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1) INTRODUCTION  

Fin line is an attractive transmission medium at millimeter 

wavelengths for its ease of fabrication and its compatibility with 

semiconductor devices. Its wide bandwidth, low dispersion and 

moderate attenuation (when compared with microstrip in that fre-

quency range) would make it 'a favorite candidate for many designers, 

were it not for the cumbersome design procedures available to date. 

Treatment of the fin line as a ridged waveguide of identical 

dimensions yields only poor accuracy, 15% at best for the effective 

permittivity and characteristic impedance. 

Meier's [9] expressions for these parameters are certainly 

adequate for most applications, particularly at frequencies well 

above cutoff of the fundamental TE 01-mode, but unfortunately, the 

determination of the effective dielectric constant of the line 

requires a sample measurement, which is expensive and time consuming. 

On the other hand, the exact solution of Maxwell's equations 

in fin line, as presented by Hofmann [2], tends to dissuade many 

designers by its involved mathematics, even though it is the ultimate 

approach. 

The objective of the present study is to present an easier 

but nevertheless accurate method to theoretically predict the guided 

wavelength and characteristic impedance in fin lines. 
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To this end, the transverse resonance condition in a 

fin line resonator is solved using either a graphical method 

(very cheap but quite accurate) or a computer routine, »either 

on a programmable pocket calculator  or  on a large computer. 

The equation for the transverse resonance condition contains an 

expression for the discontinuity susceptance of the fins and the 

substrate. It is this susceptance that will be presented in 

mathematically closed form, following the style of Marcuvitz 1 [6] 

Waveguide Handbook. This approach is familiar to all microwave 

circuit designers and combines the advantages of easy mathematical 

formalism and the accuracy of the exact solution from which it 

has been derived. 

The exact solution presented in the present repoi.t is 

based on Cohn's [7] treatment of the unshielded slot line. Taking 

into account the transverse impedance of the fin line enclosure 

acting as a rectangular short-circuited waveguide below cutoff, 

the susceptance of the combined substrate-fin discontinuity is 

derived from Cohn's expressions which have already been conceived 

for fast convergence on a computer. 

In conclusion, the fin line designer will benefit from 

the present approach because he will 

a: save time by using the computer programs presented in 

this report 

b. apply the results of an exact solution without having 

to solve the boundary value problem himself, and 

c. have at his disposal a flexible method to evaluate 

geometries of arbitrary dimensions. He can therefore 

deviate from published data for very special geometries. 
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2) BASIC PROPERTIES  OF FIN LINES  

In a fin line structure, metal fins are printed on a 

dielectric.substrate which bridges the broad side of a.rectan-

gular waveguide. Several different arrangements are possible, 

such  as the  examples shown in figure 2.1. 

Figure 2.1 Cross-section of several fin lines 

a) Bilateral or earthed fins; b) Unilateral fins 
c) Central or insulated fins; d) Antipodal fins 
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In all cases, the thickness of the metal fins is 

negligeably small compared with the thickness of the dielectric 

substrate. The metal walls of the guide have a thickness of 

where X s is the wavelength in the substrate, so that a RF 

short-circuit appears in the plane of the inner broad walls. 

Even though the fin line is basically a loaded wave-

guide, its propagation properties are essentially determined by 

the relative fin spacing d/b and, to a lesser extent, by the 

dielectric constant of the substratè. Thus, the transmission 

line properties depend on the central planar structure rather 

than on the size of the metal  enclosure. 

An alternate way of describing a fin line is to call 

it a slotline (as analyzed by Cohni- 1]), which has been placed 

• into a rectangular waveguide. 

A first understanding of the effect of the fins on 

the propagation in the guide can be gained by considering the 

fins and the dielectric as a capacitive loading which lowers 

the cut off frequency of the fundamental TE1 .5 mode and reduces 

its guided wavelength. The same applies to the higher TEmo- 

modes with odd m, while all modes with even m are only slightly 

affected. This explains the larger bandwidth of the fundamental 

fin line mode, when compared with the TE I:5 mode in rectangular 

waveguide. 

By the same consideration, it can be seen that with 

decreasing d/b-ratio, the characteristic impedance of the fin 

line decreases. Characteristic impedances ranging from about 



Shunt mounted element 

Step in fin hight 
I  (Impedance step) 

Metal Fins 

400 R to 100 R can be achieved with all types shown in figure 2.1. 

The antipodal line however can provide even lower impedances 

(dàwn to ion) by overlapping of the fins (d/b < 0) [2]. 

If active devices are to be added to the fin line, at 

least one of the fins must be insulated from the ground at dc 

to permit the application of bias, without disrupting the RF 

grounding of the fins. This can be done by inserting thin die-

lectric gaskets between the fins and the waveguide walls. 

Figure 2.2 shows how the properties of fin line can be 

changed in longitudinal direction by varying the d/b-ratio, and 

how semiconductor devices can be added in series and in parallel. 

Series mounted element 

Fig. 2.2 Longitudinal view of fin line with impedance 
steps and mounted active elements. 



In the following, expressions for the electromagnetic 

parameters of fin lines are derived. These parameters depend 

on the cross-sectional .geomètry and ori: the substrate permittivity. 

3) DETERMINATION OF GUIDED WAVELENGTH AND CHARACTERISTIC IMPEDANCE  
OF FIN LINES  

3.1) Guided Wavelength in Ridged . Wavèguiee  . . 

