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I .  
1.0 	INTRODUCTION  

The mathematics in this document are used in several computer 

programs written by SED. The most recent programs are: 

- ORBIT PREDICTION SOFTWARE (ops) 

• which is an interactive program on a SIGMA 9 computer 

- ORBIT DETERMINATION, PREDICTION, AND CORRECTION PROGRAM 

•(ODAP, ODAI, ODPAC)' 	7- e  

- which.is  an interactive program on a Sigma 9 computer; 

the latest version is ODPAC - 

- ODAP for SARSAT 	• _ 
which is -a lile-dri-ven program on an HP 1000 computer 
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1.1 Orbit Prediction  

( 

1 

The orbit of a satellite is defined by a set of orbital elements at a 

specified time. These are two basic sets of orbital elements used herein; 

spacecraft position r ) and velocity (v
x' 

vs,, 
 vz

) and a set - of 

velocity space elements (C
1' 

C
g2' 

C
g3 

R
fl Rf2' A). 

In addition, other 
9' 	'  

sets of orbital elements may be used for input or output. 

For orbit prediction, we start with a set of orbital elements at a 

specified time and predict the orbital elements at another time. We may 

then use the orbital elements to predict other things such as tracking 

station look angles. 

There are many forces which affect the motion of a satellite. The 

ones considered herein are those which are most significaht for an earth 

orbiting satellite . ; tha'4 is the central body attraction of the earth, the 

nonsphericity of the earth, the solar and lunar gravity, solar radiation 

pressure and atmospheric drag. 
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1.2 Orbit Determination  

The objective of orbit determination is to find accurate values for a 

set of orbital elements which describe the orbit of the satellite, using 

observations of the satellite. Many types of observations are possible 

depending on the stations which are tracking the satellite. The analytics 
are developed for azimuth,blevation, range and range-rate. 

There are two basic approaches to orbit determination, real-time and 

batch. In real-time orbit determination, a new estimate of orbital elements 

may be obtained each time a measurement is taken. In batch orbit determin-

ation, many measurements are obtained over a time span, and a new estimate 

of orbital elements is not produced until all measurements are available. 
The orbit estimator described herein uses real-time orbit determination. 

The orbit estimator uses a process of prediction and correction. 

It is started with an initial estimate of spacecraft orbital elements, X0  . 

This estimate is updated to the time of a measurement and a predicted 

measurement h (X) is generated. The difference between the actual measurement 

and the predicted measurement is calculated, and the difference is used 

to improve estimates of the orbital elements. The new estimate of orbital 

elements is then updated to the time of the next measurement and the process 

is repeated. 

There are several factors which determine how the orbital elements are 

corrected. An estimate of the measurement  noise, the measurement noise 

covariance matrix, Q, is a stored constant. An estimate of the accuracy of the 

orbital elements, the error covariance matrix, R, is stored and updated when 

necessary. A measurement matrix, H, which maps orbital elements onto corre-

sponding measurements is calculated each time a measurement is taken. These 

factors are all combined to form a Kalman gain matrix, K, which is multiplied 

by the difference between predicted and actual measurement to give the 

correction that is applied to the orbital elements. 

Figure 1.2/1 shows the data flow within the orbit estimator. 
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II 2 . 0  DEFINITIONS  

2.1 Fundamental Reference Frames  

2.1,1 Introduction 

The motion of a satellite is best described in a coordinate frame 
which is not rotating, or is rotating so slowly that the rotation may 
be neglected. For orbit determination and prediction, the plane of 
the earth's equator and the plane of the earth's orbit, or ecliptic, 
are used as .fundamental quantities. 

While the plane of the ecliptic is almrost fixed relative to  the stars,  

the equatorial plane is not. Due to the asphericity of the earth, the 

sun produces a torque on the earth which results in a wobbling or 

precessional motion similar to that of a' simple top. Because the earth's 

equator is tilted 231/20  to the plane of the ecliptic, the polar axis 

sweeps out a cone-shaped surface in space with a semi-vertex angle of 

231/40 . As the earth's axis precesses, the line-of-intersection of the 

equator and the ecliptic swings westward slowly. The period of the 

precession is about 26,000 years, so the equinox direction shifts 

westward about 50 arc-seconds per year. 

The muon also produces a torque on the earth's equatorial bulge. 

However, the moon's orbital plane precesses due to solar perturbation 

with a period of about 18.6 years, so the lunar-caused precession has 

this same period. The effect of the moon is to superimpose a slight 

nodding motion called "nutation", with a period of 18.6 years, on the 

slow westward precession caused by the sun. 

The mean equator is the position of the equator when precession 

alone is taken into account. The true equator is the actual equator, 

accounting for both precession and nutation.  •Similarily the mean 

equinox is the intersection of the mean equator and the ecliptic, and 

the true equinox is the intersection of the true equator and the 

ecliptic. 
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The mean equator and equinox is frequently used as a reference for 

specifying the motion of the sun and the planets, because simple equations 

may be useà which are valid over many years. The true equator and equinox 

is used for specifying the orientation of the earth. 	. 

When extreme accuracy is required, it is necessary to consider the 

motion of the ecliptic (less than 50 arc seconds per century), but all 

rotations of the ecliptic are neglected herein. Also, polar wandering 

over a distance of '50 mi (or <2 arc seconds angular change) is neglected 

herein. 

• 'The following axes X, Y, Z are alo referred to as gl, g2, g3; as in 

Cgl, Cg2, Cg3 the cOmponents of the C vector. 

2.1.2 Mean Epator and Mean Eguinox 

Has centre at earth centre of gravity and coordinate axes 

X - direction of mean vernal equinox 

Y - forms right-handed system with X and Z axes 

- north normal to mean equator. 

2.1.3 True Equator and True Equinox  

Has centre at earth centre of gravity and coordinate axes 

X - direction of true vernal equinox 

Y - forms right-handed system with X and Z axes 

- north normal to true equator. 

2.1.4 Ecliptic and Mean Equinox  

Has centre at earth centre of gravity and coordinate axes 

II X - direction of mean vernal equinox 

( n 	, 

I 

' 	
-_ 

Y - forms right-handed system with X and Z axes 

- northward normal to ecliptic. 



2.2.1 Introduction 

In this  section,  we define additional reference frames which  are 

 used throughout this document. 
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2.2 Other Reference Frames  
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2.2.2 Orbit . Frame 

Has centre at earth centre of gravity and coordinate axes 

- direction of perigee 

Y - in orbit plane 90°  from X axis such that the 

spacecràft moves from, X to Y . 

Z - forms a right handed coordinate system with the 

. 	X and Y axes, and is in the direction of the 

orbit angular momentum: 

If the orbit is circular, the perigee is undefined. Then it is 
arbitrarily set to coincide with the ascending node; that is, the 

argument of the periapsis is zero. If the inclination is zero, the 

longitude of ascending node is undefined, and it is arbitrarily set 

to coincide with the vernal equinox. 

2.2.3 Orbit Frame Referenced to Ascending Node 

Has origin at earth centre of gravity and coordinate axes 

- direction of ascending node,or crossing of the equator 
in a northward direction. 

Y - in orbit plane 90°  from X .  axis such that 

ibe'satellite- move - from X to Y 

Z - forms a right-handed coordinate system with 

the X and Y axes, and is in the direction 

of the orbit angular momentum. 

If the inclination is zero, the longitude of the ascending node 

is undefined and the X axis is arbitrarily set to coincide with the 

direction of the vernal equinox. 
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2.:2:4 Earth Fixed Cartesian 

Has origin at earth centre of gravity and coordinate axes 

X - direction of prime meridian intersection 

with equator 

Y - on equator forming right-handed system 

with X and Z axes 

Z - normal to the equator, North. 

Note that this.frame rotates with the èarth 

2.2.5 Earth Fixed Spherical  

Has origin at earth centre and coordinates 

r - radial distance to the point being measured 

L - latitude, positive North of equator 

x - longitude, East of prime meridian. 

2.2:6 Dbservation Frame 

Has origin at the site and coordinates .  

El - elevation - angular measurement from the 

horizon to the range vector. 

Az - azimuth - an angle measured in the plane 

of the local horizon. It is measured 

from the projection of the north direction 

eastward tO the projection of the range vector. 

- radial distance to the point being measured. 

Note the range Vector goes from the site to the point being measured. 
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2.2.7 TogoCentric Local Tangent 

Fias  origin at the site and coordinate axes 

E - projection of the East direction in the 

local horizon plane 

N - projection of the North direction in the 

local horizon plane 

U - local vertical . 

2.2.8 Orbit Frame fa f2 f3 

Has origin at centre of earth and principal axes 

fl - in the orbit plane such that the angle 

between fl and the ascending node is equal 

to the longitude of the ascending node in 

inertial coordinates 

f2 - in the orbit plane 900  from the fi  axis such that 

the satellite moves from fl to f2 . 

f3 - forms a right-handed coordinate system with f1 

and f2 and is in the direction of the orbit 

angular momentum. 

2.2.9 Orbit Frame el e2 e3 

Has origin at centre of earth and principal axes 

el - directed toward the satellite 

e2  - in the orbit plane 90° from the el axis such that 

the satellite moves from el toward e2  

e3 - normal to the orbit plane, completing the right-

handed coordinate system. 

This frame is also called the radial, tangential, normal frame. 
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2-.3 Sets of Orbital Elements  

satellite position in True Equ'ator and True 

Equinox Frame 	• 

rx 

y 

rz 1 
vx 

vy 

vz 

2.3-.1 	Inertial Set 

This set has elements defined by satellite position and velocity. 

1 

satellite velocity in True ilquatOr and True 

Equinox Frame 

Note: This set of orbital elements is referred to as the inertial 

set throughout this work, although as noted later, it is 

not an inertial frame in the strictest definition. 

•-2.3.2 Keplerian or Classical Set 
- 

This set has elements defined as follows: 

a - semi major axis 

e - eccentricity 

- inclination 

n - longitude of ascending node 

w - argument of periapsis 

- true anomaly 
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1 
1 
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1 
1 
1 

2.3.3 Velocity Space Elements  (U6) 

This set of orbital elements is (Cg i , Cg 2 , Cg3, Rfl, Rf 2 , ) called 

the velocity space set of elements because the first five elements have 

the dimension of velocity. 

The first three elements, C91 , C92  and Cg3  are inertial components of a 

vector which is normal to the orbit plane. The magnitude of the vector, C, 

is such that 
• flm • 

The next three parameters are components in a coordinate frame which is 

obtained by rotating the inertial 

orbital inclination. 

1 
1 

This rotation causes the inertial X axis to be rotated to the fl  axis. 

The f3 axis is normal to the orbit plane and the f2 axis completes the 

right handed set. 

The vector R is in the orbit plane and in the direction of the velocity 

vector at perigee. It may be expressed in terms of two components, Rfl and 

The magnitude of R is given by 

R = El2g +.1C 2] 1/2  

where e = orbital energy per unit mass of the body 

The angle. is measured  in the orbit plane from the f l  axis to the position 

of the satellite. 

There are several alternate expressions whith may be obtained from the 

above, or which may be used to derive the above exPressions. 

C= 
brbit'angUlai" momentum - h 

frame about the ascending node - by the 

Rf2. 

1 
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î 

1 

Some of these altérnate  expressions are listed below 

— 

(V perigee -- V apogee) 

It may be shown that for an unperturbed orbit, the five parameters 

C91, C9 2 , C93 , Rfl and Rf2  are constant. The parameter  X  steadily increases 

II with time although Only in a circular orbit is the rate of increase constant. 

There are two singularities with the set of orbital elements. The 

first occurs when C=0, that is for àn orbit straight . up or down passing through 

the center of the earth. In this case, the orbit plane is undefined and 

parameters Rfl , Rfp and >Care undefined. The-second occurs for an orbit with 

180
0 
 inclination (purely retrograde). For this orbit, the ascending mode is 

undefined, and a 1800  rotation about an undefined axis leads to an ambiguity 

in the location of the f 1 , f2 , f 3  axes. 

2.3.4 Velocity Space Elements Using  Quaternions (U7) . 

An alternate form of velocity space element definition is given in 

reference 11. 

There are seven orbital elements as follows: 

2 Cg 2 + Cd magnitude of C vector from section 2.3.3 

Rfl 

Rf2 Ç Defined in section 2.3.3 

e
01 

A set of quaternions which specify rotation from inertial 

coordinates to the el e2 e3  frame defined in section 2.2.9. 

