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ABSTRACT 

The signal-to-noise ratio (SNR) is calculated for a 

radar system consisting of a nonlinear amplifier, a mixer, a 

matched filter, and a two-pulse canceller. The principal 

result of this report is an expression for the SNR loss which 

is due to the nonlinear amplifier. The amplifier is assumed 

to consist of 4 memoryless limiter followed by a bandpass f 

filter. For the purposes of calculation three limiter models 

were chosen: a hard limiter, an error function limiter, and 

a v-th power device. Quite simple expressions are obtained 

for the SNR loss for these three models at input SNR less 

than -15dB. For normal radar system parameters, the losses 

range from ldB or less up to 8dB. The highest 

loss occurs for the ideal hard limiter. 

In order to obtain these results, previously known 

mathematical methods had to be extended. A significant 

feature of the extension is that it permits the calculation 

of the autocorrelation function of the amplifier output even 

when the input signal is completely deterministic, whereas 

most previous treatments assumed a random phase in the signal 

component. 

1. 
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1. INTRODUCTION  

In this report we present an analytical performance 

analysis of a scanning, air traffic control radar, operating 

in a strong stationary clutter environment. The particular 

problem to which we direct our attention is the effect of 

saturation in. the IF strip on the operation of the moving 

target indicator (MTI). The saturating IF strip is modelled 

by various soft and hard bandpass limiters. The MTI is assumed 

to be a two-pulse canceller. 

Although the effect of bandpass limiters on signal-to-

noise ratio (SNR) has been studied extensively (see for 

example [1-3]) these results are not directly applicable to 

a MTI receiver. The studies [4] and [5] involve receivers 

similar to the one discussed here, but examine the case where 

the input consists of clutter alone. There have been digital 

computer simulation studies [6-8] of problems similar to the 

one discussed here. However, simulation of nonlinear IF 

amplifiers involves approximations because of time constraints. 

Hence an analytical study was undertaken. The principal result 

of the study is a relatively simple expression for the 

degradation in output SNR which is due to the saturation. The 

expression is fairly accurate when the input SNR is less than 

-15dB. 

A simplified block diagram of the system under con-

sideration is shown in Figure 1. Section 2 of this report 



is devoted to a small-signal analysis of the nonlinear portion 

of the system. This analysis is similar to and inspired by, 

the analyses of Jain [93 and Blechman [10]. However, because 

of the presence of the MTI, the autocorrelation function of 

the amplifier output is needed and consequently the analysis 

must be carried farther than Blechman's. In Section 3 the 

results of Section 2 are applied to evaluate the overall 

system performance and to compare the system with one having 

no saturation in the IF amplifiers. In Section 4 some simple 

approximate expressions for SNR loss are obtained, and in 

Section 5 the application of these results to two particular 

radar systems is discussed. 

2. NONLINEAR  AMPLIFIER  AXALYSIS 

2.1 Modelling the nonlinearity. 

It will be assumed that the nonlinear bandpass amplifier 

can be represented by memoryless device with characteristic 

f(u) followed by a bandpass filter. More precisely, if the 

input to the device is 

u(t) = V(t)cos(wt.4(t)) 	(1) 

it is assumed that the output of the memoryless nonlinearity 

is f(u(t)) . If, in addition, V(t) and e (t ) vary 

slowly compared with wt , it is assumed that the output 



(2)  

(3)  
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of the amplifier is 

uo (t) = g(V(t))cos(wt+a(t)) 

where 

2 w  g(V) = 	f f(Vcosa)coSado ir 	0 

That is, it is assumed that the bandpass filter passes the 

fundamental term in the Fourier series for f(u) • Blechman 

[10,113 discusses this representation of nonlinear amplifiers 

more fully and provides a table Ell] of values of g for 

many f . 

It will be convenient for our purposes to use a 

Fourier integral representation for f in many of our cal-

culations. Since we wish to model symmetric limiters we 

will assume that f is an odd function and that f can be 

represented as a sine transform. That is, we assume that 

OD 

f(u) = f F(z)sinuz dz 	(4) 
0 

for some suitable function F . (The restriction to sine 

transforms is more a matter of convenience than importance. 

