
Li)
University of
Waterloo Research Institute

PERFORMANCE MEASUREMENT IN COMPUTER NETWORKS

D.E. MORGAN

SPONSORED BY

Department of Communications

Under

Department of Supply and Services
Contract Number OSU 4-0098

r7)

,D.E. Morgan i

March 31, 1975

91
C655
M673

, 1975

OFFICE OF RESEARCH ADMINISTRATION

UNIVERSITY OF WATERLOO

INCORPORATING THE

WATERLOO RESEARCH INSTITUTE

PROJECT NO. 3046-2

Industry Canada
LIBRARY

JUIL 2 0 1998 JUL

PERFORMANCE MEASUREMENT IN COMPUTER NETWORKS 	BI BLI PeTË Q c/JE
Industn 	ana a

ou

\() 75

1
L

L-

- 1. Inunduntina

lei Computer Network Monitoring System

On 2 October 1974, at a panel discussion of the joint

meeting of the ACM Special Interest Group on Measurement and

Evaluation (SIGMETRIC) and Boole and Babbage Users' Group,

leaders in the computer measurement field stated that since

a number of organisations were forming computer networks,

there was a need for a system of hardware and software to

observe the activities of these networks. It soon became

evident that we were the only people who had attempted to

design and implement such a system, although a few other or-

ganisations, such as Comress and Tesdata, are hoping to

II produce suitable monitoring systems within one to two years.

Most measurements that have been made of computer

networks have been made using software techniques (e.g., see

<1,2>). • Such software can and does interfere with network

activities and produces significant inaccurracies in the

measurements. Moreover, measurement traffic on the network

can distort traffic statistics.

The system of special hardware and software we have

been creating for the past three years is designed to ob-

serve the activities of a computer network while interfering

sninimally with them. This Computer Network Monitoring

System (CNMS) is described in Appendices A, B, and C.

1.2 Computer Network Dependability Research

More and more organisations are realizing that an un-

reliable computer system is not cost-effective, regardless

of how quickly it executes or how efficiently it handles

resources. Enhanced dependability is one reason often given

for building networks of computers. We are investigating

the possibility of using the Computer Network Monitoring

System as a tool for enhancing the dependability of a com-

puter network. We are devising an automated maintenance

system for computer networks which is an integrated system

composed of a number of tools for achieving dependability.

Bell Laboratories has devised a variety of tools and

techniques for enhancing the dependability of electronic

switching systems. These are described in Bell Systems

Technical Journals of 1964, 1969, 1970, and 1973. , and in

<3,4>. A fairly extensive bibliography of computer system

dependability studies is included in Appendix E. Appendices

E and F survey the fields of computer system and network

dependability.

2.• 2MIZOU

The objectives of this research are:

1. To provide an easily used, yet powerful computer

network monitoring system. Experience Indicates that

neither hardware nor software alone . are completely satisfac-

tory; thus, a combination is sought -.

• 2. To learn how to provide a flexible, easily used

network maintenance system that facilitates rapid detection,

Aiagnosis, and recovery from network troubles, whether mal-

functions or bottlenecks.

Suruary. of Methods

For the past four years, we have been designing, im-

plementing, testing, and, within the past year, we have been

using a prototype of a system of special hardware and

software for monitoring a computer network (or computer

system). Called a Computer Network Monitoring System (CNMS)

• and described in Appendices A, B, • C, the system consists of:

(1.) A set of software-controlled hardware monitors

(often called hybrid monitors), each of which is at-

tached by its probes to a computer and associated

• data links of the network to be monitored. 	Each

monitor can be controlled by a remotely-located com-

puter via a telecommunications link.

• (2.) Software to control the monitors and analyse

the data.

(3.) Software to • generate traffic for the object

network (i.e., the network to be monitored), so that

measurements of the network's activities can be made

as it responds to known stimuli.

(4.) A minimal amount of measurement software in

3 ^

each system of the object network.

Our philosophy is to use hardware to monitor that which is

best observed by hardware, to use software for that for

which it is best suited, and to use a combination where

neither is best.

Telephone lines, normally different from those of the

object network connect the monitors to the controlling com-

puter. Each monitor consists of one or more of each of the

specially-designed components listed in Table 3.1. They are

joined by a single bus (called a MONIBUS) that is attached

to the controlling computer.

Figure 3.1 illustrates the interconnection of these

components to form the monitor. Figure 3.2 illustrates the

interconnection of the monitors to observe the activities of

a computer network. Note that the communications lines of

the network are not used to transmit measurement data or

monitor control information. Rather, the controlling com-

puter uses switched voice-grade lines to set up the measure-

ment experiment, then disconnects while the measurements are

made. Periodically, the connection is re-established while

data is collected and/or additional control information is

transmitted. This technique reduces communications costs in

measuring geographically distributed networks. For a more

complete description of the CNMS, including the software

structure, see Appendix C, •

Fig. 	3.1

MS 	-• Measurement Software

RCHM - ReMote - Computer Controlled Hardware Monitor

RNMC - . Regional Network Measurement Centre

-NMe --1\itwork 14eaSurement Centre

UNIBUS TO
MONIBUS
INTERFACE

MONIBUS

PDP- II

COMMUNICATION LUNES ASSOCIATIVE
ARRAY

SWITCH ri MATRIX
TIME
STAMP

INTERRUPTS

CHARACTER
DETECTOR

PATCH

PANEL

71-1

TIME AND
EVENT
COUNTERS

HISTOGRAM I
GENERATOR

/ 1 OBJECT
COMPUTER

MIS MI 	 OBI MN MIS 81111 IMO 	NMI JIM MS INS Ile IMO MI BM IMO

X .

DATA OR ADDRESS BUS QUAD
COMPARATOR

LOGIC
UNIT

FLIP
FLOP

Fig. 	GENERALIZED MONITOR

UM "III MI 	 1111181 	MIMI MIS all MI MIR MUIR MI 1111 NMI IMO MU MS

Hardware status 	 Stàtus of associated software 	In use?

	

- 	 Testing

CNMS component 	Design 	Implementation 	27 	Design 	Implementation 	with hardware
;
co

1. RCHM and 	Complete 	In progress 	DOS-11 version 	DOS-11 version 	DOS-11 	version 	DOS-11 versior
components 	 complete; RSX-11 	nearly complete 	nearly complete 	in use

version in
progress

. Timer and
event counter 	• complete 	complete 	10 	complete 	complete 	complete 	yes

. Combinational
logic unit 	complete 	complete 	6 	complete 	complete 	complete 	yes

C. Sequential 	version 1 	version 1 	• 	1 	nearly complete 	in progress 	- 	no
logic unit 	complete; 	being built

version 2 in
progress 	

,4 	d. 16x4 Switch

; 	matrix 	complete 	complete 	4 	complete 	complete 	complete 	yes

e. 8x8 Switch
. 	matrix 	complete 	complete 	complete 	complete 	complete 	yes

f. Ouadri-
comparator 	complete 	complete 	3 	complete 	complete 	complete 	yes

g. Single
comparator 	complete. 	complete 	complete 	complete 	under way 	no

h. Interrupt 	.
generator 	• 	complete 	• 	complete 	6 	complete 	complete 	complete 	yes

' 	. 	interval
timer 	complete 	complete 	1 	complete 	complete 	under way 	no

.. Time stamp unit 	complete 	complete 	1 	complete 	complete 	nearly complete 	no

. Histogram 	complete 	complete 	1 	complete 	complete 	under way 	no
. generator 	 c

1. Character
detector 	complete 	complete 	complete 	complete 	under way 	no _

m. Monitor
Diagnostic Aid 	complete 	complete 	1 	complete 	complete 	nearly complete 	partly

i

Table 4:1

MIMI SIM OM« MIMI IMO OMNI OMMI MIR Mali MU 1111111 INN ON 11111111

Hardware status 	• 	Software status. 	 In use?

	

4-1 	 Testing

CNMS component 	Design • 	 Implementation 	27; 	Design 	Implementation 	with 	hardware
cm

n. Network clock 	In progress 	0 	- 	. 	- 	no

o. Probes for 	 2
POP-11/20 	complete 	complete 	sets 	complete 	complete 	complete 	yes

. Probes for
POP-11/45 	complete 	started 	0 	in progress 	- 	- 	no

q. 	Probes for 	 2 	•

PgrTilei.pKrYs 	
complete 	complete 	sets 	complete 	complete 	complete 	yes

2. 	NMC software 	 nearly complete 	in progress
(DOS-11 	version) 	_. — 	N/A 	complete 	(see below) 	(see below) 	yes

a. Experiment
cc 	Manager (DOS-11 	N/A 	N/A 	• 	N/A 	complete 	nearly complete 	in progress 	yes
î 	version) 	 •

b.Maintenance 	 version 1 	is 	version 1 	is
Manager (DOS-11 	N/A 	N/A 	N/A 	complete 	complete; version 	complete 	yes
version) 	 2 in progress

c. Results Manager
(DOS-11 version) 	N/A 	N/A 	N/A 	nearly complete 	nearly complete 	in progress 	yes

d. Communications
Manager 	N/A 	N/A 	N/A 	nearly complete 	in progress 	- 	no

3. 	NMC software
(RSX-11D version) 	N/A 	N/A 	N/A 	 no . 	 in progress 	- 	-

'RCHM controller
(POP-11/10 & 	complete 	in progress 	1 	in progress 	- 	- 	no
interface)

5. 	RCHM controller
(LSI- il 	& 	in progress 	- 	0 	in progress 	- 	.- 	no
interface) 	 , .,

Table 4.1 (continued)

MIMI MI 111MII 	OM MI OM MI MI IMO 	OM Mil 	1111111 MI OM MO Mil

, 	 ,

Hardware status 	. 	 'Software status 	In Use?

: . 	 • 4-D 	!
' CNMS component 	Design 	Implemen 	Design 	mplementation 	Testtngtatton 	, c;7-

2r; 	
1 	I

: co

. 	

' 	 .

6, 	Measurement 	. 	N/A 	• 	N/A 	N/A 	verstons 1 ;8i 2 	version 1 	is 	verston l is 	version 1 is
Language

	

	,
. 	 are complete;! 	complete; 	complete 	in use 1 . 	; 	 verston 3 is a 	version 2 is tn ,
: 	 dream 	progress 	I

.

. 	 . 	 .
. 	7. 	toad generator 	! 	n/A 	NiA 	N/A 	wersiun 1 is 	version 1 	is 	iverson Ti ts 	version 1 ts
, • 	, 	• 	' 	complete; 	complete 	complete 	in use

werston 2 is tn' 	.
1 	 p . 	• 	 rogress 	 :

8. Measurement 	N/A 	, 	. 	NiA 	N/A 1 	In progress 	- 	- 	no 	,
software 	 .

,

9. Analysis 	N/A 	E/A 	N/A 1 	verston 1 is 	version 'l is 	Hrerston 1 ts 	no , software 	 complete; 	being'tmplemented in progress 	. ! . 	• , 	 version 2 is 	in
, 	 . progress h

Table 4.1 (.(continued..)

One monitor and a good first generation of software

have been implemented, tested, and are being used. A second

monitor has been assembled and is being tested. We are

nearly ready to begin using it for a series of experiments,

which are scheduled to begin in May 1975.

Table 4.1 summarizes the status of software • and hard-

ware aspects of the CNMS project as of 31 March 1975. As

the table indicates, we have used at least one version of

each of the components of the Basic Monitor, and we are now

emphasizing testing an important set of extensions.

During the rest of 1975 we plan to complete implementa-

tion and testing of a useful version of each component of

the CNMS. Meanwhile we shall continue using tested portions

of the CNMS to monitor computer systems and networks in our

laboratory. So far we have used the prototype CNMS to

monitor several aspects of a PDP-11/20 and some aspects of

two small laboratory networks.

Appendix D illustrates some of the types of experiments

that we have been performing using the CNMS.

We have been working with E. Gelenbe and his group at

IRIA in France to verify some of his mathematical models for

operating systems and computer networks. • We have also been

working with Louis Pouzin and his group at IRIA who are

building the CIGALE and CYCLADES computer networks. He has

asked us to study the feasibility of monitoring the CIGALE

network using our CNMS.

Appendices E and F are two research reports that

reflect most of our work so far in our effort to discover

tools and techniques to enhance the dependability of com-

puter networks and operating systems. Because the network

maintenance system we are designing uses the CNMS as one of

its principal components, for the past year we have em-

phasized understanding the problems, tools, and techniques

involved with achieving a dependable system or network.

Several reports have been produced during the past

year, and we have given a number of invited presentations.

These reports and presentations are listed at the end of

this report. Appendices A through F are six of these

reports.

Considerable 	interest has been expressed in this

project by a number of organisations, including manufac-

turers of monitoring equipment such as Tesdata and Comress;

computer manufacturers such as DEC, Honeywell, Hitachi; in-

dustries such as Weyerhauser, and U.S. Government agencies

such as Lawrence Livermore Laboratories, USAF FEDSIM, and

the National Bureau of Standards. The interest shown ranges

from wanting to use the system to wanting to manufacture and

market it, depending on the organisation. Tesdata, Con-

solidated Computer, Interactive Business Logic Ltd., and ESE

Ltd., are actively considering manufacturing, marketing, and

providing a commercial monitoring service based on the

I .
'system. Interactive Business Logic hes submitted a p.roposal

to Canada Development Corporation for funding to establish

three monitoring centres and provide a commercial monitoring

service remotely. Tesdata has proposed to integrate the

	

11 	monitor into their product line.

	

• 11 	5.. Summary. of çlclosunsiona

We have drawn a few conclusions based on our work on

this project:

1. 	It is feasible to build and use such a computer

I .

 network monitoring system. However, with the cost of

each monitor ranging from about $10,000 for the Basic

Monitor to about $100,000 for a fully extended version,

the CNMS seems rather expensive, though not when com-

pared with the cost of other monitors.

	

I . 	

2. The system is not yet as easily used as it should

be. The worst problem is the complex patch panel

wiring required to set up a number of experiments so

that one can switch from one experiment to another

without changing the- wiring. We have made some

modifications to the hardware that eliminates the need

for many of these patch panel wires.

3. The modular hardware and software architecture we

have followed have made it extremely easy to change the

system.

4. The maintenance software we have included in the

- 12 -

CNMS makes it easy to determine whether the CNMS is

working and to quickly perform an experiment to get a

rough idea of what the object system is doing.

5. The interest exhibited so far in our CNMS indicates

that there is a need for such a system.

6. A simple, yet rather powerful hybrid monitor can be

built from a set of high-speed content-addressable

memory (CAM), a slow-speed CAM, a random-access memory

(RAM), an array of high performance specialized proces-

sors, some switch matrices and a bus to interconnect

these components and Join them to the controlling com-

puter.

6. Recommendation...a

Dr. C. D. Shepard, who has served as contract officer

for the Department of Communications contract which has sup-

ported much of the cost of the CNMS research, thinks that

the technology of the Basic Monitor is now ready to be

transferred to industry to develop the system Into a product

or set of products. Therefore, we have been actively

seeking Canadian organisation(s) who are interested in

making use of this technology. As mentioned in Section 4,

four firms are actively attempting to find ways of ex-

ploiting this technology.

We would be happy to demonstrate the system 	to

representatives of the Canadian government. There appear to

be numerous potential applications of the CNMS in the

Canadian government. As but one example, the Department of

National Defence might find the system useful and informa-

tive to monitor the SAMSON network once it is implemented.

Monitoring can be a useful tool for acceptance tests for a

computer system or network.

Feure Research

We thank the Department of Communications for their

generous support of the project for the past three years.

We are especially grateful for the encouragement and help

that Dr. C.D. Shepard has provided as project officer for

DOC, and for the support given us by Dr. D. F. Parkhill and

R. Tanner.

Although this is the final report for this Department

of Communications research contract, the research aspects of

the CNMS and its use are far from complete. Furthermore,

much work remains to be done in order to develop the system

into a marketable, usable product. The research problems

that immediately come to mind fall in four categories:

A. Research to complete the capabilities of the

basic CNMS, e.g.:

1. The CNMS itself is a network of computers, and

requires a distributed operating system to manage

its resources. The design and performance of such

a • 	software 	system 	are challenging research

problems.

2. We have completed the design of one version of

sequential logic unit for the monitor, but a

content-addressable memory version seems to be a

better, though possibly more expensive, way of

building such a unit. The software to translate

from a regular expression to the table to control

the unit is also a research problem involving the

analysis of algorithms and automata theory. We

are working on these two research problems.

B. Extending the CNMS c B. Create techniques for

Using the tool:

1. There are no satisfactory answers as to how to

characterise the workload of a system or network

nor the behaviour of the network in response to

the applied workload. Many measures are used, but

there are no standard definitions nor interpreta-

tions for. them. 	We are actively engaged in

research in this area.

2. Once measures have been defined, techniques

need to be created to provide these measures and

represent them in a meaningful and useful way.

C. Use the CNMS to evaluate systems and networks:

1. A 	number of ideas for building computer

networks are being tried experimentally in the

laboratory of the Computer Communications Networks

Group at the University of Waterloo. In order to

determine the relative merits of these techniques,

we need to measure and evaluate these experimental

networks 	using 	the 	CNMS. 	Examples include

Mininet, the network simulator network, the coding

simulator network, the Newhall loop experiment,

the hardware packet switch, not to mention the

CNMS itself.

2. Louis Pouzin of IRIA has discussed with us the

 possibility of monitoring the CIGALE/CYCLADES com-

puter network of France.

D. Apply the CNMS to other problems:

1. As discussed In this report, we are exploring

the possibility of using a modified version of the

CNMS to monitor the behaviour of a computer

network 	to 	detect malfunctions by observing

degradations in performance and program logic se-

quences.

2. An operating system for a computer system or

network that Is capable of adapting its scheduling

policies to its observed workload is a possibility

that has been shown to have exciting potential.

We are investigating the possibility of building

such an adaptive operating system based on UNIX of

Bell Telephone Laboratories plus a hybrid monitor

based on that of the CNMS.

PUBLICATIONS LIST

1. "A Computer-Controlled Hardware Monitor: Hardware Aspects", Proc. A.I.M.

Conference on Minicomputers and Data Communication, Liege, Belgium, -
Jan. 1975; with W. Banks.

2. "A Performance Measurement System for Computer Networks", Proc. of IFIP

74, Stockholm, Sweden, Aug. 1974; with W. Banks, W. Colvin and D. Sutton.

3. "Suitable Local Transformations in Computer Networks", Proc. of 24th

Symposium of ASOVAC (Venezuelan Assoc. of Sciences), July 1974; with

J. Araoz-Durand.

4. "A Computer Network Monitoring System", submitted for publication in

IEEE Transactions on Computers; with W. Banks, D. Goodspeed and R. Kolanko.

S. "Software of the Network Monitoring System: Control of the Combinational

Logic Unit," D. Goodspeed, W. Colvin and D.E. Morgan (External Report E-1).

6. "Switching Matrices for Programmable Time-Division Multiplexing,"

E. Manning, W.M. Gentleman, C.E. 1Uhn and D.E. Morgan (External Report

E-6).

7. "A Performance Measurement for Computer Networks," D.E. Morgan, W. Banks,

W. Colvin and D. Sutton (External Report E-18).

8. "A Computer Network Monitoring System," D.E. Morgan, W. Banks, D. Goodspeed

and D. Sutton (External Report E-21).

9. "The Monitoring of Computer Systems and Networks: A Summary and Proposal,"

D.A. Sutton and D.E. Morgan (External Report E-22).

10. "An Automated Maintenance System for Computer Networks," D.E. Morgan

' and G.F. Clement (Internal Report I-2). ,

APPENDIX A

A PERFORMANCE MEASUREMENT

SYSTEM FOR COMPUTER NETWORKS

1NFORNIA1ION PROCESSING 74 — NORT11.11OLLAND PURLISIIING COMPANY (1974)

A PERFORMANCE MEASUREMENT SYSTEN1 FOR COMPUTER NETWORKS*

D. E. MORGAN, W. BANKS, W. COI.VIN and I) SUTTON

University of Waterloo

Waterloo, Ontario. Canada

A system of special hardware and software for monitoring the activities of a network is described.

It constats of (1) a hardware monitor controlled by a locally or remotely located computer; (2) monitor

control and data analysis software; (3) a network traffic generator; (4) measurement software in each
computer measured. Each computer to be measured is attached to a monitor. felephone lines, different
from those of the network, connect the monitors to the controlling computer.

Each monitor consists of a bus and selected event detectors,time measuring components, data

	

. 	recording devices, and communications and control components.
A high-level measurement language is being developed to facilitate controlling the measurements and

analyzing the data.

	

1 	INTRODUCTION

A network of cotruters consists of two or more com-
puters linked together, while a computer network can
be either a network of computers, or a set of ter-
minais connected to one or more computers. Most net-
works of computers consist primarily of nodes, hosts,
transmission links, and terminals. A node (in this
context) usually refÉrs to a computer used prin-
cipally to switch data. A computer whose primary
role is not switching data in the network to which it
is attached, is called a host. In some networks, a
sharp distinction is made between nodes and hosts,
while in others no distinction exists. Terminals are
devices which serve as the interface between man and
the computer. The transmission links, of cpurse,join
this collection of hardware together to form a net-
work.

The problem considered in this paper is how to moni-
tor a computer network. Four fundamental reasons for
Monitoring a network are:

(i) To see how well it performs;
(ii) To discover why it performs as it does and to
learn how and where to change network hardware and/or
software to'improve its performance;
(iii)To detect trouble and aid in diagnosing its -
cause so that appropriate corrective or recovery
actions can be taken;
(iv) To charge users of the network's services for
the network resources used.

R. W. Hamming of Bell Labs is credited with saying
that the goal of measurement is insight, not numbers.
Depending on the type of network and the reesons for
monitoring it, several different aspects of it can
be monitored. Table 1,1 lists many of these aspects
of possible interest. For some aspects, the desired
insight can best be gained by analyzing distribution
functions; for ether aspects, studying a set of
numbers is sufficient.

Often the data for several nodes of the network must
be analyzed as a whole in order to have the perspec-
tive necessary to gain the required insight. In such
cases the measurement activities should be distribut-
ed across the network, yet controlled and coordin-
ated from a measurement centre rather titan occur
independently at each noie. The resulting data could
be transmitted to the measurement centre either via
the network or througn physically (or logically)
tcparate laciiities. Unlike a computer system, the

"Research supported by Department of Communicationj-
of Canada, research contract no. SP2-36100-3-0406; -
Defence Research Board of Canada, grant no.99i1-17;
Natienal Research Council el Canada, grant no.A811b •
and by h' data Ltd. The research oas performed in
the Computer Communications Networks Group's
laboratory at the University et Waterloo.

Table 1.1

(i) Time measurements
a. Time required to set up a logical or physical

path through the network or through a node;
b. Time required toAtsconneet a logical or

• 	physical path through network or node;
C. Time required to transmit a message (or

' 	packet) through network, node, selected com-
ponents of the switch, or transmission link
(often called message delay);

d. Time required for certain components of the
network to detect, correct, and/or recover
from trouble in the network, e.g. data trans-
mission error, link, host or node out of
service;
Time required to•detect and/or take appropri-
ate action for network overload;
Time required to respend to a request for
service;
Time between arrivals of messages (or pack-
ers);

h. Time required to disassemble (or reassembie)
a message into ([rom) a sct of packets; 	'

i. Amount of time software and hardware
resources are utilized;
Amount of time logical or physical path is
utilized.

(il) Space and Time measurements
a. Auxiliary storage space used in network or

selected node(s);
b. Main storage space used in network or

selected node(s);

(iii)Event counts
a. Number of messages (or packets) handled by

node, network, link or host;
b. Number of bits transmitted and received by

node, network, link, or host.; •

C. Number of requests for service.

(iv) Length measurements
a. Nunber of items selected in queue(s);
b. Nunber of bits or characters in each message

or packet;
C. Amount of data to be stored in main storage;
d. Amount of data to be stored in auxiliary

' storage.

e.

f.

j.

lA -

30 	 Compuirr Nerworks

components of a computer network are often widely
separated, sometimes by thousands of miles. Thus,
monitoring a network poses communications problems
flot encountered When monitoring a computer system.

A challenging problem is to Coordinate monitoring
activities across the network and then collect the

resulting.data for anaLysis.

1.1 	Requirements of a Network Monitoring System

Experience monitoring computer systems and study of
pertinent literature indicate that an ideal network
monitoring system should possess the fir-bowing char-
acteristics:

(I) 	Be easy to use, yet flexible and expandable;
*(11) 	Be as system independent as practical;
(iii) Interfere minimally with the performance and

integrity of the measured system;

(iv) Interfere minimally with computer-computer
and terminal-computer communications;

(v) Be dependable and easily diagnosed;

(vi) Offer a choice of resolution, so that the

unit of measure fils what is measured;

(v11) Allow gathering of measurement data at a
distance from the monitor control and analysis
functions, with minimal human intervention;

(viii) Span the network;

(ix) Be low in cost while not compromising other
goals.

•

The problem, then, is to create a network monitoring
system having as many of these . characteristics as
practical while satisfying the four reasons for
monitoring a network.

Experience indicates that monitoring software with-
out hardware aid in each node often perturba the
network unsatisfactorily. Hardware monitors without
software aid are too inflexible for most network
'applications. Thus, there is a need for a set of
software-controlled hardware monitors, each of which

can be attached to a node of the network to be moni-
tored. To achieve network-wide perspective and in-
sight, the activities of these monitors should be
centrally contr'olled and coordinated. Because of
the wide geographic spread of many networks, such a
network monitoring system should include the ability

to have control information and monitored data
transmitted via telecommunications links. Further-
more, some items currently can only be monitored
economically by software within each node, so a
means of controlling and receiving data from node

measurement software must also be provided.

2. CURRENT STATE OF THE ART

To the best of our knowledge no such network moni-
toring system lias been designed. Although a great
deal of effort and study tris been devoted to the
creation of hardware and/or software to monitor a
computer system (see for example.(1-111), su far
very little work ha s been devoted to creating
techniques and tools for monitoring a computer
network. 112)

Computer network monitoring today is accomplished
by placing sofrware in each node and using the
transmission and switchlng facilities of the net-
work to senti control information to the nodes and
monitored data tri a Network Measurement Centre.
This is the technique used by Prot. Kleinrock and
his staff dt lit i.\ to monitor the ARPA network. [121

Although a feu hardware monitors have been designed
to have the ability to have their monitoring activi-
ties changed under control of software 15,10,13,14,
151, most monitors are patch-board programmable.
there seems tir be no hardoare monitor that includes
the ability to be controlled from a remotely-
located computer, nor [0 have Its activities Coln-

dinated with tin activities of several other moni-
tors. Several organizations have used one computer
to monitor the acttvities ot another.(9 ,1 4 ,1 4) In
su:b systems, prohes attached to tin,' monitored (Or
obleo.) ,ompoter or' conneLted to registers. of the

monitoring computer with no pre-processing to reduce
the data. Tin reduce communications costs, some pre-
proeessing isessential.

Oyr studies indicate that the following monitors
would appear tu require complete redesign in minier to
be used to monitor a network of computers:

Program Monitor (1962,1BM) (1,11)
POEM (1963,1BM) [111
Execution Plotter (1965, IBM) [111
CPM,CPM II, and CPM III (1968, Applied Computer
Technology) 16,15,16,171
CPA (1968, Computer and Program Analysis, Inc.)
[15,16,18)
Event Monitor (1970, Boole and Babbage) [6]
Dolby (1970, Dolby) [15]
CMSM (1970, Copac, Inc.) (6)

The following monitors would require major nmdifica-
tions of the design, usually including the ability to
be controlled by a processor plus a sy“chtonizable
clock, better resolution, more comparators, and/or
more data storage:

Hardware Monitor (1961, IBM) (11,19)
Channel Analyzer (19e2, IBM) (11)
PEC (1964, IBM) 1111
SAM1 (1967, IBM) [II]
TS/SPAR (1967, IBM) [20]
BCU (1968,IBM) [11]
System Monitor (1968, IBM) [3] 	 •
SUM (1968 Computer Synectics, Inc.)(6,11,15,16
18)
UNIVAC Instrument (1968, UNIVAC) (4 .21)
CDM. (1968, Ptoject MAC, MIT) [14,151
Hardmon (1970, University of Waterloo) (22,2)1
XRAY (1970, Applied Systems) (6,151
A Counting Monitor (1970, University of
Erlangen)
DYNAPROBE 7700, 7900 (1970, Comress) [13,18,24,
25,26,27]
TESDATA 1010, 1155 (1972, TESDATA) (28,29)

Minor modifications; usually the addition of a syn-
chronizable clock and/or the ability to be controlled
by a processor, could make the following capable of
monitoring a network;

DYNAPROBE 8000 (1970, COMRESS)
Neurotron (1970, Stanford University) [2,301
ADAM (1972, Hughes of Xerox) [31
TESDATA 1185, 1200 (1972, TESDATA) (28,29)
Instrumentation for C.mmp (1972, Fuller of
Carnegie-Mellon University) [32] .

Relatively trivial changes, i.e., new software, the
ability of control the monitor's activities remotely,
and the ability to synchronize clocks between moni-
tors, are necessary for these monitors:

SNUPER 2 (1967, Estrin) (5)
SLUR (1968, Murphy) 1 1 01

3. A COMPUTER NETWORK IUNITORINC SYSTEM

Section 1 lists eeveral requirements that a designer
of a network monitoring system should consider and
attempt to satisfy. With these as goals, a network
monitoring system has been designed and is being
developed.'

The monitoring system consists of:

(i) 	A set of computer-controlled hardware monitors,
each of which is attached to a computer to be moni-
tored;
(j E) Monitor coptrol and data analysis software;
(111) A network trahie generator;
(iv) Measurement software in each computer measuted.

Figure 3.1 shows he.: the components of the system can
be éonfigured to monitor a network, Note that a
telephone line, different from those of the network,
may connect each monitor to the computer controlling
it, or the monitor may be attach•d directly to the
controiling computei, These telephone connections
need not temain established throughout a monitoring
session. computer ,ontrol is required only to set

NODE 	NM C

Aill/131

MASKS
COMPARATORS

	I SENSING
CI SIGNAL

CONDIT IONMG

OHJECT

COMPuTER

OHJECT

COMPuTER

D. E. Morgan et al.; A performance measurement system for computer networks 	 31

MS - Measurement Software
RCM - Remote Computer Controlled Hardware Monitor
RNMC - Regional Network Measurement Centre
NMC - Network Measurement Centre

Fig. 3.1 Application of Monitoring Hardware to a
Network

up the experiments, to read accumulated data period-
ically during some experiments and to terminate the
session. Each remotely-controlled monitor has a
chip processor to handle real- Lime control details,
and a mini-disk to hold the accumulated data.

A prototype system has been implemented, tested, and
has been used to monitor a small(three node)network
on the University of Waterloo campus. Plans are to
measure a network consisting of two nodes separated
by 400 miles in early 1975.

3.2 	The RCHM

As Figure 3.2 illustrates, the Remote-Computer-con-
trolled Hardware Monitor(RCHM) is composed of a
number of specialized modules interconnected by a
bus (the MONIBUS). The modules included in a moni-
tor depend on the activities to be monitored. Each

. module is assigned a set of MON1BUS addresses which
are used by the controlling computer to send control
information and to receive monitored results. Thus
far, the modules include:

Event detectors
a. Masked-word range comparators
b. Character detectors (for bit-setial

lines)
c. Combinational logic unit
d. Sequential Jogic units

(11) Time measuring modules
a. stamp units (to record time of

occurence, identity, and other selected'
attributes of an event)

b. Timer and event counters
c. Network clock (synchronized with a

standard source)
d. Interval timer (for sampled measure-

ments)
(iii) Data reducers and recorders

a. Histogram generators
b. Moment generator (yields the first four

moments of a distribution)
c. Timor and event counters
d. Flip-flop bank
e. Temporary memory

(iv) Communications and control equipment
a. MONIBUS-to-communications-link

interface and controller
b. MONIBUS-to-UNIBUS (POP-il) interface
c. Interrupt generator
d. Programmable switch matrices

A set of high impedance probes connect points of
interest in the monitored computer to the monitor. 	•
The probes terminate on a patch panel containing
signal conditioning circuitry.

The highly modular monitor architecture makes it
quin easy to add new special-purpose data gathering
or data reducing components as needed.

3.3 	Software

The highly modular monitor hardware architecture and
the desire to allow the system to evolve dictate a
similar architecture for the software.

The current version of the monitoring system software
has been designed and implemented to be the kernel of
the eventual software. A rather detailed knowledge
of the monitoring system is required to use this
version. A high-level measurement language and a
translator are being devised to make the system
easier to use.

(i)

1
,
: 	com,, :,,,,,,,,„,,c0ARTIONs CHARACTER

DETECTOR

PRIMARY

PATCH

PANEL

YITCH
klATRIX

MONIDUS

ILOGICJ
UNIT •

INTERFACE
MONIDUS/ UNIHUS
CHIP PROCESSOR)

SICONDARY
PATCH PANEL

.---[

-:1-L_,,

1 	1 	i l
, 1 ‘----

-f-1
/....1 	[7.......1

F1.IP
FLOPS

iINTERRUPT

HISTOGRAM

TIMING AND
EVENT

TIME STAMP
UNIT

CABLE OF1 TO SEVEnAL LINES

F18.3.2 Poasible Interconnections of RCHM for each node

USER
WRITTEN
CONTROL
ROUTINE
FOR MONI -
TOR IN G
SYSTEM

COMMUNICATIONS
S UP POR T

ROUTINES

DATA A NALYSIS

ROUTINES

REQUEST
FOR /

SERVICE//

USER
WRITTEN
ROUTINES

USER-
WRITT EN
INT.
HANDLER

REQ tJCS T
FULF IL LED,

REQUEST
FULFILLED

MONITORING
SYSTEM
ROUT IRES

EVENT SCHEDULER
AND

RESOURCE MANAGER
OUTPUT FORMAT
GE NE RAT ING
ROUTINES

INT.
NANDI_ ER

SWITCH
MATRIX
DRIVER

HISTOGRAM
DRIVER

INTERRUPTS FROM MONITOR

Pi g .3. 3 Monitor Control Software Structure

C OM B INA -
T ION A L
LOGIC UNIT
DRIVER

32 Computer Network3 I

The heart of the software is a small real-time oper-
ating system. Depicted in Figure 3.3, it contains a
set of RCHM module drivers, interrupt handling rou-
tines, primitives to aid authors of experiment con-
trol and data analysis routines in scheduling their
routines, a small supervisor to allocate the
resources (processor,memory,and communication), and
support interaction with experiment control routines
plus communications control routines. A limited set
of standard routines for data analysis and output
formatting, Aid an embryonic version of the measure-
ment language translator complete the present
version of the system software.

AS experience is gained using the system, the
measurement language is being defined. The measure-
ment language is to be extensible so that the system
will be easy to use and will allow the following
scenario: First, a user instructs the system in how
to measure, say, a certain type of message delay
between selected nodes; subsequent users wanting
this kind of delay will need to specify only its
name and the nodes involved, so that the translator
can generate the proper instructions for the system.

A load generator has been implemented to provide a
user with the ability to specify what traffic should
be in the network while monitoring, if known traffic
is desired. The current version simulates the
typing action of up to sixteen users at terminals
with speeds Up to 300 baud. The load generator
transmits prepared scripts from disk to the appro-
priate line. It can simulate thinking and typing
distributions. A load generator to produce higher
speed traffic, simulating host traffic, will soon be
available.

Measurement software in each node is obviously quite
system indepeedent. However, sets of standard
measurement software primitives are being designed
to measure parameters characteristic of manysystems.
Ve are striving to minimize the amount of such soft-
ware required, as well as the amount of work
required to write, install, and debug it. A stan-
dard means of communicating between this software
and the RCM is being designed.

4. 	APPLICATIQNS

In order to monitor a network using the system, -
several steps must be taken:

(i) Determine where probes must be placed in each
computer to perform the required monitoring activi-
ties;
(ii) Install the probes in the computers and set up
the monitors;
(iii) Test the monitors and the probes;
(iv) Provide the load generator with the necessary
scripts to drive the network (if desired);
(v) Write programs to control the network monitor-
ing system as it monitors the network;
(v1) 	Debug these programs;
(vii) Initiate the experiment on the network moni-
toring system;
(viii)Analyze and interpret the results.

Today's computer architecture unfortunately demanda
 that the first : three steps be performed by a computer

hardieare expert. The fourth step for our system
requires only the skills of one who knows how to use
the network and the load generator's teZt editing
package. Steps 5-8 require knowledge of use of our
monitoring system and the characteristics of the 	•
monitored network.

Besides its intended use of monitoring a computer
network, the system has been used to monitor the
activities of a computer system. The monitor system.
with minor software and hardware modifications, can
be used to monitor a set of electronic switching
offices for telephones. Furthermore, It appears
that a slightly modified version of the monitor can
be used as an important component of a computer net-
work diagnostic system..

• 5. 	CONCLUSIONS

A few conclusions Can be drawn from our experience
thus far:
(1) 	The hardware monitor works and is not prohibi-
tively expensive to build or use.

(U) 	The modular components plus the bus architec-
ture make it easy to add or subtract components au
needed. Thus. the cost of a monitor depends on the
complexity of the experiments to be performed.
(111) Writing control progrmns for the monitor,even
without the measurement language, is not difficult,
because each component is addressed as a set of
memory locations on the controlling PDP- il.
(iv) 	A system hardware expert would not be requit-.
cd to install the probes If computer manufacturers
provided An accessible panel of probe points on
their products. It appears that et least one emu-

(31

D. I:. Affirgait et al_ ',affirmance rneasurentent system for computer networks 	 33

facturer, Honeywell, ha s recognized this need, and
plans to provide such a feature on their equipment.

ACKNOWLEDGEMENTS

The hardware skills'of J. Runge and K. Jedermann,
the software talents of F. Mellor, D. Goodspeed,
R. Shen and J. Palframan have contributed immensely
to the project.

REFERENCES

DA 	C. T. Apple, The Program Monitor - A Device
for Program Performance Measurement, Proc. of
the ACM 20th National Conference, August 1965,
pp. 66-75.

R. A. Aschenbrenner, et al, Neurotron Monitor
System, AFIPS, v. 39 (FJCC) 1971, pp.31-37.

A. J. Bonner, Using System Monitor Output to
Improve Performance, ..111M Systems Journal, v.8
#4, 1969, pp.290-298.

[41 	D. T. Bordsen, Univac 1108 Hardware Instrumen-
tation System, ACM SIGOPS Workshop on System
Performance Evaluation, Harvard U., April 1971
pp. 1-29

C. Estrin, et al, SNUPER Computer, AFIPS, v.30
(SJCC) 1967, pp.645-656.

[61 	L. E. Hardt, G. J. Kipovitch, Choosing a
System Stethoscope, Computer Decisions, Nov.
1971, pp. 20-23.

