Génie Electrical Electrique Engineering

FINAL REPORT

D.O.C. Contract Serial Nr. OSU77-00181
D.S.S. File Nr. 07SU 36100-7-9514

ANALYTICAL AND EXPERIMENTAL STUDY
OF SELECTED PASSIVE MICROWAVE
COMPONENTS IN PLANAR/FIN LINE GUIDE
By
Wolfgang J.R. Hoefer
March 1979

UNIVERSITÉ D'OTTAWA UNIVERSITY OF OTTAWA

FINAL REPORT

D.O.C. Contract Serial Nr. OSU77-00181
D.S.S. File Nr. 07SU 36l00-7-9514

ANALYTICAL AND EXPERIMENTAL STUDY OF SELECTED PASSIVE MICROWAVE COMPONENTS IN PLANAR/FIN LINE GUIDE

By

Wolfgang J.R. Hoefer

March 1979

Final Report to
Mr. Michel Cuhaci
Communications Research Centre
Shirley's Bay
Ottawa, Ontario Canada

Industry Canada Library - Queen
aug 142012
Industrie Canada Bibliothèque - Queen

The work described in the present final report was sponsored by the Department of Communications, Communications Research Centre, Ottawa, under Contract Serial Number OSU77-00181, D.S.S. File Number 07SU 36100-7-9514.

The work was carried out in the Department of Electrical Engineering, University of Ottawa.

The author thanks Mr. Michel Cuhaci, the Scientific Authority for this work, and Mr. Rene Douville for their friendly collaboration. The Help of Mr V. Mimis, Mr. S. Kosmopoulos, Mr. Y.-C. Shih and Mr. B. Carraro is gratefully acknowledged.
PageDETERMINATION OF GUIDED WAVELENGTH ANDCHARACTERISTIC IMPEDANCE OF FIN IINES
3.1 Guided Wavelength in Ridged Waveguide 5

- Ridge of Zero Thickness 5
- Ridge of Finite Thickness 11
3.2 Characteristic Impedance of Ridged Waveguide 13
3.3 Guided Wavelength in Fin Lines 21
3.3.1 Unilateral Fin Line 21
3.3.2 Insulated Fin Line 24
3.3.3 Bilateral Fin Line 25
3.3.4 Evaluation of the Correction Factors F 27 and G
3.4 Characteristic Impedance of Fin Lines 29
ATTENUATION IN FIN LINES 33
CONCLUSION 33
REFERENCES 35
CONTENT OF APPENDICES
APPENDIX 1 RIDGED WAVEGUIDE A-1
Methods and Programs (HP 67/97) to determine the Guided Wavelength and the Characteristic Impedance in Ridged Waveguides
A.I. 1 Graphical Method A-2

CONTENT OF APPENDICES (cont'd)

Page
A.1.2 Programs for HP 67/97 Calculator A-5
A.l.2.l. Rectangular Waveguide with Centered A-5 Fin of Zero Thickness (Susceptance Value $\left[B / Y_{0}\right] / v x$ taken from the Waveguide Handbook
A.1.2.2 Rectangular Waveguide with Centered A-12 Ridge of Finite Thickness s (cal- culates guided wavelength and charac- teristic impedance
APPENDIX 2 FIN LINES A-20
Fortran IV Programs to determine the Guided Wave- length and the characteristic Impedance of Uni- lateral, Bilateral and Insulated Fin Lines
A.2.l. Unilateral Fin Line A-21
A.2.2. Insulated Fin Line A-26
A.2.3. Bilateral Fin Line A-29
APPENDIX 3 "FIN LINE DESIGN MADE EASY" A-32
APPENDIX 4 "FIN LINE PARAMETERS CALCULATED WITH A-36 THE TLM-METHOD

1) INTRODUCTION

Fin line is an attractive transmission medium at millimeter wavelengths for its ease of fabrication and its compatibility with semiconductor devices. Its wide bandwidth, low dispersion and moderate attenuation (when compared with microstrip in that frequency range) would make it a favorite candidate for many designers, were it not for the cumbersome design procedures available to date.

Treatment of the fin line as a ridged waveguide of identical dimensions yields only poor accuracy, 15% at best for the effective permittivity and characteristic impedance.

Meier's [9] expressions for these parameters are certainly adequate for most applications, particularly at frequencies well above cutoff of the fundamental TE_{01}-mode, but unfortunately, the determination of the effective dielectric constant of the line requires a sample measurement, which is expensive and time consuming.

On the other hand, the exact solution of Maxwell's equations in fin line, as presented by Hofmann [2], tends to dissuade many designers by its involved mathematics, even though it is the ultimate approach.

The objective of the present study is to present an easier but nevertheless accurate method to theoretically predict the guided wavelength and characteristic impedance in fin lines.

To this end, the transverse resonance condition in a fin line resonator is solved using either a graphical method (very cheap but quite accurate) or a computer routine, either on a programmable pocket calculator or on a large computer. The equation for the transverse resonance condition contains an expression for the discontinuity susceptance of the fins and the substrate. It is this susceptance that will be presented in mathematically closed form, following the style of Marcuvitz![6] Waveguide Handbook. This approach is familiar to all microwave circuit designers and combines the advantages of easy mathematical formalism and the accuracy of the exact solution from which it has been derived.

The exact solution presented in the present report is based on Cohn's [7] treatment of the unshielded slot line. Taking into account the transverse impedance of the fin line enclosure acting as a rectangular short-circuited waveguide below cutoff, the susceptance of the combined substrate-fin discontinuity is derived from Cohn's expressions which have already been conceived for fast convergence on a computer.

In conclusion, the fin line designer will benefit from the present approach because he will
a. save time by using the computer programs presented in this report
b. apply the results of an exact solution without having to solve the boundary value problem himself, and
c. have at his disposal a flexible method to evaluate geometries of arbitrary dimensions. He can therefore deviate from published data for very special geometries.

2) BASIC PROPERTIES OF FIN LINES

In a fin line structure, metal fins are printed on a dielectric substrate which bridges the broad side of a.rectangular waveguide. Several different arrangements are possible, such as the examples shown in figure 2.1 .

a)
c)

b)

a)

Figure 2.1 Cross-section of several fin lines
a) Bilateral or earthed fins; b) Unilateral fins
c) Central or insulated fins; d) Antipodal fins

In all cases, the thickness of the metal fins is negligeably small compared with the thickness of the dielectric substrate. The metal walls of the guide have a thickness of $\lambda_{s} / 4$, where λ_{s} is the wavelength in the substrate, so that a RF short-circuit appears in the plane of the inner broad walls.

Even though the fin line is basically a loaded waveguide, its propagation properties are essentially determined by the relative fin spacing d / b and, to a lesser extent, by the dielectric constant of the substrate. Thus, the transmission line properties depend on the central planar structure rather than on the size of the metal enclosure.

An alternate way of describing a fin line is to call it a slotline (as analyzed by Cohn[1]), which has been placed into a rectangular waveguide.

A first understanding of the effect of the fins on the propagation in the guide can be gained by considering the fins and the dielectric as a capacitive loading which lowers the cut off frequency of the fundamental $\mathrm{TE}_{10} \overline{0}$ mode and reduces its guided wavelength. The same applies to the higher $\mathrm{TE}_{\mathrm{m}} 0^{-}$ modes with odd m, while all modes with even m are only slightly affected. This explains the larger bandwidth of the fundamental fin line mode, when compared with the $T E_{10}$ mode in rectangular waveguide.

By the same consideration, it can be seen that with decreasing d / b-ratio, the characteristic impedance of the fin line decreases. Characteristic impedances ranging from about
400Ω to 100Ω can be achieved with all types shown in figure 2.1. The antipodal line however can provide even lower impedances (down to 10Ω) by overlapping of the fins $(\mathrm{d} / \mathrm{b}:<0)$ [2].

If active devices are to be added to the fin line, at least one of the fins must be insulated from the ground at dc to permit the application of bias, without disrupting the RF grounding of the fins. This can be done by inserting thin dielectric gaskets between the fins and the waveguide walls.

Figure 2.2 shows how the properties of fin line can be changed in longitudinal direction by varying the $d / b-r a t i o$, and how semiconductor devices can be added in series and in parallel.

Series mounted element

Fig. 2.2 Longitudinal view of fin line with impedance steps and mounted active elements.

In the following, expressions for the electromagnetic parameters of fin lines are derived. These parameters depend on the cross-sectional geometzy and on the substrate permittivity.
3) DETERMINATION OF GUIDED WAVELENGTH AND CHARACTERISTIC IMPEDANCE OF FIN LINES
3.1) Guided Wavelength in Ridged Waveguide

A first glance at fin line geometries shows their similarities with ridged waveguide. In fact, if the permittivity of the substrate is low and the thickness of the substrate is small compared with the dimensions of the waveguide, the formalism for ridged waveguide may be applied to the fin line. Considerable design information for ridged waveguide is available in the literature [3][4][5][6], and detailed derivations for such structures will therefore not be given here. However, with the advent of small programmable calculators, it is easy to calculate the parameters of ridged waveguides of arbitrary geometry. The designer has thus more freedom in the choice of dimensions and can deviate from tabulated and charted data. For this reason, the method for evaluating the parameters of ridged waveguide will be outlined briefly.

As an example, the geometry shown in figure $2 . l c$ will be chosen. When the influence of the dielectric is neglected, a waveguide with a central ridge of zero thickness results (see figure 3.1a)

If a wave travels in longitudinal direction, its guided wavelength being λ_{g}, the transverse electric field of the lowest
mode will be zero at both sidewalls as well as in transverse planes at distances $\lambda_{g} / 2$ from each other. If electric walls are inserted in two such transverse planes, a standing wave is created and resonance occurs.

For further analysis, the resonator is now considered to be a rectangular waveguide of height b and width $\lambda_{g} / 2$, containing

Fig. 3.la Waveguide with central ridge of zero thickness

Fig. 3.1b Equivalent transverse resonant network of above waveguide
a transverse capacitive iris and being short-circuited at $-a / 2$ and $+a / 2$ from this discontinuity.

The transverse resonant condition is thus:

$$
\begin{equation*}
\frac{1}{2} \frac{B}{Y_{0}}-\cot \frac{\pi a}{\lambda_{t}}=0 \tag{3.1}
\end{equation*}
$$

where λ_{t} is the transverse guided wavelength:

$$
\begin{equation*}
\lambda_{t}=\lambda\left[1-\left(\frac{\lambda}{\lambda_{g}}\right)^{2}\right]^{-\frac{1}{2}} \tag{3.2}
\end{equation*}
$$

λ is the free-space wavelength. The normalized discontinuity susceptance B / Y_{O} is given in the Waveguide Handbook [6], section 5.1, as:

$$
\begin{align*}
\frac{B}{\bar{Y}_{O}} & =\frac{4 b}{\lambda_{t}}\left[\ln \left(\csc \frac{\pi d}{2 b}\right)+\frac{Q \cos ^{4} \frac{\pi d}{2 b}}{1+Q \sin \frac{4 d}{2 b}}+\right. \\
& \left.+\frac{1}{16}\left(\frac{b}{\lambda_{t}}\right)^{2}\left(1-3 \sin ^{2} \frac{\pi a}{2 b}\right)^{2} \cos ^{4} \frac{\pi d}{2 b}\right] \tag{3.3}
\end{align*}
$$

with $Q=\left[1-\left(\frac{b}{\lambda_{t}}\right)^{2}\right]^{-\frac{1}{2}}-1$
For small values of d / b, and for d / b close to unity, somewhat simpler expressions for B / Y_{o} can be found in [6]. By fixing the b / a - ratio and choosing an arbitrary value for $\lambda / \lambda \mathrm{g}$, the corresponding b / λ is found as the root of eqn. (3.1). This root is obtained either graphically or perusing a standard routine readily available for programmable minicalculators.

The root of eqn. (3.1) can be found with considerably less computational effort if direct use is made of the graphical presentation of the transverse discontinuity susceptance in the Waveguide Handbook [6] (see Fig. 5.l-4 of this reference.) For this purpose, the transverse resonance condition in eqn. (3.1) is rewritten as follows:

$$
\begin{equation*}
\frac{1}{2}\left[\frac{B}{Y_{0}} \cdot \frac{\lambda_{t}}{b}\right] \frac{b}{\lambda_{t}}-\cot \pi \frac{a}{b} \frac{b}{\lambda_{t}}=0 \tag{3.5}
\end{equation*}
$$

where λ_{t} is the transverse guided wavelength. The term in square brackets is the $\left[\frac{B}{\bar{Y}} \frac{\lambda_{0}}{b}\right]$ presented in the Waveguide Handbook [6], Fig. 5.1-4, provided λ_{g} therein is replaced by λ_{t} of this report. Close inspection of Fig. 5.1-4 in [6] shows that the normalized susceptance is rather insensitive to changes in b / λ_{t} as long as $\mathrm{b} / \lambda_{\mathrm{t}}$ is smaller than 0.4 , which is practically always the case. Thus, a very good approximation for b / λ_{t} can be found by introducing into eqn. (3.5) the value of $\left[\left(B / Y_{o}\right) /\left(\lambda_{t} / b\right)\right]$ for $b / \lambda_{t}=0$. The root obtained with this value is accurate within a few percent.

If a better approximation is desired, an improved value for $\left[\left(B / Y_{o}\right) /\left(\lambda_{t} / b\right)\right]$ corresponding to the just calculated b / λ_{t} is introduced into eqn. (3.5). The guided wavelength λ_{g} in the ridged waveguide is then found by writing

$$
\begin{equation*}
\lambda_{g}=\lambda\left[1-\left(\lambda / \lambda_{t}\right)^{2}\right]^{-1 / 2} \tag{3.6}
\end{equation*}
$$

where λ is the free space wavelength.