The methods used here could be extended to other representations 

by contour integrals with a Fourier kernel.) Then it is easily 

shown from (3) and (4) that 

es 

g(V) = 2 f F(z)J i (Vz)dz 	(5) 
0 



where J 1 is the Bessel function of order 1. Three commonly 

used models of limiters, together with the corresponding F 

and g are displayed in Table 1. In Table 1, a > 0 , 

c > 0 , and 0 < v < 1 • The parameters have been chosen 

so that c and y measure  th di u softnese of the limiters, 

in the sense that f2  • f1 and f3 f1 as c * 0 and 

v * 0 respectively. In addition, -a < f2 (•) < a for all 

u , with f2 (u) • +a as u * +40  • The functions 

f1 ,f2 ,f3  are plotted in Figure 2 for various values of the 

parameters v and À = (14t2 r2  (see Section 4.2 for 

significance of 

2.2 Statistical analysis 

It will be assumed that the input to the nonlinear 

amplifier is 

u(t) = s(t) + n(t) 	(6) 

where s(t) is the signal term and n(t) , the clutter or 

noise, is a zero mean, stationary, narrowband, Gaussian 

random process which is independent of s(t) • Let 

s ( t) = P(t)cos(wt+O(t)) 

where P(t) > 0 and 6(t) vary slowly compared with 

Let the narrow band representation of n(t) be 

(7) 



TABLE 1 -- Limiter Characteristics and Outputs 

_ 

Limiter Characteristic 	Inverse Transform 	Output Amplitude 

f 	 F 	g 

u>0 2a 	iia f1 (u) = 
{a -a 	

F1 (z) = wz 	g1(V) = w 

a 	u 	-t2120
2 	 aY  f (u) =s/ri — j 	e 	dt 	F (z) . 

ae. e-c2 z2/2 
g2 (V) : r 2 e - 2 	C. 	w 	2 	7rz 0 

v+2 u>0 	vacsc(vz/2)  f3 (u) = { 	v 	F3(z) = 	g3(V) = - 	V 
u<0 	F(1-v)ze+1 	ii 	ree+3 ) 2 



n(t) = A(t)oos(wt+6(t)) 	(8) 

where A(t) > 0 has a Rayleigh distribution [12] and a(t) 

is uniformly distributed on [0,2w] . For convenience of 

analysis it will be further assumed that the spectral density 

of n(t) is symmetric about w • Then [12, P. 298 ] the 

autocorrelation function of n(t) can be written 

E[n(t)n(t+T)] = fe 2r(T)cosut 	(9) 

where r(0) = 1 , and where E denotes the expectation 

operator. 

Now u can be put in the form (1) where V and i) 

are determined by the complex sum 

Vei lle 	FeJ e  + Aei ci  

It follows from Graf's addition theorem [14 p. 361] that 

J1  (Vz)e i.  = E 	Jm+1(Az)J  (Pz)ei[(m+1)4x-me)  -m 	9 
mamp0 

where Jn denotes the Bessel function of order n . 

Combining this result with (2) and (5) we get the output 

E cosEwt+(m+1)a-m841 F(z)Jm+1 (Az)J-m(Pz)dZ) . 

( 10) 



no (t) = u0 (t) - s0 (t) (13) 

This is the total output of the nonlinear amplifier. The 

output signal is 

0 (t)  = E[u0  (t)] 

where the expectation is over the noise variables A and a . 

Since A(t) and  a(t)  are independent and since a(t) is 

uniformly distributed, only the term m = -1 in (10) con-

tributes to the average, the other cosines averaging to 

zero. Also [13, p. 393], 

2 2 
ELT (Az)] = f -- 

A e-A 	y 	 e-cr z /1 
0 	0 02 	

uenzidA .(11) 

Thus the output signal is 

0  

 s0  (t) = 2(1  F(z)J (P(t)z)e-w 
z2„ 

 dZ)cos(wt+O(t)) . (12) 

The noise output of the nonlinear amplifier is then 

2.3 Small-signal analysis 

If P(t) is always small compared with 02  , it is 

evident from (12) that Ji (Pz) can be replaced by Pz/2 , 

the first term in its Taylor expansion about zero. Thus, 

for P  « a 2  , we have the approximate output signal 



	

, 	1 	tIn-avit 	
"2" 2 

	

Q - 	I 4 .u)e-- 	du 
in 0 —00 

(15b) 

(14) s0  (t) = QP(t)cos(wt+O(t)) 

where 

f zF(z)e z2/2  dz 
0 

(15a) 

is the signal gain due to the nonlinear amplifier. 

