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- 1.  Inunduntina 

lei Computer Network Monitoring System 

On 2 October 1974, at a panel discussion of the joint 

meeting of the ACM Special Interest Group on Measurement and 

Evaluation (SIGMETRIC) and Boole and Babbage Users' Group, 

leaders in the computer measurement field stated that since 

a number of organisations were forming computer networks, 

there was a need for a system of hardware and software to 

observe the activities of these networks. It soon became 

evident that we were the only people who had attempted to 

design and implement such a system, although a few other or-

ganisations, such as Comress and Tesdata, are hoping to 

II produce suitable monitoring systems within one to two years. 

Most measurements that have been made of computer 

networks have been made using software techniques (e.g., see 

<1,2>). • Such software can and does interfere with network 

activities and produces significant inaccurracies in the 

measurements. Moreover, measurement traffic on the network 

can distort traffic statistics. 

The system of special hardware and software we have 

been creating for the past three years is designed to ob-

serve the activities of a computer network while interfering 

sninimally with them. This Computer Network Monitoring 

System (CNMS) is described in Appendices A, B, and C. 



1.2 Computer Network Dependability Research 

More and more organisations are realizing that an un-

reliable computer system is not cost-effective, regardless 

of how quickly it executes or how efficiently it handles 

resources. Enhanced dependability is one reason often given 

for building networks of computers. We are investigating 

the possibility of using the Computer Network Monitoring 

System as a tool for enhancing the dependability of a com-

puter network. We are devising an automated maintenance 

system for computer networks which is an integrated system 

composed of a number of tools for achieving dependability. 

Bell Laboratories has devised a variety of tools and 

techniques for enhancing the dependability of electronic 

switching systems. These are described in Bell Systems 

Technical Journals of 1964, 1969, 1970, and 1973. , and in 

<3,4>. A fairly extensive bibliography of computer system 

dependability studies is included in Appendix E. Appendices 

E and F survey the fields of computer system and network 

dependability. 

2.• 2MIZOU 

The objectives of this research are: 

1. To provide an easily used, yet powerful computer 

network monitoring system. Experience Indicates that 

neither hardware nor software alone . are completely satisfac- 



tory; thus, a combination is sought -. 

• 2. To learn how to provide a flexible, easily used 

network maintenance system that facilitates rapid detection, 

Aiagnosis, and recovery from network troubles, whether mal-

functions or bottlenecks. 

Suruary.  of Methods  

For the past four years, we have been designing, im-

plementing, testing, and, within the past year, we have been 

using a prototype of a system of special hardware and 

software for monitoring a computer network (or computer 

system). Called a Computer Network Monitoring System (CNMS) 

• and described in Appendices A, B,  • C, the system consists of: 

(1.) A set of software-controlled hardware monitors 

(often called hybrid monitors), each of which is at-

tached by its probes to a computer and associated 

• data links of the network to be monitored. 	Each 

monitor can be controlled by a remotely-located com-

puter via a telecommunications link. 

• (2.) Software to control the monitors and analyse 

the data. 

(3.) Software to  • generate traffic for the object 

network (i.e., the network to be monitored), so that 

measurements of the network's activities can be made 

as it responds to known stimuli. 

(4.) A minimal amount of measurement software in 

3 ^ 



each system of the object network. 

Our philosophy is to use hardware to monitor that which is 

best observed by hardware, to use software for that for 

which it is best suited, and to use a combination where 

neither is best. 

Telephone lines, normally different from those of the 

object network connect the monitors to the controlling com-

puter. Each monitor consists of one or more of each of the 

specially-designed components listed in Table 3.1. They are 

joined by a single bus (called a MONIBUS) that is attached 

to the controlling computer. 

Figure 3.1 illustrates the interconnection of these 

components to form the monitor. Figure 3.2 illustrates the 

interconnection of the monitors to observe the activities of 

a computer network. Note that the communications lines of 

the network are not used to transmit measurement data or 

monitor control information. Rather, the controlling com-

puter uses switched voice-grade lines to set up the measure-

ment experiment, then disconnects while the measurements are 

made. Periodically, the connection is re-established while 

data is collected and/or additional control information is 

transmitted. This technique reduces communications costs in 

measuring geographically distributed networks. For a more 

complete description of the CNMS, including the software 

structure, see Appendix C, • 



Fig. 	3.1 

MS 	-• Measurement Software 

RCHM -  ReMote - Computer Controlled Hardware Monitor 

RNMC - . Regional Network Measurement Centre 

-NMe --1\itwork 14eaSurement Centre 
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Hardware status 	 Stàtus of associated software 	In use? 

	

- 	 Testing 

CNMS component 	Design 	Implementation 	27 	Design 	Implementation 	with hardware 
; 
co 

1. RCHM and 	Complete 	In progress 	DOS-11 version 	DOS-11 version 	DOS-11 	version 	DOS-11 versior 
components 	 complete; RSX-11 	nearly complete 	nearly complete 	in use 

version in 
progress 

. Timer and 
event counter 	• complete 	complete 	10 	complete 	complete 	complete 	yes 

. Combinational 
logic unit 	complete 	complete 	6 	complete 	complete 	complete 	yes 

C.  Sequential 	version 1 	version 1 	• 	1 	nearly complete 	in progress 	- 	no 
logic unit 	complete; 	being built 

version 2 in 
progress 	 

,4 	d. 16x4 Switch 

; 	matrix 	complete 	complete 	4 	complete 	complete 	complete 	yes 

e. 8x8 Switch 
. 	matrix 	complete 	complete 	complete 	complete 	complete 	yes 

f. Ouadri- 
comparator 	complete 	complete 	3 	complete 	complete 	complete 	yes 

g. Single 
comparator 	complete. 	complete  	complete 	complete 	under way 	no 

h. Interrupt 	. 
generator 	• 	complete 	• 	complete 	6 	complete 	complete 	complete 	yes 

' 	. 	interval 
timer 	complete 	complete 	1 	complete 	complete 	under way 	no 

.. Time stamp unit 	complete 	complete 	1 	complete 	complete 	nearly complete 	no 

. Histogram 	complete 	complete 	1 	complete 	complete 	under way 	no 
. generator 	 c 

1. Character 
detector 	complete 	complete 	complete 	complete 	under way 	no _  

m. Monitor 
Diagnostic Aid 	complete 	complete 	1 	complete 	complete 	nearly complete 	partly 

i 

Table 4:1 
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Hardware status 	• 	Software status. 	 In use? 

	

4-1 	 Testing 

CNMS component 	Design  • 	 Implementation 	27; 	Design 	Implementation 	with 	hardware 
cm  

n. Network clock 	In progress 	0 	- 	. 	- 	no 

o. Probes for 	 2 
POP-11/20 	complete 	complete 	sets 	complete 	complete 	complete 	yes 

. Probes for 
POP-11/45 	complete 	started 	0 	in progress 	- 	- 	no 

q. 	Probes for 	 2 	•  

PgrTilei.pKrYs 	
complete 	complete 	sets 	complete 	complete 	complete 	yes 

2. 	NMC software 	 nearly complete 	in progress 
(DOS-11 	version) 	_. — 	N/A 	complete 	(see below) 	(see below) 	yes 

a. Experiment 
cc 	Manager (DOS-11 	N/A 	N/A 	• 	N/A 	complete 	nearly complete 	in progress 	yes 
î 	version) 	 •  

b.Maintenance 	 version 1 	is 	version 1 	is 
Manager (DOS-11 	N/A 	N/A 	N/A 	complete 	complete; version 	complete 	yes 
version) 	 2 in progress 

c. Results Manager 
(DOS-11 version) 	N/A 	N/A 	N/A 	nearly complete 	nearly complete 	in progress 	yes 

d. Communications 
Manager 	N/A 	N/A 	N/A 	nearly complete 	in progress 	- 	no 

3. 	NMC software 
(RSX-11D version) 	N/A 	N/A 	N/A 	 no . 	 in progress 	- 	- 

'RCHM controller 
(POP-11/10  & 	complete 	in progress 	1 	in progress 	- 	- 	no 
interface) 

5. 	RCHM controller 
(LSI- il 	& 	in progress 	- 	0 	in progress 	- 	.- 	no 
interface) 	 , ., 

Table 4.1 (continued) 
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, 	 , 

Hardware status 	. 	 'Software  status 	In Use? 

:  . 	 • 4-D 	! 
' CNMS component 	Design 	Implemen 	Design 	mplementation 	Testtngtatton 	, c;7-  

2r; 	
1 	I 

: co  

. 	

' 	 . 

6, 	Measurement 	. 	N/A 	• 	N/A 	N/A 	verstons 1 ;8i 2 	version  1 	is 	verston l is 	version 1 is 
Language 

	

	, 
. 	 are complete;! 	complete; 	complete 	in  use 1  . 	; 	 verston 3 is a 	version 2 is tn , 
: 	 dream 	progress 	I

. 

. 	 . 	 . 
. 	7. 	toad generator 	! 	n/A 	NiA 	N/A 	wersiun 1 is 	version 1 	is 	iverson Ti  ts 	version 1 ts 
, • 	, 	• 	' 	complete; 	complete 	complete 	in use 

werston 2 is tn' 	. 
1 	 p . 	• 	 rogress 	 : 

8. Measurement 	N/A 	, 	. 	NiA 	N/A 1 	In progress 	- 	- 	no 	, 
software 	 . 

, 

9. Analysis 	N/A 	E/A 	N/A 1 	verston 1 is 	version 'l is 	Hrerston 1 ts 	no , software 	 complete; 	being'tmplemented in progress 	. ! . 	• , 	 version 2 is 	in  
, 	 . progress h 

Table 4.1 (.(continued..) 



One monitor and a good first generation of software 

have been implemented, tested, and are being used. A second 

monitor has been assembled and is being tested. We are 

nearly ready to begin using it for a series of experiments, 

which are scheduled to begin in May 1975. 

Table 4.1 summarizes the status of software  •  and hard-

ware aspects of the CNMS project as of 31 March 1975. As 

the table indicates, we have used at least one version of 

each of the components of the Basic Monitor, and we are now 

emphasizing testing an important set of extensions. 

During the rest of 1975 we plan to complete implementa-

tion and testing of a useful version of each component of 

the CNMS. Meanwhile we shall continue using tested portions 

of the CNMS to monitor computer systems and networks in our 

laboratory. So far we have used the prototype CNMS to 

monitor several aspects of a PDP-11/20 and some aspects of 

two small laboratory networks. 

Appendix D illustrates some of the types of experiments 

that we have been performing using the CNMS. 

We have been working with E. Gelenbe and his group at 

IRIA in France to verify some of his mathematical models for 

operating systems and computer networks.  • We have also been 

working with Louis Pouzin and his group at IRIA who are 

building the CIGALE and CYCLADES computer networks. He has 

asked us to study the feasibility of monitoring the CIGALE 



network using our CNMS. 

Appendices E and F are two research reports that 

reflect most of our work so far in our effort to discover 

tools and techniques to enhance the dependability of com-

puter networks and operating systems. Because the network 

maintenance system we are designing uses the CNMS as one of 

its principal components, for the past year we have em-

phasized understanding the problems, tools, and techniques 

involved with achieving a dependable system or network. 

Several reports have been produced during the past 

year, and we have given a number of invited presentations. 

These reports and presentations are listed at the end of 

this report. Appendices A through F are six of these 

reports. 

Considerable 	interest has been expressed in this 

project by a number of organisations, including manufac-

turers of monitoring equipment such as Tesdata and Comress; 

computer manufacturers such as DEC, Honeywell, Hitachi; in-

dustries such as Weyerhauser, and U.S. Government agencies 

such as Lawrence Livermore Laboratories, USAF FEDSIM, and 

the National Bureau of Standards. The interest shown ranges 

from wanting to use the system to wanting to manufacture and 

market it, depending on the organisation. Tesdata, Con-

solidated Computer, Interactive Business Logic Ltd., and ESE 

Ltd., are actively considering manufacturing, marketing, and 

providing a commercial monitoring service based on the 



I .  
'system. Interactive Business Logic hes submitted a p.roposal 

to Canada Development Corporation for funding to establish 

three monitoring centres and provide a commercial monitoring 

service remotely. Tesdata has proposed to integrate the 

	

11 	monitor into their product line. 

	

• 11 	5.. Summary.  of çlclosunsiona 

We have drawn a few conclusions based on our work on 

this project: 

1. 	It is feasible to build and use such a computer 

I . 

 network monitoring system. However, with the cost of 

each monitor ranging from about $10,000 for the Basic 

Monitor to about $100,000 for a fully extended version, 

the CNMS seems rather expensive, though not when com-

pared with the cost of other monitors. 

	

I . 	

2. The system is not yet as easily used as it should 

be. The worst problem is the complex patch panel 

wiring required to set up a number of experiments so 

that one can switch from one experiment to another 

without changing the- wiring. We have made some 

modifications to the hardware that eliminates the need 

for many of these patch panel wires. 

3. The modular hardware and software architecture we 

have followed have made it extremely easy to change the 

system. 

4. The maintenance software we have included in the 

- 12 - 



CNMS makes it easy to determine whether the CNMS is 

working and to quickly perform an experiment to get a 

rough idea of what the object system is doing. 

5. The interest exhibited so far in our CNMS indicates 

that there is a need for such a system. 

6. A simple, yet rather powerful hybrid monitor can be 

built from a set of high-speed content-addressable 

memory (CAM), a slow-speed CAM, a random-access memory 

(RAM), an array of high performance specialized proces-

sors, some switch matrices and a bus to interconnect 

these components and Join them to the controlling com-

puter. 

6. Recommendation...a 

Dr. C. D. Shepard, who has served as contract officer 

for the Department of Communications contract which has sup-

ported much of the cost of the CNMS research, thinks that 

the technology of the Basic Monitor is now ready to be 

transferred to industry to develop the system Into a product 

or set of products. Therefore, we have been actively 

seeking Canadian organisation(s) who are interested in 

making use of this technology. As mentioned in Section 4, 

four firms are actively attempting to find ways of ex-

ploiting this technology. 

We would be happy to demonstrate the system 	to 

representatives of the Canadian government. There appear to 



be numerous potential applications of the CNMS in the 

Canadian government. As but one example, the Department of 

National Defence might find the system useful and informa-

tive to monitor the SAMSON network once it is implemented. 

Monitoring can be a useful tool for acceptance tests for a 

computer system or network. 

Feure  Research  

We thank the Department of Communications for their 

generous support of the project for the past three years. 

We are especially grateful for the encouragement and help 

that Dr. C.D. Shepard has provided as project officer for 

DOC, and for the support given us by Dr. D. F. Parkhill and 

R. Tanner. 

Although this is the final report for this Department 

of Communications research contract, the research aspects of 

the CNMS and its use are far from complete. Furthermore, 

much work remains to be done in order to develop the system 

into a marketable, usable product. The research problems 

that immediately come to mind fall in four categories: 

A. Research to complete the capabilities of the 

basic CNMS, e.g.: 

1. The CNMS itself is a network of computers, and 

requires a distributed operating system to manage 

its resources. The design and performance of such 

a • 	software 	system 	are challenging research 



problems. 

2. We have completed the design of one version of 

sequential logic unit for the monitor, but a 

content-addressable memory version seems to be a 

better, though possibly more expensive, way of 

building such a unit. The software to translate 

from a regular expression to the table to control 

the unit is also a research problem involving the 

analysis of algorithms and automata theory. We 

are working on these two research problems. 

B. Extending the CNMS c B. Create techniques for 

Using the tool: 

1. There are no satisfactory answers as to how to 

characterise the workload of a system or network 

nor the behaviour of the network in response to 

the applied workload. Many measures are used, but 

there are no standard definitions nor interpreta-

tions for. them. 	We are actively engaged in 

research in this area. 

2. Once measures have been defined, techniques 

need to be created to provide these measures and 

represent them in a meaningful and useful way. 

C. Use the CNMS to evaluate systems and networks: 



1. A 	number of ideas for building computer 

networks are being tried experimentally in the 

laboratory of the Computer Communications Networks 

Group at the University of Waterloo. In order to 

determine the relative merits of these techniques, 

we need to measure and evaluate these experimental 

networks 	using 	the 	CNMS. 	Examples include 

Mininet, the network simulator network, the coding 

simulator network, the Newhall loop experiment, 

the hardware packet switch, not to mention the 

CNMS itself. 

2. Louis Pouzin of IRIA has discussed with us the 

 possibility of monitoring the CIGALE/CYCLADES com-

puter network of France. 

D. Apply the CNMS to other problems: 

1. As discussed In this report, we are exploring 

the possibility of using a modified version of the 

CNMS to monitor the behaviour of a computer 

network 	to 	detect malfunctions by observing 

degradations in performance and program logic se-

quences. 

2. An operating system for a computer system or 

network that Is capable of adapting its scheduling 

policies to its observed workload is a possibility 



that has been shown to have exciting potential. 

We are investigating the possibility of building 

such an adaptive operating system based on UNIX of 

Bell Telephone Laboratories plus a hybrid monitor 

based on that of the CNMS. 



PUBLICATIONS LIST  

1. "A Computer-Controlled Hardware Monitor: Hardware Aspects", Proc. A.I.M. 

Conference on Minicomputers and Data Communication, Liege, Belgium, - 
Jan. 1975; with W. Banks. 

2. "A Performance Measurement System for Computer Networks", Proc. of IFIP 

74, Stockholm, Sweden, Aug. 1974; with W. Banks, W. Colvin and D. Sutton. 

3. "Suitable Local Transformations in Computer Networks", Proc. of 24th 

Symposium of ASOVAC (Venezuelan Assoc. of Sciences), July 1974; with 

J. Araoz-Durand. 

4. "A Computer Network Monitoring System", submitted for publication in 

IEEE Transactions on Computers; with W. Banks, D. Goodspeed and R. Kolanko. 

S. "Software of the Network Monitoring System: Control of the Combinational 

Logic Unit," D. Goodspeed, W. Colvin and D.E. Morgan (External Report E-1). 

6. "Switching Matrices for Programmable Time-Division Multiplexing," 

E. Manning, W.M. Gentleman, C.E. 1Uhn and D.E. Morgan (External Report 

E-6). 

7. "A Performance Measurement for Computer Networks," D.E. Morgan, W. Banks, 

W. Colvin and D. Sutton (External Report E-18). 

8. "A Computer Network Monitoring System," D.E. Morgan, W. Banks, D. Goodspeed 

and D. Sutton (External Report E-21). 

9. "The Monitoring of Computer Systems and Networks: A Summary and Proposal," 

D.A. Sutton and D.E. Morgan (External Report E-22). 

10. "An Automated Maintenance System for Computer Networks," D.E. Morgan 

' and G.F. Clement (Internal Report I-2). , 



APPENDIX A 

A PERFORMANCE MEASUREMENT 

SYSTEM FOR COMPUTER NETWORKS 



1NFORNIA1ION PROCESSING 74 — NORT11.11OLLAND PURLISIIING COMPANY (1974) 

A PERFORMANCE MEASUREMENT SYSTEN1 FOR COMPUTER NETWORKS* 

D. E. MORGAN, W. BANKS, W. COI.VIN and I) SUTTON 

University of Waterloo 

Waterloo, Ontario. Canada 

A system of special hardware and software for monitoring the activities of a network is described. 

It  constats of (1) a hardware monitor controlled by a locally or remotely located computer; (2) monitor 

control and data analysis software; (3) a network traffic generator; (4) measurement software in each 
computer measured. Each computer to be measured is attached to a monitor. felephone lines, different 
from those of the network, connect the monitors to the controlling computer. 

Each monitor consists of a bus and selected event detectors,time measuring components, data 

	

. 	recording devices, and communications and control components. 
A high-level measurement language is being developed to facilitate controlling the measurements and 

analyzing the data. 

	

1 	INTRODUCTION 

A network  of cotruters consists of two or more com-
puters linked together, while a computer network can 
be either a network of computers, or a set of ter-
minais  connected to one or more computers. Most net-
works of computers consist primarily of nodes, hosts, 
transmission links, and terminals. A node (in this 
context) usually refÉrs to a computer used prin-
cipally to switch data. A computer whose primary 
role is not switching data in the network to which it 
is attached, is called a host. In some networks, a 
sharp distinction is made between nodes and hosts, 
while in others no distinction exists. Terminals  are 
devices which serve as the interface between man and 
the computer. The transmission  links, of cpurse,join 
this collection of hardware together to form a net-
work. 

The problem considered in this paper is how to moni-
tor a computer network. Four fundamental reasons for 
Monitoring a network are: 

(i) To see how well it performs; 
(ii) To discover why it performs as it does and to 
learn how and where to change network hardware and/or 
software to'improve its performance; 
(iii)To detect trouble and aid in diagnosing its - 
cause so that appropriate corrective or recovery 
actions can be taken; 
(iv) To charge users of the network's services for 
the network resources used. 

R. W. Hamming of Bell Labs is credited with saying 
that the goal of measurement is insight, not numbers. 
Depending on the type of network and the reesons for 
monitoring it, several different aspects of it can 
be monitored. Table 1,1 lists many of these aspects 
of possible interest. For some aspects, the desired 
insight can best be gained by analyzing distribution 
functions; for ether aspects, studying a set of 
numbers is sufficient. 

Often the data for several nodes of the network must 
be analyzed as a whole in order to have the perspec-
tive necessary to gain the required insight. In such 
cases the measurement activities should be distribut-
ed across the network, yet controlled and coordin- 
ated from a measurement centre rather  titan  occur 
independently at each  noie. The resulting data could 
be transmitted to the measurement centre either via 
the network or througn physically (or logically) 
tcparate laciiities. Unlike a computer system,  the  

"Research  supported by Department of Communicationj-
of Canada, research contract no. SP2-36100-3-0406; - 
Defence Research Board of Canada, grant no.99i1-17; 
Natienal Research Council el Canada, grant no.A811b • 
and by  h' data  Ltd. The research oas performed in 
the Computer Communications Networks Group's 
laboratory at the University et Waterloo. 

Table 1.1 

(i) Time measurements 
a. Time required to set up a logical or physical 

path through the network or through a node; 
b. Time required toAtsconneet a logical or 

• 	physical path through network or node; 
C. Time required to transmit a message (or 

' 	packet) through network, node, selected com- 
ponents of the switch, or transmission link 
(often called message delay); 

d.  Time  required for certain components of the 
network to detect, correct, and/or recover 
from trouble in the network, e.g. data trans-
mission error, link, host or node out of 
service; 
Time required to•detect and/or take appropri-
ate action for network overload; 
Time required to respend to a request for 
service; 
Time between arrivals of messages (or pack-
ers);  

h. Time required to disassemble (or reassembie) 
a message into  ([rom) a sct of packets; 	' 

i. Amount of time software and hardware 
resources are utilized; 
Amount of time logical or physical path is 
utilized. 

(il) Space and Time measurements 
a. Auxiliary storage space used in network or 

selected node(s); 
b. Main  storage space used in network or 

selected node(s); 

(iii)Event counts 
a. Number of messages (or packets) handled by 

node, network, link or host; 
b. Number of bits transmitted and received by 

node, network, link, or host.; • 

C. Number of requests for service. 

(iv) Length measurements 
a. Nunber of items selected in queue(s); 
b. Nunber of bits or characters in each message 

or packet; 
C. Amount of data to be stored in main storage; 
d. Amount of data to be stored in auxiliary 

' storage. 

e. 

f. 

j. 

lA - 
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components of a computer network are often widely 
separated, sometimes by thousands of miles. Thus, 
monitoring a network poses communications problems 
flot  encountered When monitoring a computer system. 

A challenging problem is to Coordinate monitoring 
activities across the network and then collect the 

resulting.data for anaLysis. 

1.1 	Requirements  of a Network Monitoring System 

Experience monitoring computer systems and study of 
pertinent literature indicate that an ideal network 
monitoring system should possess the fir-bowing char-
acteristics: 

(I) 	Be easy to use, yet flexible and expandable; 
*(11) 	Be as system independent as practical; 
(iii) Interfere minimally with the performance and 

integrity of the measured system; 

(iv) Interfere minimally with computer-computer 
and terminal-computer communications; 

(v) Be dependable and easily diagnosed; 

(vi) Offer a choice of resolution, so that the 

unit of measure  fils  what is measured; 

(v11) Allow gathering of measurement data at a 
distance from the monitor control and analysis 
functions, with minimal human intervention; 

(viii) Span the network; 

(ix) Be low in cost while not compromising other 
goals. 

• 

The problem, then, is to create a network monitoring 
system having as many of these .  characteristics as 
practical while satisfying the four reasons for 
monitoring a network. 

Experience indicates that monitoring software with-
out hardware aid in each node often  perturba  the 
network unsatisfactorily. Hardware monitors without 
software aid are too inflexible for most network 
'applications. Thus, there is a need for a set of 
software-controlled hardware monitors, each of which 

can be attached to a node of the network to be moni-
tored. To achieve network-wide perspective and in-
sight, the activities of these monitors should be 
centrally contr'olled and coordinated. Because of 
the wide geographic spread of many networks, such a 
network monitoring system should include the ability 

to have control information and monitored data 
transmitted via telecommunications links. Further-
more, some items currently can only be monitored 
economically by software within each node, so a 
means of controlling and receiving data from node 

measurement software must also be provided. 

2. CURRENT STATE OF THE ART 

To the best of our knowledge no such network moni-
toring system  lias  been designed. Although a great 
deal of effort and study  tris  been devoted to the 
creation of hardware and/or software to monitor a 
computer system (see for example.(1-111), su far 
very little work  ha  s been devoted to creating 
techniques and tools for monitoring a computer 
network. 112) 

Computer network monitoring today is accomplished 
by placing sofrware in each node and using the 
transmission and switchlng facilities of the net-
work to  senti  control information to the nodes and 
monitored data tri a Network Measurement Centre. 
This is the technique used by Prot. Kleinrock and 
his staff dt  lit i.\  to monitor the ARPA network. [121 

Although a feu  hardware monitors have been designed 
to have the ability to have their monitoring activi-
ties changed under control of software 15,10,13,14, 
151, most monitors are patch-board programmable. 
there seems  tir  be no hardoare monitor that includes 
the ability to be controlled from a remotely- 
located computer, nor [0 have Its activities Coln-

dinated with tin activities of several other moni-
tors. Several organizations have used one computer 
to monitor the acttvities ot another.( 9 ,1 4 ,1 4 ) In 
su:b systems, prohes attached to  tin,'  monitored (Or 
obleo.) ,ompoter  or'  conneLted to registers. of the 

monitoring computer with no pre-processing to reduce 
the data.  Tin  reduce communications costs, some pre-
proeessing isessential. 

Oyr studies indicate that the following monitors 
would appear tu require complete redesign in  minier  to 
be used to monitor a network of computers: 

Program Monitor (1962,1BM) (1,11) 
POEM (1963,1BM) [111 
Execution Plotter (1965, IBM) [111 
CPM,CPM II, and CPM III (1968, Applied Computer 
Technology) 16,15,16,171 
CPA (1968, Computer and Program Analysis, Inc.) 
[15,16,18) 
Event Monitor (1970, Boole and Babbage) [6] 
Dolby (1970, Dolby) [15] 
CMSM (1970, Copac, Inc.) (6) 

The following monitors would require major nmdifica-
tions of the design, usually including the ability to 
be controlled by a processor plus a sy“chtonizable 
clock, better resolution, more comparators, and/or 
more data storage: 

Hardware Monitor (1961, IBM) (11,19) 
Channel Analyzer (19e2, IBM) (11) 
PEC (1964, IBM) 1111 
SAM1 (1967, IBM) [II] 
TS/SPAR (1967, IBM) [20] 
BCU (1968,IBM) [11] 
System Monitor (1968, IBM) [ 3 ] 	 • 
SUM (1968 Computer Synectics, Inc.)(6,11,15,16 
18) 
UNIVAC Instrument (1968, UNIVAC) ( 4 .21) 
CDM. (1968, Ptoject MAC, MIT) [14,151 
Hardmon (1970, University of Waterloo) (22,2)1 
XRAY (1970, Applied Systems) (6,151 
A Counting Monitor (1970, University of 
Erlangen) 
DYNAPROBE 7700, 7900 (1970, Comress) [13,18,24, 
25,26,27] 
TESDATA 1010, 1155 (1972, TESDATA) (28,29) 

Minor modifications; usually the addition of a syn-
chronizable clock and/or the ability to be controlled 
by a processor, could make the following capable of 
monitoring a network; 

DYNAPROBE 8000 (1970, COMRESS) 
Neurotron (1970, Stanford University) [2,301 
ADAM (1972, Hughes of Xerox) [31 
TESDATA 1185, 1200 (1972, TESDATA) (28,29) 
Instrumentation for C.mmp (1972, Fuller of 
Carnegie-Mellon University) [32] . 

Relatively trivial changes, i.e., new software, the 
ability of control the monitor's activities remotely, 
and the ability to synchronize clocks between moni-
tors, are necessary for these monitors: 

SNUPER 2 (1967, Estrin) (5) 
SLUR (1968, Murphy) 1 1 01 

3. A COMPUTER NETWORK IUNITORINC SYSTEM 

Section 1 lists eeveral requirements that a designer 
of a network monitoring system should consider and 
attempt to satisfy. With these as goals, a network 
monitoring system has been designed and is being 
developed.' 

The monitoring system consists of: 

(i) 	A set of computer-controlled hardware monitors, 
each of which is attached to a computer to be moni-
tored; 
(j E)  Monitor coptrol and data analysis software; 
(111) A network  trahie  generator; 
(iv) Measurement software in each computer measuted. 

Figure 3.1 shows he.: the components of the system can 
be éonfigured to monitor a network, Note that a 
telephone line, different from those of the network, 
may connect each monitor to the computer controlling 
it, or the monitor may be attach•d directly to the 
controiling computei, These telephone connections 
need not temain established throughout a monitoring 
session. computer ,ontrol is required only to set 
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MS - Measurement Software 
RCM - Remote Computer Controlled Hardware Monitor 
RNMC - Regional Network Measurement Centre 
NMC - Network Measurement Centre 

Fig. 3.1 Application of Monitoring Hardware to a 
Network 

up the experiments, to read accumulated data period-
ically during some experiments and to terminate the 
session. Each remotely-controlled monitor has a 
chip processor to handle real- Lime  control details, 
and a mini-disk to hold the accumulated data. 

A prototype system has been implemented, tested, and 
has been used to monitor a small(three node)network 
on the University of Waterloo campus. Plans are to 
measure a network consisting of two nodes separated 
by 400 miles in early 1975. 

3.2 	The RCHM  

As Figure 3.2 illustrates, the Remote-Computer-con-
trolled Hardware Monitor(RCHM) is composed of a 
number of specialized modules interconnected by a 
bus (the MONIBUS). The modules included in a moni-
tor depend on the activities to be monitored. Each 

. module is assigned a set of MON1BUS addresses which 
are used by the controlling computer to send control 
information and to receive monitored results. Thus 
far, the modules include: 

Event detectors 
a. Masked-word range comparators 
b. Character detectors (for bit-setial 

lines) 
c. Combinational logic unit 
d. Sequential Jogic units 

(11) Time measuring modules 
a. stamp units (to record time of 

occurence, identity, and other selected' 
attributes of an event) 

b. Timer and event counters 
c. Network clock (synchronized with a 

standard source) 
d. Interval timer (for sampled measure-

ments) 
(iii) Data reducers and recorders 

a. Histogram generators 
b. Moment generator (yields the first four 

moments of a distribution) 
c. Timor and event counters 
d. Flip-flop bank 
e. Temporary memory 

(iv) Communications and control equipment 
a. MONIBUS-to-communications-link 

interface and controller 
b. MONIBUS-to-UNIBUS  (POP-il) interface 
c. Interrupt generator 
d. Programmable switch matrices 

A set of high impedance probes connect points of 
interest in the monitored computer to the monitor. 	• 
The probes terminate on a patch panel containing 
signal conditioning circuitry. 

The highly modular monitor architecture makes it 
quin easy to add new special-purpose data gathering 
or data reducing components as needed. 

3.3 	Software  

The highly modular monitor hardware architecture and 
the desire to allow the system to evolve dictate a 
similar architecture for the software. 

The current version of the monitoring system software 
has been designed and implemented to be the kernel of 
the eventual software. A rather detailed knowledge 
of the monitoring system is required to use this 
version. A high-level measurement language and a 
translator are being devised to make the system 
easier to use. 

(i ) 
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The heart of the software is a small real-time oper-
ating system. Depicted in Figure 3.3, it contains a 
set of RCHM module drivers, interrupt handling rou-
tines, primitives to aid authors of experiment con-
trol and data analysis routines in scheduling their 
routines, a small supervisor to allocate the 
resources (processor,memory,and communication), and 
support interaction with experiment control routines 
plus communications control routines. A limited set 
of standard routines for data analysis and output 
formatting, Aid an embryonic version of the measure-
ment language translator complete the present 
version of the system software. 

AS experience is gained using the system, the 
measurement language is being defined. The measure-
ment language is to be extensible so that the system 
will be easy to use and will allow the following 
scenario: First, a user instructs the system in how 
to measure, say, a certain type of message delay 
between selected nodes; subsequent users wanting 
this kind of delay will need to specify only its 
name and the nodes involved, so that the translator 
can generate the proper instructions for the system. 

A load generator has been implemented to provide a 
user with the ability to specify what traffic should 
be in the network while monitoring, if known traffic 
is desired. The current version simulates the 
typing action of up to sixteen users at terminals 
with speeds Up to 300 baud. The load generator 
transmits prepared scripts from disk to the appro-
priate line. It can simulate thinking and typing 
distributions. A load generator to produce higher 
speed traffic, simulating host traffic, will soon be 
available. 

Measurement software in each node is obviously quite 
system indepeedent. However, sets of standard 
measurement software primitives are being designed 
to measure parameters characteristic of manysystems. 
Ve are striving to minimize the amount of such soft-
ware required, as well  as the amount of work 
required to write, install, and debug it. A stan-
dard means of communicating between this software 
and the RCM is being designed. 

4. 	APPLICATIQNS 

In order to monitor a network using the system, - 
several steps must be taken: 

(i) Determine where probes must be placed in each 
computer to perform the required monitoring activi-
ties; 
(ii) Install the probes in the computers and set up 
the monitors; 
(iii) Test the monitors and the probes; 
(iv) Provide the load generator with the necessary 
scripts to drive the network (if desired); 
(v) Write programs to control the network monitor-
ing system as it monitors the network; 
(v1) 	Debug these programs; 
(vii) Initiate the experiment on the network moni-
toring system; 
(viii)Analyze and interpret the results. 

Today's computer architecture unfortunately  demanda 
 that the first : three steps be performed by a computer 

hardieare expert. The fourth step for our system 
requires only the skills of one who knows how to use 
the network and the load generator's teZt editing 
package. Steps 5-8 require knowledge of use of our 
monitoring system and the characteristics of the 	• 
monitored network. 