For the purpose of designing a waveguide, it is more desirable to write the transverse resonance condition (3.5) directly in terms of the free space wavelength λ as well as the guided wavelength in longitudinal direction, λ_{g}. This is done by writing

$$
\begin{equation*}
\lambda_{t}=\lambda\left[1-\left(\lambda / \lambda_{g}\right)^{2}\right]^{-1 / 2} \tag{3.7}
\end{equation*}
$$

and introducing λ_{t} into eqn. (3.5). We use the following convenient abbreviations

$$
\begin{aligned}
& \lambda / \lambda_{g}=p ; \quad b / \lambda=x \\
& {\left[I-\left(\lambda / \lambda_{g}\right)^{2}\right]^{1 / 2}=\left(1-p^{2}\right)^{1 / 2}=v \quad ; \quad b / a=z ; d / b=t}
\end{aligned}
$$

and obtain:

$$
\begin{equation*}
\frac{1}{2}\left[\frac{B}{Y_{0}} \cdot \frac{1}{v x}\right] v x-\cot (\pi v x / z)=0 \tag{3.8}
\end{equation*}
$$

The normalized susceptance of the transverse discontinuity (eqn. (3.3)) becomes with the same abbreviations:

$$
\begin{align*}
& \frac{B}{\bar{Y}_{0}} \cdot \frac{1}{v x}=4\left[\ln (\csc \pi t / 2)+\frac{Q \cos ^{4} \pi t / 2}{1+Q \sin ^{4} \pi t / 2}+\right. \\
& \left.+\frac{1}{16}(v x)^{2}\left(1-3 \sin ^{2} \pi t / 2\right)^{2} \cos ^{4} \pi t / 2\right] \tag{3.9}
\end{align*}
$$

1

0
0

Fig. 3.2 Guided wavelength in ridged waveguide with centered ridge of zero thickness (thin fin) $b / a=0.5$
with

$$
\begin{equation*}
Q=\left[1-(v x)^{2}\right]^{-1 / 2}-1 \tag{3.10}
\end{equation*}
$$

Eqn. (3.8) can be programmed in such a way that the value for any variable will be found if all others are given. (Program for calculating the roots of a function).

The value for the discontinuity susceptance may be taken from Fig. 5.l-4 of the Waveguide Handbook [6] or included explicitly in the program using eqn. (3.9).

Several such programs are given in Appendix 1. Typical results are presented in a diagram with $x=b / \lambda$ as abscissa and $p=\lambda / \lambda_{g}$ as ordinate, which has the advantage of being normalized (Fig. 3.2). Another way of presenting results would be to show $\varepsilon_{\text {eff }}=\left(\lambda / \lambda_{g}\right)^{2}$ as a function of frequency or angular frequency with t as parameter, or alternatively ω as a function of $\beta=2 \pi / \lambda$ or even $\varepsilon_{\text {eff }}$ versus t with the frequency as a parameter. The choice finally depends on the characteristics of interest and on the habits of the designer.

In the case of bilateral or earthed fins (see Fig. 2.la) the ridged waveguide approximation presents a finite ridge width s as shown in Fig. 3.3. In the equivalent transverse network of this structure, the thick capacitive obstacle must be represented by the network shown in section 5.9 of the Waveguide Handbook [6].

For transverse resonance to occur, the following condition must be satisfied: (TE ${ }_{n o}$-modes with odd $n(n=1,3,5,7 \ldots$)

Fig. 3.3 Cross-section and equivalent transverse network of double ridged waveguide

$$
\begin{equation*}
\frac{1}{t} \tan \pi v x w+\left[\frac{B_{0}}{Y_{0}} \cdot \frac{1}{v x}\right] v x-\cot \pi v x\left(\frac{1}{z}-w\right)=0 \tag{3.11}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{v}=\left[1-\mathrm{p}^{2}\right]^{1 / 2} ; \mathrm{p}=\lambda / \lambda_{\mathrm{g}} ; \mathrm{x}=\mathrm{b} / \lambda ; \\
& \mathrm{z}=\mathrm{b} / \mathrm{a} \quad ; \mathrm{w}=\mathrm{s} / \mathrm{b} ; \mathrm{t}=\mathrm{d} / \mathrm{b} ; \\
& \lambda_{\mathrm{g}}=\text { is the guided wavelength in longitudinal direction } \\
& \lambda=\text { is the free space wavelength }
\end{aligned}
$$

In this expression:

$$
\begin{equation*}
\frac{B_{o}}{Y_{o}} \cdot \frac{1}{v x}=\frac{1}{2}\left[\frac{B}{Y_{o}} \frac{1}{V x}\right] \tag{3.12}
\end{equation*}
$$

where $\frac{B}{\bar{Y}_{O}} \frac{1}{V}$ is given by eqn. (3.9) within a few percent.
The transverse resonant condition (3.11) can be evaluated in the same manner as eqn. (3.8). Appropriate computer programs are given in Appendix A-2. For $s=0$, the solutions are those for fins of zero thickness.

Results can be plotted in the same way as in Fig. 3.2 with the additional parameter s to be specified.
3.2. Characteristic Impedance of Ridged Waveguide

The characteristic impedance of any $T E-m o d e$ in a uniform waveguide of arbitrary cross-section is given by

$$
\begin{equation*}
Z_{T E}=\sqrt{\frac{\mu}{\varepsilon}} \quad \frac{\lambda g}{\lambda}=\sqrt{\frac{\mu}{\varepsilon}} \frac{1}{p} \tag{3.13}
\end{equation*}
$$

If the waveguide is air-filled, this impedance becomes

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{TE}}=[120 \pi / \mathrm{p}] \text { Ohms } \tag{3.14}
\end{equation*}
$$

where p can be evaluated using the methods described above.

In impedance matching problems, however, a characteristic impedance based on the voltage-to-current ratio is employed. In the formulation of this ratio, the transmission line current is separated into two components:
a) A longitudinal component on the top and bottom plates of the waveguide, which excites the principal fields.
b) A longitudinal component on the step wall which excites the local fields.

In order to evaluate these currents, let us consider the cross-section of a ridged waveguide as shown in Fig. 3.4

Fig. 3.4 Cross-section of double ridged waveguide with equivalent transverse network showing the voltage distribution

At the steps situated $\pm d / 2$ from the centre of the cross-section, the voltage must be continuous across the equivalent step discontinuity capacitance. As a next step, the normal electric field E_{n} along the top wall of the ridged guide is evaluated. The longituđinal linear current density J is then directly related to the normal electric field by the field impedance $Z_{T E}$:

$$
\begin{equation*}
J=\frac{E_{n}}{Z_{T E}} \tag{3.15}
\end{equation*}
$$

Finally, the total longitudinal top wall current I_{ℓ} is obtained by integrating

$$
\begin{equation*}
I_{\ell}=\int_{-a / 2}^{+a / 2} J d \ell=2 \int_{0}^{a / 2} E_{\mathrm{n}} / Z_{\mathrm{TE}} \mathrm{~d} \ell \tag{3.16}
\end{equation*}
$$

The characteristic impedance based on the Voltage-to-Current ratio is then

$$
\begin{equation*}
Z_{o}=\frac{V_{0}}{I_{\ell}} \tag{3.17}
\end{equation*}
$$

a) Evaluation of the longitudinal current in the central part of the cross-section

In the TE_{10}-mode, the voltage decreases cosinusoidally outwards from the centre:

$$
\begin{equation*}
v(\ell)=V_{0} \cos \frac{2 \pi}{\lambda_{t}} \cdot \ell \tag{3.18}
\end{equation*}
$$

The voltage V_{1} at the step is thus

$$
\begin{equation*}
v_{1}=v_{0} \cos \frac{\pi}{\lambda_{t}} \cdot s \tag{3.19}
\end{equation*}
$$

The longit. current density at the top wall is, according to eqn. (3.15)

$$
\begin{equation*}
J(\ell)=\frac{1}{d} \frac{\mathrm{~V}_{\mathrm{o}}}{z_{\mathrm{TE}}} \cos \frac{2 \pi}{\lambda_{\mathrm{t}}} \ell \tag{3.20}
\end{equation*}
$$

and the longitudinal current in the central part becomes

$$
\begin{align*}
I_{\ell l} & =\frac{2}{d} \int_{\ell=0}^{s / 2} \frac{V_{0}}{Z_{T E}} \cos \frac{2 \pi}{\lambda_{t}} \ell d \ell \\
& =\frac{1}{\pi} \frac{V_{0}}{Z_{T E}} \cdot \frac{\lambda_{t}}{d} \sin \frac{\pi s}{\lambda_{t}} \tag{3.21}
\end{align*}
$$

b) Evaluation of the longitudinal current in the
lateral parts of the cross-section.
In the lateral parts of the cross-section; the $T E 0^{-}$ voltage decreases in a cosinusoidal fashion, with a node situated at $\pm a / 2$. If l^{\prime} is the variable distance inward from the sidewalls, then the voltage varies in the transverse
direction as

$$
\begin{equation*}
V\left(\ell^{\prime}\right)=V_{0} \frac{\cos \frac{\pi s}{\lambda_{t}}}{\sin \frac{\pi(a-s)}{\lambda_{t}}} \sin \frac{2 \pi}{\lambda_{t}} \ell^{\prime} \tag{3.22}
\end{equation*}
$$

The longitudinal current density in the top wall becomes thus

$$
\begin{equation*}
J\left(\ell^{\prime}\right)=\frac{1}{b} \frac{V_{0}}{Z_{T E}} \frac{\cos \frac{\pi s}{\lambda_{t}}}{\sin \frac{\pi(a-s)}{\lambda_{t}}} \sin \frac{2 \pi}{\lambda_{t}} \ell^{\prime} \tag{3.23}
\end{equation*}
$$

The total longitudinal current in the lateral parts becomes:

$$
\begin{align*}
& I_{\ell}=2 \frac{a-s}{\rho^{2}} \frac{1}{b} \frac{V_{0}}{Z_{T E}} \cdot \frac{\cos \frac{\pi s}{\lambda_{t}}}{\sin \frac{\pi(a-s)}{\lambda_{t}}} \sin \frac{2 \pi}{\lambda_{t}} \ell^{\prime} d \ell^{\prime} \\
& =-\frac{2}{b} \frac{V_{0}}{Z_{T E}} \frac{\cos \pi s / \lambda_{t}}{\sin \frac{\pi(a-s)}{\lambda_{t}}} \cdot \frac{\lambda_{t}}{2 \pi} \cos \frac{2 \pi}{\lambda_{t}} \ell^{\prime} \\
& =\frac{1}{\pi} \frac{V_{0}}{Z_{T E}} \frac{\lambda_{t}}{b} \frac{\cos \pi s / \lambda_{t}}{\sin \frac{\pi(a-s)}{\lambda_{t}}}\left[1-\cos \frac{\pi(a-s)}{\lambda_{t}}\right] \tag{3.24}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{1-\cos \alpha}{\sin \alpha}=\tan \frac{\alpha}{2} \tag{3.25}
\end{equation*}
$$

we can write eqn. (3.24) as follows:

$$
\begin{equation*}
I_{\ell_{2}}=\frac{1}{\pi} \frac{V_{O}}{Z_{T E}} \frac{\lambda_{t}}{b} \cos \left(\pi s / \lambda_{t}\right) \tan \left[\pi(a-s) / 2 \lambda_{t}\right] \tag{3.26}
\end{equation*}
$$

c) Evaluation of the longitudinal current in the discontinuity region.

Assuming that the discontinuity region can be represented by a shunt capacitance C_{s} /unit length subject to the voltage $V_{1}=V_{0} \cos \pi s / \lambda_{t}$, we can imagine it as a parallel plate capacitor of plate distance h and width ℓ in the transverse direction

$$
\begin{equation*}
c_{s}=\varepsilon_{0}^{l / h} \tag{3.27}
\end{equation*}
$$

The electric field strength in the capacitor is then

$$
\begin{equation*}
E_{c}=V_{1} / h=\left(V_{0} / h\right) \cos \pi s / \lambda_{t} \tag{3.28}
\end{equation*}
$$

and the current in the top plate:

$$
\begin{equation*}
I_{t}=E_{c} \cdot l / Z_{\mathrm{TE}}=\frac{\mathrm{V}_{\mathrm{o}} \ell}{h Z_{\mathrm{TE}}} \cos \pi s / \lambda_{t} \tag{3.29}
\end{equation*}
$$

Replacing ℓ / h by C_{s} / ε_{o} we obtain for I_{t}

$$
\begin{equation*}
I_{t}=\frac{V_{0}}{Z_{T E}} \frac{C_{s}}{\varepsilon_{0}} \cos \pi s / \lambda_{t} \tag{3.30}
\end{equation*}
$$

The total discontinuity current, taking into account both halves of the cross-section, is then

$$
\begin{equation*}
I_{\ell_{3}}=\frac{2}{\varepsilon_{o}} \frac{V_{0}}{Z_{T E}} \frac{1}{\omega} \frac{\omega C_{S}}{Y_{o t}} \cdot Y_{o t} \cos \pi s / \lambda_{t} \tag{3.31}
\end{equation*}
$$

where $Y_{o t}=\frac{\eta}{\bar{b}} \quad ; \dot{\eta}=\frac{\varepsilon_{0}}{\mu_{o}}$
after some further modification, this current becomes, for a finite real λ_{g} in longitudinal direction:

$$
\begin{equation*}
I_{\ell_{3}}=\frac{1}{\pi} \frac{V_{o}}{Z_{T E}} \frac{\lambda_{t}}{b}\left(\frac{B_{o}}{\bar{Y}_{0}}\right) \cos \pi s / \lambda_{t} \tag{3.32}
\end{equation*}
$$

The characteristic impedance, as defined in eqn. (3.17), is then for the ridged waveguide:

$$
\begin{equation*}
\left.z_{0}=z_{T E} \pi \frac{b}{\lambda_{t}} /\left\{\frac{b}{d} \sin \pi s / \lambda_{t}+\left[\frac{B_{o}}{\bar{Y}_{0}}\right)+\tan \frac{\pi(a-s)}{2 \lambda_{t}}\right] \cos \pi s / \lambda_{t}\right\} \tag{3.33}
\end{equation*}
$$

If we introduce the abbreviations already used in the evaluation of the guided wavelength; i.e.

$$
\begin{aligned}
& \mathrm{b} / \lambda_{\mathrm{t}}=\mathrm{vx} ; \mathrm{v}=\left(1-\mathrm{p}^{2}\right)^{1 / 2} ; \mathrm{p}=\lambda_{\mathrm{g}} ; \mathrm{x}=\mathrm{b} / \lambda \\
& \mathrm{b} / \mathrm{a}=\mathrm{z} ; \mathrm{d} / \mathrm{b}=\mathrm{t} \quad ; \mathrm{s} / \mathrm{b}=\mathrm{w}
\end{aligned}
$$

this expression for the impedance becomes:

$$
\begin{equation*}
z_{0}=\frac{\frac{120 \pi}{\mathrm{P}} \pi v x}{\frac{1}{t} \sin \pi w v x+\left[\left(\frac{B_{0}}{Y_{0}} \frac{1}{v x}\right) v x+\tan \frac{\pi v x}{2}\left(\frac{1}{z}-w\right)\right] \cos \pi w v x} \tag{3.34}
\end{equation*}
$$

This expression can be evaluated if the transverse resonance condition (3.11) has been solved. Fig. 3.5 shows the characteristic impedance of ridged waveguide for several values of w and t with $z=0.5$. The results were calculated using the program described in Appendix A 1.1.2. ($\left.\mathrm{B}_{\mathrm{O}} / \mathrm{Y}_{0}\right) / \mathrm{vx}$ is the same as in eqn. (3.12).