T. Y. Johnston, Hardware vs. Software Monitors
Proc. of SHARE, XXXIV, v.1, March 1970, pp.
523-547.

181 	K: W. Kolence, Software Physics and Computer
Performance Measurements, Proc. of the 1972
ACM Annual Conference, pp. 1024-1040.

H. Lucas, Performance Evaluation and Monitor-
ing, Computer Surveys, v.3, #3, Sept. 1971,
pp. 79-91:

1101 R. W. Murphy, The System Logic and Usage
Recorder, AFIPS, v.35 (FJCC) 1969, pp. 219-
229.

[11] C. D. Warner, Hardware Techniques, ACK SIGCOSM
Newsletter #5, Aug. 1970, pp. 5-11.

[121 C. D. Cole, Computer Network Measurements -
Techniques and Experiments, UCLA, Oct. 1971,
NT1S 0AD-739-344.

•
113 1 Comress: Dynaprobe 7900: System Specifica-

tions, Comress Report No. CR4-0031.

[141 J. M. Grochow, Real Time Graphic Display of
Time-Sharing System Operating Characteristics,
AFIPS, v.35 (FJCC) 1969, pp. 379-386.

1151 J. H. Selzer, J. W. Ginte/1, The Instrumenta-
tion of Multics; Second Symposium on Operating.
System Principles, Oct. 1969, pp. 167-174.

1161 K. W. Kolence, SysteM Improvement by System
Measurement, Data Base, Winter, 1969, pp. 6-
11.

(17] E. F. Miller, An Experiment in Hardware
Monitoring, General Research Corporation,
RM-1517, July 1971.

118) R. G. Canning, Savings from Performance
Monitoring, EDP_Analyzer, Sept. 1972.

[191 R. L. Patrick, Measuring Performance, Datama-
tion, v.10, #7, July 1964, pp.24-27.

[201 P.D. Schulman, Hardware Measurement Device for
I 11/360 Time Shared Evaluation, Proc. of the
27nd ACM National Conference, Aug, 1967, pp.
163-199.

1211 D. J. Roeck, W. C. Emerson, A Hardware Instru-
mentation Approach to Evaluation of Large
Scale Systems, Proc. of the 24th ACM National
Conference, 1969, pp. 751-367.

3- /1 tt'

- 5A -

(22) L. Boyle, HARDMON: The University of Waterloo

Hardware Monitor, University of Waterloo,
Applied Analysis and Computer Science Depart-

ment, Masters Essay, May 1973.

(23) C. E. Kehn, Organization for System Evaluation,

1NFOR v.9, #2, July 1971.

[24] Comress; Dynaprobe 7900: System Specifications
Comress Report No. CR4-0032-1.

(25) Comress; Dynaprobe 7818: System Specifications
Comress Report No. CR4-0036-1.

1261 Comress; Dynaprobe 7720: System Specifications
Comress Report No. CR4-0023-2.

[27] Comress; Dynaprobe 7700: System Specifications
Comress Report No. CR4-0022.

1281 System 1000-General Information 1100 Series,
1973, Tesdata Systems Corp., 7900 Westpark
Drive, McLean, Virginia 22191..

[29) System 1000-Computer Performance Management
System, 1972, Tesdata Systems Corp., 5539
Wisconsin Avenue, Chevy Chase, Maryland.

130] L. Amiot, N. K. Natarajan, R. A. Aschenbrenner,
Evaluation of a Remote. Batch Processing System,
Second SyMposium on Operating System Principles
Oct. 1969,pp. 24-29.

[311- J. Hughes, D. Cronshaw, On Using a Hardware
Monitor as an Intelligent Peripheral, Xerox
Corporation, Jan. 1973.

[321 S. H. Fuller, R. J. Swan, W. A. Wulf, The
Instrumentation of C.mmp, A Multi-(Mini) Pro-
cessor, IEEE Intl. Computer Society Conference,
Feb. 1973, pp. 173-176.

[33] E. L. Burke, A Computer Architecture for System
Performance Monitoring, 1st Annual SIGNE

• Symposium on Measurement and Evaluation, Feb.
1973, pp. 161-169.

(51

(7)

(9 1

APPENDIX B

A COMPUTER CONTROLLED HARDWARE

MONITOR: HARDWARE ASPECTS

A COMPUTER CONTROLLED HARDWARE MONITOR: HARDWARE ASPECTS

1. INTRODUCTION

The advent of complex computer technology has made

it necessary to develop new flexible methods of evaluation.

It Is now required to evaluate systems becau • e technology is

making many hardware-software alternatives a reality.

Many organizations are connecting computers into

complex networks. The rapid development of sol id state

technology has meant sudden changes in çoncepts of reality.

A means of evaluating these new concepts was needed by the

Computer Communication Networks Group at the University of

Waterloo. A major effort has been made in the devolpment of

a general purpose software-controlled hardware monitor as

part of the creation of a hardware and software system to

monitor computer networks.

The purposes and design objectives of such a

monitor are well documented in other publications <1,2,31

and are outside: the scope of this paper. In an earlier

paper, the general aspects of our monitoring tools were

discussed <41. • It. Is our intent to restrict discussion to

the hardware design aspects of the monitor.

2. MONITOR SPECIFICATIONS

Electronic technology available when the project

started in 1971 and measurement requirements suggested that

lt was reasonable to achieve a monitor resolution of 100

nanoseconds: This figure expresses the minium time between

- 1B -

events to ensure detection. It is - also the degree to which

we are able to 1dentify the occurance of any single event.

• Measurement technolog y. as well as measuremehts

were both goals. A hardware design that could be readily

modified without major re-design effort was needed. A bus

structured hardware monitor was developed to facilitate

changes. 	• •

In order to monitor a network successfully using

hardware Monitors, parts several physically separate loca-

tions. This implies two essential features: first, the

monitor must be controlled remotely and second, many of the

monitor functions should be performed under software con-

trol. Results have to be available under software control.

3. SYSTEM DESIGN

The evolution of the hardware monitor tools has

resulted in the generalized block diagram shown in Fig. 1.

Four essential types of devices have been developed . In as-

sociation with the hardware monitor.

Communication and control hardware was developed

to provide both local and remote control. Initial control

hardware consists of UNIBUS to MONIBUS interfacing. Reverse

signalling is acc'omplished through an interrupt system. Con-

trol hardware used in sampling and timing applications also

comes under this category.

Event detectors 	include simple 	signal 	con- •

• 1
• 1

1

ditioners, 	character 	detectors on serial 	lines, corn -

binational logic units and sequential logic units. These

devices are used to enable the hardware monitor to have ac-

cess to the computer system under study. It is the respon-

sibility of devices in this class to provide the rest of the

monitor hardware with signals in a standard format.

Actual measurements are performed in two modes,

absolute and reduced. Absolute measurements are those which

are recordings of raw data and do not represent reduced

information. Examples are time measurements and event oc-

curances. Reduced measurements are those in which the

reported value represents so nie composite value. Examples of

these include histograms and moments of distributions.

All devices in the monitor have been implemented

using TTL logic. This was done because it was readily

available and provided sufficient speed to meet our require-

ments.

II k. MONIBUS IMPLEMENTATION

The monitor is structured around an asynchronous

bus known as MON.IBUS which has a simple efficient protocol.

The bus contains all the address, data, control, and timing

requirements to effect data transfers. The Protocol allows

for interrupt handling. The MONIBUS is used as a communica-

tion Path between the controlling computer and a device.on

the MONIBUS. No provision is made for inter-device com-

- 313 -

• 1

munication on fhe MONIBUS. The sienals used on the MONIBUS

are shown in Table 1.

Certain assumptions are made in the implementation

of the MONIBUS in our hardware monitor. All devices on the

MONIBUS are assumed to be slave devices. This means that

devices operate in a controlled mode under the control of

the MONIBUS to UNIBUS interface. It means that the MONIBUS

devices cannnot control any devices on the host machine. As

a further simplification, no positive acknowledgement of the

existence of a device is given. This reduces the time re-

quired to access devices on the MONIBUS, although this

departs from practice commonly used on other bus-structured

machines. The common problem associated with no positive

acknowledgements is that of phantom devices, but this has

not proved troublesome . The need for positive acknowledge-

ments should be questioned as the penalties of longer access

time and more complex hardware are the result. When at-

tached to a PDP-11, the interface monitor makes devices ar3-

pear in address space of the PDP-11.

11 	
5. MONITOR DEVICES

All devices are designed to function in conjunc-

tion with.the protocol of the MONIBUS. As new monitor

devices are found to be needed, they can be added with

little disturbance to those already presen t .

- 413 -

In the. same way, software has been developed to

be modular, allowing It to be integrated into the system as

hardware is added or removed.

6. COMBINATIONAL LOGIC UNIT

The Combinational Logic Unit is used to realize

any function of eight Boolean variables. It is a

programmable device consisting of sixteen words of scratch-

pad memory and logic which can select each bit individually

(Fig. 2). Four bits of the function select the appropriate

word. The reMaining four bits are used to select the in-

dividual bit of the word. Each bit represents the presence

or absence of a , prime implicant of the Boolean function.

7. TIME AND EVENT COUNTERS

The time and event counters provide information on

two items which are of interest: the number of times a

logical event•occurs, and the total duration of the event.

These are used to provide much of the general information on.

systems under study. As a basic module in the system, they

'have so far been used in nearly every measurement performed

by the monitor. The maximum resolution of the counters is

established as 100 nanoseconds.

Two thirty-two bit counters form the bases of the

time and event counters (Fig. 3). The word length could be

expanded readily if the need ever arose. The status register

determines whether each counter is used as a timer or as an -

event timer.

8. SWITCH MATRIX

The program-controlled switch matrix is used to

facilitate rapid changes in experiments either by changing

measUrement types, or acting in response to variations as a

result of measurements made in experiments in progress. New

measurement technology will employ dynamic measurements as a

method of reducing . the amount of redundant data collected.

In our monitor two types of program-contolled

. switch matrices • are employed. The first has sixteen inputs

and four outputs. The second has eight inputs and eight out-

puts. In both cases an output can select any of the inputs

• (Fig. 4). The switch matrix can be changed at the instruc-

tion rate of the controlling machine.

9. INTERRUPT GENERATORS

• In any program-controlled device there is often a

need for intelligent hardware to raise alarm conditions. An

interrupt system satisfies this need. 	This is the only

means available on the MONIBUS to request reaction to

events. A priority system is also included to handle simul-

taneous interrupts by several devices (Fig. 5).

TWo lines on the MONIBUS are associated with the

iliterrupts. The interrupt request 1 ine listens to all inter-

- 7E1--

rupt cards. 	It 	is the responsibility of the MONIBUS to

UNIBUS interface to acknowledge interrupts when 	other

transfers are not in progresse This is achieved by as-

serting the interrupt Acknowledge line. The interrupt card'

requesting service receives this acknowledgment and iden-

tifies tself on the data lines. At the same time the re-

questing interrupt card prevents any other interrupt card

futher along the bus from receiving the interrupt acknôw-

ledge signal.

1 0 . SERIAL UNE TAP

At the present time the majority of computers in

networks communicate over bit-serial lines. In most cases

the actual communication lines are readily available to the

user of a hardware monitor, whereas the data in the inter-

faces is not usually accessable.

Two •devices have been developed to Process data

from bit-serial lines. The first is a device which taps on

II 	a .serial 	line and decodes the data. The second is an as -

II sociative array which ls used to identify 	particular

characters. 	 -

The associative array can be loaded under program

control. It identifies characters key to a particular

II measurement problem. An output is provided by the character

II. detector which allows characters to be counted or particular

sequences of characters to be recognized.

11. TIME STAMP

Periodic or predictable events can be measured

II with relative ease.. A problem found by ail who debug

software or hardware ts the apparent random failures. It was

with this in mind that a device was developed to aid in

monitoring rare and random events.

The Time-Stamp device consists of sixteen monitor

lines which wait for logical transistion to activate them.

When a line becomes active, its line number Is recorded,

along with the current real time and a snapshot of eight en-

vironment lines (Fig. 6). Thus one rs able to obtain infor-

mation about rare . and random events without redundancy. The

full potential of this device as a maintainance and

debugging aid has not yet been realized.

12. HISTOGRAM

The simplest method of placing data information in

perspective is through the use of a histogram. In the hard-

ware monitor two types of histogram generators have been

developed. The fast histogram generator has sixteen chan-

nels with 100 nanosecond resolution and 16 or 32 bit ac-

curacy. The slow histogram generator has sixteen channels

with five microsecond resolution and 16 bit accuracy.

The fast histogram generator is Implemented with

high speed counters which can be read under program cohtrol.

Overflow detection is provided and can be fed to an inter-

rupt card.

The slow speed histogram is implemented using a

sixteen word scatch-pad memory. It can be read under

program control and is provided with overflow detection.

13. INTERVAL TIMER

It is common in many measurement systems to take

periodic measurement samples. A program controlled interval

timer was developed for this purpose (Fig. 8). It is a

device-consisting of two registers x and y. 	Its output line

remains true for x time units followed by false for y time

units. The period is ,x+y time units and the sample window Is

- x time units. The value of each time unit is variable with

an upper limit of 100 nanoseconds. X and y registers each

have sixteen bit resolution.

14. QUAI) COMPARATOR

In most computer systems much of the internal

information appears on a parallel data bus. Two types'of

data buses are *found in most computers containing informa-

tion useful to hardware monitor measurements. The first Is

the address bus which contains information on the flow of

the program as well as Identifying the areas used to store

data Used in calculations. The second type of bus is the

data bus used to move data within the computer. This bus

demonstrates the effectiveness of peripherials as well 	as

- 9B

- 10B -

providing a means of tracking key processing events.

We developed the quad comparator to observe bus

structured data.(figure 7). The quad comparator has nine

registers accessible from the MONIBUS. One register is used

to mask out those bits which are not needed. The remaining

eight registers are used to establish the range of the

masked data. Because they are under program control, the

data can be identified to any degree of accuracy. In the

implementation our Quad Comparator can accept a sixteen bit

bus. This bus width can be extended by stacking more than

one Quad Comparator. For example in order to examine a

thirty-two bit bus, two Quad Comparators are needed.

Th nuad Comoarator provides eleven outputs to

give information about the range of values to be checked.

The eight-program controlled registers give eight break

points. Seven of the outputs provide information indicating

that the input value is in the range outlined by adjactent

registers. The remaining four outputs deal with the two-end

registers. Two of the outputs are used to indicate equality

with the end values. The remaining two specify when the bus

value is greater than one the end range of values or less

than the other end value.

15. CONCLUSIONS .

'The 	bus structured nature together with the

modular nature of the hardware and software components seem

to have made our monitor easy to develoo and use. These

• 1

-features are the best safe-guard - against obsolescence-. New

measurement tools, when they are developed, will be added

with a minimum of effort.

date, a single hardware monitor is operational

under control of the first version of the Network Monitoring

Centre software. These are physically co-located as the

hardware and software have not been completed to permit con-

trol via telephone lines. The Network Monitoring Centre is

controlled by a user language based on FORTRAN, which re-

quires fairly detailed knowedge of the subject by the user.

The hardware and software 1.s under construction in order to

permit remote operation of the hardware monitôr, a second

hardware monitor is under construction, and 'a second-

generation software system for the Network Monitoring Centre.

is under development for allowing simpleuspr interaction and

automatic multitasking. The monitor has been used to measure

single-CPU subjects, and simple two-node network.- We plan to

have monitored a three-node network by early 1975.

-)1B -

BIBLIOGRAPHY

[I] J. Hughes, D. Cranshaw, D.D. Us La D, aosAtnelre. monitor Qr.-
An IsItgiligenI Eg/iPnela, Xerox Corporation Report,
January 1973.

[2] C. D. Warner, "Hardware Techniques", A.Q.M 	SIGOOSIE
ligAlslettel #5, Aug: 1970, pp. 5-11.

[3] H. Lucas, "Performance Evaluation and Monitoring", _Çom-
• • puter Sumt4s., V. 3, #3, September 1971, pp. 79-91.

[4] D. E. Morgan,'W. Banks, W. Colvin, D. Sutton, "A Perfor-
mance 	Measurement 	System 	for Computer Networks",
EIMP.g_dirlg 	U74 1E11 Congjs, PP.29-33.

MONIBUS

(x0)
{)(1)

(x2)
(x3)

16 WORDS

BY

16 BITS

16

(X4) 	
(X0) 	 I of IS
(X6) 	

	 SELECT 	

f.

(X7)

Fig.2 COMBINATIONAL LOGIC UNIT
fn.

11111111 OMNI 011111 1111111 ORO 1011 lilt 11111 OBI a 111111 gill -- 1111 .0•11 ilia 	Val

EVENT COUNTER

TIME COUNTER

MONIBUS

Fig .3 TÎME AND EVENT COUNTERS

COMT R 0 L.

I of N

SELECT

Crà
1.0

Fig.4 SWITCH MATRIX

OM us es mu en erg el au are me, en are gm mu Mil MI 	mow eal

MON IB US

INTERRUPT
REQUEST

INTERRUPT
ACKNOWLEDGE

INTERRUPT

ACK NOW LEDGE

INTERRUPT
CONTROL

CONTAINING
ID ENTIFING
ADDRESS

Lc,

INTERRUPT
DETECTS 0- l
T RA N SITI ON

F ig.5 INTERRUPT GENERATOR

as as Is ea Pe ea es es in pig ON all OM MI an ell es 111111

32 x N

SCRATCH PAD

STORE

16 DETECTION ;
LINES

28 TIME

8 ENVIROMENT

• •

8

r--

IvIONSBUS

Fig. 6 TIME STAMP

tru 1 Drs 2mg, tEM t1:-.E17-j

16 BIT
BUS

8 REGISTERS

iv1 0

MONIBUS

MASK

< M 0
im b

< Mo > M1
< M1 > M 2
< M2 > M3
< M3> M4
< KA 4 >M 5
< M 5 >M6

< M6 >M7
hA 7

< M7

CO
r--

Fig. 7 QUAD COMPARATOR

ail MS MI IMP MO 	1111* gal 	an glilt tan law as es es ea our

CO IVIPARATOR

% 16

X

MO NIB US

16 	
S

/1/16

I COMPARATOR

)/ 16

COUNTER

TIMER OUTPUT

CLOCK

Fig. 8 INTERVAL TIMER

MI IMO MIS 111110 INS US en 1111111 	"le $1111 fan IMO OW ill. 0111 IOU 	ell

SUMMATU:

The remote computer-controlled hardware monitor or

ncnm is a major component of the Computer Network Monitoring

i:ystem which has been developed nt the University of Water-

loo during the last three years. This paper describes the

hardware concepts and the design of the RCHM.

The Computer Communications Networks Group at the

University of Waterloo has recognized the need to monitor

networks as a means of evaluating their performance. This

knowledge will help to validate analytical models, help to

optimize and debug software, and lead to the development of

a flexible means by which charging algorithms and diag-

nostics can be.implemented.

In a typical computer network there are several

computer sites linked by data lines of varying capacities.

The sites may be separated by only a few feet or by several

hundred miles. It is the task of the monitoring system to

observe and correlate activity at several locations simul-

taneously. It is important to minimize interference to the

system being monitored. The RCH• hardware is centred around

a bus-structured wired-logic processor. The bus structure

allows variations to be introduced readily into an in-

dividual monitor.it also allows new monitoring devices to be

introduced at a later date without significantly disturbing

those already present.

SIGNAL NAME 	 SIGNAL DIRECTION

ADDRESS 0:7 	 N

DATA 	0:15

READ/WRITE

GO

INITIALIZE

INTERRUPT REQUEST

INTERRUPT ACKNOWLEDGE

TABLE 1 MONIBUS SIGNALS

APPENDIX C

A COMPUTER NETWORK MONITORING SYSTEM

A COMPUTER NETWORK MINITORING SYSTEM

by

D. E. MORGAN*, W. BANKS*,

D. GOODSPEED*, R. KOLANKO*

* Computer Communications Networks Group
and Department of Applied Analysis and Computer Science
University of Waterloo, Waterloo, Ontario, Canada

Research supported by Department of Communications of
Canada, research contract no. SP2-36100-3-0406; Defence
Research , Board of Canada, grant no. 9931-37; National
Research Council of Canada, grant no. A8116 and by Mordata
Ltd. The research was performed in the Computer Communica-
tions Networks Group's laboratory at the University of
Waterloo

ABSTRACT

In order to help satisfy an apparent need for tools for

monitoring the activities of a computer network (See Mamrak

<1>), a system of special hardware and software, called a

Computer Network Monitoring System (CNMS), is being im-

plemented in the University of Waterloo Computer Communica-

tions Networks Group (CCNG). The paper discusses the

motivation and derivation of the CNMS, then provides func-

tional descriptions of most of the major hardware and

software components, illustrates use of the CNMS, and lists

experiments and applications. In a previous paper <2>, the

motivation and architecture of the system were sketched.

The CNMS consists of: (1.) A set of hybrid monitors,

each of which is controlled by a locally or remotely located

computer; (2.) Monitor control and data analysis software;

(3.) A Network Traffic Generator; (4.) Measurement

software in each computer monitored. Each computer to be

monitored is attached to a monitor. Telephone lines,

possibly different from those of the network, connect the

monitors to the controlling computer.

1. INTRODUCTION

A computer system, consisting of hardware and the

software to control it, is often so complex that it is dif-

ficult to understand what is being done, how efficiently it

is being done, and what problems exist. Moreover, computer

systems are often connected to other computers as well as

terminais to form even more complex computer networks.

Cole and others have defined a network of computers to

consist of two or more computers linked together, while a

computer network has been defined to be either a network of

computers or a set of terminals connected to one or more

computers<3>. Most networks of computers consist primarily

of nodes, hosts, transmission links, and terminals. A node

(in this context) usually refers to a computer used

primarily to switch data. A computer whose primary role is

not switching data in the network to which it is attached,

is called a host. In some networks, a sharp distinction is

made between nodes and hosts, while in others no distinction

exists. Terminals are devices which serve as the interface

between man and the computer. The transmission links, of

course, join this collection of hardware together to form a

network.

Determination of what a computer system or network is

doing is essential to effective management of it. This in-

volves monitoring (observing) its behaviour as it executes a

set of programs and responds to its environment. The

I.

behaviour of a system or network acting on.a set of programs

and data is characterized by the sequence of values of cer-

tain « parameters of the system and by the sequence of events

that occur as the system executes. These are manifestations

of the sequence of states traversed by the system as

programs of the workload are executed.

Although a variety of hardware and software monitoring

tools and techniques have been developed to aid in observing

the 	behaviour of .cordputer systems (See, for example,

<4-14>), 	little attention has been paid to developing tools

for monitoring computer networks. Kleinrock and Cole <3>

have successfully used elegant software techniques to

monitor the performance of the ARPA network. Abrams et al

at the National Bureau of Standards of the .U.S.A., have

developed tools for observing data flowing along a com-

muhicaticins line between a computer and a terminal<15>.

Fuller and others are instrumenting the C.mmp multi- mini

processor system.

The purpose of this paper is to discuss the motivation,

architecture, components, and use of a system of hardware

and software designed to monitor the behaviour of a computer

network or system. Morgan, Banks and others have previously

sketched the purpose and architecture of the Computer

Network Monitoring System(CNMS) <2,16>. This CNMS is being

created in the Computer Communications Networks Group at the

University of Waterloo.

- 4C -

The paper Is organised in six sections. Section 2

motivates the need for a monitoring system rather than a set

of unrelated, uncoordinated software and hardware tools. By

considering the problems involved in monitoring a computer

network, the section motivates characteristics and major

components of an ideal computer network monitoring system.

Section 3 presents the architecture and describes the compo-

nents of the CNMS being created at Waterloo. Use of this

CNMS is explained and illustrated in Section 4. Section 5

list .s some experiments being performed using the CNMS, and

mentions some potential applications of the system. Section

summarises this research, evaluates the CNMS in ternis of

nine characteristics presented in Section 2, presents our

conclusions so far, and outlines some future work.

2. NETWORK MONITORING SYSTEM MOTIVATION

There are four fundamental reasons for monitoring a

computer system or network:

A. To observe its performance, thereby determining

whether work is flowing satisfactorily through it;

B. To detect malfunctions;

C. To diagnose the causes of any problems ob-

served;

D. To measure the resources used so that ap-

propriate charges can be made.

Usually the people who wish to monitor the activities

of a computer system are neither hardware, software, nor

statistics experts. Rather, they are either managers

responsible for the system, software maintenance people who

lack detailed knowledge of hardware, hardware maintenance

personnel who lack detailed knowledge of software, or

researchers (students or professionals) seeking statistics

for their work. It is indeed rare that the person seeking

Information is a computer software, hardware, and statistics,

expert all in one. Thus, system monitoring tools should be

easy to learn to use as well as easy to use, and detailed

knowledge of hardware, software, and/or statistics should

not be necessary to observe the system and get useful infor-

mation about it. Furthermore, the tools and techniques

should be incorporated in a single monitoring system to

avoid having to learn to use several different tools and

techniques.

Computer networks are often distributed geographicallY,

so monitoring the behaviour of a computer network involves

distributing the monitoring.activities across the network.

In order to correlate observations from scattered sites,

these monitoring activities must be centrally controlled and

coordinated, and the results must be centrally analyzed.

Thus, monitoring a computer network involves communications

as well as monitoring. Network monitoring tools and tech-

niques must be designed with this in mind-.

Although software has been used with some success to

monitor the performance of computer systems and networks,

experience indicates that monitoring software without hard-

ware often perturbs the system or network unsatisfactorily.

Hardware monitors without software aid are too inflexible

for most network applications. Certain parameters, events

.and their attributes can best be determined by software,

while others can best be determined by hardware. Thus, some

combination of hardware anesoftware monitoring tools ap-

pears better than either hardware or software tools alone.

Moreover, if a computer network is to be monitored, either

the computers in the network could include special .hardware

to aid them in self-monitoring while producing minimal

interference with the network's functions, or a set of

software-controlled - hardware monitors (often called 'hybrid

monitors'), one attached to each computer to be monitored,

could 	be 	employed to complement necessary monitoring

software in each computer. Each of these software-

controlled monitors should be capable of having its ac- .

 tivitiés controlled and its monitored results sent through

telecommunications links. Control of these monitors and

analysis of the data could be performed by a computer system

at a Network Monitoring Centre (NMC), such as the ARPA.

Network's NMC, which is used to coordinate software measure-

ment activities at each IMP and to collect and analyse. the

data.

Bec.ause transmission of large volumes of data is expen-

sive and usually not necessary, a network monitoring system

needs facilities for reducing data before transmission to

the NMC. Cole <3> showed that good approximations to many

kinds of distribution functions could be obtained from log

histograms. Much of the measurement data obtained by the

ARPA network measurement software is transmitted in the form

of log histograms to reduce the amount of data .transmitted. -

Extending Cole's reasoning, only the first four moments of a

distribution are required to model its behaviour for most

purposes. Rather than produce these moments at the NMC from

data transmitted from remotely-located monitors, equip-

ment,hardware could . be 'provided • in each remotely-located

monitor to produce these moments, then transmit only the mo-

ments to the NMC, thereby reducing the data that must be

transmitted. The main disadvantage. .is the cost of such data'

reduction equipment.

' The activitieS and parameters of a system or network

can be monitored continuously, periodically on a sampling

basis, or only when events of interest occur. An event

usually consists of a logical and/or sequential combination

of other events. Fundamentally, an event is the occurrence

of a 'specific pattern or sequence,of patterns in particular

portion(s) of the system, network, environment, or workload.

Tools for monitoring events should include facilities:

A. To detect specified event(s);

B. To register the (real or relative) time of

occurrence of the event; 	•

C. To time the duration of the event (i.e., the

set« of state.s comprising the event, or bounded by

two particular events) and/or its consequences;

. D. To obtain and record selected attributes of the

system, workload, and/or environment when the event

occurred;

e. To count the number of occurrences of the

event;

F. To initiate some action as a consequence . of the

event, e.g.,.diagnosing the cause of a problem

defined by the occurrence of the event, checking

for any damage, or initiating repair and/or

recovery activities. 	•

A well-known problem in physics and astronOmy is to

determine the order in which nearly simultaneous events oc-

cur in widely separated systems. The same problem occurs

when monitoring a network of computers. One way to minimise

such problems is to synchronise all the clocks as accurately

as possible with a single, very accurate, reliable source of

time-of-day readings such as that provided by the National

Bureau of Standards of the U.S., or the National Research

Council of Canada.

In order to determine the effects that changes have on

the performance of the network, some way of controlling the

workload applied to the network is desirable. Thus, a

monitoring system would be more useful if it included

facilities to apply loads with specified characteristics to

the object system or network.

From the above discussion, 	it follows that an ideal

CNMS should include the hardware and/or software tools

necessary:

A. To observe, measure, record, and evaluate the

behaviour of each of the components of a computer

network (including its workload and environment),

such tools being:

1. A set of computer monitoring systems, each

having hardware and/or software capable of

detecting particular events, measuring their at-

tributes, recording and reducing the data, and

transmitting the data for analysis elsewhere;

1

1 ink 2. Terminal 	and/or 	telecommunications

monitors, each having hardware and/or software to

observe activities and information flow.

B. To define, control, and coordinate monitoring

activities throughout the network.

C. To provide a single, accurate, reliable source

of time (e.g., time of day readings and precise

intervals) for the entire CNMS.

D. To provide network traffic with known charac-

teristics, should the 	CNMS 	user 	need 	this

capability for monitoring purposes.

To the best of our knowledge, no such computer network

monitoring system has yet been developed. However, a number

of hardware monitors and software monitors, plus a few hy-

brid monitors (e.g., <17,18,19>) have been developed for

computer systems, and software techniques and tools have

been used by Kleinrock, Cole, and others to monitor computer

networks <3>.

Experience in monitoring computer systems, and study of

pertinent literature indicate that an ideal computer network

monitoring system (CNMS) should possess the following

characteristics:

A. Be easy to use, yet flexible and expandable;

B. Be as system independent as practical;

C. Be dependable and easily diagnosed;

D. Allow gathering of measurement data at 	a

- 11C -

distance from the monitor control and analysis

functions, with minimal human intervention re-

quired;

E. Span the network;

F. Interfere minimally with the performance and

O 	integrity of the measured systems;

G. Interfere minimally with computer-computer and

terminal-computer communications;

H. Have no ill effects on the security or in-

tegrity of any of the systems;

I. Offer a choice of resolution, so that the unit

of measure fits what is measured;

J. Be low in cost while not compromising the other

goals.

It is, of course, impossible to achieve the ideal CNMS.

Nevertheless, this paper describes an attempt to produce a

system that hopefully will accomplish many of these goals to

a reasonable degree. In Section 6, the CNMS described in

Section 3 is evaluated in terms of these characteristics of

an ideal CNMS.

3. DESCRIPTION OF A COMPUTER NETWORK MONITORING SYSTEM

3.1 SYSTEM ARCHITECTURE

Using the characteristics listed in Section 2 as goals,

a CNMS has been deSigned and is being developed. A

prototype system has been implemented and is being tested by

using it to monitor two types of mini-computers and two

small laboratory networks. This CNMS consists of the fol-

lowing major components, which correspond with the list of

tools needed that is given in Section 2:

• A. A, set of hybrid monitors (called Remote Con-

trolled Hybrid Monitors, and abbreviated RCHM),

each being controlled by a computer which can be

miles away (i.e., at the Network Monitoring

Centre), and containing components to enable it to

. monitor a computer system and a set of communica-
.

tions links to terminais or other computers;

B. Software to define, control, and coordinate the

activities of a set of hardware monitors, and to

,obtain and analyse data from them;

C. Monitoring software in each observed computer,

and 	tools 	to 	enable the activities of the

monitoring 	.software 	to 	be 	controlled 	and.

coordinated from the Network Monitoring ,Centre;

D. Facilities in each hardware monitor to gain ac-
.

cess to a single standard clock for time -of - day

readings as Well as precise intervals;

E. A network traffic (load) generator capable of

simulating the activities of several users (human

or non-human) interacting with the network.

Figure 3.1 shows how the components of this CNMS can be

configured to monitor a network. Note that a telephone

line, which may be physically or logically separate from the

data links of the network, can connect each monitor to the

computer controlling it, or the monitor can be attached

directly to the controlling computer. These telephone con-

nections need not remain established throughout a monitoring

session. Computer control is required only to set up the

experiments, to read accumulated data periodically during

some experiments, and to terminate the monitoring session.

Each remotely-controlled monitor has a micro-processor to

handle real-time details, and a mini-disk to hold ac-

cumulated data for the NMC.

If the NMC cannot control all the RCHMs in t,he network,

Regional Network Monitoring Centres (RNMCs) are introduced

to form the hierarchy illustrated In Figure 3.2. Note that

RCHMs can be controlled indirectly (i.e., via telecommunica-

tions links) or directly by either a RNMC or a NMC.

As Figure 3.3 illustrates, the RCHM is composed of a

number of specialized modules interconnected by a bus,

called the MONIBUS. The modules included in a monitor

depend on the activities to be monitored. Each module is

assigned a set of MONIBUS addresses which are used by the

Fi g. 	3.1

MS 	- Measurement Software

RCHM - Remote Computer Controlled Hardware Monitor

RNMC - Regional Network Measurement Centre

NMC - Network Measurement Centre

- 15C -

Figure 3.2

UNIBUS TO

	 MONIBUS
INTERFACE

MON IBUS

COMMUNICATION LINES ASSOCIATIVE I

ARRAY 	;
INTERRUPTS SWITCH

MATRIX

TIME

STAMP

OBJECT

COMPUTER

PATCH

PANEL

DATA OR ADDRESS BUS LOGIC

UNIT

QUAD

COMPARATOR

C)

4

19_01

« BID 	lee alb 	IMO • all MIMI Mel IIIIIIII - 1111111 MO Ilk ilia 	IIMIX 	Ole - ins

CH RACTER
DETECTOR

TIME AND

	 EVENT

COUNTERS

HISTOGRAM
GENERATOR

NETWORI

CLOCK

MDC

Figure 3.3

controlling computer to send control information and to

receive monitored results. The modules included so far are

listed here and deScribed in Section 3.2:

A. Event detectors

1. Masked-word range comparators, used to detect

an event defined in terms of data or address

ranges;

2. Combinational logic units, used to detect an

event defined in terms of Boolean functions of

other events;

3. Sequential 	logic units, used to detect an

event defined as a sequence of other events;

. 4. Character detectors for bit-serial lineS.

B. Time measuring modules

1. Time stamp units, used to record time of

occurrence, 	identity, and other selected at-

..tributes of an event;

2. Event timersï .

3. Interval timers, for sampled measurements;

' 4. Network clock, which is synchronized with a

standard reference clock.

C. Counters, data reducers, and data recorders

1. Histogram generators;

2. Moment generator, used to yield the first

four moments of a given distribution;

3.. Event counters;

Le. 	Flip-flop banks;

5. Content-addressable memory (CAM);

6. Random-access memory (RAM).

D. Communications and control equipment

1. Programmable switch matrices

2. Interrupt generators;

3. RCHM controller and communications link

interface;

4. MONIBUS-to-UNIBUS (PDP-11) interface.

E. Signal conditioning circuitry and patch panels.

A set of high impedance probes connects points of in-

terest in the object computer to the monitor. The probes

terminate on a patch panel containing signal conditioning

circuitry.

The highly modular monitor architecture makes it quite

easy to add new special-purpose data gathering or data

reducing components as needed. This modular hardware ar-

chitecture and the desire to allow the monitoring system to

evolve dictate a similar architecture for the software.

Figures 3.4 and 3.5 depict the architecture of the software

at this stage of its evolution.

The heart of this software is a small, real—time,

message-switched operating system, containing a set of RCHM

module drivers, interrupt handling routines, primitives to

aid authors of experiment control and data analysis routines

in writing and scheduling execution of their routines, a

small supervisor to allocate resources (processor, memory,

and communications) 	plus' the 	communications 	control

routines. A limited set of standard routines for data

analysis and output formatting, an embryonic version of 'a

,translator for a monitoring language, and software to allow

the user to interact with the monitoring system, complete

the present version of the system software. These software

combnents are described in Section 3.2.

As experience is gained using the system,.a monitoring

language is being defined. The current version of the

language is an extension of Fortran; however, the pos-

sibility of basing the language on a BCPL-like language

(e.g., B <20>) is being actively pursued.

A load generator has been implemented to provide a user

with the ability to specify what traffic should be in the

 network while monitoring, should known traffic be desired

<21>. The current version simulates the typing action of up

te sixteen users at terminals with speeds up to 300 baud.

The load generator transmits prepared scripts from disk to

the appropriate line(s), and can simulate thinking and

typing time distributions. A version of the load generator

to produce higher speed traffic, simulating host activities,

is being created. Eventually, the'load generators will also

be controllable from the NMC using the monitoring'language.

Monitoring software in each node (or host) is obviously

quite system dependent; 	however, 	sets 	of 	standard

monitoring software primitives are being designed to observe

parameters characteristic of many systems. We are striving

to minimize the amount of such software required, as well as

the amount of work required to write, install, and debug it.

Standard means of communicating between this software and

the RCHM are being designed.

I .

- 21C-

USER- WRITTEN ROUTINES
FOR DATA GATHERING ,
RECORDING , REDUCING
ANALYSING a OUTPUT

COMMUNICATIONS MANAGER

MESSAGE 	MESSAGE
FORMATTER SW I TC HER DRIVERS

LOAD -
GENERATOR

USER-WRITTEN
EXPERIMENT
BUILDER a
CONTROLLER

EXPERIMENT MANAGER

	

EVENT a 	EVENT a 	EVENT

	

SCHEDUUNG 	ROUTINE 	HANDLER
PRIMMVES SCHEDULER

MAINTENANCE
QUEUE

RNMC

USER INTERFACE MANAGER
'

COMMAND 	COMMAND 	OUTPUT
COMMUNICATOR ANALYSER MANAGER

EXPERIMENT
QUEUE

RESOURCE
QUEUE

QUEUE 81
TIME

MANAGER
(ARRANGE FOR

WORK TO BE

DONE)

USER
QUEUE.