See reference 14 

1 
1 

x 	+ 

R 

e02 

e03 

e04 
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cos w - sin w 0 

sin w cos w 0 

1 

2.4 transformations  

2.4: 1 Transformation from Orbit Frame to A Fundamental Reference Frame - 

The orbit frame is defined in section 2.22 and the fundamental' 

reference frames in.Section 2.1. 

We assume that the following angles are known: 

w - 	argument of the perigee 

i 	- 	inclination 

n 	- 	longitude of the ascending node 

First, rotate the frame about zw  (normal  to orbit plane) ,  by (-4 
so that x points along the line of nodes. Call the new frame'xa 	z u  

, and the transformation matrix C. 
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Next, rotate the frame about x by (-i) to bring the orbit plane a 
into the equatorial plane; call the new coordinates x y z e e 

1 	0 	0 

B 	0 cos i - sin i 

0 sin i 	cos i 

Finally rotate the frame about z by (-0 so that the x axis is 

• ' brought into the eaUinox. 



1 

1 
1 
1 
1 
1 

cos  R - sin Q 0 

	

sin n 	cos 	0 

	

0 . 	0 	1 

Thus, the transformation  matrix •rom the orbital frame coordinates 

to the fundamental_referenCe frame is: 	. 

D = ABC = 

	

i 

cos w cos n - sin w cos i sin st 	- Sin w cos n - cos w cos i sin st 	* sin i sin .  2 

	

cos w sin n.-1- sin w cos i cos n 	- sin w sin' st -I-.  cos .w .cos i cos st 	- sin i cos 2 

_ 
sin w sin i 	 cos w sin'i 	. 	cos i: 

Note that the angles i, w, 	are measured from one of the fundamental 

reference frames given in section 2.1. For example ;  if i,-w and 2 are 

measured from the ecliptic and mean equinox, the above transformation 

will go from orbital frame coordinates to the ecliptic and mean equinox 

frame. 

sin w sin i cos w sin i 	cos 



First, rotate  about the Z axis to the ascending node. e 
o  

- 

EcpUlNale 

Next, rotate about the Xe  axis by i to the orbit plane_ 

Zo< 	41/4 

Transformation from a Fundamental Referençe Frame to Orbit Frame 

• • Referenced to Ascendiu Node 	. • 

The fundamental reference frames are defined in Section 2.1 and the 

orbit frame referenced,to ascending hode-is deftned in section 2.2.3. 

EQuAroZIAL 
PLANA= 

We note that these transformations are the inverse of the last two 

transformations in the previous section. The transformation matrix is 

given by 

E = 

cos n 	sin 0 	 0 

- sin n cos i 	cos i cos P 	sin i] 

sin i sin n 	- - sin i cos n 	cos i 



Pb1 rrx1 

0 	0 	1 

Yb 

Lzb 

Y 

-tos ag sinc 0 

- sin ag cos ag 0 

Lrzi 
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2.4.3 Trahsformation from True Equator and True Equinox Frame to 

Earth Fixed Cartesian Frame • 

The True Equator and True Equinox Frame is defined in section 2.1 

and the earth fixed cartesian frame is defined in section 2.2.4. 

This transformation accounts for the earth's rotation. 

Rotate about the Z axis by. the Greenwich sidereal time, c'g 

The above matrix is called A 

The value of a is found from section 7.4. 



•nn••1 
••••••• 

0 
a 	a 

cos g 	sin g 

-sinag cosag 

0 

'V
xb 

V
yb 

V 
Y 

V
z [ \ lizb 

a 

r
x 

Y 

rz..1 

To transform velocities, it is necessary to account for the 

rotation of the earth 

••nn• 

-sinag cosag 	0 

. a 
-COS

a
g -sin g 	0 

0 



Y 

A = tan rx 

2.4.4 	Transformation  from Cartesian to Spherical Coordinates 

X 

The transformation is defined by 

rz 

an 
	rx

2 	1.31 2  

rz 

cr L 	sin -1 	2 	2 
rx 	+ rz2 

r = 	rx
2 r 2  rz

2 
Y 

Note that the arctan function is a four quadrant function in the 

expression for longitude W. 
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This is the inverse.  of . the transformation -described In 'section 
2.4.4 

r  rxi  

Y 

Z J 

r--. 

P X 

py  

Pz 

RY  

L R J 
-z 

rx 

Lr z_J 

I  2.4.5 Transformation froM Spherical to Cartesian Coordinates 

cos L sin.  X r 

cos L cos x 

L sin L 

. 	n 

2.4.6 Transformation from True Equator and True_Equinox Frame  to 

T000centric.  Local Tangent Frame 

The True Eouator and True Equinox frame is defined in section 2.1 

and the topocentric local tangent frame is defined in section 2.2.7. 

Translate the inertial frame toia new frame centred at the site. 

Where R
x' 

R
y' 

R
z 

are the coordinates of the site in the True 

Equator and True Equinox Frame. 

Rotate about the z
1 

axis by ineràal longitude 0 = X 4- a o  
- 

(longitude 4- Greenwich sidereal time) 
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/ EARTH--  

an•n 

[cos 0 

-sine 

Pt P X 

Y 

P z 0 0 P z 

0 

0 

1 

sin 0 

cos e 

1.41 

( 1  



u 

P E  

P N  

11••••nn 

p E  

p N  

cos L 
PT 

Pz 

Rotate about Y  axi by n .egative of latitude. 

+sin Li 

0 	1 	0 

-sin L 	0 	cos L 

Multiplying matrices gives: 

cos L cos 0 	cos L sin 0 	sin Ll 

-sin 0 	cos 0 

-sin t cos 0 	-sin L sin 0 cos il  



or, after rearranging 

[PE] 

P  LI] 

I .  

Lrz 

r x 

Y 

r- R 

R z 

1 

1 	EET01)-0 

1 

-sin 0 • 	. 	cos 0 

• • 

	

-sin L cos 0 	-sin L sin 0 	cos L 

• - 

	

__cos L cos 0 	cos L sin 0' 	. sin L 

II 
1:)  

• 

I. 
2-22 



2.4.7 	Transformation from  Topocentric Local Tangent to Observation Frame 

This is.an  example of conversion from CarteSian to spherical 

coordinates which was given in Section 2 . 4 . 4 . The equations are: 

-1 
El  = sin 	j E2 +N2  + U 

-1 Az = tan 

2 + N2 + U2 

É 



yoi 

f 

1 
1 

1 
1 
1 
1 
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2.4.8 Transformation from A Fundamental Reference  frame .to Orbit Frame f f f - 
1 2 3 

This transformation is a rotation of the inertial x y plane into 

the orbit plane. The axis of rotation is the intersection of the two 

planes, or the ascending node. The amount of rotation is the orbit 

inclination. 	See figure 2.3/1 

1 
1 
1 

To deVelop an analytical expression for the rotation matrix, it is 

more convenient to consider rotations about principal axes. Then the 

rotation is replaced by 

i) A rotation about the inertial 	axis to bring the X axis to the 

ascending node. . 

-cos JL sinfb 0 - -X 

Y' 	= 	-sin ft 	cos r. 0 	Y 

0 	0 	1 

ii) A rotation about the X'. axis by the orbit inclination to 

bring the Z axis normal to the orbit plane. 
_ 

X' 	1 	0 	0 	X' 

Y " 	= 	0 	cosi sini 	Y' 

f
3 	

0 	-sini cosi 	Z 

iii) A rotation about the normal to the orbit plane to bring the X 

axis back from the ascending node. 

f
1 	

cos tn, 	-sinf1. 0 

f2 	
sin  J). 	cos J1 0 

f
3 	

0 	0 	1 

1 



f 

f
2 

3 
• -1 

X 

Y 
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The total transformation is: 

cos
2n 	sin 2n cos :i 	cosn  sine 	F-cos 	-sinn sin i 

sinn cosn 	 sin
2n + cos

2R cos .j 	cosn sin i 

sin  n sin•i 	-cosn sin i 	 cos i 

where the rotation matrix above.is  called b.] 

It is frequently necessary to  express  this matrix in terms of the 

velocity space parameters c9 , Cq7-2  . and 4 . We use the relationships 
.1 	- 	. 3 

cos i = Og 3  

sin i 	= 2 	2 
Cgl 	Cg2 

ços n 	= 	-Cg 

'Cgi 2  + Cg2 _ 

sin n 	= 	Cg,„ 

/I cg1 2 	cg .2 2 

Where C = 
v/ cg1 2 	cg2 2 	cg3 2 

Then the matrix becomes 

2 

	  + 	
2 Cg, Cg 3 	\,) (: 
	  + 
-Cg, Cg 2 	Cg 1 Cq 2 Cg3 - ., 	Cg, 

( 	92g1 C21-  Cg22 	C(Cg 1 2  + Cg 2 2 ) 	Cg 1 2  + Cg 2 2 	C(Cg 1 2 + Cg2 2 ) 	C 

= 	-Cg1Cg2 	C91çg2Cg3 	 Cgi
2 

 - 	 Cg 2 2  Cg 3 	 Cg 2  
	  +     + 	  

	

Cg 1 2 
 + Cg2

2 
	C(Cq 1 2 

+ Cg 2
2

) 	Cg 1
2 

+ Cg2
2 

C(Cg 1
2 

+ Cg2
2) 	

C 

41 	 Cg2 	 Ila_ 
—C— 	 c 	c 
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1 
[0] 

-Cgi 

-Cg2  

Cg3  

This form of the matrix has a singularity if both Cgis and Cg2  are 

zero. To avoid this problem we substitute 

Cg 12 + Cg 22 = C2 - Cg32 	• 

The previous matrix can be rearranged to give 

- 2 	r  2 
Cg3 	'412 ! 

Cg2  

C + Cg3 

 -Cgi  Cg2 

C + Cg 3  

Cg i  

C + Cg 3  

Cg3  + Cg 12 

 _ C + Cg 3  

cg2 

1 
1 

or, alternatively 

1 - 	' , -gl2 	
-Cg1Cg 2 	_ 	Cgi  

C(C + Cg 3 ) 	C(C + Cg 3 ) 	, C 

-Cg1Cg2 	1 - 	Cg2
2 

• -Cg 
. 	 -2 

C(C + Cg 3 ) 	C(C + Cg 3 ) 	--É- 

Cg i 	Cg2 	• 	Cg3  

This form only has . a singularity if C = -Cg3, or the orbit is 

purely retrograde. 

1 

1 • 



e
l 

e2 

e3 

• 

cos X sin X 	+ (Cg3  Cg 1  Cg2 

 + Cg3  
•• • • • 

Cg i  sin X - Cg 2  cos X 

E
22 

= 

= —1 E 23 	C 

Cg 12 

C + Cg3  
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2.4.9 Transformation From Orbit Frame 
 f1f2f3 to Orbit Frame  e1e2e 

This is simply a rotation by x about the f3  axis io bring the fi  
axis to the direction of the satellite. The angle X is  one of the 

orbital elements defined in section 2.2.3. 

-sin ' 1 

cos' X 	sin X 	0 

X 	cos x 	0 

L_ ° 	0 	lJ 	f 3 
I 1 • • 

This rotation matrix is called [x] . 

2.4.10 Transformation From Fundamental Reference Frame to Orbit Frame  e 1 e2e3 

f2 

This is simply a product of the transformations in sections 2.4.8 
and 2.4.9. The transformation matrix, which we call E is given by 

r  2 
E = — (g + 'g2 	) 11 	C 	-3 

1 

C+  Cg l  

E = 	C9 1 Cg2  ) cos X + 12 	C 	C + Cg3> 

E13 	- = 1  L-C 1  g cos X -Cg2 sin 1 -C 	- 

"21 - - 	'3 1 	Cg2 2 	Sin x - 
C + Cg3  

(

CgiC

C -+ Cg 3  

g2  ss) s ix  n   

(Cg3g, 
C 

 

g 3  

C + Cg2  

in Cg2  

C + Co 
, 3 . 

cos  X 

) si n 



E32 = Cg2 

-  e 	(it .n>;) -rt  , 	.v L 
2 vr 

E31 = Cg 1 

H I  
1 

( 

1 

I. 

E33 = Cg 3 

where 

Or, e 2 may be written 

e 3 are given by 

In inertial coordinates, the direction of the unit vectors e 	e2' 

e1 

e2 

e3 

and E 	[x] [9] 

e2 
= 	x  v 

x -- rv 

e 1 

CE 

x v  
rv 

re» 	 ee. 