A first glance àt fin line geometries shows their simi- 

larities with *ridged waveguide. In fact, if the permittivity 

of the substrate is low and the thickness of the substrate is 

small*compared with the dimensions of the waveguide, the formalism 

for ridged waveguide may be applied to the fin line. Considerable 

design information for ridged waveguide is available in the 

literature [3][4][5][6], and detailed derivations for such struc-

tures will therefore not be given . here. However, with the advent 

of small programmable calculators, it is easy to calculate the 

parameters of ridged waveguides of arbitrary geometry. The 

designer has thus more freedom in the choice of dimensions and 

can deviate from tabulated and charted data. For this reason, 

the method for evaluating the parameters of ridged waveguide will 

be outlined briefly. 

As an example, the geometry shown in figure 2.1c will 

be chosen. When the influence of the dielectric is neglected, 

a waveguide with a central ridge of zero thickness results (see 

figure 3.1a) .  

If a wave travels in longitudinal direction, its guided 

wavelength being A g  the transverse electric field of the lowest r 
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mode will be zero at both sidewalls as well as in transverse 

planes at distances X /2 from each other. If electric walls 

are inserted in two such transverse planes, a standing wave is 

created and resonance occurs. 

For further analysis, the resonator is now considered 

to be a rectangular waveguide of height b and width X /2,containing 

aigrélft 

reardrAllardierdrAB 

Fig. 3.1a Waveguide with central ridge of zero thickness 

ine-  a  

Fig. 3.1b Equivalent transvrse resonant network of 
above waveguide 



a transverse capacitive iris and being short-circuited at 

-a/2 and + a/2 from this discontinuity. 

The transverse resonant condition is thus: 

B 	t a 
7.•-7 - cot -- = 0 

o  
X t  

where t is the transverse guided wavelength: 

• A 2 -1  =A[1 	 2  

(3.1) 

(3.2) 

A is the free-space wavelength. The normalized discontinuity 

susceptance B/Yo is given in the Waveguide Handbook [6], 

section 5.1, as: 

47Td 
B = 4b d Q cos 

fin(csc 
7o At 	 2b 	 4md 1+0 sin 7E:  

2 Ird• 2 	4  rd .4_ 16 
	

/ 1 tb ) 2 (1-3sin 	cos 7EI 	 (3.3) 2b " 	‘A t  
b  21 with Q = 	 ] 2 	1 	 (3.4) 
At 

For small values of d/b,and for d/b close to unity, somewhat 

simplËrexpressions for B/Yo can be found in [6]. By fixing the 

b/a - ratio and choosing an arbitrary value for A/A g , the cor-

responding b/A is found as the root of eqn. (3.1). This root 

is obtained either graphically or perusing a standard routine 

readily available for programmable minicalculators. 



(3.5) 

The root of eqn. (3.1) can be found with considerably 

less computational effort if direct use is made of the graphical 

presentation of the transverse discontinuity susceptance in the 

Waveguide Handbook [6] (see Fig. 5.1-4 of this reference.) For 

this purpose, the transverse resonance condition in eqn. (3.1) 

is rewritten as follows: 

1,B 	• X 	b 	 a 
Ly-  • -F1 	-  cotir  r- 

- t 

where X t is the transverse guided wavelength. x - Theterminsquarebracketsisthe[-- _2ipresented in the Yo  b 

Waveguide Handbook [6], Fig. 5.1-4, provided X therein is re-

placed by  X .  of this report. Close inspection of Fig. 5.1-4 in 

[6] shows that the normalized susceptance is rather insensitive 

to changes in b/X t as long as b/X is smaller than 0.4, which is 

practically always the case. Thus, a very good approximation for 

b/X t can be found by introducing into eqn. (3.5) the value of 

[(B/Y0)/(X t/b)] for b/X t  = 0. The root obtained with this value 

is accurate within a few percent. 

If a better approximation is desired, an improved' value 

for [(B/Y0)/(Xt/b)] corresponding to the just calculated b/Xt 

 is introduced into eqn. (3.5). The guided wavelength X in the 

ridged waveguide is then found by writing 

X =X [1-(X/Xt ) 2 ] -1/2 

where X is the free space wavelength. 

(3.6) 
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A t = 
 (3.7) 

For the purpose of designing a waveguide, it is more 

desirable to write the transverse resonance condition (3.5) 

directly in terms of the free space wavelength À as well as the 

guided wavelength in longitudinal direction, 	• This is done 

by writing 

and introducing Â t  into eqn. (3.5), We use the following con- 

venient abbreviations 

À/À = p ; 	b/Â = x 

[I-(X/X )
2

]
1/2= (1-p 2 ) 1/2 = v ; b/a = z ; d/b = t 

and obtain: 

1 B 	1 [ 	• 737  ] vx - cot(uvx/z) = 0 
'o 

(3.8) 

The normalized susceptance of the transverse discontinuity 

(eqn. (3.3)) becomes with the same abbreviations: 

B 	1 	 Q cos 4 ut/2 
- 	= 4 [-en.(csc Ut/2) + 	  

1 + Q sin 4  ut/2 

+ —1 (vx) 2 (1-3 sin 2  ut/2) 2 cos 4
ut/2] 16 

(3.9) 
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.3 	b/À 

Fig. 3.2 Guided wavelength in ridged waveguide with centered ridae 
of zero thickness (thin fin) b/a=0.5 

.4  
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with 

[/..(vx) 2 1 -1/2 	1  (3.10) 

Eqn.(3.8)can be programmed in such a way that the value 

. for any variable will be found if all others are given. (Program 

for calculating the roots of a function). 

The value for the discontinuity susceptance may be taken 

from Fig. 5.1-4 of the Waveguide Handbook [6] or included explicitly 

in the program using eqn. (3.9). 