Fig.3.5 Characteristic impedance and guided wavelength in ridged waveguide

3.3 Guided Wavelength in Fin Lines

Fin lines can be treated in the same way as ridged waveguides with the additional complication that the presence of a dielectric sheet at the transverse discontinuity modifies its parameters.

In the present chapter, it is shown how the dielectric sheet changes the shunt susceptance of the fins.

3.3.1 Unilateral Fin Line

Let us study the unilateral fin line structure shown in Figure 2.1 b. Considering that this structure is a rectangular waveguide with a centered ridge of zero thickness to which a dielectric sheet of permittivity $\dot{\varepsilon}_{r}$ has been added, we can say that the susceptance of the covered half of the discontinuity is increased by a correction factor somewhere between I and ε_{r}, depending on the thickness s of the sheet.

It is convenient to normalize this correction factor in order to make it independent of the dielectric constant, and it becomes:
$F=\frac{\text { Slot susceptance for finite sheet thickness }}{\text { Slot susceptance for infinite sheet thickness }}$
An expression for F is derived in detail in section 3.3.4. We can now draw the transverse equivalent network shown in Figure 3.6.

Fig. 3.6 Equivalent transverse network of unilateral fin line.

The transverse resonance condition in this circuit is found by setting the total susceptance in the plane of the fins equal to zero. The lowest root of this expression describes the guided wavelength of the fundamental mode in the fin line. Again, the following abbreviations will be used:

$$
\begin{aligned}
& \mathrm{d} / \mathrm{b}=\mathrm{t} ; \mathrm{s} / \mathrm{b}=\mathrm{w} ; \mathrm{b} / \mathrm{a}=\mathrm{z} ; \lambda / \lambda_{\mathrm{g}}=\mathrm{p} \\
& \mathrm{~b} / \lambda=\mathrm{x} ; \quad\left[\varepsilon_{\mathrm{r}}-\mathrm{p}^{2}\right]^{1 / 2}=\mathrm{u} ;\left[1 \sim \mathrm{p}^{2}\right]^{1 / 2}=\mathrm{v} \\
& \lambda_{\mathrm{to}}=\mathrm{x} / \mathrm{v} ; \lambda_{\mathrm{tl}}=\mathrm{x} / \mathrm{u} ; \mathrm{b} / \lambda_{\mathrm{to}}=\mathrm{vx} \\
& \mathrm{~b} / \lambda_{\mathrm{t} 1}=\mathrm{ux}
\end{aligned}
$$

where

$$
\begin{aligned}
& \lambda=\text { free-space wavelength } \\
& \lambda_{g}=\text { guided wavelength in the fin line } \\
& \lambda_{t o}=\text { transverse guided wavelength in air section } \\
& \lambda_{t l}=\text { transverse guided wavelength in dielectric } \\
& \text { filled section of the fin line. }
\end{aligned}
$$

The transverse resonance condition is then for the unilateral fin line:
$-(u / v) \cot \left\{2 \pi w u x+\tan ^{-1}\left[(u / v) \tan 2 \pi v x\left(\frac{l}{2 z}-w\right)\right]\right\}$

$$
\begin{equation*}
+F\left[\frac{B_{1}}{\mathrm{Y}_{1}} \frac{I}{u x}\right]\left(\frac{u}{v}\right)^{2} v x+\left[\frac{B_{0}}{Y_{0}} \frac{1}{v \cdot x}\right] v x-\cot \frac{\pi v x}{z}=0 \tag{3.35}
\end{equation*}
$$

for $p<1$.
In this expression, the term (B_{0} / Y_{0})/vx is one half the value of (B / Y_{O})/vx given by eqn. (3.9) . ($\left.B_{1} / Y_{1}\right) / u x$ is the slot susceptance for infinite s and is one half the value of (B / Y_{O})/vx provided that $v x$ therein is replaced by ux.

It should be noted that due to the presence of the dielectric sheet, the guided wavelength λ_{g} in the fin line can become shorter than the free space wavelength. λ. This leads to imaginary values for v, signifying that the airfilled part of the fin line is below cutoff. For the evaluation of the root, it is convenient to define v as follows:

$$
\begin{equation*}
v=\left|1-\dot{p}^{2}\right|^{1 / 2} \tag{3.36}
\end{equation*}
$$

and to replace, for $p>1$, the term v by -jv in eqn. (3.35) and also in the expression for $\left(B / Y_{0}\right) / v x$. This results in the following resonance condition:

$$
\begin{align*}
-(u / v) & \cot \left\{2 \pi w u x+\tan ^{-1}\left[(u / v) \tanh 2 \pi v x\left(\frac{1}{2 z}-w\right)\right]\right\} \\
+ & F\left[\frac{B_{1}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v x-\left[\frac{B_{0}}{Y_{0}} \frac{1}{v x}\right] v x-\operatorname{coth} \frac{\pi v x}{z}=0 \tag{3.37}
\end{align*}
$$

for $p>1$ and $v=\left|1-p^{2}\right|^{1 / 2}$

3.3.2 Insulated Fin Line

The insulated fin line structure is symmetrical about the fins, as can be seen from Fig. 2.lc. Only one half of the transverse equivalent circuit (Fig. 3.7) needs therefore to be considered.

Fig. 3.7 Transverse equivalent circuit of insulated fin line. A magnetic wall is inserted in the plane of the fins.

The situation resembles that of the left hand side of uni lateral fin line. The transverse resonant condition states that the total admittance at the plane of the magnetic wall must be zero:

$$
\begin{align*}
-(u / v) \cot \{\pi w u x & \left.+\tan ^{-1}\left[(u / v) \tan \pi v x\left(\frac{1}{z}-w\right)\right]\right\} \\
& +F\left[\frac{B_{1}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v x=0 \tag{3.38}
\end{align*}
$$

for $p<1$.

All expressions in eqn. (3.38) are the same as those in the resonance condition of the unilateral fin line.

Again, values for v : can become imaginary, and in the above equation, v must be replaced by -jv for $\dot{x}>\lambda_{g}$. we obtain:
$-(u / v) \cot \left\{\pi w u x+\tan ^{-1}\left[(u / v) \tanh \pi v x\left(\frac{1}{z}-w\right)\right]\right\}$

$$
\begin{equation*}
+F\left[\frac{B_{1}}{\mathrm{Y}_{1}} \frac{\mathrm{l}}{\mathrm{ux}}\right]\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{2} \mathrm{vx}=0 \tag{3.39}
\end{equation*}
$$

for $p>1$ and $v=\left|1-p^{2}\right|^{1 / 2}$.
Appendix A. 2 presents a Fortran $\overline{\text { IV }}$ program to evaluate these transverse resonance conditions.

3.3.3 Bilateral Fin Line

In the case of the bilateral fin line, the situation is still symmetrial about a central magnetic wall, but quite different from the two foregoing cases in that the dielectric sheet is now bounded by the fins on one side and by a magnetic wall rather than a section of empty waveguide on the other side. The correction factor for the slot susceptance on the dielectric side is then $G=\frac{\text { Slot Susceptance for finite sheet bounded by a magnetic wall }}{\text { Slot Susceptance for infinite sheet }}$ A diagram for G is given in section 3.3.4. The resulting transverse equivalent circuit is that of Fig. 3.8. Again, only one half of the circuit needs to be considered for symmetry reasons.

Fig. 3.8 Transverse equivalent circuit of bilateral fin line. A magnetic wall is inserted at the centre of the dielectric sheet.

The transverse resonant condition states that the total admittance in the plane of the fins is equal to zero. With our usual abbreviations, this reads:

$$
\begin{align*}
& (u / v) \tan \pi w u x+G\left[\frac{B_{1}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v x \\
& \quad+\left[\begin{array}{ll}
B_{0} & \left.\frac{1}{V}\right] v x-\cot \pi v x\left(\frac{1}{z}-w\right)=0
\end{array}, ~\right. \tag{3.40}
\end{align*}
$$

for $p<0$.
All expressions in the above equation are the same as those in the resonance condition of the unilateral fin line.

For $\lambda>\lambda_{g}, V$ must be replaced by $-j v$ in eqn. (3.40) as well as in the expression for $\left(B_{0} / Y_{0}\right) / v x$. We obtain:

$$
\begin{align*}
(u / v) & \tan \pi w u x+G\left[\frac{B_{1}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v x \\
& -\left[\frac{B_{0}}{Y_{0}} \frac{1}{v x}\right] v x-\operatorname{coth} \pi v x\left(\frac{1}{z}-w\right)=0 \tag{3.41}
\end{align*}
$$

for $p>1$ and $v=\left|1-p^{2}\right|^{1 / 2}$.

Appendix A. 2 presents a Fortran IV program for solving these resonance conditions for bilateral fin line. 3.3.4 Evaluation of the correction factors F and G

In his treatment of the slot line, Cohn [7] has developed expressions for the admittance of a slot backed by a dielectric sheet, which can be used directly in the evaluation of the correction factors F and G. Fig. 3.9 compares the structure characteristic of unilateral fin line with Cohn's model of the slot line. The only difference resides in the a - dimension which is infinite in the case of the slot line.

Fig. 3.9a Cohn's model of a slot line resonator. The guided wavelength is λ_{g}. Rectangular waveguide cut off at frequency of resonance.

Fig. 3.9b Fin line resonator of identical fin structure as Cohns slot line, but rectangular waveguide short-circuited at $+a / z$.

In both cases shown in Fig. 3.9, the transverse susceptance of the dielectric-covered fins is the same, provided that a is large with respect to $b(a \geq 2 b)$. We can thus use the formula given by Conn [7] for calculating the slot line susceptance. By letting w tend towards infinity, the slot susceptance for infinite sheet thickness is obtained. Finally, the correction factor F is just the ratio of the above two susceptances.

To evaluate the factor G used in the case of billteral fin line, the expression for the slot susceptance must be slightly modified to take into account the presence of the magnetic wall at the other side of the dielectric sheet.

A11 these rather cumbersome expressions have been programmed and evaluated on a computer. It turns out that the values for F and G are related in the following way:

$$
\begin{equation*}
F=(v / u)^{2}+G\left[1-(v / u)^{2}\right] \tag{3.41}
\end{equation*}
$$

if $p<1$
If p increases beyond unity, v must be replaced by $-j v$, where $v=\left|1-p^{2}\right|^{1 / 2}$, yielding

$$
\begin{equation*}
F=-(v / u)^{2}+G\left[1+(v / u)^{2}\right] \tag{3.42}
\end{equation*}
$$

if $p>1$

The correction factior G has been computed for several values of t and is presented as a function of the parameter w in Fig. 3.10. This diagram is used in the evaluation of fin line parameters through the solution of the transverse resonance conditions derived above.

3.4 Characteristic Impedance of Fin Lines

Once the guided wavelength in a fin line structure has been calculated, the characteristic impedance, based on a voltage-to-current ratio, can be found by dividing the characteristic impedance of a ridged waveguide of identical dimensions by the variable $p=\lambda / \lambda_{g}$. This method is sufficiently accurate for small values of ε_{r} and narrow dielectric sheets.

Fig. 3.10 Normalized correction factor G vs for the evaluation of fin line parameters, with normalized fin spacing t as parameter.

In the case of unilateral and bilateral fin lines, the impedance chosen is that of a ridged waveguide with centered ridge of zero thickness. (Eqn. 3.34 with $w=0$).

In the case of bilateral fin line, the equivalent ridged waveguide has a ridge of thickness s. (Eqn. 3.34)

In order to evaluate the characteristic impedance of a fin line, the cut-off frequency of the commesurate ridged waveguide must be found first by solving eqn. (3.11) for $p=0$.

We thus obtain the normalized cut-off frequency $v x$ of the ridged waveguide.

This value for $v x$ is then introduced into eqn. (3.34)
to calculate
$Z_{O_{\infty}}=z_{0} p=\frac{120 \pi^{2} v x}{\frac{1}{t} \sin \pi w v x+\left[\left(\frac{B_{0}}{Y_{0}} \frac{1}{v x}\right) v x+\tan \frac{\pi v x}{2}\left(\frac{1}{z}-w\right)\right] \cos \pi w v x}$
Finally, the fin line impedance is

$$
\begin{equation*}
z_{\text {Fin }}=\frac{z_{O_{\infty}}}{p} \tag{3.44}
\end{equation*}
$$

where p is now the value of λ / λ_{g} in the fin line, obtained from the solution of one of the transverse resonance conditions (3.35), (3.36), (3.38), (3.39), (3.40) or (3.41).

Saad and Begemann [7] have published expressions for the attenuation constant of fin lines; based on an approximate solution of the transverse resonance condition. It is considered that these expressions are sufficiently accurate for most applications, and no alternative formulae will be given here. From graphs presented by Saad and Begemann [7] it appears that the attenuation constant in fin lines is typically $0.05-0.1 \mathrm{Nep} / \mathrm{m}$ (0.43-0.87 db/m).

5) CONCLUSION

An original method for the evaluation of fin line parameters has been developed in the present report. This method combines accuracy with ease of application and versatility if use of the computer programs (given in the Appendix 2) is made.