X 

Y 
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[e2 

3 

e
l 

e
l X 

Y 

Then the rotation matrix may be written 

	

r
x 	r

y 	r
z 

	

r , 	• 	r 	r. 

	

. 	, 

	

t
x  - 
	t 	t

z 

	

: : 	y 

h
x 	h 

h 	h 

. In U7 elements, the rotation matrix is shown in reference 14 to be 

2 	2 
E
11 

= 1 - 2(e 02 	e03 ) 

E
12 

= 2(e
01

e
02 

-1-ee
04

) 

E13  = 2(e 'e 	- e' e ) 
01 03 	02 04 

E
21 

= 2(e01 e02 	ee
04

) 

, 2 	2 , 
E
22 

= 1 - 2(e01 	e03 ) 

E
23 

- 2(e02e- 

	

03 	e01e04) 

E
31 	

2(e01e03 	
e02e04) 

E
32 

= 2(e02e03  - e 01 e04 ) 

2 	2 
E
33 

- 1 - 2(e01 	
e02) 



I.  

I 
1 

1 

1 
I. 
1 

2.4.11 Transformation From Inertial Coordinates to Latitude, 
Longitude, Height  

• 	
Given rx , ry, r, the inertial coordinates expressing 

satellite position referenced to the true equator and true 

equinox, the longitude (a) of the satellite is given by: 

= tan-1  ( rY)- Ctg 
rX 

where a g  is the longitude of Greenwich (Section 7.4). .  

For latitude and height, the ellipsoidal shape of the 

earth must be taken into account. If this is done, the 

latitude and height are the geodetic latitude and height 

(the familiar values used in maps, for example). The figure 

illustrates, in an exaggerated way, the geometry. 

2-30 



(estimated latitude) 

By means of an iterative procedure, a value for t is determined, 

thus determining (I) and h (the geodetic latitude and height). The procedure 

followed is: 

let P be the.desired precision 

let K be the maximum no. of iterations 

initialize:. t 	0 
0 

loop: rzi- 	rz  + t 

R jrx2 	ry2 	r/z2 	(R is N+h in the figure) 

(1) ±- sin -1  

Re  	(Re is earth radius at the 

\I1-e2  
equator; e is the ecèentricity) 

sin 2  '14 

t± N e2  sine' 

i± i + 1 

if i 	1, then if old 1  P 
then go to exit 

old  

(1)7. ' 

÷ 
if i<K, then repeat loop 

exit: qb is the geodetic latitude at this point 

h ± R-N 

I 

I. 
1 



•1 

1 
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2.5 	Conversions Between Sets of Orbital Elements 

2.5.1 Keelerian to Inertial 

This transformation uses eccentric anomaly, E,to define the 

I . 	position in the orbit plane. If mean anomaly is given, 

anomaly may be found from section 2.5.6. If true anomaly is given, 

the eccentric anomaly is found from 

tan 
E/2 	/1 -- e 	tan 4)/2 1 1 + e 

The position in the orbit fraMe is obtained from Appendix A. 
• 

a (cos E 	e) 

yw al 1 	e2 sin E 

ë
. 

r 	a (1 	e cos 

The velocity is found by differentiating the expressions for xw  

and yw . 

xw = -a(sin E) E 

= a 11 	e2 	(cos E) E 

II The quantity E can be found by differentidting Kepler's eqn: 

M 	E (1 - e cos E) 

Using the fact M --1 1-1 3  and the expression for r above 
a 

1;2:7 

the eccentric 

1 



D 

= C 

xw 

y
w 

0 
Y 
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Therefore, the components of the velocity vector in the orbit 
plane frame are 	• 

sin E 

• 	/.. 
= 1/pa(1-e 2 ) .cos E 

The magnitude of the velocity is therefore 

. v - 	v / 1-e 2  cos 2  E 

Using the position and velocity in the orbit plane, and the 
transformation matrix from section 2.4.1 we obtain 

f 
rx 

Y 

rz 

vx 

Y 

vz 

xw 

Y w 

0 

x 

yw 

Note: For the suns orbit about the earth, i=0 and. .q=0, so position 

may be foun d.  froM 



2.5.2 Inertial Coordinates to Keelerian Elements 

The transformation starts with the following elements 

s 
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Components of satellite position 

in Equator and - Equinox Frame 

2 

1  
v2 a= 

Components of satellite velocity . 

in Equator and Eqiiinox Frame 	. 

Calculation of semimajor axis starts with the equations for 

radial distance and velocity which were developed in Appendix A 

and section 2.5.1. 

r = a(1-e cos E) 

v= 
\Fa-  11-e2cos 2 E 

Substituting for e cos E in the second equation - gives 

V 	- (1 . - r ) 2 
a 

or, after rearranging 
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2 
rv 
P. 

e cos E = 

Substituting for v from section 2.5.2 and- ços a _from appendix,A 

gives 

: The above equations may be rearranged to give 

A similar expression in e sin .E may be obtained by using the 

dot product of r and v vectors. From the definition of a dot product 

r • v=rvcos a 

where'a is the angle between r and v. 

e sin E 

. 

r 	v 	r 	v /  1re2cos 2 E v 	2 2 1-e cos E 

or, after rearranging 

e sin E = r • v  

'or, 

e sinE= rv'-Frv-Erv xx 	yy 	 z z  

\Fla 



The orbital angular momentum is.r x v, and has components and 

magnitude as follows 

h 	= r v 	- ,r•v 
x • 	y z 	_z y 

h 	-. )-v -rv 
x z 

h =rv -rv 
y x 

h =i 2 	2 
+ h + 

Y 

The orbit inclination and longitude of ascending node may be 

found from geometry using the property that the angular momentum is 

normal to the orbit plane. 

i = cos
-1 	hz 

= tan
-1 hx 	

if ie 0 _h 
Y 

or 	n = 0 by definition if i = 0 

In order to calculate other angles, it is necessary to calculate 

the angle from the ascending node to the position, that is, w + 

First we calculate the position of the satellite in the orbit frame 

referenced to the ascending node, using the transformation from section 

2.4.2. 



2  +11 2  r 	h z  y 	z / 2 	2 h 	h vh 	+h x. 	y 
h rz 

Y p  h xrx  hyryl 

x 	r cosS2 -F.r sine p 	x 

y 	-rx  sin Si cosi -1-1r cos i cos 	rz sin 

z 	r sin i sin n 	sin i cos 	r cos t p ; 	x 

Substituting for i and n from  above gives 

=. hxry  hyrx  

h<2  +  h2   y 

-/ I, 2 + h  2 
Ilx 	Y 

. 	z 	= 0 	- 	. 	- , if i e 0 
• P 

If i = 0 then 

a X
P = 	

and  r
x  

. 	• . 	y
P = rY 

The value w + itp. can be found from the diagram 

-1 —Y p 	 h r • 
w+ 	tan 	— = 	tan 

hr -hr ) x y 	y x 

.-1 " -1 	z 

I p 
tan 



= tan-1 e sin E  
e cos E 

if e 0 

E = tan  -1 Yp  
x
P  

if e = 0 

The eccentric anomaly E is given by 



2 - 39 

The remaining elements e, 4) and w are 

- e = 	(e sin E) 2 	(e cos 02.- 

2 tan -1 [11  e 	tan E] 
1 - e 

w = (w +4) ) 



h 2  

C h x  

h 

Cg2 	Ch 

h 
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2.5.3 	Conversion from I.C. to Velocity Space 

The calculation of Cg l , Cg2 , and Cg s , uses the definition 

C = 	It h 

h = 	rv-rv 
X 	y z 	z y 

h
y 

= ry-ry 
Z X 	X Z 

h= 	rv-rv xy 	yx 

Cg s  = C hz  

h 

1 

1 
1 

where 

J' 	2 	2 
h - V h

x
' + h

y 
+ h

z 

C=  p/h 

Then  Ais  found in the f l , f2 , f s  frame cos A = rf2 



cos A = 

1 

2 
. 	r  _ rxCg l 	r CgiCg2 _ r Cgi 

cos A = 	x 	• 	
- 	 y , 	 z  

r. 	C(C+Cg 3 ) C(C+Cg 3 ) 

rien r
f2 

is calculated from r
x' rY' rz 

using the conversions 

• from section 2.4.8. This gives 	' 

This may be rearranged to give 

• 
The riet-hand term is r . C and it is zero because the two 

vectors,  r and C are orthagonal. Then 

• 

r - rzC91 

C-1-.Cg 3  

cos A = 1 

Similarly, we find 

rzCg2  r - 	 
Y 

C-FCg 

sin A - 1 

From Section 2.3.3 we have 

P  , or 
( 4 4  
1r .x vl 

r v e2  

,  ii 
e2  rC 



and Ve l  = 	/- . -n> 

I. 

= rv+rv+rv 
xx 	yy 	z z  

Then from Section 2.3.3 

= x + 

r 

or • 

Vel = C Rel  

Ve2  = Re2  

Substituting 

Rei = -Rfl-cos à + Rf2  sin A 

Re2  = Rf l  sin l  + Rf2 cos A 

and solving for Rf l  and Rf2  gives 

Rfl  = Ve l  cos A 	( Ve l 	C ) sin A 

Rf2  = Ve l  sin A + ( Ve l  - C ) cos A 



R
el 

.1.n•nn 

R
fl 

Rf2 

(from section 2.3.3) 

or 
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2.5.4 Transformation from Velocity  Space to Inertial 

For this transformation, we first develop expressions for 

position and velocity in the orbit frame e 1 e2e3 . Then the transformation 

from section 2.4.10 is used to convert to inertial coordinates. 

The velocity in the e 1 e2e3  frame is obtained from 

4- 	. 	4- 
,v=C x r  +R  

Trl 
where 

NJ  

and C x r = 

	

cosX 	sinX 

	

-sin. 	cosx 

since 

.= 

I. ri 
vector C is in e

3 
direction and r is in e

1 
direction. 

Then 

v
el 

= R
fl 

cosx + R
f2 

sinx 

V
e2 

= C - R
fl 

sinX + R
f2 

cosX 

the radius vector is obtained from 

c= 	 

r+  x 

C= 	 

ve2 

r= 	 

Cve2 

where C =
Cql

2 
 + Cq2

2 
 + 



r- 

rx 

0 • 

Y 
= [E 

rel 

or 0 

u 	[1 	[..[G93  + 

Cve2 	C 

C922  

C C93  

C91  -C92 

 C + C93  

sin] co sX 

	 1 119 3  + 

L 	c 	c93 	• 

sinX 

Cve2 

2 C9 1  

cgl 
Cve2 

e2 

0 
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. Mow having obtained position and velocity in the e 1e2e3  

frame, we transform to X Y Z. 

r C9 1  C92 • 

 C + Cg3  

cosX] 

sinx - C9 2 	cosx 

ear., 

•nn•n• 

SimilarlY the velocity is given by 

vx  el. 

Y 

v z 

e 

' 	./"" 
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2.5.5 Transformation from Velocitï Space to Keplerian 

Semi-major axis  

• From reference 1 page 28, we obtain 

E = 	P 
2a 

Using the definition of R, or 

R = 	E c2  

we may solve for a in terms of R and C. This gives 

a = 1-1 

1 

1 

1 

1 
1 

C
2 

- R
2 

Eccentricity  

From reference 1, page 29, we obtain 

2E h
2 

e=  //1 
p2 

Substituting C = 	and R -1/2E  + C2  
h 

and simplifying gives 

e = R 

Inclination  

The orbit inclination is the angle between the orbit normal 

and the inertial axis. Since the vector C is in the direction 

of the orbit normal. 

C.Z 
COS 

lc I 
= C93 



and 
Cg 

sir S2 = 

tongitude of ascending node  

This may be found from the projection of the orbit normal 

in the X Y plane as shown. 

From the geometry and noting that the ascending node is 900  

from the projection of the C vector we obtain 

tan (fl - 900 ) 

Cg i  

- or 	n - tan
1 

 

Cg2 

Cg i  

/ cg  2 + c  2 

1 	g2 

cos Q  = 	-Cg2 

/Cg 1 2  Cg2 2  



sinx = -Rf1 

irR 
fl  2 
	_ R f22 

=-Rf 1 
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Argument of perigee and true anôMaTy .  . 