Several such programs are given in Appendix 1. Typical 

results are presented in a diagram with x = b/À as abscissa and 

P = À/À as ordinate, which has the advantage of being normalized 

(Fig. 3.2). Another way of presenting results would be tà show . 

eff = (À/À )
2 as a function of frequency or angular frequency 

with t as parameter, or alternatively w as a function of 

0 = 2n/À or even E
eff 

versus t with the frequency as a parameter. 

The choice finally depends on the characteristics of interest and 

on the habits of the designer. 

In the case of bilateral or earthed fins (see Fig. 2.1a) 

the ridged waveguide approximation presents a finite ridge width s  

as shown in Fig. 3.3. In the equivalent transverse network of 

this structure, the thick capacitive obstacle must be represented 

by the network shown in section 5.9 of the Waveguide Handbook [6]. 
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For transverse resonance to occur, the following condition must 

Fig. 3.3 Cross-section and equivalent transverse network 
of double ridged waveguide 

1 	 o 	1 
tanuvxw + [

Yo 
-7uc] vx - cot vx(1  u 	- w) = 0 (3.11) 

where v = [1-p 2 ] 1/2 ; p = A/A ; x = b/A ; 

z = b/a• 	; w = s/b ; t = cl/b; 

A = is the guided wavelength in longitudinal direction 

= is the free space wavelength 



ZTE = {120n/p] Ohms (3.14) 
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In this expression: 

BO 	11B1 
7-  • -‘77 = I [ 7 (3.12) 

B 1 where — — is given by eqn. (3.9) within a few percent. vx Yo 

The transverse resonant condition (3.11) can be evaluated 

in the same manner as eqn. (3.8). Appropriate computer programs 

are given in Appendix A-2. For s = 0, the solutions are those for 

fins of zero thickness. 

Results can be plotted in the same way as in Fig. 3.2 with 

the additional parameter s to be specified. 

3.2. Characteristic Impedance of Ridged Wavegùide  

The characteristic impedance of any TE-mode in a uniform 

waveguide of arbitrary cross-section is given by 

• 	 
Z TE = 	g 	I 1  - - 

E 	À 	 E 
(3.13) 

If the waveguide is air-filled, this impedance becomes 

where p can be evaluated using the methods described above. 
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In impedance matching problems, however, a characteristic 

impedance based on the voltage-to-current ratio is employed. 

In the formulation of this ratio, the transmission  line current 

is separated into two components: 

a) A longitudinal component on the top and bottom 

plates of the waveguide, which excites the 

principal fields. 

b) A longitudinal component on the step wall 

which excites the local fields. 

In order to evaluate these currents, let us consider 

the cross-section of a ridged waveguide as shown in Fig. 3.4 

Fig. 3.4 Cross-section of double ridged waveguide with equivalent 
transverse network showing the voltage distribution 
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At the steps situated ± d/2 from the centre of the cross-section, 

the voltage must be continuous across the equivalent step dis-

continuity capacitance. As a next step, the normal electric field 

E along the top wall of the ridged guide is evaluated. The 

longitudinal linear current density _I is then directly related to 

the normal electric field by the field impedance Z TE : 

Finally, the total longitudinal top wall current  I 	obtained 

by integrating 

+a/2 	 a/2 
I =f 	Jd2, 	 En/ZTE dt 

0  
(3.16) 

The characteristic impedance based on the Voltage-to-Current 

ratio is then 

(3.17) 

a) Evaluation of the longitudinal current in the central 

part of the cross-section 

In the TE10 -mode, the voltage decreases cosinusoIdally outwards 

from the centre: 



Tr 
V

1 
= Vo cos A . 

 
(3.19) 
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2#. 
V(Z) = V cos 	•  L. 

 At 
(3.18) 

The voltage V1  at the step is thus 

The longit. current density at the top wall is, according to 

eqn. (3.15) 

1V  
(£) _ —9— cos 2n  t 

d ZTE 	
A t 

(3.20) 

and the longitudinal current in the central part becomes 

	

S/2 VO 	2 1 	- 2- 	 n 
f 	it cos 	dt Z £ 1  - d 'TE L=0 	

A
t . 	. 	- 

(3.21) 

1 vot 	. ws = 7 	• —c7.  sin 7— 
- 	TE 

b) Evaluation of the longitudinal current in the 

lateral parts of the cross-section. 

In the lateral parts of the cross-section, the TEi o -

voltage decreases in a cosinusoidal fashion, with a node 

situated at ± a/2. If 2 is the variable distance inward from 
the sidewalls, then the voltage varies in the transverse 
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direction as 

us 

o 	 s.,..n -- 9» .! 	2n V(') = v 	xt 	 

sin  la-S)  

-t 	. 	
Xt 

--_ COS 

(3.22) 

The longitudinal current density in the top wall beComes thus 

nS 
cos  -57-- 

	

2u 	, V 	
• t 	sin 

xt 

1 o 
zTE sin ira-s)  

(3.23) 

The total longitudinal current in the lateral parts becomes: 

	

a-s 	 us V 
 - 2 f2 	1 o cos -

Ti 	 2u  sin 	£' d£' 
- Z 	u(a- s) t 

	

£ =0 	TE sin 	A t 
a-s 

V 	cos 2 	o 	us/À t 	A t _ - 	 -- cos 271 	 2 
- £' 	1 - 	b A t' ZTE sin  n (a-s) 	2w 

	

A t 	
0 

1 Vo 	À t cos us/À 

	

t 	 (a-s)1 = -- u Z 	b 	n(a-s) 	1 cos 
TE 	sin 	 Xt 

A t 

Since 

1-cosa 	a- =tan 7  sina 

we can write eqn. (3.24) as follows: 

(3.24) 

(3.25) 

1 vo 1 	7 
7TE 

 — —7, cos(us/A t ) tan[u(a-s)/2At ] 	(3.26) 
2  
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c) Evaluation of the longitudinal current in the discontinuity 

region. 

