :

X EXTRACTS AN QUTFUT BIT FROM THE SHIFT REGISTER (OQUT)
¥ COWHIOHy BETUF RBY HIST: CONTAINS THE MOST LIKELY QUTFUT
ES SEQUENCE. THIS DATA I8 SENT TO THE QUTFUT FORT.

KRR SRR AR AOK KKK K A AOK KHOR K K KA ROK K KK KK K 3K K KK SRR K RRORORSOROK KR kKR ROk koK

CONVERT TO ASCIT S0 THAT THE VALUE MAY

FUTRIT LA *$ 18 #
L.SF QuT ¢ EASILY RE FRINTED ON THE TERMINAL IF NEEDED
FOLA& :
K LRGR FUTE OOFTIONALY QUTFUT RIT MAY RE FRINTED
ANTIA FHOL } CONVERT RACK TO RINARY
[} QUTEFORT 3 BET FREVIOUS VALUE
QYA RITOUT 3 STORE CURRENT AND SET STATUS RITSH
BNE SETING § CHECK IF OUTFUT I8 1 OR O
ANDIE *GFE i ZERO IS OUTFUT: CLEAR LOW EIT
ERA FUTDONE ‘ ‘
BETING  ORR 1 $ OONE I8 QUTPUTS 8ET L.OW RIT
FUTHONE STR - QUTFORT # SAVE FORT VALUE :
STR LnouT i OACTUALLY OUTFUT VALUE
LRER ERRCHK 3 DO FRROR CHECKING
B8 : "
STRORUF 1L.0A QUTFORT 3 RAISE STRORE: INDICATING DATA QUTRUT VALID
OFRA HH2 : ‘
QT A nouT
8TA OUTFORT
FTS
STROEIN LIA QUTFORT § LOWER STROERE.: COMPLETING THE CLOCK FULSE
ANTIA EGFI a o .
STA nouT
. 8TA OUTFORT
RTS



ES
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ERRECHK

. NO

v

R
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THE T8 THE BLOCK ERROR CHECKING SECTIONs WITH ITS QWN
PN OSEQUENDE GENERATOR .

ON ENTRY ! USES VARIABLE?D RITOUT TO SAMFLE OQUTPUT
OM EXITS  OQUTPUT IS OM TERMINAL
NO - SPECIAL INFO RETURNED

7KK K Ok s st el sRole ol ol sk ok ok R SR sk A ROR MK KKK KoK KK K KKK SR SKOK 3K ROKK KKK SRR K Kok sk Sk skskek

1.THA BITOUT v ROTATE DECODED RIT INTO STORAGE TN [CASE
REORA ‘ PPN GHIFT REGISTER NEEDS RELOADING LLATER
ROL BTORL

ROL. ETORZ

LI RCOUNT 5 ADD ONE TO RLOCK RIT COUNT

AL 1
5TD BCOUNT

LEGR NEXTFN
EORA BITOUT
BEQ k1
LI ERRORS
ADTHI 1

FREDICT WHAT THIS BIT SHOULD BE
COMFARE ACTUAL AND FREDICTED RITS

ar CGr e e

AR ONE TO THE ERROR COUNT OTHERWILSE

S0 ERFORS

CHEGK FOR END OF RLOCK
FOUSTNG BLOCKLEN

L1070 RECOUNT
CHMPL FRLOCKLED
LENE FINT

<~ e

-a»

RO END OF BLLOCK REFORT

GOTO NO ERRORS SECTION IF NO ERRORS
CHEGK TF RESYNCING NEEDED

GOTO RESYNCING SECTION

AT ONE TO RAD RLOCK COUNT

LI ERRORS
RBEQ oyt
CHF
RCC
LI
AN
ST
L.nn
THR . Vo i
AL 120
LMF 7
ELS £33
AT 7
RRH E3

R A e L

GET THE NUMRER 0OF RBIT ERRORS

CIGNORE MSR Ay =0 SINCE RLOCKLENM=16)
FRINT OUT # OF ERRORS

USE ALFHARIT IF DIGITS 0-9 INSUFFICIENT
0=-9 I8 SUFFICYENT ‘

ALY OFFSET INTO A-Z SYMBOLS

FRINT STUFF

“ty 8F Gk S@b N3F 2R ek

LI BYORE ;oOGET RIN OF DONMT CARE BITS
ANTH i) 3 SAVING ONLY THE LSE

- 8TA STORZ
.10 STORY 7 UBE STORAGE TO RESYNC

REQ £ FODONYT FILL PNS1L REGISTER WITH 0-STATE!
8T FN1
LI RESYNE
AT #1 :
5TH RESYNG
l..nA 8
BRA E3

<r

AT ONE. TO RE SYNC COUNT

ar

LOATT CHARACTER INDTCATING RESYNC
FRINT STUFF '

<»

JUMF TD NORMAL SECTION IF THEY ARE THE SAME

SJUME TOOEND OF ROUTINE IF NOT END OF RLOCK




- e .