The gain, Q , can also be calculated from the 

equivalent expression 

A simple, but formal, demonstration of the equivalence of 

(15a) and (15b) is obtained by differentiating both sides 

of (4) with respect to u and then using the integral 

formula 

two 	2 	2 1 f cos uz e-u /2a du = e-a
2 z 2 /2 

In 0 

One can also derive (15b) from (15a) more carefully by using 

Parseval's relation and a theorem about Fourier transforms 

of derivatives. Even if f(u) is discontinuous, ( 15b) 

is valid provided that f (u) is regarded as a generalized 

function derivative. 

Although it is not immediately apparent from (14) 

the approximation %(t) is the same as one obtained by 

Blachman [10] by another method. From the identity [13, p. 18] 



zJ1  (Az) + J 1  (Az)/A = zJ o (Az) 

and (5) we have 

g ( A) 4. g(A)/A=2 1 F(z)zJ o (Az)dz 
0 

Combining this with (11) we get 

So (t) = 	E[g s (A) + gel] 8(t) , 

which is Blachman's (10] expression. 

Also, if P <<a2  , we can approximate the-Aiutput 

noise by putting P = 0 in (13) . The approximate noise 

is then 

o (t) = g(A(t))cos(wt+a(t)) (16) 

where g is given by (3) or (5). 

The validity of these small-signal approximations 

will be examined more carefully in Appendix 1. 

2.4 Autocorrelation of output noise 

In order to discuss the noise output of the two-pulse 

canceller, we will require the autocorrelation function 

fo (T) = E[g(A(t))g(A(t+T))cosa(t)coset+t)] 	. (17) 
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It is shown in Appendix 2 that 

Ettyz1A(t))J1 (z 2A(t+T))cosa(t)cosu(t+T)] 

1 	-
a2 

(z 2 +z 2 ) 
Ii(r(T)02z1z2)e 	1 	2 	

9  
(18) 

where 02 and r(T) are defined in (9) and I1 is a 

modified Bessel function. It now follows from (5), (17) 

and (18) that 

02 	2 	2 
+z, ) 

eo (T) 	2 f 	F(z1 )F(z2 )e 	I1  (r(T)0
2 z1z 2 )dz1dz2 • 00  

( 19) 

In Table 2 we show the results of evaluating the 

integrals  in (15) and (19) for the three limiter models of 

Table 1 • The quantities 02  and r(T) are related to 

the input noise as in (9). The integrals leading to Table 2 

were evaluated using standard results on special functions 

in [13-15]. The double integral (19) can be evaluated 

either by expanding  I in a power series or by using suit-

able pairs of integral formulas for special functions. The 

error function limiter results can be obtained by direct 

• integration or by the replacements of u2 by 02 + c2 

and r(T) by 0
2r(T)/(02

+c2 ) in the results for the hard 

limiter L16, eq. (50)]. The symbols r and 2 F1  denote 

the gamma function and the hypergeometric function in the 

notation of [14]. 



TABLE 2 -- Gain and Output Autocorrelation 

4 	 , 

Limiter 	 Output Autocorrelation, 

Characteristic 	Gain, Q'i.. (T) 
0 

a i/F- 	' 2a2 	1 1 	2 
f1 	(Hard limiter) 	Cr..  w 	r(T) 	

F 	( 	--•2'r (T)) 

2 
2a

2 
o
2 ,1 1. 2  r(T)01 (Error function 

44-  a 
	 _______ r(T) 

 

limiter) 

f3 	(v-th power 	
a 
/(20

2 	2
) 
 v/2 	v 	2a2 	2 v 

I'  2
1-v 	2 

u 	i 	r(l+i) 	w 	
r(T)(2o ) 	(1+i) 2 F1 ( -y-,--i--;2;r (T)) 

device) 

4 



- 12 - 

Most of the results in Table 2 are more or less 

well-known. For example, the value of ro (T) for the hard 

limiter agrees, apart from notation, with the expression 

derived by Price [17], The results for the v-the power 

device agree with eq. (13.85) and (13.86) of Middleton [18). 

3. DEMODULATION AND MTI FILTERING 

A model of a scanning air traffic control radar is 

depicted in Figure 3. Two adjacent positions of the antenna 

and one range ring are shown. As the antenna rotates A6 

radians, NB  transmissions of s(t) are received and 

processed by a mixer and matched filter, where N B  is the 

number of hits per bearwidth. To distinguish moving targets 

from clutter, the returns for two adjacent antenna positions 

are subtracted on a component-by-component basis. This 

operation is performed by the two-pulse canceller of Figure 1. 