Assuming that the discontinuity region can be represented 

by a shunt capacitance C s/unit length subject to the voltage 

V1 = Vo cos us/X t' we can imagine it as a parallel plate capacitor 

of plate distance h and width 2, in the transverse direction 

o (3.27) 

The electric field strength in the capacitor is then 

E - V1  /h = (Vo/h) cos ns/Xt 	 (3.28) c  

and the current in the top plate: 

o  I t  
=E c 	_ 	cos ns/X t TE 	hZTE 

Replacing £/h by C 5/c 0  we obtàin for I .  

V C 
= 

t 	 E 	cas us/Xt TE o 

(3.29) 

(3.30) 

The total discontinuity current, taking into account 

both halves of the cross-section, is then 

2 
 = 	
Vo 	1 • °)Cs • Y 	cos ns/X t I 9, 3 7O U 	w Y 	otTE 	ot 

(3.31) 
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after some further modification, this current becomes, for a 

finite real A in longitudinal direction: 

1 Vot Bo_ 
1z = 7 	-u 4-) cos us/At 	 (3.32) 

3 	TE 

The characteristic impedance, as defined in eqn. (3.17), is 

then for the ridged waveguide: 

	

b 	b 	 B, u(a-s)  Z 	
t o = ZTE n -

À 	

{ - sin us/A t + [( ') + tan 	2A t 
'I cos us/At 1 

d 	 Yo  

(3.33) 

If we introduce the abbreviations. already used in the evaluation 

of the guided wavelength, i.e. 

b/At = vx ; v = (1-p
2 ) 1/2 ; p =•A/A g '  ; x = b/A 

b/a = z 	; d/b = t 	; s/b = w 

this expression for the impedance becomes: 

12071-  uvx 
Z 	= 	 p .  

0 
1 • 	 t B0 1 	 1 -sinuwvx+[1-- --)vx. + 	wvx- tan 	(- -w)lcos uwvx 

Yo vx 	 2 z 

(3.34) 

This expression can be evaluated if the transverse resonance condition 

(3.11) has been solved. Fig. 3.5 shows the characteristic impedance 

of ridged waveguide for several values of w and t with z = 0.5. 

The results were calculated using the program described in Appendix 

A 1.1.2. (Bo  /Y 0  )/vx is the same as in eqn. (3.12). 



I I \ 

I 	\ 

[Ohms] 

400 

300 

z o 

- 20 - 

• !BM«. • ...Mum. • 

w=0 	; t=0.25 

w=0 	7 t=0.1 
w=0.1 ; t=0.1 

• emlom• • ■••■••• • 

wo•■••••••1 

"""«.•••••■■ ••••■■•••.. •••••••••••• 	•••••■■•• •••••■•■■• 

200 

100 

O 
.1 

1 
. 4  .2 

•••••••11 

•••••• 

.1 	 .2 .3 	 .4 	 .5 b/X 	.6 O  .7 

MI••■ 

• ■•••11 

.5 b/X 	.6 *.7 

x a  
••••••••'• 

... 
.,/ 

//. 
,/. 

.4 

b/a=0.5 

.8 

.6 

• ■••••• • r,______•„.• 

w=0 	; t=0.25 

w=0 	; t=0.1 

w=0.1 ; t=0.1 

.2 

O 

I 	i 
I 
I 	i  

Fig.3.5 Characteristic impedance and guided wavelength in ridged 
wavequide 
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3.3 Guided Wavelength in Fin Lines  

Fin lines can be treated in the same way as ridged 

waveguides with the additional complication that the presence 

of a dielectric sheet at the transverse discontinuity modi-

fies its parameters. 

In the present chapter, it is shown how the die-

lectric sheet changes the shunt susceptance of the fins. 

3.3.1 Unilateral Fin Line  

Let us study the unilateral fin line structure shown 

in Figure 2.1 b. Considering that this structure is a rec-

tangular waveguide with a centered ridge of zero thickness 

to which a dielectric sheet of permittivity E r  has been 

added, we can say that the susceptance of the covered half 

of the discontinuity is increased by a correction factor 

somewhere between 1 and E r , depending on the thickness s 

of the sheet. 

It is convenient to normalize this correction fac-

tor in order to make it independent of the dielectric con-

stant, and it becomes: 

F - Slot susceptance 
for finite sheet thickness  

Slot susceptance for infinite sheet thickness 

An expression for F is derived in detail in section 

3.3.4. We can now draw the transverse equivalent network 

shown in Figure 3.6. 
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Fig. 3.6 Equivalent transverse network 
of unilateral fin line. 

The transverse resonance condition in this circuit is found 

by setting the total susceptance in the plane of the fins 

equal to zero. The lowest root of this expression des-

cribes the guided wavelength of the fundamental mode in 

the fin line. Again, the following abbreviations will be 

used: 

d/b =  t  ; s/b =  W  ; b/a 	Z 	X/Xg. = p 

b/X = x ; ,EEr 	p21/2= u ; [1 , p
2 1 1/2 = v 

xto= x/v 	xt1 = .x/u 	b/Xto = vx 

b/xti = .UX 

where x = .free-space wavelength 

Ag = guided wavelength in the fin line 

X to = transverse guided wavelength in air section 

X tl = transverse guided wavelength in dielectric filled section of the fin line. 