The berigee in the orbit frame- f1f2f3  1s_90°  before the 

R vector as shown. 	 • 

First, we find the angle x 

cosx = 

tanx = 

Rf2 

/R
f1
2 R

f2
2  

- -Rfl  

Rf2 
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- Then the remaining angles may be found fro-m the following 

diagram. 

argument of perigee 

= X -R 

true anomaly 

= X -X 

2.5.6 	Mean  Anomal,  to True  Anomal,  

As a first step, we find the eccentric anomaly, E, from 

the equation 

M = E - e sin E 



1 

1 

1 

1 
1 

1 

2749 

- Since the equation cannot be solved analytiCally, we use 

the following iterative technique 

M is in radians; assume 0< e<1 

P is the desired preCision 

Kmàx is the maximum number'of iterations 

Eo  ±M+ e sin M 

if e <.3 then E ± E + e 	sin 2M 
o 

K ÷ : 0 

loop: K ± K+1 

Ek 	Ek-1 	
E
k-1 	

e sin E
k-1 

- M 

1 - e cos E
k-1 

E k _ i  1< P then àone 

if k>Kmax then nonconvergent 

repeat 

The resulting E k  is a close aPproximation to E in radians. 

Having calculated eccentric anomaly, the true anomaly, ¢ , 

is fcund using the following equation from reference 4. 

tanr/2)=/1 + e 	tan(E/2) 
1 - e 

' 2.5.7 	True Anomaly to Mean Anomaly 

As a first step, the eccentric anomaly, E, is found using 

the following relationship from reference 4 

tan/E\ = /1 	e 	tan/ 4)  
UP 11 + e  

if 1 

The mean anomaly, M, in radians is found from the eccentric 

anomaly in radians using Keplers eouation 

M = E - e sin E 



(l-e) 
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2.5.8 Transformation from Keplerian to Velocity Space 

This is the inverse of the transformation in Section 2.5.5. 

From Section 2.5.5 we get 

li  

-2- 	2 
C 	R 

a = 

and e = R 

Solving for R and C gives 

1 

R = è 
: I 

I
....-...›, 

Then using the geometry from Section. 2.5.5 gives 

Cg 3 	C cos i 

2 	2 
Cg i 	C - Cg 3 	si.iS2 	C sin i sin a 

Cg2  u - Cg 3
2 
 cos st 	C sin i cos st 

Rfi = -R sin x = -R sin' (w + 

R
f2 	

R cos x = R cos (w + st) 

X = w + + 0 

1 

C 



e
03 

sin  
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2.5.9 Inertial Coordinates toU7 

The calculation of eleménts C, Rfl 
and R

f2 
is given in 

section 2.5.3 as well as intermediate terms X, h
x' 

h
y' 

h
z' 

h. 

Then 

e rr, =  	1  
(h sin 2 - h cos`-- 

u-L 	2h (h + hz ) 	x 	2 	y 	2 

1  
e
02 

=,/ 2h (h + h ) (h cos 	+ h sin 
z 	x 	y 	2 

h + h  
e04 =1 

 2h z 
	cos -- 

2 

2.5.10 U7 to Inertial Coordinates 

These are given in reference 14 and are first found in 

the e
l 

e
2 

e
3 

frame 

1  r r - e 1 	C Ve2 

V
el 	

R
fl 

cos  A  + R
f2 

sin X 

V
e2 	

C - R
fl 

sin X + R
f2 

cos A 

V
e3 

0 



1 

1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

= E
T 0 1 

1 
- 	Then, the elements are rotated to the inertial frame using 

the transformation in section 2.4.10. 

rz j 

and  

v x 	
r 

v e 
1 

= E
T 

v e Y 

v
z 	

- [0 

where T denotes transpose. 

y 

1 



1 

( S* 
) 

ZE 

R ( 
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2.6 	• Transformations between inertial reference -frames  

2.6.1 	Mean E9uator and Equinox to True Equator and Epinox 

To calculate this transformation, the following are 

obtained from section 7 

e = mean obliquity of the ecliptic 

• Se = true obliquity less mean obliquity 

= longitude of true equinox less longitude of mean equinox 

= 	se = true obliquity 

the rotation from the mean equator and equinox of epoch t 

the true equator and equinox is given by the following three 

rotations: (see sketch) 

the rotation about the x
e 

axis into the 
ecliptic of epoch 

the negative rotation àbout the ecliptic pole, 
through the nutation in longitude to the true 
vernal  equinox of epoch 

_ 	. 
the rotation about the n.ew x-axis through the true 
obliquity to the true equator of epoch. 

...ECUPTIC 

—MEA  NT EQUATOR 

V .  

TRUE EQUATOR 

XE 

1 



t 	) 
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, The total rotation matLix may be expressed as 

N R„ 	Rz  ( 8  qi) 	(7-0 {nil). 

Denoting the true of epoch coordinates by we have 

r = N -FE  

where the elements of N are 

1 

n11 = cos 

n12 	sin S cos "E 

n
13 

— sin 8 IP 

sin tib cos 

n22 	cos  

n23  =. cos 1,1! cos 2" sin — sin'-é.  cos 

n31  = 	sin  3 qi sin ‘é.  
- 

n32=  cos  8 q) sin cos 	cos .e sin 

n'33 	cos tp sin 'a-.  sin -é + cos e cos C.  

The trme derivative of N is assumed to be negligible. Therefore the velocr, 
coordinates are transformed as follows 

N 'FE 
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2.6.2 	Ecliptic and Mean Epuinox to Mean Epuator and Mean Eguinox 

This is a rotation by the :mean obliquity of the . ecliptic, 

:about the vernal equinox.' 	-. 	. 

veReAr- 
Eipt,./NoX 

Let position in' mean equator and mean equinox be rx , ry , 

rz  and position in ecliptic and mean equinox be rx
1

, 

1
, 	

1
. ry 	rz 	

• 	 • 



1 

1 
Y 

1 rz 

1 	0 

0 	cose• -sine 

0 	sine 	cose 

r rx 

= [ 6] Y 

rz 

The same transformation may be used for the velocity since 

the rate of change of e is negligible. 

A similar transformation is used to go from ecliptic and true 

equinox to true equator and true equinox. In this case, the 

amount of rotation is the true obliquity of the ecliptic. 



True Eguinox of Different Time 

This consistS of three rotations as follows:: 

1 . . c 

1 C 
X 

Y 

Z
f 

X i.  

. 	. 

Z. 
1 

2.;.572 

2.6.3 True Equator and True Equinox to True Equator and 

Rotate about the X axis by the obliquity of the ecliptic 

at time t. , to bring the XY plane to the ecliptic. 

Rotate about the Z axis by the precession of the equinoxes 

plus the difference in nutation in longitude from time tt  to tf ._ 

Rotate about the X axis by  the .obliquity of the ecliptic 

at time t to bring the XY plane to the equator. 

The total rotation equation using first order approximations 

with sin 0 = 0 and cos o= 1 is 

- f3 COS E. 	-(3 sin c • 1 

e Cos  C f  

3 sin C
f 

1 

(Cf 	Ei) 

(Ei -  Cf)  

1 

r. 

where E is the true obliquity of the.ecliptic (radians) 

13 is the precession of the equinoxes plus the difference 

innutationfromtime ti  .to t
f 

(radians) 

_12 
B ' 7.738 x 10 	(t.f  - ti ) 	(314 	sfi 
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2.7. Transformation of Error Covariance Matrices  

The emir covariance may be defined as 

Px =. E • 0-0 (X- ) 11 
where 

1 
1 
1 
1 
(e) 

1 
1 
1 
1 

1 

•  Px is the error covariance matrix with X as state variables 
E (X) is the expectation of X 

X is the difference between the estimate and the true 

value of X 
-T - X is the transpose of X 

It may be useful to find the error covariance for a different 

state vector.  •  An example of this occurs when we wish to transform 

the state and error covariance from Cartesian orbital elements to 

velocity spaçe orbital elements. Then the error covariance matrix 
in the new orbital elements is 	 • 

P = E [(;) (Z)1 

An expression for the new orbital elements of the form 

z = A x is required. 

Then substituting for x 

P z = E [ (A X) (A X) 11 

= e [ A ).ir  AT ] 

= A I_ E (X X ) 	AT 

= A P x A 
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3.1 	Inertial Frames  

It is necessary to integrate the equations of motion in an 

inertial frame, in order to avoid introduction of fictitious forces 

such as centrifugal force and coreolis force into the equations of motion. 

However, the frames used herein are not truly inertial, so it is necessary 

to list the approximations used. 

A truly inertial frame should have no translation as well as 

no rotation. However, it is more convenient to consider the centre 

of the earth as the origin of the co-ordinate system. We must then 

calculate all accelerations relative to the acceleration of the center 

of the earth, in particular the solar and lunar perturbations. The 

inertial reference frames used for integration of the equations of 

motion are based on the true equator and equinox of date. This is 

a convenient frame for calculation of gravity gradient forces. In 

any other frame, it is necessary to transform satellite position to 

true equator and equinox frame and then transform the perturbing 

accelerations back to the working frame. However, there is an 

approximation involved' since the precession and nutation of the 

equinoxes is neglected. If higher accuracy is required, the orbital 

elements are corrected for this precession and nutation at each 

integration step using the transformation in section 2.6.3. 



33. 	Basic Forms  

3. 2.1 Inertial éoordinates 1 

I .  

1 

1 
1 

1 
1 • 
1 
1 

The general form of the equations of motion is: 

dx f,(x, t) 

OR dr x 
dt 	wx 

dr 

dt 

vz dt 

dv 

3x 	x x'y'z x y z 

dv 

dt 	1-  rt, + ay  (rx , ry , r_, v,  vy‘,  v,  0 e X 	z r— e  

dvz 

dt 	2-1,-r +a (r,r,r,v,v,v 	t) raz 	z zy z x y z' 

2 where r = Jr 2 	r 	+ rz
2 

x Y 

The expressions a x
, a

y' 
az , represent the perturbing accelerations.. 

These are developed in more detail in the following subsections_ 

drz _ 

dt 



3.2.2 	Velocity  Space (U62 

3-3 

r 

The general form of the equations of motion is 

dCg3  = 

dt 	v
e 

C 
(e
23 

ae3 + e 33 a
e2

)  

v
e2 

dx 
dt  

	

dR
1  , 
	 , 	C 

	

1 	= 	A 	COSX - 	0. a 	+ ---A sin), - y a e3 	R 
- el 	e2' 

	

dt 	 v
e2 	v 	

f2 
e2 

dR 	= 	a 	sinA + a 	(1 + C 	) cosA + y -e3 R f2 	• 	el 	e2 	ve2 	
— 	-FT 

dt v
e2 

2 
Cv

e2 	+y ',e3 

C = V(  Cg
1
2 
 + Cg2

2 
+ Cg3

2 

v
e2 

= C + R
f2 

cos ) - R
fl sin X 

Cgl 
cosx + c

q2 
si

n
x 

C + C g3 

Y e--  

'where 	 - 
e
21' e.e33 

are elements in the rotation matrix from 

inertial coordinates to the e l e
2 

e
3 

f'rame (section 2.4.10) 

1 



ael 

•n•n 

a
x 

a e2 . a 
Y 

[E] 

e3 a
z 

. and LJ  is given in section 2.4.10.. 

These &pations are developed in referenceS.11 .  and 12: 

Parameters Cg i , Cg 2  ... 	are defined in section 2.3.3. 

The terms a 	a . and a
z 

represent the perturbing accelerations. 
x' .y 

These are developed in more detail in the following subsections. . 

( 

1(  ( I  



cos X a 
dt 	el (1 + 

Ve2 	
e2 

) sin X a 	- 	n 
f 

	 -  
dR

fl 

e02  w
1 

e
04 

2 

de
02 

dt 

de 
03  = 

dt 

de 
s  03  = 
dt 

du 
 04 = 

dt 

3.2.3 VelOcity Space (U7) 

The general form of the equations of motion is: 

dt = -V
e2  a

e2 

dRf2 	= sin X a 	4-  (1 4-  &---) cos X a 	4. y w.R 
e2 	fl el 

dt 	 v e2 

-w
3 

e
01 

+ w
1 

e
03 

2 

-w
1 

e
02 

+ w
3 

e
04 

2 

-w
1
e
01 

- w
3
e
03 

2 

where 	sin X = 2e
03 

e
04  

2 	2 e
03 	

e
04 

2 	2 cos X - e - e 
04 . 03 

e 2  + e 2  
03 	04 

w
1 

= a
e3  

V
e2 

w
3 

C V 2  
e2  



r aell 

ax  

a 1\ 

Y 
ae2 [ E] 	ay  

a z 
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V = C  e2 	- sin X R f1 + cos X R f2 

y = e e -e e 01 03 	02 04  

e 2 + e 2  03 	04 

where E is given in 'section 2.4.10. 