We will use the small-signal approximations s o (t ) 

and n0 (t) as the signal and noise at the output of the 

nonlinear amplifier. It will be assumed that the action of 

the mixer is to remove the wt terms in (14) and (16) 

(i.e. mathematically, the mixer multiplies by 2costat and 

filters out high,-frequency components). Thus, after mixing, 

the input to the matched filter is 
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QP(t)cos8(t) + g(A(t))cosa(t) . 

The matched filter is matched to the modulation 

P(t)cos81 (t) , where 8(t) = 8 1 (t) + 8 2 (t) and 82  

models Doppler shifts and any other random phase effects. 

The modulation will typically have a bandwidth in the 

megahertz range. The noise, on the other hand, typically 

has a bandwidth of about 100 hertz. This band is spread 

somewhat by the nonlinear amplification, but not to the 

mehahertz range. Thus it will be assumed that the noise 

passes through the matched filter unchanged, while the 

signal is modified in such a way that P(t) is replaced by 

P1 (t) . The precise form of Pi (t) is not needed for our 

development; hence we do not consider the structure of the 

matched filter in detail. To summarize, after the signal 

plus noise passes through the nonlinear amplifier, mixer, 

the matched filter, the output is 

w(t) = QP1 (t)cos0 2 (t)+g(A(t))cosa(t) . 

If the signal is a reflection from a moving target, 

and if the random phase effects are small, then 

82 (t) = dt 	(20) 

where wd is the Doppler frequency. We now model the MTI 

by a two-pulse canceller, which forms the difference 

w(t) - w(t-T) , 
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where T is the reciprocal of the pulse repetition frequency. 

In the best possible case wdT 	, where n is an odd 

integer, i,e. cos8 2 (t) e-cos0 2 (t-T)  , and Pi (t) = Pi (t-T) . 

For this case, the peak signal output of the two-pulse 

canceller is 

= 20 , 	(21) 

where r is the peak value of Pi (t) . 

The noise output of the canceller is 

N(t)  s  g(A(t))coscs(t) 	g(A(t-T))coset-T) . 	(22) 

From (17) and (22), the mean noise power at the output is 

eui2 (t)] re 2[;0 (0)-;0 (T)] 

and thus the output signal-to-noise power ratio is 

(SNR) 	4Q2P2  n  
" 	2[2.0 (0)-;0 (T)] 

If, instead of the nonlinear amplifier, there had 

been a linear amplifier, it is not hard to see that the 

corresponding signal-to-noise ratio would be 

(23) 

(SNR) - 	 
20 2

[1-r(T)] 
(24) 



o 	a  
c2 (1-r(T)1Q 2 (25) 

- 1 5 - 

That is, we replace Q by one and ro (T) by 2r(T) . 

Thus, if we define a SNR loss by 

(SNR) t 
 L - (SNR)o 

we have 

Table 2 exhibits the values of Q and r o  for three 

simple limiter models. The general expressions for Q 

r0' c 2 , r are in (15), (19) and (9). 

We have only considered the SKR at the peak of the 

matched filter output. However, in the small sional approx-

imation, the noise does not depend on the signal. Further, 

the second moment of N(t) in (22) is independent of t . 

Thus the SNR at other points of the matched filter output 

is just attenuated by the ratio P12 (t)e? . Consequently 

the peak to side-lobe ratio is the same as that for the 

linear case. 

4. COMPUTATIONAL ASPECTS AND SIMPLIFIED EXPRESSIONS 

An expression for SNR loss was the main object of 

this investigation. Thus, in principle, (25) meets this 

requirement. However, both numerator and denominator of (25) 
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contain differences of almost equal quantities. In typical 

applications, r(T) > 0.99 . Moreover, as will be seen from 

Table 2, ro (T) 

ro (0) as r(T) 

is a function of r(T) which tends to 

tends to one. If we set 

0 = r(T) 

we can try to express L as a series of powers of 1 - 0 

and to express 1 - 6 in terms of the radar system parameters. 