The transverse resonance condition is then for the unilateral 

fin line: 



v = 11 	p (3.36) 

and to replace, for p > 1, the term v by -jv in eqn.. (3.35) 

and also in the expression for (B/Y0 )/vx. This results in 

the following resonance condition: 

-(u/v) cot {27rwux + tan-1 E(u/v) tanh 2uvx (-1 - w)r 2z 

[ 
7 
B1 1 	,-) vx - u2 	B 	

_ 

+ F .,-- 	 --(/ lii vx . - coth Ire - 0 	(3.37) / 1  ux u  v 	Yo vx  

rs 23 

-(u/v) cot {2uwux +  tan 	tan 2uvx(-A w)71 

F [11. 	u 2 	 o 1 vx + 	vx - COt 1TVX  - 0 
1 ux 	 Yo vx 

for p < 1. 

(3.35) 

In this expression, the term (B0/Y0 )/vx is one half the 

value of (B/Yo)/vx given by eqn. (3.9). (B1/Y1 )/ux is the 

slot susceptance for infinite s and is one half the value 

of (B/Y0 )/vx provided that vx therein is replaced by ux. 

It should be noted that due to the presence of the 

dielectric sheet, the guided wavelength 	in the fin line 

can become shorter than the free space wavelength A. This 

leads to imaginary values for v, signifying that the air- 

filled part of the fin line is below cutoff. For the evalua-

tion of the root, it is convenient to define v as follows: 

for p  >1 and v = 11 - p2 1 1/2  



a  -s  
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3.3.2 Insulated Fin Line  

The insulated fin line structure is symmetrical 

about the fins, as can be seen from Fig. 2.1c. Only one 

half of the transverse equivalent circuit (Fig. 3.7) needs 

therefore to be considered. 

Fig. 3.7 Transverse equivalent  circuit of 
insulated fin line." A magnetic 
wall is inserted in the plane of  

the fins. 

The situation resembles that of the leet hand side of uni-2  

lateral fin line. The transverse resonant condition states 

that the total admittance at the plane of the magnetic wall 

must be zero: 

- (11/v) cot {Trwux 	tan71  E(u/v) tan 'Fvx 	w)]} 

fB1 1] . A.1,2 
g 	 VX 	0 	 (3.38) Y1 ux v 

for p < 1. 
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All expressions in eqn. (3.38) are the same as those in the 

resonance condition of the unilateral fin line. 

Again, values for v can become imaginary, and in the 

above equation, v must be replaced by  -'iv  for k X.  We 

obtain: 

- (u/v) cot (uwux +  tan 	tahh uvx 	w)71 

rl • 1] ,u,2 	0 + F 	 t—/ vx = Y ux v 1 

for p > 1 and v = I , 	p2 1 1/2 

(3.3'9) 

Appendix A.2 presents a FortranIV program to evaluate 

these transverse resonance conditions. 

3.3.3 Bilateral Fin Line  

In the case of the bilateral fin line, the situation 

is still symmetrial about a central magnetic wall, but quite 

different from the two foregoing cases in that the dielec-

tric sheet is now bounded by  th è fins on one side and by a 

magnetic wall rather than a section of empty waveguide on 

the other side. The correction factor for the slot suscep-

tance on the dielectric side is then 

G = Slot Susceptance for 
finite sheet bounded by a magnetic wall 

Slot Susceptance for infinite sheet 

A diagram for G is given in section 3.3.4. 

The resulting transverse equivalent circuit is that of. Fig. 

3.8. Again, only one half of the circuit needs to be con-

sidered for symmetry reasons. 
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Fig. 3.8 Transverse equivalent circuit of bilateral 
fin line. A magnetic wall is inserted at 
the centre of the dielectric sheet. 

The transverse resonant condition states that the total ad-

mittance in the plane of the fins is equal to zero. With 

our usual abbreviations (  this reads: 

B1 (u/v) tan n 	 1 • wux + G 	( u7) 2  vx Y1  ux 

[ 
+ -= -- vx - cot nvx'c1  - w) = 0 Yo vx 	 z ( 3 . 4 0 ) 

for p < O. 

All expressions in the above equation are the same as those 

in the resonance condition of the unilateral fin line. 

For 2n 	v must be replaced by -jv in eqn. (3.40 ) g , 

as well as in the expression for (B0/Y0)/vx. We obtain: 

Bi 
(u/v) tan nwux + G 	 (11.) 2  vx 

-

2 •-1 vx - coth Ir.  vx (iî  - w) = 0 
. 6 

_ p211/2 for p > 1 and v = .11 	I 	- 

(3.41), 
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Appendix A.2 presents a Fortran IV program for sol-

ving these resonance conditions for bilateral fin line. 

3.3.4 Evaluation of the correction factors F and G  

In his treatment of the slot line, Cohn [7] has 

developed expressions for the admittance of a slot backed 

by a dielectric sheet, which can be used directly in the 

evaluation of the correction factors F and G. Fig. 3.9 com-

pares the structure characteristic oe unilateral fin line 

with Cohn's model of the slot line. The only difference 

resides in the a - dimension which is infinite in the case 

of the slot line. 

Fig. 3.9a Cohn's model of a slot line resonator. 
The guided wavelength is 7n g  . Rectangular .  
waveguide cut off at frequency of resonance. 
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Fig. 3.9b Fin line resonator of.identic'al fin 
structure as Cohns slot line, but 
rectangular waveguide short-circuited 
at 	a/z. 

In both cases shown in Fig. 3.9, the transverse susceptance 

of the dielectric-covered fins is the same, provided that 

a is large with respect to b (a k 2b). We can thus use 

the formula given by Cohn [7 ] for calculating the slot line 

susceptance. By letting w tend towards infinity, the slot 

susceptance for infinite sheet thickness is obtained. 

Finally, the correction factor F is just the ratio of the 

above two susceptances. 