RESULTS 	MANAGER

DATA 	SCHEDULCR 	OUTPUT

REDUCTION 	 FOR m ATTING
SCHEDUUNG a 	 a
PRIMITIVES

ANALYSES EDITTING

PRIMITIVES 	' 	PRIMITIVES

REsuLTS
QUEUE

QUEUE
MANAGER
QUEUE

COMMS
QUEUE

MONITOR
QUEUE

RESOURCE MANAGER

DATA 	OVERLAY OPERATING

MANAGER 	MANAGER SYSTEM

INTERFACE

ear
MAINTENANCE 	MANAGER

S11NDARD DIAGNOSTIC 	ERROR

TESTS 	PRIMITIVES HANDLER

MONITOR 	MANAGER

OBJECT 	LOCAL 	REMOTE

NETWORK 	RCHM 	RCHM

SOFTWARE DRIVERS DRIVERS
MONITOR

OBJECT
NETWORK

ON
SYSTEM

ANALYSER
MACHINE
(H 6050)

Rtmc

Figure 3.4

- 22C -

COMMUNICATIONS MANAGER

MESSAGE 	ORDER

DRIVER SWITCHES ANALYSIS

COMMS
QUEUE

USER-WRITTEN ROUTINES
FOR DATA GATHERING
REOORDING, REDUCING

RESULTS MANAGER

DATA 	DATA 	SUPPORT

GATHERING FORMATTING 	FOR

(SIMPLE) 	USER-

PRIMITIVES 	V/RITTEN

ROUTINES

USER- WRITTEN
BUILDER AND
CONTROLLER

RCHM CONTROLLER

MAINTENANCE MANAGER

STANDARD DIAGNOSTIC 	ERROR

TESTS 	PRIMITIVES HANDLER

(NON
RESIDENTS)

RESOURCE MANAGER

DATA 	OVERLAY OPERATING
MANAGER MANAGER 	SYSTEM

INTERFACE

(?)

MAINTENANCE
QUEUE

RESOURCE
QUEUE

RESULTS
QUEUE

EXPERIMENT
QUEUE

MONITOR
QUEUE

EXPERIMENT MANAGER

EVENT 	EVENT

SCHEDULER FIANDLER

MONITOR 	MANAGER

OBJECT 	RCHM

SYSTEM 	DRIVERS

SOFTWARE
MONITOR

Figure 3.5
23C -

3.2 COMPONENT DESCRIPTIONS

3.2.1 RCHM HARDWARE COMPONENTS

Corresponding to the three main types of computer

system events, there are three types of event detectors in

the RCHM:

"Value" events <--> Masked-word Range Comparator

Sequential events 	<--> Sequential logic unit

Combinational events <--> Combinational logic unit

The MASKED-WORD RANGE COMPARATOR determines whether a

bit string, logically 'ANDed' with the specified mask, then

regarded as a binary value, falls within two program-

specified limits. There are five output lines to indicate

whether the given string is above, below, or within the

range, or whether it is equal to the upper or lower limit.

Currently each comparator tests strings of at most • sixteen

bits, but the comparators have been designed so that four

can be easily combined to test a 64-bit string. Four com-

parators are usually interconnected in a different way to

form what we call a QUADRI-COMPARATOR which has four ranges

and 16 (of the 17 possible) outputs. The outputs are:

below the lowest value, equal to one of the • range boun-

daries, within a range, between two ranges, or greater than

or equal to the highest value.

The SEQUENTIAL LOGIC UNIT determines whether a sequence

of events represented on its input lines is following a

specified pattern. The pattern is defined by a regular ex-

- 24C.-

pression 	which 	was 	specified 	by 	the experimenter,

manipulated by the controlling computer, and stoe. ed in the

sequential 	logic unit. 	The current design features eight

inputs, eight outputs, and a maximum of 32 states; however,

the , unit could, 	like the other types of units, be of ar-

bitrary size, determined by cost and need. 	Races are

avoided by buffering the inputs and by using a synchronous

• design.

The COMBINATIONAL LOGIC UNIT determines whether the

eight events represented on its input lines satisfy the

Boolean expression - specified by the experimenter's program.

The functional represent-ation is translated to a Karnaugh

map and stored as such in the unit.

The CHARACTER DEtECTOR receives characters serially by

bit from the • telecommunicadons link to which it is at-

tached, thereby detecting telecommunications link events

such as the start of a message. The detector tests to see

if each character (5, 7, or 8 bit codes) matches one of the

sixteen patterns specified by the controlling program. If

so, the output line corresponding to the pattern matched is

•set to 	This unit employs a simple associative

memory to achieve the desired speed. The character detector

and the sequential logic unit are'used together to handle

communications protocols 	e.g., to detect the header of a

message or packet.

In a monitoring system there is a need to accurately

determine real time, to measure durations, and to obtain

pulses of specified widths at specified regular intervals.

Facilities for each are provided in the RCHM.

The NETWORK CLCCK serves as the source of accurate real

time as well as very accurately spaced pulses. The current

clock supplies pulses every 100 nanoseconds and selected

multiples.

When a specified event occurs, the TIME STAMP UNIT

records an identifier for the event, time of occurrence of

the event, and sixteen indicators of the state of the object

system when the event occurred. Currently, the output for

an event contains 48 bits of information, the minimum time

between recordable events is 200 nanoseconds, and the clock

resolution is 100 nanoseconds.

The TIMER AND EVENT COUNTER counts the number of occur-

rences of the specified event, and measures the total amount

of time the event occurred during the period of observation:

Currently, each register has 32 bits, the timing resolution

is 100 nanoseconds, and the maximum count rate is 10 MHz.

The controlling program selects one of four clock rates.

Under program control, each timer may be used as either a

timer or an event counter. One can arrange for the con-

trolling computer to be notified when a counter overflows by

connecting the counter's overflow output to the input of an

Interrupt Generator (See below).

The INTERVAL TIMER produces a 'high' output every)(4.Y

- 26C -

microseconds, and the output lasts for Y microseconds. X

and Y are set under program control. The Interval Timer is

used to indicate when to sample the system, should sampling

rather than event-driven monitoring be desirable for a par-

ticular set of experiments.

In order to keep track of the fact that a set of events

of interest has occurred or to aid in measuring the time

between events, a set of flip flops is provided on the patch

panels together with numerous standard logic gates.

To record monitored data until the controlling computer

has an opportunity to access it, EVENT MEMORY is provided in

the form of some semi-conductor memory and a mini-disk.

In most measurement experiments, the object is to ob-

tain the distribution function for the quantity being

measured. In order to facilitate obtaining this distribu-

tion function, HISTOGRAM GENERATORS and a MOMENT GENERATOR

are included in the design of the RCHM. • A Histogram

Generator consists of a mask, a bank of comparators , (or a

CAM), and a corresponding bank of counters. When the input

data falls wjthin a range, the corresponding counter is in-

cremented by one. The mask and ranges are set under program

control.

The MOMENT GENERATOR, working with the output of the

histogram generator, produces the first four moments of the

distribution.

The INTERRUPT GENERATOR signals the nearest controlling

computer (whether RCHM controller or NMC or RNMC) whenever

one of its input lines indicates that an event has occurred

which requires computer intervention. Such events include

overflow of counters or timers, data overrun in the time

stamp unit, or events selected by the experimenter.

The PROGRAM-CONTROLLED SWITCH MATRICES connect a

software specified input to one or more specified outputs.

Using the switch matrices, several experiments can be set up

by making the necessary patch panel connections in advance,

then, under program control, setting up the switch matrices

to perform one experiment at a time. To change from one ex-

periment to another, one merely calls a routine to discon-

nect certain links, then calls another routine to make the

required connections through the switch matrices. Using

these matrices, probes are linked to event detecting units,

which are connected to data gathering units, and these are

connected to data recording and data reducing units. Two

sizes of switch matrices have been used thus far: 8 x 8 and

16 x 4.

These programmable switch matrices make the 	CNMS

feasible. 	Originally, 	it was hoped to use switch matrices

exclusively, eliminating patch panels, but the size, speed

and cost of the switch matrices required dictated the com-

promise of using patch panels plus switch matrices to make

the necessary connections. When compared with the exclusive

use of patch panels to achieve interconnection, the corn-

promise reduces the time required to change from one expert-

ment to the next and reduces the amount of human interven-

tion required, but not to the level we had hoped. A less

expensive switch matrix on an MSI chip is planned to further

reduce the use of a patch panel.

3.2.2 NMC, RNMC, and RCHM SOFTWARE

As Figures 3 • 4 and 3.5 illustrate, the system software

for the micro-processor that controls the RCHM and the

system software for the NMC and RNMC have basically the same

structure. However, the RCHM software is simpler and much

smaller than that for the (R)NMC. The principal components

of the software correspond with the types of functions to be

performed. 	The message-switched Operating System structure

is well-suited to the problem of controlling parallel 	tasks

in multiple machines.

The USER INTERFACE MANAGER receives, analyses, and

interprets commands typed by the user as the user sets up an

experiment, interacts with it, and obtains and analyses the

results. The command interpreter calls upon the other com-

ponents of the system to serve the user.

The EXPERIMENT MANAGER schedules and supports the ex-

ecution of experiment control programs written by users in

the monitoring language.

The MONITOR MANAGER drives (or arranges for the RCHM

controller to drive) .the components of the RCHM to perform

the monitoring activities requested by the user.

The RESOURCE MANAGER allocates main and auxiliary

memory, and records and retrieves monitored data, experiment

control programs and system programs.

The COMMUNICATIONS MANAGER in the NMC handles com-

munications with the RNMCs 	it controls, with the load

generator, with the object network monitoring software, with

the data analysis system, and wUth any RCHMs it controls

directly. The Communications Manager Un the RNMC provides

communications with its controlling NMC and possibly the ob-

ject network monitoring software. The Communications

Manager in the RCHM controller is only 'concerned with its

controlling NMC or RNMC.

The RESULTS MANAGER schedules and supports user-written

or system-supplied routines to record, reduce, and analyse

monitored data. Experiments requiring a great deal of data

analysis send the data to a larger system that is more

suitable for such analysis.* At the University of Waterloo,

the Honeywell 6050 is used for this purpose. When the

analysis is complete, the results are formatted by routines

of the Results Manager selected by the user.

The MAINTENANCE MANAGER provides diagnostic routines

and standard test packages for hardware and software of the

CNMS. Using these routines, a knowledgeable user can in-

teract directly with the components Of the RCHMs and can

perform reasonably complex experiments without. having to

write and compile experiment control programs. The Main-

tenance Manager also contains all routines, necessary to

handle CNMS hardware or software errors.

The QUEUE MANAGER provides the primary means of com-

municating between these software components. A service to

* Alternately, the NMC could be used at some sacrifice in
. efficiency and power..

- 31C -

be performed is requested by building a queue entry and

asking the Queue Manager to put it in the appropriate place

in the proper queue. A service which is to be done at a

particular time is placed in the Queue Manager's queue until

it is time to move it to the appropriate action queue.

A good first generation of most of these software com-

ponents is being used to perform moderately complex experi-

ments. A more sophisticated and complete version of the

software is now being written.

4. USING THE CNMS

4.1 GENERAL PROCEDURE

In order to monitor a network using the CNMS, several

functions must be performed:

A. Determine what is to be monitored and how to

monitor it;

B. Determine what hardware probes (if any) are to

be used, install them, and test them using an

oscilloscope and the diagnostic software of the

CNMS;

C. Determine what software monitoring tools (if

any) are to be used in the object network, 	install

them, and test them using the diagnostic software

of the CNMS;

D. Decide whether known, controlled traffic is

desired for the experiment and, if so, provide the

load 	generator 	with 	the 	necessary scripts,

distributions and line descriptors;

E. Define the software necessary to define and

control the experiment and analyse the resulting

data;

F. Set up the patch panel as required and debug

the resulting combination of hardware and software

using the diagnostic - software of the CNMS;

G. Using the command language, initiate the ex-

periment from a terminal attached to the NMC;

H. Interact with the experiment;

I. Obtain and interpret the results.

Today's computer architecture unfortunately demands

that step B be performed by a computer hardware expert.

Step C must be performed by a computer software expert, but

we are trying to develop software monitoring primitives that

will simplify this step. Step D requires knowledge of a use

of a load generator and a text editing system. The text

editor is needed to create the scripts of transactions re-

quired by the load generator. To do step E requires knowing

how to write experiment control programs using the

monitoring language and how to use the support routines

provided to help control experiments and analyse results.

Step F hopefully only requires knowledge of CNMS and the

system being monitored, but could require expert help if

problems exist with the hardware or with the object network

software. Steps G, H, and I only require knowledge of CNMS

and the characteristics of the object network.

Thus, monitoring a computer network is still a rather

demanding task. However, once steps A through F have been

performed for a set of experiments, the remaining steps can

be performed without detailed knowledge of how the

monitoring is being accomplished. 	 •

4.2 AN EXAMPLE

The following example was chosen from a set of expert-

ments that have been performed to measure, evaluate, and im-

prove the CNMS and its components <22>. The example il-

lustrates use of the RCHM and indicates a useful way of

representing data.

As discussed in Section 3, an important component of

the CNMS is the load generator. In order to study its

behaviour, we assembled a two-node computer network. Each

node executes the load generator to produce traffic for the

other node through a variety of data links. The rate at

which the load generator applies transaction traffic to each

of its output lines is controlled by the user's choice of

distribution function (e.g., exponential, uniform, hyperex-

ponential) and by his choice of parameters for the distribu-

tion. A variety of line speeds can be produced in our

networks laboratory for the data links joining the two nodes

of this captive network. Thus, we can subject the load

generator to a wide variety of tests while observing its

behaviour.

We have found two histograms to be particularly useful

for understanding and modelling the behaviour of computer

systems or networks: System state vs. time in each state,

and system state transition vs. number of such transitions.

Both types of histogranis are being produced as part of the

measurement and evaluation of this network of load

generators, 	but only the first will be presented here. 	(A

paper describing the measurement and evaluation of the load

generator network is being prepared.)

The histogram shown in Figure 4.1 was produced by con-

necting the components of the RCHM to the load generator

network as shown in Figure 4.2, and by writing and executing

the experiment control program shown in Figure 4 • 3. The

subroutines called by the experiment control program are

primarily RCHM drivers. The variable "RCHM" indicates which

RCHM is being used. (When this experiment was being per-

formed, only one RCHM was assembled and working, but now

there are two.) The variable "UNIT" indicates which of the

several components of the same type in an RCHM is being ad-

dressed.

STRTE 	STATE 	TIME
VECTOR IN STATE

TIME/ 	.
REAL TIME

TLTE/•
COMPUTE TIME

Fig. 4.1

MEASUREMENT OF FILE TRANSFEF FROM MACHINE 41 TO MACHINE 42

EYPERIMENT 44 • ESULTS

THE FOLLnING TAPLE INDICATES THE TIME SPENT•
IN EACH OF THE 9 POSSIBLE 3PAUE3 INTOLVrNG
2. CFU'S AND A COMMUNICATION LI1K BETWEEN THEM.

ALL TIMES IN MICROSECONDS
TOTFL RIIAL TIME: 	0.97723467MUU1UUD 1i7
TOTAL COMPUTE TIME: 	U.484869BUUUUUUUUUD 07
STATE VUTOF IS

(LINE BUSY.,CPU 42 BUSY,C?U 41 BUSY>
CPU 41 = MATH PLI11/2U
CP ..) 42 = ENGINEERING PDP11/2U

I.

U 	ULU 	U.45763595U0E U7 	U.4683D :12 % 	• U.9438D U2 %
1 	UU1 	..J.7356UU1UUUD U6 	U.7527D U1 % 	U.1517D 1i2 %
2 	01U 	1..10521093UUE U7 	U.1U77D U % 	0.2170D 02 %
3 	' U11 	U.23034536UUD 07 	0.2357D U2 % 	0.4751D 02 %
4 	• 	1UU 	, I.318088EUUUr. 06 	U.3255D :11 % 	0.6560D UI %
5 	1U1 	U.58I532UUUUD U5 	U.5951D UU % 	U.1199D (il %
E 	IIU 	n.3175255UOUr 06 	. U.3249D .11 % 	0.6549D Ul %
7 	111 	U.3822386UUUD U6 	U.3911D Ul % 	U.7883D Ul %

CPU 41 PUSY:
IR 	CPU 42 4USY:
I 	LINE BUEY:

TOTFL TIME

0.34794515UUD 07
0.405532700JD 0 7
U.1, 1760119U0D 07

TIME/
REAL TIME
U .3561D 02 %
U.41500 02 %
u.nuir U2 ei

TIME/
CDMPUTE TIME
0.7176D 02 %
0.8364D 02 %
0.2219D 02 %

- 37C -

REQUEST COMPUTE TIME
MACHINE No 2

QC STROBE (CLK IR H

MACHINE No

—QC STROBE (CLK IR H)

UNIBUS UNIS US

QUADRI- COMPARATOR No 2

0 	I 	2 	3

I

I FLIPFLOP

8 x 8 SWITCH
MATRIX No I

} 	I 	2 	3 • 	4

5 	6 7

OVERFLOW LINES

REAL
TIME .

COMPUTE
TIME

TV No I TV No2 TV No5

0 	I

TV No3

0 	1

TV No4

TIMER a EVENT
COUNTERS

0 0 	1 0 	I

• MR IMF MI IIIIII 	u UM MS MI MI MI BM 31111 MI BM OM

STATE VECTOR' MEASUREMENTS

COMMUNICATIONS LINK

QUADRI- COMPARATOR No I

0 	I 	2 	3

FLIP FLOP

0 	 2

CPU No I CPU No2 	LINE
BUSY 	BUSY 	BUSY

4 TO 16 DECODER
0 	I 	2 	3 	4 	5 	6

V V y \

G1/4)

CO
C",

ABCDEFGH
COMBI NATIONAL

 LOGIC UNIT Nd i

LI:= B = STATE 2

ABCDEFGH
COMBINATIONAL
LOGIC UNIT No2

L2: =43= STATE 3

1 	2 	3 	4

INTERRUPT GENERATOR

8 x 8 SWITCH
MATRIX No2

Figure 4 .2
a

L2:=-B

FILE NAME: DEXP4.EXP

C PURPOSE OF EXPERIMENT #4

-TO DETERMINE THE TIME SPENT IN EACH OF
8 POSSIBLE STATES AS A RESULT OF USING THE
STATE VECTOR [LINE BUSY, CPU #2 BUSY, CPU #1 BUSY]
WHERE THE LINE IS A COMMUNICATIONS LINK BETWEEN
THE TWO CPU'S.

C 	-TO FILL IN THE FOLLOWING TABLE:
STATE 	TIME IN 	TIME/ 	TIME/

STATE 	REAL TIME 	COMPUTE TIME

WHERE REAL TIME.,TOTAL EXPERIMENT TIME, AND
COMPUTE TIME => CPU # 1 OR CPU #2 BUSY.

C THE SYSTEM IS DEFINED TO BE BUSY, OR DOING USEFUL
C COMPUTING, IF ONE OR BOTH OF THE MACHINES IS
C EXECUTING OUTSIDE OF THE PROGRAM WAIT LOOP.

C
SUBROUTINE DEXP4

EXTERNAL TVOVFL
IMPLICIT INTEGER(A-Z)
INTEGER TVOVF0(5), TVOVFL(5)
COMMON /CONFIG/NODE, UNIT
COMMON /TVCOM/TVOVF0(5),TVOVFL(5)

C QUADRA-COMPARATORS MUST BE SET UP, USING
C THE TEST PROGRAM. FOR COMPUTE TIME, SET RANGE #3 TO
C THE ADDRESSES OF THE WAIT LOOP.

WRITE(6,12)
12 	FORMAT(' USE TEST PROGRAM TO SPECIFY QC RANGE #3 = WAIT LOOP',/

1 ' ON BOTH MACHINES',/")
C
C COMPUTE TIME ->CPU#1 BUSY OR CPU #2 BUSY

=> (OUTSIDE CP0 #1 WAIT LOOP) OR
C 	(OUTSIDE CPU #2 WAIT LOOP)

C SET UP LOGIC UNITS.

C LOGIC UNIT el = -B = STATE 2.* 1SW815

Li :-B

C LOGIC UNIT #2 = -B = STATE 3 = 1511816

Figure 4.3

-39C-

C SET UP 8X8 SWITCH MATRICES

C STATES 	.
S0=2
S1.3
S2=5
S3=6
S4=4
S5=5
S6=6
S7=7

C TIMER & EVENT COUNTERS

TV1B0=0
TV181=1
TV280=2
TV281=3
TV3B0=0
TV3B1=1
TV4B0=2
TV481=3
TV580=6
TV581=7
RTIME=7
CTIME=4

CALL SW8DIS
CALL SW8CON(SO, TV180, Si, TV1B1, S2, TV280, S3, TV2B1,
1 RTIME, TV580, CTIME, TV5B1)

UNIT=2
CALL SW8DIS
CALL SW8CON(S4, TV380, S5, RV381, S6, TV480, S7, TV481)

C SET UP TIMER & EVENT COUNTERS

DO 35 UNIT-1, 5
35 	CALL TVSET(1,1.1,3,1,1)

C SET UP INTERRUPT GENERATOR AND CLEAR OVERFLOW COUNTS.

DO 40 UNIT-1,4
TVOVFO(UNIT)=0
TVOVFL(UNIT)=Q

40 	CALL IGSET(TVOVFL, UNIT)

C TV #5 OVERFLOW LINES ARE 'OWED WITH THOSE OF TV #4, SINCE
C ONLY HAVE FOUR INTERRUPT LINES. A SPECIAL CHECK IS MADE IN
C 'TVOVFL'.

TVOVF0(5)=0
TVOVFL(5)=0

RETURN
END

5. APPLICATIONS OF THE CNMS

Besides its intended use of monitoring a computer

network, the system has been used successfully to monitor

the activities of a computer system. Several experiments

have been and are being performed, including:

A. Using the monitor to locate frequently used

code and system bottlenecks in DOS-11 and Fortran

as programs are compiled and executed;

B. Determining the loading on the PDP-11 UNIBUS;

C. Determining the frequency of execution of each

of eight classes of instructions for different

kinds of programs in order to compare our results

with those obtained by Schreiber and Klar at the

University of Erlangen <23>;

D. Validating 	a 	mathematical 	model 	of two

transaction-oriented data base management systems

interacting with each other and sharing data;

E. Locating inefficiencies in a computer network

simulator implemented to work in parallel on three

interconnected PDP-11 computers.

Reports describing the results of these experiments are

being prepared. Many other experiments are planned, e.g.,

measuring the swapping activities of various PDP-11

operating systems, observing Honeywell's GCOS executing on a

6050, watching VM/370, monitoring the performance of an

experimental loop network joining our laboratory with

laboratories in Toronto and Ottawa, as well as monitoring

our campus network.

Eventually we think that some form of a eNMS wilt be a

• vital component in an aUtomated maintenance system for corn-

puter networks, helping to detect and diagnose malfunctions

and bottlenecks in hardware and software semi-automatically.

Such a system is being designed, and implementation of a

prototype is planned during 1975-6. Furthermore, we an-

ticipate that a form of CNMS will eventually be an important

component in an adaptively controlled computer network. We

are working toward these goals as well as toward "simply"

monitoring the performance of computer networks and sy“ems..

Comrionents of the CNMS are being employed in a novel

experiment to test the feasibility of providing hardware as-

sistance to an information retrieval system. The results of

. this experiment should be available in about 18 months.

finally', it appears that the CNMS„with minor software

and hardware modifications, can be used to monitor a set of

electronic switching offices for telephones.<24>.

G. SUMMARY, CONCLUSIONS, AND FURTHER WORK

In Section 2 it was concluded that an integrated

monitoring system is preferable to a set of unrelated, un-

coordinated monitoring tools, because few people who need to

monitor a system or network are hardware, software, and

statistics experts whose primary interest in life is to

monitor the system or network. In Section 3 the Computer

Network Monitoring System being created at the University of

Waterloo was described. Section 4 presented a simple ex

ample to illustrate use of the system, and Section 5 men-

tioned several experiments that are being performed using

the CNMS.

Sandra Mamrak, 	in her forthcoming article entitled

"Performance Evaluation in Computer Networks: A Survey"<l>,

states: "Actual system measurements, analyzed using

statistical techniques and used to improve queueing and

simulation models, have been relatively neglected. (This

neglect may be due in part to the unavailability of tools

for making desired observations of dynamic systems and of

statistically significant test environments.)" It is hoped

that the CNMS described in this paper will be a good first

step toward satisfying this need.

As promised in Section 1, we have evaluated our CNMS

based on our experience in using it. Table 6.1 is our

evaluation of the system as it stands at this writing and

our prediction of an evaluation as the system should be at

the beginning of 1976. The evaluation is based on the nine

characteristics of an ideal CNMS listed in Section 2. The

scores range from -5 to +5, with -5 meaning "Terrible,

couldn't be worse", +5 meaning "Excellent, couldn't be

better", and 0 being the borderline between being acceptable

and unacceptable.

As the scoring indicates, the main problems with the

CNMS are cost and the continuing need for a patch panel. We

anticipate that both problems can be solved in time, espe-

cially considering the rate at which the cost of logic is

dropping and recent developments in sol id state switching

for data communications.

The prototype RCHMs use TTL logic, which limita our

resolution to 10 MHz; however, some of the newer components

contain Schottky logic in order to monitor the

• microprogrammed PDP-11/45.

A few conclusions-can be drawn from our experience thus

far:

A. The hardware monitor (RCHM) works and is not

prohibitively expensive to build (i.e., $10,000 	to

$100,000, depending on which modules are included

and in what quantity).

B. The modular components plus the bus architec-

ture make it easy to insert or remove components as

desired. 	Above the cost of a basic monitor, the

cost of the monitor increases as the complexity of

I .

- 45C

the experiments to be performed increases.

C. 	It is not difficult to write control 	programs

for the monitor, even without the monitoring

language, because each component is addressed as a

set of memory locations on the controlling PDP-11.

The primitives of the current, embryonic monitoring

language are simply Fortran subroutine calls. The

routines themselves are written in either Fortran

or Assembler for the PDP-11.

• 0. The diagnostic hardware and software that we

included in the CNMS continually proves its value.

Many monitoring tools do not include such error

detection and diagnostic tools. We have found that

it is definitely worth our time to quickly run

through a set of routine hardware and software test

programs before running an experiment.

E. A system hardware expert would not be required

to install the probes if computer manufacturers

provided an accessible panel of probe points on

their products.

The security and privacy questions that arise from con-

sidering the widespread use of CNMSs are thought provoking,

to say the least. and could • be the subject of a long

discourse. A simple way to prevent unauthorised snooping is

to keep the phone numbers of the RCHMs of the CNMS a well-

guarded secret.

Creating a network monitoring system is an ambitious

project. Although much has been accomplished since the

project began in mid 1971, a great deal of work remains to

be done, some of which is listed here:

A. Develop 	a 	theory of computer monitoring.

Possible topics include extending the work of Mor-

gan and Sutton <35> in formally defining events in

terms of system states, providing a formal basis

for deciding when the performance of a system is

acceptable, and creating a theoretical basis on

which to'build monitoring systems.

B. Find solutions to the problems of determining

exactly when an event occurred and deciding the

order in which two nearly simultaneous events oc-

curred in separate computers of the network.

C. Develop an easily used, extensible language for

defining and controlling monitoring experiments as

well as analysing the data. 	Our Fortran-based

language is only a poor first step toward this

goal.

D. Determine 	what parameters characterise the

performance and workload of a computer system or

network. Some form of so called Kiviat graph might

be useful to represent the performance of the

network in terms of these parameters <36>.

E. Create a self-monitoring computer system, and

then a self-monitoring computer network. A self-

monitoring computer system Is one that includes

special hardware (e.g, micro-programmed special

Instructions) to aid the system in observing its

• own activities. Similarly, a self-monitoring com-

puter network would contain special hardware and

firmware to help the network observe its own ac-

tivities.

F. Create 	an 	adaptive 	computer system that

monitors its workload and its performance while

continually adjusting its resource multiplexing

parameters accordingly. A mathematical model of

such a system has been analysed,by Gelenbe et al

<25>.

And much, much more.

ACKNOWLEDGEMENTS

The hardware skills of J. Runge and K. Jedermann, and

the software talents of F. Mellor, K. Pammett, J. Palpraman,

D. Sutton, W. Colvin, and R. Shen have contributed immensely

to the project.

BIBLIOGRAPHY

(1) S. Mamrak, Performance Evaluation in Computer Networks,
to be published in fejmuling..

(2) 0. Morgan, W. Banks, W. Colvin and D. Sutton, A Perfor-
mance 	Measurement 	System 	for Computer Networks,

ErnçqQ.dingl nf 1E1E Ç,Q.u.1:22.11 DI, pages 29-33.

(3) G. D. Cole, .Qamullt MeIte_ank Llh.Dsum-rignts 	Teqhniques
enj, Ela_nriataL5_. UCLA, Oct. 1971, NTIS #AD-739-344.

(4) C. T. Apple, The Program Monitor - A device for Program
Performance Measurement, ELoq. of the. AQM 1211 Nptional
.Q.Quference, August 1965, pp. 66-75.

(5) R. A. Aschenbrenner, et al, Neurotron Monitor System,
AEII.u, V. 39 (FJCC) 1971, pp. 31-37.

(6) A. J. Bonner, Using System Monitor Output to Improve
Performance, MI Unsun 4mtael, V. 8 #4, 19 6 9. PP.
290-298.

(7) D. T. Bordsen, Univac 1108 Hardware Instrumentation

SYstem, Anm UGOP% Iluhltua 	sYstqm 2Q1formqnce
Emaimilim, Harvard U., April 1971, pp. 1-29.

(8) G. Estrin, et al, SNUPER Computer, AELEa, V. 30 (SJCC)
1967, pp. 645-656.

(9) L. 	E. Hardt, G. J. 	Kipovitch, 	Choosing a System
Stethoscope, Ç9mp1t.e.r Decisions, Nov. 1971, pp. 20-23.

(10) T. Y. Johnston, Hardware vs. Software Monitors Proc. of
MARL, X2I1, y. 1, March 1970, pp. 523-547.

(11) K. W. Koience, Software Physics and Computer Perfor-
mance Measurements, Proc. of the 1972 ACM Annual
cpnfQrenpe, pp. 1024-1040.

(12) H. Lucas, Performance Evaluation and Monitoring, Com-
Zinn& .6..11•3tgY9,, V. 3 #2, Sept. 1971, pp. 79-91.

(13) R. W. Murphy, The System Logic and Usage Recorder,
AfIPS, v. 35 (FJCC) 1969, pp. 219-229.

.(14) C. D. Warner, Hardware Techniques, ACM SIGCOSM Newslet-
Igr #5, August 1970, pp. 5-11.

(15) M. D. Abrams, Consumer-Oriented . Measurements of Com-
puter 'Network Performance, Proceglims_ of _National_

Itign/UnWILIU1i215. çonferqnee, 	IEEE 	Communications
Society, December 1974, San Diego, Calif.

(16) W. Banks, D. Morgan, A Computer Controlled Hardware
Monitor: 	Hardware Aspects, f_f_rsu_t_esangs. of 	Inte_r-
natimAl MtaIing an MiGiçom.unrers Aal Data Com-
rminiçlâIlnaâ, Liege, Belgium, January 1975.

(17) J. Hughes, D. Cronshaw, On Using a Hardware Monitor as •
. 	an Intelligent Peripheral, Xerox Corporation, October

1973.

(18) Y. Kalef and M.Melman, 	Performance Analysis- of the
Golem B Computer System, Technical Report from the
Department of Applied Mathematics, The Weizmann In-
stitute of Science, Israel.

(19) P. R. 	Sebastian, Hybrid Events Monitoring Instrument,
2£2nggding% 2f sullugua 74, October 1974.

(20) B. W. 	Kernighan, A Tutorial 	Introduction to 	the
Language B; Computer Science Technical Report, Bell
Laboratories, Murray Hill, N. J.

(21) F. Mellor, A General Purpose Load Generator, University
of Waterloo, April 1974. 	•

(22) D. Morgan, D. Goodspeed, R. Kolanko, Demonstration of a
Programmable Hardware Monitor, CCNG External Report,
University of Waterloo, October 1974.

(23) R. 	Klar and H. Schreiber, unpublished report, Univer-
sity of Erlangen, Institute of Computer Science.

(24) R.E. Machol, Acquiring Data for Network Planning and
Control, Bell LAlunlindlu maard, m. 52, no. 9, Oc-
tober 1974, pp. 279-285.

(25) M. Badel, E. Gelenbe, 	J. 	Lenfant, 	J. 	Leroudier, 	D.
Potier, Adaptive Optimization of the Performance of a
Virtual Memory Computer, ProceedinEs of SIGKTRICS 74,
October 1974.

(26) Comress: Dynaprobe 7900: System Specifications; Comress
J1b2gILL lin. CR4-0031.

(27) J. M. Grochow, Real Time Graphic Display of Time-
Sharing System Operating Characteristics, qFIPS, v. 35
(FJCC) 1969, pp. 379-386.

(28) J. H. Salzer, J. W. 	Gintell, 	The Instrumentation of

Multics; 5..eçAId 5.YMPosUM an. dagluling 5_ystgm
Uplgs, Oct. 1969, pp. 167-174.

(29) K. W. Kolence, System Improvement by System Measure-
ment, Quâ 	Winter, 1969, pp. 6-11.

(30) E. 	F. Miller, An Experiment in Hardware Monitoring,
General Reseanch Corporation, RM-1517, July 1971.

(31) R. G. Canning, Savings from Performance Monitoring, EQE
AnAtuftn, Sept. 1972.

(32) R. L. 	Patrick, Measuring Performance, Datamation, v.
10, #7, July 1964, pp. 24-27.

(33) S. H. Fuller , R. J. Swan, W. A. Wulf, The Instrumenta-
tion of C.mmp, A Multi- (M ini) Processor, IEEE _Lail.
enmPfttm Soçiet, fonference, 	February 	1973, 	pp.
173-176.

(34) E. L. Burke, A Computer Architecture for System Perfor-
mance Monitoring, ELUt Annual SIGME smnaallum na
MeasurnmPht And Lulu:411m, Feb. 1973, pp. 161 - 169.

(35) D.A. Sutton and D. E. Morgan, The McmitôLLng nf Com-
eulm 	AndvEr....t.L.Kulu: 	..S_Pri.....nme And a B.1.21225 a1
CCNG External Report, April 1974, University of Water-
loo.

(36) J.D. Noe and N. W. Runstein, 	Develop Your Computer
Performance Pattern, Proceellin.g5_ pf. IGMETRICS 74, Cc-
tober 1974.

APPENDIX D

1
DEMONSTRATION OF A PROGRAKMABLE

HARDWARE MONITOR

I.

I.

Demonstration of a erogrammable Hardware Monitor

Dr. David E. Morgan
Dale .0. Goodspeed
Richard Kolanko

Computer Communications Networks Group
University of Waterloo

Waterloo, Ontario, Canada
October, 1974.

The programmable hardware monitor developed by the
University of Waterloo's Computer Coeuitunications Networks
Group(CCNG) is intended to be part of à computer network
monitoring system. Detailed information about this system is
contained in the references, and it is assumed that the
reader is familiar with some of this material. All of the
monitoring for this demonstration is done locally, within
the CCUG Laboratory. Software currently being developed will
allow for remote monitoring to be done at the various nodes
of a computer network, as described in the references.

Figure 1 shows the configuration for monitoring. 	The
object computer system consists of two eDe11/20 computers,
with a communication link between them.

tigure 2 is the wiring diagram used for performing
measurements on a single computer, while rigure 3 is the
configuration used when measurements are performed on both
computers.

- 1D —

1

MI MS MI MI MI IIIIII ME UM IMO NM

1

object
.col.iputer
system

2.2nne..1.1E2IIPn for 11°n11-12.ELM.
probe 	 monitor inputs
signals 	-apd output _9

SIN MI MI NS MN 1111.

hardware monitor
-timer & event counters,
Combinational logic units,
programable switch n.trim
and other comi ,onents.

UNIBUS signals

iNIBU
signn

1

quadra-CoLparator

(to address
:-.rononts)

I'DP11
-cer.!- y.qs
'.La ir 1 rn progr:,..S
and calls to monit-r
device drivnrs.

-rcrdz rnd
rczults.

patch panel
;-allows connections
'between monitor
components dnd
.probe signals

7--
accessory power board
-flip flops, inverters,
OR ates, etc.

•

••nn••nnnn••n••n•

disc
„

-1

•

I 	FLIP
:=1 op

F ig. I G ENERALIZED MONITOR

PDP- I
UN I 3US TO
M O Maus
INTERFACE

MON I BUS

SW ITC H
MATRIX

PATCH

PANEL

TIME .

STAMP
[INTER F.' 'J P T S

TIME AND
c: V ENT
C,CUI:TERS

HISTOGRAM
GE. NERATOR

LOGIC
UNIT

C4.1

OBJECT
COMPUTER

COMMUNICATION LINES

DATA OR ADDRESS BUS Q UAD
COMPARATOR

CHARACTER
DETECTOR

ASSOCIATIVE
ARRAY

Mal 1111 MI Mall 11111t 111111 111110 	Ile 8111 111111 111111 One IMO 1111 all 11111 1111 IMI1

8 x 8 SWITCH
MATP,IX No 1

TIMER 8 EVENT
COUNTERS

OVERFLOW LINES

0 	1

TV No 3

0 	I

TV No 5

0 	I

TV No2

0

TV No I

0 	I

TV No 4

i n I

1111111 Sal • MIMI gall UM.) 1111111 emir. me sill mil, wal writ as mg sae IIIIIII 	MIMI

MEASUREMENT OF PROCESSOR MAJOR STATES

AND INSTRUCTION TIME

MACHINE No.