The solutions obtained for the guided wavelength in unilateral fin line have been compared with measured data by Meier [9] and with numerical solutions published by Hofmann [2]. Excellent agreement is evident from Fig. 3 of Appendix 3 attached to the present report.

As far as the characteristic impedance of ridged waveguide is concerned, results agree very well with Chen's [5] results.

There is no experimental verification as yet of the values for the characteristic impedance for fin lines. However, it is suggested that the values calculated for Z_{0} by Hofmann [2] are too high, and the expressions given in the present report appear more realistic. Further study is needed to explain these discrepancies.

A recent attempt has been made by the author to apply the TLM-method to the fin line problem. Some preliminary results of this study are presented in Appendix 4. This Appendix also contains data on an impedance step in ridged waveguide, calculated with the TLM-method. This approach seems quite promising and will be explored further with the aim of characterizing fin line discontinuities which cannot be treated with other methods because of the very difficult field problems they pose.

It is suggested that the results and methods presented here constitute a basis for accurate and versatile fin line design.
[1] S.B. Cohn: "Slot Line on a Dielectric Substrate", IEEE-Transactions on Microwave Theory and Techniques, Vol. MTY-17, No. 10, Oct. 1969, pp. 768-778.
[2] H. Hofmann: "Dispension of Planar Waveguides for Millimeter-Wave Application", Archiv. F. Elektron. u. Ubertrag.-Techn., Vol. 31, No. 1, Jan. 1977, pp. 40-44.
[3] S.B. Cohn: "Properties of Ridge Wave Guide", Proc. of the I.R.E., Vol. 35, No. 8, August 1947, pp. 783-788.
[4]. S. Hopfer: "The Design of Ridged Waveguides" IRE-Trans. Microwave Theory and Techniques, Vol. MTT-3, pp. 20-29, Oct. 1955.
[5] T.-S. Chen: "Calculation of the Parameters of Ridge Waveguides", IRE-Trans.-Microwave Theory and Techniques, Vol. MTT-5, pp. 12-17, Jan. 1957.
[6] N. Marcuvitz: "Waveguide Handbook", MIT Radiation Laboratory Series, No. 10, Boston Technical Publishers, Inc., 1964.
[7] S.B. Cohn: "Slot Line on a Dielectric Substrate", IEEETrans. on Microwave Theory and Techniques, Vol. MTT-17, No. 10, Oct. 1969, pp. 768-778.
[8] A.M.K. Saad, G. Begemann: "Electrical Performance of Fin Lines of Various Configurations", Microwaves, Optics and Acoustics, Vol. 1, No. 2, Jan. 1977, pp. 81-88.
[9] P.J. Meier: "Integrated Fin Line Millimeter Components, IEEE-Trans. on Microwave Theory and Techniques, Vol. MTT-22, No. 12, Dec. 1974, pp. 1209-16.
[10] W.J.R. Hoefer: "Fin Line Design Made Easy", 1978 IEEE-MTT-S Intl. Microwave Symposium, June 27-29, Ottawa, Ont., Canada (See copy Appendix 3)
[11] W.J.R. Hoefer, A. Ros: "Fin Line Parameters Calculated With the TLM-Method", 1979 IEEE-MTT-S Intl. Microwave Symposium, April 20-May 2 , Orlando, Florida, U.S.A. (see copy Appendix 4)

APPENDIX I

Appendix 1 presents several methods and programs to determine the guided wavelength and characteristic impedance in a rectangular waveguide with central longitudinal ridges of zero and finite thickness.

Fig. Al.l shows the geometry of such a waveguide containing central fins of zero thickness.

Fig. A1.1

The transverse resonance condition is given in eqn. (3.8) and can be solved either graphically or using a computer. This appendix shows how to solve this condition using a
A.1.1 Graphical Method
A.1.2 Program for HP 67/97 Calculator
a). Susceptance taken from Waveguide Handbook
b) Susceptance programmed directly
A.l.3 Fortran IV program with printing of diagram $\lambda / \lambda_{g} \operatorname{vs} \mathrm{~b} / \lambda$.

A.1.1. Graphical Method

In the graphical solution, both terms of eqn. (3.8) are presented graphically and the point of intersection of the curves is obtained.

$$
\begin{equation*}
\frac{1}{2}\left[\frac{B}{Y_{0}} \frac{1}{v x}\right] v x=\cot (\pi v x / z) \tag{3.8}
\end{equation*}
$$

The value for $\left[\frac{B}{Y_{0}} \frac{1}{v x}\right.$] is taken from Waveguide Handbook [6]. In practically all cases, the curve for $v x=0$ gives sufficient accuracy (see Fig. A.l.2), but $\frac{1}{2}\left[\frac{B}{Y_{0}} \frac{1}{v x}\right]$ can obviously be constructed with better accuracy to reflect the second order influence of the parameter vx.

Fig. A.1.2 Susceptance of capacitive windows in rectangular guide. (From the "Waveguide Handbook" [6])

Fig. A 1.3 Graphical solution of transverse resonance condition in rectangular waveguide with longitudinal fins of zero thickness

If $z=b / a=0.5$ and $t=d / b=0.25$, Fig. A.1.3 shows the graphical solution of the transverse resonance condition, eqn. (3.8).
First, the value for $\left[\frac{B}{\bar{Y}_{0}} \frac{1}{\bar{V} x}\right]$ is found from Fig. A.1.2.

$$
t=d / b=0.25 \rightarrow\left[\frac{B}{\bar{Y}_{0}} \frac{1}{V x}\right]=3.8
$$

This value gives an indication for the ordinate scale to be used in Fig. A.1.3.

If $z=0.5$, a value of 1 for $v x$ corresponds to one full period of the $\cos (\pi \mathrm{Vx} / \mathrm{z})$-function. The graphical solution can now be drawn (Fig. A.1.3)

One obtains $v x=.192$ based on the susceptance value for $\mathrm{vx}=0$ (dotted curve)
and $\quad v x=.190$ based on a more accurate susceptance value (solid curve)

On the basis of this result, the function $p=f(x)$ can now be drawn since $v^{2}=1-p^{2}$.

Thus:

$$
p=\left[1-(.190 / x)^{2} 1^{1 / 2}\right.
$$

This equation is represented graphically in Fig. 3.2
(see curve with the parameter $d / b=0.25$)
There are also intersections of both functions for higher values of vx. These solutions are characteristic of higher modes
of the $\mathrm{TE}_{\mathrm{n} 0}$-type with odd n , i.e. $\mathrm{n}=3,5,7,9 \ldots$ It is obvious from Fig. A.l.3, that for the higher order solutions the exact value for the discontinuity susceptance must be used (solid line),

A.1.2 Programs for HP 67/97 Calculator

A.1.2.1. Rectangular Waveguide with Centered Fin of

Zero Thickness

(susceptance value $\left[\frac{B}{Y_{0}} \frac{1}{V} x\right]$ taken from the Waveguide Handbook [6])

The standard pack of programs for programmable calculators HP 67/97 contains a routine called. !Calculus and roots of $f(x)$. To calculate the root of a function $f(x)$, this function is simply keyed in starting at program step ll3. The variable to be determined (root) is placed into storage register R0.

The transverse resonance condition to be evaluated is again

$$
\begin{equation*}
\frac{1}{2}\left[\frac{B}{Y_{0}} \frac{1}{V x}\right] v x-\cot \pi v x / z=f(x)=0 \tag{A1}
\end{equation*}
$$

Any variable in this expression could be placed in storage register R_{I} and solved for when all other parameters are fixed. In the following pages, the following three programs are described:
$\mathrm{P}-1: \mathrm{x}$ is calculated when p, z and t are given $\mathrm{p}-2: \mathrm{p}$ is calculated when x, z and t are given $p-3: x$ is calculated when $p x=b / \lambda_{g}, z$ and t are given

PROPAGATION IN RECTANGULAR WAVEGUIDE WITH CENTERED RIDGE (FIN) OF ZERO THICKNESS

> I RW - Centre. Thin Fin Enter Susceptance

This series of programs calculates the roots of the transverse resonant condition $f(x)$ of the following structure:

Rectangular waveguide with centered ridge of zero thickness and equivalent transverse network.

$$
\begin{equation*}
f(x)=\frac{1}{2}\left[\frac{B}{\bar{Y}_{0}} \frac{1}{v x}\right] v x-\cot \pi v x / z=0 \tag{I}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{p}=\lambda / \lambda_{\mathrm{g}} ; \mathrm{x}=\mathrm{b} / \lambda ; \\
& \mathrm{v}=\left[1-\mathrm{p}^{2}\right]^{1 / 2} ; \mathrm{z}=\mathrm{b} / \mathrm{a} \\
& \lambda=\text { free space wavelength, } \lambda_{g}=\text { guided wavelength }
\end{aligned}
$$

The Standard Pack Routine "Calculus and Roots of $f(x)$ " is used to find the root. Any of the above variables can be placed in the R_{0}-register. The function $f(x)$ is programmed starting at step 113.

REMARKS:

The value for the discontinuity susceptance $\left[\begin{array}{ll}\frac{B}{Y_{0}} & \frac{1}{v x}\end{array}\right]$ must be taken from the "Waveguide Handbook" by Marcuvitz, Fig. 5.1-4. In this figure, b / λ_{g} must be replaced by vx.

Since the first root of $f(x)$ is in all practical cases situated between $v \dot{x}=0$ and $v x=0.4$, a good approximation(within a few percent) is obtained by selecting the susceptance for $v x=0$.

If a better accuracy is desired, an improved value for $\left[\frac{B}{\bar{Y}_{0}} \frac{I}{V x}\right]$ corresponding to the just calculated $v x$ is obtained from Fig. 5.1-4 of the "Waveguide Handbook", and introduced into - Register R_{3}. The root obtained with this value should be sufficiently accurate for almost all design purposes.

The second and higher order roots are characteristic of higher order modes of the $\mathrm{TE}_{\mathrm{no}}$-type with odd n , i.e. $\mathrm{n}=3,5,7,9 \ldots$ For these higer modes, repeated refinement of the susceptance value must be made to obtain. satisfactory accuracy.

The program can be used to evaluate other structures exhibiting a shunt susceptance in the centre of a waveguide.

STEP	INSTRUCTIONS	INPUT DATA/UNITS	KEYS	OUTPUT DATA/UNITS
1	Load side 1 of HP-card "Calculus and roots of $f(x)$ "			
2	Select one of programs $P-1, P-2$ or $P-3$ depending on choice of root			
3	Key in selected program or merge from magnetic card, starting at step 113 Select function nr. 1.	1	see HP instruc. A	1.00
4	Choose value for (B / Y_{0})/vx corresponding to $v x=0$ and for given value d / b in Waveguide Handbook and store in register R_{3}	$\frac{B}{Y_{0}} \quad \frac{1}{v x}$	STO 3	$\frac{B}{Y_{0}} \frac{I}{V X}$
5	Store $z=b / a$ in register R_{2} and either p, x or $p x$ in register R_{1}. . depending on program chosen. Note: p. <1	$\begin{gathered} \mathrm{z} \\ \mathrm{p}, \mathrm{x} \\ \text { or } \mathrm{px} \end{gathered}$	$\begin{array}{ll} \mathrm{STO} & 2 \\ \text { STO } & 1 \end{array}$	$\begin{aligned} & \mathrm{z} \\ & \mathrm{p}, \mathrm{x} \\ & \text { or } \mathrm{px} \end{aligned}$
6	Key in guess and calculate root ($\mathrm{x}=0.2$ is a good init. guess)	Guess	E	root
7	For higher accuracy, recall value obtained for vx		RCL 4	VX
8	Choose new value for (B / Y_{0})/ vx corresponding to new vx and for given value d / b in Waveguide Handbook, and store in R 3	$\frac{B}{Y_{0}} \quad \frac{I}{V X}$	STO 3	$\frac{B}{Y_{0}} \quad \frac{1}{V X}$
9	Calculate new root starting with previous root		$\begin{aligned} & \text { RCL } 0 \\ & E \end{aligned}$	root
10	for higher accuracy, return to step 7			-

PROPAGATION IN RECTANGULAR WAVEGUIDE

WITH CENTERED RIDGE (FIN) OF ZERO THICKNESS

RW-Centr. Thin Fin $P-1$
Enter Susceptance

(HP 67/97)

This program calculates x if p, z and t are given. The susceptance value must be found from the "Waveguide Handbook" by Marcuvitz, Fig. 5.I-4.