Besides its intended use of monitoring a computer 
network, the system has been used to monitor the 
activities of a computer system. The monitor system. 
with minor software and hardware modifications, can 
be used to monitor a set of electronic switching 
offices for telephones. Furthermore, It appears 
that a slightly modified version of the monitor can 
be used as an important component of a computer net-
work diagnostic system.. 

• 5. 	CONCLUSIONS 

A few conclusions Can be drawn from our experience 
thus far: 
(1) 	The hardware monitor works  and  is not prohibi- 
tively expensive to build or use. 

(U) 	The  modular components plus the bus architec- 
ture make it easy to add or subtract components au 
needed. Thus. the cost of a monitor depends on the 
complexity of the experiments to be performed. 
(111) Writing control progrmns for the monitor,even 
without the measurement language, is not difficult, 
because each component is addressed as a set of 
memory locations on the controlling PDP- il. 
(iv) 	A system hardware expert would not be  requit-. 
cd  to install the probes If computer manufacturers 
provided An  accessible  panel of probe points on 
their products. It appears that et least one emu- 
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facturer, Honeywell,  ha  s recognized this need, and 
plans to provide such a feature on their equipment. 
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A COMPUTER CONTROLLED HARDWARE MONITOR: HARDWARE ASPECTS 

1. INTRODUCTION 

The advent of complex computer technology has  made  

it necessary to develop new flexible methods of evaluation. 

It Is now required to evaluate systems becau • e technology is 

making many hardware-software  alternatives a reality. 

Many organizations are connecting computers into 

complex networks. The rapid development of sol id state 

technology has meant sudden changes in çoncepts of reality. 

A means of evaluating these new concepts was needed by the 

Computer Communication Networks Group at the University of 

Waterloo. A major effort has been made in the devolpment of 

a general purpose software-controlled hardware monitor as 

part of the creation of a hardware and software system to 

monitor computer networks. 

The purposes and design objectives of such a 

monitor are well documented in other publications <1,2,31 

and are outside:  the scope of this paper. In an earlier 

paper, the general aspects of our monitoring tools were 

discussed <41. • It. Is our intent to restrict discussion to 

the hardware design aspects of the monitor. 

2. MONITOR SPECIFICATIONS 

Electronic technology available when the project 

started in 1971 and measurement requirements suggested that 

lt was reasonable to achieve a monitor resolution of 100 

nanoseconds: This figure expresses the minium time between 
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events to ensure detection. It is - also the degree to which 

we are able to 1dentify the occurance of any single event. 

• Measurement technolog y.  as well as measuremehts 

were both goals. A hardware design that could be readily 

modified without major re-design effort was needed. A bus 

structured hardware monitor was developed to facilitate 

changes. 	• • 

In order to monitor a network successfully using 

hardware Monitors, parts several physically separate loca-

tions. This implies two essential features: first, the 

monitor must be controlled remotely and second, many of the 

monitor functions should be performed under software con-

trol. Results have to be available under software control. 

3. SYSTEM DESIGN 

The evolution of the hardware monitor tools has 

resulted in the generalized block diagram shown in Fig. 1. 

Four essential types of devices have been developed .  In as-

sociation with the hardware monitor. 

Communication and control hardware was developed 

to provide both local and remote control. Initial control 

hardware consists of UNIBUS to MONIBUS interfacing. Reverse 

signalling is acc'omplished through an interrupt system. Con-

trol hardware used in sampling and timing applications also 

comes under this category. 

Event detectors 	include simple 	signal 	con- • 



• 1 
• 1 

1 

ditioners, 	character 	detectors on serial 	lines, corn - 

binational logic units and sequential logic units. These 

devices are used to enable the hardware monitor to have ac-

cess to the computer system under study. It is the respon-

sibility of devices in this class to provide the rest of the 

monitor hardware with signals in a standard format. 

Actual measurements are performed in two modes, 

absolute and reduced. Absolute measurements are those which 

are recordings of raw data and do not represent reduced 

information. Examples are time measurements and event oc-

curances. Reduced measurements are those in which the 

reported value represents so nie composite value. Examples of 

these include histograms and moments of distributions. 

All devices in the monitor have been implemented 

using TTL logic. This was done because it was readily 

available and provided sufficient speed to meet our require-

ments. 

II k. MONIBUS IMPLEMENTATION 

The monitor is structured around an asynchronous 

bus known as MON.IBUS which has a simple efficient protocol. 

The bus contains all the address, data, control, and timing 

requirements to effect data transfers. The Protocol allows 

for interrupt handling. The MONIBUS is used as a communica-

tion Path between the controlling computer and a device.on 

the MONIBUS. No provision is made for inter-device com- 
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munication on fhe MONIBUS. The sienals used on the MONIBUS 

are shown in  Table 1.  

Certain assumptions are made in the implementation 

of the MONIBUS in our hardware monitor. All devices on the 

MONIBUS are assumed to be slave devices. This means that 

devices operate in a controlled mode under the control of 

the MONIBUS to UNIBUS interface. It means that the MONIBUS 

devices cannnot control any devices on the host machine. As 

a further simplification, no positive acknowledgement of the 

existence of a device is given. This reduces the time re-

quired to access devices on the MONIBUS, although this 

departs from practice commonly used on other bus-structured 

machines. The common problem associated with no positive 

acknowledgements is that of phantom devices, but this has 

not proved troublesome . The need for positive acknowledge-

ments should be questioned as the penalties of longer access 

time and more complex hardware are the result. When at-

tached to a PDP-11, the interface monitor makes devices ar3- 

pear in address space of the PDP-11. 

11 	
5. MONITOR DEVICES 

All devices are designed to function in conjunc-

tion with.the protocol of the MONIBUS. As new monitor 

devices are  found to be needed, they can be added with 

little disturbance to those already presen t . 
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In the. same way, software has been developed to 

be modular, allowing It to be integrated into the system as 

hardware is added or removed. 

6. COMBINATIONAL LOGIC UNIT 

The Combinational Logic Unit is used to realize 

any function of eight Boolean variables. It is a 

programmable device consisting of sixteen words of scratch-

pad memory and logic which can select each bit individually 

(Fig. 2). Four bits of the function select the appropriate 

word. The reMaining four bits are used to select the in-

dividual bit of the word. Each bit represents the presence 

or absence of a , prime implicant of the Boolean function. 

7. TIME AND EVENT COUNTERS 

The time and event counters provide information on 

two items which are of interest: the number of times a 

logical event•occurs, and the total duration of the event. 

These are used to provide much of the general information on. 

systems under study. As a basic module in the system, they 

'have so far been used in nearly every measurement performed 

by the monitor. The maximum resolution of the counters is 

established as 100 nanoseconds. 

Two thirty-two bit counters form the bases of the 

time and event counters (Fig. 3). The word length could be 

expanded readily if the need ever arose.  The status register 



determines whether each counter is used as a timer or as an - 

event timer. 

8. SWITCH MATRIX 

The program-controlled switch matrix is used to 

facilitate rapid changes in experiments either by changing 

measUrement types, or acting in response to variations as a 

result of measurements made in experiments in progress. New 

measurement technology will employ dynamic measurements as a 

method of reducing . the amount of redundant data collected. 

In our monitor two types of program-contolled 

. switch  matrices • are employed. The first has sixteen inputs 

and four outputs. The second has eight inputs and eight out-

puts. In both cases an output can select any of the inputs 

• (Fig. 4). The switch matrix can be changed at the instruc-

tion rate of the controlling machine. 

9. INTERRUPT GENERATORS 

• In any program-controlled device there is often a 

need for intelligent hardware to raise alarm conditions. An 

interrupt system satisfies this need. 	This is the only 

means available on the MONIBUS to request reaction to 

events. A priority system is also included to handle simul-

taneous interrupts by several devices (Fig. 5). 

TWo lines on the MONIBUS are associated with the 

iliterrupts. The interrupt request  1 ine listens to all inter- 
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rupt cards. 	It 	is the responsibility of the MONIBUS to 

UNIBUS interface to acknowledge interrupts when 	other 

transfers are not in progresse This is achieved by as-

serting the interrupt Acknowledge line. The interrupt card' 

requesting service receives this acknowledgment and iden-

tifies tself on the data lines. At the same time the re-

questing interrupt card prevents any other interrupt card 

futher along the bus from receiving the interrupt acknôw-

ledge signal. 

1 0 . SERIAL  UNE  TAP 

At the present time the majority of computers in 

networks communicate over bit-serial lines. In most cases 

the actual communication lines are readily available to the 

user of a hardware monitor, whereas the data in the inter-

faces is not usually accessable. 

Two •devices have been developed to Process data 

from bit-serial lines. The first is a device which taps  on 

II 	a .serial 	line and decodes the data. The second is an as  - 

II sociative array which ls used to identify 	particular 

characters. 	 - 

The associative array can be loaded under program 

control. It identifies characters key to a particular 

II measurement problem. An output is provided by the character 

II. detector which allows characters to  be  counted or particular 

sequences of characters to be recognized. 



11. TIME STAMP 

Periodic or predictable events can be measured 

II with relative ease.. A problem found by ail who debug 

software or hardware ts the apparent random failures. It was 

with this in mind that a device was developed to aid in 

monitoring rare and random events. 

The Time-Stamp device consists of sixteen monitor 

lines which wait for logical transistion to activate them. 

When a line becomes active, its line number Is recorded, 

along with the current real time and a snapshot of eight en-

vironment lines (Fig. 6). Thus one rs able to obtain infor-

mation about rare . and random events without redundancy. The 

full potential of this device as a maintainance and 

debugging aid has not yet been realized. 

12. HISTOGRAM 

The simplest method of placing data information in 

perspective is through the use of a histogram. In the hard-

ware monitor two types of histogram generators have been 

developed. The fast histogram generator has sixteen chan-

nels with 100 nanosecond resolution and 16 or 32 bit ac-

curacy. The slow histogram generator has sixteen channels 

with five microsecond resolution and 16 bit accuracy. 

The fast histogram generator is Implemented with 

high speed counters which can be read under program cohtrol. 

Overflow detection is provided and can be fed to an inter- 



rupt card. 

The slow speed histogram is implemented using a 

sixteen word scatch-pad memory. It can be read under 

program control and is provided with overflow detection. 

13. INTERVAL TIMER 

It is common in many measurement systems to take 

periodic measurement samples. A program controlled interval 

timer was developed for this purpose (Fig. 8). It is a 

device-consisting of two registers x and y. 	Its output line 

remains true for x time units followed by false for y time 

units. The period is ,x+y time units and the sample window Is 

- x time units. The value of each time unit is variable with 

an upper limit of 100 nanoseconds. X and y registers each 

have sixteen bit resolution. 

14. QUAI)  COMPARATOR 

In most computer systems much of the internal 

information appears on a parallel data bus. Two types'of 

data buses are *found in most computers containing informa-

tion useful to hardware monitor measurements. The first Is 

the address bus which contains information on the flow of 

the program as well as Identifying the areas used to store 

data Used in calculations. The second type of bus is the 

data bus used to move data within the computer. This bus 

demonstrates the effectiveness of peripherials as well 	as 
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providing a means of tracking key processing events. 

We developed the quad comparator to observe bus 

structured data.(figure 7 ). The quad comparator has nine 

registers accessible from the MONIBUS. One register is used 

to mask out those bits which are not needed. The remaining 

eight registers are used to establish the range of the 

masked data. Because they are under program control, the 

data can be identified to any degree of accuracy. In the 

implementation our Quad Comparator can accept a sixteen bit 

bus. This bus width can be extended by stacking more than 

one Quad Comparator. For example in order to examine a 

thirty-two bit bus, two Quad Comparators are needed. 

Th  nuad Comoarator provides eleven outputs to 

give information about the range of values to be checked. 

The eight-program controlled registers give eight  break 

points.  Seven of the outputs provide information indicating 

that the input value is in the range outlined by adjactent 

registers. The remaining four outputs deal with the two-end 

registers. Two of the outputs are used to indicate equality 

with the end values. The remaining two specify when the bus 

value is greater than one the end range of values or less 

than the other end value. 

15. CONCLUSIONS .  

'The 	bus structured nature together with the 

modular nature of the hardware and software components seem 

to have made our monitor easy to develoo and use. These 



• 1 

-features are the best safe-guard - against obsolescence-. New 

measurement tools, when they are developed, will be added 

with a minimum of effort. 

date, a single hardware monitor is operational 

under control of the first version of the Network Monitoring 

Centre software. These are physically co-located as the 

hardware and software have not been completed to permit con-

trol via telephone lines. The Network Monitoring Centre is 

controlled by a user language based on FORTRAN, which re-

quires fairly detailed knowedge of the subject  by  the user. 

The hardware and software 1.s under construction in order to 

permit remote operation of the hardware monitôr, a second 

hardware monitor is under construction, and 'a second-

generation software system for the Network Monitoring Centre. 

is under development for allowing simpleuspr interaction and 

automatic multitasking. The monitor has been used to measure 

single-CPU subjects, and simple two-node network.- We plan to 

have monitored a three-node network by early 1975. 

- )1B - 
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SUMMATU: 

The remote computer-controlled hardware monitor or 

ncnm is a major component of the Computer Network Monitoring 

i:ystem which has been developed  nt the University of Water-

loo during the last three years. This paper describes the 

hardware concepts and the design of the RCHM. 

The Computer Communications Networks Group at the 

University of Waterloo has recognized the need to monitor 

networks as a means of evaluating their performance. This 

knowledge will help to validate analytical models, help to 

optimize and debug software, and lead to the development of 

a flexible means by which charging algorithms and diag-

nostics can be.implemented. 

In a typical computer network there are several 

computer sites linked by data lines of varying capacities. 

The sites may be separated by only a few feet or by several 

hundred miles. It is the task of the monitoring system to 

observe and correlate activity at several locations simul-

taneously. It is important to minimize interference to the 

system being monitored. The RCH• hardware is centred around 

a bus-structured wired-logic processor. The bus structure 

allows variations to be introduced readily into an in-

dividual monitor.it also allows new monitoring devices to be 

introduced at a later date without significantly disturbing 

those already present. 
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ABSTRACT 

In order to help satisfy an apparent need for tools for 

monitoring the activities of a computer network (See Mamrak 

<1>), a system of special hardware and software, called a 

Computer Network Monitoring System (CNMS), is being im-

plemented in the University of Waterloo Computer Communica-

tions Networks Group (CCNG). The paper discusses the 

motivation and derivation of the CNMS, then provides func-

tional descriptions of most of the major hardware and 

software components, illustrates use of the CNMS, and lists 

experiments and applications. In a previous paper <2>, the 

motivation and architecture of the system were sketched. 

The CNMS consists of: (1.) A set of hybrid monitors, 

each of which is controlled by a locally or remotely located 

computer; (2.) Monitor control and data analysis software; 

(3.) A Network Traffic Generator; (4.) Measurement 

software in each computer monitored. Each computer to be 

monitored is attached to a monitor. Telephone lines, 

possibly different from those of the network, connect the 

monitors to the controlling computer. 



1. INTRODUCTION 

A computer system, consisting of hardware and the 

software to control it, is often so complex that it is dif-

ficult to understand what is being done, how efficiently it 

is being done, and what problems exist. Moreover, computer 

systems are often connected to other computers as well as 

terminais  to form even more complex computer networks. 

Cole and others have defined a network of computers to 

consist of two or more computers linked together, while a 

computer network has been defined to be either a network of 

computers or a set of terminals connected to one or more 

computers<3>. Most networks of computers consist primarily 

of nodes, hosts, transmission links, and terminals. A node 

(in this context) usually refers to a computer used 

primarily to switch data. A computer whose primary role is 

not switching data in the network to which it is attached, 

is called a host. In some networks, a sharp distinction is 

made between nodes and hosts, while in others no distinction 

exists. Terminals are devices which serve as the interface 

between man and the computer. The transmission links, of 

course, join this collection of hardware together to form a 

network. 

Determination of what a computer system or network is 

doing is essential to effective management of it. This in-

volves monitoring (observing) its behaviour as it executes a 

set of programs and responds to its environment. The 



I.  

behaviour of a system or network acting on.a set of programs 

and data is characterized by the sequence of values of cer-

tain «  parameters of the system and by the sequence  of  events 

that occur as the system executes. These are manifestations 

of the sequence of states traversed by the system as 

programs of the workload  are  executed. 

Although a variety of hardware and software monitoring 

tools and techniques have been developed to aid in observing 

the 	behaviour of .cordputer systems (See, for example, 

<4-14>), 	little attention has been paid to developing tools 

for monitoring computer networks. Kleinrock and Cole <3> 

have successfully used elegant software techniques to 

monitor the performance of the ARPA network. Abrams et al 

at  the National Bureau of Standards of the .U.S.A., have 

developed tools for observing data flowing along a com- 

muhicaticins line between a computer and a terminal<15>. 

Fuller and others are instrumenting the C.mmp multi- mini 

processor system. 

The purpose of this paper is to discuss the motivation, 

architecture, components, and use of a system of hardware 

and software designed to monitor the behaviour of a computer 

network or system. Morgan, Banks and others have previously 

sketched the purpose and architecture of the Computer 

Network Monitoring System(CNMS) <2,16>. This CNMS is being 

created in the Computer Communications Networks Group at the 

University of Waterloo. 
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The paper Is organised in six sections. Section 2 

motivates the need for a monitoring system rather than a set 

of unrelated, uncoordinated software and hardware tools. By 

considering the problems involved in monitoring a computer 

network, the section motivates characteristics and major 

components of an ideal computer network monitoring system. 

Section 3 presents the architecture and describes the compo-

nents of the CNMS being created at Waterloo. Use of this 

CNMS is explained and illustrated in Section 4. Section 5 

list .s some experiments being performed using the CNMS, and 

mentions some potential applications of the system. Section 

summarises this research, evaluates the CNMS in ternis of 

nine characteristics presented in Section 2, presents our 

conclusions so far, and outlines some future work. 



2. NETWORK MONITORING SYSTEM MOTIVATION 

There are four fundamental reasons for monitoring a 

computer system or network: 

A. To observe its performance, thereby determining 

whether work is flowing satisfactorily through it; 

B. To detect malfunctions; 

C. To diagnose the causes of any problems ob-

served; 

D. To measure the resources used so that ap-

propriate charges can be made. 

Usually the people who wish to monitor the activities 

of a computer system are neither hardware, software, nor 

statistics experts. Rather, they are either managers 

responsible for the system, software maintenance people who 

lack detailed knowledge of hardware, hardware maintenance 

personnel who lack detailed knowledge of software, or 

researchers (students or professionals) seeking statistics 

for their work. It is indeed rare that the person seeking 

Information  is a computer software, hardware, and statistics, 

expert all in one. Thus, system monitoring tools should be 

easy to learn to use as well as easy to use, and detailed 

knowledge of hardware, software, and/or statistics should 

not be necessary to observe the system and get useful infor-

mation about it. Furthermore, the tools and techniques 

should be incorporated in a single monitoring system to 

avoid having to learn to use several different tools and 



techniques. 

Computer networks are often distributed geographicallY, 

so monitoring the behaviour of a computer network involves 

distributing the monitoring.activities across the network. 

In order to correlate observations from scattered  sites, 

these monitoring activities must be centrally controlled and 

coordinated, and the results must be centrally analyzed. 

Thus, monitoring a computer network involves  communications  

as well as monitoring. Network monitoring tools and tech-

niques must be designed with this in mind-. 

Although software has been used with some success to 

monitor the performance of computer systems and networks, 

experience indicates that monitoring software without hard-

ware often perturbs the system or network unsatisfactorily. 

Hardware monitors without software aid are too inflexible 

for most network applications. Certain parameters, events 

.and their attributes can best be determined by software, 

while others can best be determined by hardware. Thus, some 

combination of hardware anesoftware monitoring tools ap-

pears better than either hardware or software tools alone. 

Moreover, if a computer network is to be monitored, either 

the computers in the network could include special .hardware 

to aid them in self-monitoring while producing minimal 

interference with the network's functions, or a set of 

software-controlled -  hardware monitors (often called 'hybrid 

monitors'), one attached to each computer to be monitored, 



could 	be 	employed to complement necessary monitoring 

software in each computer. Each of these software-

controlled monitors should be capable of having its ac- . 

 tivitiés controlled and its monitored results sent through 

telecommunications links. Control of these monitors and 

analysis of the data could be performed by a computer system 

at a Network Monitoring Centre (NMC), such as the ARPA. 

Network's NMC, which is used to coordinate software measure-

ment activities at each IMP and to collect and analyse. the  

data. 

Bec.ause transmission of large volumes of data is expen-

sive and usually not necessary, a network monitoring system 

needs facilities for reducing data before transmission to 

the NMC. Cole <3> showed that good approximations to many 

kinds of distribution functions could be obtained from log 

histograms. Much of the measurement data obtained by the 

ARPA network measurement software is transmitted in the form 

of log histograms to reduce the amount of data .transmitted. -  

Extending Cole's reasoning, only the first four moments of a 

distribution are required to model its behaviour for most 

purposes. Rather than produce these moments at the NMC from 

data transmitted from remotely-located monitors, equip-

ment,hardware could .  be  'provided  •  in each remotely-located 

monitor to produce these moments, then transmit only the mo-

ments to the NMC, thereby reducing the data that must be 

transmitted. The main disadvantage. .is the cost of such data' 



reduction equipment. 

' The activitieS and parameters of a system or network 

can be monitored continuously, periodically on a sampling 

basis, or only when events of interest occur. An event 

usually consists of a logical and/or sequential combination 

of other events. Fundamentally, an event is the occurrence 

of a 'specific pattern or sequence,of patterns in particular 

portion(s) of the system, network, environment, or workload. 

Tools for monitoring events should include facilities: 

A. To detect specified event(s); 

B. To register the (real or relative) time of 

occurrence of the event; 	• 

C. To time the duration of the event (i.e., the 

set« of state.s comprising the event, or bounded by 

two particular events) and/or its consequences; 

. D. To obtain and record selected attributes of the 

system, workload, and/or environment when the event 

occurred; 

e. To count the number of occurrences of the 

event; 

F. To initiate some action as a consequence . of the 

event, e.g.,.diagnosing the cause of a problem 

defined by the occurrence of the event, checking 

for any damage, or initiating repair and/or 

recovery activities. 	• 

A well-known problem in physics and astronOmy is to 



determine the order in which nearly simultaneous events oc-

cur in widely separated systems. The same problem occurs 

when monitoring a network of computers. One way to minimise 

such problems is to synchronise all the clocks as accurately 

as possible with a single, very accurate, reliable source of 

time-of-day readings such as that provided by the National 

Bureau of Standards of the U.S., or the National Research 

Council of Canada. 

In order to determine the effects that changes have on 

the performance of the network, some way of controlling the 

workload applied to the network is desirable. Thus, a 

monitoring system would be more useful if it included 

facilities to apply loads with specified characteristics to 

the object system or network. 

From the above discussion, 	it follows that an ideal 

CNMS should include the hardware and/or software tools 

necessary: 

A. To observe, measure, record, and evaluate the 

behaviour of each of the components of a computer 

network (including its workload and environment), 

such tools being: 

1. A set of computer monitoring systems, each 

having hardware and/or software capable of 

detecting particular events, measuring their at-

tributes, recording and reducing the data, and 

transmitting the data for analysis elsewhere; 
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1 ink 2. Terminal 	and/or 	telecommunications 

monitors, each having hardware and/or software to 

observe activities and information flow. 

B. To define, control, and coordinate monitoring 

activities throughout the network. 

C. To provide a single, accurate, reliable source 

of time (e.g., time of day readings and precise 

intervals) for the entire CNMS. 

D. To provide network traffic with known charac-

teristics, should the 	CNMS 	user 	need 	this 

capability for monitoring purposes. 

To the best of our knowledge, no such computer network 

monitoring system has yet been developed. However, a number 

of hardware monitors and software monitors, plus a few hy-

brid monitors (e.g., <17,18,19>) have been developed for 

computer systems, and software techniques and tools have 

been used by Kleinrock, Cole, and others to monitor computer 

networks <3>. 

Experience in monitoring computer systems, and study of 

pertinent literature indicate that an ideal computer network 

monitoring system (CNMS) should possess the following 

characteristics: 

A. Be easy to use, yet flexible and expandable; 

B. Be as system independent as practical; 

C. Be dependable and easily diagnosed; 

D. Allow gathering of measurement data at 	a 
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distance from the monitor control and analysis 

functions, with minimal human intervention re-

quired; 

E. Span the network; 

F. Interfere minimally with the performance and 

O 	integrity of the measured systems; 

G. Interfere minimally with computer-computer and 

terminal-computer communications; 

H. Have no ill effects on the security or in-

tegrity of any of the systems; 

I. Offer a choice of resolution, so that the unit 

of measure fits what is measured; 

J. Be low in cost while not compromising the other 

goals. 

It is, of course, impossible to achieve the ideal CNMS. 

Nevertheless, this paper describes an attempt to produce a 

system that hopefully will accomplish many of these goals to 

a reasonable degree. In Section 6, the CNMS described in 

Section 3 is evaluated in terms of these characteristics of 

an ideal CNMS. 



3. DESCRIPTION OF A COMPUTER NETWORK MONITORING SYSTEM 

3.1 SYSTEM ARCHITECTURE 

Using the characteristics listed in Section 2 as goals, 

a CNMS has been deSigned and is being developed. A 

prototype system has been implemented and is being tested by 

using it to monitor two types of mini-computers and two 

small laboratory networks. This CNMS consists of the fol-

lowing major components, which correspond with the list of 

tools needed that is given in Section 2: 

• A. A,  set of hybrid monitors (called Remote Con-

trolled Hybrid Monitors, and abbreviated RCHM), 

each being controlled by a computer which can be 

miles away (i.e., at the Network Monitoring 

Centre), and containing components to enable it to 

. monitor a computer system and a set of communica- 
. 

tions links to  terminais or other computers; 

B. Software to define, control, and coordinate the 

activities of a set of hardware monitors, and to 

,obtain and analyse data from them; 

C. Monitoring software in each observed computer, 

and 	tools 	to 	enable the activities of the 

monitoring 	.software 	to 	be 	controlled 	and. 

coordinated from the Network Monitoring ,Centre; 

D. Facilities in each hardware monitor to gain ac-
. 

cess to a single standard clock for time -of - day 

readings as Well as precise intervals; 



E. A network traffic (load) generator capable of 

simulating the activities of several users (human 

or non-human) interacting with the network. 

Figure 3.1 shows how the components of this CNMS can be 

configured to monitor a network. Note that a telephone 

line, which may be physically or logically separate from the 

data links of the network, can connect each monitor to the 

computer controlling it, or the monitor can be attached 

directly to the controlling computer. These telephone con-

nections need not remain established throughout a monitoring 

session. Computer control is required only to set up the 

experiments, to read accumulated data periodically during 

some experiments, and to terminate the monitoring session. 

Each remotely-controlled monitor has a micro-processor to 

handle real-time details, and a mini-disk to hold ac-

cumulated data for the NMC. 

If the NMC cannot control all the RCHMs in t,he network, 

Regional Network Monitoring Centres (RNMCs) are introduced 

to form the hierarchy illustrated In Figure 3.2. Note that 

RCHMs can be controlled indirectly (i.e., via telecommunica-

tions links) or directly by either a RNMC or a NMC. 

As Figure 3.3 illustrates, the RCHM is composed of a 

number of specialized modules interconnected by a bus, 

called the MONIBUS. The modules included in a monitor 

depend on the activities to be monitored. Each module is 

assigned a set of MONIBUS addresses which are used by the 



Fi g. 	3.1 

MS 	- Measurement Software 

RCHM - Remote Computer Controlled Hardware Monitor 

RNMC - Regional Network Measurement Centre 

NMC - Network Measurement Centre 
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Figure 3.2 
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controlling computer to send control information and to 

receive monitored results. The modules included so far are 

listed here and deScribed in  Section 3.2: 

A. Event detectors 

1. Masked-word range comparators, used to detect 

an event defined in terms of data or address 

ranges; 

2. Combinational logic units, used to detect an 

event defined in terms of Boolean functions of 

other events; 

3. Sequential 	logic units, used to detect an 

event defined as a sequence of other events; 

. 4. Character detectors for bit-serial lineS. 

B. Time measuring modules 

1. Time stamp units, used to record time of 

occurrence, 	identity, and other selected at- 

..tributes of an event; 

2. Event timersï . 

3. Interval timers, for sampled measurements; 

' 4. Network clock, which is synchronized with a 

standard reference clock. 

C. Counters, data reducers, and data recorders 

1. Histogram generators; 

2. Moment generator, used to yield the first 

four moments of a given distribution; 

3.. Event counters; 



Le. 	Flip-flop banks; 

5. Content-addressable memory (CAM); 

6. Random-access memory (RAM). 

D. Communications and control equipment 

1. Programmable switch matrices 

2. Interrupt generators; 

3. RCHM controller and communications link 

interface; 

4. MONIBUS-to-UNIBUS (PDP-11) interface. 

E. Signal conditioning circuitry and patch panels. 

A set of high impedance probes connects points of in-

terest in the object computer to the monitor. The probes 

terminate on a patch panel containing signal conditioning 

circuitry. 

The highly modular monitor architecture makes it quite 

easy to add new special-purpose data gathering or data 

reducing components as needed. This modular hardware ar-

chitecture and the desire to allow the monitoring system to 

evolve dictate a similar architecture for the software. 

Figures 3.4 and 3.5 depict the architecture of the software 

at this stage of its evolution. 

The heart of this software is a small, real—time, 

message-switched operating system, containing a set of RCHM 

module drivers, interrupt handling routines, primitives to 

aid authors of experiment control and data analysis routines 

in writing and scheduling execution of their routines, a 



small supervisor to allocate resources (processor, memory, 

and communications) 	plus' the 	communications 	control 

routines. A limited set of standard routines for data 

analysis and output formatting, an embryonic version of 'a 

,translator for a monitoring language, and software to allow 

the user to interact with the monitoring system, complete 

the present version of the system software. These software 

combnents are described in Section 3.2. 

As experience is gained using the system,.a monitoring 

language is being defined. The current version of the 

language is an extension of Fortran; however, the pos-

sibility of basing the language on a BCPL-like language 

(e.g., B <20>) is being actively pursued. 

A load generator has been implemented to provide a user 

with the ability to specify what traffic should be in the 

 network while monitoring, should known traffic be desired 

<21>. The current version simulates the typing action of up 

te sixteen users at terminals with speeds up to 300 baud. 

The load generator transmits prepared scripts from disk to 

the appropriate line(s), and can simulate thinking and 

typing time distributions. A version of the load generator 

to produce higher speed traffic, simulating host activities, 

is being created. Eventually, the'load generators will also 

be controllable from the NMC using the monitoring'language. 

Monitoring software in each node (or host) is obviously 

quite system dependent; 	however, 	sets 	of 	standard 



monitoring software primitives are being designed to observe 

parameters characteristic of many systems. We are striving 

to minimize the amount of such software required, as well as 

the amount of work required to write, install, and debug it. 

Standard means of communicating between this software and 

the RCHM are being designed. 

I .  
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3.2 COMPONENT DESCRIPTIONS 

3.2.1 RCHM HARDWARE COMPONENTS 

Corresponding to the three main types of computer 

system events, there are three types of event detectors in 

the RCHM: 

"Value" events <--> Masked-word Range Comparator 

Sequential events 	<--> Sequential logic unit 

Combinational events <--> Combinational logic unit 

The MASKED-WORD RANGE COMPARATOR determines whether a 

bit string, logically 'ANDed' with the specified mask, then 

regarded as a binary value, falls within two program-

specified limits. There are five output lines to indicate 

whether the given string is above, below, or within the 

range, or whether it is equal to the upper or lower limit. 

Currently each comparator tests strings of at most  • sixteen 

bits, but the comparators have been designed so that four 

can be easily combined to test a 64-bit string. Four com-

parators are usually interconnected in a different way to 

form what we call a QUADRI-COMPARATOR which has four ranges 

and 16 (of the 17 possible) outputs. The outputs are: 

below the lowest value, equal to one of the  •  range boun-

daries, within a range, between two ranges, or greater than 

or equal to the highest value. 

The SEQUENTIAL LOGIC UNIT determines whether a sequence 

of events represented on its input lines is following a 

specified pattern. The pattern is defined by a regular ex- 
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pression 	which 	was 	specified 	by 	the experimenter, 

manipulated by the controlling computer, and stoe. ed in the 

sequential 	logic unit. 	The current design features eight 

inputs, eight outputs, and a maximum of 32 states; however, 

the , unit could, 	like the other types of units, be of ar- 

bitrary size, determined by cost and need. 	Races are 

avoided by buffering the inputs and by using a synchronous 

• design. 

The COMBINATIONAL LOGIC UNIT determines whether the 

eight events represented  on  its input lines satisfy the 

Boolean expression - specified by the experimenter's program. 

The functional represent-ation is translated to a Karnaugh 

map and stored as such in the unit. 

The CHARACTER DEtECTOR receives characters serially by 

bit from the  • telecommunicadons link to which it is at-

tached, thereby detecting telecommunications link events 

such as the start of a message. The detector tests to see 

if each character (5, 7, or 8 bit codes) matches one of the 

sixteen patterns specified by the controlling program. If 

so, the output line corresponding to the pattern matched is 

•set  to 	This unit employs a simple associative 

memory to achieve the desired speed. The character detector 

and the  sequential logic  unit are'used together to handle 

communications protocols 	e.g., to detect the header of a 

message or packet. 

In a monitoring system there is a need to accurately 



determine real time, to measure durations, and to obtain 

pulses of specified widths at specified regular intervals. 

Facilities for each are provided in the RCHM. 

The NETWORK CLCCK serves as the source of accurate real 

time as well as very accurately spaced pulses. The current 

clock supplies pulses every 100 nanoseconds and selected 

multiples. 

When a specified event occurs, the TIME STAMP UNIT 

records an identifier for the event, time of occurrence of 

the event, and sixteen indicators of the state of the object 

system when the event occurred. Currently, the output for 

an event contains 48 bits of information, the minimum time 

between recordable events is 200 nanoseconds, and the clock 

resolution is 100 nanoseconds. 

The TIMER AND EVENT COUNTER counts the number of occur-

rences of the specified event, and measures the total amount 

of time the event occurred during the period of observation: 

Currently, each register has 32 bits, the timing resolution 

is 100 nanoseconds, and the maximum count rate is 10 MHz. 

The controlling program selects one of four clock rates. 

Under program control, each timer may be used as either a 

timer or an event counter. One can arrange for the con-

trolling computer to be notified when a counter overflows by 

connecting the counter's overflow output to the input of an 

Interrupt Generator (See below). 

The INTERVAL TIMER produces a 'high' output every )(4.Y 
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microseconds, and the output lasts for Y microseconds. X 

and Y are set under program control. The Interval Timer is 

used to indicate when to sample the system, should sampling 

rather than event-driven monitoring be desirable for a par-

ticular set of experiments. 