Regrettably, the matter is not that simple. In two of the 

examples of Table 2, we see ro  as a hypergeometric function 

of the variable 0 2 . Since the series defining the hyper- 

geometric function has radius of convergence equalto one, 

this function is not analytic at 0 = 1 and an attempt to 

find a Taylor series in powers of 1 - 0 will fail. (This 

failure could also have been predicted from (19) and an 

examination of the asymptotic behavior of I1 (ra2 z 1z 2 ) when 

r >1 ). It is still possible to get simple approximations 

for L , but we shall have to treat each of the three 

examples separately. 

4.1 Hard limiter 

In order to 

hard limiter, fl (u) 

(15.1.20) and (15.3. 

simplify the loss expression for the 

in Tables 1 and 2 , we use equations 

11) of [14] to get 

1 1 	2 fl 	2Un(1-62)+3-41tn21 

+ 0((1-6 2 ) 2  tn(1-6 2 )) 	. 



L 4.  6tn2-2-2tn(1-$)  (26) 

17- 

Ommitting terms of order (142 ) 2 £n(1-0 2 ) in this, we get 

4 	$(1+6)  
w 	Etn(1-02)+3-4tn2) if 

To this order of approximation we also have $ + 1 and 

1 + $ 4. 2 so that 

for the hard limiter. 

The fact that L * 0  as 0 * 1 (or 140) may be 

disconcerting. An examination of (23) and (24) shows that 

the SNR * c° with both linear and nonlinear amplifiers as 

* 1 • It is just that the approach to 	is faster 

(order (1-0) -1 ) in the linear case than in the nonlinear 

case (order [(1-0)1og(1-$)T 1 ) . 

4.2 Error function limiter 

For f(u) = f2 (u) with c > 0 , define 

=H 
 2 

 er+c-

,.2 

When 2 - X-1/2 < < 1 , we can use a Taylor's series 

expansion of L in powers of 

limitation on the values of 0 

1 - e • The reason for the 

1 1 
i8 that 	F (w,le;2•182 ) 2 1 

fails to be analytic when 1$ 2  1 

convergence of the Taylor's series 

• Thus the radius of 

is X-1/2 - 1 and the lower 
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end of the interval of convergence is 1 - (1
-1/2-1) = 2 

The resulting first-order approximation is 

1 1 	1 	3 3 
l (py;2;1) +  

3 
- re  A(1-0[2 2 F14441) +  A  2F1 44010,)) 	(27a) 

Since the complete elliptic integrals K and E (see (14 ), 

Chap. 17 for definitions and relations with the hypergeometric 

function) are more extensively tabulated, the following 

alternative expression may be more useful: 

4 	EK(1)-E(1)] 	2 1:1 E(1) . L 	(2-8) 	 (27b) 
w 1- 

The result can be derived from differentiation formulas for 

elliptic integrals (16, vol. 2]. 

4.3 v-th power device. 

To deal with f 3 (u) we use equations (16.1.20) and 

(15.3.6) of [14] and retain powers of 1 - 0 of order v or 

less. The result is 

L 

,, 	1+v 	2,3+v 

	

I, 4,  r(l+v) 	1+v4 	2 	r(-1-v)r (-y-) 
2 

	

r ,34v, 	--"2-r 

	

. .--i-, 	r(l+v maelfle.) 
" 	% 2  

( 1.-ta )î . (28) 

In the liet as v 4. 0 , the right side of (28) approaches 

the right side of (26). 
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5. EXPRESSION IN TERMS OF RADAR PARAMETERS 

For some purposes it is more convenient to express 

e = r(T) in terms of radar system parameters. We consider 

two possible clutter spectra and examine the SNR loss for 

each of these. First, we adopt a model which has been 

examined by McAuley [19]. In his development, the low pass 

component of the clutter spectrum has autocorrelation function 

2 	00  
w  f  h(t+T)h(t)dt f; 8 .m  

where w6 is the angular velocity of the antenna and h(t) 

is its two-way beam pattern. A good approximation to many 

beam patterns is 

. 2 irufe..881 h(t) = sine ( 	) 

where sine x sin x/x 	fr T-1  is the pulse repetition 

frequency, and NB  is the number of hits per 3dB beamwidth 

(see Figure 3). Standard calculations give 

2 	1.76wf T 3N 
 B r  

ke.'"Ageràse 	N 	• 
2fr`T ." 

Thus 

0 	r%x tm •1 
I  , 
	3NB El -sinc 

 1.76W 1 
e 	ee 

In McAuley's clutter model, 'le has been altered to be 
equal to the 3dB beamwidth. 
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Since NB 
 > 10 in most applications we use the approximation 
— 

g 4. 1 - 1.53N B-2 	(29) 

when dealing with McAuley's [19] clutter spectrum. 