PROGRAM:
Steps 000 to 112 see HP-routine
"Calculus and Roots of $f(x)$ "

PROPAGATION IN RECTANGULAR WAVEGUIDE

 WITH CENTERED RIDGE (FIN) OF ZERO THICKNESS```
RW-Centr. Thin Fin P-2
Enter Susceptance
```

(HP 67/97)

This program calculates $p$ if $x, z$ and $t$ are given.
The susceptance value must be found from the "Waveguide Handbook" by Marcuvitz, Fig. 5.1-4.

## PROGRAM:

Steps 000 to 112 see HP-routine
"Calculus and Roots of $f(x)$ "

| 117 | * ELi | 2191 | Set to RAD-mode |
| :---: | :---: | :---: | :---: |
| 11.4 | RAL | 16-22 |  |
| 115 | $i$ | 区 | Compute v |
| 116 | FEIE | 366 | $v=\left(1-p^{2}\right) 1 / 2$ |
| 117 | $\mathrm{S}^{2}$ | 53 | $v=(1-p)^{2} 1 / 2$ |
| 18 | - | -45 |  |
| 119 | $\sqrt{6}$ | -54 |  |
| 120 | FCl | 50.1 | Compute vx |
| 12E | 8104 | 564 | and store in $\mathrm{R}_{4}$ |
| 123 | RCL3 | 36 0 | Compute |
| 124 | $x$ | -35 | Compute |
| 125 | 2 | $\underline{\square}$ | $\frac{1}{2}\left[\left(B / Y_{0}\right) / v x\right] v x$ |
| 180 | $\div$ | -24 | $\overline{2}\left[\left(\mathrm{~B} / \mathrm{Y}_{0}\right) / v \mathrm{x}\right] \mathrm{Vx}$ |
| 127 | RCL 4 | 36.4 |  |
| 128 | Fi | 10-24 | Compute |
| 125 | - | -35 | $\cot \pi \mathrm{vx} / \mathrm{z}$ |
| 136 | REL2 | 568 |  |
| 131 | $\div$ | -24 | and subtract from |
| 152 | TAN | 43 | first term |
| 136 | $1 \%$ | 52 |  |
| 134 | $-$ | -45 |  |
| 135 | ETH | 24 |  |
| 15 | $\bar{R} 5$ | 51 |  |

## RW-Centr. Thin Fin $P-3$ Enter Susceptance

(HP 67/97)

This program calculates $x$ if $p x, z$ and $t$ are givenThe susceptance value must be found from the "Waveguide Handbook" by Marcuvitz, Fig. 5.1-4.

PROGRAM:
Steps 000 to 112 see HP-routine
"Calculus and Roots of $f(x)$ "

| 13 | WLELI | 2t.lid |  |
| :---: | :---: | :---: | :---: |
| 114 | Kiti | 16-2 | Set to RAD-mode |
| 115 | 1 | [1 |  |
| 116 | RCLI | 360 |  |
| 117 | FCLE | Te 06 | Compute v |
| 118. | $\stackrel{\square}{\square}$ | -24 | $v=\left(1-p^{2}\right)^{1 / 2}$ |
| 119 | $\cdots 8$ | 58 | $v=(1-p)$ |
| 128 | 蓈 | -45 54 |  |
| 121 | RCL | . 3684 |  |
| 123 |  | $\cdots$ | Compute vx and store in $R_{4}$ |
| 124 | 5104 | 3584 | and store in $\mathrm{R}_{4}$ |
| 128 | $\mathrm{FCL}_{3}$ | 3605 | Compute |
| 20 | x | -35 | Compute |
| 127 | .2 $\vdots$ | - 64 | $\frac{1}{2}\left[\left(B / Y_{0}\right) / v x\right] v x$ |
| 128 | $\because$ ECL | 30-24 | $2\left[\left(B / Y_{0}\right) / v x\right]$ |
| 130 | Fi | 16-24 | Compute |
| 131 | $x$ | -35 | $\cot \pi \mathrm{Vx} / \mathrm{z}$ |
| 132 | FCLE | 36.82 |  |
| 130 | $\div$ | -24 | and subtract from |
| 134 | TAM | 43 | first term |
| 135 | 1\% | 52 |  |
| 136 | - | -45 |  |
| 15 | RTH | 24 |  |
| 136 | F\% | 51 |  |

## A.1.2.2. Rectangular Waveguide with Centered Ridge of Finite Thickness s.

The expression for ( $B / Y_{0}$ )/vx given in eqn. 3.9 can be programmed directly, and thus it is not necessary to consult Fig. 5.1-4 of the Waveguide Handbook [6]. However, the computation time will be longer by a factor two.

For the sake of generality, a program for ridged waveguide with centered ridge of finite thickness will be given. The case of zero thickness is obviously included in this program.

Two variations of the program are given, namely
$\mathrm{p}-1: \mathrm{x}$ is calculated when $\mathrm{p}, \mathrm{z}, \mathrm{s}$ and t are given
$\mathrm{p}-2: \mathrm{p}$ is calculated when $\mathrm{x}, \mathrm{z}, \mathrm{s}$ and t are given

At the same time, the characteristic impedance of such a waveguide can be evaluated using the results of the calculation of the guided wavelength.

## PROPAGATION IN RECTANGULAR WAVEGUIDE WITH

 CENTERED RIDGE OF THICKNESS s$$
\begin{align*}
& \mathrm{RW} \text { - Double Ridged Guide } \\
& \lambda_{\mathrm{g}} \text { and } \mathrm{Z}_{0} \tag{HP67/97}
\end{align*}
$$

This series of programs calculates the roots of the transverse resonant condition $\mathrm{f}(\mathrm{x})=0$ and the characteristic impedance of the following structure:


$$
\begin{equation*}
f(x)=\frac{1}{t} \tan \pi v x w+\left[\frac{B_{0}}{\bar{Y}_{0}} \frac{1}{v x}\right] v x-\cot \pi v x\left(\frac{1}{z}-w\right)=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{p}=\lambda / \lambda_{\mathrm{g}} \quad 1 / 2 & \mathrm{x}=\mathrm{b} / \lambda \\
\mathrm{v}=\left[1-\mathrm{p}^{2}\right] & ; \mathrm{t}=\mathrm{d}=\mathrm{b} / \mathrm{b} \\
; \mathrm{w}=\mathrm{s} / \mathrm{b}
\end{array}
$$

$$
\lambda=\text { free space wavelength, } \lambda_{g}=\text { longit. guided wavelength }
$$

$$
\begin{equation*}
\text { and } \frac{B_{0}}{\bar{Y}_{0}} \frac{1}{V_{X}}=2\left[\ln (\csc \pi t / 2)+\frac{Q \cos ^{4} \cdot \pi t / 2}{1+Q \sin ^{4} \cdot \pi t / 2}+\right. \tag{2}
\end{equation*}
$$

$$
\left.+\frac{1}{I 6}(v x)^{2}\left(1-3 \sin ^{2} \pi t / 2\right)^{2} \cos ^{4} \pi t / 2\right]
$$

$$
\begin{equation*}
\text { with } Q=\left[1-(v x)^{2}\right]^{-1 / 2}-1 \tag{3}
\end{equation*}
$$

The Standard Pack Routine "Calculus and Roots of $f(x)$ " is used to calculate the root. Any of the above variables can be placed in the $R_{0}$-register. The function $f(x)$ is programmed starting'at step 113.

The characteristic impedance based on a Voltage-to-Current ratio is given by the following expression:
$Z_{0}=Z_{0 \infty} / p=\frac{\frac{120 \pi}{\mathrm{p}} \pi v x}{\frac{1}{t} \sin \pi \omega v x+\left[\left(\frac{B_{0}}{Y_{0}} \frac{1}{v x}\right) v x+\tan \frac{\pi v x}{2}\left(\frac{1}{Z}-w\right)\right] \cos \pi w v x}$
and is calculated following the solution of the transverse resonance condition.

Remarks:
The cutoff wavelength is obtained by setting $p=\lambda / \lambda_{g}$ equal to zero. However, since the characteristic impedance is infinity at cutoff, any attempt to evaluate $Z_{0}$ at this wavelength results in an "ERROR". However, the value p. $Z_{0}=Z_{0 \infty}$ can be obtained by placing the value "one" (1) into the register containing $p$ before evaluating $Z_{0}$.

Once the program has been keyed in, it can be stored on a blank magnetic card, including the routine "Calculus and Roots of $f(x)$ ". The "Rad" and "DSP" modes will be registered automatically on the card at storage and will not have to be set afterwards.

| STEP | INSTRUCTIONS | INPUT DATA/UNTTS | KEYS | OUTPUT DATA/UNITS |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Load side 1 of HP-card "Calculus and roots of $f(x)$ |  |  |  |
| 2 | Select one of programs ( $\mathrm{P}-1$ or $\mathrm{P}-2$ ) depending on root to be evaluated |  |  |  |
| 3 | Key in selected program or merge from magnetic card, starting at step 113 |  | see HP <br> instruction | S |
| 4 | Select "RAD" mode and Display mode (ex:5 decimals) |  | $\begin{array}{cc} \dot{f} & \text { RAD } \\ \text { DSP } & 5 \end{array}$ |  |
| 5 | Select function no. 1 A | 1 | A | 1.00000 |
| 6 | Store value for $p$ or $x$ in $\mathrm{R}_{1}$; depending on program selected | $\begin{gathered} \mathrm{p} \\ \text { or } \\ \mathrm{x} \end{gathered}$ | STO 1 | $\begin{aligned} & \mathrm{p} \\ & \text { or } \\ & \mathrm{x} \end{aligned}$ |
| 7 | Store values for parameters $z, w$ and $t$ | $\begin{gathered} z \\ w \\ t \end{gathered}$ | $\begin{array}{ll}\text { STO } & 2 \\ \text { STO } & 3 \\ \text { STO } & 4\end{array}$ | $\begin{gathered} z \\ w \\ t \end{gathered}$ |
| 8 | Key in guess and calculate root ( 0.1 is a good initial guess in most cases) | Guess | E | root |
| 9 | Calculate characteristic impedance of lowest mode, $\mathrm{Z}_{0}$ |  | GSB 2 | $Z_{0}$ |
| 10 | To calculate root and $Z_{0}$ for different parameters, go to step 6 |  |  |  |
| 11 | Values for different terms can be recalled after root and $Z_{0}$ have been calculated |  | RCI 5 <br> RCL 6 <br> RCL 7 <br> RCL 8 | $\begin{gathered} \mathrm{vx} \\ \begin{array}{c} \pi \mathrm{vxw} \\ \left(\mathrm{~B}_{\mathrm{O}} / \mathrm{Y}_{0}\right) / \mathrm{vx} \\ \pi \mathrm{vx}\left(\frac{1}{Z}-w\right) \end{array} \end{gathered}$ |

## PROPAGATION IN RECTANGULAR WAVEGUIDE WITH

CENTERED RIDGE OF THICKNESS s (Double Ridged Waveguide)

> RW - Double Ridged Guide $\lambda_{\mathrm{g}}$ and $\mathrm{Z}_{0}$
(HP 67/97)

This program calculates $b / \lambda$ and the characteristic impedance $Z_{o}$ of double ridged waveguide if $p=\lambda / \lambda g^{\prime} \quad z=b / a, w=s / b$ and $\mathrm{t}=\mathrm{d} / \mathrm{b}$ are given

## Program:

Steps 000 to 112 see HP-routine "Calculus and Roots of $f(x)$ "

|  |  |  |  | Reg | isters: |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\because$ |  | $\mathrm{R}_{0}$ | $\mathrm{x}$ | Euess |
| 113 | \%LELI | 2101 |  | 1 | $\xrightarrow{p}$ | Store |
| 114 | WREI | 20.0 |  | 3 | z w | $\}$ Store |
| 115 | FCLI | 30 | Compute vx | 4 | t |  |
| 16 | RELI | 3661 |  | 5 | vx |  |
| 117 | N: | 53 | and store in $\mathrm{R}_{5}$ | 6 | TWvx |  |
| is | - | -4 |  |  | ( $\mathrm{B}^{(Y / Y}$ )/vx |  |
| 119 | Fh | 54 |  | 7 | $\left(\mathrm{B}_{0} / \mathrm{Y}_{0}\right) / v{ }^{\text {d }}$ |  |
| 120 | RCLE | 3680 |  | 8 | $\pi \mathrm{vx}\left(\frac{1}{2}-\mathrm{w}\right)$ |  |
| 121 | $x$ | -35 |  |  | $\pi v \times\left(\frac{1}{z}-W\right)$ |  |
| 12 | Stas | 3565 |  |  |  |  |
| 125 | We | 53 |  |  |  |  |
| 124 | - | -45 | Compute Q and |  |  |  |
| 125 | $\sqrt{4}$ | 54 |  |  |  |  |
| 125 | $1 \%$ | 52 | store temporarily |  |  |  |
| 127 | - | 61 | in $\mathrm{R}_{6}$ |  |  |  |
| 128 | - | -45 |  |  |  |  |
| 129 | 5706 | 3566 |  |  |  |  |
| 136 | Fi | 16-24 |  |  |  |  |
| 131 | ECL4. | 3684 |  |  |  |  |
| 132 | x | -3 | Compute |  |  |  |
| 133 | 2 | 62 |  |  |  |  |
| 134 | $\div$ | -24 |  |  |  |  |
| 135. | ST07 | Eit |  |  |  |  |
| 136 | c0s | 4 | $\left(\mathrm{B}_{0} / \mathrm{Y}_{0}\right) / \mathrm{Vx}$ |  |  |  |
| 13 | N | 5 |  |  |  |  |
| 158 | 5708 | 3568 |  |  |  |  |
| 129 | ns | 5 |  |  |  |  |
| 146 | \% | $-35$ |  |  |  |  |
| 141 | RCL | $360^{4}$ | ${ }_{7}$ |  |  |  |
| 142 | 61\% | 4 |  |  |  |  |
| 145 | ST07 | 350 |  |  |  |  |
| 144 | SE | Ev |  |  |  |  |
| 145 | 82 | 53 |  |  |  |  |


| 146 | FLE | 56.60 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $14{ }^{7}$ | * | -35 |  |  |  | . |  |
| 148. | : | aj | ! |  |  |  |  |
| 145 | , | - -55 |  | 201 |  |  |  |
| 156 | $\div$ | -24 |  | 212 |  |  |  |
| 151 | RCL | 368 |  | 203 |  | -24 |  |
| 152 | $1 \times$ | 52. |  | 264 | TAh | 45 |  |
| 153 | LH | 32 |  | 295 | $+$ | -5 |  |
| 154. | ${ }_{+}^{+}$ | -55 |  | 206 | FLL | 3660 |  |
| 155 | RCLT | 30.67 |  | El | cos | $\bigcirc 42$ |  |
| 150 | N2 | 53 | , | 218 | 8 | -35 |  |
| 157 | 3 | 03 |  | 209 | FCle | 3680 |  |
| 158 | x | -35 |  | 216 | SIH | 61 |  |
| 159 | 1 | 61 |  | 211 | RCL 4 | 36.4 |  |
| 160 | - | $-45$ |  | 212 |  | -24 |  |
| 161 | RCL 5 | 3685 |  | 215 | $\pm$ | -55 |  |
| 162 | * | -35 |  | 214 | $\stackrel{+}{-}$ | -24 |  |
| 163 | ELLE | 36.60 |  | 215 | RCLI | 3E 41 |  |
| 164 | $x$ | -35 | - | 216 | $\stackrel{\square}{\div}$ | -24 |  |
| 165 | 4 | 84 |  | 217 | 3 | 53 |  |
| 166 | $\div$ | -24 |  | 218 | $\overline{7}$ | Bi |  |
| 167 | Se | 5 |  | 219 | 7 | 97 |  |
| 168 | + | -玉゙ |  | 22 | $x$ | -35 |  |
| 169 | 2 | Q |  | 22 | Fi | 10-24 |  |
| 170 | $\cdots$ | -35 |  | 22 | $\underset{\sim}{x}$ | -5 | $z_{0}$ |
| 171 | ST0, | 3507 |  | 223 | ETH | 2 |  |
| 172 | RCLE | 3605 | Compute $\pi \mathrm{Vx}$ | 24 | Fes | 5 |  |
| 173 | $x$ | -25 | and store tempo- | 2.4 |  | 31 |  |
| 174 | RCL5 | 3685 | rarily in $\mathrm{R}_{8}$ |  |  |  |  |
| 175 | Fi | 16-24 |  |  |  |  |  |
| 176 | $x$ | -35 |  |  |  |  |  |
| 177 | STus | 3566 |  |  |  |  |  |
| 170 | RCL 3 | 3683 |  |  |  |  |  |
| 179 | $x$ | $-56$ | $\pi \mathrm{wvx}$ in $\mathrm{R}_{6}$ |  |  |  |  |
| 169 | stoe | 3506 |  |  |  |  |  |
| 181 | TAN | 43 |  |  |  |  |  |
| 152 | FCL 4 | 3684 | Compute |  |  |  |  |
| 183 | $\div$ | -24 | remainder |  |  |  |  |
| 164 | $\div$ | -55 | of $\mathrm{f}(\mathrm{x})$ |  |  |  |  |
| 185 | FCLE | 56.6 |  |  |  |  |  |
| 186 | $1 \%$ | 52 |  |  |  |  |  |
| 187 | FCL 3 | 3605 |  |  |  |  |  |
| 188 | - | -45 |  |  |  |  |  |
| 189 | FCLE | 560 |  |  |  |  |  |
| 196 | * | $-35$ |  |  |  |  |  |
| 131 | 5708 | 3568 |  |  |  |  |  |
| 192 | TAM | 43 |  |  |  |  |  |
| 193 | $1 \%$ | 52 |  |  |  |  |  |
| 194 | - | -45 |  |  |  |  |  |
| 195 | ETH | 24 |  |  |  |  |  |
| 196 | *LELE | 218 |  |  |  |  |  |
| 197 | RCL5 | 56 0 | Compute $\mathrm{Z}_{0}$ |  |  |  |  |
| 158 | RCL5 | SE E |  |  |  |  |  |
| 199 | FCL $\overline{7}$ | 36 Ba |  |  |  |  |  |
| 26 | 8 | $-35$ |  |  | - |  |  |

RW - Double Ridged Guide
$\lambda_{\mathrm{g}}$ and $\mathrm{Z}_{0} \quad \mathrm{P}-2$
(HP 67/97)

This program calculates $\lambda / \lambda g$ and the characteristic impedance $z_{0}$ of double ridged waveguide if $x=b / \lambda, z=b / a, w=s / b$ and $t=d / b$ are given

## Program:

Steps 000 to 112 see HP-routine "Calculus and Roots of $f(x)$ "

## Registers:



146
148
147
148
149
150
151
153
15
154
156
156
157
158
159
169
161
152
164
165
16 E
167
160
169
170
171
172
175
174
175
176
177
178
179
166
181
182
183
184.
185
180
187
189
189
156.

191
192
193
154
195
196
197
199
199 200
$5 C L 5 \quad 36.36$
$\because \quad \because \quad \cdots$

|  | $2 g I$ | $\mathrm{FCL}$ | $3688$ |
| :---: | :---: | :---: | :---: |
|  | 20. | $\div$ | -24 |
|  | 264 | TAh | 43 |
|  | 285 | +. | -5 |
|  | - 206 | FCLE | 3660 |
|  | 207 | 600 | 42 |
|  | 268 | 8 | -35 |
|  | 269 | FCLE | 3666 |
|  | 210 | STH | 41 |
|  | 211 | FCL4 | 3604 |
|  | 22 | $\div$ | -24 |
|  | 213 | + | -55 |
|  | 24 | $\div$ | - -24 |
|  | 215 | FCL0 | 3660 |
| - | 215 | $\because$ | -24 |
|  | 217 | 3 | - 63 |
|  | 219 | 7 | 07 |
|  | 219 | 7 | Q7 |
|  | 2 l | $x$ | -35 |
|  | 221 | Fi | 10-24 |
|  | 22. | \% | - -35 |
| Compute $\pi \mathrm{vx}$ | 23 | ETH | 24 |
| land store tempo- | 224 | FS | 51 |

Appendix 2 presents Fortran IV programs to evaluate the guided wavelength and the characteristic impedance of unilateral, bilateral and insulated fin line. They are based on the transverse resonance conditions and the expression for the characteristic impedance of ridged waveguide derived in the present report.

The program for unilateral fin line contains an additional routine that plots the normalized wavelength $\lambda / \lambda_{\mathrm{g}} \mathrm{vs}$ the normalized frequency $b / \lambda$. The same routine may also be used for the other programs if desired.

In addition to the geometrical dimensions and the dielectric constant $\varepsilon_{r}$ of the substrate material, the correction factor $G$ must be input. $G$ is obtained as a function of $w=s / b$ and $t=d / b$ from Fig. 3.10, p. 30 of the present report.