In order to keep track of the fact that a set of events 

of interest has occurred or to aid in measuring the time 

between events, a set of flip flops is provided on the patch 

panels together with numerous standard logic gates. 

To record monitored data until the controlling computer 

has an opportunity to access it, EVENT MEMORY is provided in 

the form of some semi-conductor memory and a mini-disk. 

In most measurement experiments, the object is to ob-

tain the distribution function for the quantity being 

measured. In order to facilitate obtaining this distribu-

tion function, HISTOGRAM GENERATORS and a MOMENT GENERATOR 

are included in the design of the RCHM. •  A Histogram 

Generator consists of a mask, a bank of comparators , (or a 

CAM), and a corresponding bank of counters. When the input 

data falls wjthin a range, the corresponding counter is in-

cremented by one. The mask and ranges are set under program 

control. 

The MOMENT GENERATOR, working with the output of the 

histogram generator, produces the first four moments of the 

distribution. 

The INTERRUPT GENERATOR signals the nearest controlling 



computer (whether RCHM controller or NMC or RNMC) whenever 

one of its input lines indicates that an event has occurred 

which requires computer intervention. Such events include 

overflow of counters or timers, data overrun in the time 

stamp unit, or events selected by the experimenter. 

The PROGRAM-CONTROLLED SWITCH MATRICES connect a 

software specified input to one or more specified outputs. 

Using the switch matrices, several experiments can be set up 

by making  the  necessary patch panel connections in advance, 

then, under program control, setting up the switch matrices 

to perform one experiment at a time. To change from one ex-

periment to another, one merely calls a routine to discon-

nect certain links, then calls another routine to make the 

required connections through the switch matrices. Using 

these matrices, probes are linked to event detecting units, 

which are connected to data gathering units, and these are 

connected to data recording and data reducing units. Two 

sizes of switch matrices have been used thus far: 8 x 8 and 

16 x 4. 

These programmable switch matrices make the 	CNMS 

feasible. 	Originally, 	it was hoped to use switch matrices 

exclusively, eliminating patch panels, but the size, speed 

and cost of the switch matrices required dictated the com-

promise of using patch panels plus switch matrices to make 

the necessary connections. When compared with the exclusive  

use of patch panels to achieve interconnection, the corn- 



promise reduces the time required to change from one expert- 

ment to the next and reduces the amount of human interven-

tion required, but not to the level we had hoped. A less 

expensive switch matrix on an MSI chip is planned to further 

reduce the use of a patch panel. 



3.2.2 NMC, RNMC, and RCHM SOFTWARE 

As Figures 3 • 4 and 3.5 illustrate, the system software 

for the micro-processor that controls the RCHM and the 

system software for the NMC and RNMC have basically the same 

structure. However, the RCHM software is simpler and much 

smaller than that for the (R)NMC. The principal components 

of the software correspond with the types of functions to be 

performed. 	The message-switched Operating System structure 

is well-suited to the problem of controlling parallel 	tasks 

in multiple machines. 

The USER INTERFACE MANAGER receives, analyses, and 

interprets commands typed by the user as the user sets up an 

experiment, interacts with it, and obtains and analyses the 

results. The command interpreter calls upon the other com-

ponents of the system to serve the user. 

The EXPERIMENT MANAGER schedules and supports the ex-

ecution of experiment control programs written by users in 

the monitoring language. 

The MONITOR MANAGER drives (or arranges for the RCHM 

controller to drive) .the components of the RCHM to perform 

the monitoring activities requested by the user. 

The RESOURCE MANAGER allocates main and auxiliary 

memory, and records and retrieves monitored data, experiment 

control programs and system programs. 

The COMMUNICATIONS MANAGER in the NMC handles com-

munications with the RNMCs 	it controls, with the load 



generator, with the object network monitoring software, with 

the data analysis system, and wUth any RCHMs it controls 

directly. The Communications Manager Un the RNMC provides 

communications with its controlling NMC and possibly the ob-

ject network monitoring software. The Communications 

Manager in the RCHM controller is only 'concerned with its 

controlling NMC or RNMC. 

The RESULTS MANAGER schedules and supports user-written 

or system-supplied routines to record, reduce, and analyse 

monitored data. Experiments requiring a great deal of data 

analysis send the data to a larger system that is more 

suitable for such analysis.* At the University of Waterloo, 

the Honeywell 6050 is used for this purpose. When the 

analysis is complete, the results are formatted by routines 

of the Results Manager selected by the user. 

The MAINTENANCE MANAGER provides diagnostic routines 

and standard test packages for hardware and software of the 

CNMS. Using these routines, a knowledgeable user can in-

teract directly with the components Of the RCHMs and can 

perform reasonably complex experiments without. having to 

write and compile experiment control programs. The Main-

tenance Manager also contains all routines, necessary to 

handle CNMS hardware or software errors. 

The QUEUE MANAGER provides the primary means of com-

municating between these software components. A service to 

* Alternately, the NMC could be used at some sacrifice in 
. efficiency and power.. 
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be performed is requested by building a queue entry and 

asking the Queue Manager to put it in the appropriate place 

in the proper queue. A service which is to be done at a 

particular time is placed in the Queue Manager's queue until 

it is time to move it to the appropriate action queue. 

A good first generation of most of these software com-

ponents is being used to perform moderately complex experi-

ments. A more sophisticated and complete version of the 

software is now being written. 



4. USING THE CNMS 

4.1 GENERAL PROCEDURE 

In order to monitor a network using the CNMS, several 

functions must be performed: 

A. Determine what is to be monitored and how to 

monitor it; 

B. Determine what hardware probes (if any) are to 

be used, install them, and test them using an 

oscilloscope and the diagnostic software of the 

CNMS; 

C. Determine what software monitoring tools (if 

any) are to be used in the object network, 	install 

them, and test them using the diagnostic software 

of the CNMS; 

D. Decide whether known, controlled traffic is 

desired for the experiment and, if so, provide the 

load 	generator 	with 	the 	necessary scripts, 

distributions and line descriptors; 

E. Define the software necessary to define and 

control the experiment and analyse the resulting 

data; 

F. Set up the patch panel as required and debug 

the resulting combination of hardware and software 

using the diagnostic - software of the CNMS; 

G. Using the command language, initiate the ex-

periment from a terminal attached to the NMC; 



H. Interact with the experiment; 

I. Obtain and interpret the results. 

Today's computer architecture unfortunately demands 

that step B be performed by a computer hardware expert. 

Step C must be performed by a computer software expert, but 

we are trying to develop software monitoring primitives that 

will simplify this step. Step D requires knowledge of a use 

of a load generator and a text editing system. The text 

editor is needed to create the scripts of transactions re-

quired by the load generator. To do step E requires knowing 

how to write experiment control programs using the 

monitoring language and how to use the support routines 

provided to help control experiments and analyse results. 

Step F hopefully only requires knowledge of CNMS and the 

system being monitored, but could require expert help if 

problems exist with the hardware or with the object network 

software. Steps G, H, and I only require knowledge of CNMS 

and the characteristics of the object network. 

Thus, monitoring a computer network is still a rather 

demanding task. However, once steps A through F have been 

performed for a set of experiments, the remaining steps can 

be performed without detailed knowledge of how the 

monitoring is being accomplished. 	 • 

4.2 AN EXAMPLE 

The following example was chosen from a set of expert-  



ments that have been performed to measure, evaluate, and im-

prove the CNMS and its components <22>. The example il-

lustrates use of the RCHM and indicates a useful way of 

representing data. 

As discussed in Section 3, an important component of 

the CNMS is the load generator. In order to study its 

behaviour, we assembled a two-node computer network. Each 

node executes the load generator to produce traffic for the 

other node through a variety of data links. The rate at 

which the load generator applies transaction traffic to each 

of its output lines is controlled by the user's choice of 

distribution function (e.g., exponential, uniform, hyperex-

ponential) and by his choice of parameters for the distribu-

tion. A variety of line speeds can be produced in our 

networks laboratory for the data links joining the two nodes 

of this captive network. Thus, we can subject the load 

generator to a wide variety of tests while observing its 

behaviour. 

We have found two histograms to be particularly useful 

for understanding and modelling the behaviour of computer 

systems or networks: System state vs. time in each state, 

and system state transition vs. number of such transitions. 

Both types of histogranis are being produced as part of the 

measurement and evaluation of this network of load 

generators, 	but only the first will be presented here. 	(A 

paper describing the measurement and evaluation of the load 



generator network is being prepared.) 

The histogram shown in Figure 4.1 was produced by con-

necting the components of the RCHM to the load generator 

network as shown in Figure 4.2, and by writing and executing 

the experiment control program shown in Figure 4 • 3. The 

subroutines called by the experiment control program are 

primarily RCHM drivers. The variable "RCHM" indicates which 

RCHM is being used. (When this experiment was being per-

formed, only one RCHM was assembled and working, but now 

there are two.) The variable "UNIT" indicates which of the 

several components of the same type in an RCHM is being ad-

dressed. 
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L2:=-B 

FILE NAME: DEXP4.EXP 

C PURPOSE OF EXPERIMENT #4 

-TO DETERMINE THE TIME SPENT IN EACH OF 
8 POSSIBLE STATES AS A RESULT OF USING THE 
STATE VECTOR [LINE BUSY, CPU #2 BUSY, CPU #1 BUSY] 
WHERE THE LINE IS A COMMUNICATIONS LINK BETWEEN 
THE TWO CPU'S. 

C 	-TO FILL IN THE FOLLOWING TABLE: 
STATE 	TIME IN 	TIME/ 	TIME/ 

STATE 	REAL TIME 	COMPUTE TIME 

WHERE REAL TIME.,TOTAL EXPERIMENT TIME, AND 
COMPUTE TIME => CPU # 1 OR CPU #2 BUSY. 

C THE SYSTEM IS DEFINED TO BE BUSY, OR DOING USEFUL 
C COMPUTING, IF ONE OR BOTH OF THE MACHINES IS 
C EXECUTING OUTSIDE OF THE PROGRAM WAIT LOOP. 

C 
SUBROUTINE DEXP4 

EXTERNAL TVOVFL 
IMPLICIT INTEGER(A-Z) 
INTEGER TVOVF0(5), TVOVFL(5) 
COMMON /CONFIG/NODE, UNIT 
COMMON /TVCOM/TVOVF0(5),TVOVFL(5) 

C QUADRA-COMPARATORS MUST BE SET UP, USING 
C THE TEST PROGRAM. FOR COMPUTE TIME, SET RANGE #3 TO 
C THE ADDRESSES OF THE WAIT LOOP. 

WRITE(6,12) 
12 	FORMAT(' USE TEST PROGRAM TO SPECIFY QC RANGE #3 = WAIT LOOP',/ 

1 ' ON BOTH MACHINES',/") 
C 
C COMPUTE TIME ->CPU#1 BUSY OR CPU #2 BUSY 

=> (OUTSIDE CP0 #1 WAIT LOOP) OR 
C 	(OUTSIDE CPU #2 WAIT LOOP) 

C SET UP LOGIC UNITS. 

C LOGIC UNIT el  =  -B = STATE 2.* 1SW815 

Li :-B  

C LOGIC UNIT #2 = -B = STATE 3 = 1511816 

Figure 4.3 
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C SET UP 8X8 SWITCH MATRICES 

C STATES 	. 
S0=2 
S1.3 
S2=5 
S3=6 
S4=4 
S5=5 
S6=6 
S7=7 

C TIMER & EVENT COUNTERS 

TV1B0=0 
TV181=1 
TV280=2 
TV281=3 
TV3B0=0 
TV3B1=1 
TV4B0=2 
TV481=3 
TV580=6 
TV581=7 
RTIME=7 
CTIME=4 

CALL SW8DIS 
CALL SW8CON(SO, TV180, Si,  TV1B1, S2, TV280, S3, TV2B1, 
1 RTIME, TV580, CTIME, TV5B1) 

UNIT=2 
CALL SW8DIS 
CALL SW8CON(S4, TV380, S5, RV381, S6, TV480, S7, TV481) 

C SET UP TIMER & EVENT COUNTERS 

DO 35 UNIT-1, 5 
35 	CALL TVSET(1,1.1,3,1,1) 

C SET UP INTERRUPT GENERATOR AND CLEAR OVERFLOW COUNTS. 

DO 40 UNIT-1,4 
TVOVFO(UNIT)=0 
TVOVFL(UNIT)=Q 

40 	CALL IGSET(TVOVFL, UNIT) 

C TV #5 OVERFLOW LINES ARE 'OWED WITH THOSE OF TV #4, SINCE 
C ONLY HAVE FOUR INTERRUPT LINES. A SPECIAL CHECK IS MADE IN 
C 'TVOVFL'. 

TVOVF0(5)=0 
TVOVFL(5)=0 

RETURN 
END 



5. APPLICATIONS OF THE CNMS 

Besides its intended use of monitoring a computer 

network, the system has been used successfully to monitor 

the activities of a computer system. Several experiments 

have been and are being performed, including: 

A. Using the monitor to locate frequently used 

code and system bottlenecks in DOS-11 and Fortran 

as programs are compiled and executed; 

B. Determining the loading on the PDP-11 UNIBUS; 

C. Determining the frequency of execution of each 

of eight classes of instructions for different 

kinds of programs in order to compare our results 

with those obtained by Schreiber and Klar at the 

University of Erlangen <23>; 

D. Validating 	a 	mathematical 	model 	of two 

transaction-oriented data base management systems 

interacting with each other and sharing data; 

E. Locating inefficiencies in a computer network 

simulator implemented to work in parallel on three 

interconnected PDP-11 computers. 

Reports describing the results of these experiments are 

being prepared. Many other experiments are planned, e.g., 

measuring the swapping activities of various PDP-11 

operating systems, observing Honeywell's GCOS executing on a 

6050, watching VM/370, monitoring the performance of an 

experimental loop network joining our laboratory with 



laboratories in Toronto and Ottawa, as well as monitoring 

our campus network. 

Eventually we think that some form of a eNMS wilt be a 

• vital component in an aUtomated maintenance system for corn-

puter networks, helping to detect and diagnose malfunctions 

and bottlenecks in hardware and software semi-automatically. 

Such a system is being designed,  and  implementation of a 

prototype is planned during 1975-6. Furthermore, we an-

ticipate that a form of CNMS will eventually be an important 

component in an adaptively controlled computer network. We 

are working toward these goals as well as toward "simply" 

monitoring the performance of computer networks and sy“ems.. 

Comrionents  of the CNMS are being employed in a novel 

experiment to test the feasibility of providing hardware as-

sistance to an information retrieval system. The results of 

. this experiment should be available in about 18 months. 

finally', it appears that the CNMS„with minor software 

and hardware modifications, can be used to monitor a set of 

electronic switching offices for telephones.<24>. 



G. SUMMARY, CONCLUSIONS, AND FURTHER WORK 

In Section 2 it was concluded that an integrated 

monitoring system is preferable to a set of unrelated, un-

coordinated monitoring tools, because few people who need to 

monitor a system or network are hardware, software, and 

statistics experts whose primary interest in life is to 

monitor the system or network. In Section 3 the Computer 

Network Monitoring System being created at the University of 

Waterloo was described. Section 4 presented a simple ex 

ample  to illustrate use of the system, and Section 5 men-

tioned several experiments that are being performed using 

the CNMS. 

Sandra Mamrak, 	in her forthcoming article entitled 

"Performance Evaluation in Computer Networks: A Survey"<l>, 

states: "Actual system measurements, analyzed using 

statistical techniques and used to improve queueing and 

simulation models, have been relatively neglected. (This 

neglect may be due in part to the unavailability of tools 

for making desired observations of dynamic systems and of 

statistically significant test environments.)" It is hoped 

that the CNMS described in this paper will be a good first 

step toward satisfying this need. 

As promised in Section 1, we have evaluated our CNMS 

based on our experience in using it. Table 6.1 is our 

evaluation of the system as it stands at this writing and 

our prediction of an evaluation as the system should be at 



the beginning of 1976. The evaluation is based on the nine 

characteristics of an ideal CNMS listed in Section 2. The 

scores range from -5 to +5, with -5 meaning "Terrible, 

couldn't be worse", +5 meaning "Excellent, couldn't be 

better", and 0 being the borderline between being acceptable 

and unacceptable. 

As the scoring indicates, the main problems with the 

CNMS are cost and the continuing need for a patch panel. We 

anticipate that both problems can be solved in time, espe-

cially considering the rate at which the cost of logic is 

dropping and recent developments in sol id  state switching 

for data communications. 

The prototype RCHMs use TTL logic, which limita our 

resolution to 10 MHz; however, some of the newer components 

contain Schottky logic in order to monitor the 

• microprogrammed PDP-11/45. 

A few conclusions-can be drawn from our experience thus 

far: 

A. The hardware monitor (RCHM) works and is not 

prohibitively expensive to build (i.e., $10,000 	to 

$100,000, depending on which modules are included 

and in what quantity). 

B. The modular components plus the bus  architec-

ture make it easy to insert or remove components as 

desired. 	Above the cost of a basic monitor, the 

cost of the monitor increases as the complexity of 
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the experiments to be performed increases. 

C. 	It is not difficult to write control 	programs 

for the monitor, even without the monitoring 

language, because each component is addressed as a 

set of memory locations on the controlling PDP-11. 

The primitives of the current, embryonic monitoring 

language are simply Fortran subroutine calls. The 

routines themselves are written in either Fortran 

or Assembler for the PDP-11. 

• 0. The diagnostic hardware and software that we 

included in the CNMS continually proves its value. 

Many monitoring tools do not include such error 

detection and diagnostic tools. We have found that 

it is definitely worth our time to quickly run 

through a set of routine hardware and software test 

programs before running an experiment. 

E. A system hardware expert would not be required 

to install the probes if computer manufacturers 

provided an accessible panel of probe points on 

their products. 

The security and privacy questions that arise from con-

sidering the widespread use of CNMSs are thought provoking, 

to say the least. and could  • be the subject of a long 

discourse. A simple way to prevent unauthorised snooping is 

to keep the phone numbers of the RCHMs of the CNMS a well-

guarded secret. 



Creating a network monitoring system is an ambitious 

project. Although much has been accomplished since the 

project began in mid 1971, a great deal of work remains to 

be done, some of which is listed here: 

A. Develop 	a 	theory of computer monitoring. 

Possible topics include extending the work of Mor-

gan and Sutton <35> in formally defining events in 

terms of system states, providing a formal basis 

for deciding when the performance of a system is 

acceptable, and creating a theoretical basis on 

which to'build monitoring systems. 

B. Find solutions to the problems of determining 

exactly when an event occurred and deciding the 

order in which two nearly simultaneous events oc-

curred in separate computers of the network. 

C. Develop an easily used, extensible language for 

defining and controlling monitoring experiments as 

well as analysing the data. 	Our Fortran-based 

language is only a poor first step toward this 

goal. 

D. Determine 	what parameters characterise the 

performance and workload of a computer system or 

network. Some form of so called Kiviat graph might 

be useful to represent the performance of the 

network in terms of these parameters <36>. 

E. Create a self-monitoring computer system, and 



then a self-monitoring computer network. A self-

monitoring computer system Is one that includes 

special hardware (e.g, micro-programmed special 

Instructions)  to aid the system in observing its 

• own activities. Similarly, a self-monitoring com-

puter network would contain special hardware and 

firmware to help the network observe its own ac-

tivities. 

F. Create 	an 	adaptive 	computer system that 

monitors its workload and its performance while 

continually adjusting its resource multiplexing 

parameters accordingly. A mathematical model of 

such a system has been analysed,by Gelenbe et al 

<25>. 

And much, much more. 
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Demonstration of a erogrammable Hardware Monitor 

Dr. David E. Morgan 
Dale .0. Goodspeed 
Richard Kolanko 

Computer Communications Networks Group 
University of Waterloo 

Waterloo, Ontario, Canada 
October, 1974. 

The programmable hardware monitor developed by the 
University of Waterloo's Computer Coeuitunications Networks 
Group(CCNG) is intended to be part of à computer network 
monitoring system. Detailed information about this system is 
contained in the references, and it is assumed that the 
reader is familiar with some of this material. All of the 
monitoring for this demonstration is done locally, within 
the CCUG Laboratory. Software currently being developed will 
allow for remote monitoring to be done at the various nodes 
of a computer network, as described in the references. 

Figure 1 shows the  configuration for monitoring. 	The 
object computer system consists of two eDe11/20 computers, 
with a communication link between them. 

tigure 2 is the wiring diagram used for performing 
measurements on a single computer, while rigure 3 is the 
configuration used when measurements are performed on both 
computers. 
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I .  

The User Interface 
{1.110. 

The user interface of the monitor control program al-
lows measurement experiments to be performed with a minimum 
of difficulty. The keyboard commands available'to the user 
are: • 

EXn: This sets up the monitor components for experi-
ment #ne The useras kortran subroutine, which contains 
calls to the drivers, is executed. This establishes 
connections in the programmable switch matrices, and 
selects the speed to be used by the timers. 

GO: This allows the actual monitoring to begin, by 
setting the 'go' bits of the timer and event counters. 
The monitoring may continue for a specified time inter-
val, or until the 'ST' command is given. 

ST: This stops the experiment. 

AN: This command permits the measurement data just col-
lected to be analyzed. The user's Portran analysis 
subroutine is executed, and results are sent to the 
keyboard, or may be saved on disc. The user may analyze 
results while the experiment is still running, or may 
wait until it has stopped. 

CL: This command is ûsed only occasionally. It causes the 
timer and event counter data buffers to be cleared, and 
resets any interrupts. Normally, these functions are 
done under program control. 

TE: Using this command, the user may access all of the 
hardware diagnostic programs. Aside from verifying that 
the hardware is operating correctly, the diagnostic 
commands may also be used to set up entire experiments. 
This provides an alternative to writing the tortran 
programS needed with the 'EX' Command. 

Control Is 	returned 	to 	the 	21)1'11 	operating 
system(DOS) when the user is finished monitoring. 
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The Demonstration Experiments 

The demonstration consists of five measurement experi-
ments. Three of these are done on only one of. the 
machines(two on Machine #1 and one on Machine #2). The last 
two experiments perforM simultaneous measurements on both 
computers, while the machines talk to each other across the 
communication link. In between the two sets of experiments, 
a few.(16) wiring changes must be made on the patch panel. 
The interrupt generator inputs and Some of the inputs to the 
programmable switch matrices are changed. These simple 
changes must be made because of the constraints imposed by 
the current ntimber of components installed in the monitor. 
With an additional switch matrix and interrupt generator in-

- stalled, the changes would not be necessary, and all five 
. experiments could.be performed without ever having to modify 
the patch panel wiring. All connections could then be made 
via programmed changes to a switch matrix connection. When 
necessary, a combinational .logic unit could be used to 
select an appropriate input to a switch matrix. The 
preceding two techniques are already being used to maximum 
advantage for the demonstration experiments. 

The wiring for the patch panel and the accessory board 
might appear to be quite complex, especially for a 
'programmable' hardware monitor. To understand the reason 
for this, the observer must realize that the wiring is ar-
ranged so that five different experiments can. be  performed 
with only a minimum of wiring changes needed. The experi-
ments require using fourteen different probes attached to 
two computers, and also the UNIBU.S address lines of each 
machine. On the accessory board, approximately half of the 
wiring is used to invert signals. The flip flops and decoder 
chips currently in use operate on a 'low' true signal, while 
the monitor components use 'high' true logic. Accessory 
modules which operate on a 'high' true signal are currently 
being built, so that much of the accessory board wiring will 
no longer be necessary. 

The experiments to be performed are: 

1) measurement of Cx,U major states and average instruction 
time on Machine #1. 

2) measurement of UNIBUS activity on Machine #2. 

3) measurement of Machine #1 while a simple communication 
takes place between it and Machine #2. 

4) simultaneous measurements of Machine #1 and Machine #2. 
Both machines are driven by a load generator, which 



causes the machines to •talk to each other.. The state 
vector produced is: 

<lie busy, CPU42 busy, CPUO1 busy> 

5) simultaneouà measurements of Machine 01 and Machine 02. 
Memory activity is examined on both machines, and a 
table is produced showing the percentage of time spent 
in the various ranges specified. : 

The experiments are discussed in more detail in the fol-
lowing sections. Included in the discussions are listings 
of the programs used to obtain the measurements, and copies 
of the some of the results. More detailed comments about 
some of the results are given in reference #2, with explana-
tions given for those cases where the results might appear 
invalide 	Typically, the explanation involves having a 
detailed knowledge of the DP11 architecture. 	Rather than 
go into those details here, emphasis is instead put upon the 
motivation behind each experiments ber all of the experi-
ments, one of the subgoals is to gain experience which can 
be applied to the monitoring of computer networks. 



Experiment #1 

The CPU major states (fetch, source, destination, ex- 

II ecute, service) of Machine 01 are monitored. Results ob-
tained include: 

1) average time in state. 
2) percentage time in state. 
3) percentage of instructions that enter state. 
4) average instruction time. 

1/ The results can be used to verify the PDP11/20 specifica- 
tions provided by Digital Equipment Corporation. If the 

11 source and destination states are entered too frequently, it 
IF is possible that the program efficiency could be improved by 

better use of the register-register mode of addressing. En- 
tries to service state provide a partial measure of disc ac- 
tivity. 	• 

I .  

I .  
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MEASURE,PENT 'OF MACRC COMPILER ON MACHINE el 

EXPERIMENT #1 RESULTS . "*7  

TIME UNMS = MICROSECONDS 

TOTAL TIME SPENT IN ALL UDR MITES = 0.2660614620D 08 	• 

FETCH 	SOURCE 	DESTINATION 	EXECUTE 	SERVICE 

• TOTAL TIME 
IN ETAT:I: 	0.1160D , 18 0.4415D 07 	0.4635D 07 •.5804D 07 0.1562 13  06 

# OF 'MIES 
ENTERED: 	0.7188D 37 0.2537D 07 0.2896D 07 0.6397D  0 7 0.4369D 06 

AVER AGE TIME 
IN :ETATE: 	il.1613D •11 	0.1741JD 	(1016111D 01 •1.9073D (liJ 	1103576D 00 

% TIME 
IN STATE:: 0.4358D 32 U.1659D 02 0.1742D 02 002181D U2 0.5872D 00 

% OF INSTRUCTIONS 
THAI. EN1ER 
STATE: 	0.1000D 33 0.3530D 02 004029D 02 0 0 8900D 02 0.6078D 01 

I/ AVERAGE INSTRUCTION TIME = 
(TCTAL TIME IN ALL STATES) / (41 OF FETCHES) = 003702D 01 

1 
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II FILE NAME: DEXP1.EKP 

SUBROUTINE DEXP1 

II C PURPOSE OF EXPERIMENT 41 

II c 
C 	

-TO OBTALN THE TIME S PET  IN THE PROCESSOR MAJOR STATES 
-USE TV 41 UC RECORD THE TIME SPENT IN FETCH MA‘TOR STATE 
-USE TV 42 TO RECORD THE TIME SPENT IN SOURZE MAYOR STATE. 

• C 
C 	

-USE TV 43 TC RECORD THE TIME SPENT IN DESTINATION MAJOR STATE. 
-USE TV 44 TO RECORD TUE TIME SPENT IN EXECUTE MAYOR STATE. 
-USE TV 45 VC RECORD THE TIME SPENT IN SERVICE MAJOR 
STATE. 	. 

C 
C 

EXTERNAL TVOTFL 
IMPLICIT INDEGER(A-Z) 
INTEGER TVOVF0(5)3TVOVF1(5) 
comnu /CONFIG/N0DE,UNIT 
CO1MOMITVCOM/TVOVFU(5),TTOVF1(5) 

C INPUTS TO 8X8 SWITCH MATRICES 

I C  
TAISE0=6 
SOURCE:4 
IEST=0 
EXEC=1 

11 C 	
SERVIC=5 

• C TIMER & EVENT COUNTERS (BUFFER (J & 1) 

C  

l e  
C SEI UP SWITCH MATRICES. 

FETCH=0 

TV180=0 
TV1B1=1 
TV2B0=2 
TV2B1=3 

• IT3BU=U 
UV3B1=1 
FT4B0=2 

• TV4B1=3 
TV5B0=6 
TV5B1=7 

LNIT=1 
CALL Sd8DIS 
CALL SW8CON(FETCH,TV1B0,FAISFU,TV1B1,SOURCE,TV2B0,SOURCE,TV2B1, 
1 SER1IC,TV5B0,SERTIC,TV531) 

UNIT=2 
CALL SW8DIS 
CALL S18CON(DEST,TV380,DEST,TV3B1,EXEC,TV4B01EXEC,TV481) 

It C  
C SEI UP LOGIC UNIT 41 = -(E4F÷G+H) 
C -(FETCH-FSOURCE+DESTi.EXEC) = SERVICE STATE u 1SW8I5 

I . c  L1:=-(E+F4-G41) c  
C.SET UP LOGIC UNIT 4 2 re- C 	FETCH7\ISRU = 1 5W8I6 
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L2:=C 

• 1 
I C  

I 

C SET UP TIMEE & EVETT COUNTERS. 

11 

	

	
IO 2U UNIT=1.,5 

20 	CALL TVSET(100,1,3,1,1) 
C 

11 C SET UP THE INTERRUPT GENERATORS AND ZERO OVERFLOW 
C COUNTS IN CASE THEIŒ'S TIMER & EVENT COUNTER OVERFLOW. 

EC) 30 
UOVFO(UNIT)=0 
'VOVF1(UNIT)=0 

30 	CALL IGSET(TVOVFL,ONIT) 
7VOVF0(5)=0 
TVOVF1(5)=0 

C 

II C BLOCK INTERRUPTS GENERATED  Bi QUADRA-COMMATOR USED 
C DEXP3.EXP 

UNIT=1 
CALL QCSET(0) 
UNIT=2 
CALL ÇCSETIU1 

FETE)» 
END 

1.3D 



I C  

500 

fi 
I. 

II FILE NAME: DENDLEXP 

C THIS IS THE .ANALYSIS ROUTINE FOR EXPERIMENT 41 

SUBROUTINE DEND1 

IMPLICIT INTEGER(R-Z) 
INTEGER TV(J(2),TV1(2),TTOVF0(5),TVOVF1(5) 
LOGICAL IGFLG 
1EAL*8 DFTV0(5),EPTV1(5),TSUM,TBYTS(5),EEYFET(5), 
1 MAX,AVGTIS(5),AVGIUM 

COMMU N /CONFIG/NODE,TNIT 
;COMMON /TVCD1/TVWF0(5),TVOVF1(5) 
COMMON /PHMSYS/OUTUNr,IGFLG 
IATA MAX/4294967296.M 

IRITE(OUTUNT.,5(J0) FORMAT(' *e*• EXPERIMENT' 41 RESULTS **-"/° I r/ I t . 

l'TIM UNITS = MICROSECONDS') 

C READ RIESULTE, ADJUET FOR FOSSIPLE OVERFLOW, RNI 
C CONVERT TIME TO MICROSECONDS 

ISUM=0.DU 
DO 505 UNIT=1,5 
CALL TVREAD(IV0,TV1) 
CALL DI2DF(TVU,DPTVU(UNIT),TV1,DPTV1(UNIT)) 
EPTVU(UNIT)=IPTVU(UWIT) TVTVFO(UNIT) 1kM.FX 
DPTV1(UNIT)=DPTV1(UNIT)  4  TVOVF1(UNIT)nMAX 
EPTVO(UNIT)=IPTVU(UWIT) /10.E0 

505 	TSUM=TSUM 4 DPTVO(UNIT) 

PIRITE(OUTUNT,520)TSUM 
520 	FORMAT(' ',/' ','TOTAL TIME SPENT IN ALL MAJOR STATES = ',D17.10) II 	C 

ro 53U UNIT=1,5 
TSYTS(UNI ,T)=DPTVU(UNIT) / TSUM * 100.DU •  

EBYFET(UNIT)=DPTV1(UNIT) / DFTV1(1) 	1U(J.D0 

I/ 	530 	1F (EFTV1(UNIT).NE.U.D0) AVGTIS(UNIT)=DPTVO(UNIT) / DPTV1(UNIT) 
AVGTIS(UMIT)=0.D0 

II 	bRITE(OUTUNT,540) 
54U 	FORMRT( 	1 ,/' ',13X,'FETCH',5X,'SOURCE',5X,'DESTINATION ° ,3X, 

1 'EXECUTE',EXSERVICE ° ) 

II 
dRITE(OUTUNT,544) OPTVU,DPTV-1,AVGTIS,TOYTS,E3YFET 

544 	FORMAT(' ',/' ','TOTAL TIME',/' ° ,'IN STATE: ',4(D11.4,1X),D11.4, 
1 //' 4 OF TIMES',/' ENTERED: 	',4(D11.4,1X),D11.4,//' AVERAGE TIME°, 
1 /' IN STATIE: ',4(D11.4,1X),D11.4,//' 	TIME ° ,/' IN STATE: 1 , 
1 4(D11.4,1X),D11.4,//' % OF INSTRUCTIONS',/' THAT ENTER', 
1 /' STATE: 	',4(D1104,1X),D11.4) 

C COMPUTE AVEFAGE INETRUCTION TIME 	 •  

AVGITE=TSUM / DPIV1(1) 
eRITE(OUTUNT,546) AvGIrm 

E46 	FORMAT(' ',/' AVERAG1 INSTRUCTION TIME = ',/° 	(TOTAL', 
1 ° TIME IN ALL STATES) / (4 OF FErHES) = ,D11.4) 

C PRINT CVERFLOW COUMS. 

1, RITE(OUTUNT.,55U) 
•550 	FORMAT(' ',/' °,'OVPFLOil COUNTS FOR TIMER 	EVENT COUNTERS ° , 

1 /",3Y,'U>IT',3X,'BUFFER',3X,'COUNT') 
DO 552 1JNIT=1,5 

c:;) 	turmutnnqumm J:n.141 :MITT .mlinlruntumTm‘ Itmrm.mu. nurItilmin 
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I c 

I. 

• 

• 
• 

554 	
1.11 ‘A- 	vu •Lue; 1  ru-e": • UnAlpà.VUVrUl 	 utIL f ivutrà..turta...., 

° ° 4X.", 12, 	° 	1X I 5 / 	,4)C, 12, 7 X, '1 °  .1 n 6) 

• 
IF (IGFLG) CI1LL IGRE3 (1 g2t. 3,4 ) 

RETURN 
.END 
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).:/cperiment 

The UNIBUS activity on Machine &2. is monitored. Ac-
tually, the same experiment is performed twice, with four 
different UNIBUS control signals monitored each time. The 
selection of signais is made using the programmable switch 
matrices. 

The UNIBUS signals monitored, and the observations that 
can be obtained are: 

1) MSYN: tells how fast the UNIBUS is operating. The 
result can be compared with the claimed maximum of 
1.6x10**6 word transfers per second. 