FETCH e1SR4'

EXECUTE
DESTINATION

FETCH

rSOURCE

CD

ABCDEFGH
COMBINATIONAL
LOGIC UNIT No I
LI:=-(E F+G+H)

= SERVICE

ABCDEFGH
COMBINATIONAL
LOGIC UNIT No2
L2 C

FETCH *ISR0

8 x S SWITCH
MATRIX No 2

3 .) 	I 	2 	3

2 3

2 	3 	4

INTERRUPT GENERATOR

FIGURE 2A

CI

A

2 TO 4 DECODER
DATI DATIP DATO DATOB

46 	I 	2 	3

MSYN

BBSY

MEASUREMENT No I MSYN , BBSY

SACK , NPR

(SWITCI-i MATRICES AS SHOWN)

MEASUREMENT No 2 DATI , DATIP

DATO , DATOB

(USE OTHER SWITCH
MATRIX INPUTS)

SAC 1< 	

NPR

ABCDEFGH
COMBI NATIONAL

 LOGIC UNIT Nol

LI C = BBSY

ABCDEFG
COMBINATIONAL
LOGIC UNIT No 2

L2 := —(D) DATI

VV
C.T1

TIMER EA EVENT • o
COUNTERS

TV No I

0 0 0 0 	I

TV No 2 TV No 4 TV No 3 TV No 5

OVERFLOW LINES

NMI MIMI IMO 	11110 MI MI OM IMO 	 11. MO oar MI MO all III. MI

MEASUREMENT OF UNIBUS ACTIVITY

MACHINE No 2

e. 8 SWITCH
MATRIX Nol

0 I 	2 3 	4 5 	6 y

O 	2 3 	4 	5 	6 7

REAL
TIME

) 	I 	2

/>
2

8 x 8 SWITCH
MATRIX No 2

I 	2 	3 	4

INTERRUPT GENERATOR

FIGURE 2B

0

QUADRI —COMPARATOR No 2

2 	3
QUADRI —COMPARATOR No I

0 	 2 	3

COMPUTE
TIME FLIPFLOP FLIP FLOP

ABCDEFGH
COMBINATIONAL
LOGIC UNIT No I

LI = A =
FLIPFLOP No 3

ABCDEFGH
COMBINATIONAL
LOGIC UNIT No 2
L2: = A:

FLIPFLOP No 4
FLIPFLOP

FLIPFLOP I

' Cr>
t=1

4 	5 	6 7

ii
8 x 8 SWITCI4
MATRIX No 2

S x8 SWITCH
MATRIX No!

REAL
TIME

COMPUTE
TIIVIE

TliVIER 8 EVENT
COUNTERS

0

TV No I

0

TV No 2 TV No5 TV No 3

FLIP FLOPS

TV No 4

O! 0 	I 0 	I

CLEAR

CLOCK

PRESET IN

RANGE

CLK IR H

ri as gm am no me is am se as me am arm se am MO OM Ms Ow

MEMORY ACTIVITY MEASUREIV1ENTS

COMMUNICATIONS LINK

NIACHINE No

E QC STROBE (CLK IR H

UNIBUS

CPU Nol 	CPU No 2
.BUSY 	BUSY

MACHINE No 2

QC STF:OBE (CLK IR H)--t

UNI BUS

FLIPFLOP I FLIPFLOP
FLIPFLOP FLIPFLOP

5 	6 7

OVERFLOW UNES

2 	3 	4

INTERRUPT GENERATOR

Hi

1.

I .

The User Interface
{1.110.

The user interface of the monitor control program al-
lows measurement experiments to be performed with a minimum
of difficulty. The keyboard commands available'to the user
are: •

EXn: This sets up the monitor components for experi-
ment #ne The useras kortran subroutine, which contains
calls to the drivers, is executed. This establishes
connections in the programmable switch matrices, and
selects the speed to be used by the timers.

GO: This allows the actual monitoring to begin, by
setting the 'go' bits of the timer and event counters.
The monitoring may continue for a specified time inter-
val, or until the 'ST' command is given.

ST: This stops the experiment.

AN: This command permits the measurement data just col-
lected to be analyzed. The user's Portran analysis
subroutine is executed, and results are sent to the
keyboard, or may be saved on disc. The user may analyze
results while the experiment is still running, or may
wait until it has stopped.

CL: This command is ûsed only occasionally. It causes the
timer and event counter data buffers to be cleared, and
resets any interrupts. Normally, these functions are
done under program control.

TE: Using this command, the user may access all of the
hardware diagnostic programs. Aside from verifying that
the hardware is operating correctly, the diagnostic
commands may also be used to set up entire experiments.
This provides an alternative to writing the tortran
programS needed with the 'EX' Command.

Control Is 	returned 	to 	the 	21)1'11 	operating
system(DOS) when the user is finished monitoring.

- 7D -

The Demonstration Experiments

The demonstration consists of five measurement experi-
ments. Three of these are done on only one of. the
machines(two on Machine #1 and one on Machine #2). The last
two experiments perforM simultaneous measurements on both
computers, while the machines talk to each other across the
communication link. In between the two sets of experiments,
a few.(16) wiring changes must be made on the patch panel.
The interrupt generator inputs and Some of the inputs to the
programmable switch matrices are changed. These simple
changes must be made because of the constraints imposed by
the current ntimber of components installed in the monitor.
With an additional switch matrix and interrupt generator in-

- stalled, the changes would not be necessary, and all five
. experiments could.be performed without ever having to modify
the patch panel wiring. All connections could then be made
via programmed changes to a switch matrix connection. When
necessary, a combinational .logic unit could be used to
select an appropriate input to a switch matrix. The
preceding two techniques are already being used to maximum
advantage for the demonstration experiments.

The wiring for the patch panel and the accessory board
might appear to be quite complex, especially for a
'programmable' hardware monitor. To understand the reason
for this, the observer must realize that the wiring is ar-
ranged so that five different experiments can. be performed
with only a minimum of wiring changes needed. The experi-
ments require using fourteen different probes attached to
two computers, and also the UNIBU.S address lines of each
machine. On the accessory board, approximately half of the
wiring is used to invert signals. The flip flops and decoder
chips currently in use operate on a 'low' true signal, while
the monitor components use 'high' true logic. Accessory
modules which operate on a 'high' true signal are currently
being built, so that much of the accessory board wiring will
no longer be necessary.

The experiments to be performed are:

1) measurement of Cx,U major states and average instruction
time on Machine #1.

2) measurement of UNIBUS activity on Machine #2.

3) measurement of Machine #1 while a simple communication
takes place between it and Machine #2.

4) simultaneous measurements of Machine #1 and Machine #2.
Both machines are driven by a load generator, which

causes the machines to •talk to each other.. The state
vector produced is:

<lie busy, CPU42 busy, CPUO1 busy>

5) simultaneouà measurements of Machine 01 and Machine 02.
Memory activity is examined on both machines, and a
table is produced showing the percentage of time spent
in the various ranges specified. :

The experiments are discussed in more detail in the fol-
lowing sections. Included in the discussions are listings
of the programs used to obtain the measurements, and copies
of the some of the results. More detailed comments about
some of the results are given in reference #2, with explana-
tions given for those cases where the results might appear
invalide 	Typically, the explanation involves having a
detailed knowledge of the DP11 architecture. 	Rather than
go into those details here, emphasis is instead put upon the
motivation behind each experiments ber all of the experi-
ments, one of the subgoals is to gain experience which can
be applied to the monitoring of computer networks.

Experiment #1

The CPU major states (fetch, source, destination, ex-

II ecute, service) of Machine 01 are monitored. Results ob-
tained include:

1) average time in state.
2) percentage time in state.
3) percentage of instructions that enter state.
4) average instruction time.

1/ The results can be used to verify the PDP11/20 specifica-
tions provided by Digital Equipment Corporation. If the

11 source and destination states are entered too frequently, it
IF is possible that the program efficiency could be improved by

better use of the register-register mode of addressing. En-
tries to service state provide a partial measure of disc ac-
tivity. 	•

I .

I .

- 10D -

MEASURE,PENT 'OF MACRC COMPILER ON MACHINE el

EXPERIMENT #1 RESULTS . "*7

TIME UNMS = MICROSECONDS

TOTAL TIME SPENT IN ALL UDR MITES = 0.2660614620D 08 	•

FETCH 	SOURCE 	DESTINATION 	EXECUTE 	SERVICE

• TOTAL TIME
IN ETAT:I: 	0.1160D , 18 0.4415D 07 	0.4635D 07 •.5804D 07 0.1562 13 06

OF 'MIES
ENTERED: 	0.7188D 37 0.2537D 07 0.2896D 07 0.6397D 0 7 0.4369D 06

AVER AGE TIME
IN :ETATE: 	il.1613D •11 	0.1741JD 	(1016111D 01 •1.9073D (liJ 	1103576D 00

% TIME
IN STATE:: 0.4358D 32 U.1659D 02 0.1742D 02 002181D U2 0.5872D 00

% OF INSTRUCTIONS
THAI. EN1ER
STATE: 	0.1000D 33 0.3530D 02 004029D 02 0 0 8900D 02 0.6078D 01

I/ AVERAGE INSTRUCTION TIME =
(TCTAL TIME IN ALL STATES) / (41 OF FETCHES) = 003702D 01

1

- 110 -

1

II FILE NAME: DEXP1.EKP

SUBROUTINE DEXP1

II C PURPOSE OF EXPERIMENT 41

II c
C 	

-TO OBTALN THE TIME S PET IN THE PROCESSOR MAJOR STATES
-USE TV 41 UC RECORD THE TIME SPENT IN FETCH MA‘TOR STATE
-USE TV 42 TO RECORD THE TIME SPENT IN SOURZE MAYOR STATE.

• C
C 	

-USE TV 43 TC RECORD THE TIME SPENT IN DESTINATION MAJOR STATE.
-USE TV 44 TO RECORD TUE TIME SPENT IN EXECUTE MAYOR STATE.
-USE TV 45 VC RECORD THE TIME SPENT IN SERVICE MAJOR
STATE. 	.

C
C

EXTERNAL TVOTFL
IMPLICIT INDEGER(A-Z)
INTEGER TVOVF0(5)3TVOVF1(5)
comnu /CONFIG/N0DE,UNIT
CO1MOMITVCOM/TVOVFU(5),TTOVF1(5)

C INPUTS TO 8X8 SWITCH MATRICES

I C
TAISE0=6
SOURCE:4
IEST=0
EXEC=1

11 C 	
SERVIC=5

• C TIMER & EVENT COUNTERS (BUFFER (J & 1)

C

l e
C SEI UP SWITCH MATRICES.

FETCH=0

TV180=0
TV1B1=1
TV2B0=2
TV2B1=3

• IT3BU=U
UV3B1=1
FT4B0=2

• TV4B1=3
TV5B0=6
TV5B1=7

LNIT=1
CALL Sd8DIS
CALL SW8CON(FETCH,TV1B0,FAISFU,TV1B1,SOURCE,TV2B0,SOURCE,TV2B1,
1 SER1IC,TV5B0,SERTIC,TV531)

UNIT=2
CALL SW8DIS
CALL S18CON(DEST,TV380,DEST,TV3B1,EXEC,TV4B01EXEC,TV481)

It C
C SEI UP LOGIC UNIT 41 = -(E4F÷G+H)
C -(FETCH-FSOURCE+DESTi.EXEC) = SERVICE STATE u 1SW8I5

I . c L1:=-(E+F4-G41) c
C.SET UP LOGIC UNIT 4 2 re- C 	FETCH7\ISRU = 1 5W8I6

- 12D -

L2:=C

• 1
I C

I

C SET UP TIMEE & EVETT COUNTERS.

11

	

	
IO 2U UNIT=1.,5

20 	CALL TVSET(100,1,3,1,1)
C

11 C SET UP THE INTERRUPT GENERATORS AND ZERO OVERFLOW
C COUNTS IN CASE THEIŒ'S TIMER & EVENT COUNTER OVERFLOW.

EC) 30
UOVFO(UNIT)=0
'VOVF1(UNIT)=0

30 	CALL IGSET(TVOVFL,ONIT)
7VOVF0(5)=0
TVOVF1(5)=0

C

II C BLOCK INTERRUPTS GENERATED Bi QUADRA-COMMATOR USED
C DEXP3.EXP

UNIT=1
CALL QCSET(0)
UNIT=2
CALL ÇCSETIU1

FETE)»
END

1.3D

I C

500

fi
I.

II FILE NAME: DENDLEXP

C THIS IS THE .ANALYSIS ROUTINE FOR EXPERIMENT 41

SUBROUTINE DEND1

IMPLICIT INTEGER(R-Z)
INTEGER TV(J(2),TV1(2),TTOVF0(5),TVOVF1(5)
LOGICAL IGFLG
1EAL*8 DFTV0(5),EPTV1(5),TSUM,TBYTS(5),EEYFET(5),
1 MAX,AVGTIS(5),AVGIUM

COMMU N /CONFIG/NODE,TNIT
;COMMON /TVCD1/TVWF0(5),TVOVF1(5)
COMMON /PHMSYS/OUTUNr,IGFLG
IATA MAX/4294967296.M

IRITE(OUTUNT.,5(J0) FORMAT(' *e*• EXPERIMENT' 41 RESULTS **-"/° I r/ I t .

l'TIM UNITS = MICROSECONDS')

C READ RIESULTE, ADJUET FOR FOSSIPLE OVERFLOW, RNI
C CONVERT TIME TO MICROSECONDS

ISUM=0.DU
DO 505 UNIT=1,5
CALL TVREAD(IV0,TV1)
CALL DI2DF(TVU,DPTVU(UNIT),TV1,DPTV1(UNIT))
EPTVU(UNIT)=IPTVU(UWIT) TVTVFO(UNIT) 1kM.FX
DPTV1(UNIT)=DPTV1(UNIT) 4 TVOVF1(UNIT)nMAX
EPTVO(UNIT)=IPTVU(UWIT) /10.E0

505 	TSUM=TSUM 4 DPTVO(UNIT)

PIRITE(OUTUNT,520)TSUM
520 	FORMAT(' ',/' ','TOTAL TIME SPENT IN ALL MAJOR STATES = ',D17.10) II 	C

ro 53U UNIT=1,5
TSYTS(UNI ,T)=DPTVU(UNIT) / TSUM * 100.DU •

EBYFET(UNIT)=DPTV1(UNIT) / DFTV1(1) 	1U(J.D0

I/ 	530 	1F (EFTV1(UNIT).NE.U.D0) AVGTIS(UNIT)=DPTVO(UNIT) / DPTV1(UNIT)
AVGTIS(UMIT)=0.D0

II 	bRITE(OUTUNT,540)
54U 	FORMRT(1 ,/' ',13X,'FETCH',5X,'SOURCE',5X,'DESTINATION ° ,3X,

1 'EXECUTE',EXSERVICE °)

II
dRITE(OUTUNT,544) OPTVU,DPTV-1,AVGTIS,TOYTS,E3YFET

544 	FORMAT(' ',/' ','TOTAL TIME',/' ° ,'IN STATE: ',4(D11.4,1X),D11.4,
1 //' 4 OF TIMES',/' ENTERED: 	',4(D11.4,1X),D11.4,//' AVERAGE TIME°,
1 /' IN STATIE: ',4(D11.4,1X),D11.4,//' 	TIME ° ,/' IN STATE: 1 ,
1 4(D11.4,1X),D11.4,//' % OF INSTRUCTIONS',/' THAT ENTER',
1 /' STATE: 	',4(D1104,1X),D11.4)

C COMPUTE AVEFAGE INETRUCTION TIME 	 •

AVGITE=TSUM / DPIV1(1)
eRITE(OUTUNT,546) AvGIrm

E46 	FORMAT(' ',/' AVERAG1 INSTRUCTION TIME = ',/° 	(TOTAL',
1 ° TIME IN ALL STATES) / (4 OF FErHES) = ,D11.4)

C PRINT CVERFLOW COUMS.

1, RITE(OUTUNT.,55U)
•550 	FORMAT(' ',/' °,'OVPFLOil COUNTS FOR TIMER 	EVENT COUNTERS ° ,

1 /",3Y,'U>IT',3X,'BUFFER',3X,'COUNT')
DO 552 1JNIT=1,5

c:;) 	turmutnnqumm J:n.141 :MITT .mlinlruntumTm‘ Itmrm.mu. nurItilmin

14D -

I c

I.

•

•
•

554 	
1.11 ‘A- 	vu •Lue; 1 ru-e": • UnAlpà.VUVrUl 	 utIL f ivutrà..turta....,

° ° 4X.", 12, 	° 	1X I 5 / 	,4)C, 12, 7 X, '1 ° .1 n 6)

•
IF (IGFLG) CI1LL IGRE3 (1 g2t. 3,4)

RETURN
.END

- 15D -

).:/cperiment

The UNIBUS activity on Machine &2. is monitored. Ac-
tually, the same experiment is performed twice, with four
different UNIBUS control signals monitored each time. The
selection of signais is made using the programmable switch
matrices.

The UNIBUS signals monitored, and the observations that
can be obtained are:

1) MSYN: tells how fast the UNIBUS is operating. The
result can be compared with the claimed maximum of
1.6x10**6 word transfers per second.

2) DDSY: indicates that the UNIBUS is busy.

3) NËR: indicates the amount of cycle stealing performed
by the disc.

4) SACK: provides a lower bound on the time to wait
before receiving control of the UNIBUS.

5) DATI,DATIP,DATO,DATOB: indicate the type of transfers
between the UNIBUS master and its slave. Typically, the
processor is bus master, and is fetching instructions
from memory, the slave. Data transfers in and out are
with respect to the master.

MEASUREMENT OF MACR1 COMPILER ON MACHINE 42

)k" EXPERIMENT 42 RŒSUL7S
METHOD # 1

TIME UNUTS = MICROSECONDS

TOTAL EXPERIMENT TI1E = 0.3133287870D U8

SIGNAL: 	NUN 	BBST 	NPR 	SACe,.7

TOTAL TIME
ASSE1TEE: U.9994D 17 	0.3129D 08 	0.8160E 05 	0.2699D 05

4 01 1IMS
ASSERTED: 0.1849D U8 	0.1164D 06 	005579D 05 	0.5818D 05

AVERAGE TIME
ASSIERTEE: 005405D 10 	0.2689D 03 	0.1463£ 01 	0.4640D 00

=1; TIME
ASSERTED: 0.3190D U2 	0.9987D 02 	0.26U4D OU 	008615D-01

4 OF rimEs
ASSUTEL PEE
MICU-
SECCND: 	0.5901D LU 	0.3714D-02 	0.1780E-02 	0 01857D-02

1
1

— 17E) —

'MEASUREMENT . CF MACMC COMPILER ON MACHINE #2

**i, EXPERIMENT 42 RESULTS AA'A
METHOL •4 2

TIF UNH1S = M1CROSIECONTS

11 TOTAL EYFERIFENT TIME = 0.307934511U 08

SUM: 	DAM 	 DATIP 	 DATO

II TOTAL TIME
ASSERTED: 0.2652D 08

II 4 OF rimEs
ASSEETEI: 0.192UD 17

AVEFFIGE TIME
ASSERTED: 0.1381D 1J 2

% TIME
111 ASSERTEL: 	0.8612D 12

ge # OF TIMES
II ASSERTED PER

MICF0-
SECOND: 	0.6234D-31

U.2752D 07

0.1E7UD 07

U.14720 01

0.8939D 01

DAUB

U.1372D U7 	0.2088D 06

0.1041E 0 7 	0.2274D 06

0.1318D 0 1 	0.9181 1) 00

0445EE 0 1 	0.67790 00

0.6374D-U1 	003382D-01 	007384D-02

- 180 -

s

111

II C
FILE NAME: DEXP2.EXP

C
C PUFPOSE OF EXPERMENT 4 2:

—TO MONITOR UNIBUS ACTIVITY TN A PDP11/20.

II CC THE EXTERIFENT WIL1 BE RUN TWICE.
C FOE MEIHOD=1, THE SIGNALS 70 BE MONITORED ARE:

	

II C 	MSYN, BBSY, NPR, SACK

C FOR MET1-tOD=2, THE SIGNALS TO BE MONITORED ARE:

	

C 	
TAT', DATIP, DATO, DAUB

C
C

C THE DATA TEPNSFER SIGNALS ARE 'OBTAINED BY EECOTING THE

Sc
 C CONTROL SIGNALS CU,C1.

SUBROUTINE DEXP2

EXTERNAL TVOVFL
IMPLICIT INTIEGER(A-q,)
INTEGER TVOVF0(5),TVOVF1(5)
COMMON /CONFIG/NODE,CNIT
COMMON /TVCOM/TVOVEU(5),TVOVF1(5)
COMMON /PHMCTM/METHOL

II C C SET UP TIMER & EVENT COUNTERS, AND ALSO
C SEI UP INTEERUPT GIENERATOR FOR POS:SIBLE OVERFLTW.

TO 2C UNIT=1.,4
CALL TVSET(1,U,1,3,1,1)
.CALL IGSET(TVOVFL,UNIT)
TVOVEU(UNIT)=U
IVOVF1(UNIT)=U
UMIT=5
CALL TVSET(1.,U,1,3,1,1)
TVOVEU(5)=U
IVOVF1(5)=U

C
•3U
31

1 32
1eRITE(6,31)
FORMAT(' METLIOD?',/° °)
FERD(6,32) MITHOE
FORMAT(I1)
IF (MFTHOD.G7.2 .0R. METHOD.LT .1) GO TO 3U

C
11 C SÏITCH MATRIX LIRES.

MSYN=2
PBSY=5
NPR=2
:EACK=3

11 	
DATI=6
IATIF=3
DATO=4

IF EATOE=5
 RTIME=7 - 191) -

• 1

C TIMER &I EVENT COUNTERS - BTFFER U AND BUFFER ,1.
1V1B U=0
TV1B1=1
1V2B 0=2
nr2B1=3
1V3B U=0
TV3B1=1

V4BU=2
T V4B1= 3
1V5B U=6

C SET UP SWITCH MATRICES AND LOGIC UNI TS FOR
C APPROPRI ATE METHOD.

UNIT=1
CALL SW8 EIS
CALL S ri8C ON(RTIME ,TV5BU
LNIT = SW2

C 	
CALL 	8D IS

IF (METRO D. . 2) GO TO 200
C
C LOGIC UNIT 41 = C = BBSY = 1Sd815

,

L1:=C

UNIT=1
CALL SW8 CON(VSYN,TV1EU,MSYN, TV1B1,BBSY E TV2BU, 8BSY,TV2B1)
U NIT=2
CALL SW8 CONCUR, TV3B(i, NPR, TV .3B1, SPCKTV40 0 S ECK, TV481)
GO TO 1000

200 	CONTINUE

C LOGIC ENIT 412 = D = DATI = 2SW8I6

LNIT =1
C ALL S W8C ON(D ATI, TV1B ti e DATI,TV1B1 eDATIP, TV2BU, DATIP, TV2B1)
LNIT=2
CALL SW8C ON(D ATO, TT3BU, DATO,TV3B1,DATOB,TV4BU, DATOB,TV4B1)

1,44,4,01-111

C BLOCK OFF INTERRUPT S GENERATED BY QUADRA-COMPATRATOR FROM
C DEYP3.
C

tNIT=1
C ALL QCSET(U)
tNIT=2
C. ALL QCSET)

1UUU 	R ETURN
END

- 20D -

I c Fail/ NAME: DEND2.EXP

I

1

SUBRTUTINE DEND2

IMPLICIT INTEGER(A—Z)
INTEGER TVU(2),TV1(2),TVOVFU(5),TVOVF1(5)
lOGICAL IGFLT
REAL*8 DPTVU(5),DPTV1(5),MAK,PTSR(4),AVGTSA(4),
1 SIGSUM,SIGPVG,FORS,SIGNAL(8),NOASPM(4)
COMMON /CONFIG/NODE,UNIT
-COMMON /TVCON/TVOVFU(5),TVOVF1(5)
ZOMMON /PHMSYS/OUTUNT,IGFLG
CO•MON /PHUTM/METHOL
DATA MAX/4294967296.D1)/
EATA
1 'DAT0','DATOBY

dRITE(OUTUNT,3UU) METHOD
3U0 	FORMAT(' *" EXPERIMENT 42 RESULTS ***',/' ',1UX,'11ETHOD 4

1 Il,// TIME UNI• 	MICROSECONDS')
C -
C READ TIMER & EVENT COUNTERS', ADJUST FOR POSSIBLE OVERFLOW,
C ANE CONVERT TIMS 10 MICROSECONDS.

IO 304 UNIT=1,5
CALL TVREAD(TVU,TV1)
CALL EI2DF(T1U,DFTVU(UNIT),TV1,DPTV1(UNIT))
DPTVU(UNIT)=DPTVU(UNIT) 4- TVOVFU(UNIT)ÀMX
IPTV1(UNIT)=IPTV1(UNIT) TVCVF1(UNIT)*1AX

304 	DPTVU(UNIT)=OPTVU(UNIT) / 1U.DU

PIRITE(OUTUNT,3(J6) oprvu(s)
306 	FORMAT(' ',/' TOTAL EXPEFIMENT TIME 	',I17.10)

IF (METH3D.E2.2) GO ro 32U

C METHOD 41.

4RITE(OUTUNT,311)
311 	FORMAT(' ',/' ','SIGNAL:',6X, I MSYN',9X,'EBSY',1UX,'NPR',9X,'SACK")

GO TO 322

C METHOD 42.

32U 	dRITE(OUTUNT,321)
321 	FORMAT(' ',/' ','SIGNAL:',6X,'DATI',9X,'IRTIP',9X,'DAT0',8X,

1 eDATOB')

C.COMPUTE AVERAGE TIIE SIGNAL ASSERTED (AVGTSA),
C PEFCENT TIYE SIGNAI ASSERTED (FTSA), AND
C NUMBER OF ASSERTIONS PER MICROSECOND (NORSPM).

322. 	DO 328 UNIT=1,4
TVGTSA(UNIT)=U.DU
IF (DPTV1(UNIT) .ME. U.DU)
1 AVCIS1(UNI1)=DFTVU(UNI7) / DPTV1(UNIT)
NOASPI(UNIT):DPTVI(UNIT) / DPTVU(5)

328 	FTSA(UN•1)DITVU(UNII) / DPTVU(5) * 1UU.E1i
GRITE(OUTUNT (329) OPT .VU(1),DPTVU(2),OPTVU(3),OPTVU(4),
I DPTV1(1),EFTV1(2),PPTV1(3),DPTV1(4),AVTTSP,PTSA,NORSPM

329 . 	FORMRT(' ',/' TOTAL iIIE*,/' ASSERTED:; ',3(D11.4,2X),D11.4,
1 //' 4 CF 	 ASSERTEI: ',3(D11.4.,2(),E11.4,

' 1 //' AVERAGE TIME/' VS. SERTED: ',3(D11.4,2X),D11.4,
1 //' 	TIME',/' ASSERTEE; '13(D11.4,2X),D11.4,
1 //e m ne Tve:,•(11./ 0 nzorrn PPP.,/e MTnPn—s /v 	i-fenyn.

- 21D -

I C

II
I • 1 01 2

10 14

II c

1 	 %, J. • 	e 	• I 	J • 	J. J. I a I. II 	t I 	41.1 	 J. 	 • 1.• n • 	I

J. 3(D11 .4,2X),D11.4)
r 	 e

II C C RESET INTEERUPTS IF NECESSARY.

IF (IGFLG) CPU IGRES(1,2,3,4)
eRITE(OUTUNT, 101 (1)
:FORMAT (,/ OVERFUW COUNT-S FOR TIMER & EVENT COUNTERS e
1 / 	, 3K, 'UMIT 	3X,'BUFFERe, Us e COUNT')
LO 1012 UNIT:11,5
4TRITE(OUTUNT, lui4) uvir,rvovn(UNIT), UNIT TVOVF1(UMIT)
FORMAT(",LE,7X,'U'',I6or ',I6,7X 1 e1',LE)
RETURN

END

— 22D —

Experiment #3

A simple communication mechanism is set up between the
two machines, and monitoring of the communication is done at
one end. One line messages arc typed in at the keyboard of a
machine, and sent across the communication link to the other
machine. If no message is being typed in at the destina-
tion, the message received. is printed at the keyboard.
Otherwise, the message is put in a queue. Some of the
measurements done are:

1) of characters sent/received.

2) # of messages sent/received.

3) interarrival time of messages.

4) time taken to send and receive messages.

These are some of the typical attributes of a computer
network which the monitor might measure. Note that some of
these measurements require the monitor to generate an inter-
rupt each time a certain instruction is executed in the ob-
ject system. tor example, the instruction might be the first
one in the sequence that puts a message onto a queue. The
use of the interrupt generator in this manner is a 'brute
force' technique, which will be replaced when the time stamp
and character detector are installed.

- 23D -

TRANSMISSION TIME IN TIME OF
LAST 	 TIME 	- QUEUE

	

0.37360 0 7 	A:.3855D 0 7

	

0.52U6D 07 	0.4212D 117'

4 OF
CHARRCTERS

0.00000 00
U.U0000 00

CHARACPER
U.113UE 08
0.23260 08

MEASUREMENT OF R STIFLE COMIUNICATION SYSTEM.

I TIME CONSTRAINTS IIPLIED pur THERE US NOT ENDUCI TIME
AVAILAILE 70 CET EWERIMEN7 43 RUNNING IN TIME FOR THE
DEMONSTRATION. THE DATA BELOW eas GENERATED TO •LLUSTRATE 	-

I .

THE TYPE OF RESULTE THAT WILL PE OBTAINABLE.
. THUS, rHE NUMBERS THEMSELVE'S AZE 4EAIINGLESS IN TILS C3PY.
ONIY A SINGLE MACMINE IN TTE TWO-CTMPUTER COMMUNICATION SYSTEM
IS MONITORED.

1
EXPERIMENTT 43 RESULTS

1 TIME UNI,TS = MICROSECONDS

TOTAL EXPERIMENT TIIE: U.553298893UD 08
IDLE TIFE: U.55279B15UUD 08

STATISTICS :CN MESSAGES RECEIVED

I MESSAGE TIME OF
• NUMEER FIRST

CHARACTER
1 	U.7563D 07
2 	U.18U5D 08

I CHARACTERS
PER MESSAGE:

TRAI\SMISS1ON
TIME:

I TIME IN
QUEUE:

I TIM BETWEEN
MESSAGES:

MINIMUM

U.UULUD UU

U.3736D 07

U.1515D 08

U.173UD 09

MAXIMUM

U.UUUUD UU

0.52U6D 07

U.2147D 08

U.173UD 09

2

AVERAGE

U.UOUUE UU

U.4471D 07

 0.21311 08

 0.173U 09

TOTAL 4 OF IESSRGES:
TOTAL 4 OF CFARACTERS:

- 240 -

'• 	 '

TERNSMISSION TINE IN
TIME 	QUEUE

P OF
CHARACTERS

4

U.4548D 0.30731 09

STATISTICS ON MESSAGES "SENr!

1
MESSAGE TIME OF
NMER FIRST

CHAEACTER
1 	0.3085D 117
2 	U.3741D 117

1U.43641)08 08
4 	0.4984D 08

TIME OF
LAST
CHARAC1ER
U.3395D U7
0.41170E 07
U.4666D 08
U.OUUUE OU

0.3U99D U6
U.329PD 06
0.3U2UD 07

-U.4984D 08

U.UUUUD OU
1.UU0UD 00
U.UUUUD OU
1.0000D OU

MUM 00
0.0000D 00
U.ILOOD 00
U.00000 00

MINIMUM

II CHAFACTERS
PER MESSAGE: 	U.UUUUD OU

II •
TRANSMISSION
TIME: 	-U.49S4D 118

111 TIME IN
al QUEUE: 	U.UOUUD 00

MAXIMUY 	AVERACE
One 	 •Ige

U.U0OUD 011 	U.OUUUD UU

U.3120D 07 -U01159I 08

MIMI) OU 	0.0U00D OU

It TIME BEIdEEN
111 MESSAGES: 	U.3432D 08

, 	TOTAL 4 or rESSAGES:
•

II TOTTU II OF CrIARACTERS:

1

- 25D -

NODE=1
LNIT=1 - 26D -

FILE NAME: DEXP3.EXF

'5UBROUTINE DEXP3

C PUFPOSE OF EXPERIbENT 43:

-TO MONITOR F SIMPLE COMMUNICATION SYSTEF INVOLVING
TWO PDP11/2U'S AND A COMMUNICATION LINK BETWEEN THEq.
ONLY ONE EMI (MACHINE #1) OF THE SYSTEM IS MONITORED.
ONE LINE MESSAGES ARE SENT BETWEEN THE TWO MACHUES, AND
ARE QUEUED FT THE DESTINATITN UNTIL THEY CAN BE PRINTED.

-ATTRIBUTES JEPSVRED INCLUDE:
4 OF CHARACTERS RECEIVED
4 OF CHARACTERS SENT
4 OF MESSAGES RECEIVED
4 OF MESSAGES SENT
4 OF CHARACTERS PER MESSAGE
INTEFARRIVAL TIME OF MESSAGES
INTERDEPARTURE FINE OF MESSAGES
TIME MESSAGE SPENDS IN QUEUE
RMOURT OF TIME SYSTEM IS IDLE

C TIMER AND EVENT USRGE IS:
UV1B0 - 4 OF CHAFACTERS IN A MSG RECEIVEE
ruin - 	

U 	SENT
1V5BU 	PEAL TIME
TV5B1 - AMOUNT OF TI1E SYSTEM IS IDLE

C THE RANJES OF QUADRA-COMPARATOR 41 ARE SET TO:
- PST CHAFACTER OF MESSAGE ARRIVES OR

LAST
- PST CHARACTER OF MESSAGE IS SENT OR

LAST 	tu 	st

2 - MESSAGE IRKEN OFF QUEUE
3 - IDLE LOOP

C WHEN ANY OF THE FIRST THREE ADDRESSES ARE REFERENCED, AM
C INTERRLPT IE GENERFTED. SOFTWARE IS THEN USED TO READ AND
C SAVE ME APPROPRIATE DATA. FOR RANGES U AND 1, TH::: FILRST
C ADERESE IS REPLACE' BY THE SECOND FDDRESS. BY IYNAMICALLY
C CHANGING THE QUADR-COMPRRATDR RANGES IN THIS WAY, IT ES

 C POSSIBIE TO MEASURE TIME INTERVALS.

EXTERNAL MSGDUT,MSGIM,MSGOFQ,TVOVFL
INT1EGER(A-Z)

INTEGER TVOVFO(5),TV3VF1(5)
LOGICAL MIFLPG,M0FLAG
REAL*8 MISTRE(2082),IIEND(2002),MOSTRT(2U,2),UEND(2(J,2),
MOU(20,2),CIN(20),COUT(20)

COMMCN /CONFIG/NODE,UNIT
ZOMMOU /TVCOI/TVOVFU(5),TVOF1(5)
COMMON /EEMCCM/MISTR1(211,2),MENE(20,2),PINUM,MOSTRT(2U,2), •
1 MOEND(2U,2),MOMUM,10FV2U,2),MQNUM,MIFLAG,M0FLAG, 	.
1 CIN(2U),CCIT(21i)
DATA MASK/0177777/,IDLELO/OU70052/,IDLEHI/OU70114/,
1 SOMIL0/0071E3U/,SOFIHI/OU7U534/t
SOMOLO/OU7U316/,SOMOHI/OU7U322/

C crl tit TWP17.7.1.711t9' r.thirurpnrc

IF
u,e u • aal.tt,e4tus.a ut.0,1%nlyà%,'

CALL IGSET(MGIN,1)
• . CALL IGSET(MSGOUT,2)

	

II 	CALL IG 	M SET(GOFQ,3)
C PREPARE FOR POSSIBLE OVERFLOW

INIT=4
CALL IGSET(TVOVFL,4)
1VOVEU(5)=U
TVOVF1(5)=U

.c

II C SWITCH MATRIX LINES •

CHRIN=6

	

If 	
CHROUT=5
RTIME=7
•CTIME=4
TV1BU=0

II - 	
1V181=1
TV5BU=6
IV5B1=7

	

11 	C SEL UP SWITCH MATRIX

1NIT=1
CALL SW8DIS
CALL SW8CON(CHRIN,TV1BU,CHROLT,TV1BI,RTTFE 3 TV5BU,
1 CTI1E,TV5B1)

C.

	

II 	C SET UP LOGIC UNITS TO CET SIGNAL FOR CHARACTERS Og
C COMUWICATICN 1INK (BOIH DIRECTIONS)

	

11 • 	C LOGIC 1NIT 41 = D = REQUES7 B(FACHINE 41) = CHROUT

11:=D,
• - 	C

C LOGIC iNIT 1i2 = E = REQUEST B(EACHINE 42) = CHFIN

I2:=E

II C SET UP TIMER & EVUT COUNTERS

INIT=1
CALL TVSET(U,U,(J,3,1,1)
INIT=5
CALL TVSET(1,1,1,3,1,1)

c
Is 	C SET UP QUADRA—COMPARATOR RANGES FOR MACHINE 41.

UMIT=1
CALL CCSET(MFSK,U,SOYILO,SOMIHI,1,SOMOLO.,SOMOHI,
1 2,9OULO,MOFQHI,3,IDLELO,IDLEHI)

I/ 	C INITIALIZE COUNTERS AND FLAGS

MINUM=U
romum=u
MQNUM=U
rIFLAC=.7RUE.

S. 	 I0FLAG=.TRUE.

I C RETURN
• 'END

111

c

I
c

FILE NAME: DEND3.EXP

EUBR CUTI NE DEND3

IMPLICIT INDEGER (A-2)

:INTEGER TVOVFU (5), TMF1 (5) SAVEU(2) ,SAVIE1(2)
EALÀ.8 MI STRT (2U, 2) ' MIM (20, 2) ,MOSTRT(2U , 2) ,MOEMD(2D ,2),

tj MOU(2U,2).,CIN(2U) r COU7(2U); ITIME,RTIME
REALA8 TT THE, TIIiINQ (3) , CH PMS G (3) TRTIM (3) TI M BM (3)
• TBESUM ,TIQ SUM, 1RTSUM,MAX ' LENGTH, TBM, CPFSUM,TIUONQ
L OGICAL MIFLA G, MOFLAG, FLAG, IGFLG
COMUCN /DEMCCM/MISTR7(211,2), MEND(2U,2),TINUM,MOSTRT (2U,2),
1 MOM(ZU 2) , MONUM, M OF) (2U ,2),fflUM,MIFLAG,M0FLAG,
1 CI1(20), CUT (20)

COMMON / CONFIG /RODE ,TNIT
C OMMON /PHMSYS / OUTUNP, I GFLG
commoN / TVCOT/TVOVFU (5) ,TVOVF1(5)

IATA EAX /429 4967 296 aU LENG1H /6UU .D6/ ,FIAG / .FALSE./

'VRITE (OU 1UNT,3UU)
300 	F ORMAT (1 *" EXPERIMENT U3 RE SULT S k". ° s r e i

1/ w 1IME UNITS = MTCROSECONE S)

C CO NVER1 TIMES INTO MICROSECONDS, TAKING INTO ACCOUNT
C POSSIBLE OVERFLOW.