)  

n = 1 

O 
 (a ). n 0 

 n 	P  N L. ,A ) =+ 
r r (sin L) 

. n=1 

Una n 
Pm  (sin L) sin mx + Cm  cos re! 

J 	J 
m=1 

• 
.f 

where 

I. 

3.3 Gravity Gradient  

The gravity field of the earth is very well approximated by 

describing the earth as homogeneous in spherical shells, resulting 

in only a central gravity- term. More accurate approximations account 

for irregularities in the gravity field of the earth. This is 

generally done using a series of Legendre polynomials. The series 

is developed using spherical coordinates in order to make use of the 

spherical symmetry of the earth, thus giving a good approximation to 

the earth's gravity field in the first few terms of the series. 

The potential field of the earth is 

p 	4,  the gravitational parameter of the earth 

a 	% equat3rial radius of the earth 

Pn 	the associated Legendre function 

m m 
S,  Cn 	harmonic coefficents. n  

Note:that the coordinates r, A, L are used in this expression. 

. These may be obtained as follows, starting from inertial position 

r '  r 	rz  , transform to earth fixed cartesian, and then to spherical x  
'coordinates , 

I • 



• r  COS . ag  sin a
g  

a 	. COS a 

z
b 

x
b 

r = Ab
2 

+ yb
2 

+ zb
2 

= 	tan
-1 	

Yb 
x
b 

L - 	tan 	"  b 
2 x

b 	yb
2 



I. 

P° (sin 	1, P? ( *sin 	= sin L, PI (sin!) -,: cos L 

The terms!--t nj- LI)  for the nonspherical portion are given by: Dr' DL' Dx 

	

N 	 n 	 

Dr  =( ) 
(n + 1) ) 1 

 (Cm cos mk + St" sin nik)Pm (sin b ) 
• 

	I 	
n 	 n 	 n 

	

n=2 	 m=0 	 • 
• 

n n 

\' (813 

i  

(Cnm  COS MX. + S nm  sininX)[Pm."(sini..)-m tanL Prii.:•(sinL )]- r

) 	

s 
n=2 	m=0 

m(S.' cos rnk - CTMn  sin rnk) P (̀T,' (sin L). 
. M=0 

The-Legendre  functions and .the term& cos-  le, sin mX, are computed 
via recursion formulae:' 

P.°- (sin 	= [(2n - 1) s in L  P 1  (sin • L) (n - 1) P r°1 _ 2  (sin L))/n 

P.m (sin 	= P nn'_ 2  (sinL) + (2.n  -1)  cosL  P 	(sin I-) rn/ 0, in <n 

P nn  (s in L) (2n - 1) cos L 	(sin _D m / 0,  ni  = n 

-where 

Dtp 
-17) 

n=2 

(a .)n 

sin mx = 2 cos x sin (m - 1)x - sin Cm - 2)X 

cos mX = 2 cos X cos (m - 1)X - cos (m 2)à 
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Yb 

r 

.z
b 

Dr 

DL 

DX 

a xb 

a
yb 

a zb 

The acceleration in body fixed-coordinates is found using the 

chain rule 

a , = 	p/) . 	.Dr 	DL 	ax xD — 
ax 	Dr 

 b 	
Dxb 	DL 	Dxb - DX 	Dxb .  

ayb  = 	= Dtp Dr . +  Dlp DL + DI) DX 

aYb ar °Yb aL aYb oaX aYn 

azb  = 	= 	Dr + 	DL + D)  DX 

Dzb 	Dr Dzb 	DL Dzb X Dzb 

The expressions relating r, L, X to xb , yb , zb , •are those in 

sections 2.4.4 and 2.4.5. For example 

r =jx
b
2 
+ y

b
2 
+

.
z
b
2 

Dr 
àx

b 	
2i, 2 	2 4. 	= 

2 
‘i Ab 	Yb 	zb 

Calculating similar expressions for all terms gives: 

x
b 	

zb  xb  

r 	21- 2 
r x

b 
+ y

b
2 

Yb  
2 	2 Xb 	yb  

	

z
b 
yb 	x

b  

r 2/ 2 2 + 	2 
xb 	Yb 	x

b 	
yb

2 

	

2 	2 

	

" 	"Yb 	0 

2 

nnnn• 



These accelerations are then cbnverted to inertial coordinates using 

the transformation from section 2.4.3. 

r axi 	 r axb -1 

a 
Y  A a

yb 

J az L azb 

The terms a
x' 

ay
' a 	part of the perturbing acceleration 

which appear in the equations of motion in section 3.0. 

For velocity space orbital elements, two different approaches may 

be used, either 

. convert to inertial coordinates and use the above directly 

OR 

• develop partial . derivaties in a similar manner to go 

directly to a , a , a 	components. 
e l 	e2 	e3 



I '  

1 

I .  

1 

1 
I. 

1 
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3.4 Atmospheric Drag  

The acceleration due to atmospheric drag is in a direction 

opposite to the velocity of the satellite with respect to the 

atmosphere. In vector.form: 

a - AC
D P 

V
rel 

' I V
rel  

in 	2 

where a and Vrel are vector quantities. 

The atmosphere is assumed to rotate with the earth, and the 

components of velocity are: 

V = - r w 
aX 	Y z 

Vay = r w x z 

where wz is the earth's rotation rate of .7292116 x 10
-4. rad./sec.. 

The relative velocity of the satellite with respect to the 

atmsphere is: 

vrel 	- x  Vx  Vax  

Vrel y = Vy - Vay 

vrel z 	vz 

2 	2 
= fVrel x 	

y
rel y + V 	2 rel z 

 

The density of the atmosphere is ssumed to be a function only 

of height above the earth's surface. In fact, there are significant 

Equation 3.4.1 



. ln 
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1 
1 
1 
1 
1 

variations'in density due to solar influences. These variations are 

more significant at higher altitudes, and at 1000 km. result in more 

than an order of magnitude differences between maximum and minimum 

density. The density used in the simple model is a mean density, 

and as a result of this approximation, the calculation of atmospheric 

drag gives a first order approximation only. 

The density of the atmosphere is obtained by exponential 

interpolation between the points in Table 3.1 using the following 

formula: 

where: 

h h  = height at the nearest higher point in the table 

= height at ale nearest lower point in the table 

91  = density at the nearest higher point in the table 

= density . at  the nearest lower point in the table 

1 

h
h

-h 

[
f•:, = ell  • - * e 	h h  - h i  

1 



Height (kilometers) 	 Density (kg/km3 ) 

100 	 ' 	448. 

140 	 3.34 

180 	 .589 

220 	 .202 

260 	 .0819 

300 	 .0368 

340 	 .0179 

380 	. 	 .00921 

420 	 .00488 

460 	 .00270 

500 	 .00158 

540 	 .00096 

580 	 .00059 

620 	 .00037 

660 	 0 

above 660 	 0 

From Reference 3 

TABLE 3.4/1 Atmospheric Density 



The height is the height above sea level, for the earth's 

elipsoid of revolution. This is approximated as shown in the figure. 

SA7TELL... I 7--"Ê' 

where r = irx
2 + ry2 -I- rz

2 

r 



I.  
( 

The expression for. 'drag contains the term A CD . This term 

must be supplied for a particular satellite. The units for input are: 

A = area in km
2  

CD= drag coefficient - dimensionless 

M = mass in kilograms . 

which gives units of km2/ki1ogram 

Then acceleration in kilometers/second
2 is calculated from 

equation'3.4.1. In component form, that is 

-A CD 	Vrelx  . 1 Vrel ax  = P M . 	2 

A C 	Vrel 	Vrel 
a 	= 	- 	D  p 	Y 	I 

2 

A C 	Vrel z  a
z 

= - 	D  p 
1v1 	2 

f ( ' ( 
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3. 5 	Lunar and Solar Gravity  

*The acceleratiOn of a satellite by the sun is given by. 

r
sun 	

r 

(r
sun 	

r)3 

where r is the position vector of the satellite 

r
sun 

is the position vector of the sun 

p
s 

is the gravitational constant of the sun 

We wish to find the acceleration of the satellite relative 

to our "inertiar coordinate system with origin at the center of the 

earth. Therefore we must subtract the_acceleration of the earth by the 

sun, to give the net acceleration. 

a 

, 

.:, 

. „ a
S 

= p
s s 	

- r 	r
sun un 

I rsun. 	r 1 3 	I rsuni 3  

SimilarlY, the net acceleration of the satellite by the moon is 

rm r 
 

I rm  -  r 3  

The constants u s  and pi-Il  are 

p = 132.71545 x 10
9 	

km
3
/sec

2 

p
m 

= 	4.902778 x 10
3 

km
3
/sec

2 

The position of the sun, r s  and the moon, rm  are foùnd in 

sections 7.2 and 7.3. 

rm
3 



sun 	-t„ 
I 	sun I 

(( 

a = - K ,Aft 2\ 

/ 

asun asun)  i) 	rsun  

3.6 	Solar Radiation Pressure  

. The accèleration of the satellite due to solar radiation 

pressure is given by 

1 

1 
1 
1 
1 

1 
1 
1 

1 
1 

where 

is the reflectivity coefficient 

K = 1 for perfect absorption 

K = 2 for perfect reflection 

A 	is the effective area of the satellite 

is the mass of the satellite 

P 	is the solar radiation force per unit area 

a 	is the semi-major axis of the suns orbit 
sun 

 
or mean distance from the earth to the sun 

The quantity K A must be suPplied for each satellite. The 
ri -4- 

value of r 	is found from section 7.2. The constants are 
sun 

P = 4.5 x 10-6 	
n 	or 4.5 x 10 	kg-3 

a
sun 

= 149.6 x 106 
km 

When the satellite is in eclipse (50% or greater) the 

radiation pressure is set to zero. See section 8 for eclipse 

calculations. 

m
2 

sec
2 

km m
2 

sec
2 

km • 

1 
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3.7 	Impulsive Maneuvers  

Impulsive maneuvers are specified as,instantaneous velocity 

increments in •the orbit frame el, e2, e3 described in section 2.2.9.. 

These velocity increments are transformed to the inertial frame 

using the mathematics in section 2.4.10. Then the velocity 

increments are added to the velocity of the satellite. If U6 

elements are used for the equations of motion, they are transformed 

to inertial coordinates before adding the velocity increments and 

then transformed back to U6 elements. 



Introduction  4.1 

4.0 	SATELLITE OBSERVABLES  

The satellite observables of interest herein are those which 

are used by a tracking station to determine a satellite orbit. 

Depending on the type of tracking stations, there may be many 

types of observables. The ones treated herein are azimuth, 

elevation, range and range-rate. 

The observables are expressed as functions of the estimated 

parameters, or 

= h (p) - h (x,b) 

The observables are developed for inertial position and 

velocity as orbital elements. If the velocity space set of 

orbital elements is used, the observable functions become 

y =:,b) 	b) 

where F(x) is the transformation from velocity space elements 

to inertial coordinates (developed in section 2.4) and h' is the 

set of functions developed to transform from inertial coordinates 

to observables (section 4). 

The inertial position and velocity used in calculating observables 

is based on true equator and equinox. 

1 

1 



(1) 
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4.2 	Azimuth, Elevation  and  Range 

El 

*These obserVables are calculated as 

• 	- 	r 
x 

r 

	

(: 	
y 1 

 (F
2 

+ 

where 
F
2 

is a set of functions to transform from inertial 

position to topocentric local  tangent (ENU) frame 

F
1 
 • s a set of  functions to transform from topocentriç 

(ENU) frame to azimuth, elevation and range_ These . 

are stated in section 2.4.7. . 

A first step in calculating the observables is to calculate 

the inertial position of the site. To do this, we first find 

the site position in the earth fixed Cartesian frame. The earth 

is assumed to be an ellipsoid of revolution as shown in the figure 

From the geometry of ellipse (see Appendix A) we obtain. 



-t- h 
a., 

• e. 

2 ; 2 
~ e sin 

o 

[ 

P X 

Y 

P z  (equation 4.2/5) 

T x  R' 

RY 

[-Rz 
 

(1-e2 ) 	: - 	. 	h i. 	ae 

- e2  sin2  L  

CbS L 

(equation. 4.2/1) 

sin L -

(equation 4.2/2). 