2) DDSY: indicates that the UNIBUS is busy. 

3) NËR: indicates the amount of cycle stealing performed 
by the disc. 

4) SACK: provides a lower bound on the time to wait 
before receiving control of the UNIBUS. 

5) DATI,DATIP,DATO,DATOB: indicate the type of transfers 
between the UNIBUS master and its slave. Typically, the 
processor is bus master, and is fetching instructions 
from memory, the slave. Data transfers in and out are 
with respect to the master. 



MEASUREMENT OF MACR1 COMPILER ON MACHINE 42 

)k" EXPERIMENT 42 RŒSUL7S 
METHOD # 1 

TIME UNUTS = MICROSECONDS 

TOTAL EXPERIMENT TI1E = 0.3133287870D U8 

SIGNAL: 	NUN 	BBST 	NPR 	SACe,.7 

TOTAL  TIME 
ASSE1TEE: U.9994D 17 	0.3129D 08 	0.8160E 05 	0.2699D 05 

4 01 1IMS 
ASSERTED: 0.1849D U8 	0.1164D  06 	005579D 05 	0.5818D 05 

AVERAGE TIME 
ASSIERTEE: 005405D 10 	0.2689D  03 	0.1463£ 01 	0.4640D 00 

=1; TIME 
ASSERTED: 0.3190D U2 	0.9987D  02 	0.26U4D OU 	008615D-01 

4 OF rimEs 
ASSUTEL PEE 
MICU- 
SECCND: 	0.5901D LU 	0.3714D-02 	0.1780E-02 	0 01857D-02 

1 
1 
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'MEASUREMENT . CF MACMC COMPILER ON MACHINE #2 

**i,  EXPERIMENT 42 RESULTS AA'A 
METHOL •4 2 

TIF  UNH1S = M1CROSIECONTS 

11 TOTAL EYFERIFENT TIME = 0.307934511U 08 

SUM: 	DAM 	 DATIP 	 DATO 

II TOTAL TIME 
ASSERTED: 0.2652D 08 

II 4 OF rimEs 
ASSEETEI: 0.192UD 17 

AVEFFIGE TIME 
ASSERTED: 0.1381D  1J 2 

% TIME 
111 ASSERTEL: 	0.8612D 12 

ge # OF TIMES 
II ASSERTED PER 

MICF0- 
SECOND: 	0.6234D-31 

U.2752D 07 

0.1E7UD 07 

U.14720 01 

0.8939D  01  

DAUB 

U.1372D U7 	0.2088D 06 

0.1041E  0 7 	0.2274D 06 

0.1318D  0 1 	0.9181 1)  00 

0445EE  0 1 	0.67790 00 

0.6374D-U1 	003382D-01 	007384D-02 
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s 

111 

II C 
FILE NAME: DEXP2.EXP 

C 
C PUFPOSE OF EXPERMENT  4 2: 

—TO MONITOR UNIBUS ACTIVITY TN A PDP11/20. 

II CC THE EXTERIFENT WIL1 BE RUN TWICE. 
C FOE MEIHOD=1, THE SIGNALS 70 BE MONITORED ARE: 

	

II C 	MSYN, BBSY, NPR, SACK 

C FOR MET1-tOD=2, THE SIGNALS TO BE MONITORED ARE: 

	

C 	
TAT', DATIP, DATO, DAUB 

C
C 

C  THE  DATA TEPNSFER SIGNALS ARE 'OBTAINED BY EECOTING THE 

Sc 
 C CONTROL SIGNALS CU,C1. 

SUBROUTINE DEXP2 

EXTERNAL TVOVFL 
IMPLICIT INTIEGER(A-q,) 
INTEGER TVOVF0(5),TVOVF1(5) 
COMMON /CONFIG/NODE,CNIT 
COMMON /TVCOM/TVOVEU(5),TVOVF1(5) 
COMMON /PHMCTM/METHOL 

II C  C SET UP TIMER & EVENT COUNTERS, AND ALSO 
C SEI UP INTEERUPT GIENERATOR FOR POS:SIBLE OVERFLTW. 

TO 2C UNIT=1.,4 
CALL TVSET(1,U,1,3,1,1) 
.CALL IGSET(TVOVFL,UNIT) 
TVOVEU(UNIT)=U 
IVOVF1(UNIT)=U 
UMIT=5 
CALL TVSET(1.,U,1,3,1,1) 
TVOVEU(5)=U 
IVOVF1(5)=U 

C 
•3U 
31 

1 32  
1eRITE(6,31) 
FORMAT(' METLIOD?',/° °) 
FERD(6,32) MITHOE 
FORMAT(I1) 
IF (MFTHOD.G7.2 .0R. METHOD.LT .1) GO TO 3U 

C 
11 C SÏITCH MATRIX  LIRES.  

MSYN=2 
PBSY=5 
NPR=2 
:EACK=3 

11 	
DATI=6 
IATIF=3 
DATO=4 

IF EATOE=5 
 RTIME=7 - 191) - 



• 1 

C TIMER &I EVENT COUNTERS - BTFFER U AND BUFFER ,1. 
1V1B U=0 
TV1B1=1 
1V2B 0=2 
nr2B1=3 
1V3B U=0 
TV3B1=1 

V4BU=2 
T V4B1= 3 
1V5B U=6 

C SET UP SWITCH MATRICES AND LOGIC UNI TS FOR 
C APPROPRI ATE METHOD. 

UNIT=1 
CALL SW8 EIS 
CALL S ri8C ON( RTIME ,TV5BU 
LNIT = SW2 

C 	
CALL 	8D IS 

IF ( METRO D. . 2 ) GO TO 200 
C 
C LOGIC UNIT 41 = C = BBSY = 1Sd815 

, 

L1:=C 

UNIT=1 
CALL SW8 CON( VSYN,TV1EU,MSYN, TV1B1,BBSY E TV2BU, 8BSY,TV2B1 ) 
U NIT=2 
CALL SW8 CONCUR, TV3B(i, NPR, TV .3B1, SPCKTV40 0  S ECK, TV481) 
GO TO  1000  

200 	CONTINUE 

C LOGIC ENIT 412 = D = DATI = 2SW8I6 

LNIT =1 
C ALL S W8C ON( D ATI, TV1B ti e  DATI,TV1B1 eDATIP, TV2BU, DATIP, TV2B1 ) 
LNIT=2 
CALL SW8C ON( D ATO, TT3BU, DATO,TV3B1,DATOB,TV4BU, DATOB,TV4B1 ) 

1,44,4,01-111 

C BLOCK OFF INTERRUPT S GENERATED BY QUADRA-COMPATRATOR FROM 
C DEYP3. 
C 

tNIT=1 
C ALL QCSET( U) 
tNIT=2 
C. ALL QCSET ) 

1UUU 	R ETURN 
END 
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I c Fail/ NAME: DEND2.EXP 

I 

1 

SUBRTUTINE DEND2 

IMPLICIT INTEGER(A—Z) 
INTEGER TVU(2),TV1(2),TVOVFU(5),TVOVF1(5) 
lOGICAL IGFLT 
REAL*8 DPTVU(5),DPTV1(5),MAK,PTSR(4),AVGTSA(4), 
1 SIGSUM,SIGPVG,FORS,SIGNAL(8),NOASPM(4) 
COMMON /CONFIG/NODE,UNIT 
-COMMON /TVCON/TVOVFU(5),TVOVF1(5) 
ZOMMON /PHMSYS/OUTUNT,IGFLG 
CO•MON /PHUTM/METHOL 
DATA MAX/4294967296.D1)/ 
EATA 
1 'DAT0','DATOBY 

dRITE(OUTUNT,3UU) METHOD 
3U0 	FORMAT(' *" EXPERIMENT 42 RESULTS ***',/' ',1UX,'11ETHOD 4 

1 Il,// TIME UNI• 	MICROSECONDS') 
C - 
C READ TIMER & EVENT COUNTERS', ADJUST FOR POSSIBLE OVERFLOW, 
C ANE CONVERT TIMS 10 MICROSECONDS. 

IO 304 UNIT=1,5 
CALL TVREAD(TVU,TV1) 
CALL EI2DF(T1U,DFTVU(UNIT),TV1,DPTV1(UNIT)) 
DPTVU(UNIT)=DPTVU(UNIT) 4- TVOVFU(UNIT)ÀMX 
IPTV1(UNIT)=IPTV1(UNIT) TVCVF1(UNIT)*1AX 

304 	DPTVU(UNIT)=OPTVU(UNIT) / 1U.DU 

PIRITE(OUTUNT,3(J6) oprvu(s) 
306 	FORMAT(' ',/' TOTAL EXPEFIMENT TIME 	',I17.10) 

IF (METH3D.E2.2) GO ro 32U 

C METHOD 41. 

4RITE(OUTUNT,311) 
311 	FORMAT(' ',/' ','SIGNAL:',6X, I MSYN',9X,'EBSY',1UX,'NPR',9X,'SACK") 

GO TO 322 

C METHOD 42. 

32U 	dRITE(OUTUNT,321) 
321 	FORMAT(' ',/' ','SIGNAL:',6X,'DATI',9X,'IRTIP',9X,'DAT0',8X, 

1 eDATOB') 

C.COMPUTE AVERAGE TIIE SIGNAL ASSERTED (AVGTSA), 
C PEFCENT TIYE SIGNAI ASSERTED (FTSA), AND 
C NUMBER OF ASSERTIONS PER MICROSECOND (NORSPM). 

322. 	DO 328 UNIT=1,4 
TVGTSA(UNIT)=U.DU 
IF (DPTV1(UNIT) .ME. U.DU) 
1 AVCIS1(UNI1)=DFTVU(UNI7) / DPTV1(UNIT) 
NOASPI(UNIT):DPTVI(UNIT) / DPTVU(5) 

328 	FTSA(UN•1)DITVU(UNII) / DPTVU(5) * 1UU.E1i 
GRITE(OUTUNT ( 329) OPT .VU(1),DPTVU(2),OPTVU(3),OPTVU(4), 
I DPTV1(1),EFTV1(2),PPTV1(3),DPTV1(4),AVTTSP,PTSA,NORSPM 

329 . 	FORMRT(' ',/' TOTAL iIIE*,/' ASSERTED:; ',3(D11.4,2X),D11.4, 
1 //' 4 CF 	 ASSERTEI: ',3(D11.4.,2(),E11.4, 

' 1 //' AVERAGE TIME/' VS. SERTED: ',3(D11.4,2X),D11.4, 
1 //' 	TIME',/' ASSERTEE; '13(D11.4,2X),D11.4, 
1 //e m ne Tve:,•(11./ 0  nzorrn PPP.,/e MTnPn—s /v 	i-fenyn. 
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I C  

II  
I • 1 01 2 

10 14 

II c 

1 	 %, J.  • 	e 	• I 	J • 	J. J. I  a I. II 	t I 	41.1 	 J. 	 • 1.• n • 	I 

J.  3(D11 .4,2X ),D11.4) 
r 	 e 

II C  C RESET INTEERUPTS  IF  NECESSARY. 

IF ( IGFLG) CPU IGRES(1,2,3,4 ) 
eRITE( OUTUNT, 101 (1 ) 
:FORMAT ( 	,/ OVERFUW COUNT-S FOR TIMER & EVENT COUNTERS e 
1 / 	, 3K, 'UMIT 	3X,'BUFFERe, Us e  COUNT' ) 
LO 1012 UNIT:11,5 
4TRITE( OUTUNT, lui4 ) uvir,rvovn( UNIT ), UNIT TVOVF1( UMIT) 
FORMAT(",LE,7X,'U'',I6or ',I6,7X 1 e1',LE) 
RETURN 

END 
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Experiment #3 

A simple communication mechanism is set up between the 
two machines, and monitoring of the communication is done at 
one end. One line messages arc typed in at the keyboard of a 
machine, and sent across the communication link to the other 
machine. If no message is being typed in at the destina-
tion, the message received. is printed at the keyboard. 
Otherwise, the message is put in a queue. Some of the 
measurements done are: 

1) of characters sent/received. 

2) # of messages sent/received. 

3) interarrival time of messages. 

4) time taken to send and receive messages. 

These are some of the typical attributes of a computer 
network which the monitor might measure. Note that some of 
these measurements require the monitor to generate an inter-
rupt each time a certain instruction is executed in the ob-
ject system. tor example, the instruction might be the first 
one in the sequence that puts a message onto a queue. The 
use of the interrupt generator in this manner is a 'brute 
force' technique, which will be replaced when the time stamp 
and character detector are installed. 
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TRANSMISSION TIME IN TIME OF 
LAST 	 TIME 	- QUEUE 

	

0.37360  0 7 	A:.3855D  0 7 

	

0.52U6D 07 	0.4212D 117' 

4 OF 
CHARRCTERS 

0.00000  00 
U.U0000 00 

CHARACPER 
U.113UE  08 
0.23260 08 

MEASUREMENT OF R STIFLE COMIUNICATION SYSTEM. 

I TIME CONSTRAINTS IIPLIED pur THERE US NOT ENDUCI TIME 
AVAILAILE 70  CET EWERIMEN7 43 RUNNING IN TIME FOR THE 
DEMONSTRATION. THE DATA BELOW eas GENERATED  TO •LLUSTRATE 	- 

I .

THE TYPE OF RESULTE THAT WILL PE OBTAINABLE. 
. THUS, rHE NUMBERS THEMSELVE'S AZE 4EAIINGLESS IN TILS C3PY. 
ONIY A SINGLE MACMINE IN TTE TWO-CTMPUTER COMMUNICATION SYSTEM 
IS MONITORED. 

1 
EXPERIMENTT 43 RESULTS  

1 TIME UNI,TS = MICROSECONDS 

TOTAL EXPERIMENT TIIE: U.553298893UD  08 
IDLE TIFE: U.55279B15UUD  08 

STATISTICS :CN MESSAGES RECEIVED 

I MESSAGE TIME OF 
• NUMEER FIRST 

CHARACTER 
1 	U.7563D  07 
2 	U.18U5D  08 

I CHARACTERS 
PER MESSAGE: 

TRAI\SMISS1ON 
TIME: 

I TIME IN 
QUEUE: 

I TIM BETWEEN 
MESSAGES: 

MINIMUM 

U.UULUD UU 

U.3736D 07 

U.1515D 08 

U.173UD 09 

MAXIMUM 

U.UUUUD UU 

0.52U6D  07 

U.2147D 08 

U.173UD  09  

2 

AVERAGE 

U.UOUUE UU 

U.4471D  07 

 0.21311  08 

 0.173U  09  

TOTAL 4 OF IESSRGES: 
TOTAL 4 OF CFARACTERS: 

- 240 - 
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TERNSMISSION TINE IN 
TIME 	QUEUE 

P OF 
CHARACTERS 

4 

U.4548D 0.30731 09 

STATISTICS ON MESSAGES "SENr! 

1 
MESSAGE TIME OF 
NMER FIRST 

CHAEACTER 
1 	0.3085D  117 
2 	U.3741D  117 

1U.43641)08 08 
4 	0.4984D 08  

TIME OF 
LAST 
CHARAC1ER 
U.3395D U7 
0.41170E  07 
U.4666D 08 
U.OUUUE OU 

0.3U99D U6 
U.329PD  06 
0.3U2UD 07 

-U.4984D 08 

U.UUUUD OU 
1.UU0UD 00 
U.UUUUD OU 
1.0000D  OU 

MUM 00 
0.0000D 00 
U.ILOOD 00 
U.00000 00 

MINIMUM 

II CHAFACTERS 
PER MESSAGE: 	U.UUUUD  OU 

II •
TRANSMISSION 
TIME: 	-U.49S4D  118 

111 TIME IN 
al QUEUE: 	U.UOUUD 00 

MAXIMUY 	AVERACE 
One 	 •Ige 

U.U0OUD  011 	U.OUUUD UU 

U.3120D 07 -U01159I 08 

MIMI)  OU 	0.0U00D OU 

It TIME BEIdEEN 
111 MESSAGES: 	U.3432D 08 

, 	TOTAL 4 or rESSAGES: 
•

II TOTTU II OF CrIARACTERS: 

1 
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NODE=1 
LNIT=1 - 26D - 

FILE NAME: DEXP3.EXF 

'5UBROUTINE DEXP3 

C PUFPOSE OF EXPERIbENT 43: 

-TO MONITOR F SIMPLE COMMUNICATION SYSTEF INVOLVING 
TWO PDP11/2U'S AND A COMMUNICATION LINK BETWEEN THEq. 
ONLY ONE EMI (MACHINE #1) OF THE SYSTEM IS MONITORED. 
ONE LINE MESSAGES ARE SENT BETWEEN THE TWO MACHUES, AND 
ARE QUEUED FT THE DESTINATITN UNTIL THEY CAN BE PRINTED. 

-ATTRIBUTES JEPSVRED INCLUDE: 
4 OF CHARACTERS RECEIVED 
4 OF CHARACTERS SENT 
4 OF MESSAGES RECEIVED 
4 OF MESSAGES SENT 
4 OF CHARACTERS PER MESSAGE 
INTEFARRIVAL TIME OF MESSAGES 
INTERDEPARTURE  FINE OF MESSAGES 
TIME MESSAGE SPENDS IN QUEUE 
RMOURT OF TIME SYSTEM IS IDLE 

C TIMER AND EVENT USRGE IS: 
UV1B0 - 4 OF CHAFACTERS IN A MSG RECEIVEE 
ruin - 	

U 	SENT 
1V5BU 	PEAL TIME 
TV5B1 - AMOUNT OF TI1E SYSTEM IS IDLE 

C THE RANJES OF QUADRA-COMPARATOR 41 ARE SET TO: 
- PST CHAFACTER OF MESSAGE ARRIVES OR 

LAST 
- PST CHARACTER OF MESSAGE IS SENT OR 

LAST 	tu 	st 

2 - MESSAGE IRKEN OFF QUEUE 
3 - IDLE LOOP 

C WHEN ANY OF THE FIRST THREE ADDRESSES ARE REFERENCED, AM 
C INTERRLPT IE GENERFTED. SOFTWARE IS THEN USED TO READ AND 
C SAVE ME APPROPRIATE DATA. FOR RANGES U AND 1, TH::: FILRST 
C ADERESE IS REPLACE' BY THE SECOND FDDRESS. BY IYNAMICALLY 
C CHANGING THE QUADR-COMPRRATDR RANGES IN THIS WAY, IT  ES 

 C POSSIBIE TO MEASURE TIME INTERVALS. 

EXTERNAL MSGDUT,MSGIM,MSGOFQ,TVOVFL 
INT1EGER(A-Z) 

INTEGER TVOVFO(5),TV3VF1(5) 
LOGICAL MIFLPG,M0FLAG 
REAL*8 MISTRE(2082),IIEND(2002),MOSTRT(2U,2),UEND(2(J,2), 
MOU(20,2),CIN(20),COUT(20) 

COMMCN /CONFIG/NODE,UNIT 
ZOMMOU /TVCOI/TVOVFU(5),TVOF1(5) 
COMMON /EEMCCM/MISTR1(211,2),MENE(20,2),PINUM,MOSTRT(2U,2), • 
1 MOEND(2U,2),MOMUM,10FV2U,2),MQNUM,MIFLAG,M0FLAG, 	. 
1 CIN(2U),CCIT(21i) 
DATA MASK/0177777/,IDLELO/OU70052/,IDLEHI/OU70114/, 
1 SOMIL0/0071E3U/,SOFIHI/OU7U534/t 
SOMOLO/OU7U316/,SOMOHI/OU7U322/ 

C  crl tit TWP17.7.1.711t9' r.thirurpnrc 



IF
u,e u •  aal.tt,e4tus.a ut.0,1%nlyà%,' 

CALL IGSET(MGIN,1) 
• . CALL IGSET(MSGOUT,2) 

	

II 	CALL IG 	M SET(GOFQ,3) 
C PREPARE FOR POSSIBLE OVERFLOW 

INIT=4 
CALL IGSET(TVOVFL,4) 
1VOVEU(5)=U 
TVOVF1(5)=U 

.c  

II C SWITCH MATRIX LINES • 

CHRIN=6 

	

If 	
CHROUT=5 
RTIME=7 
•CTIME=4 
TV1BU=0 

II - 	
1V181=1 
TV5BU=6 
IV5B1=7 

	

11 	C  SEL  UP SWITCH MATRIX 

1NIT=1 
CALL SW8DIS 
CALL SW8CON(CHRIN,TV1BU,CHROLT,TV1BI,RTTFE 3 TV5BU, 
1 CTI1E,TV5B1) 

C. 

	

II 	C SET UP LOGIC UNITS TO  CET  SIGNAL FOR CHARACTERS Og 
C COMUWICATICN 1INK (BOIH DIRECTIONS) 

	

11 • 	C LOGIC 1NIT 41 = D = REQUES7 B(FACHINE 41) = CHROUT 

11:=D, 
• - 	C 

C LOGIC iNIT  1i2  = E = REQUEST B(EACHINE 42) = CHFIN 

I2:=E 

II C SET UP TIMER & EVUT COUNTERS 

INIT=1 
CALL TVSET(U,U,(J,3,1,1) 
INIT=5 
CALL TVSET(1,1,1,3,1,1) 

c 
Is 	C SET UP QUADRA—COMPARATOR RANGES FOR MACHINE 41. 

UMIT=1 
CALL CCSET(MFSK,U,SOYILO,SOMIHI,1,SOMOLO.,SOMOHI, 
1 2,9OULO,MOFQHI,3,IDLELO,IDLEHI) 

I/ 	C INITIALIZE COUNTERS AND FLAGS 

MINUM=U 
romum=u 
MQNUM=U 
rIFLAC=.7RUE. 

S. 	 I0FLAG=.TRUE. 

I C  RETURN 
• 'END 

111 



c 

I 
c 

FILE NAME: DEND3.EXP 

EUBR CUTI NE DEND3 

IMPLICIT INDEGER (A-2 ) 

:INTEGER TVOVFU (5 ), TMF1 (5 ) SAVEU( 2 ) ,SAVIE1( 2 ) 
EALÀ.8 MI STRT ( 2U, 2) ' MIM ( 20, 2) ,MOSTRT( 2U , 2) ,MOEMD( 2D ,2 ), 

tj MOU(2U,2 ).,CIN(2U) r  COU7(2U ); ITIME,RTIME 
REALA8 TT THE,  TIIiINQ ( 3 ) , CH PMS G ( 3 ) TRTIM ( 3 ) TI M BM ( 3 ) 
• TBESUM ,TIQ SUM, 1RTSUM,MAX ' LENGTH, TBM, CPFSUM,TIUONQ 
L OGICAL MIFLA G, MOFLAG, FLAG, IGFLG 
COMUCN /DEMCCM/MISTR7(211,2), MEND( 2U,2),TINUM,MOSTRT (2U,2), 
1 MOM( ZU 2) , MONUM, M OF) ( 2U ,2 ),fflUM,MIFLAG,M0FLAG, 
1 CI1(20 ), CUT (20 ) 

COMMON / CONFIG /RODE ,TNIT 
C OMMON /PHMSYS / OUTUNP, I GFLG 
commoN / TVCOT/TVOVFU (5 ) ,TVOVF1( 5 ) 

IATA EAX /429 4967 296 aU LENG1H /6UU .D6/ ,FIAG / .FALSE./ 

'VRITE ( OU 1UNT,3UU ) 
300 	F ORMAT ( 1  *" EXPERIMENT U3  RE SULT S k". ° s r e i 

1/ w  1IME UNITS = MTCROSECONE S ) 

C CO NVER1 TIMES INTO MICROSECONDS, TAKING INTO ACCOUNT 
C POSSIBLE OVERFLOW. 

U NIT=5 
CALL WREAD ( SAVEU, SAVE1 ) 
"ALL D I 2D F( SA VEU, RIP) E,5 AVE1, IT IME ) 
• E= ( IT IM 	TVOVF1( 5 )*MAY ) / 1U .I0 
R TIME= (RTIME 	TVOVF 0( 5 )*MA)C ) / 1U.DU 
FtRIT E( OUTUNT.,306 ) RT1ME, IT ME 

306 	FORMAT( ' 	/ TOT AL EXP ER IMENT TIME: ',D17.1(), 
1 /' IDLE TIFF: ',D17.10 ) 

IF ( MONUE.EQ 	) CO  TO 41)(/ 
DD 31U I=1,1 NUM 

31U 	FOFQ( 1,1)= ( 	OF( I,1) 	MOFÇ( I,2)*MAX) / 1U.DU 

C INITIALIZE VARIABLES 

400 	CPMSUM=U 
lETSUr=0.DU 
r IQSUM=U. DU 
ISFSUE=U.DU 
CPMSUM=U 

C INITIALIZE MIN( 1 ) AND MAX(2 ) 

CHPMSG ( 1) =1UU 
•OEpriisc( 2 ):.-41 
rR 	)=LENGTH 
IRTIH2)=U.DI 

Min (1) =LE1GTH 
11.11INU 2 ).u..ru 
rum( 1)7:LEN:MI-I 
IIMB?(2)=U0LL 
T311=U. DU 

28D - 
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SI 	II • tl %, J. • 	1, 	 ,,ts,t.i a., t.0 1 IJ 	J.  f  T 0 	à 

!IF ( FLA C ) WRITE( OUTUNT 4 U2) 
4 0 1 	FORMAT 	// / ° e8Xr STATIST ICS ON MF.SSIUGES RECET VED° 

1 ‘, /",8X,31('-'),/") 
402 	FORMAT( 	// / 5 ,8X, 'STATIST 	S ON MESSAGES SENT °  

1 t/ 9 	8X,2')( '-`),/" ) 
IF (MINUM.NE. U) 5 . 0 TO 42 0 

 1RITE(OUTUNT•,416 ) 
416 	FORM AT( ", /' II OF NESS' AGES = 0 1 ) 

fC 700 

420 	dRITE( OUTUNT, 421) 
921 	FORMAT ( 	° ,".PESSAGE" ,1X, ° TIME OF" , 6X, 'TIM OF' ,6X, 'TRANSMISSION °  , 

1 1X, 'TIME IN', 6X, 	/ 1 I 	NUMBER' , 2X, 'FIRST' , 8X, 'LAST' ,9 X, 
'TIM' s9X, ° QUEUE' , 8X CHARACTERS 	/' ".,8X, 'I CHARACTER' ,9X, 

1 'CHARACTER' 

TO 500 I=1 ,EINUM 

C CnVER1 TIFES TO MICRO SECONDS 

t/ISTRIC I ' 1 	= ( MISTRT( 1,1 )  4  MISTRT ( 1,2 )kMAX ) / 10.D 0  
,MIEND( 1,1 ) 	( MEND( I,1) 	1IEND(I,2 )'MA X ) / 1U.DU 
rOSTEl( 1,1 ) 	( MOSTRT ( 1,1 ) 	MOSTRT 1,2 P1/4 MAX) / 1 0 .D 0 

 MOEND( 1,1 ) = ( MOEND( 1,1) 4- 110ENDII ,2 MIA X) / 1U.DU 

TTIME=MIEND(I / 1 )-MISTRT ( ,1 ) 

IMONQ=10 FQ( I ,1 ) 	MEND( 1,1) 
:IF ( FLAG ) TIEONQ=U.DU 

IRITE(OUTUNT ,425 ) I, FISTET( I,1 ),MENE(I,1),TTIME,TIMONQ,CIN(I ) 
425 	FORMAT(' 1 1  I4,3X, 4(D11.4,2X),D11.4 ) 
C 	, 
C CALCUIATE MINIMUMS 

IF (CIN(I ).LT .CHP MSG( 1 ) 	CHNSG(1 )=CIN( I) 
IF ( ITIME.LT oTRT IM (1 )) TFTIF1(1 )=TTIME 
IF (MOFQ( I,1) .LT.TIIIII\Q (1 ) 	I1INQ(1)=1OF Mal) 
11311= (J.DU 
IF (111.NUM.EQ. 1 .0R. I.EQ.MINJ M) GO TO 430 
IBM=YISTRT( I11,1 )-MISTRT (1,1 ) 
IF ( T3I'LL T.TI1 BM( 1 ) ) TIMM). )=TBM 

C CALCULATE MAXIMUMS 

430 	• 	IF (CIN(I )0GT .CHPMSG( 2) 	CHPMSG(2 )=CIN(I) 
*IF ( `MIME. GT .TRT Ill( 2 )) TETIM (2 )=TTIME 
IF (110FQ( I,1) OGT.TIMIN2 (2 )) T IMINQ(2)=MOFQ(I,1) 
IF ( TBM.GT.TIIIBM (2 )) TINEM( 2 )=TB11 

C.  
C CAICUL FTE SUMS., FOF USE IN AVERAGES LATER 

440 	CFMSUI`'.=CFMSUH-CIN(  I)  
TRTSUI=TRTSU1 +TTI 
lIQSUM=TIOS1JF+TIF.01,10 
T3MSUI=TBMSUI+TB1 

511 1; 	CONTIIUE 

C CALCULATE AVERAGES 
C 

', 11DeeC ," 	 ml" 	M 
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4.RITE( OUTUNT, 602) CHPriSGTRTIN,TI11INQTIflBt1 
.FORMAIP CHAFACTERS'•,/' FER MESSAGE: " ,2X-,2( D11.4 ,2X) ,D11 
1 //' TRANSMISSION' pi' 	 2(1)1104 1  2X) 0 D11.4. 
•1 // TIME I:10 ,/ 	QUE.UE: 	81,2 (D11 .4,2X).,D11.4,// 
1. 	TIME BETWEEN' / MESS' AGES:" ,5X, 2 (D11. 4 0 2X) Dll 

dRITE( OUTUNT, 603) MIgUM,CPMSU 
'FORMAÏ ( 	TOTAL 4 OF MESSAGES: 	v e 21,I5 
1 1 . ' TOTAL 4 OF CHARACTERS 	,D11 0 4) 

nr fla (.7 - % 	 out, F 	rtL ,au 

sIRTIF.(3)=TRT5UM / Ill*NUM 
TIMINQ ( 3)eTIQ SUM / MTNUM 
:IF ( .NOT.FLAG ) GO TO 580 
• IMINQ ( 1 ):=0 .DU 
'1 IMINQ( 2 )r-,(1.1(.1 
•IMM ( 3 )  r-- (10D 

IF ( MINUM.GT.1) CO   TO 590 
TIMBH( 1 )=0.,D0 

(2)4 °DI 
TIMM( 3 )=U.Dil 
CO  TC 600 

59u 	rim( 3 )=TBMS UM / 

CC  PRINT OUT MAX•MIN, AND AVG 

II 600 	(RITE( OUTUNT, 6 0 1) 
a 601 	FORJT(///u 1 ,16X, ° MINIMUM' 6X, '11AXIMUM.,6X, "AVERAGE ° 

1 /",16)(4,'  	6K. ,"  	6X, 	o ) 

C 

E02 

I 603 

11 
700 	IF (•FLAG ) GO TO 1000 

copy 1v5G  OUT'  DATA TO 'MSG  IN  ARRAYS FOR PROCESSING 

E0 750 I=1,1CNUM 
MISTRT( I, 1 )=IOSTRT( I, 1 ) 
FISTRT( I ,2 )=-VOSTRT(I 
NIEND( Ij )eN'UND(Ipl) 
.FIENE (I, 2 )=1TCEND ( 
MOFQ( I g  1 ) =0.D0 
.140FQ ( 1,2 )=0 .10 

le  750 	:1. IN(I )=C3UT( I 
.FINUF=MONUM 
FLAG=. TRUE. 
CO TG 400 

I E. 

II c 
IF 1000 

I C  

1 

:IF ( IGFLG ) CFLL IGRES(1, 2,3r ) 

RETURN 
END 
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FILE NAME: MSGIN.EXP 

.EUBROUTINE MGIN 

C MSGIN IS ENTERED WFEN A MESSAGE IS JUST STARTING T -0 BE 
C RECEIVED, OR AFTER THE ENTIRE MESSAGE HAS BEEN RECEIVED. 

. IMPLICIT INTEGER(A—Z) 
:INTEGER SAVE(2),IVOM(5),TVWF1(5) 
LOGICAL MIFLAG,M0FLAG 
FEAL)143 11ISTRI(2(1,2),FIENE(20,2),MOSTRT(2L,2),9OEND(20,2),MOFQ(20,2), 
1 CIN(2U),COUT(20) 

COMMON /DEMCOM/ MISTRT(20,2),MIEND(20,2),MIMUM, 
1 MOSTRT(2U,2),MOEND(2(1,2),MINUM,MOFQ(20.,2),VONUM,MIFLAG,M0FLAG, 
J.  CIN(211),COUT(2U) 

comma /CONFIG/NODE,YNIT 
COMMIN /1VCOV/TVOVFU(5),TVOVF1(5) 

IATR SOMI .LOPC07(15311/., SOEIHI/OU7U534/, ECMIL0/00705101 e  
EOMIHI/0U7U514/ 

C READ CIRRENT TIME 

PAUSE U 
tNIT=5 
CALL TVREDU(SAVE) 

C. MIFLAG=TRUE => START OF MESSAGE 

IF (NOT.MIFLAG) GO TO 5U 

C START OF MESSAGE RECEIVED. 

MINUM=:MINUM+1 
• CALL II2EF(STVE,MISTET(1lINUM4)) 

MISTRT(MINU1,2)=TVWFU(5) 

C RESET VJADRA—COMPARATOR RANGE FOR 
C 'END OF MS•C IN ADIRESS 

CALL QCSET(U,E0MILO,E0MIHI) 
FIFLACe..FALSE. 

GO TO 1UU 

C ENI OF MESSAGE RECEIVEE 

5U 	CALL II2DF(SjVE E MIENI(MINUM,1)) 
MIEND(MINUM,2)=TVWFU(5) • 

C RECORD  II OF CHARRCTER RECEIVED 

UNIT=1 
CALL IVREDU(SAVE) 
CALL DI2DF(SAVE,CIN(MINUM)) 

C CLEAR BUFFER 

•CALL TVSET(U,U,1,3,1,U) 
"C 
r RPq17 T 1lnnpn—rnmPn2nTnp rn nI1F TO 
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C i SIA e  RT OF ESG IN' IFDDIVESS,..., 
••• 	J. •••• 

•CALL QCS ET ( 

,FIFLAC=.'1RUE.. 