U NIT=5
CALL WREAD (SAVEU, SAVE1)
"ALL D I 2D F(SA VEU, RIP) E,5 AVE1, IT IME)
• E= (IT IM 	TVOVF1(5)*MAY) / 1U .I0
R TIME= (RTIME 	TVOVF 0(5)*MA)C) / 1U.DU
FtRIT E(OUTUNT.,306) RT1ME, IT ME

306 	FORMAT(' 	/ TOT AL EXP ER IMENT TIME: ',D17.1(),
1 /' IDLE TIFF: ',D17.10)

IF (MONUE.EQ) CO TO 41)(/
DD 31U I=1,1 NUM

31U 	FOFQ(1,1)= (OF(I,1) 	MOFÇ(I,2)*MAX) / 1U.DU

C INITIALIZE VARIABLES

400 	CPMSUM=U
lETSUr=0.DU
r IQSUM=U. DU
ISFSUE=U.DU
CPMSUM=U

C INITIALIZE MIN(1) AND MAX(2)

CHPMSG (1) =1UU
•OEpriisc(2):.-41
rR)=LENGTH
IRTIH2)=U.DI

Min (1) =LE1GTH
11.11INU 2).u..ru
rum(1)7:LEN:MI-I
IIMB?(2)=U0LL
T311=U. DU

28D -
TM • t-InT rrnit moxprtnnruml, !till 1

SI 	II • tl %, J. • 	1, 	 ,,ts,t.i a., t.0 1 IJ 	J. f T 0 	à

!IF (FLA C) WRITE(OUTUNT 4 U2)
4 0 1 	FORMAT 	// / ° e8Xr STATIST ICS ON MF.SSIUGES RECET VED°

1 ‘, /",8X,31('-'),/")
402 	FORMAT(// / 5 ,8X, 'STATIST 	S ON MESSAGES SENT °

1 t/ 9 	8X,2')('-`),/")
IF (MINUM.NE. U) 5 . 0 TO 42 0

 1RITE(OUTUNT•,416)
416 	FORM AT(", /' II OF NESS' AGES = 0 1)

fC 700

420 	dRITE(OUTUNT, 421)
921 	FORMAT (° ,".PESSAGE" ,1X, ° TIME OF" , 6X, 'TIM OF' ,6X, 'TRANSMISSION ° ,

1 1X, 'TIME IN', 6X, 	/ 1 I 	NUMBER' , 2X, 'FIRST' , 8X, 'LAST' ,9 X,
'TIM' s9X, ° QUEUE' , 8X CHARACTERS 	/' ".,8X, 'I CHARACTER' ,9X,

1 'CHARACTER'

TO 500 I=1 ,EINUM

C CnVER1 TIFES TO MICRO SECONDS

t/ISTRIC I ' 1 	= (MISTRT(1,1) 4 MISTRT (1,2)kMAX) / 10.D 0
,MIEND(1,1) 	(MEND(I,1) 	1IEND(I,2)'MA X) / 1U.DU
rOSTEl(1,1) 	(MOSTRT (1,1) 	MOSTRT 1,2 P1/4 MAX) / 1 0 .D 0

 MOEND(1,1) = (MOEND(1,1) 4- 110ENDII ,2 MIA X) / 1U.DU

TTIME=MIEND(I / 1)-MISTRT (,1)

IMONQ=10 FQ(I ,1) 	MEND(1,1)
:IF (FLAG) TIEONQ=U.DU

IRITE(OUTUNT ,425) I, FISTET(I,1),MENE(I,1),TTIME,TIMONQ,CIN(I)
425 	FORMAT(' 1 1 I4,3X, 4(D11.4,2X),D11.4)
C 	,
C CALCUIATE MINIMUMS

IF (CIN(I).LT .CHP MSG(1) 	CHNSG(1)=CIN(I)
IF (ITIME.LT oTRT IM (1)) TFTIF1(1)=TTIME
IF (MOFQ(I,1) .LT.TIIIII\Q (1) 	I1INQ(1)=1OF Mal)
11311= (J.DU
IF (111.NUM.EQ. 1 .0R. I.EQ.MINJ M) GO TO 430
IBM=YISTRT(I11,1)-MISTRT (1,1)
IF (T3I'LL T.TI1 BM(1)) TIMM).)=TBM

C CALCULATE MAXIMUMS

430 	• 	IF (CIN(I)0GT .CHPMSG(2) 	CHPMSG(2)=CIN(I)
*IF (`MIME. GT .TRT Ill(2)) TETIM (2)=TTIME
IF (110FQ(I,1) OGT.TIMIN2 (2)) T IMINQ(2)=MOFQ(I,1)
IF (TBM.GT.TIIIBM (2)) TINEM(2)=TB11

C.
C CAICUL FTE SUMS., FOF USE IN AVERAGES LATER

440 	CFMSUI`'.=CFMSUH-CIN(I)
TRTSUI=TRTSU1 +TTI
lIQSUM=TIOS1JF+TIF.01,10
T3MSUI=TBMSUI+TB1

511 1; 	CONTIIUE

C CALCULATE AVERAGES
C

', 11DeeC ," 	 ml" 	M

- 29D -

4.RITE(OUTUNT, 602) CHPriSGTRTIN,TI11INQTIflBt1
.FORMAIP CHAFACTERS'•,/' FER MESSAGE: " ,2X-,2(D11.4 ,2X) ,D11
1 //' TRANSMISSION' pi' 	 2(1)1104 1 2X) 0 D11.4.
•1 // TIME I:10 ,/ 	QUE.UE: 	81,2 (D11 .4,2X).,D11.4,//
1. 	TIME BETWEEN' / MESS' AGES:" ,5X, 2 (D11. 4 0 2X) Dll

dRITE(OUTUNT, 603) MIgUM,CPMSU
'FORMAÏ (TOTAL 4 OF MESSAGES: 	v e 21,I5
1 1 . ' TOTAL 4 OF CHARACTERS 	,D11 0 4)

nr fla (.7 - % 	 out, F 	rtL ,au

sIRTIF.(3)=TRT5UM / Ill*NUM
TIMINQ (3)eTIQ SUM / MTNUM
:IF (.NOT.FLAG) GO TO 580
• IMINQ (1):=0 .DU
'1 IMINQ(2)r-,(1.1(.1
•IMM (3) r-- (10D

IF (MINUM.GT.1) CO TO 590
TIMBH(1)=0.,D0

(2)4 °DI
TIMM(3)=U.Dil
CO TC 600

59u 	rim(3)=TBMS UM /

CC PRINT OUT MAX•MIN, AND AVG

II 600 	(RITE(OUTUNT, 6 0 1)
a 601 	FORJT(///u 1 ,16X, ° MINIMUM' 6X, '11AXIMUM.,6X, "AVERAGE °

1 /",16)(4,' 	6K. ," 	6X, 	o)

C

E02

I 603

11
700 	IF (•FLAG) GO TO 1000

copy 1v5G OUT' DATA TO 'MSG IN ARRAYS FOR PROCESSING

E0 750 I=1,1CNUM
MISTRT(I, 1)=IOSTRT(I, 1)
FISTRT(I ,2)=-VOSTRT(I
NIEND(Ij)eN'UND(Ipl)
.FIENE (I, 2)=1TCEND (
MOFQ(I g 1) =0.D0
.140FQ (1,2)=0 .10

le 750 	:1. IN(I)=C3UT(I
.FINUF=MONUM
FLAG=. TRUE.
CO TG 400

I E.

II c
IF 1000

I C

1

:IF (IGFLG) CFLL IGRES(1, 2,3r)

RETURN
END

- 30D -

FILE NAME: MSGIN.EXP

.EUBROUTINE MGIN

C MSGIN IS ENTERED WFEN A MESSAGE IS JUST STARTING T -0 BE
C RECEIVED, OR AFTER THE ENTIRE MESSAGE HAS BEEN RECEIVED.

. IMPLICIT INTEGER(A—Z)
:INTEGER SAVE(2),IVOM(5),TVWF1(5)
LOGICAL MIFLAG,M0FLAG
FEAL)143 11ISTRI(2(1,2),FIENE(20,2),MOSTRT(2L,2),9OEND(20,2),MOFQ(20,2),
1 CIN(2U),COUT(20)

COMMON /DEMCOM/ MISTRT(20,2),MIEND(20,2),MIMUM,
1 MOSTRT(2U,2),MOEND(2(1,2),MINUM,MOFQ(20.,2),VONUM,MIFLAG,M0FLAG,
J. CIN(211),COUT(2U)

comma /CONFIG/NODE,YNIT
COMMIN /1VCOV/TVOVFU(5),TVOVF1(5)

IATR SOMI .LOPC07(15311/., SOEIHI/OU7U534/, ECMIL0/00705101 e
EOMIHI/0U7U514/

C READ CIRRENT TIME

PAUSE U
tNIT=5
CALL TVREDU(SAVE)

C. MIFLAG=TRUE => START OF MESSAGE

IF (NOT.MIFLAG) GO TO 5U

C START OF MESSAGE RECEIVED.

MINUM=:MINUM+1
• CALL II2EF(STVE,MISTET(1lINUM4))

MISTRT(MINU1,2)=TVWFU(5)

C RESET VJADRA—COMPARATOR RANGE FOR
C 'END OF MS•C IN ADIRESS

CALL QCSET(U,E0MILO,E0MIHI)
FIFLACe..FALSE.

GO TO 1UU

C ENI OF MESSAGE RECEIVEE

5U 	CALL II2DF(SjVE E MIENI(MINUM,1))
MIEND(MINUM,2)=TVWFU(5) •

C RECORD II OF CHARRCTER RECEIVED

UNIT=1
CALL IVREDU(SAVE)
CALL DI2DF(SAVE,CIN(MINUM))

C CLEAR BUFFER

•CALL TVSET(U,U,1,3,1,U)
"C
r RPq17 T 1lnnpn—rnmPn2nTnp rn nI1F TO

- 311) -

C i SIA e RT OF ESG IN' IFDDIVESS,...,
••• 	J. ••••

•CALL QCS ET (

,FIFLAC=.'1RUE..

1U(1 	FETUEN
END

— 32D —

1

11
FILE NAME: MSGOUT.EXP

II C
II C MSGOUT IS ENTERED MlEN A MESSAGE IS JUST STARTING TO

C BE SENT FROM THE KEYBOARD, OR FTER THE ENTIRE
C MESSAM HAS BEEN SENT TO TFE DESTIIn RTION

IMPLICIT INMGER(A-2)
INTEGER SATE(2),TVWFU(5),TVOVF1(5)
lOGICAL MIFLFG,M0FUC
REALAB MISTRT(2U,2)elIEND(20,2),MOSTRT(2U,2),MOEID(20,2),MOFQ(20,2) g

 1 CIN(211),CU1T(2U)

COMMCN /DEMCCM/ DISTRT(2U,2).,MIEND(2U,2)MINUM D MOSTRT(20,2),
1 MOEND(2(1,2),MONUM # MOFV20,2),MONUM 0 MIFLAG,M0FLAG,
1 CIN(2U),C01T(2(J)

comrcE /CONFIG/NODE,INIT
COMMON /TVCOI/TVOVFU(5),TVOVF1(5)

DATA SO1OLOnU70316/,SOMOH1/007U322/,E0MOLO/OU70434/ #
 1 E0110HI/OU7144U/

C READ, CURENT TIME

PAUSE 1
UNIT=5
CALL IVREDU(SAVE)

C MOFLRG=TRUE => START OF MESSAGE OUT

(.NOT.MOFIAG) GO TO 5U

C START TF MESSAGE ULT

roNum.moN1Jm+1
:ALL DI2DF(SAVEMOSTU(MONUM 0 1))
rOSTRI(MONUM,2)=TVOM(5)

C RESET CUADRA-COMPAFATOR FOR
C 'END OF MSG OUT ADDRESS

UNIT=1
CALL QCSET(1.,E0MOLO,E0MOHI)
MOFLAG=.FALSE.
CO TO IUU

CALL DI2DF(SAVE,1OEND(MONUM,1))
l'OENL(MONUM,2)=TVOVFU(5)

SUBROUTINE eSGOUT

C RECORD 4 OF CHARAC1ERS SEMI OUT

C CLEAR EUFFER

CALL IVSET(U.,U,1,3,0,1)

C RESET 'ÇUADRA-COMPAFATOR FOR
r .1 qTIY?T 	viqn. •TIT° nnnp7g

- 33D -

LNIT=1
CALL TVRED1(SAVE)
CALL EI2EF(STVE1COUT(MONUM))

CALL °MTH,' SOMOL0 / 5'0:10HI

'UMW= ',TRUE.

FETUEN
EqD

C .

t,

1
C.

vi

FILE NAME: MSGOFb.EXF

..EUBROUTINE MSGOFQ
C .
C MSGOFQ IS ENTERED .EACH TInE P MESSAGE AT THE DESTINATION
C HAS.BEEN PRINTED AND THEN TU EN OFF OF THE QUEUE

IMPLICIT INTEGER(A-Z)
:INTEGER SAVE(2),IVOVEU(5),TTOVF1(5)
LOGICAL MIFLAG,M0FLAG
REAL)q MISTRI(2U,2),FIENE(2U,2),MOSTRT(2U,2),E0END(20,2),
MOFQ(20,2),CIN(2U),COUT(2U)

20MMON /DEMCDM/MISTRIf20 0 2),MIEND(2092),1INUM0MOSTRT(2002)f
1 MOEND(20,2),MONUM,EOFQ(20,2),MQNUM,MIFIAG,M0FLAG,CINC2L),
1 COUT(2U)

COMMON /C .ONFIGINODE,UNIT
COMON /TVCO11 /TVWFU(5),TVOVF1(5)

C READ C1RREIT TIME

PAUSE 2
VOJU>6
.CALL IVREDU(SAVE)
MQNUM=MQNUM+1
CALL LI2EF(SFVE,MOFQ(MONUM,1))
10FQ(1QNUM,2)=TVOVF0(5)

RETURN
'END

- 35D -

Experiment #4

Both machines are monitored simultaneously. A load
generator runs on each machine, causing the computer to
think that the communication link is a user terminal. Using
the monitor, we are.able to construct a state vector:

<line busy, CPU#2 busy, CPU#1 busy>

The output iS a table of the eight possible states (0-7),
and the total time spent in each state. In addition, the
duration of the experiment is used in determining the
percentage of real time spent in each state. The user must
provide the address of the idle loop on each machine. A
machine is busy if it is executing outside• of the idle loop.
The system is defined to be doing useful computing if one or
both of the computers are busy. Thus, results are also given
for the percentage of compute time spent in each state.

Parameters controlling the rate at which messages and
individual characters are transmitted may be varied. By per-
forming further measurements, we hope to determine the cor-
rectness of an analytic model of the two-computer system.

Note that the state vector table could be produced for
any program that happened to be running in the object
system.

STATE 	STATE 	TIME
VECYOR iN STATE

TIME/ 	 TIN2/•
REAL TIM 	COMPUTE TIME

371)

II STATE VECTOR MEASUREMENTS. OF LOAD GENERATOR OPERATIOG OM
TVO-COMPUIER SYSTŒM

EXPŒRIMENT 44 RqSULIS *"

II IN EACH OF THE 8 POSSIBLE STIATES' INVOLVING
THE FOLLUING TAELE INDICATES THE TIM SPENT

CEU'S AND A COMMWICAIIONS LIEK BETUEEN THEM

ALL TIMES IN MICROSECONDS
TOTPL REAL TIME: 	007387121861UUUU0UD 0 8
TOTAL COMPUTE TIME: 	U.49.1495U04000UOUUD 08
STRIE VECTOR IS

<LINE BUSY,CPU 42 BUSY,C11 141 BUSY>
cpu el . MATH PDI11/20
2PU 42 = ENGINEERING PDP11/20

L
II 	1 	

UUU
UU1 	

t.3365186670r 0 8 	U.4!_'5,5D 1 2 % 	0.8403D C2 %
O.1U467241UUD 08 	0.1417D 02 % 	0.2614D 02 %

2 	Oh 	11.2112636810L 0 8 	0.2860D 12 % 	0.5275D 02 %
, 	3 	Ull 	0.84877393OUD 0 7 	U.1149D 0 2 % 	0.2119D 02 %

1 	
100
1U1 	

t 	M 	 U.0 .OUUUUUUE OU 	OUUD LU % 	O.U000D 00 %
11.001JOU1JOUUUD UU 	U.UOUUD U0 % 	U.UOUDD 00 %

E 	110 	L.185800000111 0 3 	0.2515D-I3 % 	004639D-03 %

11 	7 	111 	U0172000U000D 0 3 	UO23.28D-U3 % 	0.4295D-03 %

TOTPL TIME 	 TIME/ 	 •

REAL TIME 	
TIME/

COMPUTE TIME
CPU 41 EUSY: 	0.1E95515230D U8 	UO256611 02 % 	0.4733D 02 %
CPU 42 BUSY: 	0.296144652» 11 8 	(J041109D 0 2 % 	0.7394D 02 %

II •
LINE BUE: 	U.3578000001D 03 	0.4844D-03 % 	0 0 8934D- 0 3 %

TATE 	STATE 	TIME •
VECTOR IN STATE

TIME/ 	 TIME/
REAL TIN 	COMPUTE TIME

1
1
1

II THE rououNc MEASUFEMENTS ILLUSTRATE THE TWO-CCMPUTER SYSTEM
.1ITI 301 H MACHINES tN THE IDLE STATE RND NJ TRANSMISSION ON THE
COMMUNICATICI\S LINY.

1

A" UFERIUNT 44 R'ESULTS 71/4 i‘i‘

E FOLLOWING TALE INDICATES THE IIYE SPENT
IN .E2F. OF THE 8 PO3SIBLE STATES INTOLVING
2 CF1J'S AND P COMMnICATIONE LIU BETWEEN TUE'.

ALL TIME1 IN MICROSCONDS

1 TOTTL RdAL TIME: 	U.2025315UUUUUUUUUD U7
1 TOTU COPUM TIME: 	U.72793UUMUUUUUUD U4

STATE VFCTOF IS
(LINE BUSY,CPU 42 BUSY,Cj 41 B U S>
CFI) 41 = MAT1- PET11/2U • :PJ H2 = ENGINEEPING PDP11/20

L 	UOU 	1.2UU52611UUT U7 	0.99U1D 12 % 	U.2755P 05 %
1 	UU1 	'.1.3758311UUU1JD U4 	U.1861D UO % 	0.5177D U2 %
2. 	L 1 0 	1.35114U0UUUE U4 	U.1734D q.0 % 	U.4824D U2 %
3 • 	Ull 	j.36UOUOULJUUD 111 	U.1778D-U3 % 	U.4946D-111 %
A • 	11U 	1.1JUUUUUUUUUD 110 	O.UUUUD q.0 % 	U.UOUUD U0 % ,
q 	101 	j.UUUUUMUUD UU 	U.UOUUD UU % 	U.UUUUD 00 %
C 	11U 	(..UUUUUUUUUUE UU 	U.UUUUD 111 % 	U.UUUUD 00 %
7 	111 	U.UUUUMUUUD UU 	0.00UUD UU t 	U.UUUUD U0 %

CPU PI FUSv:
CPU 42 3USY:

II LIN'• EUEY:

TOTH., TIME

U.37719UUUM U4
U.3515UUUUUID U4
U.U4UUUUMUD UU

TIME/
REAL TIME
U.1862D UU %
0.1736D UU %
U.UUUUD UU %

TIME/
COMPUTE TIME
0.5182D U2 %
U.48291) 0 2 %
0.UUUUD - OU %

1

1

- 38D -

*ETATE 	STATE 	TIME
VECTOR IN STATE

TIME/ 	 TIME/
REAL TIU 	OMPUTE TIME

MEeUREMENT OF FILE TRANSFER FROM MCHINE 41 TO MACHINE 42

" À .EXHRIMENT 44 RSSULTS A"

THE :7 3LL0.4ING 1A3LE INDICATIB THE TIME SPENT
• 	IN UCH OF THE E POESIBLE S71\TES INVOLVING

2.CPU'S AND A COMMUNICATIOte LI ,NK BEWEEN THEM.

ALL TIMIS IN MICROSECONES
TOTAL RL TIME: 	U.97723467UUUUUUUUD U7
TOTH, CCMPUTE TIME: 	0.484869EU13MUUUUD 07
STATE VE2TOR IS

<LINE 12.DEY,CEU 42 BUSY,CIU 41 BWEY>
CPU 41 = MATU PDP11/2U
CEU n2 = ENGINEEFING PDP11/2U

II 	1j (AU

	

UU1 	
:1.45763595UUD 07 	0.4683D 02 % 	U.9438D 02 %

1 d..7356UU1OUUE 06 	0.75271) 11 % 	U.1517D 12 %
?. 	U1U 	U.1U521U9300D 0 7 	U.1U77D U2 % 	U.217UD 02 %

II 	4 _ 111 U

	

1UU 	
1.2303453600E 07 	.2357D 1.2 % 	U.4751D 12 eg -
U.3180886000D 11 6 	0.3255D 01 % 	0.6560D 0 1 .%

' 	• 1U1 	1.5815920000E 05 	0.5951D 1U % 	0.1199 1) 0 1 % _

11 	7
5 110 (10

	

111 	
0.31752550D 06 	0.3249D 01 % 	0.6549D 01 %
1.3822386UUU1 0 6 	0.3911D 111 % 	0.7883D 01 %

CPU 41 3usy :
CPU 42 T-USY:
LINE U3Y:

TOTAL TIME

0.34794515U)D 07
U.4155327U1J0D 07
U.1U76U119UUD 07

TIME/
REAL TIME
0.3561 0 02 %
U.415UD 02 %
0.1101D 02 %

TI1E/
COMPUTE TIME
0.7176D 0 2 %
U.8364D 02 %
0.2219D 02 %

STATE 	STATE 	rin
VECTOR UN STATE

TIME/ 	 ,TIME/
REAL TIM 	COMPUTE TIME •1

MEASUREPENT OF FILE TRANSFER FROM MACHINE 42 TO MACHINE 41

• II *** EXPERIMENT 44 PESULIS "*

II ' IHE FOLLUINO TAELE'INDICATES THE TIME SPENT
IN EACH OF THE 8 POSSIBLE SUAUS'INTOLVING
2 cru's AND A COMMUMCATIONS LIM BETWEEN THEM.

ALL TIMES IN MICROSECONDS
TOTAL DEAL IIME: 	0.90910316000UULUUD U7

II TOTAL CDIPUTE TIME: 	U.399233850UUUUUOUD 0 7
STAIE VECTOR IS

(LINE BUSY,CPU 42 BUSY,CPU 41 BUSY> II •CPU 41 = FATE PDI11/20
C PU 42 = ENGINERING PDP11/21J

I 	0LU 	1.4896949500E 07 	0.5387D 112 % 	001227D 03 %
1 	(Jul 	U.27514470UUD 0 6 	0.30270 0 1 % 	0.6892D 01 . %
2 	01 0 	1.576983E1iUUE 11 6 	0.6347D 111 % 	0.1445D 02 %
3 	011 	U.2U753734UU0 0 7 	0.2283 0 02 % 	1.5198D 0 2 %
4 	1 00 	1.1695691UUUE 0 6 	U.1865D 11 % 	0.4247 1) 01 %
5 	1U1 	U.5864313UUUD 0 6 	0.6451D 01 % 	1.1469D 0 2 %
6 	110 	, I.75856ULOUUE 0 5 	0.83441D U % 	U.1900D - U1 %
7 	111 	0.4031482000D 06 	0.4435D U1 % 	0.1U1OD 02 %

II CPU 41 EUSY:
CPU 42 BUSY:
LINE BUE:

TOM. TIME

U.334UU976UUD 0 7
U.31313612M 0 7
U.1235(1046001) 0 7

TIME/
REAL TIME
0.3674D 02 %
0.3444D 0 2 %
0.1358D 0 2 %

TIME/
COMPUTE TIME
U.8366D 02 %
0.7843D 02 %
0.3U93D 0 . 2 %

- 400-

-TO DETERMINE THE TIME SPENT IN EACH OF
8 FCSSIBLE :STATES AS A RESULT OF USING THE
STATE VECTOR [LINE BUSi,CPU 42 BUSY,CPU 41 BUSY]
HERE THE rINE IS A COMMUNICATIONS LINK BETWEEN
THE TWO CPU'S.

-TO FILL IN THE FOLLOWING TABLE:
STATE 	TIME IN 	TIME/

STATE 	REAL TIME
TIME/

COMPUTE TIME

I

51=3
.E2=5

lrzf;

- 41D

PILE NAME: DEXP4.EXP
C

UM C PURPOS'E OF EXPERIMNÏ 44

11
C

I C

II CC
II

eHERE REAL rimE=>rorAu EXPERIMENT TIME, AND
COMPUTE TIM => CPU 41 OR CFU 42 BUSY.

11 C THE SIETEM IS DEFIMD TO DE BUS?, tR DOING USEFUL
C COMPUTING, IF ONE OR BOTH IF THE MACHINES IS
C EIECUTUNG OUTSIDE rCF THE PFOGRAM WAIT LOOP.
C

SUBROUTINE DIEXP4

.EXTERNAL TVOWL
LMPLICIT INTEGER(A-Z)
INTEGER. IVOVIO(5),TVTVF1(5)
COMMON /CONFIG/NODE,INIT
COMMtN /TVCOTITVOVFO(5),TVOVF1(5)

C QUADRA-COMFARATORS run BE SET UP, USING
C THE TEST PROGRAM. FOR COMPTE TIME, SET RANGE 43 TO
C THE ADIRESSES OF TFE WAIT LOOP.

11 	12 	FORMAT(' USE TEST PRDGRAM TO SPECIFY QC RANGE 43 = WAIT LOOP',/
UITE(6,12)

1 ' 	ON BOTH MACHINES',/' ')

II C corpum TIFE => CP1.41 BUSY OR CFL 42 Bun
=> (OUTSIDE CPU 41 WAIT LOOP) 	OR

(OLTSITE CIU 42 WAIT LTOP)

C SET UP LOGIC UnTS.

C LOGIC UlIT 41 = -B = STATE 2 = 15015
II 	c

L1:=-B

C LOGIC UUIT n2 	-B = STATE 3 = 1Se8I6

II C SET UP 8X8 SWITCH MATRICES

C STATES

I C

I . o a -

:E4tm4
5'5n5
'56=6
37=7

I C

II C TIMER St EVENT COUNTERS
C

TV1130=0
IV1B1=1
TV2BU=2
1%7 281=3
rv3130.0
7V3B1=1
rT4BU=2
IV4B1=3
TV513(1=6
UV5B1=7
RTIME=7
;CTIME=4

1.NIT=1
CALL S18DIS
CALL EW8CON(:EU,TV1BU,S1,TV181,52,TV2BU,S3,TV281,
1 RTIME,TV5B,CTI1E,rV5B1)

UNIT=2
;CALL SW8DIS
CALL SM8CON(S4,TV3BU,S5,TV381,S6,TV4B0,57,TV4B1)

IU SET UP TIMER & EVENT COUNTERS

II DO 35 UNIT=1,5
35 	CALL IVSET(1.,1,1.,3,1.,1)

II C SET UP INTERRUPT GENERATOR AND CLERR OVERFLOW COUNTS.

DO 40 UNIT=1,4

T
1VOVFO(UNIT)=U
TOVF1(UMIT)=U

40 	CALL IGSET(T1OVFL,UNIT)

II CC TV #5 CVERFLOW LIMES REE 'OR'ED WITH THOSE OF TV 44, SINCE
C ONLY HAVE FOUR INTERRUPT LINES. A SPECIAL CHECK IS 'I/11)E IN
C 'TVOVFL°.

1'VOVFU(5)=U
1VOVF1(5)=U

FETUEN
END

- 42D. -

I C

I

FILE NAME : DE MD4. EXP

SUBROUTINE DEND4

IMPLICIT INTEGER (A -Z)
:INTEGER TVOYFU(5), TYCVF1 (5) IVU(2) TV1(2),S (8,2)

TOUBTE PFECIEI ON DPTVU(5),DPIV1(5) ,PRTIDE,PCT IME, FAX,
1 CPU1 ,CPU2,LINE, CPU1C, CPU2R,CPU2C, LINER, LT NEC
lOGI CAL IGFLC

UMWON / CONFIG MODE ,UNIT
C OMMOM /TVC01/TVOVFU(5) ' 1 VOVF1(5)
COMON / FHMSM/OUTUNT IGFLG

I
 c

TATA S(1,1),E(1,2),S(2,).),S(2,2),S (3,1), S(3,2),
1 S(4,1), S(4,2),S (5,1),S(5,2) ,S(6,1)9S(6,2),S(7,1),S(7,2),
1 St 8,1),S(8.,2) rUll a 'U' r ° L.11',"1",'01",'U U D 	' ,01", 1 1°,"111,"0',

qU ' i ' l ' o e ll ' i l U e s ' il I gU e /

C NA') = 2.D1"32
DATA MAX/42949672964DU/

C ZERO TOTALS
CPU1 =U.»
2PU2=U.DU
IINE=U.DU

IA RITE(OUTUNT.,1U)
FORM A T(U Ç '"1/4 A EXP RIMENT e4 RESULTS **" / 1 I t/ I I t

1 ' 	THE FULLOWING TABLE INEICATES THE TIME SPENT e f

1 / 	'IN EACH OF TLIE 8 POSSIBLE STATES INVOLVING ',/'
1 '2 CPU " S P ND A COEMUNICATIONS LINK BETWEEN THEM.' , /)

C READ ANT CONVERT WU TIMES TO DOUBLE PRECISION

TO 21 UNIT=1•,5
CALL TVREAD(T VU,T V1)
CALL EI2LF(Ti1U,DFTVU (UNIT))
CALL DI2DF(TT1,DPTV1(UNIT))

C ADJUST FOR FOS SIBLIE OVERFLOW
DPTVU(UNI T)=DPTVU (UNIT) 	rmuui 	P.mvx
IPTV1 (UN IT) =1PTV 1(UNIT) 	TTCVF1 (UNIT)kti FX

C CONVERT TO MICRO—SECONDS
MVO (UN IT)=IPTV1 (UNIT)/1U.D1

20 	DPTV1(UNIT)=DPTV1 (UNIT)/1U.DU

kRITE (OUTUNT ,22) DPT VU (5), DPI V1(5)
22 	FORMAT(' R , /' 	," ALL TIMES IN MICROSECOND S', / I

1 'TCTAL REAL TIME: ',D25.18,/
1 ' TOT A L COMD UT E TIME: ' , D25.16)

OUTUNT, 24)
24 	FORMAT (e j ' ETAT F. VECTOR IS

1 3X, ° (LI NE 303Y, CPU 42 BUSY, cpu 41 BUSY> / 	e
1 3X , 'CPU 41 = MATH FDP11/2U 	/' 	3X, "C711 42 = 8 ,

1 ' ENGINEERING PDP11/ 20 	/')

:RITE (OUT UNT, 32)
32 	FOUPT(' 	13), 1 ST1\TE',3X,

1 ' STATE' , 3X, 	' TIM" , 16X, 	'TIME/ ' 11X, 	'TIME'', /' 	,11X,
1 'VECTOR' 	' IN STÎTE' ,12X HAL 	 ' COMPUTE TIM')

C LOOK AT ALL 4 T IMER & EVENT . COi 	ERS

1 0

- inn --

c

c

STATE:2-1

DO 1UU UlIT=1 0 4
:ETATE=STATE4.1
ST=STATE 4e1

C % REAL TIME FOR BUFFER U
FFTIEE=DFTVU (UNIT) / DPTVU(5) * 1UU.EU

II C % COMPUTE TIME FOR BUFFER 1
• FCTIME=DFTVU (UNIT) / DPTV1 (5) * 1011.EU 	 •

I
C

1\RITE(OUTUNT.,4U) STATE ' S (ST, 1) D S (ST , 2),DFTVU(UNIT),PRTIME,PCTIME
 40 	FORMAT(",I4,7X, 112,R1, 4X ,D17 .1U, .3X e D11.4, 5 %° ,3X, Dll .4, 1 %e)

C COEPUrE TOTALS
IF ((STATE/2)*2 . M E . STATE) CPU1=CPU14.DPTVU(UNIT)

(STATE.EQ .2 .0R. 5TATE.EQ.3 .0R. STAT , E.EQ.6
1 .0R 0 STATE. EQ .7) CP92=CPU24-DPTVU(UNIT)

II C 	
IF (S1ATE.GE .4) LINE=LINE+DPIVU(UNIT)

—
.STATE=STATE+1
ST=STATE1

11 C C % REAL TIME FOR BUFFER 1
TRTIM=DFTV1 (UNIT) / DPTVU() 	nuoru

C % COMPUTE TIME FOR BUFFER 1
FCTIF.E=DFTV1 (UNI'l) / DPTV1 (5) 	100.EU
dRITE(OUTUNT, 40) sru- E,s1ST,1),S(ST,2),DPTVHIJMIT),PRTIME,PCTINE

C COEPUTIE TOTALS
IF ((STATE/2)*2 .NE. ST AT E) CPU1=CPU1+DPTV1(UNI.T)
"IF (SUITE. EQ-.2 .0R. STATE. EQ.3 00Rc, STATIE.EQ.6
1 .0R. STATE. EQ07) 	2=CFJ21-DPTV1(UNIT)

11/ 1UU 	:IF (SIATE.GE .4) LINE=LINE+DP1V1(UNIT)

.CFU1R=CPU1 / DPTVU(5) * 100.EU
CPU2R=CPU2 / DPTVU(5) * 11111.DU
IINER=LINE / DPTVU (5) * 1UU.EU
CPU1C=CPU1 / DPTV1(5) 1UU.DU

• CFU2C=CPU2 / DPTV1 (5) * 1UU.EU
LINEC=LINE / DPTV1(5) * 100.DU

C PRINT TOTALS 	D

I dRITE(OUTUNT, 15U) CPU1 ,CPU 	,CF. U1C ,CPU2,CPU2R, CPU2C,LINE,
1 LINER, LINEC

150 	FORMAT(1 , /1', 16X, yror AL T IEv ,13X, 	 TIMEME °
1 36X, °REAL 1INE',7X. 1 0 C0FFUTE TIME' 	CFU 41 BUSY:v ,3X,
1 D17.1U, 2(3X,D11.4,' %-`) ,/' CPU i42 BUSY: ° ,3X,D17.1U,
1 2(3YrD11.4)/V LIE BLSY:',5X,D17..111,2(3X,D11.4,' %;))
rIRITE(OUTUNT, 2UU)

2UU 	F CRMAT (° I, 1 ° 	I ° OVERFUCII COUNTS FOil TIMER & EVENT C . CUNTEP,'
1 / " ,3X, 'U\I IT 	BUFFER 	3)C 'COUNT')

I 250 	dRITE(OUTUNT, 251) UNIT ,TV'OV FU (UNIT) ' UNIT, TVOVF1 (UNIT)
TO 251 UNIT I,5

251 	FORMAT(" 	,7X,
C
C
C RESET I NTERRUPE GENERATOR IF NECESSARY
C (I.E. FIRSI PASS TFPOUGH TF.IS CODE

IF (IGFLC) CALL IGREE; (1,2 ' 3,4)
FETUEI

E ND 	 41,D

Experiment 05 •

. The object system. is- the same:as in experiment e4. In
this experiment, memory activity on both machines is ex-
amined. The result is a table for each machine, showing the
perdentage of time spent in each of the four user-defined
memory ranges. By using the last range of the quadra-
comparators to specify the program's idle 'loop, compute time
results may also be obtained. .

eor programs other than the load generator, the ranges
could first be set to span all of available memory. Based on
the results obtained, refinements could be made until the
user could clearly tell where the program was spending most
of its time.

dl

- 45D

1
1

TIME
IN RANGE

U.1171313244D U9
U.'E595317890D 1 8
004460201U» 0 7
U.Ç61270393UD 0 8

TIME/ 	 TIME/
REAL TIME 	COMPUTE TIME

U09509D 0 2 % 	0.1989D 0 3 %
U.779UE U2 % 	0.1629D 03 %
0.3621D 0 1 % 	0.7575D Ul .
U 0 7804E 0 2 % 	0;1632D 0 3 %

1
1

ALL TIMES IN MICROSECONES
TOTAL REAL TIME: 	U.123176339400000UD U9
TOM, CCMPUIE TIME: 	0.5889U636401U000UD 08

MEASUREMENT OF MEMORY ACTIVITY dMILE LORD GENERRTOR IS
Œ1E1W1ING ON TWOCOMPUTER SYS1EM

*** EXP1RIMENT 45 RESULIS ***

I 2 CPU'S gTEMDS EXECUTING IN TUE SPECIFIED REGIONS OF
TOLLCVING TR.FLE INDICATES HOW LONG EACH TF

• MEMTRY, W HILE THEY INTERACT VIA A CCMMUNICATIONS LINK.

11 . 	
CPU 41 = MAM-PDP11/20
CPU 42 = ENGINEEFING PDP11/20

* RESULIS FRCM FACHINE 1 *

ALL TIMES IN MICRO9ECONES
TOTAL REAL TIME: 	U.12317633940000U0D U9
TOTAL COYPUIE TIME: 	11.588906364MUU00D 08

RAbGE

II 33576 177777
67374 71512

• 64754 65304

li 70426 7U502

* RESULIS FECM ACHINE 2 *

R1UGE

II 53576 177777.
1U7.374 111512

I . 104754 1U53U4-
 110426 11U5U2

TIME
IN RANGE

U.1131U51429D U9
U.E259326630D 0 8
U051576188UUD 0 7
00E2590821UD 0 8

TIME/ 	 TIHE/
REAL TIME 	COMPUTE TIME

1J.9182D 02 % 	0.1921D 03 %
(.1.67U5t 0 2 % 	0.1402D 03 %
0.4999D 0 1 % 	0 0 1046D 0 2 %
U067115E 0 2 % 	U.14U2D 03 %

1
1
1
1 - 46D -

1

I THIS IS THE START UF A SEQUENCE OF .FEASUREMENTS TOI1ETERHINE
THE LOCATION OF THE DOS-11 YI"ERATING SYSTEM IDLE - LOOP.

II - eee.EXPERIMENT g5 RESULTS AA-

THE FOLLOWING . TABLE INDICATES HO W LONG EACH OF
2 cputs SPENES EXECITING IN THE SPECIFIED REGIUNS OF 	•
MEMORY, WRILE TREY INTERACT VIA A COMMUNICATIONS LINKc,

CPU 41 	MATH PD111/2U •
CPU g2 = ENGINEERING PDP11/20

- FOR TRESE MUISUREMENTS, ONLY MACHINE 41 - IS CONSLDERED -..
NO COMWINICATION IS OCCURRING BETWEEN THE TWO WFCHINES, AND THE
RESULTS W HI C '{ PERTAINED TO MACHINE 42 HAVE BEEN DELE1ED T3. 	.
SAVE SPACE.

NO COMPLTE TIME RES1LTS DETERMINED.