The inertial position of the site is found by rotating about 

they  axis by the inertial longitude of the site, Lo. . The 

component Rz has been calculated above and the 
other components 

•are 

	

cos Le 	and 	(equatien 4.2/3) 

	

=. do  sin Lo 	. 	(equation 4.2/4) 

The vector from the site to the satellite in inertial 

coordinates.is  



Pu 

Y 

R
z 

This vector is transformed into topocentric local tangent 

'frame using the transformation from section 2.3.6. 

rpE -1 

L ETOP01 

(equation 4.2/6) 

Having found the E, N, U components, the transformation in section 

2.3.7 is used to find the observables. That is, 

El = sin 

	

P U 	 
4.  p u2 ) 

 

-1 
Az = tan 	(PE) . 	AAz 

A N  

p 2 	p 2 
N 	U 

An alternate calculation of range is found from equation 4.2/5. 

p 

p 	py2 pz2 



: ..1,  
4. 
u,  

ex 

Y 

e z 

vx 

Y 

vz 

The range rate which wè call  is  the component of 	in the 

direction of ± ' Or A 

• 	 ••
1 	P 	p 	+: ep 
p .  
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P fl
vx - w Ry 
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4.3 	Range Rate 

The relative velocity of the satellite with respect to the 

site is 

4 

P 

 

=V 	VSITE 

The velocity of the site is due to the rotation of the earth, 

and so the compqnents of relative'velocity are_ 

-w R 
Y 

w R 

0 

Where the expresslon for p is obtained from section 4.2. 

Expanding and simplifying the above expression gives 

p =1(p v 	p
y vy 	p v 4-wrR -w . Rr ) x x 	z z 	x y 	z 	y 

or an alternate form 

.; 
= 1 (p V  +p  V 	p V + pr. - p wr  

— X X yy 	zz 	x 	y 	y 	X 

equation 4.3/1 
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((lk 	5.0 ORBIT ESTIEATION  

5.1 Introduction  

The orbit estimator uses a Kalman filter, and processes 

edch measurement as'soon as it is available. The measurement is 

not stored, and the only Information of the history is .contained in 

the estimate and the error covariance matrix. This is a standard 

technique with a Kalman filter and it greatly reduces the storage 

requirements compared to least squares data processing. There are, 

however, several  approximations and limitations of the Kalman 

filter, which are discussed in Section 5.2. The estimator is 

described in Section 5.3. 
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5.2 lisciission'Of'Kallian'filteMgel  

Kalmanfiltering IS the method used to find an estimate of the 

orbital elements. The terms "Kalman filter" and. fl estimator" are used 

interchangably. • • 

• There are maRy papers and books on Kalman filtering in general, 

and on Kalman filtering applied to orbit determination. The reader 

may refer to reference 5 	for detailed information and for the 

theory of Kalman filtering. The following discussion just gives the 

assumptions necessary to apply Kalman filtering to orbit determination. 

Kalman filtering will provide an optimal estimate provided that 

certain conditions are met. For &bit determination, these conditions 

are never satisfied and so the estimate is not optimum. The Kalman 

filtering theory applies to linear equations, and satellite orbital 

equations are nonlinear. The equations are linearized about the 

estimated orbital elements.' This introduces errors due -Co linearization 
because the estimated orbital elements are not the same as the true 

c..rbital elements. The Kalman filte ,ing theory un account  for  measure-

ment noise and state noise, but assumes Gaussian white . noise, a 

condition which is never satisfied in practise.  •  The Kalman filter 

requires an initial state error covariance matrix. An optimum Valtie 

of this error covariance matrix can only be obtained if the tsrue_ orbital 

elements.  are  known, and since the true orbital elements are not known 

it is necessary to use a sub-optimum value. These problems  cari  be 

partly overcome by including a siate noise matrix - in the equations. . 

The terms in the matrix, must be carefully chosen to give gooii results.• 

1.  
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5.3.1 Introduction 

The equations listed in this section are a summary of the 

estimator analytics. Vector and matrix notation is used as in 

reference 5. For example, the notation 

2 (10-1/k) 

represents the best estimate of the state (or orbital elements) 

at time tul  using information up to and including time tK . The 

state is defined by: 

As mentioned in the introduction (section 1.0) the estimator 

uses a process of prediction and correction. The prediction 

équations in section 5.3.2 and the estimator equations in section 

5.3.3 comprise the orbit estimator. 



5 7 4 

5.3.2 Orbital Element Prediction 

The orbit prediction equations are used to update the orbital 

elements and error covariance matrix to a new time. They are 

.t
k+1 

x (k+1/k) = e)-(' (k/k) 	ç f (5 .̀( (t/t k), t) dt 

	

• 	.1t  

P ( k 4' 1 /k) = 	P (k/k) j+Q 

where 

The function f represents the equations of motion which are given 

in Section 3.0, i.e. 

5( = f (x,t) 

o F (1) (k 	1, k) is the state transition matrix from time tk to 

time tiol 	obtained from a relinearization of the nonlinear equations 

of motion about state  (k/k). and is=develoned in section 6.1. 

P is the error covariance matrix 

Q is the state noise covariance matrix which is used to account 

for limitations of the numerical computations and inaccuracies 

in the equations of motion. 

/ 



5-5.. 

(I; 

1 

1 
1 
1 

-1 

1 
1 
1 

1 

5.3.3 Orbital Element'Correction  

The orbital element correction equattons are used each time a' 

new measurement is available. They are 

K(k-1-1/k) = P(k1-1/k) HT  (HP(k4-1/k) HT  

5(k+1/k+1) = 2(k-1- 1/k) 	K(k-1-1/k)(y(k+1) - h(2(k+lik), t iol )) 

15 (k+lik+1) = ((I-KH) P(k4-1/k) (I-KH) T 	KRKT) 

or 	P(k+1/1(4.1) 	(I-KH) P(k+1/k) 

where 

ir-- ‘ y (k+1) is the measurement at time tk+1 

h is the nonlinear•function mapping  an orbital element 

into the corresponding measurements 

H = H(k-11) is the measurement matrix at time tiol  

obtained from linearization of the h function about 

the state reference X(10- 1/k) 

K is the Kalman gain matrix 

1 

1 
1 

1 
1 
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6.0 	LINEARIZATIONS  

6.1 	State Transition Matrix 

6.1.1 	Introduction 

The state transition matrix, q, is used to propagate the 

error covariance matrix, P, forward in time. In order to generate 

the state transition matrix for use in the extended Kalman filter, 

it is necessary to linearize the (nonlinear) equations of motion. 

We start with the nonlinear eauations of motion which are given 
explicitly in section 3.0. In general, these are 

x = f (x,t) 

Lf
f1 (x 1 ,  .x2 — xn' t)  

2  (xl , x2  ... xn , t) 

f
n 

(x
1' 

x
2 

... x
n
, t) 

These equations are linearized by expanding in a Taylor 

series about the reference state Xref and neglecting second 

order terms, giving 

+ 	1  x
1ref 	(x - X 

	

D
x 	

1 	1ref) 	• 

	

1 	
â
xn 

••• 

• X 
 n  x

nref 	(x
1 

x
1ref

) 
 " 	xn 

xl x
n 



1 

• x
1  

x 
n 

e- --.) 
x = 	x 

I. 

If we let ex1 x
1 

- x
lref 

isx 1 = x 1 - 	e 1ref 

etc. 

r DX
1 e âX 1 	x ax a

xn 1 

7-- 	I 1 
Dx

n 	
DX n 

 6 x
1 	

z 
•• • • — u x 

D x
1 	

D
x n 	

n 

— 

Or, in vector form 

where 

J stands for the matrix of partial derivatives 

evaluated at the referenz:e state. 

LXi 



0 (x by x) pxp 

0 

Then the state transition matrix (1) is found from the equation 

= j  

dt 

The state transition matrix has the property 

Sx (t + itt) = 	(t + ft, t) cs x (t) 

So far, we have only considered orbital elements. If biases 

are also being estimated then state transition for biases must be 

included. 

This is very simple since biases are constant 

b (t 4. et) = 	b (t) 

Then the total I matrix may be partitioned as follows 

(h by b)j 

where I is the identity matrix. 

It may be shown that Ç.) is used to propogate the error 
covarince matrix forward in time (see section 2.7).- 



JAt cps= e  JAt 	(JAt) 2  

(D is evaluated using the equation listed above 

= a 
dt 

where (D (t,t) = I 

The approach used in finding ,D is to assume that J is constant 

over the interval of interest. Then 

At (t 	At,t) = eJ  

and the exponential is approximated as 

2: 	3! 

• where 

• 1 is an identity matrix of the required Order. 

(JAt) 	= At2  rtl 	' 

The aboVe discussion provides a.summary of the technique 

used.' For more'background inforMation, see reference 5, 

sections 8.1 to 8.3 and reference 7 section 6-3 and 6-4. 
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The individual elements:in J are found by taking partial derivatives of 

the equations of motion given in section 3. The equations contain. perturbing 

accelerations which are small to first order and partial derivatives of these 

terms are second order and are neglected. . 

. For example in inertial coordinates, one term in the equations of motiOn 

is 

vx = -11  r +a (r 	r r,v,v,v, 
r3xxx' y'zxyz 

2 
 where 	r = x 	r
2

y 	rz 

• Then 

âa DV
X  _ 	P 	3Prx 	Dr + 	x 

•
à 	3 

r 	ex x rx 	T4 

= 	
3pr 2 

X  
r3 - r5 

Other terms are culculated :n a similar manner. See refererce 15 for 

à complete development of all terms in the J matrix. 

In U6 elements, the Jacobian J has a specially simple form 

I  
0 	0 i 

261 j 62  j 63 j64 j 65  j 66 I 
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) 

o 0 

For this special case, it may be shown that 

0  = eJ At . 	. Pt 	
(e

. 	Pt 

J66 	
366 	-1)  

j 61 j 62 j 63 j 64 j 65 j 66 

and a matrix exponential calculation is not required, which gives a 

significant saving in computation time. 



6.2 	Linearized Measurement Matrix  

6.2.1 	Introduction 

A linearized measurement matrix, H, is required for orbital 

element correction. It maps differences between estimated para-

meters and a reference into a difference between the observables 

and a reference. 

Starting from the nonlinear measurement equations in Section 4 

of the form 

y - h (x,b) = h(p) 

we linearize and obtain 

= H [131 
Dy 

where H 

The matrix H contains (# observations) rows by (# parameters) 

columns. The matrix H may be partitioned as follOws 

y =
x 

H 	x 

where 

Hx
Dy 
 and H = 

Dx 	b 

Terms in H 	evaluated in sections 6.2.2 and 6.2.3. Terms 

in H
b 

are evaluated in section 6.2.4. 
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6.2.2 	Inertial Coordinates 

The linearized measurement equation is 

El 

Az 

	

. D El 	D El 

	

D r: 	D V
z 

D 	. 

r. D 

where Eg =  E. 	E£
ref 

• etc, 

The•first three rows of the measurement matrix refer to . 

elevation, azimuth and range, and the last row refers to 

range rate. These will be developed separately below. 

Elevation, Mmuth and Range 

The measurement matrix for elevation, azimuth and range is 

. developed in two stages. The first stage relates the measurements 

to East North Up coordinates, and the second stage relates the 

East North Up coordinates to state variables. 

The equations relating measurabks to East, North Up 

coordinates are given in section 2.4.7 and are repeated below. 

El = sin-12
N 

1-"15 2  
• 

P  E 
= tan 	15— 
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f  • ''''7, 

\ 	" 

A =  

- .971 
i 

-d [ 
.

.
.

1 

f-- - --! 

I 
ID; : N I 

. 	i 
' 	f 

PI [ 

_P 

2 	2 
P E 4- P N 

0 

These  équations are linearized by expanding in a Taylor series and 

neglecting second order terms 

- 	Dy V,Ihere LAI 	—
DX 

The terms in A may be evaluated as 

-P N P U  A E 	PN 

 VP E P  N 	
2 

P E 2 4.  P N
2 	

. 

P E 	PN 	PU 

1 



PE  j 

P N  

pU it  
ry - [A] [ToN] - LA1 

The equation relating East North Up coordinates to state 

variables are given in section 2.4.6, and repeated below 

[

-sin 0 

	

-cos 6 	sin L 

	

cos 0 	cos L 

ETOPO]  

cos e 	0 

	

-sin 0 sin L 	cos L 

	

sin 0 cos L 	sin L. 

rx 	Rx 

r - R x 	x 
r 	R 
Y 	Y 

rz - Rz 

- R 
Y 	Y 

rz 	Rz 
-r 

We . exriand the above expressions in a Taylor series about the 

reference. ' In this expansion, the position of the site is assumed to-

be fixed and independent of the state of the satellite so R= R x 	xref' 
Then the expansion gives 	_ 

x 

	

L

N I 	TOP] 	y 

	

! 	l'."'2 1 ! 