To evaluate the factor G used in 4he case of bila-

teral fin line, the expression for the slot susceptance must 

be slightly' modified to take into account the presence' of 

the magnetic wall at the other side of the dielectric sheet. 
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All these rather cumbersome expressions have been 

programmed and evaluated on a computer. It turns out that 

the values for F and G are related in the'following way: 

F = (v/u) 2 + G El - (v/u) 2._] 

if p < 1 

If p increases beyond unity, v must be replàced by -jv, 
21/2 where v = 	p  I 	, yielding 

F = -(v/u) 2  + G Cl + (v/u) 2 ] 

if p > 1 

(3.41) 

(3.42) 

The correction factor G has been computed for several 

values of t and is presented as a function of the parameter 

w in Fig. 3.10. This diagram is used in the evaluation of 

fin line parameters through the solution of the transverse 

resonance conditions derived above. 

3.4 Characteristic Impedance of Fin Lines  

Once the guided wavelength in a in  line structure 

has been calculated, the characteristic impedance, based on 

a voltage-to-current ratio, can be  round  by dividing the 

characteristic impedance of a ridged waveguide of identical 

dimensions by the variable p = ?/X. This method is suffi- 

ciently accurate for small values of g and narrow dielectric 

sheets. 
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-4  W (FOR BILATERAL AND INSULATED FIN LINE) 
2W (FOR UNILATERAL FIN LINE) 

Fig. 3.10 Normalized correction factor G vs w for the 
evaluation of fin Une  parameters, with normalized 
fin spacing t as parameter. 
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In the case of unilateral  and bilateral  fin lines, 

the impedance chosen is that of a ridged waveguide with 

centered ridge of zero thickness. (Eqn. 3.34 with w = o). 

In the case of bilateral  fin line, the equivalent 

ridged waveguide has a ridge of thickness s. (Eqn. 3.34) 

In order to evaluate the characteristic impedance 

of a fin line, the cut-off freqùency of the commesurate 

ridged waveguide must be found first by solving eqn. (3.11) 

for p = 0. 

We thus obtain the normalized cut-off frequency vx 

of the ridged waveguide. 

This value for vx is then introduced into eqn. (3.34) 

• to calculate 

2 
 Z 	= zp 	
. 12 .0 .n .  Vk  ,. 	=

• 	
. 

0- 	0 
	' 1  ,-. sin nwvx + C(' o  --- ) vx -I- tan nv .( 1  !-w)]cos uwvx (3.43) 

t 	 ; vx' 	 2 z 

Finally, the fin line impedance is 

Zo. 
ZFin - 

where p is now the value of VX in the fin line, obtained 

from the solution of one of the transverse resonance condi-

tions (3.35), (3.36), (3.38), (3.39), (3.40) or (3.41). 

(3.44) 
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ATTENUATION IN FIN LINES  

Saad and Begemann [7] have published expressions for 

the attenuation constant of fin lines, based on an approximate 

solution of the transverse resonance condition. It is considered 

that these expressions are sufficiently accurate for most appli-

cations, and no alternative formulae will be given here. From 

graphs .presented bY Saad and Begemann [7] it appears that the 

attenuation constant in fin lines is typically 0.05-0.1 Nep/m 

(0.43-0.87 db/m). 

5) CONCLUSION  

An ,original method for the evaluation of fin'line para-

meters has been developed in the present report. This method 

combines accuracy with ease of application and versatility if use 

of the compilter programs (given in the Appendix 2) is made. 

The solutions obtained for the guided wavelength in 

unilateral fin line have been compared with measured data by 

Meier [9] and with numerical solutions published by Hofmann [2]. 

Excellent agreement is evident from Fig. 3 of Appendix 3 attached 

to the present report. 	 - 

As far as the characteristic impedanCe of ridged wave-

guide is concerned, results agree very well with Chen's [5] results. 
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There is no experimental verification as yet of the values for 

the characteristic impedance for fin lines. However, it is 

suggested that the values calculated for Z o  by Hofmann [2] are 

too high, and the expressions given in the present report appear 

more realistic. Further study is needed to explain these dis-

crepancies. 

A recent attempt has been made by the author to apply 

the TLM-method to the fin line problem. Some preliminary results 

of this study are presented in Appendix 4. This Appendix also 

contains data on an impedance step in ridged waveguide, calculated 

with the TLM-method. This approach seems quite promising and will 

be explored further with the aim of characterizing fin line dis-

continuities which cannot be treated with other methods because of 

the very difficult field problems they pose. 

It is suggested that the results and methods presented 

here constitute a basis for accurate and versatile fin line design. 
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APPENDIX I 

Appendix 1 presents several methods and programs to determine 

the guided wavelength and characteristic impedance in a rectangular 

waveguide with central longitudinal ridges of zero and finite 

thickness. 

Fig. A1.1 shows the geometry of such a waveguide 

containing central fins of zero thickness. 

ALI 

The transverse resonance condition is given in eqn. (3.8) 

and can be solved either graphically or using a computer. This 

appendix shows how to solve this condition using a 

A.1.1 Graphical Method 

A.1.2 Program for HP 67/97 Calculator 

a) Susceptance taken from Wavegùide Handbook 

h) Susceptance programmed directly 

A.1.3 Fortran IV program with printing of diagram 

Â/X vs b/x. 
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A.1.1. Graphical Method  

In the graphical solution, both terms of eqn. (3.8) are 

presented graphically and the point of intersection of the 

curves is obtained. 