Lo
AT
ST

LI
REQ
CLR
L.
HTN
5T

SHBTH

L.0X
LESR

L.IA
LESR
01
CLR
LR
LR
LI
AL
8T
CMPT

BEQ

ANDE
ENE -
LIX

LLEHSR

- LBER

RBEQ
LESR
RTN

KT8

ALLOK ;
1

AL LOK
SFLAG ¥
E5 §
SFLAG §

#0
REGYNG
NORLOCKRS
ERRES
FEMEND 3
TEXT

TN ¥
FUTC
FERRORS 3
ERRORS+1
BOOUNT
BOOUNT 41
NORLOCKS.
1 '
NORLOCKS
HRLIMIT
E& ]

FHROGLLLILL

E4 $
EMEND ¢
TEXT $
KEYOHK
FINT

£
k4
3
REF . ¢
.
¥
:

Iy
y

§
N
§

THE BLOCK IS FERFECTS ADD ONE TO FERFECT COUNT

GET RE-SYNL FLAG

JUST FINISHED INITIAL RE-8YNC?
YES: INITIALYIZE STATISTICS

AUTFUT CR-LF TO ISOLATE 18T RE-SYNC

FRINT A DOT TO INDICATE PERFECT RLOCK

CLEAR BLOCK COUNTERS
ERROR COUNT :

BLOCK RIT COUNTER .
AN ONE TO NUMBER OF RBLOCKS FROCESSED

IF DONE ALL BLOCKS» STOF AND REFORT

i HAVE FROCESSED MOD 64 BLOCKS?.
NOPE : ‘
YEFy QUTFUT A CRLF

CHECK FOR REYROARD COMMAND
JUMPS TO RETURN IF NO KEY FUSHED
no REFORT . ‘ :
STOF AND RETURN TO MONITOR
RETURN
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¢

* THIS I8 A FN SEQUENCE GENERATOR USED RBY THE BKLOCK ERROR
X CHECKING ROUTINES, SETUF FOR PN SEQUENCE 511

¥

X ON ENTRY! NO ENRTY FPARAMETERS

X OM EXIT! REG. A HOLDS A SINGLE BIT EXFECTED OUTFUT

kS

'\¥$k*¥k**%ﬂvm**?**X*?******X*****k********ﬂ******$$*W*********$W#

NEXTFN  CLRA i CLEAR BIT FARITY COUNT
LR ML o LOAD B WITH SHIFT REGISTER
BITR FE10 # CHECK TARF AT RBIT O
BEQ Nl
INGA §ALD ONE IF RBIT SET
N1 LIOE FN2 poLOAD B WITH REST OF SHIFT REGISTER
BRITHE bl 5 CHECK TAF AT RIT 9 O0F SHIFT REGISTER
REQ N2
INCA - §OADD OMNE IF RIT SET
N2 . ANDA #1 ;. ISOLATE LOWEST RBIT OF TOTAL
5TA CHECK i BAVE RESULT FOR LATER
RO s ROTATE RESULT INTO THE CARRY
ROL FN1 i ROTATE CARRY INTO FN SHIFT REGISTER
ROL. . N2 ‘
N3 1L.IA CHECK § RELOAD RESULT INTO A REGISTER

TS




¢

>

***********$******************************************************

THIE REPQRT FUNCTION FRINTS THE BLOCK ERROR VARIAELES ON
THE SCREEN WITH TEXT EXFLAINATIONS AND DECIMAL QUTFUT

ON ENTRY: NO FARAMETERS 'EXCEFT ERROR COUNTS IN MEMORY

ON EXIT?
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TTH §# FRINT NUMBER OF RLOCKS MESSAGE

TEXT

NOBLOCK 3 FRINT NUMBER OF RLOCKS READ IN DECIMAL
FNUM :

FON ¥ PRINT NUMBER OF CORRECT RLOUKS MESSAGE
TEXT .

ALLOKR # PRINT NUMBER OF RLOCKS THAT WERE CORRECT
FNMUM

ENE
TEXT

. .