	

P U J 	. 	.../ _ 
Combining with the previous equation gives 

Az 



I .  
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The matrix product [A] [ETop -2Igives the upper left 3x3 elements 

of the H matrix.' The upper right 3x3 elements are all zero because 

azimuth, elevation and range do not depend on the spacecraft velocity. 

An alternale.calculation for partials of range may be used, coming 

directly from the definition of range in inertial coordinates. 

p = 	(r - R )
2  + (ry - Ry ) 2 + x 	x 

1h en  

DID 	rX - R
X 	

p
X 

- 

	

• 

DP 	= 	- R 	= PY 
Y 	Y  

	

âr 	p • 
Y 

âp 
= r 	R = 

P
z 

Z 	Z  ârz 

Range-Rate  

The fourth row of the H matrix is derived from the expression 

for range-rate from section 4.3. 

1 ( 13(v.x 	+ isfvy  + Pzvz  + wr)( Ry-wryRx ) 

where 

P
X 

= r 
X 

RX 

R 
Y Y Y 

Ç)  = r 	R z 	z 	z 

) 2 

p= 



= i 
X 

- 7 

( 1,7) -  
-P z 
3 

Then expanding in a Taylor series about the reference gives 

P re-É 	(r
x 
-r

ref ) + 
 

x 	. 
Dr 	' DV

z 	
z zref 

çiz I 

The elements of C are evaluated next. Intermediate results are 

Op 	Op
z  

--/ - 1  =1  
Dr

x 	
Dr 	Dr

z Y 

a 	I 	= ll . -p
X  ex  . ‘ p/ 	 M = 

3 	Dr 	p / — 	 Dr
z P 	Y 	3 

P 



C
II 

= 

C12 = 

C 13 = 

C
14 

= 

- P X  

P 2 

- P y  

P
2 

P z 
2 

+ 	1 

+ V z 

• 

• 

(vx + w  R)  Y 

w Rx ) 

rx = rxref 	
Dr x 	(Cg, 	

Cg lref ) 	9rx 
DCg i  ax 

- A 
ref ) 

C15 	_y.  

C
16 = 	Pz 

6.2.3 	Velocity Space  (U6) 

The position and velocity in terms of velocity space elements 

• may be written 

rx  = F1  (Cg i , Cg 2  ... X) 

r =F2 	- (C g 1 	- , Cg2 
 ... X) y  

etc. 

These equations may be linearized by expanding in a 

Taylor series about the reference, and neglecting second order 

terms gives 

etc. 
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These may be witten in matrix form as 

Y 

E. 

p z  

A
z 

Cg2  

1 

In section 6.2.2, an expression was developed relating 

difference in observables to difference in position and  velocity 

. of thé form ... 
,•nnnn • 

vz 

Note that the matrix H' above was called 	section 6.2.2. 

The reason for the change is that the name H is reserved for the 

measurement matrix. The above matrix is the measurement matrix for 

inertial coordinates, but not for velocity space elements. 

Combining the two 

rs 1 

PI [FI 

previous equations gives: 

Cg
2 

= [H] 
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The measurement matrix for the velocity spàce -set is the 

product DI LEI . The matrix pll has already been found in 

section 6 2.2. 

• The matrix F is developed in references 8 and 9. The 

results are summarized below. 	 •  

. The matrix F may be divided into two parts. 

where Dr 	and Dv 	are defined by 

DX
T 	

Dx
T  

D 

 



DX
T  

DV 

DX
T  

1 rE 1 

12 

13 

• 
11 

12 

13 

DVe2  + (v
e1 cosX-ve2 sinX ) A 

axT  

£ 21 

£22 

£ 23 

+ (v
el sinX + ve2 

cosX ) 

where 

Cg i  

n 

uve2 2  

and Dr 	= 
( 1  

C .  

and 	D r 	. 

DCg2 
( 1 + v

e2 ) Cve2.
2

• 
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• Then in references 8 and 9, it is shown that Dr 	and 
• 

DX
T  . 	. . 	• _Dy

-77 	are given by 	. 	. . 	• 
• • • Dx 

1_ 

Dr-  

DC9 1 	DCg2 	DX 

avel  

DX
T  

+ r cos X A + r sin x B 

£ 11 	£12 	£13 

£21 	£22 	£23 

£31 	£32 	£33 

is the matrix E developed in section 2.4.10 to convert 

from inértial coordinates to orbit frame e 1e2e3 . 

7.• 



and 	Dr 

Cg3 	Cy, 2  e2 

Cg 3  ve2 
C 

and 	D r 	_ 	p cos X 

-a12 

13 

a21 

a22 

1 D 	D a 

	

13 	"13  

a Ca -1 	Cg ? 	D C9 3  

and D r 

D Rfl 	Cve2
2 

sin X 

DRf2 Cve2
2 

and 	Dr  = 	UVe 1 

DX 	Cv e22 

1 
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1 . rac' 21' 	ael  21 	aœ  21 

Ir)  A = 	
a Cgi 	D Cg 2 	. p Cg 3 

 • 	

âez 
: cœg221 . 	a a22 	22 -  

D Cg 2 	D Cg 3  

a23 . 	a  t'23 	â el23 

Cg i 	 Cg 3  

I 	 and 	.  

aœ  11 	a et 11 	aœ. 11 

I 
D Cgi 	Cg2 	D Cg3  

I 	 B = 

, 	 D Cg i 	Cg 2 	Cg 3  

1 
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OE12 	
D a

12 	
â a 

12 

0 	0 	«23 



and 	vel -
• 

D XT  

r- D ve l 

D Cg l  

D vel 

Cg3  

	

• a Vel 	vel 	D  vel 

	

Rfl 	D Rf2 	
D X 

vel 

Cg2  

and vel = Rfl con  f Rf2 sin A 

= C 	Rfl sin), 	Rf2 cos X 

I. 

see section 2.5.4 
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In addition, the following are used above 
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.22 	. 23 

a 

	

31 	32 	..33 

is the Matrix [el developed in section 2.4.8 to transform 

. from inertial coordinates to the orbit frame f1f2f3 . 

The following relationships are used.above 
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6.2.4 	Vèlocity Space (U7) 

This development follows that in section 6.3.3. The equations 

for ar and Dy and obtained from references 8 and 9 and are 
--T x 
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---T 
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6.2.5 	Biases 

The terms in the measurement matrix which are from biases in 
the measurements are 
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6.3 	State Transformations  

We wish to calculate the linearized transformation matrix A' 

which is used in section 2.7. The method for calculating the 

matrix is given below, but the elements of the matrices are not 

developed. 

For example, consider the transformation from inertial 

coordinates to U7 elements. Then the state vectors x and z are. 

The linearized transformation matrix A satisfies the equation 

- x = A z 

where 

1 



The terms in A are found by taking partial derivatives of the 

nonlinear transformation equations in sections 2.5.3 and 2.5.9. 
Some of the equations are 

h =r  v 	r v 
X 	y z 	zy  

h =r v -r v 
y 

 

z x 	x z 

h =r v z 	xy 	yx 

c=  

Then the first term is evaluated using the chain rule as 

âc 	= ac 	âh âhy 	âh âhz  \ 
âr

x 	
th âr 	âh ar ' 
y x 	z x 

= 	h 	h 
2 	 ) —Y- 	) 	z (v 

 hhz hY 

-1-1  (h v - h y)  
h3 	yz 	zy 

and the other terms may be evaluated in a similar fashion. 
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7.0 	EPHEMERIS  

7.1 	Time 

The orbit deterMination and prediction programs use a form of 

Universal Time as the working unit of time. It is worth noting 

two approximations that result 

i) The first is because no correction is made for seasonal 

variations in the earth's rate of rotation. This may 

result in an error of up to 0.025 seconds of time, or 

for a satellite with semimajor axis of 7000 km a position 

error of up to 185 meters. 

ii) The second results from the difference in the length of 

the units of time. The year in universal time differs 

from the year  in  Ephemeris time by about one second. In a . 

period of one day of prediction, this amounts to an error 

of less than 0.003 seconds of time or less than 20 meters 

in position for a satellite with semimajor axis of 7000 km. 

The universal time is in the form of Modified Julian Date 

where Julian Date 2,400,000.5 is 0 in MJD. The value for other 

MJD's of interest are 

1900 January 0 at 12 h 	= MJD 15019.5 

1900 January 1 at 0 h 	=. MJD 15020.0 

1950 January 1 at 0 h 	= MJD 33282.0 

1978 January 1 at 0 h 	= MJD 43509.0 

A form of Ephemeris Time is used for the calculation of the 

position of the sun and moon, since the equations for the elements 

of the position of the sun and the moon use ephemeris time. The 

calculation of ephemeris time from universal time is done using a 

linear fit which is probably accurate to within about 1 second from 

1965 - 1985. The linear fit is performed using the following data 

. 	from references 9 and 10. 



7-2 

(11( • 

11 

Date 	 At 

Jan 1 197 at Oh  UT 	 49. 

Jan 1 1969 at 0
h 

UT 	 39.20 

Jan 1 1900 at 12h UT 

, -This data is fit to an equation of the form 

d
E 

= a b * MJD 

where d
E 

is the time in ephemeris days tince 1900 January 0 

at 12
h 

ET (1899 Dec 31 at 12
h

) 

The above table may be rewritten 

MJD (UT) 	MJD (ET) 

43874.0 	Jan 1 1979 	43874.0005706 

40222.0 	Jan 1 1969 	40222.0004537 

Then with d
E 
being measured from MJD 15019.5 ET, an expression 

for d
E 

is 

d
E 

=  -15019:5008338 	1.00000003201 *4JD
UT 

and T = 	
d
E  

36525 

where T
E 

is in Julian centuries 

-4.5 

1 

1 
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7.2 	Position of the Sun 

As a first step in finding the mean motion of the sun, we find 

its inertial position and velocity based on the ecliptic and mean 

equinox (see section 2.1.4). 

The orbital elements are obtained from reference 5 and they 

are 

Semi-major axis 

a = 149.6 x 10
6 

km 

Eccentricity 

e = 0.01675 104 - 0.00004 180 T - 0.00000 0126 T
2 

Inclination 

0 since the sun's orbit is in the ecliptic 

Longitude of Ascending Node 

- not required since i = 0 

Mean longitude of perigee, mean equ .inox of date 

w = 281922083 + 0900004 70684 d + 09000453 T 2 	0.00000 3 T3  

Mean anomaly , 

M = 358947583 4.  0998560 02670 d - 09000150 T2 	09000003 73 
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where 

T 	is time in Julian centuries of 36525 ephemeris days from 

1900 January 0 at 12 hrs ephemeris time 

d 	is time in ephemeris days from 1900 January 0 at 12 hours 

ephemeris time 

As the orbit determination program works in universal time, 

the value of T and d must be calculated using the formulae from 

section 7.1. 

The true anomaly is found from the mean anomaly and eccentricity 

using thé conversion_in section 25.6. Then position and velocity 

are found in the inertial frame based on ecliptic and mean equinox 

using the transformation from section 2.5.1. The mean obliquity of 

the ecliptic which is required for this transformation is obtained 

from reference 5. 

e = 23.452294 - 0.01301 25 T - 0.00000 164 T -
2 
 4- 0.

0  
00000 0503 T

3 

The position and velocity are transformed into the inertial 

frame based on true equator and equinox using the rotations from 

sections 2.6.2 and 2.6.1. 
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7.3 	Position of the Moon  

The position of the moon is found following the procedure 

from reference 13, which is based on the Brown lunar theory. In 

order to reduce the amount of computation, major simplifications 

have been made. These simplifications are: 

• All periodic terms with coefficients less than 

180 seconds of arc have been eliminated in the 

latitude and longitude developments. 

I. 

1 •  

1 

• All periOdic terms with coefficients less than 3 

seconds of arc have been eliminated from the 

lunar parallax development. 

. All additive terms in the fundamental arguments 

have been neglected. 

• the geocentric mean longitude o e  the moon 

• the mean anomaly of the moon 

. the mean anomaly of the sun 

. the mean distance of the moon from the ascending node 

. the mean elongation of the moon from the sun 

The fundamental arguments are evaluated from a power series 

as functions of ephemeris time in days from 1900 January 0.5 ET; 

or Julian day 2415020.0. These are: 

( 



Then the lunar  longitude in the ecliptic referred to the 

true equinox of date is calculated as the sum of: 

• the geocentric mean longitude of the moon, 

• the nutation in longitude, and 

• a number of sine terms involving sums and differences 

of the other fundamental arguments. 