```
 A.2.1
 UNTLMTEFML. FTN I..INE
 FORTREN
 FUNTHON: THTS SUBROUTHNE CALCULATES ANO ORAWS THE GUROEM
 WAUEINENGTH IN UNTLATERAL. FIN I.INE
```



G(NORMALIEEGCORFECTON FACTOR)

```
 MMENSTON A(AOy,OO) , B(40)
 OTMENSTON F(40) y (40) & ZF(40)
```



```
 TNTEGFR AgTXyJX
 FEAL., XF:GyXI, 又O, 又F
```




```
 MATA MOTyHYFHENyMASH/'*'y'..**'1'/
 MATA STAF'BLIANK/'**y' '/
```




```
 4RTTE:(6, 1)
```




```
 FC=%%, 4.4%
 S=STN(T*FT/2,)
 C=COS(T*FT/2,)**4
 XI=0.6
 M0) !:% T=, % 30
```




```
 1 *(1, %-%*S**2)**2*C)
```




```
 IF(E:LEF,O,) GO)TO &
 XT=\T\cdots0, %*0, %**T
 00%%%
```



```
 OONTNNUE
```


100100 I. $=1,40$
$F(I)=0.03 * I-0.03$


S=SlN(T*FT/2)
$0=00 s(T * F / 2) * * 4$
X (1.) $=0.0 .8$
$00 \quad 90.1=1.30$



1. $*(1, \cdots, * ૬ * * 2) * * 2 * C)$




$F=(U / U) * * 2+G *(1, \cdots(U / U) * W 2)$

A2w2, *FTWW*X(I)*UHTAN(U/UWSIN(A1)/COS(A1))
A $3=F W X(T) * U / \%$

EFWWI*U/V+HO-AO
$0070 \quad 30$






$E=W$ WW WU/U-M0-AO

TF (E: \& FE: Os) 90 TO 80

001090
$X(\mathrm{I})=\mathrm{x}(\mathrm{I})+0.5 * 0.5$ W J
CONTHNE:

$2 F(1)=70 / F=1)$
601094
वF (I) $=1.000$.


CONTITNE:
```
\(\cdots\)
 0
```



```
 \(\%\)
```



```
 !
 WFITE (\(6 y+10\))
```




```
 \(\pi 0300\) \%: 1.40
```



```
 \(\mathrm{T} \times: \times \mathrm{PF}\)
```



```
 \(J X=1 \times\)
 \(0070 \quad 160\)
 \(150 \quad J \times=\pi \times+1\)
 \(160 \quad 00 \quad 180 \quad j=1.100\)
 A (4I. \(\mathrm{CH}, \mathrm{J})=\mathrm{BL} \mathrm{ANK}\)
 \(I F(J, E W, J X) O O \quad 10 \quad 1.70\)
```



```
 1. \(A(A L \cdots, J)=[10 \dagger\)
```




```
 \(00 \quad 70 \quad 180\)
```



```
 180 OONTTNUE
 300 GONTINUE
 W0 300 \(\mathrm{f}=\mathrm{d} \boldsymbol{\mathrm { y }} \mathrm{a} 0\)
 E(I) \(=(40 \cdots)\) W0.0. 0
```




```
 300 CONTINUE
 WHITE (6.350)
```





```
 AOO FORMAT(', y
```




```
 SYOF:
 END
\(\because\)
```



| 0.000 | 0.1522 |
| :---: | :---: |
| 0.030 | 0.1522 |
| 0.060 | 0.1524 |
| 0.090 | 0.1526 |
| 0.120 | 0.1530 |
| 0.150 | 0.1535 |
| 0.180 | 0.1542 |
| 0.210 | 0.1549 |
| 0.240 | 0.1558 |
| 0.270 | 0.1563 |
| 0.300 | 0.1579 |
| 0.330 | $0+1592$ |
| 0.360 | 0.1607 |
| 0.390 | 0.1623 |
| 0.420 | 0.1641 |
| 0.450 | 0.1661 |
| 0.480 | 0.1684 |
| 0.510 | 0.1709 |
| 0.540 | 0.1737 |
| 0.570 | 0.1767 |
| 0.600 | 0.1802 |
| 0.630 | 0.1840 |
| 0.660 | 0.1883 |
| 0.690 | 0.1931 |
| 0.720 | 0.1985 |
| 0.750 | 0.2047 |
| 0.780 | 0.2116 |
| 0.810 | 0.2200 |
| 0.840 | 0.2296 |
| 0.870 | 0.2410 |
| 0.900 | 0.2547 |
| 0.930 | 0.2716 |
| 0.960 | 0.2930 |
| 0.990 | 0.3210 |
| 1.020 | 0.3594 |
| 1. 050 | 0.4155 |
| 1.080 | 0.5031 |
| 1.110 | 0.6407 |
| 1.1.40 | 0.8160 |
| 1.170 | 0.8692 |

```
\(1000.00000(\infty)\)
6991.69971
\(294 \% .84985\)
1.963 .90002
\(1472+92 w 0\)
1178.3 .3997
 \(981.9500 \%\)
 841.67139
 736.46252
 \(6 \% 4.63336\)
 589.16990
 \(535 \cdot 60907\)
 \(490.97 \% 1\)
 4.3. 20770
420.83669
392.78000
```

368.23123
346.57059
39.31665
310.08948
244.58496
280.5673
267.80406
256.16086
246.48747
$235 \cdot 66798$
226.60382
218.21111
210.41783
$203 \cdot 16206$
196.38998
190.05402
184.11562
176.536 .5
173.29599
163.33429
$163+65833$
$159.25 \% 12$
156.04474
$1510602 \pi$

## Y-AXIS=F(WAUELENGTH/GUIDEN WAUELENGTH)

## $X-A X I S=X(B / W A U E L E N G T H)$



GUIDEI WAUELENGTH IN UNILATERAL FIN LINE
$\mathrm{B} / \mathrm{A}=0.50 ; \mathrm{H} / \mathrm{B}=0.13 ; \mathrm{S} / \mathrm{B}=0.072 \mathrm{y}$ EF:=2.22; $\mathrm{G}=0.58$

## A． 2.2


FI＝3．14159
S＝STN（TwWT2．）

GTMENSON X（40），F（40）yZF（40）

सEAL．XI，zOyzFyA．

ACOFFT सy又yTyWッEFッG
WEITE（ 6 y）zyTyWyERy


## WAVEGUTHE IS CALCUMTEM BELOW

$X I=0.4$
10） $5.1 \times 1.30$



EmT…COS（FWXT／Z）／STN（FTWX／天）
IF（ABS（E），EE：NE－O4）GOTO 10
TFTE，LE．O．）日OTO 4
XI＝XIT－0．5＊0．5＊＊I
00 TO 5

CONTINUE

WRTTE（6，1\％）XTy 20

TF(F(I), $6 E, 1) 60 \quad$.
$F=(U / U) * * 2+G *(1, \cdots(U / U) *$ *2)


A=U/U*COS(AJ)/STN(A1)
F=wwow
$60 \quad 10 \quad 30$
$F=-(U / U) * w_{2}+\mathrm{B} *(\mathrm{I}+(\mathrm{U} / \mathrm{U}) * * 2)$

Amu/U*COS(AI)/GTN(A1)
F=wworw

TF (E: NE: O.) 00 TO 40

001090

CONTMNE:

$2 F(1)=20 / F(x)$60 TO 70
zF( I ) $=9000$.


CONTTNE
STOF
ENa
$>$

CUTOFF FOR EQURU ETMGED WAEGUTEE TSO.1702 = XI
CHARACT + IMF + OF RTMGE WANEGUDE AT INFINTTE FFEG. IS 176.75099 OHMS

F(WAUELENGTH/GUIDEM WAUELENGTH) X B/WAUELENGTH) ZF (CHARACT IMF. OF FINS) OHMS


## A． 2.3

BHIMTEFAL FING FORTEAN IU

FUNCTION：THTS SUBFOUTINE CALCULATES THE GUROEX WAVEIENGTH ANO CHAFACTKTSTTE IMFEDANCE IN BTLATEFAL FTNS

 G（NOKMALTZED COFFECTON FACTOR）
＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊
GIMENGION $X(40), F(40)$ y $2 F(40)$

KEAL XI，$Z O, Z F \because A 1$

ACCEFT＊ッZッT，W，


FI＝3．14159
S＝SN（T＊FT／2，
$\mathrm{C=Cos}(T * F \mathrm{~F} / 2$, ）＊＊ 4
$C$ CHAFACTEISTRC IMFEMANCE ANA CUTOFF OF EOUTUALENT RTDGEG
C WAVEGUTHE IS CMLCUIATEG BELOW