FRINT BAD BLOCKS MESSAGE (ERRORSFERRLIM)

ERRS $ FRINT NUMBER OF RLOCKS WITH & FEW ERRORS
FNUM 5 :
BRE i FRINT NUMBER OF RESYNCS MESSAGE

TEXT . : »
RESYNG ¥ FRINT NUMEBER OF RLOCKS CAUSING RESYNCING
FNUM :

#MENII + ANVANCE TO NEXT DISPLAY LINE

TEXT C

§ TEXT USED IN THE REFORT FUNCTION
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SBTATUS
DATH

KEYCHRK

COOME

GETO

FUTE

TEXT

TOONE

THIS SECTION CONTAIMNS THE I/0 ROUTINES USED TO COMMUNICATE

WITH THE

THE TERMINAL .

ROUTINES INCLUDE?

KEYCHK -

GETC

FUTC -

TEXT -

FNUM =

FETCH CHAR. FROM KEYROARD OR NULL IF NONE
RETURN VALUE IN REG &

- WALT FOR KEYROARD CHAR. RETURN VLAUE IN REG A

(CURRENTLY UNUSED BUT IS AVAILAELE)D
FRINT CHAR I8 REG A ON TERMINAL. REG B LOST

FRENT NULL TERMIMATEDL STRING FOINTED TO BY
REG X, VALUE OF REG AyB LOST

FRINT THE VALUE. OF REG 0 AS AN UNSIGNED INTEGER.
ZERO BLANKING I8 TIONE. VALUE OF REG AyByX LOST.
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TERMINAL DRIVER ROUTIMES

QLU $OFI

TERMINAL STATUS REGISTER

y
AN $OFNC i TERMINAL DATAH REGISTER

LA GTATUS

CHECK STATUS FOR KEY PLUSH

.

ANTIA HH08

BEQ CHONE
LOA DATA

RTS

BSE
REQ
RTS

KEYCHK
GETC

IF NO KEY FUSHED THEN JUST RETURN
ELSE GET THE KEY’S VALUE AND RETURN

|y cer

REEF CHECKING THE KEYROARD TILL
A KEY 18 PUSHED. '
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REQ
57A

RTS

L.
BEQ
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ERA
RTS

STATUS
i N Y]
FUTE
DATA

r X+
THONE
FUTE
TEXT

~r ey I

CHECK 8TATUS TO SEE IF TERMINAL READY

WALT UNTIL SFACE AVATLABLE TO OUTFUT CHAR
OQUTFUT CHARACTER AND RETURN

GET CHARACTER AT POINTER
CHECK T0O SEE IF ITS THE LAST CHAR. (NULL)

FRINT THE CHARACTER ANI LOOF IF NOT NULL

NULL ENCOUNTERED 80 RETURN
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K100
K10
K1
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S8Tn
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EEQ
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RTE
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FRIGIT
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GET START OF FOWERS LIST
SET FOR ZERO RLANKING
CLEAR DIGIT COUNT

SUBRTRACT THE CURRENT FUMER

DCOUNT SHOWS HOW MANY TIMES CURRENT FOWER FITS

REFEAT IF THE FOWER FIT

ACTUALLY FIT ONE LESS THAN DCOUNT

AN FOWER CAUSE WENT TOO FAR

SAVE TT AWAY WHILE THE DIGIT IS PRINTED
FREFARE DIGIT

CIF DTIGLIT I8 NOT ZERO! PRINT REGARDLESS

ELSE TEST IF ZERQS ARE BEING BLANKED

BRLANK TIT

CONVERT DIGIT TO ASBCII

FRINT IT ON THE TERMINAL

NOW THAT A DIGIT HAS REEN PRINTED DISARLE
MOVE TO NEXT FOWER ON THE LIST

GET REMAINDER OF TRHE NUMEBER

REFEAT IF NOT AT END OF FOWER LIST

THE REMAINDER IS NOW THE LAST DIGIT
CONVERT TO ASCII

FRINT IT AND RETURN

THE ROUTINE FNUM
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I/0 ROUTINES
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EQLU
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E L
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SOFEQ
$OFEL
SCFED -
$OFE3
$CFER
$CFEC
$CFED
$OFEE
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THAT USE THE I/0 FORT TO GET INFUT EYE
OQUTRUT DECODED DATA TO DATA ERROR ANALYZER.
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FORT B DATA REGISTER

FORT A DATA REGISTER

FORT B DATA DIRECTION REGISTER-

FORT A DATA NIRECTION REGISTER

ROTH FORTS  AUXILLARY CONTROL REGISTER
ROTH PORTS  PERIFHERAL CONTROL REGISTER
BOTH. FORTS  INTERRUPT FLAG REGISTER
BOTH FORTS  INTERRUPT CONTROL REGISTER

QUTEUT REGISTER FOR DECODED DIATA AND CLOCK
DATA DIRECTION REGISTER FOR AROVE

RLANKING
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