—1 [—B —1 ] vx = cot (Trvx/z) 
2 Y

o 
vx (3.8) 

The value for [ 1  ] is taken from Waveguide Handbook [6]. Y
o
vx 

In practically all cases, the curve for vx = 0 gives sufficient 

accuracy (see Fig. A.1.2), but 1  [ 11 1  ] can obviously be 
2 Yo vx 

constructed with better accuracy to reflect the second order 

influence of the parameter vx. 

Fig. A.1.2 Susceptance of capacitive windows in rectangular guide. 
(From the "Waveguide Handbook" [6]) 
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Fig. A 1.3  Graphical  solution of transverse resonance condition in 
rectangular waveguide With longitudinal fins of zero 
thickness 



If z = b/a = 0.5 and t = d/b = 0.25, Fig. A.1.3 shows 

the graphical solution of the transverse resonance condition, 

eqn. (3.8). 
B  First, the value for [ — 1 — ] is found from Fig. A.1.2. Yo vx 

t = d/b m 0.25 .4- [ 	1 ] = 3.8 Yo vx 

This value gives an indication for the ordinate scale to be 

used in Fig. A.1.3. 

If z = 0.5, a value of 1 for vx corresponds to one full 

period of the cos (Trvx/z)-function. The graphical solution can 

now be drawn (Fig. A.1.3) 

One obtains 

vx = .192 based on the susceptance value for 

vx = 0 (dotted curve) 

and 	 vx = .190 based on a more accurate susceptance 

value (solid curve) 

On the basis of -Ulis result, the function p = f(x) can now 

be drawn since v2 = 1-p2 . 

Thus: 

p  = [1_ (.190/x) 2 1 1/2 

This equation is represented graphically in Fig. 3.2 

(see curve with the parameter d/b = 0.25) 

There are also intersections of both functions for higher 

values of vx. These solutions are characteristic of higher modes 



of the TE 0-type with odd n, i.e. n = 3,5,7,9... It is 

obvious from Fig. A.1.3, that for the higher order solutions 

the exact value for the discontinuity susceptance must be 

used (solid line), 

A.1.2 Programs for HP 67/97 Calculator  

A.1.2.1. Rectangular Waveguide with Centered Fin of  

Zero Thickness  

B 1 (susceptance value [ Uic ] taken from the Waveguide 

Handbook [6]) 

The standard pack of programs for programmable calculators 

HP 67/97 contains a routine called "Calculus and roots of 

f(x)". To calculate the root of a function f(x), this function 

is simply keyed in starting at program step 113. The variable 

to be determined (root) is placed into storage register RO. 

The transverse resonance condition to be evaluated 

is again 

1 B 1 —[ — —  2 	] vx - cot nvx/z = f(x) = 0 Yo vx 

Any variable in this expression could be placed in storage 

register R /  and solved for when all other parameters are fixed. 

In the following pages, the following three programs are 

described: 

P-1: x is calculated when p, z and t are given 

P-2: p is calculated when x, z and t are given 

P-3: x is calculated when px = b/Â g , z and t are given 

(Al) 



1 RW - Centr. Thin Fin 

Enter Susceptance 

t b 	--2- 
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PROPAGATION IN RECTANGULAR WAVEGUIDE WITH 

CENTERED RIDGE (FIN) OF ZERO THICKNESS 

(HP 67/97) 

This series of programs calculates the roots of the 

transverse resonant condition f(x) of the following structure: 

Rectangular waveguide with centered ridge of zero thickness and 

equivalent transverse network. 

(1) 

where 

f(x) = - cot uvx/z = 0 
0  vx 

P  = À/Â g. 	; x = b/2 n ; 

2  1/2 
v = [1-p ] 	; z 	b/a 

A free space wavelength, A = guided wavelength 

The Standard Pack Routine "Calculus and Roots of f(x)" is used to 

find the root. Any of the above variables can be placed in the 

R0  -register. The function f(x) is programmed starting at step 113. 
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REMARKS: 

rBil  .The value for the discontinuity susceptance Yo vx 

must  be taken from the "Waveguide Handbook" by Marcuvitz, Fig. 

5.1-4. In this figure, b/Â must be replaced by vx. 

Since the first root of f(x) is in all practical cases 

situated between vx = 0 and vx = 0.4, a good approximation(within 

a few percent) is obtained by selecting the susceptance for vx=0. 

If a better accuracy is desired, an improved value for 

[ ç- ] 
corresponding to the just calculated vx is obtained from 

o vx 

Fig. 5.1-4 of the "Waveguide Handbook", and introduced into 

-- Register R
3 . 

The root obtained with this value should be sufficiently 

• accurate for almost all design purposes. 

The second and higher order roots are characteristic of 

higher order modes of the TE-type  with odd n, i.e. n=3,5,7,9... 

For these higer modes, repeated refinement of the susceptance value 

must be made to obtain satisfactory accuracy. 

The program can be used to evaluate other structures ex-

hibiting a shunt susceptance in the centre of a waveguide. 



- A-8 - 

IL 

Il 

I 
STEP 	 INSTRUCTIONS 	 INPUT 	 KEYS 	OUTPUT 

DATA/UNITS 	 DATA/UNITS 

1 

	

	Load side 1 of HP-card 
"Calculus and roots of f(x)" 

2 	Select one of programs 

P-1, P-2 or P-3 depending on 

choice of root 

3 - 	Key in selected program 	 see HP 
or merge from magnetic 	 instruc. 
card, starting at step 113 
Select function nr, 1. 	 1 	A 	 1.00  

4 	Choose value for (B/Yo )/vx 

corresponding to vx=0 and 	B 	1 	STO 3 	B 	1 for given value d/b in Wave- 	 Yo vx . guide Handbook and store in 	Yo 	vx 

register R 3 	 . 