Another model for clutter which has been used by 

Grasso and Guarguaglino [5] is a Gaussian autocorrelation, 

R(T) = a 
2  exp(-2e 2 oc

2 
T
2) 

t 

where the value 0c = 0.265 fr/NB is given by Barton [20, eq.(7.51)] 

This, in turn, gives 

0 4. 1 - 1.313 NB-2 	(30) 

where NB is the number of hits per beamwidth as before. 

In Figures 4 and 5 we plot the SNR loss as a function 

of NB for these two clutter spectrum models. For each 

clutter spectrum we plot the loss for the hard limiter as 

calculated from (26), for the error function limiter with 

= 0.5, 0.75 and 0.9 as calculated from (27), and for 

the v-th power device for v = 0.5, 0.25 and 0.125 as 

calculated from (28). The formulas for calculating loss in 

dB as a function of NB are also displayed in Table 3. 

It appears that the loss increases as the limiter becomes 

harder (y • 0 or À • 1). For soft limiters the loss is 

almost independent of NB  , and for alllimitermodels considered, 

the loss is almost independent of the spectrum model. 
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6. CONCLUSION 

The saturation of the front end of an air traffic 

control radar circuit has been modelled using v-th power 

and error function devices. Simple formulas for the loss in 

signal-to-noise ratio due to the nonlinear amplifier have 

been obtained. These  formulas have been used to evaluate the 

loss numerically for two clutter spectra of practical importance. 

The losses were found to range from 1d8 to 8dB for inter-

esting values of the parameters. 

We have also developed a significant extension of 

Blachman's t101  method of dealing with nonlinear amplifiers. 

The extension, which may be useful in other applications, 

permits calcuation of a correlation function and facilitates 

estimates of error due to the small-signal approximation. It 

also holds some promise for being useful when the SNR is 

large. 



TABLE 3 

Amplifier 	Loss(dB) 	Loss(dB) 	Loss(dB) 

General Formula 	McAuley Spectrum 	Gaussian Spectrum 

Hard Limiter 	10 1°g10  [0.687-0.6372,n(1-0)] 
	101og10 [0.418+2.93log10N8 ] 	101og10[0.4 81+2.93log10N8 

 f1 
	 ----- 	  

Error Function 

	

f2' 1=0.90 	
3.19 -10.31(1-0) 	3.19 -15.70/N 82 	3.19 - 14.231N B

2 

	

1=0.75 	2.06 - 4.00(1-0) 2.0 6  -0112/NB
2 	2.06 - 5.52 NB

2 

	

1=0.50 	1.08 - 1.48(1-$) 	1.08 - 2.26/NB2 	1.08 - 2.04/NB
2 

v-th power 

device 

	

v=0.125 	6.84 - 3.71(1-0)
1/8 	6.84 - 3.91/NB

1/4 	6.84 - 3.86/N B1/ 
 4 

	

v=0.25 	3.80 - 3.01(1-0)
1/4 	3.80 - 3.34/N

B
1/2 	3.80 - 3.26/N B1/2 

v=0.5 	1.18 - 1.68(1-0) 1/2 	 1.18 - 1.97/N8  , 	 1.18 - 2.07 	/N
4 
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APPENDIX 1 	VALIDITY OF SMALL-SIGNAL APPROXIMATIONS 

In this appendix we examine the small-signal 

approximations of Section 2.3 in order to estimate the range 

of validity of these approximations. These approximations 

involve the replacement of so  and no  of (12) and (13) 

by 1;0  and eo  of (14)-(16). 
Consider first 

(A.1)  s o = H(P)cos(wt+8) 

where 

H(P) = 1 F(z)E2J (Pz) ..
pz]z_02 i2 /2 dz  

0 	
1 

It is shown by Watson r13 $  p. 17] that 

12J1 	
-.(Pz)-Pzi 	IPzi[eP2 Z

2 
le

„ 
—1] 

(A.2)  

(A.3) 

This bound is CrUde9 but sufficient for our purposes. From 

(A.2) and (A.3) $ 

9! 	1n 	, 
IH(P)I ‹ III  ze 2ci z2  ” cep2 

z218 111F(z)Idz 	. , 	0  

Thus the relative errer in the signal approximation is bounded 

by 

2 2 	2 2 
ze-c z /2 p z /8 [a 	-1] F(z) dz 	(A.4) 