1U(1 	FETUEN 
END 
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1 

11 
FILE NAME: MSGOUT.EXP 

II C  
II C MSGOUT IS ENTERED MlEN A MESSAGE IS JUST STARTING TO 

C BE SENT FROM THE KEYBOARD, OR  FTER THE ENTIRE 
C MESSAM HAS BEEN SENT TO TFE DESTIIn RTION 

IMPLICIT INMGER(A-2) 
INTEGER SATE(2),TVWFU(5),TVOVF1(5) 
lOGICAL MIFLFG,M0FUC 
REALAB MISTRT(2U,2)elIEND(20,2),MOSTRT(2U,2),MOEID(20,2),MOFQ(20,2) g 

 1 CIN(211),CU1T(2U) 

COMMCN /DEMCCM/ DISTRT(2U,2).,MIEND(2U,2)MINUM D MOSTRT(20,2), 
1 MOEND(2(1,2),MONUM # MOFV20,2),MONUM 0 MIFLAG,M0FLAG, 
1 CIN(2U),C01T(2(J) 

comrcE /CONFIG/NODE,INIT 
COMMON /TVCOI/TVOVFU(5),TVOVF1(5) 

DATA SO1OLOnU70316/,SOMOH1/007U322/,E0MOLO/OU70434/ # 
 1 E0110HI/OU7144U/ 

C READ, CURENT TIME 

PAUSE 1 
UNIT=5 
CALL IVREDU(SAVE) 

C MOFLRG=TRUE => START OF MESSAGE OUT 

(.NOT.MOFIAG) GO TO 5U 

C START TF MESSAGE ULT 

roNum.moN1Jm+1 
:ALL DI2DF(SAVEMOSTU(MONUM 0 1)) 
rOSTRI(MONUM,2)=TVOM(5) 

C RESET CUADRA-COMPAFATOR FOR 
C 'END OF MSG  OUT  ADDRESS 

UNIT=1 
CALL QCSET(1.,E0MOLO,E0MOHI) 
MOFLAG=.FALSE. 
CO TO IUU 

CALL DI2DF(SAVE,1OEND(MONUM,1)) 
l'OENL(MONUM,2)=TVOVFU(5) 

SUBROUTINE eSGOUT 

C RECORD 4 OF CHARAC1ERS SEMI OUT 

C CLEAR EUFFER 

CALL IVSET(U.,U,1,3,0,1) 

C RESET 'ÇUADRA-COMPAFATOR FOR 
r .1 qTIY?T 	viqn. •TIT° nnnp7g 
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LNIT=1 
CALL TVRED1(SAVE) 
CALL EI2EF(STVE1COUT(MONUM)) 



CALL °MTH,' SOMOL0 / 5'0:10HI 

'UMW= ',TRUE. 

FETUEN 
EqD 



C .  

t, 

1 
C. 

vi  

FILE NAME: MSGOFb.EXF 

..EUBROUTINE MSGOFQ 
C .  
C MSGOFQ IS ENTERED .EACH TInE  P  MESSAGE AT THE  DESTINATION 
C HAS.BEEN PRINTED AND THEN TU EN  OFF OF THE QUEUE 

IMPLICIT INTEGER(A-Z) 
:INTEGER SAVE(2),IVOVEU(5),TTOVF1(5) 
LOGICAL MIFLAG,M0FLAG 
REAL)q MISTRI(2U,2),FIENE(2U,2),MOSTRT(2U,2),E0END(20,2), 
MOFQ(20,2),CIN(2U),COUT(2U) 

20MMON /DEMCDM/MISTRIf20 0 2),MIEND(2092),1INUM0MOSTRT(2002)f 
1 MOEND(20,2),MONUM,EOFQ(20,2),MQNUM,MIFIAG,M0FLAG,CINC2L), 
1 COUT(2U) 

COMMON /C .ONFIGINODE,UNIT 
COMON /TVCO11 /TVWFU(5),TVOVF1(5) 

C READ C1RREIT TIME 

PAUSE 2 
VOJU>6 
.CALL IVREDU(SAVE) 
MQNUM=MQNUM+1 
CALL LI2EF(SFVE,MOFQ(MONUM,1)) 
10FQ(1QNUM,2)=TVOVF0(5) 

RETURN 
'END 
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Experiment #4 

Both machines are monitored simultaneously. A load 
generator runs on each machine, causing the computer to 
think that the communication link is a user terminal. Using 
the monitor, we are.able to construct a state vector: 

<line busy, CPU#2 busy, CPU#1 busy> 

The output iS a table of the eight possible states (0-7), 
and the total time spent in each state. In addition, the 
duration of the experiment is used in determining the 
percentage of real time spent in each state. The user must 
provide the address of the idle loop on each machine. A 
machine is busy if it is executing outside• of the idle loop. 
The system is defined to be doing useful computing if one or 
both of the computers are busy. Thus, results are also given 
for the percentage of compute time spent in each state. 

Parameters controlling the rate at which messages and 
individual characters are transmitted may be varied. By per-
forming further measurements, we hope to determine the cor-
rectness of an analytic model of the two-computer system. 

Note that the state vector table could be produced for 
any program that happened to be running in the object 
system. 



STATE 	STATE 	TIME 
VECYOR iN STATE 

TIME/ 	 TIN2/• 
REAL TIM 	COMPUTE TIME 

371) 

II STATE VECTOR MEASUREMENTS. OF LOAD GENERATOR OPERATIOG OM 
TVO-COMPUIER SYSTŒM 

EXPŒRIMENT 44 RqSULIS *" 

II IN EACH OF THE 8 POSSIBLE STIATES' INVOLVING 
THE FOLLUING TAELE INDICATES THE TIM SPENT 

CEU'S AND A COMMWICAIIONS LIEK BETUEEN THEM 

ALL TIMES IN MICROSECONDS 
TOTPL REAL TIME: 	007387121861UUUU0UD  0 8 
TOTAL COMPUTE TIME: 	U.49.1495U04000UOUUD 08 
STRIE VECTOR IS 

<LINE BUSY,CPU 42 BUSY,C11 141 BUSY> 
cpu el . MATH PDI11/20 
2PU 42 = ENGINEERING PDP11/20 

L 
II 	1 	

UUU 
UU1 	

t.3365186670r  0 8 	U.4!_'5,5D  1 2 % 	0.8403D C2 % 
O.1U467241UUD 08 	0.1417D 02 % 	0.2614D 02 % 

2 	Oh 	11.2112636810L  0 8 	0.2860D 12 % 	0.5275D 02 % 
, 	3 	Ull 	0.84877393OUD  0 7 	U.1149D  0 2 % 	0.2119D 02 % 

1 	
100 
1U1 	

t 	M 	 U.0 .OUUUUUUE OU 	OUUD LU % 	O.U000D 00 % 
11.001JOU1JOUUUD UU 	U.UOUUD U0 % 	U.UOUDD 00 % 

E 	110 	L.185800000111  0 3 	0.2515D-I3 % 	004639D-03 % 

11 	7 	111 	U0172000U000D  0 3 	UO23.28D-U3 % 	0.4295D-03 % 

TOTPL TIME 	 TIME/ 	 • 

REAL TIME 	
TIME/ 

COMPUTE TIME 
CPU 41 EUSY: 	0.1E95515230D U8 	UO256611 02 % 	0.4733D 02 % 
CPU 42 BUSY: 	0.296144652»  11 8 	(J041109D  0 2 % 	0.7394D 02 % 

II •
LINE  BUE: 	U.3578000001D 03 	0.4844D-03 % 	0 0 8934D- 0 3 % 



TATE 	STATE 	TIME • 
VECTOR  IN  STATE 

TIME/ 	 TIME/ 
REAL  TIN 	COMPUTE TIME 

1 
1 
1 

II THE rououNc MEASUFEMENTS ILLUSTRATE THE TWO-CCMPUTER SYSTEM 
.1ITI 301 H MACHINES  tN THE IDLE STATE RND NJ TRANSMISSION ON THE 
COMMUNICATICI\S LINY. 

1 

A"  UFERIUNT 44 R'ESULTS 71/4 i‘i‘ 

E FOLLOWING  TALE INDICATES THE IIYE SPENT 
IN .E2F. OF THE 8 PO3SIBLE STATES INTOLVING 
2 CF1J'S AND P COMMnICATIONE LIU BETWEEN  TUE'.  

ALL TIME1 IN MICROSCONDS 

1 TOTTL RdAL TIME: 	U.2025315UUUUUUUUUD U7 
1 TOTU COPUM TIME: 	U.72793UUMUUUUUUD U4 

STATE VFCTOF IS 
(LINE BUSY,CPU 42 BUSY,Cj 41 B U S>  
CFI) 41 = MAT1- PET11/2U • :PJ H2 = ENGINEEPING PDP11/20 

L 	UOU 	1.2UU52611UUT U7 	0.99U1D 12 % 	U.2755P 05 % 
1 	UU1 	'.1.3758311UUU1JD U4 	U.1861D UO % 	0.5177D U2 % 
2. 	L 1 0 	1.35114U0UUUE U4 	U.1734D q.0 % 	U.4824D U2 % 
3 • 	Ull 	j.36UOUOULJUUD 111 	U.1778D-U3 % 	U.4946D-111 % 
A  • 	11U 	1.1JUUUUUUUUUD 110 	O.UUUUD q.0 % 	U.UOUUD U0 % , 
q 	101 	j.UUUUUMUUD UU 	U.UOUUD UU % 	U.UUUUD  00 % 
C 	11U 	(..UUUUUUUUUUE UU 	U.UUUUD 111 % 	U.UUUUD 00 % 
7 	111 	U.UUUUMUUUD UU 	0.00UUD UU t 	U.UUUUD U0 % 

CPU PI FUSv: 
CPU 42 3USY: 

II LIN'• EUEY: 

TOTH., TIME 

U.37719UUUM U4 
U.3515UUUUUID U4 
U.U4UUUUMUD UU 

TIME/ 
REAL TIME 
U.1862D UU % 
0.1736D UU % 
U.UUUUD UU % 

TIME/ 
COMPUTE TIME 
0.5182D U2 % 
U.48291)  0 2 % 
0.UUUUD - OU % 

1 

1 
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*ETATE 	STATE 	TIME 
VECTOR IN STATE 

TIME/ 	 TIME/ 
REAL TIU 	OMPUTE TIME 

MEeUREMENT OF FILE TRANSFER FROM MCHINE 41 TO MACHINE 42 

" À  .EXHRIMENT 44 RSSULTS A" 

THE :7 3LL0.4ING 1A3LE INDICATIB THE TIME SPENT 
• 	IN UCH OF THE E POESIBLE S71\TES INVOLVING 

2.CPU'S AND A COMMUNICATIOte LI ,NK BEWEEN THEM. 

ALL TIMIS IN MICROSECONES 
TOTAL RL TIME: 	U.97723467UUUUUUUUD U7 
TOTH, CCMPUTE TIME: 	0.484869EU13MUUUUD  07 
STATE VE2TOR IS 

<LINE 12.DEY,CEU 42 BUSY,CIU 41 BWEY> 
CPU 41 = MATU PDP11/2U 
CEU n2 = ENGINEEFING PDP11/2U 

II 	1j (AU 

	

UU1 	
:1.45763595UUD  07 	0.4683D 02 % 	U.9438D 02 % 

1 d..7356UU1OUUE  06 	0.75271) 11 % 	U.1517D 12 % 
?. 	U1U 	U.1U521U9300D  0 7 	U.1U77D U2 % 	U.217UD 02 % 

II 	4 _ 111 U 

	

1UU 	
1.2303453600E 07 	.2357D 1.2 % 	U.4751D 12 eg - 
U.3180886000D  11 6 	0.3255D 01 % 	0.6560D  0 1 .% 

' 	• 1U1 	1.5815920000E 05 	0.5951D 1U % 	0.1199 1) 0 1 % _ 

11 	7 
5 110 (10 

	

111 	
0.31752550D 06 	0.3249D 01 % 	0.6549D 01 % 
1.3822386UUU1 0 6 	0.3911D 111 % 	0.7883D 01 % 

CPU 41 3usy :  
CPU 42 T-USY: 
LINE  U3Y: 

TOTAL TIME 

0.34794515U)D 07 
U.4155327U1J0D 07 
U.1U76U119UUD  07 

TIME/ 
REAL TIME 
0.3561 0  02 % 
U.415UD 02 % 
0.1101D 02 % 

TI1E/ 
COMPUTE TIME 
0.7176D  0 2 % 
U.8364D 02 % 
0.2219D 02 % 



STATE 	STATE 	rin 
VECTOR UN STATE 

TIME/ 	 ,TIME/ 
REAL TIM 	COMPUTE TIME •1 

MEASUREPENT OF FILE TRANSFER FROM MACHINE 42 TO MACHINE 41 

• II  *** EXPERIMENT 44 PESULIS "* 

II ' IHE FOLLUINO TAELE'INDICATES THE TIME SPENT 
IN EACH OF THE 8 POSSIBLE SUAUS'INTOLVING 
2 cru's AND A COMMUMCATIONS LIM BETWEEN THEM. 

ALL TIMES IN MICROSECONDS 
TOTAL DEAL IIME: 	0.90910316000UULUUD U7 

II TOTAL CDIPUTE TIME: 	U.399233850UUUUUOUD  0 7 
STAIE VECTOR IS 

(LINE BUSY,CPU 42 BUSY,CPU 41 BUSY> II •CPU 41 = FATE PDI11/20 
C PU  42 = ENGINERING PDP11/21J 

I 	0LU 	1.4896949500E  07 	0.5387D 112 % 	001227D 03 % 
1 	(Jul 	U.27514470UUD  0 6 	0.30270  0 1 % 	0.6892D 01 .  % 
2 	01 0 	1.576983E1iUUE  11 6 	0.6347D 111 % 	0.1445D 02 % 
3 	011 	U.2U753734UU0  0 7 	0.2283 0  02 % 	1.5198D  0 2 % 
4 	1 00 	1.1695691UUUE  0 6 	U.1865D 11 % 	0.4247 1)  01 % 
5 	1U1 	U.5864313UUUD  0 6 	0.6451D 01 % 	1.1469D  0 2 % 
6 	110 	, I.75856ULOUUE  0 5 	0.83441D U % 	U.1900D - U1 % 
7 	111 	0.4031482000D 06 	0.4435D U1 % 	0.1U1OD 02 % 

II CPU 41 EUSY: 
CPU 42 BUSY: 
LINE  BUE:  

TOM. TIME 

U.334UU976UUD  0 7 
U.31313612M  0 7 
U.1235(1046001)  0 7 

TIME/ 
REAL TIME 
0.3674D 02 % 
0.3444D  0 2 % 
0.1358D  0 2 % 

TIME/ 
COMPUTE TIME 
U.8366D 02 % 
0.7843D 02 % 
0.3U93D  0 . 2  % 
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-TO DETERMINE THE TIME SPENT IN EACH OF 
8 FCSSIBLE :STATES AS A RESULT OF USING THE 
STATE VECTOR [LINE BUSi,CPU 42 BUSY,CPU 41 BUSY] 
HERE THE rINE IS A COMMUNICATIONS LINK BETWEEN 
THE TWO CPU'S. 

-TO FILL IN THE FOLLOWING TABLE: 
STATE 	TIME IN 	TIME/ 

STATE 	REAL TIME 
TIME/ 

COMPUTE TIME 

I 

51=3 
.E2=5 

lrzf; 
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PILE NAME: DEXP4.EXP 
C 

UM C PURPOS'E OF EXPERIMNÏ 44 

11 
C  

I C  

II CC  
II

eHERE REAL rimE=>rorAu EXPERIMENT TIME, AND 
COMPUTE TIM => CPU 41  OR  CFU 42 BUSY. 

11 C THE SIETEM IS DEFIMD TO DE BUS?,  tR DOING USEFUL 
C COMPUTING, IF ONE OR BOTH IF THE MACHINES IS 
C EIECUTUNG OUTSIDE rCF  THE PFOGRAM WAIT LOOP. 
C 

SUBROUTINE DIEXP4 

.EXTERNAL TVOWL 
LMPLICIT INTEGER(A-Z) 
INTEGER. IVOVIO(5),TVTVF1(5) 
COMMON /CONFIG/NODE,INIT 
COMMtN /TVCOTITVOVFO(5),TVOVF1(5) 

C QUADRA-COMFARATORS run BE SET UP, USING 
C THE TEST PROGRAM. FOR  COMPTE TIME, SET RANGE 43 TO 
C THE ADIRESSES OF TFE WAIT LOOP. 

11 	12 	FORMAT(' USE TEST PRDGRAM TO SPECIFY QC RANGE 43 = WAIT LOOP',/ 
UITE(6,12) 

1 ' 	ON BOTH MACHINES',/' ') 

II C corpum TIFE => CP1.41 BUSY OR CFL 42 Bun 
=> (OUTSIDE CPU 41 WAIT LOOP) 	OR 

(OLTSITE CIU 42 WAIT LTOP) 

C SET UP LOGIC UnTS. 

C LOGIC UlIT 41 = -B = STATE 2 = 15015 
II 	c 

L1:=-B 

C LOGIC UUIT n2 	-B = STATE 3 = 1Se8I6 

II C SET UP 8X8 SWITCH MATRICES 

C STATES 

I C  



I .  o a - 

:E4tm4 
5'5n5 
'56=6 
37=7 

I C  

II C TIMER St EVENT COUNTERS 
C 

TV1130=0 
IV1B1=1 
TV2BU=2 
1%7 281=3 
rv3130.0 
7V3B1=1 
rT4BU=2 
IV4B1=3 
TV513(1=6 
UV5B1=7 
RTIME=7 
;CTIME=4 

1.NIT=1 
CALL S18DIS 
CALL EW8CON(:EU,TV1BU,S1,TV181,52,TV2BU,S3,TV281, 
1 RTIME,TV5B,CTI1E,rV5B1) 

UNIT=2 
;CALL SW8DIS 
CALL SM8CON(S4,TV3BU,S5,TV381,S6,TV4B0,57,TV4B1) 

IU SET UP TIMER & EVENT COUNTERS 

II DO 35 UNIT=1,5 
35 	CALL IVSET(1.,1,1.,3,1.,1) 

II C SET UP INTERRUPT GENERATOR AND CLERR OVERFLOW COUNTS. 

DO 40 UNIT=1,4 

T
1VOVFO(UNIT)=U 
TOVF1(UMIT)=U 

40 	CALL IGSET(T1OVFL,UNIT) 

II CC TV #5 CVERFLOW LIMES REE 'OR'ED WITH THOSE OF TV 44, SINCE 
C ONLY HAVE FOUR INTERRUPT LINES. A SPECIAL CHECK IS 'I/11)E IN 
C 'TVOVFL°. 

1'VOVFU(5)=U 
1VOVF1(5)=U 

FETUEN 
END 
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I  

FILE  NAME : DE MD4. EXP 

SUBROUTINE DEND4 

IMPLICIT INTEGER  ( A -Z)  
:INTEGER TVOYFU( 5 ), TYCVF1 ( 5 ) IVU( 2) TV1( 2 ),S (8,2) 

TOUBTE PFECIEI ON DPTVU( 5 ),DPIV1( 5 ) ,PRTIDE,PCT IME, FAX, 
1 CPU1 ,CPU2,LINE, CPU1C, CPU2R,CPU2C, LINER, LT NEC 
lOGI CAL IGFLC 

UMWON / CONFIG MODE  ,UNIT  
C OMMOM /TVC01/TVOVFU( 5) ' 1 VOVF1( 5) 
COMON / FHMSM/OUTUNT IGFLG 

I 
 c 

TATA S(1,1 ),E(1,2),S(2, ).  ),S( 2,2),S ( 3,1 ), S( 3,2), 
1 S(4,1 ), S( 4,2),S (5,1 ),S( 5,2) ,S(6,1)9S(6,2 ),S( 7,1 ),S(7,2), 
1 St 8,1),S(8.,2) rUll a  'U' r  ° L.11',"1",'01",'U U D 	' ,01", 1 1°,"111,"0', 

qU ' i ' l ' o e ll ' i l U e s ' il I gU e / 

C  NA')  = 2.D1"32 
DATA MAX/42949672964DU/ 

C ZERO TOTALS 
CPU1 =U.» 
2PU2=U.DU 
IINE=U.DU 

IA RITE(  OUTUNT.,1U) 
FORM A T(  U Ç '"1/4 A EXP RIMENT e4 RESULTS **" / 1  I t/ I I t 

1 ' 	THE FULLOWING TABLE INEICATES THE TIME SPENT e f 

1 / 	'IN EACH OF TLIE 8 POSSIBLE STATES INVOLVING ',/' 
1 '2 CPU " S P ND A COEMUNICATIONS LINK BETWEEN THEM.' , / 	) 

C READ ANT CONVERT WU TIMES TO DOUBLE PRECISION 

TO 21 UNIT=1•,5 
CALL TVREAD(T VU,T V1 ) 
CALL EI2LF( Ti1U,DFTVU (UNIT) ) 
CALL DI2DF(TT1,DPTV1( UNIT ) ) 

C ADJUST FOR FOS SIBLIE OVERFLOW 
DPTVU( UNI T)=DPTVU (UNIT ) 	rmuui 	P.mvx 
IPTV1 (UN IT ) =1PTV 1( UNIT ) 	TTCVF1 (UNIT )kti FX 

C CONVERT TO MICRO—SECONDS 
MVO (UN IT )=IPTV1 (UNIT )/1U.D1 

20 	DPTV1( UNIT )=DPTV1 (UNIT )/1U.DU 

kRITE (OUTUNT ,22 ) DPT VU ( 5 ), DPI V1( 5) 
22 	FORMAT( ' R , /' 	," ALL TIMES IN MICROSECOND S', / I  

1 'TCTAL REAL TIME: ',D25.18,/ 
1 ' TOT A L COMD UT E TIME: ' , D25.16)  

OUTUNT, 24 ) 
24 	FORMAT ( 	e j ' ETAT F. VECTOR IS  

1 3X, ° ( LI NE 303Y, CPU 42 BUSY, cpu 41 BUSY> / 	e  
1 3X , 'CPU 41 = MATH FDP11/2U 	/' 	3X, "C711 42 = 8 , 

1 ' ENGINEERING PDP11/ 20 	/' 	) 

:RITE ( OUT UNT, 32) 
32 	FOUPT(' 	13), 1 ST1\TE',3X, 

1 ' STATE' , 3X, 	' TIM" , 16X, 	'TIME/ ' 11X, 	'TIME'', /' 	,11X, 
1 'VECTOR' 	' IN  STÎTE' ,12X HAL 	 ' COMPUTE TIM' 	) 

C LOOK AT ALL 4 T IMER & EVENT .  COi 	ERS 

1 0  
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c 

c 

STATE:2-1 

DO 1UU UlIT=1 0 4 
:ETATE=STATE4.1 
ST=STATE 4e1 

C % REAL TIME FOR BUFFER U 
FFTIEE=DFTVU (UNIT) / DPTVU( 5 ) * 1UU.EU 

II C % COMPUTE TIME FOR BUFFER 1
•  FCTIME=DFTVU (UNIT) / DPTV1 ( 5 ) * 1011.EU 	 • 

I
C 

1\RITE(OUTUNT.,4U) STATE ' S ( ST, 1) D S (ST , 2),DFTVU(UNIT ),PRTIME,PCTIME 
 40 	FORMAT( ",I4,7X, 112,R1, 4X ,D17 .1U, .3X e D11.4, 5  %° ,3X, Dll .4, 1  %e ) 

C COEPUrE TOTALS 
IF (( STATE/2)*2 . M E . STATE) CPU1=CPU14.DPTVU(UNIT) 

( STATE.EQ .2 .0R. 5TATE.EQ.3 .0R. STAT , E.EQ.6 
1 .0R 0  STATE. EQ .7 ) CP92=CPU24-DPTVU( UNIT ) 

II C 	
IF ( S1ATE.GE .4 ) LINE=LINE+DPIVU( UNIT ) 

— 
.STATE=STATE+1 
ST=STATE1 

11 C  C % REAL TIME FOR BUFFER 1 
TRTIM=DFTV1 (UNIT) / DPTVU() 	nuoru 

C  % COMPUTE TIME FOR BUFFER 1 
FCTIF.E=DFTV1 (UNI'l ) / DPTV1 ( 5 ) 	100.EU 
dRITE( OUTUNT, 40) sru- E,s1ST,1),S(ST,2),DPTVHIJMIT),PRTIME,PCTINE 

C COEPUTIE TOTALS 
IF ( ( STATE/2)*2 .NE. ST AT E) CPU1=CPU1+DPTV1(UNI.T) 
"IF ( SUITE. EQ-.2 .0R. STATE. EQ.3 00Rc, STATIE.EQ.6 
1 .0R. STATE. EQ07 ) 	2=CFJ21-DPTV1( UNIT) 

11/ 1UU 	:IF ( SIATE.GE .4) LINE=LINE+DP1V1( UNIT ) 

.CFU1R=CPU1 / DPTVU( 5 ) * 100.EU 
CPU2R=CPU2 / DPTVU( 5) * 11111.DU 
IINER=LINE / DPTVU ( 5 ) * 1UU.EU 
CPU1C=CPU1 / DPTV1( 5) 1UU.DU 

• CFU2C=CPU2 / DPTV1 (5 ) * 1UU.EU 
LINEC=LINE / DPTV1( 5) * 100.DU 

C PRINT TOTALS 	D 

I dRITE( OUTUNT, 15U) CPU1 ,CPU 	,CF. U1C ,CPU2,CPU2R, CPU2C,LINE, 
1 LINER, LINEC 

150 	FORMAT( 	1 , /1', 16X, yror AL T IEv  ,13X, 	 TIMEME ° 
1 36X, °REAL 1INE',7X. 1 0 C0FFUTE TIME' 	CFU 41 BUSY:v ,3X, 
1 D17.1U, 2( 3X,D11.4,' %-` ) ,/' CPU i42 BUSY: ° ,3X,D17.1U, 
1 2( 3YrD11.4 	)/V LIE BLSY:',5X,D17..111,2(3X,D11.4,' %; )) 
rIRITE( OUTUNT, 2UU) 

2UU 	F CRMAT ( 	° I, 1 ° 	I ° OVERFUCII COUNTS FOil TIMER & EVENT C . CUNTEP,' 
1 / " ,3X, 'U\I IT 	BUFFER 	3)C 'COUNT' ) 

I 250 	dRITE( OUTUNT, 251) UNIT ,TV'OV FU (UNIT ) ' UNIT, TVOVF1 (UNIT) 
TO 251 UNIT I,5 

251 	FORMAT( " 	,7X, 
C 
C 
C RESET I NTERRUPE GENERATOR IF NECESSARY 
C ( I.E. FIRSI PASS TFPOUGH TF.IS CODE 

IF (IGFLC) CALL IGREE; (1,2 ' 3,4) 
FETUEI 

E ND 	 41,D 



Experiment 05 • 

. The object system. is- the same:as in experiment e4. In 
this experiment, memory activity  on  both machines is ex-
amined. The result is a table for each machine, showing the 
perdentage of time spent in each of the four user-defined 
memory ranges. By using the last range of the quadra-
comparators to specify the program's idle 'loop, compute time 
results may also be obtained. . 

eor programs other than the load generator, the ranges 
could first be set to span all of available memory. Based on 
the results obtained, refinements could be made until the 
user  could clearly tell where the program was spending most 
of its time. 

dl 
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1 
1 

TIME 
IN RANGE 

U.1171313244D U9 
U.'E595317890D  1 8 
004460201U»  0 7 
U.Ç61270393UD  0 8 

TIME/ 	 TIME/ 
REAL TIME 	COMPUTE TIME 

U09509D  0 2 % 	0.1989D  0 3 % 
U.779UE U2 % 	0.1629D 03 % 
0.3621D  0 1 % 	0.7575D Ul .  
U 0 7804E 0 2 % 	0;1632D  0 3 % 

1 
1 

ALL TIMES IN MICROSECONES 
TOTAL REAL TIME: 	U.123176339400000UD U9 
TOM, CCMPUIE TIME: 	0.5889U636401U000UD 08 

MEASUREMENT OF MEMORY ACTIVITY dMILE LORD GENERRTOR IS 
Œ1E1W1ING ON TWOCOMPUTER SYS1EM 

*** EXP1RIMENT 45 RESULIS *** 

I  2 CPU'S gTEMDS EXECUTING IN TUE SPECIFIED REGIONS OF 
TOLLCVING TR.FLE INDICATES HOW LONG EACH TF 

• MEMTRY, W HILE  THEY INTERACT VIA A CCMMUNICATIONS LINK. 

11 . 	
CPU 41 = MAM-PDP11/20 
CPU 42 = ENGINEEFING PDP11/20 

* RESULIS FRCM FACHINE 1 * 

ALL TIMES IN MICRO9ECONES 
TOTAL REAL TIME: 	U.12317633940000U0D U9 
TOTAL COYPUIE TIME: 	11.588906364MUU00D 08 

RAbGE 

II 33576 177777 
67374 71512 

• 64754 65304 

li 70426 7U502 

* RESULIS FECM ACHINE 2 * 

R1UGE 

II 53576 177777. 
1U7.374 111512 

I . 104754 1U53U4- 
 110426 11U5U2 

TIME 
IN RANGE 

U.1131U51429D U9 
U.E259326630D  0 8 
U051576188UUD  0 7 
00E2590821UD  0 8 

TIME/ 	 TIHE/ 
REAL TIME 	COMPUTE TIME 

1J.9182D 02 % 	0.1921D 03 % 
(.1.67U5t  0 2 % 	0.1402D 03 % 
0.4999D  0 1 % 	0 0 1046D  0 2 % 
U067115E  0 2 % 	U.14U2D 03 % 

1 
1 
1 
1 - 46D - 



1 

I THIS IS THE START UF A SEQUENCE OF .FEASUREMENTS TOI1ETERHINE 
THE LOCATION OF THE DOS-11 YI"ERATING SYSTEM IDLE -  LOOP. 

II - eee.EXPERIMENT g5 RESULTS AA- 

THE FOLLOWING .  TABLE INDICATES  HO W LONG EACH OF 
2 cputs SPENES EXECITING IN THE SPECIFIED REGIUNS OF 	• 
MEMORY, WRILE TREY INTERACT VIA A COMMUNICATIONS LINKc, 

CPU 41 	MATH PD111/2U • 
CPU g2 = ENGINEERING PDP11/20 

- FOR TRESE MUISUREMENTS, ONLY MACHINE 41 -  IS CONSLDERED -.. 
NO COMWINICATION IS OCCURRING BETWEEN THE TWO WFCHINES, AND THE 
RESULTS W HI C '{  PERTAINED TO MACHINE 42 HAVE BEEN DELE1ED T3. 	. 
SAVE SPACE. 

NO COMPLTE TIME RES1LTS DETERMINED. 

II e RESULTS FECM MACHINE 1 * 

ALL TIWES IN MICROSIECONES 

II TOTU REAL TIME: 0.2037721800000UUUD U7 
TOTPL COMPUTE TIME: 0.00000000001JOUUUUD OU 

II . 	
RA1GE 	 TIME 

IN RANGE 
TIME/ 	 TIME/ 
REAL TIME 	COTPUTE TIME 

	

U 17777 	UO2037721810D U7 	U.10UUD U3 t 	O.U0UUD 00 % 

	

II 17776 37776 	U.qUOUGUUOUUD UU 	0.COUUE 00 % 	0.0000D OU % 

	

37775 57775 	0.101100000UOD OU 	U.UUUUD 00 % 	U.0000D UU % 

	

57774 77777 	U.LUUOUOUOUUD UU 	0.0000E UU % 	O.UOUOD UU % 

eee EXPERIMENT 45 RESULTS *** 

NO.COMPLTE TIME RESLLTS DETERMINED. 

e RESULTS FE . OM MACHINE 1 e 

ALL TIMES IN MICROSECONES 
TUTU R?.AL TIME: 	U.20223354UUMUUUD U7 
TOTH, CCMPUTE TIME: 	U.UUUMUUUULUUUUUD LU 

RAGE 

	

It 	• 	3777 

	

3/76 	7776 
7775 1377 5 

	

137•74 	1.7777 

TIME 
IN RANGE 

U.2U184820U1J1) U7 
U.40UUOUOULUD LU 
0.38495UUUUUD U4 
U.LUUMUULUD LU 

TIru 	TIME/ 
REAL TIME 	COMPUTE TIME 

U.9981D U2 % 	0.333UD OU % 
U.UOUUE UU % 	U.UUUUD OU % 
U01903D UU % 	U.UUOUD  9J % 
U.UUUUE  OU % 	0.0UOUD 00 % 

47D'- 
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' 	*** EXPERIMENT ti5 RIESULTS *** 

11 NO COMPLTE TIME RESILTS DETERMINED. 

* RŒSULIS FRCM MACUINE 1 * 

ALL Tins IN MICROSIECONES 
TOTAL REAL TIME: 	0.201843380OMMUD O7 

I/ TOM, CCMPUTE TIME: 	 • 0.001,00O0000000000D 00 

RA1GE 	 TIME/ 	 TIME/ 
IM RANGE 	 REAL TIME 	COIPUTE TIRE 

U 	777 • U.UUOUUUUOUUD OU 	U.UUOUD OU % 	• 0.0000D DU % 
776 	1776 	0..;(1131224UUD 07 	U. 9974L 02 % 	O.UUUUD 011 % II 	1775 	2775 	O.UOUUUUU9)0D OU 	U.UOUUD UU % 	U.U .JUUD UU % 

2 774 	3777 	0.1U000UUOLUD UU 	U.UUUUE U0 % 	0.00UOD OU % 

THE FOLLOWING MEASUFEMENTS EETEEMINE THAT TEE 
ADDRESSES UU0776->UU1176 MAY BE USED TO REPRESEMT THE 
DOS-11 UDLE LOOF. TFESE ADDEESSES REE TEEN USED IN SUBSEQUENT 
MEASUREMENTS. 

" A  EKPERIMENT 45 RESULTS ic. •  

II NO COMPUTE TIME RESULTS DETERMIMED. 

RESULTS FROM MACHLNE 1 e. 

II ALL TIMES IN MICROSECONDS 	 • 
TOTTL RnAL TIME: 	0.20185712UUUOUUOUD 07 
TOTAL COMPUTE TIME: 	U.UMUOUUUUUOUUUD LIU 

RACE 	 TIME 	 TIME/ 	 TIME/ 
IN RANDE 	 REAL TIME 	COMPUTE TIME 

II 776  
1175 
1375 

II 1575 

1176 
1376 
1576 
1776 

0.2(1146868(10D U7 
U.UOUOUUUUOUD UU 
U.LOULJUUUULUD UU 
O.UOUUUUUOUUD UU 

0.9981E 02 % 
U.00UUD 00 % 
U.0000E 00 % 
U.UOUOD 00 % 

U.0000D 00 9.. 
U.00DDD OD % 
0.0000D 
0.O0OUD 00 ee 

.Z .  



11 THE FOLL0eING RESULTS INDICATE  HO  'd ACTIVITY IS DISTRIBUTED 
WITEIN THE IELE LODI. 

11 *** EXPERIMENT 45 RESULTS 

II NO COMPUTE TIME RES'ELTS DETIRMINED. 