```
 XI=0.5
 00 5 1=1,30
```




```
 1.*(1, -3.*S**2)**2*以)
 E=STN(FT*W*XT)/COS(FT*W*XT)/T+MT-COS(FT*XN*(1./Z-W))/
```

        士 SIN(FI*XT*(G\%ZW)
        IF (ABS(E) LEE + + E-OA) GO TO 10
        TF (E:LE: O.) OOTO 4
        \(X I=X I-0.5 * 0.6 * * I\)
        60 TO
        \(X I=X I+0.5 * 0.5 \% * L\)
        CONTINE
    

WRETE ( 6.15$) \times I .20$





##  <br> © <br>  <br> $C$ FTNS ABE: CALCULATETM BELOW <br>  <br> 0

M0 $100 \mathrm{I}=1,10$
$F(I)=0.0 .3$ 束 -0.03
$V=(A B S(L+\cdots F(I) * * 2)) * * 0 *$

$X(I)=0+45$
M0 90 w $1=1,1,30$



$\mathrm{IF}=(\mathrm{F}(\mathrm{C}), \mathrm{GE}+\mathrm{I}+) 00 \mathrm{TO} 20$





$60 \quad 1030$


$1 . *(1 .-3+* S * * 2) * * 2 * \mathrm{C})$
$A=W / U * S I N(F W W W X(I) * U) / C O S(F I W W * X(I) * U)$


IE (E \& LE, O, ) OO TO 40

001090

CONYTNUE
$50 \quad \mathrm{FF}(F=(\mathrm{F})+\mathrm{EG}(\mathrm{O}) \mathrm{O} 0 \mathrm{TO} 60$
ZF(I) $=70 / F(\mathrm{~F})$
$90-70$
$60 \quad 2 F(1)=79000$.
$70 \quad W F T T E(6 y 80) F(T) y \times(I) y \neq F(T)$

100 CONTTNUE
s'rop
ENM

CUTOFF FOR ERULV RTMGEM WAVEGTME TSD. $1525=X I$




## - A-32 - <br> APPENDIX 3

"FIN LINE DESIGN MADE EASY"

Wolfgang J.R. Hoefer,<br>Dept. of Electrical Engineering, University of Ottawa, Ottawa, Ont., Canada.

## ABSTRACT

This paper presents a simple but accurate method to calculate the guided wavelength and characteristic.impedance of various fin line configurations. The transverse resonance condition is solved using available data on capacitive irises in waveguides and a novel diagram for evaluating the influence of a dielectric sheet on the iris capacitance.

## Introduction

The simplicity of Meler's $s^{1,2}$ formulae for fin line parameters as well as the accuracy of Hofmann's ${ }^{3,4}$ numerical solution of the fin line problem can only be fully exploited by the designer if he chooses the same geometries and dielectric constants as these authors in order to apply their results directly. Otherwise, either a test measurement or an involved computer solution is required to predict fin line performance. Saad and Begemann ${ }^{5}$ have published approximate but still cumbersome expressions for the effective permittivity and characteristic impedance of fin lines, which are satisfactory for thin substrates only.

The purpose of this paper is to present an accur rate, versatile and simple method to calculate the guided wavelength and impedance of various fin lines, using available data for waveguide discontinuities and a novel diagram for the evaluation of the susceptance of dielectrically supported irises in waveguides.

## Theory

## Calculation of the Guided Wavelength

The guided wavelength is found by evaluating the first root of the transverse resonance condition. This condition contains the susceptance of a capacitive iris modified by the presence of a dielectric sheet. Both the iris susceptance and the correction factior are available in graphical form, thus the computational efm fort is kept at a minimum.

The method is best explained by briefly revisiting the ridged waveguide (Fig, la). The transverse resoaant condition can be written as follows:

$$
\begin{equation*}
\left[\frac{B_{a}}{Y_{0}} \frac{\lambda_{t}}{b}\right] \frac{b}{\lambda_{t}}-\cot \pi \frac{a}{b} \frac{b}{\lambda_{t}}=0 \tag{1}
\end{equation*}
$$

where $\lambda_{t}$ is the transverse guided wavelength, The term in square brackets is $\frac{1}{2}$ the $\left[\frac{B}{Y_{0}} \frac{\lambda_{g}}{b}\right]$ presented In the Waveguide Handbook ${ }^{6}$, Fig. $5.1-4$, provided $\lambda_{g}$ therein is replaced by $\lambda_{t}$ of this paper. Close inspection of Fig. 5.1-4 in [6] shows that this term is rather insensitive to changes of the parameter $b / \lambda_{t}$ as
long as the latter is smaller, than 0.4 , which is practically always the case. Thus, a very good approximation for $b / \lambda_{t}$ can be found by introducing into
equ. (1) the value of $\left[\left(B_{a} / Y_{0}\right)\left(\lambda_{t} / b\right)\right]$ for $b / \lambda_{t}=0$. The root is accurate within a few percent. If a better. approximation is desired, an improved value for
$\left[\left(B_{a} / Y_{o}\right)\left(\lambda_{t} / b\right)\right]$ corresponding to the just calculated $b / \lambda_{t}$ is introduced into equ. (1). The guided wavelength $\lambda_{g}$ is then found by writing:

$$
\begin{equation*}
\lambda_{g}=\lambda\left[1-\left(\lambda / \lambda_{t}\right)^{2}\right]^{-1 / 2} \tag{2}
\end{equation*}
$$

where $\lambda$ is the free space wavelength.

## Fin Lines

When a dielectric sheet of permittivity $\varepsilon_{r}$ is added at one side of the ridge, as shown in Fig. 1 b , the capacitance of the covered half of the discontinuity is increased by a factor somewhere between 1 and $E_{r}$, depending on the thickness of the sheet. This correction factor has been calculated by numerically evaluating the ratio

$$
F=\frac{\text { Slot susceptance for finite sheet thickness }}{\text { Slot susceptance for infinite sheet thickness }}
$$

and normalizing it to make it independent of $\varepsilon_{r}$.
The procedure for this evaluation was outilned by Cohn? The results are presented graphically in Fig. 2. The guided wavelength in the fin ine can now be determined in exactly the same way as for the ridged waveguide by Introducing the graphically available values for the discontinuity susceptance ${ }^{6}$ and the correction factor (Fig. 2) Into the transverse resonance condition of the structure, and then finding the lowest root of this expression.

The resonance conditions for three fin line configurations will be given with the following abbreviations:

$$
\begin{aligned}
& d / b=t ; s / b=w ; b / a=z ; \lambda / \lambda_{g}=p \\
& b / \lambda=x ;\left[\left|\varepsilon_{r}-p^{2}\right|\right]^{1 / 2}=u ;\left[\left|1-p^{2}\right|\right]^{1 / 2}=v \\
& \lambda_{t o}=x / v ; \lambda_{t 1}=x / u ; b / \lambda_{t o}=v x \\
& b / \lambda_{t 1}= u x . \\
& \lambda_{\mathrm{g}}= \text { fin line wavelength; } \lambda_{t o}, \lambda_{t 1}=\text { transverse } \\
& \begin{array}{l}
\text { guided wavelengths in air and dielectric } \\
\\
\text { respectively. }
\end{array}
\end{aligned}
$$

Resonant Condition for Unilateral Fin Line (Fig. 1.b)
for $p<1$
$-(u / v) \cot \left\{2 \pi w x u+\tan ^{-1}\left[(u / v) \tan 2 \pi x v\left(\frac{1}{2 z}-w\right)\right]^{\prime}\right\}$
$+F\left[\frac{B_{d}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v x+\left[\begin{array}{ll}B_{a} & \frac{1}{Y_{0}} \\ v x\end{array}\right] v x-\cot \frac{\pi x v}{z}=0$
where $F=(v / u)^{2}+G\left[1-(v / u)^{2}\right]$
for $p>1$
$-(u / v) \cot \left\{2 \pi w x u+\tan ^{-1}\left[(u / v) \tanh 2 \pi x v\left(\frac{1}{2 x}-w\right)\right]\right\}$
$+F\left[\frac{B_{d}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{\dot{u}}{v}\right)^{2} v x-\left[\frac{B_{a}}{Y_{0}} \frac{1}{v x}\right] v x-\operatorname{coth} \frac{\pi x v}{z}=0$
where $E=-(v / u)^{2}+G\left[1+(v / u)^{2}\right]$

Resonant Condition for Bilateral Fin Line (Fig. 1.c)
for $p<1$
$(u / v) \tan \pi w x u+G\left[\frac{B_{d}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v x$
$+\left[\frac{B_{a}}{Y_{0}} \frac{1}{\nabla x}\right] v x-\cot \pi x v\left(\frac{1}{z}-w\right)=0$
for $p>1$
$(u / v) \tan \pi\left(\pi x u+G\left[\frac{B_{d}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v x\right.$
$-\left[\begin{array}{ll}B_{a} & \frac{1}{Y_{0}} \\ \nabla x\end{array}\right] v x-\operatorname{coth} \pi x v\left(\frac{1}{2}-w\right)=0$

Resonant Condition for Insulated Fins (Fig. 1.d)
for $p \times 1$
$-(u / v) \cot \left\{\pi w x u+\tan ^{-1}\left[(u / v) \tan \pi \operatorname{xv}\left(\frac{1}{2}-w\right)\right]\right\}$
$+F\left[\frac{B_{d}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{u}{v}\right)^{2} v_{x}=0$.
where $F$ as in (3a)
for $p>1$
$-(u / v) \cot \left\{\pi w x u+\tan ^{-1}\left[(u / v) \tanh \operatorname{\pi xv}\left(\frac{1}{z}-w\right)\right]\right\}$
$+F\left[\frac{B_{d}}{Y_{1}} \frac{1}{u x}\right]\left(\frac{(\underset{v}{v}}{}{ }^{2} v x=0\right.$
where $F$ as in (3b)
As in the case of ridged waveguide, the values for
$\left[\frac{B_{d}}{\bar{Y}_{1}} \quad \frac{1}{u x}\right]$ and $\left[\frac{B_{a}}{Y_{0}} \frac{1}{\nabla x}\right]$ can, for a first approximation,
be those for $1 / u x$ and $1 / v x=0$. Once the root of the resonance condition is found, the choice of the susceptances can be improved accordingly.

For the solution of the resonant condition, either $p=\lambda / \lambda_{g}$ can be fixed while $x=b / \lambda$ is searched, or $x$ is fixed and the corresponding $p$ is found.

## Characteristic Impedance

Satisfactory values for the characteristic impedance of fin lines can be obtained with the expression

$$
\begin{equation*}
z_{0}=z_{\alpha^{\infty}} \lambda_{g} / \lambda=z_{0^{\infty}} / p \tag{6}
\end{equation*}
$$

where $Z_{0_{\infty}}$ is the characteristic impedance of a ridged wäveguide of identical cross-sectional dimensions at
infinite frequency, which can be obtained from Cohn's ${ }^{8}$ paper on properties of ridged waveguldes. The evaluation of $p$ has just been described.

## Results

$\because$ The resonant condicions have been programmed on a HP-9.7 calculator and solved using the standard program "Calculus and Roots of $f(x)$ ". Fig. 3 shows $p=\lambda / \lambda_{g}$ as a function of $x=b / \lambda$ for a unilateral fin line and for the corresponding ridged waveguide ( $\varepsilon_{r}=1$ ). For comparison, measurements made by Meier ${ }^{2}$ and calculations made by Hofmann ${ }^{3}$ are shown for the same fin line. Agreement with both authors is excellent. The diagram also shows the cutoff wavelengths of the guides $\left(a t_{,} \lambda / \lambda_{g}=0\right)$.

In order to find the lowest root of the resonant condition, an initial guess for $x$ must be made such that the program converges to the desired value. A good initial guess is $x=b / \lambda_{c o}$, where $\lambda_{c o}$ is the cutoff wavelength of the empty waveguide of identical dimensions.

Fig. 4 shows results for bilateral fin lines with values published by Saad and Bege mann. Unfortunately, the authors do not specify the frequencies at which the dielectric constant has been measured. Discrepancies between results reach up to five percent for thick substrate ( $c / b=0.228$ ).

## Conclusion

The availability in graphical form of values for capacitive irises in rectangular waveguides, and of a novel graph for evaluating the iris capacitance in the presence of a dielectric sheet, enable the fin line designer to accurately predict the guided wavelength in fin lines of any cross-sectional dimensions and substrate permittivity. The mathematical complexity of the solution does not go beyond finding the root of a transcendental equation, a task easily accomplished by small programmable computers. Nevertheless, the accuracy approaches that of a numerical solution and is ifmited only by the accuracy of the graphs, which is typically less than 4\%:

## Acknowledgement

This work was supported by the Communcations Research Centre of Ottawa, and by the National Research Council of Canada. The author acknowledges the help of Mr. S. Kosmopoulos in the numerical evaluation of the expressions.

## References

[1] P.J. Meier, "Equivalent Relative Permittivity and Unloaded Q-Factor of Integrated Fin Line", Electronics Letters, vol. 9, No. 5, April 1973, pp. 162-163.
[2] P.J. Meier, "Integrated Fin-Iine Millimeter Components", IEEE-Trans. on Microwave Theory and Techniques, vo1. MTT-22, No. 12, Dec. 1974, pp. 1209-1216.
[3] H. Hofmann, "Calculation of Quasi-Planar Lines for MM-Wave Application," IEEE-MTT-Int1. Microwave Symposium Digest, 1977, pp. 381-384.
[4] H. Hofmann, "Dispension of Planar Waveguides for Millimeter-Wave Application", Archiv. F. Elektron. u. Obertrag.-Techn., Vol. 31, No. 1, Jan. 1977, pp. 40-44.
[5] A.M.K. Saad, G. Begemann, "Electrical Performance of Fin Lines of Various Configurations," Microwaves, Optics and Acoustics, Vol. 1, No. 2, Jan. 1977, pp. 81-88.
[6] . N. Marcurvitz, "Waveguide Handbook", MIT Radiation Laboratory Series, No, 10, Boston Technical PubItshers, Inc., 1964.
18


26


Fig. 1 Cross-section and equivalent transverse network of various fin line configurations. a. Ridged waveguide b. unilateral fin line. c. bilateral fin line d. insulated fin line


Fig. 2 Correction factor accounting for the presence of a dielectric substrate
[7] S.B. Cohn, "Slot Line on a Dielectric Substrate", IEEE-Trans. on Microwave Theory and Techniques, Vol. MTT-17, No. 10, Oct. 1969, pp. 768-778.
[8] S.B. Cohn, "Properties of Ridge Wave Guide", Proc. of the I.R.E., Vol. 35, No. 8, August 1947, Pp. 783-788.