II e RESULTS FECM MACHINE 1 *

ALL TIWES IN MICROSIECONES

II TOTU REAL TIME: 0.2037721800000UUUD U7
TOTPL COMPUTE TIME: 0.00000000001JOUUUUD OU

II . 	
RA1GE 	 TIME

IN RANGE
TIME/ 	 TIME/
REAL TIME 	COTPUTE TIME

	

U 17777 	UO2037721810D U7 	U.10UUD U3 t 	O.U0UUD 00 %

	

II 17776 37776 	U.qUOUGUUOUUD UU 	0.COUUE 00 % 	0.0000D OU %

	

37775 57775 	0.101100000UOD OU 	U.UUUUD 00 % 	U.0000D UU %

	

57774 77777 	U.LUUOUOUOUUD UU 	0.0000E UU % 	O.UOUOD UU %

eee EXPERIMENT 45 RESULTS ***

NO.COMPLTE TIME RESLLTS DETERMINED.

e RESULTS FE . OM MACHINE 1 e

ALL TIMES IN MICROSECONES
TUTU R?.AL TIME: 	U.20223354UUMUUUD U7
TOTH, CCMPUTE TIME: 	U.UUUMUUUULUUUUUD LU

RAGE

	

It 	• 	3777

	

3/76 	7776
7775 1377 5

	

137•74 	1.7777

TIME
IN RANGE

U.2U184820U1J1) U7
U.40UUOUOULUD LU
0.38495UUUUUD U4
U.LUUMUULUD LU

TIru 	TIME/
REAL TIME 	COMPUTE TIME

U.9981D U2 % 	0.333UD OU %
U.UOUUE UU % 	U.UUUUD OU %
U01903D UU % 	U.UUOUD 9J %
U.UUUUE OU % 	0.0UOUD 00 %

47D'-

- 48D-

' 	*** EXPERIMENT ti5 RIESULTS ***

11 NO COMPLTE TIME RESILTS DETERMINED.

* RŒSULIS FRCM MACUINE 1 *

ALL Tins IN MICROSIECONES
TOTAL REAL TIME: 	0.201843380OMMUD O7

I/ TOM, CCMPUTE TIME: 	 • 0.001,00O0000000000D 00

RA1GE 	 TIME/ 	 TIME/
IM RANGE 	 REAL TIME 	COIPUTE TIRE

U 	777 • U.UUOUUUUOUUD OU 	U.UUOUD OU % 	• 0.0000D DU %
776 	1776 	0..;(1131224UUD 07 	U. 9974L 02 % 	O.UUUUD 011 % II 	1775 	2775 	O.UOUUUUU9)0D OU 	U.UOUUD UU % 	U.U .JUUD UU %

2 774 	3777 	0.1U000UUOLUD UU 	U.UUUUE U0 % 	0.00UOD OU %

THE FOLLOWING MEASUFEMENTS EETEEMINE THAT TEE
ADDRESSES UU0776->UU1176 MAY BE USED TO REPRESEMT THE
DOS-11 UDLE LOOF. TFESE ADDEESSES REE TEEN USED IN SUBSEQUENT
MEASUREMENTS.

" A EKPERIMENT 45 RESULTS ic. •

II NO COMPUTE TIME RESULTS DETERMIMED.

RESULTS FROM MACHLNE 1 e.

II ALL TIMES IN MICROSECONDS 	 •
TOTTL RnAL TIME: 	0.20185712UUUOUUOUD 07
TOTAL COMPUTE TIME: 	U.UMUOUUUUUOUUUD LIU

RACE 	 TIME 	 TIME/ 	 TIME/
IN RANDE 	 REAL TIME 	COMPUTE TIME

II 776
1175
1375

II 1575

1176
1376
1576
1776

0.2(1146868(10D U7
U.UOUOUUUUOUD UU
U.LOULJUUUULUD UU
O.UOUUUUUOUUD UU

0.9981E 02 %
U.00UUD 00 %
U.0000E 00 %
U.UOUOD 00 %

U.0000D 00 9..
U.00DDD OD %
0.0000D
0.O0OUD 00 ee

.Z .

11 THE FOLL0eING RESULTS INDICATE HO 'd ACTIVITY IS DISTRIBUTED
WITEIN THE IELE LODI.

11 *** EXPERIMENT 45 RESULTS

II NO COMPUTE TIME RES'ELTS DETIRMINED.

.* RESULTS FROM MACHINE 1 it

ALL TIMES II\ MICROSJECONES
TOTU MAL TIME: 	U.200702380UUOUUOUD U7
TOM COMPUTE TIME: 	0.0000UULUOUUMUUD U0

RUDE 	TIME 	TIEE/ TIME/
IN RANGE 	' REAL TIME 	CONFUTE TIME

	

Il 776 	1U36 	0.5 .866935000D 06 	0.3421D 0 2 % 	0.0000D OU %

	

1035 	1076 	11.i .i314.574U0OD (16 	0.3644E 02 % 	0.0000D U0 %
, 	1U75 	1136 	0.1141073UOUD 0 6 	U..5685D U1 % 	MOM UO %

	

II ' 1135 	1176 	0.4704980000D 06 	0.2344E 02 % 	U.UOUOD OU %

- 49D -

II IN THE FOLLUING RESULTS, 	IDLE LOOP •A•DRESS HAS BEEN
. USEI TO lETEEMINE 7FE AMOUNI OF TIME SPENT I:CMG USEFUL
COMPUTING. THE COMPUTING IS DEFINED TO BE USEFUL IF THE

11 INSIRUCIIONS BEING IIXECUTED ARE OUTSIDE THE IDLIE LUOP.

FOR THE FIRST RESULIS, IHE COMPUTER WAS LEFT IN
Ame ITS IDLE STATE, AND THE ADDUSSES FOR THE IDLE LOOP
11 WERIE FUI IN THE QUATRA-COMPARATORS, SO THAT COMPUTE TIME

COULD BE CALCULATED.

*" EXPERIMENT 45 DESULTS ***

IHE FOLLOUNG TAELE INDICATES HOW LONG EACH 'CF- .
 I

2 CPU'S PENDS EXECUTING . Ig rHE SPECIFIED REGIONS OF
MEMRY, VHILE THEY INTERACT VIA A UMMUNICATIONS LINE.

cpu $1 . MATH PDP11/20
CFU 42 = ENGINEEFING PDP11/2U

•

II RESUL1S FECM MACHINE 1

ALL TIMES IN MICROSI•CONES

11
 TOTU RFAL TIME: U.20395295UU00OUUUD U7

TOTAL CCMPUIE TIME: U.21683700UMUU0UD U5

RANCE TIME
IN RANGE

TIME/ 	TIME/
RERL TIME 	COMPUTE TIME

U 	776 	U.UUUUUUUU5UD DU

	

1176 177777 	U.38221U0UUUD 14

	

U 177777 	00211395 .295M U7
776 	11 •6 	0.20358029UUD U7

	

U.UUUUD OU % 	U.UUUUD DU %

	

0.1874E DU % 	0.17630 02 %

	

0.1UUUD 03 % 	0.9406D 04 %

	

..U.9981E 02 I 	U.9389D 04 %

II THE FOLLOWING MEASUREMENTS WERE DOSE ON THE MACRO L'OMPIUER.,

II A** EKPERIMENT 45 RESULT5 AA.A

THE FOLLOWING TA3 - LE rozoicAuu HO'! LONG EV2H OF
2 CFU'S SPENES EXEC1TING IN THE SPECIFIED REGICUS OF
MEMORY, WH ILE THEY INTERACT VIA R COMMUNICRTIONS LINK.

CFU 141 = MATH PU11/20
cpu 42 = ENGINEERING POP11/20

* RESULTS FROM MACHINE 1 A

ALL TIMES Ig MICROSECONDS

I TOM PEAL 7IME: 	0.2573996310000LUD 08
TOTRL CrIPUTE TIME: 	0.1095317340000000D 08

RAGE. 	 TIME 	TIME/ 	TIME/
IN FANGE 	 REAL TIME 	COMPUTE Tin

	

0 	776 	0.q000000000D 00

	

1176 	177777 	0.1081150390D 08

	

0 177777 	0..2573996310D 08

	

776 	1176 	0.1:491550750D 08

	

0.0000E 00 % 	0.0000D 00 %

	

0.4200D 02 % 	0.9871D 0 2 %

	

0.1000E 03 % 	0.2350D 03 %

	

0.5795D 02 	0.1362D U3

1

- 510.-

TIME
IN RANGE

TIME/ 	 TIMET
REAL TIME 	- COMPUTE TIME

RANGE

MEASUREMENT OF FILE TRANSFER FROM MACHINE 41 TO MACHUE 142

U• ill *?1/4 i," EXPERIMENT 45 RESULTS

THE FOLL0eING TR3LE INDIC . ArES HOW LONG EACH OF
le 2 crums SPENES EXEC1TING IN THE SPECIFIED REGIOlçS OF
lig MEMORY, ',MILE THEY •TTERACT VI - A COMMUNICATIONS LINK.

'CPU 41 = MTH PDI11/20
C PU 42 = ENGINEERING PDP11/2U

)11 ›k RESULTS FROM MACHINE 1

ALL TIMES IN MICROSECONDS
ne TOM MAL TINE: 	0.94741630UOUOUOUUD 07
Al TOTAL COMPUTE TIME: 	0.4829083U0UUUMUD 07

	

0 	776 	U.100000U000D OU

	

111 	1176 	177777 	U.35U2912700D 07

	

0 	177777 	U04741630UUD 07

	

776 	1176 	U.596878759UD 07
111

* RESULTS FROM MACHINE 2

0.0UUUE OU % 	U.UUUUD UU %
003697D U2 % 	0.7254D 02 %
U.1UUUE 03 % 	0.1962D 03 %
U.630UD 112 % 	0.1236D 03 %

ALL TIMES IN MICROSECONDS
TOTTL MAL TIME: 	0.9474163UMUULUUD 07
TOTAL COMPUTE TIME: 	U.48290830UUUUUUUUD 07

TIME
IN PANGE

U . 	776 	U.1000000U00D OU

	

1176 177777 	U.3965379000D 07

	

0 177777 	U.4741628UUD 07
776 	1176 	0.55U9380UDUD 07

TIME/
'PEAL TIME

U.OUUUE UU %
0.41850 02 %
U.1UUUE 03 %
0.58150 02 %

TIMEL -
COMPUTE TIFE

U.OUUUD
U08211D U2 %
U.1962D 03 %
1.1141D 03 %

RANGE

TIME
IN EANGE

TIME/ 	 TINEL
REAL TIME 	COMPUTE TIME

RANGE

TIME/ 	TIME/
REAL TIME 	COMPUTE TI/E

0.0000E 00 eg 	0.0000D 00
..14U41D 02 % 	U.7952D U2 %
0.1UUUE 03 eg 	0.1968D 03
U.5959D 0 2 	0.1172D 0 3 11

I/ MEASUREMENT OF FILE TRANSFER FROM MACHINE 42 TO - MACHINE 41 .

A • A EXPERIMENT 45 RESULTS ".*.

THE FOLLOdING . TABLE INDICATES HOd LONG ERCH OF
2 cru's SPENES EXECITING IN THE SPECIFIED REGInS OF
MEMORY, d HILE THEY INTERACT VIA ILCOMMUNICRTIONS LINK.

CFU Id = MATH PDI11/20
CPU 42 = ENGINEERING PDP11/20

* RESULTS FROM MACHINE 1 *

ALL TIMES IN MICROSECONDS
TOM MAL TIME: 	U.773030190000UUUUD 07
TOTAL COMPUTE TIME: 	0.392873510000U0UUD 07

O.UUUUE UU 	U.UUOUD UU %
U.4272D 0 2 % 	U.84U7D 0 2 %
(10100UL 03 	U.1968D 11 3 %
0 .57250 02 % 	0..1126D 0 3 %

0 	776 	D.1.00UU0UUUUD OU

	

1176 177777 	0.33U26923UUD 07

	

U 177777 	U.7;73U301900D 07
776 	1176 . 	U.44252679UUD U7

I/ -* RESULTS FROM MACHINE 2 *-

ALL TIMES IN MICROSECONDS
TOTIL RaAL TIME: 	U.773U301900UOUUUUD 07
TOTAL COMPUTE TIME: 	U.39287351000000UUD 07

RANCE 	 TIME
IN RANGE

	OU

	

117 (6i 177T7 	U:1124reg

	

0 177777 	0.-,73U301500D 07

II 776 	1176 	U.46064U99UUD 07

n

- 53D -

c

I.

II C 	
FILE NAME: DEXP5.EXP

C PUFPOSE or EXPERIMINT #5:
-TO MONITOR MEMORY ACTIVITY IN 2 PDP11/20 COMPUTERS

II AI [11E SAME TIME. nPICALLY, THE TWO COJ'PUTERS FIGHT
BE TALKING ro EACH DTHER ACROSS A :OM1UIICATI3NS LINK.

I cc
-TO FILL IN THE FOLLUING TABLE:

1) ADDRESS FANGE
2) TIME IN RANGE

C • 	3) TIME IN IANGE/TOIAL EXPEFIMENT TIME

C 	
4) TIME IN RANGE/COMPUTE TIME

THE SY' 	
•

.ETEM IS EEFUED 10 DE DCUNG USEFUL COMPUIING, HENCE
C COMPUTE TIME, IF OIE OR BOFH OF THE MACHINES IS EXE.CUTING

I C OUISIDE OF ITS WAI1 LOOP.
C

- 	C THE 4 ° IH ENTRY IN 1HE TABU IS OPTIONAL, DEPERIING ON
C WHETHER RANGE g3 OF THE QUADRA-COMPARATORS CONTAINS
C THE ADTRESS OF A PFOGRAM WAIT (OR :IDLE) LUOP.
C

SUBROUTINE DEXP5

FVUFSOBM UWUWGM 	 •
IMPLICIT INTIEGER (A-1)
INTEGER LOW-(2 1 4),HI7.1(2,4),TVOTFU(5),TVOVF1(5)
LOGICAL COMP1T
COMMON /CONFIG/NODE,INIT
•COMMON /FHMCKM/COMPUI
COMMON /TVCOM/TVOVFU(5) 9 TVOTF1(5)
LAIR MASK/0117777/

If C QUADRA-COMFARAIOR FANGES SPOULE BE SET UP USIWC THE
C TEST PROGRAM. IF C3MPUTE TIME RESULTS PIRE DESIRED,
C THEN RFNGE #3 OF ETCH QUADEA-COMPAUTOR MUST CCNTAIN

.0 THE ADDRESS FOR THE. WAIT LOO?,

II - 	• 	 • 	 • -
c.

C SEE IF COMPUTE TIME IS BEING USED.

II C 	COMPUI=.FAL9E.
.dRITE(6,12)

12 	FORMAT(' QC FANGE #3 = 'AIT 100P? Y,N/' °)
READ(6 1 14) REPLY

14 	EORMAI(A1)
IF (REPLY.EQ.°M °) GO TO 2 11

C
DUNQVO›/USVF/

C
It 3c 1 	DUOUJOVF

'C sEr ip LOGIC.UNITS TO RECEIVE QUADRA-COMPARATOR OUTPUTS.
C

If C LOGr UNIT 41 = A => 100O2->FF3->15 .4815

L1:41
• C

• C LOGIC UNIT g2 = A => 1QCO3->FF4->1SW8I6
'C

13;>B

11 . 	SET UP 8X8 SWITCH MATRICES.
- 540 -

r ()WI 	(1 /114D onr.no 	rpr.o.1-rr I '(T 	rt I'D VT rn DC

1 - 55D -

(1 MI% fl t I. L it rt 4.. n L 	JA 4 U .11 U J. 1J 	V .1. 1'1 L LI 11 1 41 %./ 	1

30 	CO=U
ÇC1=1
QC2=5
ÇC3=6

II CC TIMER 	EVENT - COUNIER INPUIS.

IV113t=0
TV181=1
1V2BU=2
TV2B1=3
IV3Bt=U
rv3B1.1
IV4BU=2
TV4131=3

II IV5B0=6
FV5B1=7

. 	C

II
C REAL TIME & COMPUTE TIME

C RTIME=7
CIIME=4

1

1

1NIT=1
CALL S18DIS
CALL SW8CON((C0 e 1V1EU,QC1,TV1Bi t ()C2,TV2B1,QC3,TV2B1,
1 RTIME,TV5130,CTIME,TT5B1)

a
I c

QC2=2
ÇC3=3
UNIT=2
CALL SW8EIS
CALL SW8CONQCO,TV3B0dC1,TV3B1,QC2,TV4BU,QC3,TV4D1)

C SEI UP TIMEE & EVEg\T COUNTERS
: II C

TO 35 UNIT=1-,5
35 	CALL TVSET (1,1.1,3r1,1)

II C TV 45 OVERFLOW IS 'OR'ED 4ITH TV 44 SINCE ONLY HAVE
C FOLR IMERFUPT LINIES. SPECIAL 7EST IS MADE IN 7VOVFL.

TVOVFU(5)=0

II 	C 	
IVOVF1(5)=U

-
C SE7 UF INTEERUFT &FNERATOE AND OVERFLOW COUNTS.

• I C
ig 	

tO 4t UNIT=1-,4
TVOVFLI(UIT)=0
1V0VF1(UNIT)=U

Ale 40 - 	CALL IGSET(TVOVFL ' UNIT)
à C

FETUFN
END

FILE NAME: DEND5.EXP

SUBROUTINE DEND5

IMPLICIT INTEGER (A-Z)
INTEGER QCL01, (2,4),QCHIGH(214),TVOVF0(5) . ,TVOVF1(5) ,
1 TVU(2),TV1(2)
ICGICRL IGFrC,COMPUT

IOUWIE PRECLUON DPTVU(5),DP1V1(5),PRTIME,PCTIME,1.AX

COMMTN /CONFIG/NODE,tNIT
DUNNUO pUWD(MUWOWG1)6k-U1UWG2)6* .

 '.(OMMON /ÇCCOP/QCLOW(2,4)ACHIGH(2,4)
COMMOU /PHMCOM/COMPUr
, COMMCN /PHMSM/OUTUNI,IGFLG

C MAY = 2.DU32
DATA 1AX/4294967296.DUL

eRITE(OUTUNT,10)
141 	:FORMAT(1 , 	EXPEFIMENT #5 RESULTS)%"'",/"./' 't

1 ° 	THE FOLLOWING U ABLE INDICATES HOW LONG ECU 3F g e
1 /' ','2 CP"C"S SPENDS EXECITING IN THE SPECIFIED REGIONS OF°,
1 /' 'MEMORY, WHILE THEY INTERACT VIA 	COMIUMLCATIONS
1 /",3X,'CIIU 41 = FATH PDP11/2U',/ ° 1 ,3X,'CPU #2 =
1 °ENGINEERI1G PDP11/2P1/ 1 ',/' °)
IF (.NOT.COMIUT) WRITE(OUTUN1,11)

11 	FORMAT(' ',/° NO COMPUYE TIME RESULTS DETERMINED. °)

C READ Aap COUVERT ALL TIMES TO DOUBLE PRECISION

DO 20 UNIT=1,5
, CALL 7VRE1D(IVU,TV1)
CALL DI2DF(TVU,DPTVU(UMII))
•CALL EI2EF(T 1 1.1,DFTV1(UNIT))

C ADJUST FOR FOSSIBDE OVERFLU
DPIVU(UNIT)=DPTVU(UNIT) 	TVOVFO(UNIT)MAX
IPTV1(UNIT)=IPTV1(UNIT) 	TV'CVF1(UNIT)ÏMPX

C COUVERT TO MICRO-SECONDS
EPTVb(UNIT)=IPTVWURIT)/1U.DU

20 	DPIV1(UNIT)=DPTV1(UNIT)/1U.DU

C LOOK AT RESULTS LEADING FROM EACH QUADRA-COMPARATOR UNIT
C ON DIAGRAM.

TO 1LL. UNIT=1,2 I/ C
IRITE(OUTUNT• 1 24) UNI7

. 	24 	FORMAT(''',/' ', I A RESiLIS FROM MACHINE ',I2,° ic°)

II - 	• 	
: IF (.NOT.COMIUT) DPTV1(5)=U.IU
4RITE(OU1'UNT,3U) DPIeU(5),DPTV1(5)

3U 	FORMR1(° ',/' 'D'ALL TIMES I> MICROSECONIS ° ,/' '.
1 'TOTAL REA:: TIME: ',D25.16,/",

II 	•1 'TCTAL COr.IUTE TIrE: ',D25.16)
nITE(OUTUNT,32)

32 	FORMPT('' ',/' ',5X,'EANGE 1 ,1IX, 	 .

II 1 	'TIME',13X, 	'TIME/ 1 ,11K, 	'TIME/°,/' 1 ,2UX,
.- : 1 'TN FANGE'.,SX,'PEAI TIFE'ÏiX,'COMPUTE TIME',/')

C
D UW2 	U'•3 BSF U0 Rr) VOJU 2
•C.TV3 &• 1V4 PE CU ÇC UNIT 2

- 560 -

• II 	7 	ITVLO=2UNIT-1
. 	ITVHI=2*UNIT

Ig IS USED TO INDEX INTO 'L04' & 'HIGH° ARRAYS.

I(

LUCK AT BOTH TIMER & EVENT COUNTERE ON EACH UNLIT, 'AND
' BOTH BUFFERS OF EAC.H. 	• .

1QC=IQC+1

FEAL TIME FOE BUFER U
. 	PRTIME=DPTVU(ITV) / DPTVU(5) * 1UU.DU

•C'ea COMPUTE TIME FOR BUFFER U
PCTIME=U.DU

• QCLOÏ(UNIT,IQC),QCHnH(UNIT,LQC),DPTVU(ITV),
1 PRIIME,PCTIME

44 	FORMAT(",05,1X,06,3XD17.1U3W,D11.40' %,3X,D11.4,'

I C •

'C % REAL TIME FOR BUFFER 1
FRTIME=DFTV1(ITV) / DPTVU(5) * 1UU.EU

11•C 	COMPTTE TIME FOR BUFFER 1
FCTUE=U.DU

• IF (COMPUT) PCTIME=PTV1(ITV) / DPTV1(5) * 10U.DU
4U 	IRITE(OUTUNT.,44) QCLU(UNIT,IQC),QCHIGH(UNIT,IQC),DPTV1(ITV),

1 PRTIME,PCTIME
le c

1UU 	CONTINUE

II .0 	eRITE(OUTUNT,2UU)
•2UU 	FORMAT(' ',/' u ri e ','OVERFLOW •COUNTS FOR TIMER & EVENT COUNTERS',

I • 	

• 	

UNIF ,JK, BUFFER ,JX, COUNT')
IO 25U UNIT=1,5 •

I 	r 	4 	• 	V 	̂ • 	• 	 V

250 	ÂRITE(OUTUNT,251) UNIT,TeOVTU(UNIT),UNIT,TVOVF1(UNIT)
gg 251 	FORMAT(' ',3"),I2,BXU,6X,I2,/",1)(,12.,8X,1',6X,12)
II c

C. RESET INTERRUPT GEURATOR IF NECESSARY
-C (I.E. FIRST'PASS T1ROUGH THIS CODE) 	• •

*IF (ICFLG) CiLL ICRES(1,2,3,4)
RETURN
END

- 57D -

DO 411 ITT=ITVLO,ITVHI

IQC=LOC+1

References

I) Banks, W.,• Morgan, D., "A Computer Controlled Hardware
Monitor: Hardware Aspects", Proceedings of International
Meeting on Mini-Computers and Data Communications,
Liege, Belgium, January, 1975.

2) Goodspeed, D., "Experiences With a Programmable Hardware
Monitor", Master's essay, University of Waterloo, 1974,
(CCNG Internal Report).

3) Mellor, to, "A General Purpose Load Generator",
Master's essay, University of Waterloo, 1974,
(CCNG External Report).

4) Morgan, D., Banks, W., Colvin, W., Sutton, De,

Performance Measurement* System for Computer Networks",
Ëroceedings of the IFIP Congress, 1974.

5) Morgan, D., Banks, W., Goodspeed, D., Kolanko, R.,
"A Computer Network Monitoring System", submitted for
publication in "IEEE Transactions on Computers".

6) Sutton, D., "A Summary and Proposal for the Monitoring of
Computer Systems", Master's thesis, University of
Waterloo, 1974, (CCNG External Report).

APPENDIX E

OPERATING SYSTEM RELIABILITY

OPERATING SYSTEM RELIABILITY

I

inimmum
Although difficult to define precisely, 	the basic

concept of software reliability is clear: 	that the software

system should pertorm 	its 	intended 	function. 	This

definition 	is equally applicable to operating systems and

other types of software.

IBM 	(30) 	makes 	a 	useful 	distinction 	between

"reliability" and "availability." "Reliability" is used to

indicate the absence of errors and "availability," the

ability to continue system oneration in snite of errors.

The term H recoverability u has also been used to describe the

concept of availability. From a user's viewpoint there is

essentially no distinction between the two--both represent

the ability of the system to perform the user's task

correctly. 	There may, however, actually be a tradeoff

between the two, since increased availability 	usually

implies a larger system, which is thus likely to contain

more errors. In this document "reliability" will be used in

a sense including both these concepts.

At one time, efficiency of all types of programs, and

operating systems in narticular, was the nrincipal

consideration in program design. More recently, reliability

has come to be considered a primary goal.

Tsichritzis and Ballard 	(34) offer the 	following

reasons for emnhasizing reliability rather than efficiency:

System Reliability 	 ' 	August 1974

As equipment becomes cheaper and faster, the pressure to

drive it "hard" is diminishing, thus programs which are not

as efficient as possible can be tolerated. 	Unreliable

software is not effective no matter how efficient it is. 	In

sonie applications the cost of a system failure is much

higher than the cost of the system itself, for examnle,

process control applications. It Is usually Possible to

tune an inefficient system to achieve a greater degree of

efficiency, but in most cases it is very difficult to rescue

an unreliable system. An unreliable system ma" corrunt data

which are very expensive to recreate. 	The result of

inefficiency is obvious--one has to wait longer; 	unreliable

software may have hidden errors which can violate system and

user data without anv outward indication. The results of an

error might only be discovered much later.

A variety of approaches to system reliability have been

used. 	Some of the major ones are: design of the system in

"levels," Proof of correctness, use of structured

Programming, protection of parts of the system from each

other, imnroved debugging techniques, in-line checking for

correct functioning, audit programs to check system function

periodically, and recovery programs to allow continued

oneration in spite of errors.

Other 	considerations, 	such 	as 	choice 	of 	an

implementation 	language, 	management of large software

projects, and the impact of hardware errors on software

- 2E -

1

1

1

System Reliability 	 August 1974

systems, although important, are outside the scope of this

discussion.

Historically; 	the need - for reliable systems was first

recognized by the designers of special purpose real-time

systems which had to be cOntinuouslv available to service a

time-Critical anplication. Mne of the first such systems

was 	No. - 1 ESS (5, 	10), developed by Bell 	Labs for

controlling local telephone exchanges. (It is also notable

as one of the first major applications of audit programs,

although the audit routines were initially developed

primarily to detect corruption of data caused by hardware

errors.) More recently, computer manufacturers have begun

to place much more emphasis on reliability in their general

Purpose operating systeMs. For example, IBM's latest

system, MS/VS2 Release 2, places much more emphasis on

reliability'of the system and protection of the system from

users than previous IBM operating systems.

11 MODULAIIII

• • 	The design of software systems in a "modular" fashion

has been recognized as desirable for many years. modularity

considered an important part of design for reliability,

but the Importance of how functions are assigned to modules

is emphasized.

An important extension of the concept of modularity is

the design of a sys .tem as a hierarchy of "levels of

- - 3E - •

II

II

System Reliabilitv 	 August 1974

abstraction." 	This concept has been proposed both in

connection with bottom up and top down system design. 	In

the bottom up approach to "level" design, successive levels

are designed to provide • added facilities usinv the

facilities provided by lower levels; the lowest level uses

only the facilities provided bv the hardware. In the top

down approach to "level" design, first the highest level,

which nrovides the desired features is designed. During its

design, the need for lower levels is identified; these are

then designed, and so on, until the last level designed

requires only facilities Provided by the hardware.

Whether the levels are designed top down or bottom un,

the objective is to restrict Interactions between levels to

calls from higher to lower levels, and to restrict

inter-level access to data to explicit parameters passed by

calls. If this is successfully carried out, then testing of

the system or attempts to prove its correctness will be

greatly simplified. This advantage is gained since the

independence of levels makes it possible to consider levels

individually for proof of correctness or testing purnoses.

Usually, a "level" structure will be very useful in the

desiçrn of a system, but problems may be encountered. The

usual central difficulty is assigning functions to levels so

that all renuired conditions are satisfied (18). A common

nrohlem is that the innermost level of the system will not

have access to I/0 devices since this is provided bv other

- 4E -

I.

I

I .

System Reliability 	 August 1974

levels, 	thus causing difficulties in writing statistical or

error messages from the innermost level. This problem may

be circumvented, as was done in SUE (31), without breaking

any of the technical rules about interaction between levels,

but the concent of requests flowing only inward is still

clearly violated. Mther difficulties in such systems

involve starting un and shutting down the system and fitting

debupging aids into the system.

The "virtual machine" concept is a different form of

senaration of operating system components to achieve greater

reliability. The term "virtual machine" is often used to

describe the combination of hardware and software facilities

provided by a level of a system designed as a hierarchy of

levels of abstraction. Here, the term is used to mean "a

hardware-software duplicate of a real existing computer

system in which a statistically dominant subset of the

virtual processor's instructions execute directly on the

host processor in native mode" (8). (The reasons for the

requirements in the definition need not be considered at

length--the basic iàea is that a program running on a

virtual machine anpears to be running on a real machine and

most of the nrogram's instructions are actuallv executed

directly by the real machine.) The obiect is to make one

real connutini- system appear to be several • independent

computing systems not only to the users hut also to the

operating svstem(s). The virtual machines are created by a

5E -

System Reliability 	 August 1974

small 	"Virtual Machine Monitor" which, because it is small,

can be made quite reliable. Then, except for the imnlicit

competition for resources such as CPU and channel time,

several operating systems can run independently on one CPU.

In particular, 	if one system crashes, it affects only its

ovin users. The idea of a reliable. Virtual 	Machine Monitor

running several 	possiblY unreliable systems is intuitively

annealing as a mechanism for increasing overall system

reliability. 	It has 	in fact been shown (8) that under

reasonable assumPtions about how to quantify reliability, ,N

• single user operating systems running under a Virtual

Machine Monitor are more reliable than a single N user

multinrogramming system.

This virtual machine concept can be very useful in some

circumstances, particularly when debugging a new or chanfred

operating system, but it must be used cautiously in a

production environment because if used unwisely it may

produce an unacceptable overhead.

•II 	III PROM: OF fmEEZIEESS

The only wav to be certain that a software system

functions correctly is a "proof of correctness." 	In

general 	it . is not possible to prove the cOrrectness of a

large system directly, unless it has been written with the

idea that its correctness will later be proved. Even then,

a proof may not . be possible, but proof techninues may still

• - 6E-

System Reliability 	 August 1971t•

be used to provide test data which can be shown to test all

parts of the system, or, those parts of the system believed

• to be "critical" may be Proven correct and more traditional

debugging techniques applied to the remainder of the system.

Appropriate modularization of the system is critical to

a proof of correctness. Present proof techniques cannot be

applied directly to large programs, but if a system has been

Properly modularized, the individual modules may be proved

correct and their correctness will then imnly the

correctness of the complete system. The conclusion that the

correctness of components implies the correctness of the

complete system is not an easy one to make however, since it

is usually very difficult to demonstrate that modules do not

have any unexpected interactions on data which would

invalidate the criteria for a Proper modularization of the

system. Even if modules can be proven correct individually,

the effort required will be considerable. Current estimates

indicate that about three man-months are tynically required

to prove the correctness of a 200 line routine. Since an

operating system will be three or four orders of magnitude

larger than this, it can be seen that a very large

investment in time would be required to prove the

correctness of an operating system, even if special nroblems

did not cause proofs to become more difficult than those of

programs typically used in proof of correctness attemnts.

Instead of using analytical methods to prove , program

System Reliability 	 " 	August 1974

correctness, which 	is usually quite difficult, 	similar

analytical methods may be used to determine an exhaustive

set of test cases. If the set of test cases can be proven

to be exhaustive and the program processes them correctly,

the program is then known to be correct. This should be

contrasted with the methods considered in Section IV, in

which a set of test cases is developed which is expected to

exercise all parts of the program but which is insufficient

to prove the program correct.

Perhaps the best-known example of an operating system

designed using the proof of correctness approach is

Dijkstra's THE multiprogramming system for the EL X8 (9).

The approach used was to design the system bottom-up, as a

hierarchy of abstract machines, prove the correctness of the

system a priori, and use exhaustive testing bottom-un to

locate coding errors (the testing method used is similar to

the method used by Brinch Hansen, as described in Section

IV). Because of the design of the system, particularly the

use of synchronizing primitives and the structuring of the

nucleus as a group of co-operating sequential processes, the

set of relevant test cases was small enough to allow

exhaustive testing. The proof that co-operation between

processes was correct was carried out in three main staFes:

It was demonstrated that in performing a task, a process

could generate at most a finite number of tasks for other

processes. Then it was shown that if some task was waiting

System Reliability 	 August 1974

to be performed, not all of the Processes could 1 ,e idle.

Finally, it was shown that the system could not become

deadlocked.

There are, however, various difficulties which nrevPnt

the extensive use of correctness proofs to imnrove the

reliability of operating systems. fine of the most obvious

is the effort renuired with present proof techniques to

prove the correctness of large programs. Although several

non-trivial programs have been proven correct, onerating

systems are so large that even if an operating system could

be proven correct using available methods, the effort

required to do so might not be justifiable. (It has been

suggested, however, that even if a proof is not carried to

comoletion, the effort of stating the properties to he

proven leads to sufficiently increased understandinF of the

program to make the attemnt worthwhile (4).)

A second difficulty is the parallelism which exists at

least conceptually within an operating system. Droving the

correctness of a routine becomes extremely comnlex if other

routines or a second activation of the same routine may

modify data used by the routine while it • is executing. This

difficulty can be circumvented most easily by restricting

parallelism in the system. For example, all interrupts are

disabled whenever a routine in the SUE kernel is executing,

thus guaranteeing that each kernel routine will run to

completion before any other routine is activated (3). 	Such

I.

I.

S“sten Reliabilitv 	 August 127 1'

a simnle techninue cannot be used in ail svbtems because of

nerformance difficulties. Notably, in a multinrocessor

confieuration it would be necessary to nrevent more than one

nrecessor from executing any part of the kernel at one time.

Such a "single lock" annroach has peen annlied in

multinrocessing systems and has proven to be a significant

bottleneck in such systems. Althoueh it is sienificantly

more comnlex, a "multiple lock" apnroach to restricting

parallel execution of individual narts of the kernel is nou

considered necessary, at least for multiprocessing systems.

ror examnle, the multinrocessing version of OS/\/S2

Pelease 2 (20) uses multiple locks. 	In 	addition 	to

connlicating n roofs, 	this also 	raises the possibility of

deadiock within the kernel.

A third difficulty 	is that "traditional" nroofs ot

nroçrran correctness are formulated in terms of a functional

relationship between initial and final values (it also beine

necessary to prove that the program halts). ige do not

normally expect an operating system to halt, so there are no

final values and additionally, input and outnut are

interleaved in a complex manner. Therefore, we must prove

that individual routines, which either terminate and are

re-activated or execute cyclically with a recognizable

"Idle" point, Perform their particular functions correctly.

We must also demonstrate that proper relationships exist

between the various onerations.

Aup,Ust 1974

A fourth difficulty is that many • onerating system

nronerties are tine-denendent. 	(Even servicin7 a eueue on a

first in-first out hasts involves a timing relationshin.)

Traditional nroof techniques are not well-suited to nroving

the correctness of such timing relationshins.

A fifth difficulty is that no proof 	ig nossihle 	that

the formal assertions about a oroFTram used in the nroof

nrocess actually represent the desired pronerties. Thus, a

nrnof of correctness of a system may actually nrove, not

thzIt it does what is wanted, but that it does somethin

else, as specified in the formal assertions.

Another difficulty 	is that 	II proofs" 	of 	proruai.

cnrrectness may not actually be nroofs in the mathematical

sense: Harlan 1ills states "'proof of proirram correctness'

is a relative tern by today's editorial standards, which

means that a certain level of formality has been shoyn in a

•nldusibilitv argument and that is all it means" (23). Thgre

1-; a great danger that informal or sketchy "nroofs" ma" miss

innortant details, as was discovered, for examnle, in the

nroof of the SUE timer manager (4), in which sone imnortant

insights occurred at the most detailed level of the nroof.

rinllv, nroofs, at least if prepared hy hand, are

themselves subject to error. "There is no foolnroof nrof

of the correctness of a program or a program serment" (23);

An 	interestinr variation on proof of correctness

methods has been used by Harlan Mills (2, 23) in the design

- 11E -

August 1974 "stem

of large programs which must be rd table (though not

snecificallv operating systems). The techninue, used in

conjunction with. a project organization called "the chief

Programmer team," makes use of top-down, structured

Programming. Although the Programs are not formally Proven

correct, programmers are taught proof of correctness methods

and can think in terms of correctness proofs as they are

designing and coding the system. The objective is to

Produce error-free code initially, rather than to find the

errors after the code has been written. (As Dr. Mills has

pointed out, one is likely to have more confidence in a

nrogram in which no bug has ever been found than in a

Program 	in which several bugs have been located and

corrected, but which now contains no known bugs.) 	The use

of this method in the production of a comnlex on-line system

for the New York Times was remarkably successful; however,

it has been suggested (19) that other factors influenced the

success of this system and thus, that although the method is

an encouraging development, its worth has not vet been

clearly demonstrated.

IV TESTIMn

Probably 	the 	oldest technique for innroving the

reliability of software is debugging--running a Program with

test data and checking the output to determine if the

program functioned properly, and correcting errors as they

- 12E.

5.;vstem Reliability 	 August 1974

annear. 	Unless accompanied by a forma nroof that a set of

test data has comnletely exercised the program, no "nerfect"

debugging run or set of runs proves that a pro2ram is

correct, but for simnle Programs it is often straightforward

to develon test data which will be sufficient to detect at

least most of the errors in a program. When debugging large

pro!rrans, narticularlv a program such as an onerating

system, whose behaviour depends on the timing of innuts,

simple methods of applying test data to a program may be

completely inadenuate.