0 



1 

- 
4(c +c ) 

1 -1/2 2 

2
1 (v-1)/2 

P  
-1 

Is -; 

0 ,,  0 

I s o  I 
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where Q is given by (15), and in Table 2. The value of 

the integral in (A.4) can be obtained easily for the limiter 

characteristics of Table 1. The resulting relative errors 

are as follows: 

Hard Limiter: 

1 6 0-;01 
< 	-

• 1 8 01 	4°4  

Error function limiter: 

iso—sni 
5. 	1 

isai 

v-th power device: 

An examination of these bounds shows that the hard 

limiter is the "worst case", in the sense that for given 

SNR 	p2/2f2 	the bound is largest for the hard limiter. 

A little calculation then shows that the relative error 

in the signal amplitude is less than 3% if the SNR is 

below -10dB and less than 1% if the SNR is below -14dB . 

The noise is somewhat more difficult to deal with. 

We will estimate the error in the noise power which is due 

to our approximation. To simplify the writing we will do 



veite je X 4. 3Y 
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our calculations after the mixer has shifted the amplifier 

output to low frequency. The noise is then, from (2), (12) 

and (13) 

nL uL 

where 

g(V)cogle 

es 

s g ECu 	g 2(1 F(z)J (Fz)e u 	dz)cose
• 

. 	(A.5) 

and 

Thus 

2 Un 2 ) = E(uL
2) - sL (A.6) 

where the expectation operator E denotes averaging over the 

noise statistics. Now 

where X and Y are independent Gaussian random variables 

with mean 0 and variance 02 

Thus 

and X e MO°  . 

. (Pcose+X) 2 	(Peln6 4.Y) 2 

and 

cosS 	(Pcos6+X)/V 
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Hence 

t v2,v2% e 0 
r 	_ ELuL 	7;7 	 20 

/ / 	g2(v)c08 2 4› 

or with the change of variables 

X + Pcos6 = rcos8 	, Y + Psin6 = mine* , 

, 	» 2w 	2 2 Er +P -2rPcos(0- en } rd0dr ECU 2 3 	1 	g2 (r)cos 2  0 exp{- 
2 2w0 	0 0 	 02 

The integration with respect to 0 can be carried out with 

the aid of eq, (9.6.16) of C143 to give 

	

e-P
2 /202 

;le 	 2 	rP 2 	rP 
ECu 2  3 	j 	re-r2/262 g2 (r)(cos GI (--,r)+  2 2 	0 

(A.6) 

To check our approximations we put g = g3  from 

Table 1. That is, we consider the v-th power device. We 

get, with the aid of C133 and C141 

Iv+1 ,2 M2v ,2 (v+2 )r(v+1) 	P2 '  
E lF1 (1-v929-îîi)  rzee)  

+ (v+1) --- P
2 	P2 
7 COS 2 0 1F1 (1-v,3,-i(71)] . 

2q  

For the same device we get, upon evaluating (A.5) , 



v+1 2 v+2 	2 2v 2 	r (-7—)r(v+1)a a 
E E nL2 e  El-Cx+1 ,0(x2 )1 , 	(A.7) 

2
( 
 v+3 

w 	—7—) 
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vx, 	
_2 

sL  = Of- c 	21+v/2 v
v 	

-= 

	

sc 1r , 	. 	(-) 1  F ( 1-v 	) cos° , ."«
0
7 

VIF  r(1-v/2) ec 	1 	20  

where the first bracketed expression is equal to 1 for 

v g 0 . From these expressions we get E(n/42 ) from (A.6). 

TQ get an indication of the dependence on the SNR, we 

expand in powers of x g 1,2/202 . The result is 

where 

vw 2  2 v+3 
1-v 	2(;11  CSC -15. 	r ) 	(-7-) 

C  = 	(v+1)cos 2
8 4' 	e 	cos  20 (A.0) 

r2 (le)r2 (2-;M) r(l+v) 

The effect of our approximation in Section 2 1 3 is to take 

x = 0 in the noise terms. As will be seen from (A.7), 

this leads to a relative error approximately equal to Cx 

for small x 

If we put v g 0 (for the hard limiter) and 
1 cos 2

0 g y (its average value if 0 is uniformly distributed) 

we get C g 	and the relative error is wx/4 . For 

x =.03 (-15dB) , wx/4 alt 2.4% and for x = .01 (-20dB) , 

wx/4 4  0.8% • Thus at least in this case our approximations 

are adequate for SNR less than -15dB . 