.* RESULTS FROM MACHINE 1 it 

ALL TIMES II\ MICROSJECONES 
TOTU MAL TIME: 	U.200702380UUOUUOUD U7 
TOM COMPUTE TIME: 	0.0000UULUOUUMUUD U0 

RUDE 	TIME 	TIEE/ TIME/ 
IN RANGE 	' REAL TIME 	CONFUTE TIME 

	

Il 776 	1U36 	0.5 .866935000D 06 	0.3421D  0 2 % 	0.0000D  OU  % 

	

1035 	1076 	11.i .i314.574U0OD (16 	0.3644E 02 % 	0.0000D U0 % 
, 	1U75 	1136 	0.1141073UOUD  0 6 	U..5685D U1 % 	MOM UO % 

	

II ' 1135 	1176 	0.4704980000D 06 	0.2344E 02 % 	U.UOUOD  OU  % 
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II IN THE FOLLUING RESULTS, 	IDLE LOOP •A•DRESS HAS BEEN 
. USEI TO lETEEMINE 7FE AMOUNI OF TIME SPENT I:CMG USEFUL 
COMPUTING. THE COMPUTING IS DEFINED TO BE USEFUL IF THE 

11 INSIRUCIIONS BEING IIXECUTED ARE OUTSIDE THE IDLIE LUOP. 

FOR THE FIRST RESULIS, IHE COMPUTER WAS LEFT IN 
Ame ITS IDLE STATE, AND THE ADDUSSES FOR THE IDLE LOOP 
11 WERIE FUI IN THE QUATRA-COMPARATORS, SO THAT COMPUTE TIME 

COULD BE CALCULATED. 

*" EXPERIMENT 45 DESULTS *** 

IHE FOLLOUNG TAELE INDICATES HOW LONG EACH 'CF- . 
 I

2 CPU'S PENDS EXECUTING .  Ig rHE SPECIFIED REGIONS OF 
MEMRY, VHILE THEY INTERACT VIA A UMMUNICATIONS LINE. 

cpu  $1 . MATH PDP11/20 
CFU 42 = ENGINEEFING PDP11/2U 

• 

II RESUL1S FECM MACHINE 1 

ALL TIMES IN MICROSI•CONES 

11 
 TOTU RFAL TIME: U.20395295UU00OUUUD U7 

TOTAL CCMPUIE TIME: U.21683700UMUU0UD U5 

RANCE TIME 
IN RANGE 

TIME/ 	TIME/ 
RERL TIME 	COMPUTE TIME 

U 	776 	U.UUUUUUUU5UD  DU 

	

1176 177777 	U.38221U0UUUD 14 

	

U 177777 	00211395 .295M U7 
776 	11 •6 	0.20358029UUD U7  

	

U.UUUUD  OU % 	U.UUUUD DU % 

	

0.1874E  DU % 	0.17630 02 % 

	

0.1UUUD 03 % 	0.9406D 04 % 

	

..U.9981E 02  I 	U.9389D 04 % 



II THE FOLLOWING MEASUREMENTS WERE  DOSE ON THE MACRO L'OMPIUER., 

II A** EKPERIMENT 45 RESULT5 AA.A 

THE FOLLOWING TA3 - LE rozoicAuu HO'!  LONG EV2H OF 
2 CFU'S SPENES EXEC1TING IN THE SPECIFIED REGICUS OF 
MEMORY, WH ILE  THEY INTERACT VIA R COMMUNICRTIONS LINK. 

CFU 141 = MATH PU11/20 
cpu 42 = ENGINEERING POP11/20 

* RESULTS FROM MACHINE 1 A 

ALL TIMES Ig MICROSECONDS 

I TOM PEAL 7IME: 	0.2573996310000LUD 08 
TOTRL CrIPUTE TIME: 	0.1095317340000000D 08 

RAGE. 	 TIME 	TIME/ 	TIME/ 
IN FANGE 	 REAL TIME 	COMPUTE Tin 

	

0 	776 	0.q000000000D 00 

	

1176 	177777 	0.1081150390D 08 

	

0 177777 	0..2573996310D 08 

	

776 	1176 	0.1:491550750D 08  

	

0.0000E 00 % 	0.0000D 00 % 

	

0.4200D 02 % 	0.9871D  0 2 % 

	

0.1000E 03 % 	0.2350D 03 % 

	

0.5795D 02 	0.1362D U3 

1 
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TIME 
IN RANGE 

TIME/ 	 TIMET 
REAL TIME 	- COMPUTE TIME 

RANGE 

MEASUREMENT OF FILE TRANSFER FROM MACHINE 41 TO MACHUE  142 

U• ill *?1/4 i," EXPERIMENT 45 RESULTS  

THE FOLL0eING TR3LE INDIC . ArES HOW LONG EACH OF 
le 2 crums SPENES EXEC1TING IN THE SPECIFIED REGIOlçS OF 
lig MEMORY, ',MILE THEY •TTERACT VI - A COMMUNICATIONS LINK. 

'CPU 41 = MTH PDI11/20 
C PU  42 = ENGINEERING PDP11/2U 

)11 ›k RESULTS FROM MACHINE 1 

ALL TIMES IN MICROSECONDS 
ne TOM MAL TINE: 	0.94741630UOUOUOUUD 07 
Al TOTAL COMPUTE TIME: 	0.4829083U0UUUMUD 07 

	

0 	776 	U.100000U000D OU 

	

111 	1176 	177777 	U.35U2912700D 07 

	

0 	177777 	U04741630UUD 07 

	

776 	1176 	U.596878759UD 07 
111 

* RESULTS FROM MACHINE 2 

0.0UUUE  OU % 	U.UUUUD UU % 
003697D U2 % 	0.7254D 02 % 
U.1UUUE 03 % 	0.1962D 03 % 
U.630UD 112 % 	0.1236D 03 % 

ALL TIMES IN MICROSECONDS 
TOTTL MAL TIME: 	0.9474163UMUULUUD 07 
TOTAL COMPUTE TIME: 	U.48290830UUUUUUUUD 07 

TIME 
IN PANGE 

U . 	776 	U.1000000U00D OU 

	

1176 177777 	U.3965379000D 07 

	

0 177777 	U.4741628UUD 07 
776 	1176 	0.55U9380UDUD  07  

TIME/ 
'PEAL TIME 

U.OUUUE UU % 
0.41850 02 % 
U.1UUUE 03 % 
0.58150 02 % 

TIMEL - 
COMPUTE TIFE 

U.OUUUD 
U08211D U2 % 
U.1962D  03 % 
1.1141D  03 % 

RANGE 



TIME 
IN EANGE 

TIME/ 	 TINEL 
REAL TIME 	COMPUTE TIME 

RANGE 

TIME/ 	TIME/ 
REAL TIME 	COMPUTE TI/E 

0.0000E  00 eg 	0.0000D 00 
..14U41D 02 % 	U.7952D U2 % 
0.1UUUE 03 eg 	0.1968D 03 
U.5959D  0 2 	0.1172D  0 3 11 

I/  MEASUREMENT OF FILE TRANSFER FROM MACHINE 42 TO - MACHINE 41 .  

A • A EXPERIMENT 45 RESULTS ".*. 

THE FOLLOdING .  TABLE INDICATES HOd LONG ERCH OF 
2 cru's SPENES EXECITING IN THE SPECIFIED REGInS OF 
MEMORY, d HILE  THEY INTERACT VIA ILCOMMUNICRTIONS LINK. 

CFU  Id = MATH PDI11/20 
CPU 42 = ENGINEERING PDP11/20 

* RESULTS FROM MACHINE 1 * 

ALL TIMES IN MICROSECONDS 
TOM MAL TIME: 	U.773030190000UUUUD 07 
TOTAL COMPUTE TIME: 	0.392873510000U0UUD 07 

O.UUUUE UU 	U.UUOUD UU % 
U.4272D  0 2 % 	U.84U7D  0 2 % 
(10100UL 03 	U.1968D  11 3 % 
0 .57250 02 % 	0..1126D  0 3 % 

0 	776 	D.1.00UU0UUUUD OU 

	

1176 177777 	0.33U26923UUD 07 

	

U 177777 	U.7;73U301900D 07 
776 	1176 . 	U.44252679UUD U7 

I/ -* RESULTS FROM MACHINE 2 *- 

ALL TIMES IN MICROSECONDS 
TOTIL RaAL TIME: 	U.773U301900UOUUUUD 07 
TOTAL COMPUTE TIME: 	U.39287351000000UUD 07 

RANCE 	 TIME 
IN RANGE 

	OU 

	

117 (6i  177T7 	U:1124reg 

	

0 177777 	0.-,73U301500D  07 

II 776 	1176 	U.46064U99UUD 07 

n 
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c 

I.  

II C 	
FILE NAME: DEXP5.EXP 

C PUFPOSE or EXPERIMINT #5: 
-TO MONITOR MEMORY ACTIVITY IN 2 PDP11/20 COMPUTERS 

II AI [11E  SAME TIME. nPICALLY, THE TWO COJ'PUTERS FIGHT 
BE TALKING ro EACH DTHER ACROSS  A :OM1UIICATI3NS LINK. 

I cc 
-TO FILL IN THE FOLLUING TABLE: 

1) ADDRESS FANGE 
2) TIME IN RANGE 

C • 	3) TIME IN IANGE/TOIAL EXPEFIMENT TIME 

C 	
4) TIME IN RANGE/COMPUTE TIME 

THE SY' 	
• 

.ETEM IS EEFUED 10 DE DCUNG USEFUL COMPUIING, HENCE 
C COMPUTE TIME, IF OIE OR BOFH OF THE MACHINES IS EXE.CUTING 

I C OUISIDE OF ITS WAI1 LOOP. 
C 

- 	C THE 4 ° IH ENTRY IN 1HE TABU IS OPTIONAL, DEPERIING ON 
C WHETHER RANGE g3 OF THE QUADRA-COMPARATORS CONTAINS 
C THE ADTRESS OF A PFOGRAM WAIT (OR :IDLE) LUOP. 
C 

SUBROUTINE DEXP5 

FVUFSOBM UWUWGM 	 • 
IMPLICIT INTIEGER (A-1) 
INTEGER LOW-(2 1 4),HI7.1(2,4),TVOTFU(5),TVOVF1(5) 
LOGICAL COMP1T 
COMMON /CONFIG/NODE,INIT 
•COMMON /FHMCKM/COMPUI 
COMMON /TVCOM/TVOVFU(5) 9 TVOTF1(5) 
LAIR MASK/0117777/ 

If C QUADRA-COMFARAIOR FANGES SPOULE BE SET UP USIWC THE 
C TEST PROGRAM. IF C3MPUTE TIME RESULTS  PIRE  DESIRED, 
C THEN RFNGE #3 OF ETCH QUADEA-COMPAUTOR MUST CCNTAIN 

.0 THE ADDRESS FOR THE. WAIT LOO?, 

II - 	• 	 • 	 • - 
c. 

C SEE IF COMPUTE TIME IS BEING USED. 

II C 	COMPUI=.FAL9E. 
.dRITE(6,12) 

12 	FORMAT(' QC FANGE #3 = 'AIT 100P? Y,N/' °) 
READ(6 1 14) REPLY 

14 	EORMAI(A1) 
IF (REPLY.EQ.°M ° ) GO TO 2 11 

C 
DUNQVO›/USVF/ 

C 
It 3c 1 	DUOUJOVF 

'C sEr ip LOGIC.UNITS TO RECEIVE QUADRA-COMPARATOR OUTPUTS. 
C 

If C LOGr UNIT 41 = A => 100O2->FF3->15 .4815 

L1:41 
• C 

• C LOGIC UNIT g2 = A => 1QCO3->FF4->1SW8I6 
'C 

13;>B 

11 . 	SET UP 8X8 SWITCH MATRICES. 
-  540  - 
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30 	CO=U 
ÇC1=1 
QC2=5 
ÇC3=6 

II CC TIMER 	EVENT - COUNIER INPUIS. 

IV113t=0 
TV181=1 
1V2BU=2 
TV2B1=3 
IV3Bt=U 
rv3B1.1 
IV4BU=2 
TV4131=3 

II IV5B0=6 
FV5B1=7 

. 	C 

II
C REAL TIME & COMPUTE TIME 

C  RTIME=7 
CIIME=4 

1 

1 

1NIT=1 
CALL S18DIS 
CALL SW8CON((C0 e 1V1EU,QC1,TV1Bi t ()C2,TV2B1,QC3,TV2B1, 
1 RTIME,TV5130,CTIME,TT5B1) 

a 
I c 

QC2=2 
ÇC3=3 
UNIT=2 
CALL SW8EIS 
CALL SW8CONQCO,TV3B0dC1,TV3B1,QC2,TV4BU,QC3,TV4D1) 

C SEI UP TIMEE & EVEg\T COUNTERS 
: II C 

TO 35 UNIT=1-,5 
35 	CALL TVSET (1,1.1,3r1,1) 

II C TV 45 OVERFLOW IS 'OR'ED 4ITH TV 44 SINCE ONLY HAVE 
C FOLR IMERFUPT LINIES. SPECIAL 7EST IS MADE IN 7VOVFL. 

TVOVFU(5)=0 

II 	C 	
IVOVF1(5)=U 

- 
C SE7 UF INTEERUFT &FNERATOE AND OVERFLOW COUNTS. 

• I C  
ig 	

tO 4t UNIT=1-,4 
TVOVFLI(UIT)=0 
1V0VF1(UNIT)=U 

Ale 40 - 	CALL IGSET(TVOVFL ' UNIT) 
à C 

FETUFN 
END 



FILE NAME: DEND5.EXP 

SUBROUTINE DEND5 

IMPLICIT INTEGER (A-Z) 
INTEGER QCL01, (2,4),QCHIGH(214),TVOVF0(5) . ,TVOVF1( 5 ) ,  
1 TVU(2),TV1(2) 
ICGICRL IGFrC,COMPUT 

IOUWIE PRECLUON DPTVU(5),DP1V1(5),PRTIME,PCTIME,1.AX 

COMMTN /CONFIG/NODE,tNIT 
DUNNUO pUWD(MUWOWG1)6k-U1UWG2)6* . 

 '.(OMMON /ÇCCOP/QCLOW(2,4)ACHIGH(2,4) 
COMMOU /PHMCOM/COMPUr 
, COMMCN /PHMSM/OUTUNI,IGFLG 

C MAY = 2.DU32 
DATA 1AX/4294967296.DUL 

eRITE(OUTUNT,10) 
141 	:FORMAT( 1 , 	EXPEFIMENT #5 RESULTS )%"'",/"./' 't 

1 ° 	THE FOLLOWING U ABLE  INDICATES HOW LONG ECU 3F g e  
1 /' ','2 CP"C"S SPENDS EXECITING IN THE SPECIFIED REGIONS OF°, 
1 /' 'MEMORY, WHILE THEY INTERACT VIA 	COMIUMLCATIONS 
1 /",3X,'CIIU 41 = FATH PDP11/2U',/ ° 1 ,3X,'CPU #2 = 
1 °ENGINEERI1G PDP11/2P1/ 1  ',/' °) 
IF (.NOT.COMIUT) WRITE(OUTUN1,11) 

11 	FORMAT(' ',/° NO COMPUYE TIME RESULTS DETERMINED. ° ) 

C READ Aap COUVERT ALL TIMES TO DOUBLE PRECISION 

DO 20 UNIT=1,5 
, CALL 7VRE1D(IVU,TV1) 
CALL DI2DF(TVU,DPTVU(UMII)) 
•CALL EI2EF(T 1 1.1,DFTV1(UNIT)) 

C ADJUST FOR FOSSIBDE OVERFLU 
DPIVU(UNIT)=DPTVU(UNIT) 	TVOVFO(UNIT)MAX 
IPTV1(UNIT)=IPTV1(UNIT) 	TV'CVF1(UNIT)ÏMPX 

C COUVERT TO MICRO-SECONDS 
EPTVb(UNIT)=IPTVWURIT)/1U.DU 

20 	DPIV1(UNIT)=DPTV1(UNIT)/1U.DU 

C LOOK AT RESULTS LEADING FROM EACH QUADRA-COMPARATOR UNIT 
C ON DIAGRAM. 

TO 1LL. UNIT=1,2 I/ C 
IRITE(OUTUNT• 1 24) UNI7 

. 	24 	FORMAT(''',/' ', I A RESiLIS FROM MACHINE ',I2,° ic°) 

II - 	• 	
: IF (.NOT.COMIUT) DPTV1(5)=U.IU 
4RITE(OU1'UNT,3U) DPIeU(5),DPTV1(5) 

3U 	FORMR1( °  ',/' 'D'ALL TIMES I> MICROSECONIS ° ,/' '. 
1 'TOTAL REA:: TIME: ',D25.16,/", 

II 	•1 'TCTAL COr.IUTE TIrE: ',D25.16) 
nITE(OUTUNT,32) 

32 	FORMPT('' ',/' ',5X,'EANGE 1 ,1IX, 	 . 

II 1 	'TIME',13X, 	'TIME/ 1 ,11K, 	'TIME/°,/' 1 ,2UX, 
.- : 1 'TN FANGE'.,SX,'PEAI TIFE'ÏiX,'COMPUTE TIME',/' 	) 

C 
D UW2 	U'•3 BSF U0 Rr) VOJU 2 
•C.TV3 &• 1V4  PE CU ÇC UNIT 2 
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• II 	7 	ITVLO=2UNIT-1 
. 	ITVHI=2*UNIT 

Ig IS USED TO INDEX INTO 'L04' & 'HIGH° ARRAYS. 

I( 

LUCK AT BOTH TIMER & EVENT COUNTERE ON EACH UNLIT, 'AND 
' BOTH BUFFERS OF EAC.H. 	• . 

1QC=IQC+1 

FEAL TIME FOE BUFER U 
. 	PRTIME=DPTVU(ITV) / DPTVU(5) * 1UU.DU 

•C'ea COMPUTE TIME FOR BUFFER U 
PCTIME=U.DU 

• QCLOÏ(UNIT,IQC),QCHnH(UNIT,LQC),DPTVU(ITV), 
1 PRIIME,PCTIME 

44 	FORMAT(",05,1X,06,3XD17.1U3W,D11.40' %,3X,D11.4,' 

I C •  

'C % REAL TIME FOR BUFFER 1 
FRTIME=DFTV1(ITV) / DPTVU(5) * 1UU.EU 

11•C 	COMPTTE TIME FOR BUFFER 1 
FCTUE=U.DU 

• IF (COMPUT) PCTIME=PTV1(ITV) / DPTV1(5) * 10U.DU 
4U 	IRITE(OUTUNT.,44) QCLU(UNIT,IQC),QCHIGH(UNIT,IQC),DPTV1(ITV), 

1 PRTIME,PCTIME 
le  c 

1UU 	CONTINUE 

II .0 	eRITE(OUTUNT,2UU) 
•2UU 	FORMAT(' ',/' u ri e  ','OVERFLOW •COUNTS FOR TIMER & EVENT COUNTERS', 

I • 	

• 	

UNIF ,JK, BUFFER ,JX, COUNT') 
IO 25U UNIT=1,5 •  

I 	r 	4 	• 	V 	̂  • 	• 	 V 

250 	ÂRITE(OUTUNT,251) UNIT,TeOVTU(UNIT),UNIT,TVOVF1(UNIT) 
gg 251 	FORMAT(' ',3"),I2,BXU,6X,I2,/",1)(,12.,8X,1',6X,12) 
II c 

C. RESET INTERRUPT GEURATOR IF NECESSARY 
-C (I.E. FIRST'PASS T1ROUGH THIS CODE) 	• • 

*IF (ICFLG) CiLL ICRES(1,2,3,4) 
RETURN 
END 
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DO 411 ITT=ITVLO,ITVHI 
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OPERATING SYSTEM RELIABILITY 

I 



inimmum 
Although difficult to define precisely, 	the basic 

concept of software reliability is clear: 	that the software 

system should pertorm 	its 	intended 	function. 	This 

definition 	is equally applicable to operating systems and 

other types of software. 

IBM 	(30) 	makes 	a 	useful 	distinction 	between 

"reliability" and "availability." "Reliability" is used to 

indicate the absence of errors and "availability," the 

ability to continue system oneration in snite of errors. 

The term H recoverability u  has also been used to describe the 

concept of availability. From a user's viewpoint there is 

essentially no distinction between the two--both represent 

the ability of the system to perform the user's task 

correctly. 	There may, however, actually be a tradeoff 

between the two, since increased availability 	usually 

implies a larger system, which is thus likely to contain 

more errors. In this document "reliability" will be used in 

a sense including both these concepts. 

At one time, efficiency of all types of programs, and 

operating systems in narticular, was the nrincipal 

consideration in program design. More recently, reliability 

has come to be considered a primary goal. 

Tsichritzis and Ballard 	(34) offer the 	following 

reasons for emnhasizing reliability rather than efficiency: 
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As equipment becomes cheaper and faster, the pressure to 

drive it "hard" is diminishing, thus programs which are not 

as efficient as possible can be tolerated. 	Unreliable 

software is not effective no matter how efficient it is. 	In 

sonie applications the cost of a system failure is much 

higher than the cost of the system itself, for examnle, 

process control applications. It Is usually Possible to 

tune an inefficient system to achieve a greater degree of 

efficiency, but in most cases it is very difficult to rescue 

an unreliable system. An unreliable system ma" corrunt data 

which are very expensive to recreate. 	The result of 

inefficiency is obvious--one has to wait longer; 	unreliable 

software may have hidden errors which can violate system and 

user data without anv outward indication. The results of an 

error might only be discovered much later. 

A variety of approaches to system reliability have been 

used. 	Some of the major ones are: design of the system in 

"levels," Proof of correctness, use of structured 

Programming, protection of parts of the system from each 

other, imnroved debugging techniques, in-line checking for 

correct functioning, audit programs to check system function 

periodically, and recovery programs to allow continued 

oneration in spite of errors. 

Other 	considerations, 	such 	as 	choice 	of 	an 

implementation 	language, 	management of large software 

projects, and the impact of hardware errors on software 

- 2E - 
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systems, although important, are outside the scope of this 

discussion. 

Historically; 	the need - for reliable systems was first 

recognized by the designers of special purpose real-time 

systems which had to be cOntinuouslv available to  service a 

time-Critical anplication. Mne of the first such systems 

was 	No. - 1 ESS (5, 	10), developed by Bell 	Labs for 

controlling local telephone exchanges. (It is also notable 

as one of the first major applications of audit programs, 

although the audit routines were initially developed 

primarily to detect corruption of data caused by hardware 

errors.) More recently, computer manufacturers have begun 

to place much more emphasis on reliability in their general 

Purpose operating systeMs. For example, IBM's latest 

system, MS/VS2 Release 2, places much more emphasis on 

reliability'of the system and protection of the system from 

users than previous IBM operating systems. 

11 MODULAIIII  

• • 	The design of software systems in a "modular" fashion 

has been recognized as desirable for many years. modularity 

considered an important part of design for reliability, 

but the Importance of how functions are assigned to modules 

is emphasized. 

An important extension of the concept of modularity is 

the design of a sys .tem as a hierarchy of "levels of 

- - 3E - • 
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abstraction." 	This concept has been proposed both in 

connection with bottom up and top down system design. 	In 

the bottom up approach to "level" design, successive levels 

are designed to provide • added facilities usinv the 

facilities provided by lower levels; the lowest level uses 

only the facilities provided bv the hardware. In the top 

down approach to "level" design, first the highest level, 

which nrovides the desired features is designed. During its 

design, the need for lower levels is identified; these are 

then designed, and so on, until the last level designed 

requires only facilities Provided by the hardware. 

Whether the levels are designed top down or bottom un, 

the objective is to restrict Interactions between levels to 

calls from higher to lower levels, and to restrict 

inter-level access to data to explicit parameters passed by 

calls. If this is successfully carried out, then testing of 

the system or attempts to prove its correctness will be 

greatly simplified. This advantage is gained since the 

independence of levels makes it possible to consider levels 

individually for proof of correctness or testing purnoses. 

Usually, a "level" structure will be very useful in the 

desiçrn of a system, but problems may be encountered. The 

usual central difficulty is assigning functions to levels so 

that all renuired conditions are satisfied (18). A common 

nrohlem is that the innermost level of the system will not 

have access to I/0 devices since this is provided bv other 
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levels, 	thus causing difficulties in writing statistical or 

error messages from the innermost level. This problem may 

be circumvented, as was done in SUE (31), without breaking 

any of the technical rules about interaction between levels, 

but the concent of requests flowing only inward is still 

clearly violated. Mther difficulties in such systems 

involve starting un and shutting down the system and fitting 

debupging aids into the system. 

The "virtual machine" concept  is a different form of 

senaration of operating system components to achieve greater 

reliability. The term "virtual machine" is often used to 

describe the combination of hardware and software facilities 

provided by a level of a system designed as a hierarchy of 

levels of abstraction. Here, the term is used to mean "a 

hardware-software duplicate of a real existing computer 

system in which a statistically dominant subset of the 

virtual processor's instructions execute directly on the 

host processor in native mode" (8). (The reasons for the 

requirements in the definition need not be considered at 

length--the basic iàea is that a program running on a 

virtual machine anpears to be running on a real machine and 

most of the nrogram's instructions are actuallv executed 

directly by the real machine.) The obiect is to make one 

real connutini- system appear to be several  • independent 

computing systems not only to the users hut also to the 

operating svstem(s). The virtual machines are created by a 

5E - 
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small 	"Virtual Machine Monitor" which, because it is small, 

can be made quite reliable. Then, except for the imnlicit 

competition for resources such as CPU and channel time, 

several operating systems can run independently on  one  CPU. 

In particular, 	if one system crashes, it affects only its 

ovin  users. The idea of a reliable. Virtual 	Machine Monitor 

running several 	possiblY unreliable systems is intuitively 

annealing as a mechanism for increasing overall system 

reliability. 	It has 	in fact been shown (8) that under 

reasonable assumPtions about how to quantify reliability, ,N 

• single user operating systems running under a Virtual 

Machine Monitor are more reliable than a single N user 

multinrogramming system. 

This virtual machine concept can be very useful in some 

circumstances, particularly when debugging a new or chanfred 

operating system, but it must be used cautiously in a 

production environment because if used unwisely it may 

produce an unacceptable overhead. 

•II 	III PROM:  OF fmEEZIEESS 

The only wav to be certain that a software system 

functions correctly is a "proof of correctness." 	In 

general 	it . is not possible to prove the cOrrectness of a 

large system directly, unless it has been written with the 

idea that its correctness will later be proved. Even then, 

a proof may not . be possible, but proof techninues may still 

• - 6E- 
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be used to provide test data which can be shown to test all 

parts of the system, or, those parts of the system believed 

• to be "critical" may be Proven correct and more traditional 

debugging techniques applied to the remainder of the system. 

Appropriate modularization of the system is critical to 

a proof of correctness. Present proof techniques cannot be 

applied directly to large programs, but if a system has been 

Properly modularized, the individual modules may be proved 

correct and their correctness will then imnly the 

correctness of the complete system. The conclusion that  the 

correctness of components implies the correctness of the 

complete system is not an easy one to make however, since it 

is usually very difficult to demonstrate that modules do not 

have any unexpected interactions on data which would 

invalidate the criteria for a Proper modularization of the 

system. Even if modules can be proven correct individually, 

the effort required will be considerable. Current estimates 

indicate that about three man-months are tynically required 

to prove the correctness of a 200 line routine. Since an 

operating system will be three or four orders of magnitude 

larger than this, it can be seen that a very large 

investment in time would be required to prove the 

correctness of an operating system, even if special nroblems 

did not cause proofs to become more difficult than those of 

programs typically used in proof of correctness attemnts. 

Instead of using analytical methods to prove ,  program 
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correctness, which 	is usually quite difficult, 	similar 

analytical methods may be used to determine an exhaustive 

set of test cases. If the set of test cases can be proven 

to be exhaustive and the program processes them correctly, 

the program is then known to be correct. This should be 

contrasted with the methods considered in Section IV, in 

which a set of test cases is developed which is expected to 

exercise all parts of the program but which is insufficient 

to prove the program correct. 

Perhaps the best-known example of an operating system 

designed using the proof of correctness approach is 

Dijkstra's THE multiprogramming system for the EL X8 (9). 

The approach used was to design the system bottom-up, as a 

hierarchy of abstract machines, prove the correctness of the 

system a priori, and use exhaustive testing bottom-un to 

locate coding errors (the testing method used is similar to 

the method used by Brinch Hansen, as described in Section 

IV). Because of the design of the system, particularly the 

use of synchronizing primitives and the structuring of the 

nucleus as a group of co-operating sequential processes, the 

set of relevant test cases was small enough to allow 

exhaustive testing. The proof that co-operation between 

processes was correct was carried out in three main staFes: 

It was demonstrated that in performing a task, a process 

could generate at most a finite number of tasks for other 

processes. Then it was shown that if some task was waiting 
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to be performed, not all of the Processes could 1 ,e idle. 

Finally, it was shown that the system could not become 

deadlocked. 

There are, however, various difficulties which nrevPnt 

the extensive use of correctness proofs to imnrove the 

reliability of operating systems.  fine  of the most obvious 

is the effort renuired with present proof  techniques  to 

prove the correctness of large programs. Although several 

non-trivial programs have been proven correct, onerating 

systems are so large that even if an operating system could 

be proven correct using available methods, the effort 

required to do so might not be justifiable. (It has been 

suggested, however, that even if a proof is not carried to 

comoletion, the effort of stating the properties to he 

proven leads to sufficiently increased understandinF of the 

program to make the attemnt worthwhile (4).) 

A second difficulty is the parallelism which exists at 

least conceptually within an operating system. Droving the 

correctness of a routine becomes extremely comnlex if other 

routines or a second activation of the same routine may 

modify data used by the routine while it • is executing. This 

difficulty can be circumvented most easily by restricting 

parallelism in the system. For example, all interrupts are 

disabled whenever a routine in the SUE kernel is executing, 

thus guaranteeing that each kernel routine will run to 

completion before any other routine is activated (3). 	Such 
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a simnle techninue cannot be used in ail svbtems because of 

nerformance difficulties. Notably, in a multinrocessor 

confieuration it would be necessary to nrevent more than one 

nrecessor from executing any part of the kernel at one time. 

Such a "single lock" annroach has peen annlied in 

multinrocessing systems and has proven to be a significant 

bottleneck in such systems. Althoueh it is sienificantly 

more comnlex, a "multiple lock" apnroach to restricting 

parallel execution of individual narts of the kernel is nou 

considered necessary, at least for multiprocessing systems. 

ror examnle, the multinrocessing version of OS/\/S2 

Pelease 2 (20) uses multiple locks. 	In 	addition 	to 

connlicating n roofs, 	this also 	raises the possibility of 

deadiock within the kernel. 

A third difficulty 	is that "traditional" nroofs ot 

nroçrran correctness are formulated in terms of a functional 

relationship between initial and final values (it also beine 

necessary to prove that the program halts). ige do not 

normally expect an operating system to halt, so there are no 

final values and additionally, input and outnut are 

interleaved in a complex manner. Therefore, we must prove 

that individual routines, which either terminate and are 

re-activated or execute cyclically with a recognizable 

"Idle" point, Perform their particular functions correctly. 

We must also demonstrate that proper relationships exist 

between the various onerations. 
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A fourth difficulty is that many • onerating system 

nronerties are tine-denendent. 	(Even servicin7 a eueue on a 

first in-first out  hasts  involves a timing relationshin.) 

Traditional nroof techniques are not well-suited to nroving 

the correctness of such timing relationshins. 

A fifth difficulty is that no proof 	ig nossihle 	that 

the formal assertions about a oroFTram used in the nroof 

nrocess actually represent the desired pronerties. Thus, a 

nrnof of correctness of a system may actually nrove, not 

thzIt it does what is wanted, but that it does somethin 

else, as specified in the formal assertions. 

Another difficulty 	is that 	II proofs" 	of 	proruai. 

cnrrectness may not actually be nroofs in the mathematical 

sense: Harlan  1ills states "'proof of proirram correctness' 

is a relative tern by today's editorial standards, which 

means that a certain level of formality has been shoyn in a 

•nldusibilitv argument and that is all it means" (23). Thgre 

1-; a great danger that informal or sketchy "nroofs"  ma"  miss 

innortant details, as was discovered, for examnle, in the 

nroof of the SUE timer manager (4), in which sone imnortant 

insights occurred at the most detailed level of the nroof. 

rinllv, nroofs, at least if prepared hy hand, are 

themselves subject to error. "There is no foolnroof nrof 

of the correctness of a program or a program  serment"  (23); 

An 	interestinr variation on proof of correctness 

methods  has  been used by Harlan Mills (2, 23) in the design 

- 11E - 
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of large programs which must be  rd table  (though not 

snecificallv operating systems). The techninue, used in 

conjunction with. a project organization called "the chief 

Programmer team," makes use of top-down, structured 

Programming. Although the Programs are not formally Proven 

correct, programmers are taught proof of correctness methods 

and can think in terms of correctness proofs as they are 

designing and coding the system. The objective is to 

Produce error-free code initially, rather than to find the 

errors after the code has been written. (As Dr. Mills has 

pointed out, one is likely to have more confidence in a 

nrogram in which no bug has ever been found than in a 

Program 	in which several bugs have been located and 

corrected, but which now contains no known bugs.) 	The use 

of this method in the production of a comnlex on-line system 

for the New  York Times was remarkably successful; however, 

it has been suggested (19) that other factors influenced the 

success of this system and thus, that although the method is 

an encouraging development, its worth has not vet been 

clearly demonstrated. 

IV TESTIMn  

Probably 	the 	oldest technique for innroving the 

reliability of software is debugging--running a Program with 

test data and checking the output to determine if the 

program functioned properly, and correcting errors as they 
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annear. 	Unless accompanied by a forma  nroof that a set of 

test data has comnletely exercised the program, no "nerfect" 

debugging run or set of runs proves that a pro2ram is 

correct, but for simnle Programs it is often straightforward 

to develon test data which will be sufficient to detect at 

least most of the errors in a program. When debugging large 

pro!rrans, narticularlv a program such as an onerating 

system, whose behaviour depends on the timing of innuts, 

simple methods of applying test data to a program may be 

completely inadenuate. 

Even for a trivial program it is usually not possible 

to test all possible combinations of  inputs,  so it is 

clearly necessary to develon methods for generating test 

data which will be likely to isolate most of the errors in a 

nrogram. Next to attempting all possible innuts, the most 

thorough tvne of test will attemnt to exercise all  • nossible 

control oaths in a program. This may be nossible for small 

nrograms, and automatic methods can be used to identify the 

control paths (13), although human aid will likely be 

renuired to identify some n imnossible" naths which apnear 

nossible to the automatic method, and to generate the data 

ithich will cause each path to be executed. 

Unfortunately; 	for 	most programs, the number of 

possible control paths is so large that testing all of then 

also 	becomes 	infeasible. 	In this case, 	the closest 

approximation to an exhaustive test which is possible is 	to 
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test all 	sections of code and all 	conditional 	branch 

possibilities. Here, automatic methods may he used to 

construct a set of Paths through the Program which will 

exercise all branches, choosing the paths so that a small 

set of test data can be used. l\gain, human aid is renuired 

to determine if a constructed path is actually possible and 

to devise the test data which will cause a path to he 

executed. 