The lunar latitude with respect to the ecliptic is 

calculated as 

- A sin S 	B sin 3S 	C sin 5S 

where 

. A, B, and C are constants 

• S is the sum of the mean distance of the moon from 

.the ascending node plus a number of sine terms 

involving sums and differences of the fundamental 

arguments. 

The lunar parallax, 71-, is calculated as 3422.7 seconds of 

arc plus a number of cosine terms involving sums and differences 

of the fundamental arguments. The lunar radius is calculated as 

R - 6378.16  
sin w 

The inertial coordinates of the moon with respect to the 

true ecliptic of date are found by converting to inertial 

coordinates using the conversion from section 2.4.5. These are 

transformed to true equator and true equinox using the same 

transformation as in 2.6.2, a rotation by the true obliquity 

of the ecliptic. 
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7.4 	Position of the Earth  

- The position of the earth is obtained using universal time from the 

definition of universal time (ref 10 pg. 73) 

"12 hours + the Greenwich hour angle of a point on the equator 

whose right , ascension measured from the mean equinox of date is 

' 

Ru = 1.8
h 
 ,58

m 
 .45

s
.836 - + 8640184.542 Tu + 0.0929 Tu

2 

where Tu is the number of Julian centuries of 36525 days of 

universal time elapsed since 12 h universal time 1900 January 0" 

From this. definition we obtain  the longitude of Greenwich, or 

Greenwich mean sidereal time as 

etbm - 	12" + UT + Ru • 

In terms of the Modified Julian Date (section 7.1) the expression 

for cç may be derived from the above as 

a =  gm 100.075542 + 360.985647346 ( t-33282) 

+ 0.29 x 10
-12 

(t-33282)
2 

where agmis  in degrees 

t is the MJD 

The longitude of Greenwich referred to the true equator and 

equinox of date is 

= a • + 4 CO5 (c + tE 
gM 

where 4 and SE are obtained from section 7.5 and E is given 

in section 7.2. 
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ee  (7) 	
7.5 	Nutation  

The expressions for nutation are obtained from reference 10 pages 

41 to 45. Only the largest terms are included. The largest term neglected 

has an amplitude of 0.13 seconds of arc. This corresponds to a position 

error of less than '5 meters for a semimajor axis of 7000 km. 

The equations for nutation in longitude and obliquity of the 

equinox are 

II  

= -17.2327 sin R - 1.2729 sin (2F - 2D +2Q ) 

+ 0.2088 sin 2 Q - 0.2037 sin 2 ( 2 	F) 

'Sc;
II 	 II 

= 9.2100 .cosQ + 0.5522 cos (2F - 2D 	2Q ) 	. 

• where the above are in seconds of arc, and 

F = 11° ,250889 	13° .2293504490 d - 2?407 x 10-12  d2  

D = 3500 .737486 	12° .1907491914 d - 1° .076 x 10-12  d2  

= 259
o
.183275 - 0.0529539222 d 4- 1

o
.557 x 10

-12 
d
2 
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8.0 	EVDITS' 

Eclipses 8.1 

An eclipse occurs when the earth or the moon comes between 

the satellite and the sun. 

8.1.1 	Eclipse of the Sun by the Earth 

EARTH 

a
2 

is the angle between the earth and the satellite as viewed 

from the sun. At the time of an eclipse, it is the earth 

half angle as viewed from the sun, or tan a2 n6378/149.6 x 106  

Œ2  ir; .0024 degrees, or less than 9 seconds of arc 

a
2 

is assumed to be zero and neglected in eclipse calculations 

1 
is the angle between the satellite and the sun as viewed from 

the center of the earth. It is found from 

cos (1 1  = 	r.r 
sun  

I r rsum I 
where r

SUN 
is found in section 7.2. 



8,2* 

is the half-angle subtended by the earth as viewed from 

the satellite. The mean radius of the earth which 

used in - this'calculation is 6367.48 km 	. 

a 	tan-1  6367.48 71 

,0••n• 

is the semi-diameter of the sun as viewed.from the 

satellite. This is approximated by the semi-diameter 

of the sun as viewed from the earth, or 15' 59?6, or - 

0.2666 degrees 

is the "angle between the earth and the sun as viewed. 

from the satellite. 

a
3 
= 1800  -

1 
+11

2
) 

ce
3 

= 1800  -a
1 

then the conditions for various events are 

Transition from sunlight to penumbra 

	

- a_ 	ce 
3 - 	

+ 
 L 

50% Eclipse 

a3  =  L 

Transition from penumbra to umbra 

a3  à 
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The calculation of percentage eclipse uses a plane trigonometry 

calculation as shown 

The overlapping Lrea is found as the area of the tvio ihtersecting 

arcs, CSD and CED, less the area of the two triangles CSE and DSE. 

	

2 	2 

	

cos 0
s 

= cc
2 

4.  Œ3 
	- 

2 a
s 

a
3 

2 	2 
cos 0

E 
= 	a

E2 
+ . 	

- 	a
s 

y.3 
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- 

sin 0
s 

= 	- cos2 0
s 

	

2 	2 
A .--(10.1- 	oto 	-act

3 
 sin 

	

s 	s 	E 	E 	s 	s 

Then the percentage obscured is given by A divided by the area of- 

• the sun 	' 

F 	2 
1, obscured = 100 La 2s  . os 	a E  OE  - as  a3  sin 0

s. 
2 

Ti s• 	 • 

I. 
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8.2. - Ascending Node Crossin9s 

8.2.1 	Inertial Coordinates 

• The ascending node is crossed when rz  = 0 going 

from negàtive rz to positive  r.  

8.2.2 	Velocity Space 

The ascending node is crossed when 

= longitude of ascending node 

or 

= tan 
-1 

 r Cgl i 
L-C92 
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8.3 	Crossingsof-an'IdentiftedLatitude  

Latitude checking of a satellite is accomplished by monitoring 

previous and current latitude differences from a specified 

latitude coordinate. If these differences are of opposite sign, 

the satellite has crossed the desired latitude within the last 

integration step, When this event occurs, the differences are 

then utilized in a linear interpolation to estimate required 

time step size (forward or backward) to propagate the satellite 

to within an allowable deadband of the desired latitude. 

In order to reduce the possibility of missing a desired 

latitude crossing because of the nature of the checking algorithm 

(a check is made only at discrete instants of time - after each 

numerical integration through a time step), the maximum time 

step size for integration should be relatively small, say no 

larger than 1/180th of the satellite orbital period, i.e., 

S  < smax  = 27tia3/ iî  

180 

where a is the orbit semi-major axis, in km., and p is the earth 

central body term. 	 • 
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10 . 0 NOTATION MD.  LIST OF SYMBOLS  

- •.Vectors are not normally distinguished from scalars. and -it 	. 

is up to the reader tà identify vectors from . the context, except .  
for a:Sew instances where vectors are shown with arrows above them- 

- LiSt :Of'SyMbols  

semi-major axis 

acceleration 

•-cross sectional area of satellite; occulted area of 
sun during eclipse 

azimuth  

number.of  bises  

parameter in the velocity space set of orbital elements 
- 

drag coefficient 

earth harmonic coefficient (constant) 

dayS sinCe the epock 1900 Jan. 0.5 ET 

e 	eCcentricity; as é, a vector with magnitude equal to 
the • eccentricity directed towards peridpsis. 

or number of orbital elements (6 or n 

eccentric anomaly 
or East eirection ur distance 

mutr:x for convers -'.on from inertial to topocentric E
TOPG 	ENU coordinates 

El 	elevation 

h 	orbital angular momentum per unit mass 

or nonlinear measurement function 
or height above geospheroid 

H 	measurement matrix 

Inclination  

identity matrix 

Jacobian matrix of the equations of motion 



" Kalman gain matrix 

Geodetic Latitude 
or "mean longitude of the moon 

L
1 

• 	Geocentric Latitude " 

• M • 	"mass 	• 

M - 	Mean Anomaly 

N 	North direction or distance 

- 13 	error covariance matrix 
or solar radiation force per unit area 

P
n
m 	Legendre polynomial 

state noise covariance matrix 

position (without subscript: distance) 

position (without subscript: distance) 
or measurement noise covariance matrix 
or parameter in the velocity space set 

- 

Sn
m 	

harmonic coefficient (constant) 

time 

T or T
E 

time in Julian centuries since the epoch 1900 Jan. 0.5 ET 

Up direction or distance 

velocity 

argument of peridpsis 

x 	state vector ,(vector of orbital elements) 

y 	observable vector 

Greenwich sidereal time (longitude of GrPenwich) 

orbit energy per unit mass 

obliquity  of the ecliptic 

o 	local sidereal time 

longitude 
or parameter in the velocity space set of orbital elements 

gravitational constant (without subscript: of the earth) 

range 
or density of the atmosphere 

true anomaly 

state transition matrix 

gravitational potential function; in SIP, nutation in longitude 

st 	longitude of ascending node 



• 

10- 3 

X 

-Y 

. 	. 
Subscripts 	• 	. 	• 	. 

• • 

ref 	, - reference, for eXample . x.
rer 

 „ ---- . X (k+1/k) . 	, 

. inertial coordinate axes. For example 

the components of inertial position • 

are r .  r and r.  • 
. • 

coordinate axes defined in section 2.2.9 • 

• • • 

• - 

• • • 

coordinate axes defined in section 2.2.8 

• 

inertial coordinate axes - the same -a§ X,Y,Z. 

11. 

relating to the earth 

relating to the moon 

relating to the sun 

ofiu, etc. 

Superscripts  

as in X
T 

indicates the transpose operation 

as in 5', shows time derivative 

-4- 	as in -n/- indicates a vector 

as in x indicates an estimate of a ouantity. Parenthesized 
indices following an estinate may give the time of the estimate 
and the time at which the last measurement was taken. Thus X(k + 1/K) 
means the estimate of k at time t with information VD to and 
including time t.. . 

as in X denotes a residual, commonly with respect to a reference. 
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APPENDIX A 	- 	Geometry of the ellipse 

This appendix summarizes the equations which are used elsewhere 

in the document. .It does not include proofs or development of the equations. 

Figure A.1 shows the geometry of the ellipse. Point  O.  

is the center of the ellipse, F is the focus, P is a point on the 

ellipse, and a is the semi major axis. A circle is drawn around 

the ellipse and the point P' is on the circle with P'P parallel to 

the y axis. The lengths xw  and yw  are the x and y components of FP. 

The line CP is normal to the slope of the ellipse at point P. 

The relationships which are used are listed below: 

• the equation of the ellipse is 

(from analytic geometry) 

• the ratio of the y coordinate of the ellipse 

to the y coordinate of the circle is b:a (ref 1) • 

• OF = ae 

b=  • a jl .  e2  

• xw  = a (cos E-e) 	(ref 1) 

• y
w 

= Vfl 	e
2 	

a sinE 	(ref 1) 

(1 - e cosE) 	(ref 1) 

A- 1 

2 
= 	1 

a2 	b2 

(ref 1) 

r 
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•• 

e sin E 

\Li e2  cos 2 E 

; cos(o 

I .  

I. 
( 

a 

e2  sin L 

d
o 

. r 

' 11 + 	 

	a 

1-e
2 

. 2 , 
sin L 

A-3 • 

• tan A' -- 11. 	e  
2 . 	 e 	tan E/2 	(ref 4) . 

• v  	e2 )  
-w 	 sin L 	(ref I) 

y 	e2 sin  2 L  

cos L 
(ref 1) - 



APPENDIX B  Integration Routines 

The formulae for integration routines used in the orbit prediction 

software are summarized below. Each formula is given in the form used 

for a single differential equation, which is the simplest form. In 

actual practice, the integration routines are used on several simultaneous 

equations. 	• 

The basic•equation is 

	

. 	A (t) = f(t,x) 

	

Runge Kutta 	(fourth order) 

where 'X(t ) = x 
.o • 	o 

xifil s = xn 	(k
1 
 4. 2k

2 
 + 2k

3 
 + k

4 
 ) 

6  

k
1 

= At f (t, x
n

) 

k2 
= At f (t + At 	1 n --î , xn  + f k i ) 

k3  = At f (t + At x n 	, n 

k
4 

= At f (t
n 

+ At , x + k ) 
n . 	3 
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