Calculations with other values of v lead to similar 

conclusions. For example, it v g 0.25 and =02 0 g 
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we get C = .637 • Thus if 	= 0.25 and x = .03 , 

Cx = 1.9% and hence the error is even smaller here. 

It thus appears safe to use the small signal 

approximation for SNR less than -15dB , since neither the 

signal power nor the noise power is changed by more than 

about 2.5% by making this approximation. 

APPENDIX 2 -- AN ORTHOGONALITY RELATION 

We derive here a general orthogonality relation 

(equation (A.9) below) of which (18) is the special case 

for m = 1 . The general relation is almost as easy to 

derive as (18) and can be used in conjunction with (10) to 

treat cases where the small-signal approximation does not 

hold. 

First we introduce the notation. Let Al  = A(t) 

A2 A(t+T) 9 	al s  a(t) 	a2 	a(t+T) where A and 

a are the amplitude and phase of the narrowband Gaussian 

noise process n(t) with autocorrelation given by (9). 

Let 8 1 and 8 2  be any numbers. (In use with (10) , 

8 1 	8(t) '  82  = 8(t+T) ,) Let m and n be integers. 

Then we show that 
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E(Jm(Alsi )Jn (A2 z 2 )cos[mal-(m-1)01 ]c08[na2 -(n-1)0 2 ]) 

1 2 	2 	2 -y 	(z, +z 2  
e In(a2 r(T)z1z2)(6m,n cos(n-1)(02-01) 

+ (-1)n  6 	cos[(n-1)02-(n+1)0 1 ]) • -m,n (A. 9 ) 

To form the expectation in (A.9) we multiply by the 

density function f(A11A2 ,a1 032 ) and integrate over these 

four variables, The density function is given by (see [12], 

eq. (8-102) with a simplification because we assume a noise 

spectrum symmetric about w here) 

f(A1 3A2 3c41 3a2 )  = 

A1 A2 	..nt 	 
2 4 	2 

.
" 

	

- 	4" 2 	2 (A, 2 4.A2
2
-2A,A

2  rcos(a-2 a1- ) )1 • 

	

4w a (1-r ) 	2o (1-r ) 

(A.10) 

The integration with respect to a2  gives 

2, 

	

 1 	
A

1
A

2rcos(a
2
-a1 )  

	

yi-r 	008[11O2 - (n"1 1)8
23 exp 	2 	2 	

da
2 

0 	 (1-r ) 

(PA1

1r2 ) 

A 
lc 	

2  r ) 
I

n 
ce '

2
(` 	cos[na1  -(n-1)0 2  ] 	( A.11) 

- 

where eq. (9.6.19) of [14] and elementary trigonometric 

identities have been used.  The integration with respect to 

al  then becomes 
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2ir 
1  f cosEm 1  a -(m-1)01 3cosEnal-(n-1)02 3dal  77 0   

1 1.46m9n  cos(n.1)(0 2-0 + o 	cos((n-1)02-(n+1)9 3 (A.12) -m,n 	1 e  

since m and n are integers. 

Using (A.10-A42) and the relation j_n  * (.1)J (13 ) , 

the expectation of (A.9) becomes 

1 -(6m,n cos(n-1)(0 2-01 ) + (-1)n 6_m'n cos((n-1)021 -(n+1)0 3 2  

(A.13) 

where 

'1'
A  2 '-(A1 

2 +A2  2 )/20
2 (1-r2 ) ss  se  A 

r  
4 (1-r2 ) 

A r 
1 2 ,Inr2 
(1-r  2 

 ) ) ./..(A1z1 )Jn (A2z2 )dit1dA2  . 	(A.14) 
" 

Using In (z) = (-j) n  Jn (iz) ( 13, p. 77 ) and Weber's second 

exponential integral (13, p. 395 )  the integration with 

respect to A2  gives 

-A. 2./ 20 2 
dn -- 1 A- expE--101- 	4 	f A1

r2 )z. 2 	J (A1  z1  )J (rz2  A1  )0 	dA1 n 	n (74 	0 

0 



,2 
m t. 

-Pr' el 4. 2 In (cy2rz1z 2 ) e e (A.15) 
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and a second use of Weber's integral yields 

Finally (A.13) and (A45) immediately yield (A.9). 
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