Probably the most difficult tyne of problem discovered 

by software testing is one which depends on the timing of 

inputs to the system.  • Even when such a proolen is 

discovered during testing, it may not be resolved quickly 

(or at all), if it cannot he renroduced at will. This type 

of problem usually arises from incorrect synchronizing of 

Processes within the system, so a well - desirned system 

should rarely suffer from such problems. 	If such a problem 

doe, occur, 	usually the ability of the system to trace its 

min onerations will 	he critical 	in 	determining 	the 

difficulty of locating the error. Routines which troce the 

activity of the system are usetul in resolving manv tvoes of 

';"stem Problems, but when the senuence of onerations within 

the svsten is the source of a problem, standard debuging 

aids suciv  as dumils may prove nearly useless. 

If a plan for testing of a svstem is develoned before 

coding of the system hegins, testing will usually be greatly 

simPlified, and thus reliability of the finished system can 
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he achieved more easily. 	Brinch Hansen has described the 

testing of the RC4000 onerating system (6). The method he 

used 	is a good general techninue, narticularlv for systems 

desirned as a series of levels. 	The svster ' 'as  tested 

beginning at the innermost level, and once each level  ':as 

comnletelv tested, it could be used 	in testing of higher 

levels. 	Determining whether the system was functioninn 

nroperlyzwas made easy bv a small trace routine which was 

devised betore the system was coded. Althounh this annroach 

is certainlv a useful testing method, the reverse annroach 

O f:  designing, coding, and testinn a system in a ton-down 

manner has also been advocated and used in the design of 

large reliable systems, as described in the nrevious 

section. 

Although, as Dijkstra has nointed out, debunning can 

show the presence of errors, but not their ahsence, in many 

Instances  it mav not be considered nractical to attemnt to 

remove all the errors from a large software system. Thus 

standard debugging techninues may be annlied in an attemnt 

to remove as many of the errors as possible from the system. 

If such an approach is used, it is especially valuable to be 

able to estimate how many errors are in the system, both 

during testinn and when the svstem is "completed" and made 

available for general use. To obtain such estimates, a 

model of error discovery and correction may he used in 

conjunction with data collected during system testing. 

. - 15E - 
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Ine such model 	is described in (32). A number of 

simplifyinçr, assumntions are made, 	princinallv: 	that 	the 

failure rate of the program is nronortional to the number of 

errors it contains, that the nrogram does not increase in 

size as testing progresses, and that the correction of 

errors does not introduce anv new errors. The first 

asFwmption is clearly at best approximately true and is 

probably justifiable only because the failure rate is the 

most easily obtained measure of a program's error content. 

The second assumption will likely be satisfied quite closely 

in most cases. The third assumption, however, is almost 

certainly not true--at best one can hope that when the model 

is annlied during Initial system testing, the rate of error 

removal will exceed the rate of introduction of new errors 

sufficiently for the model to be useful. 

Using the model one can obtain a simple relation 

hetween the initial number of errors in the system, the rate 

of error removal, the number of instructions in the system, 

and the failure rate of the system. Using failure rate 

data, for at least tWo separate times during system testing, 

one can then obtain estimates of the initial number of 

errors in the system and the rate at which thev are being 

removed. 	Making use of the estimated values of the 

parameters, it 	is now possible to estimate either the 

nresent number of errors in the system, or the time at which 

the number of errors will have been reduced to a specific 
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value. 	Clearly, however, due to difficulties with the third 

assumption of the model, estimates of the time required to 

achLeve an extremely small number of remaining errors are 

likely to he of no value. 	!hile  this model 	is obviously 

very apnroximate, there are many difficulties In using a 

more exact model, since the parameters which would be needed 

are difficult to estimate. 

It has been stated that "the reliability of a software 

Product usually denends on the effectiveness of testing 

procedures during the development stage" (22). Although 

future develonments in proof of correctness methods may make 

this statement untrue, the statement clearly reflects the 

importance of testing in the development of present 

operating systems. 

V SELF - CHECKING 

In the near future, it is likely that  ver"  few., if ami,  

large software systems will he proven correct. All. 

operating systems are therefore likely to contain unknown 

errors. At present, because software is so easy to change, 

the number of errors in a system does not even annroach zero 

through'extended use of the system, but Instead decreases 

asymptoticallv to some positive. value. 	Even in a system 

which is ultimately to be Proven correct, errors will 	exi . st  

when  the system Is 	first coded. . (Also, it is unwise to 

assume that any svstem will necessarfly remain free from• 
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errors 	when 	subjected 	to 	"improvements" 	and local 

modifications.) Thus in any system, whether or not it is 

ultimately to be proven correct, it is important to minimize 

the effect of errors on the svstem. 

The following actions are tynicallv required 	in a 

sYstem which may contain errors but which is intended to 

onerate reliably in spite of them: The behaviour of the 

system is observed and comnared with exnected behaviour. 

(The fact that certain tynes of behaviour are unexnected is 

actually a subtle form of redundancy in the system. 

Redundancy will be seen as a key element throuOlout the 

consideration of error detection and recovery.) When a 

discrenancy is detected, an attempt is made to diagnose its 

cause and the occurrence of a discrepancy is recorded. If 

the cause is an error in the svstem, appropriate actions are 

nerformed to recover from the error. 

This section and the two following sections consider 

techninues for detecting errors. 	Section VIII considers 

possible error recovery  actions.  

The reliability of an operating system can be imnroved 

by including code in the system to check the validitY of 

data structures before and/or after they have been processed 

system routines. 	If data structures are checked before 

they are used, errors previously introduced will 	not  ce  

prona7,ated. • If data structures are•checked after they have 

been  modified, 	the routine causing an error will 	be 
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immediately identified. 	Although cleverly constructed tebts 

can catch manv errors with a small amount of processing, 

frenuentiv extensive checking wilI introduce an unaccentdule 

overhead, so it is often necessary to restrict the check:, to 

be -made. Designing simple data structures will mate 

checking easier and will also tend to reduce the number of 

errors in the system, since complex data structures nrovide 

greater opportunity for-error in their use-- 

Clearly, all Parameters passed to system routines by 

user programs must be checked for validity, hut narameters 

passed from one system routine  to  another might also be 

checked. A common result of failing to check oarameters is 

that an error in one routine causes another routine to fail 

because of  an  invalid parameter, thus concealing the 

original source of the error. Even checking of all 

narameters passed between system. routines is likely to 

introduce tOo much overhead, so decisions must he made 

concerning which parameters are to be checked. Inc?. 

advantage of a "level" structure is that it makes such a 

decision straightforward—parameters should be checked as 

they. are nassed from a higher level to a lower level, hut 

not in the reverse direction, and nrobablv not beteen 

routines on the same level. This anproach has  been annlied 

In the SUF. onerating system (31). The SUF nucleus contains 

a 	number of processes arranged in a tree structure. 

Communication can occur 	only 	between 	ancestors 	and 
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descendants on the tree (not between brothers, etc.) and all 

data nassed toward the root of the tree is carefully 

validity checked, whereas data passed away from the root of 

the tree is usually assumed to be correct. 

Various techninues may he used to make a nrogram check 

its own oneration to some extent. Probablv the mnst 

thorough form of  sel f-checking  would be to have two senarate 

alfrorithms perform the same function and then comnare 

results. Unfortunately, this would essentially double the 

size of the program and halve its execution speed, and would 

also create Problems when a single data structure is both 

the innut and output of an operation, so this anpears to be 

of little nractical value in general. 

The most common form of checking the correct oneration 

of a routine is examining the integrity of data structures 

affected by the routine. The question of determining the 

integ,ritY of data structures is considered in the next 

section, and so will not be considered here. 

Man" 	sel f-checking 	techninues are concerned with 

nreventing an unexnected occurence from causing disaster. 

For exannle, branching to select one of a number of 

alternatives should be done only as the result of a nositive 

test--if all but one of the exnected possibilities have been 

tested for, it should not be assumed that the remaining 

nossibility holds. Instead, if none of the exnected 

situations holds, an error should be 	indicated. 	This 	Is 
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particularly useful 	if input parameters have not been 

thoroughly checked, but also may detect internal lo-ic 

nroblems of the routine. Other coding tricks can be used to 

hein  make a routine self-checking, but no Reneral nrinciples 

seem to underlv them. 

A further techninue which may be used is to monitor the 

control flow of the system, usually by observinr subroutine 

calls. Valid control flow sequences can be determined from 

the structure of the system and actual senuences can then be 

checked against these. This would usually be nuite 

tine-consuming, so it has been pronosed to Perform such 

checking using an external chip processor with a mini-disk 

storing the valid control sequences (24, 25). 

Another technique which can be used to check for 

correct operation of a system is the use of "proRram 

exercisers." These are nrograms which provide a routine to 

be tested with a set of inputs for which the exnected 

results are known and compare the expected and actual 

results. The major difficulty with this anproach is thdt 

few routines execute with no side effects (that is, routines 

frenuentiv modify global variables or save 	infornation 

internally between calls). 	The effort of undatinr and 

naintaininr a large number of exercisers and the amount of 

nrocessing time consumed by this anproach are also 

significant difficulties. 
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VI AUDITIMq 

Frequently, in-line checking for errors 	introduces an 

unacceptably 	high 	overhead, 

onerating under real-time constraints. 	An 	alternative 

techninue is auditing--periodically checking the correct 

functioning of the system. 

Auditing usually renuires 	less overhead than in-line 

checking, but cannot Provide as timely detection of errors. 

If an error occurs in a system which uses in-line checking, 

the error  ma"  be detected by the routine in error or the 

first routine which accesses data which has become invalid. 

In an audited system, many routines may access invalid data 

t-efore an audit grogram determines that an error has 

occurred. Subsequent operations with the erroneous data may 

cause other system data to hecome corrupted, making recovery 

more difficult and obscuring the original 	cause of the 

problem. 	In the worst case, the system may crash as the 

result of an error before the appronriate audit grogram is  

invoked. 

Usually, 	audit programs are 	invoked 	neriodicallv, 

either after the exniration of a specified time interval or 

after a snecified number of executions of a system routine, 

such as the disnatcher. Some audit nrograms, often called 

emergency" audits, are Invoked only when there is reason to 

particularly 	in systems 

helieve a nrohlem exists--elther .  because another audit. 

Program has detected an error or • 'some measure of system 
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performance has not been satisfied. 	Invokin:': emergency 

audit programs when performance degradation is detected must 

he Planned very carefullv, since the audit program will 

cause further performance degradation by occupving the CDU 

with "unproductive" work. This nay produce a serious 

performance loss if the detected defrradation was actually -

due to an overload rather than software errors. "- his 

difficulty has been encountered in No. 1 ESS 	installations, 

in 	!h Ch  an overload has caused sufficient Performance 

degradation to invoke an emergency audit, which has then 

caused enough further degradation to invOke a higHer level 

emerTency audit (35). Ideally, one would to ignore 

performance degradation caused by overloading when deciding 

whether to invoke an emergency audit, hut in practice it is 

usually very difficult to determine the reason for loss of 

system performance. 

The purpose of audit programs is to. detect erroneous 

-s“stem oneration, usually as reflected in erroneous data 

structures. Although the princinle of audit programs is 

straightforward, many considerations are involved .in the 

design of a good system of audit programs (1). 

It is temnting to design audit routines to check for 

•s neci f ic error  conditions  which have been ohseryed or are 

exPected to occur. The audit routines, however, 	should he 

designed not to detect silecific • problems which may he 

anticipated, hut to deterMine whether th e  audited data 
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structure is correct, 	so that unexnected problems will be 

detected. The philosophy should be to determine whether 

data is correct not to determine how it became mutilated. 

Often data structures used by the system will 	be 

difficult to audit. 	It might then seem simniest to create 

snecial sunplemental data which would be easier to audit. 

The danger of this approach is clear: the audited data may 

he correct when the "real" data is in error, or errors in 

the audited data may not indicate anv actual nroblem, excent 

in the snecial code for creating the audit data. In 

addition, the "for audit only" data apnroach creates extra 

work for the system, decreasing efficiency, and wastes 

storage. 

It is imnortant to audit all system data, even if not 

anparently vital. Difficulties with obscure data will 

likely impact other system data eventually and may produce 

nroblems which are hard to track down if the originally 

erroneous data has not beenaudited. 

Auditing of data structures can he simnlified and made 

more effective if data structures are designed to be 

audited. Some features which aid auditinp are: Storing a 

code in each element of a data structure which identifies 

the type of element. Using both forward and backward 

Pointers in lists, or at least terminating chains hy linking 

the last element to the first, forming a cycle, rathnr than 

using a special value to terminate the chain. Using other 
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forms of data redundancy, and using standard Patterns in 

designing data structures. 

The 	two most commonly .used audit • techniques are 

checking. for consistency of-redundant information and range 

checks on values. Range checks involve advance knowledir.e of 

the values which are valid 	in a particular field. 	The 

ranges are usuallv peculiar to the particular situation. 

For examnle, a field which is expected to contain an address 

must contain a value within the addressing range of the 

machine, and a field which is exnected to contain a day of 

the year must have a value in the range 1-366. The 

commonest examnles of verifying the correctness of redundant 

information are checking "point to, point back" in doubly 

linked lists and checking for closure of lists which are 

sunnosed to be circular. Usually, subtler tynes of 

redundancy also exist but are harder to check. ror example, 

all the main storage in the system should either be on an 

"available" list or assigned to some activity in the system. 

It should be nossible to check whether  ami  storage has 

become "lost" or has been assigned twice; however, 	in many'. 

•Ystems 	the 	time to perform such. a check would be 

prohibitive. 

cne  tvne of redundancy which can sometimes be usefully 

added to data structures is a simple Checksum of all 	the 

fields 	in the data structure. 	Each routine which modifies 

the data structure also modifies the checksum, Preferably hv 
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computing a change to it rather than simply recomputing it 

by examining all the fields in the data structure. Audit 

routines can then recompute the checksum and compare Tt  with 

the stored checksum to detect some types of errors in the 

data structure. Unfortunately, many types of program'logic 

errors will generate incorrect data "early" enough in their 

processing so that the checksum will be correctly modified 

and no error will be detected by this - method. One type of 

problem -almost certain to be detected is a "wild" store not 

even intended for this data structure. This type of problem 

may not be common enough to justify the extra storage cost 

and processing overhead involved in. storing and computing 

checksums. (In OS/360 for some -models (12), an analogous 

technique Is used to restore code damaged by hardware 

malfunctions. Presumably it could also be used to restore 

code damaged by software malfunctions, but OS/360 does not 

contain routines to detect such software-caused damage.) 

Audit programs can also check for activities in - the 

system which are not advancing properly and for expected 

measures of system performance which are not being met. 

This technique has been used extensively in No. 1 ESS, in 

which reaSonably accurate expected timings are known for 

. most system functions. In a general purpose operating 

system many functions can reasonably 	be 	active 	for 

arbitrarily long times. 	In all systems, however, there 

should be some functions.which can be expected to complete 
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In a specific time. 	For example, an I/0 operation (except 

on a teleprocessing device) should not be active for more 

than a few seconds--if an audit program which was invoked at 

Intervals of a few seconds discovered the same I/O  operation 

marked in•  progress on two successive activations, it  coud 

 conclude that the function was not being performed properly 

and corrective action was required. 

The corrective action to be taken when an audit program 

discovers an error depends heavily on the system and the 

type of error discovered. Most error recovery techniques 

are common to errors discovered by audit programs, in-line 

checks, and protection mechanisms; they are discussed in 

Section VIII. One special consideration when an error is 

detected.by an audit program is that the error may have 

caused further errors, or that it may have resulted from 

some other, as yet undetected, error. 	Thus, 	It Is often 

desirable to invoke other audit programs, particularly those 

concerned With related data structures. 

. 	VII PROTECTION 

If 	an 	operating system may contain errors, one 

technique to help minimize the effect of those errors Is to 

protect parts of the system from each other. 

Early in the development of supervisory systems, the 

desirability of protecting the system from accidental or 

malicious damage by user programs was recognized. Although 
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In most systems there is no danger of malicious damage to 

one part of the system by another part, errors give rise to 

the possibility of accidental damage. Techniques for 

protecting the system from itself usually rely on the same 

hardware features which are used to protect the system from 

users, and similar software techniques. The essential idea 

is to restrict each system component to the use of those 

hardware features which it requires. 

For 	example, all 	large computers currently being 

manufactured have a "supervisor" mode for use by the 

operating system; user programs run in a "problem" mode 

which prevents them frOm • accessing I/O devices, the - 

: protection hardware, etc. 	The supervisory mode is not 

required, however, by all of the operating system. 	Simply 

by restricting supervisory mode to those parts of the system 

which require it will 	allow earlier detection of some 

errors, since they will result in an attempt to execute a 

privileged" instruction by an unauthorized routine. Also, 

'errors in routines operating in supervisory mode tend to 

have much more gerious effects than those in other routines, 

thus by concentrating all "privileged" instructions into a 

few routines and executing only those routines in 

supervisory 	mode, the impact of many errors will he 

'decreased. 	This principle can usually be applied easily to 

a system designed in "levels" since  It  should only be 
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necessary to execute the lowest level or a very few of the 

• lowest levels in supervisory mode. 

11›rdware memory Protection can be usèd to Protect the 

code and data of each routine from modification by other 

routines;  howeVer, if many routines access common data It 

may not be possible to protect data so that only authorized 

routines can modify it. On a machine such as a System/360 

with a limited number of "protect keys" it may not be 

possible to provide any such protection since the number of 

protect keys not used by the operating system e'ffectively 

determines the number of concurrent user jobs which may be 

executed. This restriction does not apply to "virtual" 

System/37 0 's, which  can  provide Protection through the 

address translation mechanism, so that Release 2 of OS/VS2 

makes  •  use of eight different protect keys for parts of the 

operating system (20). 

In some systems it may be possible to protect Programs 

and unchanging data from accidental Imodification  by placing 

them in read-only memory. This technique has been used in 

No. 1 ESS, which uses a read-only "program -  store"  to  hold 

program code and data which is not normally changed during 

system operation, and a read-write "call store" to hold 

changing data. The technique used in No  1 ESS Involves a 

lengthy process to modify the read-only memory offline and 

would thus not be appropriate for systems subject to 

frequent changes. Hardware which would allow more rapid 
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loading of read-only memory 'would make this technique 

appropriate for protecting almost any operating system. 

Very elaborate protection-structures within operating 

systems have alSo been proposed, usually in conjunction with 

a sophisticated protection algorithm for use relative to 

user programs. Typically, such an organization restricts 

supervisory mode and complete memory access to a small 

"kernel" program, Then, in order to transfer control 

between system routines, or obtain access to common data 

structures,  ail parts of the system must obtain permission 

from the kernel, which checks all 	requests against the 

authorization of the requesting routine. 	While  • this 

provides a  • very thorough protection mechanism and may be 

suitable for use with user programs, it tends to produce a 

very high overhead, which may be unacceptable in a 

production system and is almost Certainly unacceptable in a 

real-time system. Although such thorough protection may not 

be practical at the present, it is possible that special 

hardware may in the future reduce the overhead sufficiently 

to make the technique moremidely applicable. 

A similar proposal 	(37) is to restrict all access to 

Interface data structures to a special Interface system, so 

that no other routines physically access the data 

structures.- All modifications of or references to interface 

structures are made symbolically.- This provides a degree of 

independence from the form of the data structure as well as 
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protection • of 	the 	data 	structure. 	By implementing 

primitives for stack and queue handling within the Interface 

system, other components of the system can be simplified 

somewhat. Although this technique has several attractive 

features  it  is clear that there is a high overhead in 

repeatedly resolving symbolic references during execution. 

VIII  _Una RUnERY  

Although detection of errors is a very important aspect 

of system reliability, by itself it is of ,limited value. If 

the system is to continue operating in spite of errors, it 

Must contain routines which will provide recovery from 

errors. The corrective action to be taken when an error Is 

discovered depends heavily on the system and the type of 

error discovered. Some general possibilities are outlined 

below. 

In some cases, it may be possible to repair the error 

and continue normal operation. This may be possible, 'for 

instance, If a list has become "unlinked" and enough correct 

information remains to recreate the appropriate list 

structure. For example, list elements may fill a contiguous 

area of core, so any "lost" elements May be found and 

replaced on the appropriate list, or the elements may be 

locatable through some other list structure to which they 

alSo belong and which is still  val Id. If this can be done, 

ideal recovery has been achieved, since system users will be 
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essentially unaware of the occurrence of an error. Even if 

the error has not been repaired it may be possible to 

continue operation from the point of error, effectively 

ignoring the error. This is usually a very dangerous 

alternative. 

If the system cannot repair the error, 	it may be 

possible for the system to continue to prOvide some level of 

service while a diagnostician attempts to repair the system 

software, using services provided by the system to aid his 

diagnosis and repair. 

In other instances, 	it may be possible to return the 

system , . or some part of the system, to a checkpoint at which 

the system was functioning correctly. (Some provision must 

be made to ensure that this does not result in an infinite 

loop between the checkpoint and the point at which the error> 

is discovered. Since many system errors result from the 

occurrence of an unusual combination of circumstances, which 

Is not likely to recur immediately, there Is usually a good 

chance 	of 	re-establishing correct functioning of the 

system.) 	Particular care must be taken if online files are 

being updated, since such a procedure could result in 

Auplicating a change. If a return to a checkpoint would 

involve "backing up" a user program which might be updating 

• an online file, it is . generally preferable  to  abort the 

> program' and thus allow human intervention rather than risk 

destroying a file. 
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Otherwise, it may be necessary to restart or abort some 

system routines.  This  allows continued operation of the 

system but will usually have Some Impact on system users. 

In a transaction oriented system, some  transactions in 

progress may be lost; in a batch job system, some jobs may 

be aborted. However, if restarting of system routines is 

well . planned, it should be possible in most cases to 

reconnect a system routine to the function being performed 

when the routine failed. If the routine then falls again 

immediately, while still attempting to perform the same 

. function, it will usually be necessary to abort the process 

requesting service from the system. routine (either the 

request is Invalid but is not being detected as such or it 

Is valid but has encountered a bug in the system routine). 

'If all else falls, operation of the system may be shut 

down. Although this is not a desirable alternative, an 

orderly shutdown Is still preferable to allowing errors to 

propagate through the system, causing unknown damage before 

eventually producing a messy system crash. Also, if the 

system can be stopped and restarted in an orderly manner, it 

may be possible to salvage some system tables from the 

falling system, so that when a fresh system Is loaded it may 

resume processing at nearly the point where the old system 

failed.  This  technique has been used in several -XDS-940 

systems (36), and a related method has been used in the 

Distributed Computing System (See Section IX). 
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In general, 	it ls desirable to design a hierarchy of 

recovery routines, so that if the recovery routine initially 

invoked is unable to effect recovery, another routine will 

be available. This philosophy has' been applied in the 

design of  3S1VS2 Release 2 (11), in which a stack of 

"Functional Recovery Routines" is maintained, which contains 

entries corresponding to system routines invoked but not yet 

terminated. Status information is also stored to aid the 

processing of the recovery routines. When a software 

failure occurs; the routines on the stack are executed, 

beginning with  the  routine most recently placed on the 

stack, until one recovers successfully. Curiously, if all 

system recovery routines fail to recover from a software 

error, an error recovery routine supplied by the user 

program may be invoked. It is unlikely that a user program 

will be able to take any effective recovery action, but this 

may provide an opportunity for the Program to terminate 

gracefully, leaving any files it was modifying undamaged. 

Error recovery routines may be executed either on an 

emergency basis, locking out normal system functions, or in 

.parallel with normal system. operation. The. former Is 

usually simpler to implement, since problems of other 

routines referencing erroneous data are avoided. Complex 

recovery routines may, however, dictate use cif the latter 

technique in order to maintain acceptable response time. 

Error recovery routines may themselves contain errors, 
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so a well-designed system should be Prepared to cope with 

such errors. Clearly this is a difficult problem, since 

designing a second level of detection and recovery routines 

çimply pushes the problem to another level. In Particular, 

OS/VS2 Release 2 apparently makes no attempt to cope with 

this problem, although the number of error recovery routines 

Is very large: 	"a system failure can be considered to be 

1/ . 	the result of two program errors: 	the first, in the program 

that started the problem; the second, in the recovery 

routine that could not protect  the  system" (30). While this 

is certainly preferable to a. single error crashing the 

system, improvement is still needed. 

1K nempum IEMLŒM 
Cnmputer networks provide both additional challenges 'in 

the .design of reliable systems and greater opportunities for 

achieving reliability at reasonable cost. In this section, 

consideration of computer 	networks 	will 	be 	limited 

principally to homogeneous networks of closely co-operating 

computers. In such cases, we may consider the entire 

network to be under the control of a single distributed 

operating system. 

Some of the additional challenges to reliable operation 

are. due to the presence of communication lines in the . 

system, which normally cause more hardware problems than CPU 
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It • • hardware does. 	This aspect is outside the scope of the 

present discussion. 

Other 	challenges 	to reliability are due to the 

18 	
increased complexity of the system, caused by the need to 

, 
co-ordinate multiple CPU's and the necessity of preventing a 

software failure at one node from propagating to other nodes 

and thus disabling the entire network. 

The chief opportunity for 	increasing 	reliability 

afforded by computer networks is due to the presence of 

multiple, 	reasonably independent 	CPU's. 	This 	allows 

11/ 	
reliability to be increased in two different-ways. 	Firstly, 

le 

	

	
when a software  failure does occur which disables a node of 

the network, provided the failure can be confined to that 

11 node, the network can continue to provide at least some 
. 	. 

service to some of its users and May even continue operatlon 

II • so as to make the failure transparent to all or nearly all 

users. 	If all 	service were being provided by a single 

central computer, an unrecoverable failure in the operating 

11 	system running on the one CPU would interrupt service to all 

users until the system could be restarted. 	Secondly, 	if 

11 

	

	appropriate hardware is available, some other processor in 

the network may be able to restart a failed processor, 

IL eliminating 	the 	manual 	intervention normally required 

following a critical operating system error. 

Clearly, 	if a network is so designed that one node is 

11 - 	responsible  for  overall control and supervision of the 
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network, the above advantages are diminished since failu-re 

of the supervisory node will halt  the  entire network. In 

the following, only networks in which control functions are 

distributed throughout the network or can be switched to 

different nodes will be considered. 

The Distributed Computing System (28) Is an example of 

a system designed to  male use of the opportunities in 

networking for increasing the .reliability of the total 

computer system. In the DCS, each processor Is controlled 

by a nucleus which must be functional for that processor to 

be operative in the system. All other system functions, 

such as resource allocation, are performed by processes 

which can execute in any node. For example, the system' 

process which allocates processes to CPU A can execute on 

CPU B. 

If a node fails, either because of hardware problems or 

an error in the nucleus, processes executing on that 

processor are lost. Once failure of the node is recognized, 

a new copy of the nucleus is loaded into the failed 

processor by a bootstrap routine, which is loaded by one of 

the other processors. This loading process does not affect 

*system tables in the processor being loaded. The first task 

of the new copy of the nucleus is to attempt to notify the 

Initiators of processes which were running in the failed CPU - 

that the initiated process has failed. S,Unce data in the 

system tables may have been damaged, precautions are taken 

37E - 



System Reliability 	 August 1974 

to prevent erroneous data from causing further difficulties. 

If the data is correct, appropriate processes will be 

notified of the failure and thus fresh copies of system (and 

possibly user) processes can be started. The posSibility of 

mlssed notification of process failure is taken into account 

by arranging for each process to send, periodically, a 

status check message to each process it has initiated to 

ensure that the process Is still running. 

An important type of process in the DCS rs the "status 

checker." Messages are sent to the status checkers when 

unusual- conditions, such as the failure of a process to 

accept a message, are detected. The status checkers attempt 

to determine whether such conditions are caused by . a 

processor overload or a processor failure. When a 

processor's nucleus fails to respond to several messages 

sent by status checkers and a sufficient percentage of the 

active status checkers have certified this condition, 

processor failure is.assumed to have occurred and a nucleus 

,restart, as outlined above, is initiated& Several status 

checkers execute simultaneously, on different processors, in 

'order to make the failure detection mechanism insensitive to 

failure.. 

There are two ways in which the recovery mechanism of 

the above system might be extended. Recovery of a failed 

processor might be made quicker or more complete. These two 

goalscould be pursued independently or together .. • 
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Recovery could be made more complete by attempting to 

use more information from system tables in the failed 

processor. Clearly there are dangers in this approach since 

as more use is made of possibly erroneous data, there is an 

increasing chance of creating further problems, either for 

the processor being recovered or the network as a whole. 

The objective would be to obtain more information about 

processes executing on the failed processor so that more 

sophisticated recovery than simply creating fresh copies of 

processes and restarting them from the beginning could be 

attempted. 

The simplest technique to achieve this objective might 

seem to be the use of checkpoint facilities, which would 

normally enable all processes to be restarted from a point 

in their execution shortly before the failure of the 

processOr. In addition to possible difficulties with 

,checkpointing considered in the previous section, here there . 

 Is the. problem of restarting part of the network from a 

checkpoint while the rest of the ne'twork continues to run. 

What happens, for example, if the process allOcator for CPU 

A is running on CPU B and the nucleus on CPU B falls, 

Causing all processes on CPU B to be restarted from a 

checkpoint, thus causing the proceSs allocator for CPU A to 

use an outdated process table? Some problems of this type 

can be avoided by running system processes only on the 

processors for which they are "responsible," but the same 
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problem arises whenever two communicating processes - are 

running on different processors. It may be more practical 

to pursue the goal of  improved recovery in conjunction with 

the techniques for faster recovery, described below. 

In order to provide faster recovery in a computer 

network it rs usually necessary to have processors 

designated as backups for other processors, so that when one 

processor falls, another is immediately available to assume 

responsibility for its processing.  in  order to avoid severe 

overloading of individual processors due to failure of other 

Processors, it may be advisable to divide the wOrkload of -a 

failed processor among two or more other Processors. The 

choice of Processors to take Over the functton of a fatted 

processor is usually determined by the zeographic 

configuration of the network. 

If a processor is to take over rapidly the functions of 

another processor, it must contain Information about the 

current state of the other processor. Generally this does 

not mean that all system data must be duplicated and that 

all functions *performed by a Processor must be immediately 

transmitted to its backup orOcessor. Rather, sufficient 

data must be maintained in a backup processor to allow the 

data in a failed processor to be reconstructed rapidly. 

Usually it is possible to maintain such a set of skeleton 

data without creating undue overhead. 

An example of a network system in 	which 	these 
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techniques could be profitably applied is an air traffic 

control system for a large area. Clearly, rapid takeover of 

functions from a failed processor is critical, and the 

zeographic pattern of the network makes easy a logical 

assignment of processors to back UD other processors. This 

example is diScussed more extensively in (25).. 

ilfaNIQUM 

Even 'if 	it were possible to build an operating system 

which contained no bugs and thus could run indefinitely 

without errors, using present techniques the cost of such a 

system would prevent anyone from undertaking such a project. 

A completely satisfactory measure of the reliability of 

a system does not seem to be available, but a measure which 

is easy to obtain and which seems to be useful is the 

percentage "up-ttme" of the system. (For example, this is 

the measure used as a target in the design of No. 1 ESS--2 

hours downtime in 40 years.) At least in terms of this 

measure, the cost of a system increases quite rapidly as one 

attempts to eliminate the last few percent, and then tenths 

of a percent, of downtime. 	Thus, organizations must be 

satisfied with systems which are not totally reliable, 	but 

which have a sufficient degree of reliability for the 

particular application. 

Unfortunately, there is no accurate way to predict the 

degree of . rellability of a system until it has been coded 
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and tested, and possibly not until it has been used under 

production conditions. There is thus still a considerable 

amount of guesswork and intuition required in choosing the 

reliability techniques to be used in a system. Still, it is 

possible to state certain guidelines for the choice of 

techniques for reliabtlity when designing a system within 

cost constraints. 

As In most phases of system design, 	it is first 

essential to  • unde'rstand the purpose of the system, the 

environment in which it is to be used, and its relationship 

with that environment. Then, within this framework, it is 

necessary to define the consequences of system failures of 

various types, in terms of the effect on system service, and 

to consider the effects of failures of various durations and 

frequencies. 

Next, one must decide how much it is worth to avoid the 

consequences of  •  the types of system outages considered. 

This places an upper bound on the cost which can be expended 

in improving the reliability of the system. 

It is also necessary to consider design constraints on 

the system, other than reliability, which may affect the 

reliability methods which can be used. For example, the 

amount of core available for the system may be limited, thus 

placing a limit on the amount of code for in-line checking 

or audit programs which can be included. More importantly, 

in many applications the response time of the system Is 
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extremely 	important, 	so 	the 	overhead introduced by 

reliability techniques must be considered. For example, it 

may be determined that the overhead produced by in-line 

checks would degrade response time unacceptably, so 

extremely timely error detection  must  be sacrificed  for the 

lower overhead created by audit programs. 

Finally,  •  in terms of all the preceding considerations, 

the appropriate reliability tools and techniques must be 

chosen, in terms of their costs. Clearly, the set which 

achieves the desired degree of reliability at the lowest 

cost, and meets all other system restrictions, should be 

chosen. 

Although the need for reliability of operating systems 

was first recognized in conjunction with the development of 

real-time control systems, it has since been realized that 

reliability iS important for all types of operating systems. 

The reliability of general. purpose operating systems has 

been recognized as important partly 	because 	of 	the 

increasing dependence of many organizations -  on 

general-purpose computer systems. -Several operating systems 

have been designed in an academic environment which had 

reliability as one of their prime objectives, and computer 

manuÈacturers are also now beginning to place greater 

emphasis on the reliability of their operating systems. 
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Many techniques have been proposed and used to improve 

the reliability of operating systems, but the effort 

required for the proof of correctness approach and the 

system overhead produced by most other methods are still 

problems preventing the routine creation of reliable 

software. More sophisticated hardware may decrease the 

overhead produced by some reliability . methods, and advances 

In proof techniques may make proofs of operating system 

correctness practical in the future.. The combination of 

advances in techniques for increasing the reliability of 

operating systems and greater dependence on computer 

systems, and thus greater need for reliable systems, will 

doubtless lead to the creation of commercial operating 

systems much more reliable than most of those in use today. 
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APPENDIX 

A SURVEY OF COMPUTER NETWORK 

DEPENDABILITY TECHNIQUES 

II 



1. 	INTRmnuoTImm 	. 

The more organizations become denendent on computers, 

the more sensitive thev become to computer system failures. 