Even for a trivial program it is usually not possible

to test all possible combinations of inputs, so it is

clearly necessary to develon methods for generating test

data which will be likely to isolate most of the errors in a

nrogram. Next to attempting all possible innuts, the most

thorough tvne of test will attemnt to exercise all • nossible

control oaths in a program. This may be nossible for small

nrograms, and automatic methods can be used to identify the

control paths (13), although human aid will likely be

renuired to identify some n imnossible" naths which apnear

nossible to the automatic method, and to generate the data

ithich will cause each path to be executed.

Unfortunately; 	for 	most programs, the number of

possible control paths is so large that testing all of then

also 	becomes 	infeasible. 	In this case, 	the closest

approximation to an exhaustive test which is possible is 	to

- 13E--

',;ystrffl Reliability 	 Aug.ust 1974

test all 	sections of code and all 	conditional 	branch

possibilities. Here, automatic methods may he used to

construct a set of Paths through the Program which will

exercise all branches, choosing the paths so that a small

set of test data can be used. l\gain, human aid is renuired

to determine if a constructed path is actually possible and

to devise the test data which will cause a path to he

executed.

Probably the most difficult tyne of problem discovered

by software testing is one which depends on the timing of

inputs to the system. • Even when such a proolen is

discovered during testing, it may not be resolved quickly

(or at all), if it cannot he renroduced at will. This type

of problem usually arises from incorrect synchronizing of

Processes within the system, so a well - desirned system

should rarely suffer from such problems. 	If such a problem

doe, occur, 	usually the ability of the system to trace its

min onerations will 	he critical 	in 	determining 	the

difficulty of locating the error. Routines which troce the

activity of the system are usetul in resolving manv tvoes of

';"stem Problems, but when the senuence of onerations within

the svsten is the source of a problem, standard debuging

aids suciv as dumils may prove nearly useless.

If a plan for testing of a svstem is develoned before

coding of the system hegins, testing will usually be greatly

simPlified, and thus reliability of the finished system can

Aurust 1'1 74 Svstpm Reliabilitv

he achieved more easily. 	Brinch Hansen has described the

testing of the RC4000 onerating system (6). The method he

used 	is a good general techninue, narticularlv for systems

desirned as a series of levels. 	The svster ' 'as tested

beginning at the innermost level, and once each level ':as

comnletelv tested, it could be used 	in testing of higher

levels. 	Determining whether the system was functioninn

nroperlyzwas made easy bv a small trace routine which was

devised betore the system was coded. Althounh this annroach

is certainlv a useful testing method, the reverse annroach

O f: designing, coding, and testinn a system in a ton-down

manner has also been advocated and used in the design of

large reliable systems, as described in the nrevious

section.

Although, as Dijkstra has nointed out, debunning can

show the presence of errors, but not their ahsence, in many

Instances it mav not be considered nractical to attemnt to

remove all the errors from a large software system. Thus

standard debugging techninues may be annlied in an attemnt

to remove as many of the errors as possible from the system.

If such an approach is used, it is especially valuable to be

able to estimate how many errors are in the system, both

during testinn and when the svstem is "completed" and made

available for general use. To obtain such estimates, a

model of error discovery and correction may he used in

conjunction with data collected during system testing.

. - 15E -

HI

SYstem Reliability 	 ' 	August 1974

Ine such model 	is described in (32). A number of

simplifyinçr, assumntions are made, 	princinallv: 	that 	the

failure rate of the program is nronortional to the number of

errors it contains, that the nrogram does not increase in

size as testing progresses, and that the correction of

errors does not introduce anv new errors. The first

asFwmption is clearly at best approximately true and is

probably justifiable only because the failure rate is the

most easily obtained measure of a program's error content.

The second assumption will likely be satisfied quite closely

in most cases. The third assumption, however, is almost

certainly not true--at best one can hope that when the model

is annlied during Initial system testing, the rate of error

removal will exceed the rate of introduction of new errors

sufficiently for the model to be useful.

Using the model one can obtain a simple relation

hetween the initial number of errors in the system, the rate

of error removal, the number of instructions in the system,

and the failure rate of the system. Using failure rate

data, for at least tWo separate times during system testing,

one can then obtain estimates of the initial number of

errors in the system and the rate at which thev are being

removed. 	Making use of the estimated values of the

parameters, it 	is now possible to estimate either the

nresent number of errors in the system, or the time at which

the number of errors will have been reduced to a specific

- 16E

System Reliability 	 August 1974

value. 	Clearly, however, due to difficulties with the third

assumption of the model, estimates of the time required to

achLeve an extremely small number of remaining errors are

likely to he of no value. 	!hile this model 	is obviously

very apnroximate, there are many difficulties In using a

more exact model, since the parameters which would be needed

are difficult to estimate.

It has been stated that "the reliability of a software

Product usually denends on the effectiveness of testing

procedures during the development stage" (22). Although

future develonments in proof of correctness methods may make

this statement untrue, the statement clearly reflects the

importance of testing in the development of present

operating systems.

V SELF - CHECKING

In the near future, it is likely that ver" few., if ami,

large software systems will he proven correct. All.

operating systems are therefore likely to contain unknown

errors. At present, because software is so easy to change,

the number of errors in a system does not even annroach zero

through'extended use of the system, but Instead decreases

asymptoticallv to some positive. value. 	Even in a system

which is ultimately to be Proven correct, errors will 	exi . st

when the system Is 	first coded. . (Also, it is unwise to

assume that any svstem will necessarfly remain free from•

-,17E

System Reliability 	 August 1974

errors 	when 	subjected 	to 	"improvements" 	and local

modifications.) Thus in any system, whether or not it is

ultimately to be proven correct, it is important to minimize

the effect of errors on the svstem.

The following actions are tynicallv required 	in a

sYstem which may contain errors but which is intended to

onerate reliably in spite of them: The behaviour of the

system is observed and comnared with exnected behaviour.

(The fact that certain tynes of behaviour are unexnected is

actually a subtle form of redundancy in the system.

Redundancy will be seen as a key element throuOlout the

consideration of error detection and recovery.) When a

discrenancy is detected, an attempt is made to diagnose its

cause and the occurrence of a discrepancy is recorded. If

the cause is an error in the svstem, appropriate actions are

nerformed to recover from the error.

This section and the two following sections consider

techninues for detecting errors. 	Section VIII considers

possible error recovery actions.

The reliability of an operating system can be imnroved

by including code in the system to check the validitY of

data structures before and/or after they have been processed

system routines. 	If data structures are checked before

they are used, errors previously introduced will 	not ce

prona7,ated. • If data structures are•checked after they have

been modified, 	the routine causing an error will 	be

' 	 - 18E. - 	•

System Deliabilitv 	 August 1974

immediately identified. 	Although cleverly constructed tebts

can catch manv errors with a small amount of processing,

frenuentiv extensive checking wilI introduce an unaccentdule

overhead, so it is often necessary to restrict the check:, to

be -made. Designing simple data structures will mate

checking easier and will also tend to reduce the number of

errors in the system, since complex data structures nrovide

greater opportunity for-error in their use--

Clearly, all Parameters passed to system routines by

user programs must be checked for validity, hut narameters

passed from one system routine to another might also be

checked. A common result of failing to check oarameters is

that an error in one routine causes another routine to fail

because of an invalid parameter, thus concealing the

original source of the error. Even checking of all

narameters passed between system. routines is likely to

introduce tOo much overhead, so decisions must he made

concerning which parameters are to be checked. Inc?.

advantage of a "level" structure is that it makes such a

decision straightforward—parameters should be checked as

they. are nassed from a higher level to a lower level, hut

not in the reverse direction, and nrobablv not beteen

routines on the same level. This anproach has been annlied

In the SUF. onerating system (31). The SUF nucleus contains

a 	number of processes arranged in a tree structure.

Communication can occur 	only 	between 	ancestors 	and

- 19E -

System Peliabilitv 	 Au7ust 1974

descendants on the tree (not between brothers, etc.) and all

data nassed toward the root of the tree is carefully

validity checked, whereas data passed away from the root of

the tree is usually assumed to be correct.

Various techninues may he used to make a nrogram check

its own oneration to some extent. Probablv the mnst

thorough form of sel f-checking would be to have two senarate

alfrorithms perform the same function and then comnare

results. Unfortunately, this would essentially double the

size of the program and halve its execution speed, and would

also create Problems when a single data structure is both

the innut and output of an operation, so this anpears to be

of little nractical value in general.

The most common form of checking the correct oneration

of a routine is examining the integrity of data structures

affected by the routine. The question of determining the

integ,ritY of data structures is considered in the next

section, and so will not be considered here.

Man" 	sel f-checking 	techninues are concerned with

nreventing an unexnected occurence from causing disaster.

For exannle, branching to select one of a number of

alternatives should be done only as the result of a nositive

test--if all but one of the exnected possibilities have been

tested for, it should not be assumed that the remaining

nossibility holds. Instead, if none of the exnected

situations holds, an error should be 	indicated. 	This 	Is

- 20E -

System Reliabilitv 	 Aurust 1974

particularly useful 	if input parameters have not been

thoroughly checked, but also may detect internal lo-ic

nroblems of the routine. Other coding tricks can be used to

hein make a routine self-checking, but no Reneral nrinciples

seem to underlv them.

A further techninue which may be used is to monitor the

control flow of the system, usually by observinr subroutine

calls. Valid control flow sequences can be determined from

the structure of the system and actual senuences can then be

checked against these. This would usually be nuite

tine-consuming, so it has been pronosed to Perform such

checking using an external chip processor with a mini-disk

storing the valid control sequences (24, 25).

Another technique which can be used to check for

correct operation of a system is the use of "proRram

exercisers." These are nrograms which provide a routine to

be tested with a set of inputs for which the exnected

results are known and compare the expected and actual

results. The major difficulty with this anproach is thdt

few routines execute with no side effects (that is, routines

frenuentiv modify global variables or save 	infornation

internally between calls). 	The effort of undatinr and

naintaininr a large number of exercisers and the amount of

nrocessing time consumed by this anproach are also

significant difficulties.

II

System Peliabilitv 	 • 	August 1974

VI AUDITIMq

Frequently, in-line checking for errors 	introduces an

unacceptably 	high 	overhead,

onerating under real-time constraints. 	An 	alternative

techninue is auditing--periodically checking the correct

functioning of the system.

Auditing usually renuires 	less overhead than in-line

checking, but cannot Provide as timely detection of errors.

If an error occurs in a system which uses in-line checking,

the error ma" be detected by the routine in error or the

first routine which accesses data which has become invalid.

In an audited system, many routines may access invalid data

t-efore an audit grogram determines that an error has

occurred. Subsequent operations with the erroneous data may

cause other system data to hecome corrupted, making recovery

more difficult and obscuring the original 	cause of the

problem. 	In the worst case, the system may crash as the

result of an error before the appronriate audit grogram is

invoked.

Usually, 	audit programs are 	invoked 	neriodicallv,

either after the exniration of a specified time interval or

after a snecified number of executions of a system routine,

such as the disnatcher. Some audit nrograms, often called

emergency" audits, are Invoked only when there is reason to

particularly 	in systems

helieve a nrohlem exists--elther . because another audit.

Program has detected an error or • 'some measure of system

II 	• - 22E-

System Reliabilitv 	 August 1974

performance has not been satisfied. 	Invokin:': emergency

audit programs when performance degradation is detected must

he Planned very carefullv, since the audit program will

cause further performance degradation by occupving the CDU

with "unproductive" work. This nay produce a serious

performance loss if the detected defrradation was actually -

due to an overload rather than software errors. "- his

difficulty has been encountered in No. 1 ESS 	installations,

in 	!h Ch an overload has caused sufficient Performance

degradation to invoke an emergency audit, which has then

caused enough further degradation to invOke a higHer level

emerTency audit (35). Ideally, one would to ignore

performance degradation caused by overloading when deciding

whether to invoke an emergency audit, hut in practice it is

usually very difficult to determine the reason for loss of

system performance.

The purpose of audit programs is to. detect erroneous

-s“stem oneration, usually as reflected in erroneous data

structures. Although the princinle of audit programs is

straightforward, many considerations are involved .in the

design of a good system of audit programs (1).

It is temnting to design audit routines to check for

•s neci f ic error conditions which have been ohseryed or are

exPected to occur. The audit routines, however, 	should he

designed not to detect silecific • problems which may he

anticipated, hut to deterMine whether th e audited data

- 23E

ii

Svstem Peliabilitv 	 Ai:gust 1974

structure is correct, 	so that unexnected problems will be

detected. The philosophy should be to determine whether

data is correct not to determine how it became mutilated.

Often data structures used by the system will 	be

difficult to audit. 	It might then seem simniest to create

snecial sunplemental data which would be easier to audit.

The danger of this approach is clear: the audited data may

he correct when the "real" data is in error, or errors in

the audited data may not indicate anv actual nroblem, excent

in the snecial code for creating the audit data. In

addition, the "for audit only" data apnroach creates extra

work for the system, decreasing efficiency, and wastes

storage.

It is imnortant to audit all system data, even if not

anparently vital. Difficulties with obscure data will

likely impact other system data eventually and may produce

nroblems which are hard to track down if the originally

erroneous data has not beenaudited.

Auditing of data structures can he simnlified and made

more effective if data structures are designed to be

audited. Some features which aid auditinp are: Storing a

code in each element of a data structure which identifies

the type of element. Using both forward and backward

Pointers in lists, or at least terminating chains hy linking

the last element to the first, forming a cycle, rathnr than

using a special value to terminate the chain. Using other

System rleliabilitv 	• 	 August 1974

forms of data redundancy, and using standard Patterns in

designing data structures.

The 	two most commonly .used audit • techniques are

checking. for consistency of-redundant information and range

checks on values. Range checks involve advance knowledir.e of

the values which are valid 	in a particular field. 	The

ranges are usuallv peculiar to the particular situation.

For examnle, a field which is expected to contain an address

must contain a value within the addressing range of the

machine, and a field which is exnected to contain a day of

the year must have a value in the range 1-366. The

commonest examnles of verifying the correctness of redundant

information are checking "point to, point back" in doubly

linked lists and checking for closure of lists which are

sunnosed to be circular. Usually, subtler tynes of

redundancy also exist but are harder to check. ror example,

all the main storage in the system should either be on an

"available" list or assigned to some activity in the system.

It should be nossible to check whether ami storage has

become "lost" or has been assigned twice; however, 	in many'.

•Ystems 	the 	time to perform such. a check would be

prohibitive.

cne tvne of redundancy which can sometimes be usefully

added to data structures is a simple Checksum of all 	the

fields 	in the data structure. 	Each routine which modifies

the data structure also modifies the checksum, Preferably hv

- 25E -

System Reliability 	 August 1974

computing a change to it rather than simply recomputing it

by examining all the fields in the data structure. Audit

routines can then recompute the checksum and compare Tt with

the stored checksum to detect some types of errors in the

data structure. Unfortunately, many types of program'logic

errors will generate incorrect data "early" enough in their

processing so that the checksum will be correctly modified

and no error will be detected by this - method. One type of

problem -almost certain to be detected is a "wild" store not

even intended for this data structure. This type of problem

may not be common enough to justify the extra storage cost

and processing overhead involved in. storing and computing

checksums. (In OS/360 for some -models (12), an analogous

technique Is used to restore code damaged by hardware

malfunctions. Presumably it could also be used to restore

code damaged by software malfunctions, but OS/360 does not

contain routines to detect such software-caused damage.)

Audit programs can also check for activities in - the

system which are not advancing properly and for expected

measures of system performance which are not being met.

This technique has been used extensively in No. 1 ESS, in

which reaSonably accurate expected timings are known for

. most system functions. In a general purpose operating

system many functions can reasonably 	be 	active 	for

arbitrarily long times. 	In all systems, however, there

should be some functions.which can be expected to complete

- 26E -

System Reliability 	 August 1974

In a specific time. 	For example, an I/0 operation (except

on a teleprocessing device) should not be active for more

than a few seconds--if an audit program which was invoked at

Intervals of a few seconds discovered the same I/O operation

marked in• progress on two successive activations, it coud

 conclude that the function was not being performed properly

and corrective action was required.

The corrective action to be taken when an audit program

discovers an error depends heavily on the system and the

type of error discovered. Most error recovery techniques

are common to errors discovered by audit programs, in-line

checks, and protection mechanisms; they are discussed in

Section VIII. One special consideration when an error is

detected.by an audit program is that the error may have

caused further errors, or that it may have resulted from

some other, as yet undetected, error. 	Thus, 	It Is often

desirable to invoke other audit programs, particularly those

concerned With related data structures.

. 	VII PROTECTION

If 	an 	operating system may contain errors, one

technique to help minimize the effect of those errors Is to

protect parts of the system from each other.

Early in the development of supervisory systems, the

desirability of protecting the system from accidental or

malicious damage by user programs was recognized. Although

- 27E -

System Reliability 	 August 1974

In most systems there is no danger of malicious damage to

one part of the system by another part, errors give rise to

the possibility of accidental damage. Techniques for

protecting the system from itself usually rely on the same

hardware features which are used to protect the system from

users, and similar software techniques. The essential idea

is to restrict each system component to the use of those

hardware features which it requires.

For 	example, all 	large computers currently being

manufactured have a "supervisor" mode for use by the

operating system; user programs run in a "problem" mode

which prevents them frOm • accessing I/O devices, the -

: protection hardware, etc. 	The supervisory mode is not

required, however, by all of the operating system. 	Simply

by restricting supervisory mode to those parts of the system

which require it will 	allow earlier detection of some

errors, since they will result in an attempt to execute a

privileged" instruction by an unauthorized routine. Also,

'errors in routines operating in supervisory mode tend to

have much more gerious effects than those in other routines,

thus by concentrating all "privileged" instructions into a

few routines and executing only those routines in

supervisory 	mode, the impact of many errors will he

'decreased. 	This principle can usually be applied easily to

a system designed in "levels" since It should only be

çvstem Rellabllity 	 Aimust 1974.

necessary to execute the lowest level or a very few of the

• lowest levels in supervisory mode.

11›rdware memory Protection can be usèd to Protect the

code and data of each routine from modification by other

routines; howeVer, if many routines access common data It

may not be possible to protect data so that only authorized

routines can modify it. On a machine such as a System/360

with a limited number of "protect keys" it may not be

possible to provide any such protection since the number of

protect keys not used by the operating system e'ffectively

determines the number of concurrent user jobs which may be

executed. This restriction does not apply to "virtual"

System/37 0 's, which can provide Protection through the

address translation mechanism, so that Release 2 of OS/VS2

makes • use of eight different protect keys for parts of the

operating system (20).

In some systems it may be possible to protect Programs

and unchanging data from accidental Imodification by placing

them in read-only memory. This technique has been used in

No. 1 ESS, which uses a read-only "program - store" to hold

program code and data which is not normally changed during

system operation, and a read-write "call store" to hold

changing data. The technique used in No 1 ESS Involves a

lengthy process to modify the read-only memory offline and

would thus not be appropriate for systems subject to

frequent changes. Hardware which would allow more rapid

- 29E -

Àugust 1974 System Reliability

loading of read-only memory 'would make this technique

appropriate for protecting almost any operating system.

Very elaborate protection-structures within operating

systems have alSo been proposed, usually in conjunction with

a sophisticated protection algorithm for use relative to

user programs. Typically, such an organization restricts

supervisory mode and complete memory access to a small

"kernel" program, Then, in order to transfer control

between system routines, or obtain access to common data

structures, ail parts of the system must obtain permission

from the kernel, which checks all 	requests against the

authorization of the requesting routine. 	While • this

provides a • very thorough protection mechanism and may be

suitable for use with user programs, it tends to produce a

very high overhead, which may be unacceptable in a

production system and is almost Certainly unacceptable in a

real-time system. Although such thorough protection may not

be practical at the present, it is possible that special

hardware may in the future reduce the overhead sufficiently

to make the technique moremidely applicable.

A similar proposal 	(37) is to restrict all access to

Interface data structures to a special Interface system, so

that no other routines physically access the data

structures.- All modifications of or references to interface

structures are made symbolically.- This provides a degree of

independence from the form of the data structure as well as

- 30E -

System Reliability 	 August 1974

protection • of 	the 	data 	structure. 	By implementing

primitives for stack and queue handling within the Interface

system, other components of the system can be simplified

somewhat. Although this technique has several attractive

features it is clear that there is a high overhead in

repeatedly resolving symbolic references during execution.

VIII _Una RUnERY

Although detection of errors is a very important aspect

of system reliability, by itself it is of ,limited value. If

the system is to continue operating in spite of errors, it

Must contain routines which will provide recovery from

errors. The corrective action to be taken when an error Is

discovered depends heavily on the system and the type of

error discovered. Some general possibilities are outlined

below.

In some cases, it may be possible to repair the error

and continue normal operation. This may be possible, 'for

instance, If a list has become "unlinked" and enough correct

information remains to recreate the appropriate list

structure. For example, list elements may fill a contiguous

area of core, so any "lost" elements May be found and

replaced on the appropriate list, or the elements may be

locatable through some other list structure to which they

alSo belong and which is still val Id. If this can be done,

ideal recovery has been achieved, since system users will be

- 31E -

System Reliability 	 August 1974

essentially unaware of the occurrence of an error. Even if

the error has not been repaired it may be possible to

continue operation from the point of error, effectively

ignoring the error. This is usually a very dangerous

alternative.

If the system cannot repair the error, 	it may be

possible for the system to continue to prOvide some level of

service while a diagnostician attempts to repair the system

software, using services provided by the system to aid his

diagnosis and repair.

In other instances, 	it may be possible to return the

system , . or some part of the system, to a checkpoint at which

the system was functioning correctly. (Some provision must

be made to ensure that this does not result in an infinite

loop between the checkpoint and the point at which the error>

is discovered. Since many system errors result from the

occurrence of an unusual combination of circumstances, which

Is not likely to recur immediately, there Is usually a good

chance 	of 	re-establishing correct functioning of the

system.) 	Particular care must be taken if online files are

being updated, since such a procedure could result in

Auplicating a change. If a return to a checkpoint would

involve "backing up" a user program which might be updating

• an online file, it is . generally preferable to abort the

> program' and thus allow human intervention rather than risk

destroying a file.

- 32E -

System Reliability 	 August 1974

Otherwise, it may be necessary to restart or abort some

system routines. This allows continued operation of the

system but will usually have Some Impact on system users.

In a transaction oriented system, some transactions in

progress may be lost; in a batch job system, some jobs may

be aborted. However, if restarting of system routines is

well . planned, it should be possible in most cases to

reconnect a system routine to the function being performed

when the routine failed. If the routine then falls again

immediately, while still attempting to perform the same

. function, it will usually be necessary to abort the process

requesting service from the system. routine (either the

request is Invalid but is not being detected as such or it

Is valid but has encountered a bug in the system routine).

'If all else falls, operation of the system may be shut

down. Although this is not a desirable alternative, an

orderly shutdown Is still preferable to allowing errors to

propagate through the system, causing unknown damage before

eventually producing a messy system crash. Also, if the

system can be stopped and restarted in an orderly manner, it

may be possible to salvage some system tables from the

falling system, so that when a fresh system Is loaded it may

resume processing at nearly the point where the old system

failed. This technique has been used in several -XDS-940

systems (36), and a related method has been used in the

Distributed Computing System (See Section IX).

- 33E -

System Reliability 	 August 1974

In general, 	it ls desirable to design a hierarchy of

recovery routines, so that if the recovery routine initially

invoked is unable to effect recovery, another routine will

be available. This philosophy has' been applied in the

design of 3S1VS2 Release 2 (11), in which a stack of

"Functional Recovery Routines" is maintained, which contains

entries corresponding to system routines invoked but not yet

terminated. Status information is also stored to aid the

processing of the recovery routines. When a software

failure occurs; the routines on the stack are executed,

beginning with the routine most recently placed on the

stack, until one recovers successfully. Curiously, if all

system recovery routines fail to recover from a software

error, an error recovery routine supplied by the user

program may be invoked. It is unlikely that a user program

will be able to take any effective recovery action, but this

may provide an opportunity for the Program to terminate

gracefully, leaving any files it was modifying undamaged.

Error recovery routines may be executed either on an

emergency basis, locking out normal system functions, or in

.parallel with normal system. operation. The. former Is

usually simpler to implement, since problems of other

routines referencing erroneous data are avoided. Complex

recovery routines may, however, dictate use cif the latter

technique in order to maintain acceptable response time.

Error recovery routines may themselves contain errors,

- 34E -

11 	System Reliability 	 August 1974

so a well-designed system should be Prepared to cope with

such errors. Clearly this is a difficult problem, since

designing a second level of detection and recovery routines

çimply pushes the problem to another level. In Particular,

OS/VS2 Release 2 apparently makes no attempt to cope with

this problem, although the number of error recovery routines

Is very large: 	"a system failure can be considered to be

1/ . 	the result of two program errors: 	the first, in the program

that started the problem; the second, in the recovery

routine that could not protect the system" (30). While this

is certainly preferable to a. single error crashing the

system, improvement is still needed.

1K nempum IEMLŒM
Cnmputer networks provide both additional challenges 'in

the .design of reliable systems and greater opportunities for

achieving reliability at reasonable cost. In this section,

consideration of computer 	networks 	will 	be 	limited

principally to homogeneous networks of closely co-operating

computers. In such cases, we may consider the entire

network to be under the control of a single distributed

operating system.

Some of the additional challenges to reliable operation

are. due to the presence of communication lines in the .

system, which normally cause more hardware problems than CPU

- 35E -

I System 'Reliability 	 August 1974

It • • hardware does. 	This aspect is outside the scope of the

present discussion.

Other 	challenges 	to reliability are due to the

18 	
increased complexity of the system, caused by the need to

,
co-ordinate multiple CPU's and the necessity of preventing a

software failure at one node from propagating to other nodes

and thus disabling the entire network.

The chief opportunity for 	increasing 	reliability

afforded by computer networks is due to the presence of

multiple, 	reasonably independent 	CPU's. 	This 	allows

11/ 	
reliability to be increased in two different-ways. 	Firstly,

le

	

	
when a software failure does occur which disables a node of

the network, provided the failure can be confined to that

11 node, the network can continue to provide at least some
. 	.

service to some of its users and May even continue operatlon

II • so as to make the failure transparent to all or nearly all

users. 	If all 	service were being provided by a single

central computer, an unrecoverable failure in the operating

11 	system running on the one CPU would interrupt service to all

users until the system could be restarted. 	Secondly, 	if

11

	

	appropriate hardware is available, some other processor in

the network may be able to restart a failed processor,

IL eliminating 	the 	manual 	intervention normally required

following a critical operating system error.

Clearly, 	if a network is so designed that one node is

11 - 	responsible for overall control and supervision of the

- 36E

System Reliability 	 August 1974

network, the above advantages are diminished since failu-re

of the supervisory node will halt the entire network. In

the following, only networks in which control functions are

distributed throughout the network or can be switched to

different nodes will be considered.

The Distributed Computing System (28) Is an example of

a system designed to male use of the opportunities in

networking for increasing the .reliability of the total

computer system. In the DCS, each processor Is controlled

by a nucleus which must be functional for that processor to

be operative in the system. All other system functions,

such as resource allocation, are performed by processes

which can execute in any node. For example, the system'

process which allocates processes to CPU A can execute on

CPU B.

If a node fails, either because of hardware problems or

an error in the nucleus, processes executing on that

processor are lost. Once failure of the node is recognized,

a new copy of the nucleus is loaded into the failed

processor by a bootstrap routine, which is loaded by one of

the other processors. This loading process does not affect

*system tables in the processor being loaded. The first task

of the new copy of the nucleus is to attempt to notify the

Initiators of processes which were running in the failed CPU -

that the initiated process has failed. S,Unce data in the

system tables may have been damaged, precautions are taken

37E -

System Reliability 	 August 1974

to prevent erroneous data from causing further difficulties.

If the data is correct, appropriate processes will be

notified of the failure and thus fresh copies of system (and

possibly user) processes can be started. The posSibility of

mlssed notification of process failure is taken into account

by arranging for each process to send, periodically, a

status check message to each process it has initiated to

ensure that the process Is still running.

An important type of process in the DCS rs the "status

checker." Messages are sent to the status checkers when

unusual- conditions, such as the failure of a process to

accept a message, are detected. The status checkers attempt

to determine whether such conditions are caused by . a

processor overload or a processor failure. When a

processor's nucleus fails to respond to several messages

sent by status checkers and a sufficient percentage of the

active status checkers have certified this condition,

processor failure is.assumed to have occurred and a nucleus

,restart, as outlined above, is initiated& Several status

checkers execute simultaneously, on different processors, in

'order to make the failure detection mechanism insensitive to

failure..

There are two ways in which the recovery mechanism of

the above system might be extended. Recovery of a failed

processor might be made quicker or more complete. These two

goalscould be pursued independently or together .. •

- 38E -

- 39E -

System Reliability 	 August 1974

Recovery could be made more complete by attempting to

use more information from system tables in the failed

processor. Clearly there are dangers in this approach since

as more use is made of possibly erroneous data, there is an

increasing chance of creating further problems, either for

the processor being recovered or the network as a whole.

The objective would be to obtain more information about

processes executing on the failed processor so that more

sophisticated recovery than simply creating fresh copies of

processes and restarting them from the beginning could be

attempted.

The simplest technique to achieve this objective might

seem to be the use of checkpoint facilities, which would

normally enable all processes to be restarted from a point

in their execution shortly before the failure of the

processOr. In addition to possible difficulties with

,checkpointing considered in the previous section, here there .

 Is the. problem of restarting part of the network from a

checkpoint while the rest of the ne'twork continues to run.

What happens, for example, if the process allOcator for CPU

A is running on CPU B and the nucleus on CPU B falls,

Causing all processes on CPU B to be restarted from a

checkpoint, thus causing the proceSs allocator for CPU A to

use an outdated process table? Some problems of this type

can be avoided by running system processes only on the

processors for which they are "responsible," but the same

II

- 40E -

System Reliability 	 August 1974

problem arises whenever two communicating processes - are

running on different processors. It may be more practical

to pursue the goal of improved recovery in conjunction with

the techniques for faster recovery, described below.

In order to provide faster recovery in a computer

network it rs usually necessary to have processors

designated as backups for other processors, so that when one

processor falls, another is immediately available to assume

responsibility for its processing. in order to avoid severe

overloading of individual processors due to failure of other

Processors, it may be advisable to divide the wOrkload of -a

failed processor among two or more other Processors. The

choice of Processors to take Over the functton of a fatted

processor is usually determined by the zeographic

configuration of the network.

If a processor is to take over rapidly the functions of

another processor, it must contain Information about the

current state of the other processor. Generally this does

not mean that all system data must be duplicated and that

all functions *performed by a Processor must be immediately

transmitted to its backup orOcessor. Rather, sufficient

data must be maintained in a backup processor to allow the

data in a failed processor to be reconstructed rapidly.

Usually it is possible to maintain such a set of skeleton

data without creating undue overhead.

An example of a network system in 	which 	these

System Reliability 	 August 1974

techniques could be profitably applied is an air traffic

control system for a large area. Clearly, rapid takeover of

functions from a failed processor is critical, and the

zeographic pattern of the network makes easy a logical

assignment of processors to back UD other processors. This

example is diScussed more extensively in (25)..

ilfaNIQUM

Even 'if 	it were possible to build an operating system

which contained no bugs and thus could run indefinitely

without errors, using present techniques the cost of such a

system would prevent anyone from undertaking such a project.

A completely satisfactory measure of the reliability of

a system does not seem to be available, but a measure which

is easy to obtain and which seems to be useful is the

percentage "up-ttme" of the system. (For example, this is

the measure used as a target in the design of No. 1 ESS--2

hours downtime in 40 years.) At least in terms of this

measure, the cost of a system increases quite rapidly as one

attempts to eliminate the last few percent, and then tenths

of a percent, of downtime. 	Thus, organizations must be

satisfied with systems which are not totally reliable, 	but

which have a sufficient degree of reliability for the

particular application.

Unfortunately, there is no accurate way to predict the

degree of . rellability of a system until it has been coded

- 41E --

I .

1

- 42E -

• 1

System Reliability 	 August 1974

and tested, and possibly not until it has been used under

production conditions. There is thus still a considerable

amount of guesswork and intuition required in choosing the

reliability techniques to be used in a system. Still, it is

possible to state certain guidelines for the choice of

techniques for reliabtlity when designing a system within

cost constraints.

As In most phases of system design, 	it is first

essential to • unde'rstand the purpose of the system, the

environment in which it is to be used, and its relationship

with that environment. Then, within this framework, it is

necessary to define the consequences of system failures of

various types, in terms of the effect on system service, and

to consider the effects of failures of various durations and

frequencies.

Next, one must decide how much it is worth to avoid the

consequences of • the types of system outages considered.

This places an upper bound on the cost which can be expended

in improving the reliability of the system.

It is also necessary to consider design constraints on

the system, other than reliability, which may affect the

reliability methods which can be used. For example, the

amount of core available for the system may be limited, thus

placing a limit on the amount of code for in-line checking

or audit programs which can be included. More importantly,

in many applications the response time of the system Is

-. 43E -.

II System Reliability 	 August 1974

extremely 	important, 	so 	the 	overhead introduced by

reliability techniques must be considered. For example, it

may be determined that the overhead produced by in-line

checks would degrade response time unacceptably, so

extremely timely error detection must be sacrificed for the

lower overhead created by audit programs.

Finally, • in terms of all the preceding considerations,

the appropriate reliability tools and techniques must be

chosen, in terms of their costs. Clearly, the set which

achieves the desired degree of reliability at the lowest

cost, and meets all other system restrictions, should be

chosen.

Although the need for reliability of operating systems

was first recognized in conjunction with the development of

real-time control systems, it has since been realized that

reliability iS important for all types of operating systems.

The reliability of general. purpose operating systems has

been recognized as important partly 	because 	of 	the

increasing dependence of many organizations - on

general-purpose computer systems. -Several operating systems

have been designed in an academic environment which had

reliability as one of their prime objectives, and computer

manuÈacturers are also now beginning to place greater

emphasis on the reliability of their operating systems.

System Reliability 	 August 1974

Many techniques have been proposed and used to improve

the reliability of operating systems, but the effort

required for the proof of correctness approach and the

system overhead produced by most other methods are still

problems preventing the routine creation of reliable

software. More sophisticated hardware may decrease the

overhead produced by some reliability . methods, and advances

In proof techniques may make proofs of operating system

correctness practical in the future.. The combination of

advances in techniques for increasing the reliability of

operating systems and greater dependence on computer

systems, and thus greater need for reliable systems, will

doubtless lead to the creation of commercial operating

systems much more reliable than most of those in use today.

BIBLIOGRAPHY

1. Almquist, R. P., J. R. Hagerman, 	R. 	J. 	Hass, 	R. W.
Peterson, and S. L. Stevens. Software protection in

No. 1 ESS. 	Proceedings of the International Switching
Symposium, 1972. 	p565-569.

2. Baker, F. T. 	Chief programmer team management of
production programming. 	IBM Systems Journal, vol. 11,
no. 1. 	p56-73.

3. Ballard, Alan and Dennis Tsichritzis. 	Structure and
correctness of software systems. Proceedings,
Session '73, The Annual Conference of the Canadian
Information Processing Society. p324-340.

4. Ballard, 	Alan 	and 	Dennis 	Tsichritzis. 	System
correctness. SIGPLAN Notices, vol. 8, no. 9. 	p38-41.

5. Beuscher, Hugh J. George E. Gessler, D. Wayne Huffman,
Peter J. Kennedy, and Eric Nussbaum. Adminstration and
maintenance 	plan. 	Bell System Technical 	Journal,
vol. 48 (October 1969). p2765-2815.

6. Brinch Hansen, Per. Testing a multiprogramming system.
Software-Practice and Experience, vol. 3, no. 2.
p145-150.

7. Buxton, J. N., and B. 	Randell. 	Software Engineering
Techniques; Report on a conference sponsored by the
NATO science committee, Rome, Italy, 27th to 31st
October, 1969.

8. Buzen, Jeffrey P., 	Peter P. Chen, and Robert P.
Goldberg. Virtual machine techniques for improving
system reliability. 	Record, IEEE Symposium on Computer
Software Reliability, New York City, 	April 30-May 2,
1973. 	p12-17.

9. Dijkstra, 	E. 	W. 	The 	structure 	of the "THE"
multiprogramming system. 	CACM, vol. 11, 	no. 	5.
p341-346.

10. Downing, 	R. W., 	J. S. Nowak, and L. S. Tuomenoksa.
No. 1 ESS maintenance Plan. 	Bell 	System lechnical
Journal, vol. 43 (September 1964). 	p1961-2019.

11. IBM Systems Reference Library. 	Introduction to OS/VS2
Release -2 (GC28-0661).

12. IBM Systems Reference Library. Machine Check Handler
for System/370 Models 155 and 165, Program Logic Manual
(GY27-7198).

- 	- 45E -

13. Krause, K. W., R. W. Smith, and M. A. Goodwin. Optimal
software test planning through automated network
analysis. Record, IEEE Symposium on Computer Software
Reliability, New York City, April 30-May 2, 1973.
p18-22.

14. Lampson, B. W. On reliable and extendable operating
systems. 	International computer state of the art
report: volume 1, The fourth generation. 	Infotech
Limited. 	p421-442.

15. Linden, Theodore A. Proving the adequacy of protection
In an operating system. 	SIGPLAN Notices, vol. 	8,
no. 9. 	p97-99.

16. LInden, Theodore A. 	A summary nf nrogress toward
proving program correctness. Proceedings of the Fall
Joint Computer Conference, 	1972, 	(vol. 41, Dart 1).
n201-211.

17. Liskov, R. H. 	A- design methodology for reliable
software 	systems. 	Proceedings of the Fall Joint
Computer Conference, 1972 (vol. 41, Dart 1). p191-199. -

18. Liskov, B. H. 	Guidelines • for 	the 	design 	and
implementation of reliable software systems. Mitre
Corporation, Bedford, Massachusetts, February 1973.

19. Liskov, B. H., and E. Towster. 	The 	proof 	of
correctness 	approach 	to reliable systems. 	Mitre
Corporation, Bedford, Massachusetts, July 1971.

.20. MacKinnon, R. A. 	Advanced function extended with
tightly coupled multiprocessing. 	IBM Systems Journal,
vol.-13, no. 1. 	D32-59 ,

21. MacWilliams, W. 	H. 	Reliability of large 	real-time
control software systems. 	Record, IEEE Symposium on
Computer 	Software 	Reliability, 	,New 	York 	City,
April 30-May 2, 1973. 	P1-6 ,

22. Meeker, 	Robert Edward, jr., and C. V.' Ramamoorthy. A
study in software reliability and evaluation.
Electronics Research Centre, • Univeri-sty of Texas at
Austin, Austin, Texas, 1973.