Fig. 3 Guided wavelength in unilateral fin line and in ridged waveguide. $\mathrm{b} / \mathrm{a}=0.5 ; \mathrm{d} / \mathrm{b}=0.13 ; \mathrm{s} / \mathrm{b}=0.072 ; \varepsilon_{\mathrm{r}}=2.22$


Fig. 4 Effective dielectric constant at cutoff in bilateral fin line.
$b / a=0.5 ; \varepsilon_{r}=2.22$
upper curves: $s / b=0.228$
lower curves: $s / b=0.05$

$$
-\mathrm{A}-36-
$$

## APPENDIX 4

"FIN LINE PARAMETERS CALCULATED
WITH THE TLM-METHOD"

Wolfgang J.R. Hocfer,<br>Dept. of Electrical Engincering, University of Ottawa,<br>Ottawa, Ontario, CANADA

Alain Ros,
Laboratoire d'Electronique, Université de Nice, Nice, FRANCE

## ABSTRACT

The guided wavelength in fin line is calculated using the Transmission line Matrix (TLM) method. The resonant frequencies of fin line cavities are evaluated on a computer, ylelding the dispersion characteristic of the fundamental and higher order modes of propagation.

## Introduction

Various methods for the evaluation of fin-1ine parameters have been presented by Meier ${ }^{1}$, Hofmann ${ }^{2}$ Saad and Begemann ${ }^{3}$ and Hoefer ${ }^{4}$. In addition, a method for analyzing the transition from fin-line to a belowcutoff waveguide has been reported by Saad and Schuenemann5. In the present paper, the application of the Transmission Line Matrix (TLM) technique to the fin line problem is demonstrated for the following reasons:
a) To verify and eventually to refine the various methods mentioned above,
b) To calculate the equivalent lumped element circuit of fin line discontinuities which have not been evaluated to date.

The number of results given in the present paper is rather limited because of the considerable size of memory and the large CPU-time required for the calculation of a given structure.

## The TLM - Method

The transmission-line matrix (TLM) method was developed by Akhtarzad and Johns ${ }^{6}$ and was applied by these authors to the analysis of three-dimensional resonating structures, The dispersion characteristics of waveguide structures and discontinuities can be obtained by calculating the resonance frequencies of cavities exhibiting the pertinent cross-sectional geometry and containing the discontinuities under investigation. To this end, field propagation in the structure is simulated by the propagation and scattering of impulses in a three-dimensional transmission line lattice characterised by the parameter $\Delta l$ (distance between adjacent nodes. Boundaries (electric and magnetic walls) and dielectric interfaces can be simulated by fintroducing stubs which modify in an appropriate way the impedance across nodes situated at the boundaries or inside the dielectric. Valid results are obtained if the distance between nodes is smaller than $0.1 \lambda$, where $\lambda$ is the free-space wavelength corresponding to the resonance frequency of interest. On the other hand, .the minimum value for $\Delta l$ is limited by considerations of available computer memory.

To start the calculation, one or more nodes (depending on the mode to be investigated) are excited by an impulse. The propagation of the impulses across the three-dimensional network is calculated in real time. After a sufficient number of iterations (forth-and-back trips of impulses across the structure), the impulse response of the structure is picked up at strategic output points, chosen again according to the expected field distribution. Speaking in terms of measurements, the position of the fnput and output nodes is chosen in the same way as the position of field probes for excitation
and detection of modes in a resonator. In the TLMprogram, however, the "probes" do not interact with the field and thus are non-perturbing.

From the time domain output, the eigenvalues of the structure in the frequency domain are obtained via Fourfer Transform. The number $N$ of fterations must be sufficient to obtain satisfactory resolution in the frequency domain. The finite character of $N$ limits the response in the time domain and thus determines the resolution of maxima and minima in the frequency spectrum.

## Features of the Computer Program

The original program published by Akhtarzad ${ }^{7}$ has been modified by A. Ros (co-author) and co-workers to gain a factor 5 in CPU-time and a factor 2 in memory size. This has been achieved by incorporating the subroutines into the main program. Stiłl, for the structures calculated in the present paper, considerable memory is required, particularly because fin line struetures with relatively thin dielectric and small finspacing require at least three nodes within the smallest dimension to yield satisfactory accuracy.

A value of $\Delta \ell=.4 \mathrm{~mm}$ has been chosen for the distance between adjacent nodes. A typical program for a cavity of $20 \times 10 \times 4 \mathrm{~mm}$ requires a memory close to 1 M-octets, and an IBM 360 runs for about $240 \mathrm{CPU}-\mathrm{min}$ utes to execute 1000 iterations, These requirements are obviously the major drawback of the TLM-method, but on the other hand, any structure can be handled regardless of complexity of its geometry.

## Computations and Results

A rectangular cavity containing a unilateral fin Ifne structure was adopted for TLM computations. Fig. 1 defines the parameters of the structure. Resonant modes are characterized, as in empty rectangular cavities, by indices $2, \mathrm{~m}$, $n$ representing the number of half-periods in $x$; $y$ and $z$ direction respectively.

Resonant frequencies were calculated with the TLMmethod and compared with results obtained by solving transverse resonant conditions as shown by Hoefer ${ }^{4}$. Several special cases for which exact analytical solutions exist, were chosen to verify the accuracy of the TLM-program.

Since the $\mathrm{TE}_{10}$ fin line mode is of particular interest, the c-dimension should idealiy be the longest dimension in order to separate it well from the other modes. However, this would require excessive computer memory, and shorter lengths $c<a, b$ had to be chosen.


Fig. 1 Rectangular cavity containing unilateral fin 1ine

CONFIGURATION 1: Empty Cavity

$$
\begin{array}{ll}
-\mathrm{a}=20 & \mathrm{~d}=\mathrm{b}=10.4 \mathrm{~m} \\
\mathrm{~b}=10.4 \mathrm{~m} & \mathrm{E}_{\mathrm{r}}=1 \\
\mathrm{c}=7.2
\end{array}
$$

| Mode | Resonant <br> TLM | Frequency (GHz) <br> Exact | Error |
| :---: | :---: | :---: | :---: |
| $\mathrm{TE}_{110}$ | 16.22 | 16.257. | $-0.2 \%$ |

Table 1 Resonant frequency of empty cavity. Comparison of TLM and exact solution.

CONFIGURATION 2: Dielectric-Filled Cavity

| . $\mathrm{a}=20 \mathrm{~mm}$ | $\mathrm{d}=\mathrm{b}=10.4 \mathrm{~mm}$ |
| :---: | :---: |
| $b=10.4 \mathrm{~mm}$ | $s=a=20$ дm |
| $c=7.2 \mathrm{~mm}$ | $\varepsilon_{r}=2.22$ |


| $\because$ Mode | Resonant <br> TLM | Frequency (GHz) <br> Exact | Error |
| :---: | ---: | :---: | :---: |
| $\mathrm{TE}_{110}$ | 10.91 | 10.911 | $0 \%$ |

Table 2 Resonant frequency of dielectric-filled cavity $\left(\varepsilon_{I}=2.22\right)$.
Comparison of TLM and exact solution.

CONFIGURATION 3: Cavity with Dielectric Slab

$$
\begin{aligned}
& a=20 \quad \text { min } \\
& \mathrm{d}=\mathrm{b}=10.4 \mathrm{~m} \\
& b=10.4 \text { min } \\
& c=4 \quad \mathrm{~mm} \\
& \begin{aligned}
s & =2 \mathrm{~mm} \\
\varepsilon_{r} & =2.2
\end{aligned}
\end{aligned}
$$

| Mode | Resonant TLM | Frequencies Exact | Error |
| :---: | :---: | :---: | :---: |
| TE $_{101}$ | 33.52 | 31.866 | 5.27 |
| $\mathrm{TE}_{301}$ | 44.67 | 41.522 | 7.6\% |
| $\mathrm{TE}_{501}$ | 52.40 | 50.567 | 3.67 |
| TE 102 | 59.42 | 57.673 | 37 |
| ${ }^{\text {TE }} 701$ | 63.39 | 62.026 | 27 |

Rable 3 Resonant frequencies of cavity with dielectric slab $\left(\varepsilon_{r}=2,2\right)$. Comparison of TLM and. exact solutions.

CONFIGURATION 4: Cavity Containing Centered Thin Fins

$$
\begin{array}{ll}
a=20 \quad d & d=1.6 \text { घू } \\
b=10.4 \mathrm{~mm} & e_{r}=1
\end{array}
$$

$$
c=7.2 \text { min }
$$

| Mode | Resonant <br> TLM | Frequencies <br> Hoefer ${ }^{4}$ | Effe <br> Cons <br> $\varepsilon_{e f f}$ <br> TLM | $\begin{aligned} & \text { Diel. } \\ & \left(\lambda_{g}\right)^{2} \\ & \text { Hoefer } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| - $\mathrm{TE}_{110}$ | 20.63 | 20.60 | n/a | n/a |
| ${ }^{\mathrm{TE}} 101$ | 23.25 | 21.477 | 0.880 | 0.97 |
| ${ }^{\text {TE }} 301$ | 29.20 | 27.033 | n/a | n/a |

Table 4 Resonant frequencies of cavity with centered fins. Comparison of TLM solutions and solutions obtained using transverse resonance conditions. $\mathrm{TE}_{101}$ is the fundamental fin line mode.

CONFIGURATION 5: Cavity Containing Unilateral Fin Line

| Mode | Resonant <br> TLM | Frequencies <br> Hoefer | Effecti <br> Constan $\begin{gathered} \varepsilon_{\mathrm{eff}}{ }^{=} \\ \mathrm{TLM} \end{gathered}$ | ve Diel. <br> $\left(\lambda / \lambda_{g}\right)^{2}$ Hoefer |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{TE}_{110}$ | 14.49 | - | n/a | n/a |
| $\mathrm{TE}_{101}$ | 20.19 | 18.40 | 1.065 | 1.282 |

Table 5 Resonant frequencies of cavity containing unilateral fin iine. Comparison of TLM solutions and solutions obtained with method described by Hoefer ${ }^{4}$. $\mathrm{TE}_{101}$ is the fundamental fin line mode.

$$
\begin{aligned}
& a=20 \quad \text { m } \\
& \mathrm{d}=1.6 \mathrm{~mm} \\
& b=10^{\circ} .4 \mathrm{~mm} \\
& s=1 \quad \text { m } \\
& c=7.2 \text { 路 } \\
& \varepsilon_{I}=2.22
\end{aligned}
$$



Fig: 2 Rectangular cavity containing a fin line step discontinuity at its centre.
:CONFIGURATION 6: Cavity Containing a Fin Line Step Discontinuity at its Centre (See …Fig. 2)

$$
\begin{aligned}
& \because=20 \quad \text { m } \\
& b=10.4 \mathrm{~mm} \\
& c=6.4 \text { m } \\
& \mathrm{d}_{1}=1.6 \\
& \begin{aligned}
\mathrm{d}_{2} & =3.2 \mathrm{~mm} \\
\mathrm{~d}_{2} & =4 \quad \mathrm{~mm} \\
\mathrm{~d}_{2} & =5.6 \mathrm{~mm}
\end{aligned} \\
& \varepsilon_{\Sigma_{2}}=1
\end{aligned}
$$



Table 6 Res sonant frequencies of cavity containing a fin line step discontinuity. In the $\mathrm{TE}_{101}{ }^{-}$ - mode, a current node is situated at the discontinuity, while in the $\mathrm{TE}_{102}$-mode, a voltage -node occurs at this position. $d_{1}=1.6$ m.


Fig. 3. Equivalent parameters for a step discontinuity of fin line, calculated with the TLH-method.

Fig. 3 shows the calculated equivalent parameters of the discontinuity for the resonant frequency of the fundamental fin line mode $\mathrm{TE}_{101}$, as well as the equivalent circuit itself. The accuracy is estimated to be about $\pm 10 \%$

## Conclusion

The TLM-method yields resonant frequencies of rectangular cavities accurate within $\pm 0.5 \%$, if the cavities are homogeneously filled with dielectric. In the presence of a centered dielectric slab ( $\varepsilon_{r}=2.2$ ), the TLM-calculated frequencies are typically $5 \%$ too high. If fins are introduced into the cavity, TLM-frequencies are $8 \%$ higher than frequencies obtained with formulae for ridged waveguides. ${ }^{\text {Similar discrepancies exist. }}$ between TLM frequencies for unilateral fin line and frequencies obtained with Hoofer's ${ }^{4}$ method. Consequently, the effective dielectric constant $\varepsilon_{\text {eff }}$ for unilateral fin line is $17 \%$ smaller when calculated with the TLM-method. Further study is necessary to deterwine the reason for these differences.

## References

1 Meier, P.J.: Integrated Fin Line Millimeter Components, IEEE Trans, on Microwave Theory and Techniques, Vol. MTT-22, No. 12, Dec. 1974, pp. 1209-16

2 Hofmann, H.: Calculation of Quasi-Planar Lines for MM-Wave Application, 1977 IEEE MTT-S Inti: Microwave Symposium, San Diego, Digest pp. 381384.

3 Said, A.M.K., Begemann, G.: Electrical Performance of Fin Lines of Various Configurations, IEEE J. MOA, Vol. 1, Jan. 1977, pp. 81-88.

4 Hoefer, W.J.R.: Fin Line Design Made Easy, 1978 - IEEE MTT-S-Int1. Microwave Symposium, Ottawa, Digest p .471.

5 Said, A.M.K., Schuenemann, K.: A Simple Method for Analyzing Fin Line Structures, 1978 IEEE MIT-S-Intl. Microwave Symposium, Ottawa, Digest pp. 405-407.
6. Akhtarzad, S., Johns, P.B.: Three-Dimensional TLM Computer Analysis of Microstrip Resonators", IEEE Trans. on Microwave Theory and Techniques, Vol. MTT-23, No. 12, Dec. 1975, pp. 990-997.

7 Akhtarzad, S.: Analysis of Lossy Microwave Struccures and Microstrip Resonators by the TLM-Method Ph.D. thesis, University of Nottingham, May 1975.

1ANALYTICAL AND EXPERIMENTAL STUDY OF SELECTED PASSIVE MICROWAVE COMPONENTS IN PLANAR/FIN LINE GVIDE.

I
C654
H64

$$
1979
$$

|  | Date Due |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