The innortance of computer denendabilitv in real time con-

trol systems (e.g., communications systems and traffic con-

trol systems) has been recognised for some time. Many 

general purpose comPuter users are now becoming aware that 

thev accomplish more on systems that  sel dom  "crash" because 

of malfunctions than on svstems that run very ranidly (and 

correctly) between frequent "crashes". Conseduently, in-

creasing emphasis is being placed by users and vendors on 

the reliability of the system components and on the depen-

dability of the complete system, including hardware and 

software. 

Care and redundancv are the keystones in building a 

denendable system. Experience Indicates that most notential 

sources of errors can be eliminated bv exercising care when 

designing, implementing, or modifying the hardware, 

software, or data structures'of a system. However, human 

beings error and components suffer failures, so desPite the 

amount of care exercised, some malfunctions will occur 

during productive use of the system. These should at least 

be detected when thev occur so that some appropriate action 

can be taken to Prevent avoidable damage from occurring to 

the system, data, or innocent users. 

Desnite progress made in recent Years in comnonent 
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reliability, 	redundant hardware still Is normally necessary 

to achieve the desired level of system hardware denen-

dability. Redundant data in the system is essentiai in 

order to detect and recover from many types . of hardware or 

software malfunctions. Other types ot malfunctions can only 

be detected by observing behaviour of the system, and com-

paring this with known or expected behaviour derived from 

analysis of a system model or experience using the system. 

This information about the behaviour of the'system can be 

kept inside or outside the system, and is, in one sense, 

redundant information about tne system. Thus, there are 

three forms of redundancy that can be used to enhance system 

dependability: 	redundant hardware, redundant data, and 

redundant information about the system's behaviour. 	Extra 

software and hardware of a special nature are usually neces-

sary to make effective use of this redundancy. 

Redundancy must be organised and managed to effectiyely 

and efficietiv achieve a level of dependability. Effective 

use of redundancy implies the ability to detect errors, both 

on a system and a unit  h as t s. Cost effective use also re-

quires the ability to locate (diagnose) the source of error 

and quickly repair or replace the failed unit. 

i'_rror detection, 	diagnosis,and recovery can be per- 

formed completely automatically, completely manually, or 

with some comnromise between manual and automatic operation. 

The amount of hardware, software, and redundant data 
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renuired to achieve a level of dependability is the result 

of a compromise between the cost of failures and the cost of 

the facilities necessary to handle them. 	Few organisations 

can (or should) afford an eternal machine. 	Instead, most 

find that something less than the ideal system is adenuate. 

Costs increase nuite ranidlv as the 	ideal 	system Is an- 

nroached. Experience indicates that the denendabilitY vs. 

cost curve has apnroximately the characteristics of the 

curve of Figure 1.1. 

Recoverabilitv of a system is defined as the ability of 

the system to perform its intended function in the face of 

faults or errors in the system comnonents. 	The definition 

implies that, 	from a user's viewpoint, the system is tran- 

snarent to  errons  or faults. 

The degree to which a system is recoverable can be 

measured in several ways, but from a user's vieunoint, the 

imnortant parameters are dependability and error free onera-

tion. 

The ideal recovery process would resnond to a fault or 

error in the system so rapidly that the user could access or 

be accesed bv the system as if the error or fault.had not 

.occurred. Furthermore, it would, by reason of sneed of 

recovery or reconstruction, not affect or• mutilate  an"  tran-

sactions in Progress at the time the fault or error 

occurr ed--it•would be error•free. 

Thus, recoverability is not necessarily synonymous with 
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reliability. 	TypicallY, 	the technique of adding redundant 

components to obtain dependability trades reliability (there 

are more components than if redundancy were not used) for 

recoyerability. 	From an economic viewpoint, it may well 	be 

possible to trade recovery system sophistication for 

reliability. That is, trade less expensive hardware for 

more elegant recovery software. 

Telenhone companies, wjth their reputation for ultra-

dellendable service to maintain, were among the first to try 

to implement dependable hardware and software <1,2,3,4>. 

Consequently, their electronic switching systems are as 

dependable as their electromagnetic Predecessors. Unfor-

tunately, no commercially available  computer  system an-

proaches the dependability of such systems. Designers of 

commercial computers emphasize rapid error-free calculations 

rather than continuous service, whereas telephone companies 

emphasize the latter. Reports of ten or more hardware or 

software "crashes" per week are not infreauent for comer- 

ci a ll v available computers. 	Some installations report as 

many as ten "crashes" per day. In contrast, No. 	1 FSS of 

A.T.&T. 	is achieving a dependability of twelve hours down- 

time in forty years <16>. 

The techniques that have been used in electronic 

• switching systems to achieve such dependability can be an-

plied to computer systems and networks. This naner reviews 

some of these techniques, suggests sone new tools and tech- 
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niques, suggests some guidelines for a .  designer to use in 

developing dependable computer systems; and finally il-

lustrates the use of these ideas in a computer network. 

Section 2 describes some sources of errors, section 3 

presents some techniques for achieving dependability, and 

sections 4 through 7 survey tools and techniques for 

nreventing, 	detecting, 	diagnosing, 	correcting, 	and 

recovering from hardware and software malfunctions. Section 

8 presents guidelines for designing a maintenance system for 

a computer system or network. Section 9 summarizes the 

caper and presents several areas requiring study. 

6 1? - 
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2. SOURCES IF ERRORS 

There are three categories of error sources in a 

system: a mistake in design or implementation, a failure in 

a component, or an error introduced by a human operator. 

Noise is usually inoluded in the first category. 

Design mistakes are not predictable, except that they 

exist. In every system. They are not recurrent, once cor-

rected; thus, the number .of such errors in a system 

decreases with time. The number of hardware design errors 

approaches zero asyMptotically with time because the design 

becomes stable. However, because software is so eaSily 

changed, it rarefy becomes • stable; thus, the number of 

software design errors decreases asymptotically with time to 

some fixed positive number. The value of this number is a 

. function of the rate at which new capabilities are added to 

the software. The number of software errors increases tem-

porarily after each change. Hardware design errors are 

sometimes difficult to detect- using hardware, so they are 

usually treated as software design errors. 

Hardware 	component . failures 	are 	statistically 

predictable, 	so their effect on 'dependability can be 

predicted analytically. 	Errors caused by component failure 

can reneat until . the cause of . the failùre is fixed or the 

component.is replaced. In time, component failures produce 

more errors than are caused by design mistakes. Software 

comnonents do not decay with time, but hardware does, so 
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only hardware contributes to component failures. 

Human operator errors are statisticallv unnredictable, 

and recur at an unpredictable rate. If they are concerned 

with hardware, they are treated as component failures.' 
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3. TECHNIOUES FcR ACHIEVINq DEPENDABILITY 

i\ dependable system requires techniques to deal 	with 

errors from each type of source. By careful annlicatinn of 

error prevention techniques such as those discussed in Sec-

tion 4, many design and implementation mistakes can he 

caught before the hardware or software is productively used. 

The other errors must be detected and handled as the module 

is used. Whereas care is the key to error prevention, 

redundancy (when pronerly and carefully used) is the kev to 

error detection, diagnosis, and recovery. 

At least one automobile with which we are familiar con-

tains a redundant brake svstem arranged so that, when a mal-

function occurs, the brakes will continue tu function; 

however, the driver is not notitied until both the nrimarv 

and secondary systems have developed failures. He then is 

rather rudely made aware that there Is a problem as his car 

fails to stop. 

As this example illustrates, 	redundancy can be mis- 

managed. 	Although redundancy can be used to achieve sone 

level of dependability without concern for error detection 

by the equivalent of t r1Ring the outputs of redundant units, 

this apnroach has two problems. 	'The  is that disaster 

strikes 4/ithout warning when the last component fails; 	the 

other is economy, for doing without error detection max-

imises the number of redundant units required to achieve a 

level of dependability. Efficient and effective use of 
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redundancy requires the ability to detect errors both on a 

system and a unit basis. The numner of redundant unitg re-

quired for a given level of dependability can be minimised 

by designing into the si/stem a canability for rapid location 

and repair of the error source. 

In order to keep a system operating effectively, the 

following cycle of functions should be performed: 

A. Observe behaviour  of  the system, 	looking at 

performance 	and 	malfunction 	indicators 	par- 

ticularly, in order to detect trouble. 

B. Comnare 	ohserved 	behaviour 	with exnected 

behaviour derived from a system model, experience 

using the system, and/or redundancy within the 

system. 

C. Decide whether a discrepancy exists between ob-

served and expected behaviour. 	If not, continue 

observation at step A. Otherwise, notify the main-

tenance portion of the system so that diagnosis can 

be performed. 

D. Diagnose the cause of the discrepancy 	by 

directed  observation of system status and behaviour 

(See below for a more detailed description of a 

diagnosis nrocedure). 

E. Decide what corrective and/or recovery actions 

to take, if any. 	(If deemed necessary, information 

about the failure and the action taken can be 
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recorded so that it can be analysed later to 

validate and/or correct the system model on which 

some of the expected behaviour is based.) 

F. Take action to correct, recover, or bynass the 

cause of the Problem. Continue observation at sten 

A. 

Each of these functions, of course, can be nerformed 

manually or automatically, 

(Ince an error has been detected by steps A-0 above, its 

cause is diagnosed by performing the following cycle: 

A. Select a test apnronriate to the tvoe of error; 

B. Observe behaviour and status of the system as 

appropriate for the test; 

C. Compare behaviour and status with that ex-

pected, based on redundant information and/or con-

nonents; 

D. Decide whether enough information has been ob-

tained to isolate the cause of error; 

E. If 	so, notify maintenance nortion of the 

system; 	if not, continue diagnostic testing. 

In many systems, such diagnosis would be separated into two 

Phases: 	first, the functional unit that can be replaced 

with a redundant unit would be identified, then after recon-

figuring and/or patching the system so that it can continue 

to Provide service, the necessary detailed dia7nosis would 

be performed to determine the exact cause to allow correc- 
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tive action to be taken. 

rince either temporary or permanent corrective actions 

and/or repairs are complete, the system could he restarted 

from where it was when the error was detected (sometimes 

dangerous), from the beginning (often wasteful), or from the 

last Previous checkpoint, the last assuming facilities are 

available to save periodically the state of the system to 

facilitate recovery. 

- 12F - 

Morgan, Clement • 



4. MALFUNCTIMN PRFVENTIIN MILS AND TECHNInHFS 

Selecting a language that is apnronriate for the ap-

plication and selecting suitably simple algorithms and 

heuristics are obvious acts to prevent amny software design 

and implementation mistakes. It is easier to make 

Programming mistakes in a language that is less restrictive 

In syntax than in more restrictive languages. While useful 

for dependability, such restrictions can be crinpling for 

the programmer. 

Dijkstra, Hoare, and others <5,6,7> have shown that 

some program structures are more error-prone than others. 

Programs structured as they recommend are easily understood, 

so the vast majority of bugs are eliminated before the 

programs are put into productive use. Minimising the number 

of unconditional transfers is a highly recommended technique 

for simplifying program structure. Such structure 

nrogramming techniques also aid proving programs to he cor-

rect. Although such proofs of correctness are not nractidal 

now, they may become a viable error prevention techninue in 

the future. 

Like program structures, data structures can and should 

be designed with dependability in mind; hence, the ,/ should 

be as simple as possible, for very complex data structures 

are often sources of errors. Programmers are often temnted 

to save snace by making words in tables serve several dif-

ferent nurposes, each purpose determined by the setting of 
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flags in another word in the table. This practice is incom-

patible with a dependable system, for such tables cause far 

more than their share of errors. 

Whenever data are entered or modified, or data struc-

tures are created or modified, the new data or structure 

should be checked for being reasonable, in the nroner for- 

mat, 	and within permissible range(s) of values, and beinp 

consistent with existing data or with redundant 	information 

inside or outside the system. 

Language translators, linkers, and loaders can be writ-

ten to detect many possible sources of software errors. For 

examnle,  the"  can be written to find instructions that could 

transfer or store wildly as well as instructions that can 

never be reached. 

Tests need not be exhausting tobe exhaustive. Com-

nlete, vet cleverly constructed tests can catch many design 

and implementation mistakes before they cause catastroohes. 

Fxnerimental design techniques and tools such as Latin' 

Squares can be used to reduce the number of tests while 

giving some level of confidence in the comnleteness of the 

testing. Programs can be written to generate the graoh of a 

program, then produce a set of paths to test to cover all 

the nossible !laths through the program. This would minimise 

the number of oaths necessary to test to ahieve a very hirC1 

level of confidence in the Program. 
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5. 'IALFUMrTIoN DETEOTIoM TOOLS AmD TECHMIonS 

Several techniques have been developed for detectin ,' 

hardware errors in comnuter systems.  Among these are error 

codes (e.g., parity, Hamming), state valiuitv checks, matrix 

select validity checks<l>, and matching the results of com-

ponents performing the same function with the same data anti 

input stimuli <1,3>. Matching yields ranid and highly el- 

ficient error detection (i.e., 	the nercentaee of errors 

detected is very high); however, it is expensive, and in 

the case of duplicated components can lead to ambiguity in 

identifying whicn unit failed. Improved dependability can 

be achieved by voting among three or more identical comno-

nents. Error codes are used by most manufacturers of com-

puters to detect (and sometimes correct) errors in data when 

the data are transmitted or stored. The STAR computer 

designed bv Avizienis and Rennels at dPL uses residue codes 

to achieve denendable computation <14>. 

When commuter hardware detects Problems, the software 

is normally notified by the interrunt mechanism. Such 

hardware-detected errors include software-caused problems 

such as attempts to execute instructions with invalid onera-

tion codes or invalid addresses, or to use invalid or incor-

rectly formatted data. In manv systems, this is the only 

error defense mechanism provided. Mearly all errors can be 

detected eventually in this way; however, if the error 

source is software, it usually is some time before the ef- 
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fects •  of the error are detected. Mften the damage is suf-

ficiently extensive to be catastrophic. There are other 

techniques to detect software errors which buy time and 

minimise damage. 

An obvious technique for detecting software errors is 

to build defensive checks into the software so that every 

entry and exit of every routine is checked for consistency 

and validity of narameters. Such checks can also verify 

that routines are being executed in a reasonable and val Id 

 sequence, and that the data structures involved with the 

routines are valid, Intact, and consistent. These checks 

are included in the routines, and consequently are executed 

whenever the routines are executed. As discussed in a later 

narapraph, such checks can be nerformed periodically by 

software, or by an external system, thus reducing or 

avoiding the real time penalty. 

Another 	apnroach 	is to execute neriodicallv, or 

whenever trouble is suspected, sneciallv-constructed 

Programs called AUDIT PRmnRAMS to check validity, comnlete-

ness, and consistency of data structures in main and auxil-

liary storage <1,2,3,4>. Such audit pros ,,rams base their 

comoarisons on redundant information and structure contained 

in the data structures or available from the system or from 

that part of the system's environment which can be sensed by 

the system. These checks are cheaner than the in-line 

defensive checks just described because they are not ex- 
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ecuted as often; however, in-line checks detect trouble more 

quickly, so damage 	is less widespread than with audit 

programs. 	To maximise the effectiveness of audit nrograms, 

data structures should be designed with auditine in mind. 

In particular, error detecting can be aided by using 

data structuring technieues such as: A. An identity code 

In  each data entity; B. rorward and backward 

Pointers in each list; C. point to -- point hack 

schemes between data structures so that each path 

between structures is part of a cycle which can be 

checked for closure; D. 	Redundant data within the 

structures so that mangled data can be detected and 

reconstructed if necessary; E. Standard patterns 

employed in all data structures. 

Not only data but programs can be overwritten, either 

by software or hardware errors. To determine whether a 

Program still executes properly,  Tt  can be exercised using 

known innut data. An error is detected if the output of the 

program differs from the correct output. This technique is 

rarely used because of the difficulty of writing and un-

dating such exercisers, the real time used, and because few 

programs look like black boxes  (i .e.,  all inputs and outnuts 

are nassed as parameters, and only volatile local variables 

are used). Error codes such as hash sums are effective in 

determining the integrity of programs, and are often used. 

Such tests can be run periodically and/or whenever trouble 
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is suspected. 

Kane <8> has shown that many errors can be detected NY 

noting when flow of control deviates from exnected patterns. 

Such 'wild transfers' can be detected by observin- all 

transfers of control (or just subroutine calls and coroutine 

resumes) and comparing the actual control senuence 

known  val Id  senuences. These known  val Id  senuences can he 

stored as valid relationships between routines (for example, 

X can call A or  B; X can be called bv B, C, or F; X can hn 

interrupted for I, (1 , M, or S, but not 	for 	n or T). 	1.4e  

think that such sequence checking can be done bv an external 

chin Processor connected to a mini-disk that holds the 

relationships, and to a hardware monitor that observes the 

actual control senuences. In an effort to verify this con-

jecture, one of the authors has designed and is implementin 

such a control sequence error detection system. It is based 

on the hardware monitor described in papers hv Morgan, et al 

<9,10>. 

Certain characteristic performance parameters 

resnonse time, throughput, resource utilisation) are useful 

to indicate when the system is in trouble. when these in-

dicators pass through threshold values, 	the maintenance 

th 

system Can automatically alerted by a monitoring svstem so 

'that annronriate techninues can be used to determine the 

cause of the problem. Software and/or harchqare monitorinr 

•techninues are capable of providing such narameters. 
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Most manufacturers use sbeciallv-constructed hardware 

diagnostic nrograms to diagnose faults and sometimes to 

detect errors. They are often executed routinely as nart of 

preventive maintenance to detect failing comnonents before 

thev cause damage. These programs are sometimes implemented 

using sneciai instructions designed to exercise asnects of 

the hardware for diagnostic nurnoses. 
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PALFUMCTI(IN DIArINmSTIC TcoLS AMD TvCHMIqMrS 

Bell Labs has had good success using Audit Programs 

software diagnostic tools 	(See Section 5 and <1,2,3,4>). 

Besides detecting  trouble,  these nrograms can deternine the 

extent of damage to data structures and thus help aoint to 

possible causes of the problem. 

Bell 	Labs has also used orogram exercisers as a 

nostic tool. Susnected programs are exercised hy executin 

them with known inputs and comparing the results with knoun 

outputs. A dictionary of svmntoms and their probable cau-,e 

is used to decide what the Probable cause(s) of any nrohlems 

is(are). Such maintenance dictionaries are also used witn 

considerable success with diagnosing hardware faults. 

Most software diagnosticians find event logs to he a 

gold mine of helpful information, esneciallv if the s-ster 

automatically saves a snapshot of the event log immediately 

atfter the error was detected and before several uninnortant 

events occurred. Besides interrunts, event logs should  con-

tain  records of the occurrence of selectee significant 

events, such as failing to satisfy a renuest for main 

memory. 

A debugging subsystem similar to to TSSS in UM's 

TSS/360/67 or DDT of DECSYSTFM 10 dramatically reduces mean 

time to repair (MTTR) for software nroblens <10,11>. niag-

nosticians use this tool to disnlav system status, the event 

log, registers, and selected areas of storage. It ennbles 

G. 
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them to modify nrograms'and data, and allows then to observe 

execut  ion  of  sel  ected  sequences of code. Thev can use thn 

debugging system to execute selected audit nrograms to 

determine the extent of damage. 

Chang, Manning, and Metze have discussed many hardware 

error diagnostic techninues and tools <12>. Such diagnostic 

techninues have been employed in all critical comnonents in 

the Bell Svstem's electronic switching systems, and evidence 

of their use is occasionally found in commercially available 

comnuters. Many manufacturers include snecial diagnostic 

instructions 	to 	aid 	their 	diagnsoticians 	in 	locatin 

trouble. 

/\11 manufacturers have some form of diagnostic nroc-rars 

for their hardware. The" range from simple stand-alone 

exercisers to comnlex on-line diagnostic systems. 

- 21F - 
Morgan, rlement 



7. MALFUNCTI 1N CDRPECTUIN AND RECIVFDY 

As mentioned in Section 3, several recovery actions are 

possible after an error has been detected. The simnlest 

procedure is to ignore the error. The most comnlicated is 

to attempt to diagnose and renair the failed comnonent 

automatically while the system continues to Provide a normal 

level of service. 

Two major components of system dependability are hard-

ware dependability and integrity of program and data struc-

ture. Both can be achieved by duPlication of hardware. If 

data and program integrity can be provided bv another means 

such as back up from which stable data can be rebuilt, then 

hardware renlication need only be provided to secure the 

necessary degree of har'dware denendabilitv. 	In general thir; 

can he achieved bv less than full duplication. 	It should he 

noted that it is generally either either imnractical or 	im- 

possible to recreate transient data; 	hence, dunlication 

must be used where transient data is imnortant. 

If all critical units are dunlicated, when an error oc-

curs, the standby unit that has been nerforminr, the sane 

functions as the active unit, now automatically becomes the 

active unit. Meanwhile, the failed unit can be daignosed. 

Assuming an error detection and response mechanisn which 

prevents propagation of the error, 	this 	technique, 	thouh 

exnensive, nearly eliminates system. "crashes" caused bv com-

ponent failures 	in critical 	units. 	nata need not 	be • 
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recreated after a failure *because It is always available and 

current in both unIts  

Economies in cost can he realized -by a redundancy 

11 	scheme where roving snares are maintained to renlacn 

failed active unit. The number of snares needed is a rune-

"

tion of the dependability and the repair time renuired to 

fix a failed unit, but the number of spares is less than the 

number of active units. Data residing in a failed unit may 

be lost. The time required to initialise the activated 

spare makes this scheme slower to recover than the complete 

duplication scheme. 

Neither of these redundancy schemes renuires that the 

replicated units be located near the active units, excent 

for massive data transfers at high rates. Thus, a network 

of comnuters of the same type has inherent renlication. 

Some failures of hardware are intermittent or transient so 

that the function can be successfully retried. Some errors 

can be automaticallv corrected bv se1f-correctin7 hardware, 

but such hardware is often ver ', exnensive. 

If the system can continue to provide service without 

the failed unit, 	the failed unit may be automatically 

bypassed until it can be repaired and nlaced back 	in ser- 

vice.. 

Sunnose  taie have a set of components in the svsterl, each 

capable of performing the functions of the other comnonents. 

Sunpose the set of functions to be performed are ordered ac- 
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cording to the imnortance of continuing to nerform them 

should malfunctions occur. When a malfunction occurs, 	the 

failed unit Is automatically taken out of service for diag- 

nosis and renair. 	If necessary, the lowest nriority func- 

tion(s) 	is(are) dropned, and the system's comnnnents are 

reorganised to perform the remaining functions. 

When software fails, an attemnt may he made to renair 

the damage and continue to provide service automatically. 

This imnlies the need of sufficient redundancy in the data 

to locate all the damage and sufficient intelligence in the 

software to do the repairs, but all this is exnensive. 

A more modest approach is to provide tools so that a 

diagnostician can determine the damar,e and its cause, make 

the necessary repairs to the software, then allo •  the 

system to continue. If annronriate software were available, 

the system could, in many cases, continue to provide some 

service  'hile the diagnosis and renairs are hein  g done. 

Some systems nerlodicallv store the state of the system 

automatically so that the system can be restarted from one 

of these noints should a failure occur. This nrocedure 	is 

known as checkpoint/restart or rollback. 	IRM's mS/360 

provides this facility as an option, hut an informal  roll 

 indicates that feu Installations elect to use it. 

Some software errors are the result ofa rare sequence 

of events. In such cases, merely restarting the system from 

a convenient checkpoint is often sufficient to get around 
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8. nUIDELINFS FrM MAINTENANCE .SYSTEM munm 

Mami•techniques and tools have been develoned to in- . 

prove 	system dependability. 	Most of these have been 

discussed briefly in the previous sections. 

When designing a maintenance system, 

how does one decide which of these tools and techninues to 

emnlov to achieve a specified level of dependability within 

a specified cost constraint? Here are some guideiines that 

should  hein: A. Define the svstem, its environment, and 

the relationshins between. them. B. Define the 

consequences- of each kind of failure as a function 

of the completeness of the resulting outai7e, mean 

'outage time, and distribution of this kind of . 

failure. 	C. 	Define what it's morth to avoid these 

consequences. 	This provides an upper bound on  the 

 cost of protecting the system f'rom these conse- 

quences. . D. 	Considering the preceding, determine 

Which tools and techniques_ are applicable. 	Define 

achievable dependability with some combination of 

the available tools and techniques as a function of 

their cost. Pick the set the achieves the required 

denendability at minimum cost. 

To illustrate the application of these guidelines, con-

sider the following simple examnle which, while admittedly 

less comnlex than most practical problems, will serve to 

demonstrate the princiPles. The example was contrived bv 

Morgan, Clement 
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simplifying some real applications studied by the authors. 

Assume a traffic control system which covers a 

geographical area large enough to renuire ter' or more 

surveillance sectors. Furthermore, the size of the area 

limits the Problem of control of a given unit to three con-

tiguous sectors at any one time. The depth of space oc-

cunied by a unit is related to its sneed so that system con-

trol cannot be lost for more than 30 seconds without danger 

of collisions between units. If control Is lost for more 

than this tine, assume that flow of traffic through the ef-

fected sector will be halted; thus, the nenaltv of loss of 

control is loss of traffic for half a day at a port of call. 

Loss of life is not considered In this examnle. This 

paragraph has functionally defined the system, its environ-

ment, and the relations between the two considering depen-

dability. It is also assumed that the control function is 

imnlemented by one or more digital computers. 

This simnle system description allows a statement of 

failure consenuences to be made as a function of outages. 

An outage of more than 30 seconds in a sector is not 

tolerable. A failure that can lose more than one sector 

(e.g., all sectors in the system) could halt traffic flow 

completely, thus having severe economic (and nerhans social) 

consenuences. Hence, it is desirable to avoid loss of con-

trol and/or surveillance In more than one sector at a time. 

rutages of more than 30 seconds twice a dav render the 
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system inoperative. 

Now what of cost? Assume the revenue lost hy sector 

shutdown is that which might be expected at a large urban 

airport such as m'hare in Chicago. Thus, a shutdown of 

operation of half a dav represents a loss of more than one 

million dollars, or in another context, loss of ten percent 

of the weekly revenue. As a bound, assume that the mean 

time between such outages of less than a year is not ac-

centable. This represents an effective cost of 0.5% of the 

weekly revenue. Furthermore, it requires, considering 

todav i s processor technology, a recovery system capable of 

restoring operations automatically in 30 seconds or less, 

and not canable of coping with failures more often than once 

a year. 

Ilhat then are the possible configurations and tech-

ninues? Mo matter what the implementation, It is a fact of 

life that programs are never error free. Paranhrasing 

kstra, testing indicates the presence of errors, 	not their 

absence; 	thus, a recovery system must contain a form of 

defensive programming. 	It has been established that audits 

are economical in real time usage and usually In code snace. 

Several alternative techninues are shown in Figures 8.1a 

through 8.1c to achieve data integrity and hardware depen-

dability. In each figure, the surveillance units are over-

lapned of necessity to assure comnlete coverage of the area. 

The overlan also helps to achieve denendahilitv of surveil- 
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lance. 	Processing in Figure 8.1a would be done at a sinle 

centre for the ent,ire system, and the processor at that 

centre would be duplexed. 	Each element in its suhsvstems is 

Provided with an error detection capability , 	and recovery 

and diagnostic software are provided as part of the system. 

The processor must have the capacity to handle the entire 

system. riutages of this processor (failures to recover in 

30 seconds or less) halt traffic in the whole system, and so 

would affect more than one port of call and create an 

economic disaster. To prevent this the recovery and error 

detection systemswill have to be nuite sonhistIcated. 

The system of Figure 	8.1b has a processor associated 

•ith each surveillance unit and communication links only to 

the extent of passing handover data from one unit to the 

next. 	A processor outage does not cause failure of control 

through a sector since sector surveillance overlans. 	The 

penalty is that each processor must be capable of handlinr; 

twice the traffic in a sector. Dependability is achieved 

because two adjacent processors must fail in order to losic,  

sector control. Cost is approximately the same as for the 

machines in Figure 8.1a, assuming that processor cost and 

capacity are linearly related. An additional Penalty here 

is that insufficient data exists in adjacent machines to ef-

fect a 30 second recovery. An advantape is that, since 

failures of adjacent machines affect only one sector, the 

economic nena ltv is less than in Figure 8.1a, and the 
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recovery system can be less sonhisticated. 

The system of Fif,. ure 8.1c also has a nrocesor as-

sociated with each surveillance unit, but uses communica-

tions links to keen the two neighborinçr data bases un to 

date so that when an outage occurs, one or the nefthborine 

processors can take over and recover the system in less than 

30 seconds. 

The data base renulred 	in neighboring processors 	is 

comnrised of only that information required for the 'take 

over nrocessor to rebuild Path and velocity data for each 

element in the failed sector. It does not comnrise the en 

tire data base. Thus, at an added cost for data links and 

storage, the objective of a 30 second recovery is acnieved. 

Since each processor is smaller than the ones used in the 

Figure 8.1a configuration, thev are inherently more 

reliable. If one assumed equal sophistication in the 

recovery software and hardware, the costs would be about 

equal. However, since failure or the function or two adja-

cent surveillance sectors arfects only one sector in the 

scheme of Figure 8.1b, the recovery hardware and software 

need not be as sophisticated for b as in a. This simplicitv 

can only result In further enhancement of dependability as 

well as a cost advantage. Mne also gains the performance 

advantaes that often go with a gracefully degradincr system. 

The system shown in Figure 8.1c can be thought of as a 

set of triads, at least from a denendahilitv Point or 	vie' 
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dustification for this division of a comnuter network into 

triads is nresented in Attachement A. In particular, Attachment 

A proves that so long as the link failure probability is 

lower than unity, the system is more reliable than the one 

shown in Figure 8.1h. 
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. SUMMARY, CONCLUSIONS, AND FURTHER WORK 

Table 1 summarises our review of techninues and tools 

which have been fOrmulated to nrevent, detect, and daignnse 

malfunctions and recover from them. A tool for detecting 

malfunctions by externally monitoring the benaviour of the 

system was suggested. organising a network into triads was 

shown to be a good way of simnlifving the problem of struc-

turing a network to enhance dependability. Section 3 

presented a procedure for desipning a maintenance system. 

As Table 1 illustrates, a wide variety of techniques 

and tools have been developed over the years to enhance the 

dependability of computer svstems. Audit techniques 

developed by Bell Labs are quite widely annlicable. 	Their 

use in operating systems for commercial comnuters 	is 

strongly recommended. The methods for spnarating a network 

into triads to enhance dependability annears nuite 

promising. 

	

While writinir this paper, a number of areas 	renuiring 

work became evident: 	A. Develop the external monitoring 

system suggested in Section 5. 	P. 	lmnlement  the 

triad 	approach 	experimentally. 	C. 	Puild an 

operating 	system using 	audit 	techniques. 

D. 	Develop tools to ald 	in designing and ir- 

PlementIng a maintenance svstem. 	E. Create a 

language (or extend an existing language) to ald in 

generating audit programs. 	F. pevelop tools and 

- 35F 
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techniques for aiding programmers in testing their 

programs. A nrogram could be written to find a 

covering set  of paths through a program or set of 

programs using graph theoretic techniques, for ex-

amnle. n. Develop a methodology for recovery 

systems. The approach to developing the combina-

tion of software and hardware to permit a svsten to 

continue performing its intended functions in the 

face of errors or faults has been and is heuristic. 

As a consequence, there is a lack of understandincr, 

from a recovery viewpoint, of the interactions 

between components, subsystems, and the tradeoffs 

available between complexity, recoverabilitv, and 

reliability. A methodology is required to allow 

the 	necessary 	understanding to ontimise such 

systems relative to selected  design  narameters. 
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ATTACHEMENT A  

Assume that the k
th 

machines function can be performed by 

either the (k + 1)
th 

as the (k - 1)
th 

machine provided that  the data 

link connecting the k
th 

machine to the takeovet machine is also 

functioning. Also define a system failure as a complete loss of the • 

function of the k
th 

machine. 	 - 

For a system of this nature it is only necessary to determine 

the probability of failure of a group of three contiguous machines 

and a triad. 

FIGURE A.1  

Let the probability of failure of.machine k be p A , and 

the probability of failureof a data link be-p 0  

Then the probability pk of loss of function k.is the sum of the checked 

states. Since function k is lOst it follows that only those states with 

k = 1 (meaning failure of the k
th 

machine) need be considered. 

Then 

2 
pk = 	21-) (1-p)  p(1-p) 

2p 2 (1...p ) pt2 

• + 2p. 3p, (1-pf ) 
A 
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+ p 3 (1-p ) 2  
3 2 

• PA P'9,  
2 2 ~ Pà  ( 1--P  à 	2, 

= pk = p Ep-(1-p )I2p. + p(1-p))  +  p 2 ]  

The probability of failure, pk, of the k
th 

function is not 

affected by any links or machines beyond the complex comprised of the 

st  (k-1) , lcth  , and (k+l) st 
machine and the (k-1)

st 
 and k

th 
data link. This 

can be demonstrated by including the (k+1) st data link and the (k-2), 

data link as follows: 

All failure states for the complex shown in Figure 2 exist 

as 'Lhe only failure states for this complex even when the (k.+ 1) st  and 

. 
(k•-• 

nd
data link are added regardless if the states of these links. Since 

ni 
the (k+2)

nd  
and (k-2) machines cannot by definition of the system 

take over the function of the k
th 

machine. So the don't care condition 

is then pk' 

pic"  = pk(p 
2
) + 2pk (1-13)1)2,  + pk.(1-pL )

2 

= pk(pe,. + 2p£  - . 2p£  + 1-2p£  + p£
2
) 

= pk. 

This can be extended link by link and machine by machine. 

The probability, ps, that the complex in Figure A.1 will 	- 

fail to perform its,  funCtion is_ps = 3pk since the complex fails 

if any combination of the function k,k-1 or k + 1 cannot be performed. 

Similarly if there are m machines in the system (Figure 8.1c) the failure 

probability ps  = 
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pL){2p£ -F pA(1-E ) 1 + pt2 ]  
PL L + 3(1 - p1 ).1 

3PA[PA( 1-  
ps 	PA: 

Now what of the system comprised of m machines where the 

k
th 

function can be performed only by the k
th 

machine? Then the 

th 
probability of failure of the k function is pk = pà  and the 

probability of failure of a complex of 3 adjacent machines (no data 

lines) is 

ps = 
3 
+ 3pA(1 - pA)

2 
pA 

 

.3 	2 
PA 	310à 	6PA 

PA
3 	2 

- 3PA  1- 3PA = 

Pp(PA 2 	3 ( 1-PA.))  

+ 3pA
2
(1-pA ) 

3 	2 	3 
3PA 	3PA 	3PA 

2 

	

PA (PA -3PA 	3) 

Now for the reliability of the system of Figure A.1 to be 

greater than that of the above system 

DS 
< 1 

13 .0 

The quadratic in pz  must be solved to meet inequality. If 

one remembers that values for p z  or pr 1 are the only admissible ones , . 

then the solution shows inequality satisfied for p k < 1. 
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