23. Mills, Harlan D. On the development of large roi Table
programs.. 	Record, IEEE Symposium on Computer Software
Reliability, 	New York City, 	April 30-May 2, 	1973.
D155-159.

24. Morgan, D. E. and G. F. Clement. 	An 	automated
maintenance system for computer networks. Comouter
Communications Network Group, University Of Waterloo,
1973.

25. Morgan, D. E. and G. F. Clement. 	Unpublished paper.

26. Naur, 	Peter and Brian Randell, Software Engineering;
Report on a conference sponsored by the NATO science
committee, Garmisch, Germany, 7th to llth October,
1968.

27. Randell, B. 	Operating systems: 	The problems 	of
Performance and reliability. 	Information processing
71, 	Proceedings of IFIP conference 71, 	Ljubljana,
Yugoslavia, August 23-28, 1971. 	p281-290.

28. Rowe, Lawrence A., Marsha D. Hopwood, and David J.
Farber. 	Software methods for achieving 	fail-soft
behavior in the Distributed Computing System. Record,
IEEE Symposium on Computer Software Reliability, New
York City, April 30-May 2, 1973. p7-11.

29. Scherr, 	A. L. 	The design of OS/VS2 Release 2.
Proceedings of the National Computer Conference, 1973
(vol. 42). 	p387-394.

30. Scherr, A. 	L. 	Functional 	structure of IBM virtual
storage operating systems, part II: OS/VS2-2 concepts
and philosophies. 	IBM Systems Journal, vol. 12, no. 4.
p382-400.

31. Sevcik, K. C., J. W. Atwood, 	M. S. 	Grushcow, 	R. 	C.
Holt, 	J. 	J. Horning, and D. Tsichritzis. 	Project SUE
as a learning experience. 	Proceedings of the Fall
Joint Computer Conference, 	1972, 	(vol. 41 part 1).
p331-339.

32. Shooman, Martin L. Operational testing and software
reliability 	estimation during program development.
Record, 	IEEE 	Symposium 	on 	Computer 	Software
Reliability, 	New York City, 	April 30-May 2, 	1973.
p51-57.

33. Spooner, C. R. A software architecture for the 70's:
Part I--The general approach. Software—Practice and
Experience, vol. 1, no. 1. 	p5-37.

•4. 	Tsichritzis, 	D. 	and 	A. 	J. 	Ballard. 	Software
reliability. 	INFOR, vol. 11, no. 2. 	0113-124.

35. Ulrich, 	W. 	Design of high 	reliability continuous
operation systems. Software Engineering Techniques;
Report on a conference sponsored by the NATO science
committee, Rome, Italy, 27th to 31st October, 1969.
p149-153.

36. Watson, Richard 	W. 	Time-sharing 	System 	Design
Concepts. 	McGraw-Hill, New York, New York, 1970.
Chapter 7.

37. Weissman, L. and G. M. Stacey. An interface system for
improving reliability of software systems. Record,
IEEE Symposium on Computer Software Reliability, New
York City, April 30-May 2, 1973. 	p136-142.

APPENDIX

A SURVEY OF COMPUTER NETWORK

DEPENDABILITY TECHNIQUES

II

1. 	INTRmnuoTImm 	.

The more organizations become denendent on computers,

the more sensitive thev become to computer system failures.

The innortance of computer denendabilitv in real time con-

trol systems (e.g., communications systems and traffic con-

trol systems) has been recognised for some time. Many

general purpose comPuter users are now becoming aware that

thev accomplish more on systems that sel dom "crash" because

of malfunctions than on svstems that run very ranidly (and

correctly) between frequent "crashes". Conseduently, in-

creasing emphasis is being placed by users and vendors on

the reliability of the system components and on the depen-

dability of the complete system, including hardware and

software.

Care and redundancv are the keystones in building a

denendable system. Experience Indicates that most notential

sources of errors can be eliminated bv exercising care when

designing, implementing, or modifying the hardware,

software, or data structures'of a system. However, human

beings error and components suffer failures, so desPite the

amount of care exercised, some malfunctions will occur

during productive use of the system. These should at least

be detected when thev occur so that some appropriate action

can be taken to Prevent avoidable damage from occurring to

the system, data, or innocent users.

Desnite progress made in recent Years in comnonent

- 1F -
Morgan, Clement

reliability, 	redundant hardware still Is normally necessary

to achieve the desired level of system hardware denen-

dability. Redundant data in the system is essentiai in

order to detect and recover from many types . of hardware or

software malfunctions. Other types ot malfunctions can only

be detected by observing behaviour of the system, and com-

paring this with known or expected behaviour derived from

analysis of a system model or experience using the system.

This information about the behaviour of the'system can be

kept inside or outside the system, and is, in one sense,

redundant information about tne system. Thus, there are

three forms of redundancy that can be used to enhance system

dependability: 	redundant hardware, redundant data, and

redundant information about the system's behaviour. 	Extra

software and hardware of a special nature are usually neces-

sary to make effective use of this redundancy.

Redundancy must be organised and managed to effectiyely

and efficietiv achieve a level of dependability. Effective

use of redundancy implies the ability to detect errors, both

on a system and a unit h as t s. Cost effective use also re-

quires the ability to locate (diagnose) the source of error

and quickly repair or replace the failed unit.

i'_rror detection, 	diagnosis,and recovery can be per-

formed completely automatically, completely manually, or

with some comnromise between manual and automatic operation.

The amount of hardware, software, and redundant data

• Morgan, Clement
7 2F —

renuired to achieve a level of dependability is the result

of a compromise between the cost of failures and the cost of

the facilities necessary to handle them. 	Few organisations

can (or should) afford an eternal machine. 	Instead, most

find that something less than the ideal system is adenuate.

Costs increase nuite ranidlv as the 	ideal 	system Is an-

nroached. Experience indicates that the denendabilitY vs.

cost curve has apnroximately the characteristics of the

curve of Figure 1.1.

Recoverabilitv of a system is defined as the ability of

the system to perform its intended function in the face of

faults or errors in the system comnonents. 	The definition

implies that, 	from a user's viewpoint, the system is tran-

snarent to errons or faults.

The degree to which a system is recoverable can be

measured in several ways, but from a user's vieunoint, the

imnortant parameters are dependability and error free onera-

tion.

The ideal recovery process would resnond to a fault or

error in the system so rapidly that the user could access or

be accesed bv the system as if the error or fault.had not

.occurred. Furthermore, it would, by reason of sneed of

recovery or reconstruction, not affect or• mutilate an" tran-

sactions in Progress at the time the fault or error

occurr ed--it•would be error•free.

Thus, recoverability is not necessarily synonymous with

- 3F -

Morgan, Clement

MACHINE DEPENDABILITY

VERSUS

TOTAL SYSTEM COST

20 	40 	60 80 	100

DEPENDABILITY IN PERCENTAGE

FIGURE 1.1

- 4F -

reliability. 	TypicallY, 	the technique of adding redundant

components to obtain dependability trades reliability (there

are more components than if redundancy were not used) for

recoyerability. 	From an economic viewpoint, it may well 	be

possible to trade recovery system sophistication for

reliability. That is, trade less expensive hardware for

more elegant recovery software.

Telenhone companies, wjth their reputation for ultra-

dellendable service to maintain, were among the first to try

to implement dependable hardware and software <1,2,3,4>.

Consequently, their electronic switching systems are as

dependable as their electromagnetic Predecessors. Unfor-

tunately, no commercially available computer system an-

proaches the dependability of such systems. Designers of

commercial computers emphasize rapid error-free calculations

rather than continuous service, whereas telephone companies

emphasize the latter. Reports of ten or more hardware or

software "crashes" per week are not infreauent for comer-

ci a ll v available computers. 	Some installations report as

many as ten "crashes" per day. In contrast, No. 	1 FSS of

A.T.&T. 	is achieving a dependability of twelve hours down-

time in forty years <16>.

The techniques that have been used in electronic

• switching systems to achieve such dependability can be an-

plied to computer systems and networks. This naner reviews

some of these techniques, suggests sone new tools and tech-

-5F-
Morgan, Clement

niques, suggests some guidelines for a . designer to use in

developing dependable computer systems; and finally il-

lustrates the use of these ideas in a computer network.

Section 2 describes some sources of errors, section 3

presents some techniques for achieving dependability, and

sections 4 through 7 survey tools and techniques for

nreventing, 	detecting, 	diagnosing, 	correcting, 	and

recovering from hardware and software malfunctions. Section

8 presents guidelines for designing a maintenance system for

a computer system or network. Section 9 summarizes the

caper and presents several areas requiring study.

6 1? -
Morgan, Clement

2. SOURCES IF ERRORS

There are three categories of error sources in a

system: a mistake in design or implementation, a failure in

a component, or an error introduced by a human operator.

Noise is usually inoluded in the first category.

Design mistakes are not predictable, except that they

exist. In every system. They are not recurrent, once cor-

rected; thus, the number .of such errors in a system

decreases with time. The number of hardware design errors

approaches zero asyMptotically with time because the design

becomes stable. However, because software is so eaSily

changed, it rarefy becomes • stable; thus, the number of

software design errors decreases asymptotically with time to

some fixed positive number. The value of this number is a

. function of the rate at which new capabilities are added to

the software. The number of software errors increases tem-

porarily after each change. Hardware design errors are

sometimes difficult to detect- using hardware, so they are

usually treated as software design errors.

Hardware 	component . failures 	are 	statistically

predictable, 	so their effect on 'dependability can be

predicted analytically. 	Errors caused by component failure

can reneat until . the cause of . the failùre is fixed or the

component.is replaced. In time, component failures produce

more errors than are caused by design mistakes. Software

comnonents do not decay with time, but hardware does, so

- 7F
-Morgan, Clement.

only hardware contributes to component failures.

Human operator errors are statisticallv unnredictable,

and recur at an unpredictable rate. If they are concerned

with hardware, they are treated as component failures.'

81e

Morgan, Clement

1

I

3. TECHNIOUES FcR ACHIEVINq DEPENDABILITY

i\ dependable system requires techniques to deal 	with

errors from each type of source. By careful annlicatinn of

error prevention techniques such as those discussed in Sec-

tion 4, many design and implementation mistakes can he

caught before the hardware or software is productively used.

The other errors must be detected and handled as the module

is used. Whereas care is the key to error prevention,

redundancy (when pronerly and carefully used) is the kev to

error detection, diagnosis, and recovery.

At least one automobile with which we are familiar con-

tains a redundant brake svstem arranged so that, when a mal-

function occurs, the brakes will continue tu function;

however, the driver is not notitied until both the nrimarv

and secondary systems have developed failures. He then is

rather rudely made aware that there Is a problem as his car

fails to stop.

As this example illustrates, 	redundancy can be mis-

managed. 	Although redundancy can be used to achieve sone

level of dependability without concern for error detection

by the equivalent of t r1Ring the outputs of redundant units,

this apnroach has two problems. 	'The is that disaster

strikes 4/ithout warning when the last component fails; 	the

other is economy, for doing without error detection max-

imises the number of redundant units required to achieve a

level of dependability. Efficient and effective use of

- 9F -
Morgan, Clement

redundancy requires the ability to detect errors both on a

system and a unit basis. The numner of redundant unitg re-

quired for a given level of dependability can be minimised

by designing into the si/stem a canability for rapid location

and repair of the error source.

In order to keep a system operating effectively, the

following cycle of functions should be performed:

A. Observe behaviour of the system, 	looking at

performance 	and 	malfunction 	indicators 	par-

ticularly, in order to detect trouble.

B. Comnare 	ohserved 	behaviour 	with exnected

behaviour derived from a system model, experience

using the system, and/or redundancy within the

system.

C. Decide whether a discrepancy exists between ob-

served and expected behaviour. 	If not, continue

observation at step A. Otherwise, notify the main-

tenance portion of the system so that diagnosis can

be performed.

D. Diagnose the cause of the discrepancy 	by

directed observation of system status and behaviour

(See below for a more detailed description of a

diagnosis nrocedure).

E. Decide what corrective and/or recovery actions

to take, if any. 	(If deemed necessary, information

about the failure and the action taken can be

- 10F -

"organ, Clement

recorded so that it can be analysed later to

validate and/or correct the system model on which

some of the expected behaviour is based.)

F. Take action to correct, recover, or bynass the

cause of the Problem. Continue observation at sten

A.

Each of these functions, of course, can be nerformed

manually or automatically,

(Ince an error has been detected by steps A-0 above, its

cause is diagnosed by performing the following cycle:

A. Select a test apnronriate to the tvoe of error;

B. Observe behaviour and status of the system as

appropriate for the test;

C. Compare behaviour and status with that ex-

pected, based on redundant information and/or con-

nonents;

D. Decide whether enough information has been ob-

tained to isolate the cause of error;

E. If 	so, notify maintenance nortion of the

system; 	if not, continue diagnostic testing.

In many systems, such diagnosis would be separated into two

Phases: 	first, the functional unit that can be replaced

with a redundant unit would be identified, then after recon-

figuring and/or patching the system so that it can continue

to Provide service, the necessary detailed dia7nosis would

be performed to determine the exact cause to allow correc-

- 11F -

Morp, an, Clement

tive action to be taken.

rince either temporary or permanent corrective actions

and/or repairs are complete, the system could he restarted

from where it was when the error was detected (sometimes

dangerous), from the beginning (often wasteful), or from the

last Previous checkpoint, the last assuming facilities are

available to save periodically the state of the system to

facilitate recovery.

- 12F -

Morgan, Clement •

4. MALFUNCTIMN PRFVENTIIN MILS AND TECHNInHFS

Selecting a language that is apnronriate for the ap-

plication and selecting suitably simple algorithms and

heuristics are obvious acts to prevent amny software design

and implementation mistakes. It is easier to make

Programming mistakes in a language that is less restrictive

In syntax than in more restrictive languages. While useful

for dependability, such restrictions can be crinpling for

the programmer.

Dijkstra, Hoare, and others <5,6,7> have shown that

some program structures are more error-prone than others.

Programs structured as they recommend are easily understood,

so the vast majority of bugs are eliminated before the

programs are put into productive use. Minimising the number

of unconditional transfers is a highly recommended technique

for simplifying program structure. Such structure

nrogramming techniques also aid proving programs to he cor-

rect. Although such proofs of correctness are not nractidal

now, they may become a viable error prevention techninue in

the future.

Like program structures, data structures can and should

be designed with dependability in mind; hence, the ,/ should

be as simple as possible, for very complex data structures

are often sources of errors. Programmers are often temnted

to save snace by making words in tables serve several dif-

ferent nurposes, each purpose determined by the setting of

- 13F -

Morgan, rlement

flags in another word in the table. This practice is incom-

patible with a dependable system, for such tables cause far

more than their share of errors.

Whenever data are entered or modified, or data struc-

tures are created or modified, the new data or structure

should be checked for being reasonable, in the nroner for-

mat, 	and within permissible range(s) of values, and beinp

consistent with existing data or with redundant 	information

inside or outside the system.

Language translators, linkers, and loaders can be writ-

ten to detect many possible sources of software errors. For

examnle, the" can be written to find instructions that could

transfer or store wildly as well as instructions that can

never be reached.

Tests need not be exhausting tobe exhaustive. Com-

nlete, vet cleverly constructed tests can catch many design

and implementation mistakes before they cause catastroohes.

Fxnerimental design techniques and tools such as Latin'

Squares can be used to reduce the number of tests while

giving some level of confidence in the comnleteness of the

testing. Programs can be written to generate the graoh of a

program, then produce a set of paths to test to cover all

the nossible !laths through the program. This would minimise

the number of oaths necessary to test to ahieve a very hirC1

level of confidence in the Program.

- 14F -

Morgan, Clement

5. 'IALFUMrTIoN DETEOTIoM TOOLS AmD TECHMIonS

Several techniques have been developed for detectin ,'

hardware errors in comnuter systems. Among these are error

codes (e.g., parity, Hamming), state valiuitv checks, matrix

select validity checks<l>, and matching the results of com-

ponents performing the same function with the same data anti

input stimuli <1,3>. Matching yields ranid and highly el-

ficient error detection (i.e., 	the nercentaee of errors

detected is very high); however, it is expensive, and in

the case of duplicated components can lead to ambiguity in

identifying whicn unit failed. Improved dependability can

be achieved by voting among three or more identical comno-

nents. Error codes are used by most manufacturers of com-

puters to detect (and sometimes correct) errors in data when

the data are transmitted or stored. The STAR computer

designed bv Avizienis and Rennels at dPL uses residue codes

to achieve denendable computation <14>.

When commuter hardware detects Problems, the software

is normally notified by the interrunt mechanism. Such

hardware-detected errors include software-caused problems

such as attempts to execute instructions with invalid onera-

tion codes or invalid addresses, or to use invalid or incor-

rectly formatted data. In manv systems, this is the only

error defense mechanism provided. Mearly all errors can be

detected eventually in this way; however, if the error

source is software, it usually is some time before the ef-

- 15F -

Morgan, Clement

• 1

1

fects • of the error are detected. Mften the damage is suf-

ficiently extensive to be catastrophic. There are other

techniques to detect software errors which buy time and

minimise damage.

An obvious technique for detecting software errors is

to build defensive checks into the software so that every

entry and exit of every routine is checked for consistency

and validity of narameters. Such checks can also verify

that routines are being executed in a reasonable and val Id

 sequence, and that the data structures involved with the

routines are valid, Intact, and consistent. These checks

are included in the routines, and consequently are executed

whenever the routines are executed. As discussed in a later

narapraph, such checks can be nerformed periodically by

software, or by an external system, thus reducing or

avoiding the real time penalty.

Another 	apnroach 	is to execute neriodicallv, or

whenever trouble is suspected, sneciallv-constructed

Programs called AUDIT PRmnRAMS to check validity, comnlete-

ness, and consistency of data structures in main and auxil-

liary storage <1,2,3,4>. Such audit pros ,,rams base their

comoarisons on redundant information and structure contained

in the data structures or available from the system or from

that part of the system's environment which can be sensed by

the system. These checks are cheaner than the in-line

defensive checks just described because they are not ex-

- 161? -

. Morgan, Clement

ecuted as often; however, in-line checks detect trouble more

quickly, so damage 	is less widespread than with audit

programs. 	To maximise the effectiveness of audit nrograms,

data structures should be designed with auditine in mind.

In particular, error detecting can be aided by using

data structuring technieues such as: A. An identity code

In each data entity; B. rorward and backward

Pointers in each list; C. point to -- point hack

schemes between data structures so that each path

between structures is part of a cycle which can be

checked for closure; D. 	Redundant data within the

structures so that mangled data can be detected and

reconstructed if necessary; E. Standard patterns

employed in all data structures.

Not only data but programs can be overwritten, either

by software or hardware errors. To determine whether a

Program still executes properly, Tt can be exercised using

known innut data. An error is detected if the output of the

program differs from the correct output. This technique is

rarely used because of the difficulty of writing and un-

dating such exercisers, the real time used, and because few

programs look like black boxes (i .e., all inputs and outnuts

are nassed as parameters, and only volatile local variables

are used). Error codes such as hash sums are effective in

determining the integrity of programs, and are often used.

Such tests can be run periodically and/or whenever trouble

1717

Morgan, Clement

is suspected.

Kane <8> has shown that many errors can be detected NY

noting when flow of control deviates from exnected patterns.

Such 'wild transfers' can be detected by observin- all

transfers of control (or just subroutine calls and coroutine

resumes) and comparing the actual control senuence

known val Id senuences. These known val Id senuences can he

stored as valid relationships between routines (for example,

X can call A or B; X can be called bv B, C, or F; X can hn

interrupted for I, (1 , M, or S, but not 	for 	n or T). 	1.4e

think that such sequence checking can be done bv an external

chin Processor connected to a mini-disk that holds the

relationships, and to a hardware monitor that observes the

actual control senuences. In an effort to verify this con-

jecture, one of the authors has designed and is implementin

such a control sequence error detection system. It is based

on the hardware monitor described in papers hv Morgan, et al

<9,10>.

Certain characteristic performance parameters

resnonse time, throughput, resource utilisation) are useful

to indicate when the system is in trouble. when these in-

dicators pass through threshold values, 	the maintenance

th

system Can automatically alerted by a monitoring svstem so

'that annronriate techninues can be used to determine the

cause of the problem. Software and/or harchqare monitorinr

•techninues are capable of providing such narameters.

- 18F -
-Morg,an, Clement

Most manufacturers use sbeciallv-constructed hardware

diagnostic nrograms to diagnose faults and sometimes to

detect errors. They are often executed routinely as nart of

preventive maintenance to detect failing comnonents before

thev cause damage. These programs are sometimes implemented

using sneciai instructions designed to exercise asnects of

the hardware for diagnostic nurnoses.

- 19F

Morgan, Clement

PALFUMCTI(IN DIArINmSTIC TcoLS AMD TvCHMIqMrS

Bell Labs has had good success using Audit Programs

software diagnostic tools 	(See Section 5 and <1,2,3,4>).

Besides detecting trouble, these nrograms can deternine the

extent of damage to data structures and thus help aoint to

possible causes of the problem.

Bell 	Labs has also used orogram exercisers as a

nostic tool. Susnected programs are exercised hy executin

them with known inputs and comparing the results with knoun

outputs. A dictionary of svmntoms and their probable cau-,e

is used to decide what the Probable cause(s) of any nrohlems

is(are). Such maintenance dictionaries are also used witn

considerable success with diagnosing hardware faults.

Most software diagnosticians find event logs to he a

gold mine of helpful information, esneciallv if the s-ster

automatically saves a snapshot of the event log immediately

atfter the error was detected and before several uninnortant

events occurred. Besides interrunts, event logs should con-

tain records of the occurrence of selectee significant

events, such as failing to satisfy a renuest for main

memory.

A debugging subsystem similar to to TSSS in UM's

TSS/360/67 or DDT of DECSYSTFM 10 dramatically reduces mean

time to repair (MTTR) for software nroblens <10,11>. niag-

nosticians use this tool to disnlav system status, the event

log, registers, and selected areas of storage. It ennbles

G.

- 20F -
Morgan, rlement

them to modify nrograms'and data, and allows then to observe

execut ion of sel ected sequences of code. Thev can use thn

debugging system to execute selected audit nrograms to

determine the extent of damage.

Chang, Manning, and Metze have discussed many hardware

error diagnostic techninues and tools <12>. Such diagnostic

techninues have been employed in all critical comnonents in

the Bell Svstem's electronic switching systems, and evidence

of their use is occasionally found in commercially available

comnuters. Many manufacturers include snecial diagnostic

instructions 	to 	aid 	their 	diagnsoticians 	in 	locatin

trouble.

/\11 manufacturers have some form of diagnostic nroc-rars

for their hardware. The" range from simple stand-alone

exercisers to comnlex on-line diagnostic systems.

- 21F -
Morgan, rlement

7. MALFUNCTI 1N CDRPECTUIN AND RECIVFDY

As mentioned in Section 3, several recovery actions are

possible after an error has been detected. The simnlest

procedure is to ignore the error. The most comnlicated is

to attempt to diagnose and renair the failed comnonent

automatically while the system continues to Provide a normal

level of service.

Two major components of system dependability are hard-

ware dependability and integrity of program and data struc-

ture. Both can be achieved by duPlication of hardware. If

data and program integrity can be provided bv another means

such as back up from which stable data can be rebuilt, then

hardware renlication need only be provided to secure the

necessary degree of har'dware denendabilitv. 	In general thir;

can he achieved bv less than full duplication. 	It should he

noted that it is generally either either imnractical or 	im-

possible to recreate transient data; 	hence, dunlication

must be used where transient data is imnortant.

If all critical units are dunlicated, when an error oc-

curs, the standby unit that has been nerforminr, the sane

functions as the active unit, now automatically becomes the

active unit. Meanwhile, the failed unit can be daignosed.

Assuming an error detection and response mechanisn which

prevents propagation of the error, 	this 	technique, 	thouh

exnensive, nearly eliminates system. "crashes" caused bv com-

ponent failures 	in critical 	units. 	nata need not 	be •

- 22F

Morgan, clement

1
• 1
1

1

1

1

recreated after a failure *because It is always available and

current in both unIts

Economies in cost can he realized -by a redundancy

11 	scheme where roving snares are maintained to renlacn

failed active unit. The number of snares needed is a rune-

"

tion of the dependability and the repair time renuired to

fix a failed unit, but the number of spares is less than the

number of active units. Data residing in a failed unit may

be lost. The time required to initialise the activated

spare makes this scheme slower to recover than the complete

duplication scheme.

Neither of these redundancy schemes renuires that the

replicated units be located near the active units, excent

for massive data transfers at high rates. Thus, a network

of comnuters of the same type has inherent renlication.

Some failures of hardware are intermittent or transient so

that the function can be successfully retried. Some errors

can be automaticallv corrected bv se1f-correctin7 hardware,

but such hardware is often ver ', exnensive.

If the system can continue to provide service without

the failed unit, 	the failed unit may be automatically

bypassed until it can be repaired and nlaced back 	in ser-

vice..

Sunnose taie have a set of components in the svsterl, each

capable of performing the functions of the other comnonents.

Sunpose the set of functions to be performed are ordered ac-

-23E-

Morgan, CleMent

cording to the imnortance of continuing to nerform them

should malfunctions occur. When a malfunction occurs, 	the

failed unit Is automatically taken out of service for diag-

nosis and renair. 	If necessary, the lowest nriority func-

tion(s) 	is(are) dropned, and the system's comnnnents are

reorganised to perform the remaining functions.

When software fails, an attemnt may he made to renair

the damage and continue to provide service automatically.

This imnlies the need of sufficient redundancy in the data

to locate all the damage and sufficient intelligence in the

software to do the repairs, but all this is exnensive.

A more modest approach is to provide tools so that a

diagnostician can determine the damar,e and its cause, make

the necessary repairs to the software, then allo • the

system to continue. If annronriate software were available,

the system could, in many cases, continue to provide some

service 'hile the diagnosis and renairs are hein g done.

Some systems nerlodicallv store the state of the system

automatically so that the system can be restarted from one

of these noints should a failure occur. This nrocedure 	is

known as checkpoint/restart or rollback. 	IRM's mS/360

provides this facility as an option, hut an informal roll

 indicates that feu Installations elect to use it.

Some software errors are the result ofa rare sequence

of events. In such cases, merely restarting the system from

a convenient checkpoint is often sufficient to get around

- 24F—

Morgan, Clement

- 25F -
Morgan, Clement

the probl em.

8. nUIDELINFS FrM MAINTENANCE .SYSTEM munm

Mami•techniques and tools have been develoned to in- .

prove 	system dependability. 	Most of these have been

discussed briefly in the previous sections.

When designing a maintenance system,

how does one decide which of these tools and techninues to

emnlov to achieve a specified level of dependability within

a specified cost constraint? Here are some guideiines that

should hein: A. Define the svstem, its environment, and

the relationshins between. them. B. Define the

consequences- of each kind of failure as a function

of the completeness of the resulting outai7e, mean

'outage time, and distribution of this kind of .

failure. 	C. 	Define what it's morth to avoid these

consequences. 	This provides an upper bound on the

 cost of protecting the system f'rom these conse-

quences. . D. 	Considering the preceding, determine

Which tools and techniques_ are applicable. 	Define

achievable dependability with some combination of

the available tools and techniques as a function of

their cost. Pick the set the achieves the required

denendability at minimum cost.

To illustrate the application of these guidelines, con-

sider the following simple examnle which, while admittedly

less comnlex than most practical problems, will serve to

demonstrate the princiPles. The example was contrived bv

Morgan, Clement
- 26F -

simplifying some real applications studied by the authors.

Assume a traffic control system which covers a

geographical area large enough to renuire ter' or more

surveillance sectors. Furthermore, the size of the area

limits the Problem of control of a given unit to three con-

tiguous sectors at any one time. The depth of space oc-

cunied by a unit is related to its sneed so that system con-

trol cannot be lost for more than 30 seconds without danger

of collisions between units. If control Is lost for more

than this tine, assume that flow of traffic through the ef-

fected sector will be halted; thus, the nenaltv of loss of

control is loss of traffic for half a day at a port of call.

Loss of life is not considered In this examnle. This

paragraph has functionally defined the system, its environ-

ment, and the relations between the two considering depen-

dability. It is also assumed that the control function is

imnlemented by one or more digital computers.

This simnle system description allows a statement of

failure consenuences to be made as a function of outages.

An outage of more than 30 seconds in a sector is not

tolerable. A failure that can lose more than one sector

(e.g., all sectors in the system) could halt traffic flow

completely, thus having severe economic (and nerhans social)

consenuences. Hence, it is desirable to avoid loss of con-

trol and/or surveillance In more than one sector at a time.

rutages of more than 30 seconds twice a dav render the

- 27F -
Morgan, Clement

system inoperative.

Now what of cost? Assume the revenue lost hy sector

shutdown is that which might be expected at a large urban

airport such as m'hare in Chicago. Thus, a shutdown of

operation of half a dav represents a loss of more than one

million dollars, or in another context, loss of ten percent

of the weekly revenue. As a bound, assume that the mean

time between such outages of less than a year is not ac-

centable. This represents an effective cost of 0.5% of the

weekly revenue. Furthermore, it requires, considering

todav i s processor technology, a recovery system capable of

restoring operations automatically in 30 seconds or less,

and not canable of coping with failures more often than once

a year.

Ilhat then are the possible configurations and tech-

ninues? Mo matter what the implementation, It is a fact of

life that programs are never error free. Paranhrasing

kstra, testing indicates the presence of errors, 	not their

absence; 	thus, a recovery system must contain a form of

defensive programming. 	It has been established that audits

are economical in real time usage and usually In code snace.

Several alternative techninues are shown in Figures 8.1a

through 8.1c to achieve data integrity and hardware depen-

dability. In each figure, the surveillance units are over-

lapned of necessity to assure comnlete coverage of the area.

The overlan also helps to achieve denendahilitv of surveil-

- 28F -

Moryian, Clement

lance. 	Processing in Figure 8.1a would be done at a sinle

centre for the ent,ire system, and the processor at that

centre would be duplexed. 	Each element in its suhsvstems is

Provided with an error detection capability , 	and recovery

and diagnostic software are provided as part of the system.

The processor must have the capacity to handle the entire

system. riutages of this processor (failures to recover in

30 seconds or less) halt traffic in the whole system, and so

would affect more than one port of call and create an

economic disaster. To prevent this the recovery and error

detection systemswill have to be nuite sonhistIcated.

The system of Figure 	8.1b has a processor associated

•ith each surveillance unit and communication links only to

the extent of passing handover data from one unit to the

next. 	A processor outage does not cause failure of control

through a sector since sector surveillance overlans. 	The

penalty is that each processor must be capable of handlinr;

twice the traffic in a sector. Dependability is achieved

because two adjacent processors must fail in order to losic,

sector control. Cost is approximately the same as for the

machines in Figure 8.1a, assuming that processor cost and

capacity are linearly related. An additional Penalty here

is that insufficient data exists in adjacent machines to ef-

fect a 30 second recovery. An advantape is that, since

failures of adjacent machines affect only one sector, the

economic nena ltv is less than in Figure 8.1a, and the

- 29F -
• organ, Clement

recovery system can be less sonhisticated.

The system of Fif,. ure 8.1c also has a nrocesor as-

sociated with each surveillance unit, but uses communica-

tions links to keen the two neighborinçr data bases un to

date so that when an outage occurs, one or the nefthborine

processors can take over and recover the system in less than

30 seconds.

The data base renulred 	in neighboring processors 	is

comnrised of only that information required for the 'take

over nrocessor to rebuild Path and velocity data for each

element in the failed sector. It does not comnrise the en

tire data base. Thus, at an added cost for data links and

storage, the objective of a 30 second recovery is acnieved.

Since each processor is smaller than the ones used in the

Figure 8.1a configuration, thev are inherently more

reliable. If one assumed equal sophistication in the

recovery software and hardware, the costs would be about

equal. However, since failure or the function or two adja-

cent surveillance sectors arfects only one sector in the

scheme of Figure 8.1b, the recovery hardware and software

need not be as sophisticated for b as in a. This simplicitv

can only result In further enhancement of dependability as

well as a cost advantage. Mne also gains the performance

advantaes that often go with a gracefully degradincr system.

The system shown in Figure 8.1c can be thought of as a

set of triads, at least from a denendahilitv Point or 	vie'

- 30F
Morfan, ri e'rnent

dustification for this division of a comnuter network into

triads is nresented in Attachement A. In particular, Attachment

A proves that so long as the link failure probability is

lower than unity, the system is more reliable than the one

shown in Figure 8.1h.

- 31F -
Morgan, Clement

Control Centre

ulth
Duplexed Processor

Sector 1 s
I

Consoles
for 1

surveillance
units for 1

„

r
surveillance

l units for
lm I

I consoles
1 for m • • •

Sector m

FIGURE 8.1a CENTRALIZED SYSTEM

,

1 	T
! 	

• 1
; !
II 	/

2
._____________. ,

r---------zz--7-_-_---1---1 	/ 271:7=2.- ,-„! 	, /

1 - 32F-

Sector 1

// consoles
i 1 0r 1

•

\

surveillance
units for 1

\ 	. 	,

[surveillanc
'units for 2:

/1 proceàspr 3 •

Sector 2 	N\

	 ft111/1/. 	
!Processor J data link

FIGURE 8.1b DECENTRALIZED SYSTEM

FIGURE 8.1c

I

I \\N

- 34 F -

. SUMMARY, CONCLUSIONS, AND FURTHER WORK

Table 1 summarises our review of techninues and tools

which have been fOrmulated to nrevent, detect, and daignnse

malfunctions and recover from them. A tool for detecting

malfunctions by externally monitoring the benaviour of the

system was suggested. organising a network into triads was

shown to be a good way of simnlifving the problem of struc-

turing a network to enhance dependability. Section 3

presented a procedure for desipning a maintenance system.

As Table 1 illustrates, a wide variety of techniques

and tools have been developed over the years to enhance the

dependability of computer svstems. Audit techniques

developed by Bell Labs are quite widely annlicable. 	Their

use in operating systems for commercial comnuters 	is

strongly recommended. The methods for spnarating a network

into triads to enhance dependability annears nuite

promising.

	

While writinir this paper, a number of areas 	renuiring

work became evident: 	A. Develop the external monitoring

system suggested in Section 5. 	P. 	lmnlement the

triad 	approach 	experimentally. 	C. 	Puild an

operating 	system using 	audit 	techniques.

D. 	Develop tools to ald 	in designing and ir-

PlementIng a maintenance svstem. 	E. Create a

language (or extend an existing language) to ald in

generating audit programs. 	F. pevelop tools and

- 35F
morgan, Clement

techniques for aiding programmers in testing their

programs. A nrogram could be written to find a

covering set of paths through a program or set of

programs using graph theoretic techniques, for ex-

amnle. n. Develop a methodology for recovery

systems. The approach to developing the combina-

tion of software and hardware to permit a svsten to

continue performing its intended functions in the

face of errors or faults has been and is heuristic.

As a consequence, there is a lack of understandincr,

from a recovery viewpoint, of the interactions

between components, subsystems, and the tradeoffs

available between complexity, recoverabilitv, and

reliability. A methodology is required to allow

the 	necessary 	understanding to ontimise such

systems relative to selected design narameters.

- 36F -
Morgan, Clement

•

k. ;

S

1 	
0

ATTACHEMENT A

Assume that the k
th

machines function can be performed by

either the (k + 1)
th

as the (k - 1)
th

machine provided that the data

link connecting the k
th

machine to the takeovet machine is also

functioning. Also define a system failure as a complete loss of the •

function of the k
th

machine. 	 -

For a system of this nature it is only necessary to determine

the probability of failure of a group of three contiguous machines

and a triad.

FIGURE A.1

Let the probability of failure of.machine k be p A , and

the probability of failureof a data link be-p 0

Then the probability pk of loss of function k.is the sum of the checked

states. Since function k is lOst it follows that only those states with

k = 1 (meaning failure of the k
th

machine) need be considered.

Then

2
pk = 	21-) (1-p) p(1-p)

2p 2 (1...p) pt2

• + 2p. 3p, (1-pf)
A

-37F-

+ p 3 (1-p) 2
3 2

• PA P'9,
2 2 ~ Pà (1--P à 	2,

= pk = p Ep-(1-p)I2p. + p(1-p)) + p 2]

The probability of failure, pk, of the k
th

function is not

affected by any links or machines beyond the complex comprised of the

st (k-1) , lcth , and (k+l) st
machine and the (k-1)

st
 and k

th
data link. This

can be demonstrated by including the (k+1) st data link and the (k-2),

data link as follows:

All failure states for the complex shown in Figure 2 exist

as 'Lhe only failure states for this complex even when the (k.+ 1) st and

.
(k•-•

nd
data link are added regardless if the states of these links. Since

ni
the (k+2)

nd
and (k-2) machines cannot by definition of the system

take over the function of the k
th

machine. So the don't care condition

is then pk'

pic" = pk(p
2
) + 2pk (1-13)1)2, + pk.(1-pL)

2

= pk(pe,. + 2p£ - . 2p£ + 1-2p£ + p£
2
)

= pk.

This can be extended link by link and machine by machine.

The probability, ps, that the complex in Figure A.1 will 	-

fail to perform its, funCtion is_ps = 3pk since the complex fails

if any combination of the function k,k-1 or k + 1 cannot be performed.

Similarly if there are m machines in the system (Figure 8.1c) the failure

probability ps =

- 38F -

pL){2p£ -F pA(1-E) 1 + pt2]
PL L + 3(1 - p1).1

3PA[PA(1-
ps 	PA:

Now what of the system comprised of m machines where the

k
th

function can be performed only by the k
th

machine? Then the

th
probability of failure of the k function is pk = pà and the

probability of failure of a complex of 3 adjacent machines (no data

lines) is

ps =
3
+ 3pA(1 - pA)

2
pA

.3 	2
PA 	310à 	6PA

PA
3 	2

- 3PA 1- 3PA =

Pp(PA 2 	3 (1-PA.))

+ 3pA
2
(1-pA)

3 	2 	3
3PA 	3PA 	3PA

2

	

PA (PA -3PA 	3)

Now for the reliability of the system of Figure A.1 to be

greater than that of the above system

DS
< 1

13 .0

The quadratic in pz must be solved to meet inequality. If

one remembers that values for p z or pr 1 are the only admissible ones , .

then the solution shows inequality satisfied for p k < 1.

- 39F -

1111MIM

1
Ii

11
655

46 73
L975

MORGAN, D.E,
1?etfgrMe.nce Tgelirement in

computer netWerke

LOWE-MARTIN No. 1137

DATE DUE
DATE DE RETOUR

5 MAR 1987