5 	Store z = b/a in register 	z 	STO 2 	 z 
R.
2 
 and either p, x or px 	p,x 	STO 1 	 p,x 

in register R i ,. depending 	or px 	 or px 
on program chàsen. 
Note: p < 1 

• 
6 	Key in guess and calculate 

root (x=0.2 is a good init. 	Guess 	E 	 root 
guess) 	 . 

7 	For higher accuracy, recall 
value obtained for vx 	 RCL 4 	 vx 

8 	Choose new value for (B/Yo )/ 
B 	 1 vx corresponding to new vx 	1 	STO 3 	B 

and for given value d/b in 	Yo 	vx 	 Yo 	vx  
Waveguide Handbook, and 

_ 	store in R 3  

9 	Calculate new root starting 	 RCL 0 
with previous root 	 E 	 root 

10 	for higher accuracy, return 	 - 
to step 7 



(HP 67/97) RW-Centr. Thin Fin P-1 
Enter Susceptance 

1 11  

HI 

Registers 

RO 

 IIR 1 

Store R2 

 .R 3 

x=  b/X 

pp= X/Âg  

zrzb/a 

(B/Y0)/vx 

R 4 vx 
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•PROPAGATION' IN 'RECTANGULAR WAVEGUIDE  

WITH' CENTERED* RIDGE '(FIN') OF' •ZERO THICKNESS  

This program calculates if p,z and t , are given . 

The susceptance value must be found from the "Waveguide 

Handbook" by Marcuvitz, Fig. 5.174. 

PROGRAM:  

Steps 000 to 112 see HP-routine 

"Calculus and Roots of f(x) u  

1 
117 :dEel_ 1 	21 01 	i Set to RAD-mode 
114 	RPD 	16-22 -- 
115 	1 	01 	- Compute-  v.  
116 	F. C Li 	3è7 01 	 ' 
117 	x '2 	33 	v = ( 1 -p 2 ) 1/2 
11z1:: 	- 	-45 	. 
119 	I-  X 	54 
120 EV 0 	35 00 

_35  dompute vx 
12 	.? 754 	35 e-i 	and store in R4  
123 RCL 3 	35 03 	- 	  124 	>z  

• 35 	Câmpute 
125' 	2 	e 2 	1 [ (B/Y

0  ) /vx ] vx 

127 	R4:14 	35 54 
125 	H 	15-24 	Compute 

130 RCL2 	36 02 	cot IT•vx/z 
131 	.• 	-24 	and subtract from 
132 	TAN 	43 	first term 
i Z 3  
134 	- ,.- 

	

-..h... 	i 	 • 
175 	RTN 	24 	' 
136 	R.••"3 	51 
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PROPAGATION IN RECTANGULAR WAVEGUIDE  

WITH CENTERED RIDGE (FIN) OF ZERO THICKNESS  

RW-Centr. Thin Fin P-2 
Enter Susceptance 

This program calculates 

(HP .67/97) 

are given• 

The susceptance value must be found from the "Waveguide 

Handbook" by Marcuvitz, Fig. 5.1-4. 

Registers 

Store< R 2. z=b/a 

OVY )/vx 

R 4 vx •  

R3  

• PROGRAM;  

Steps 000 to. 112 see HP-routine 

"Calculus and Roots of f(x)" • 

113 *LEL1 
1 • 4 	RD  
115 
116 	RCLO 

•117 	x2 
.1 I 
119 
120 	RCL1 
121 	- 
12. 2 	3T04 
123 RCL3 
124 
125 	2 
126 • 	+ 
127 	RCL4' 
12;9 	Pi 
125 
130 UL2 
131 
.132 	TAN 
.133 	1/S 
134 
135 	RTH 
125 	R/S  

21 01 
16-22 

	

01 	Compute 	.• 

36 00 
:V = (1-p

2,1/2 

-45 
54 

	

36 01 	COMpUte VX -35 

	

7 ,7  04 	and store in R4  

	

36 03 	- Ccimpute 

02 " 1 

	

_24 	[ (B/Y o )/Vx] VX 

36 04 

	

16-24 	Compute 

76. 	cot nvx/z 

	

-24 	and subtract from 

	

43 	first. term 
52 

24 

Set to RAD-mode 
P. 0•p.X/X 

Ri  x=--/X 



(HP -67/97) •. RW-Centr. Thin Fin P-3 
Enter Susceptance 

Set to RAD-mode 

Computé v 
• 2

)
1/2 

t 

Registers 

R 1 px.b/À 
g 

Store R 2 zp/a . .:. 

R 3  o.. 	• 

R 4 .vx Compute 

1 [(B/Y
0  )/vx] VX 

' 	A-11 - 

PROPAGATION  IN RECTANGULAR WAVEGUTDB. 	. 

WITH  CENTERED RIDGE' (FIN). OF ZERO THICKNESS. 

This  program calculates,. x ' if ric,-P and _t..i'are given. 

.Thesusceptance value must be found . from.the - "Waveguide 

•Handbook" by MarcUvitz, Fig. 

• . 	.

• • PROGRAM: 	. 	 - 

Steps 000>to .112 see HP-routine - 

"CalculuS and Roots of f(x)" 
• 

	

e113.: LBL1 	21. 01  
114 	R AL) 	16-22 

116 	RCL I 	36 01 
117 	RCL0 	- 36 00 
1 	 -24 

1 	. 	 53 
1 	- 	-45 
121 	,FX 	54 
122 	RCL0 	36 E.10 
123 
124 	ST O4 	35 04 
125 FCL3 
126 	 -35 
127 	2 	02 
128 	er 
129 RCL4 	35 04 
130 	 15-24 
131 	 -35 
132' 	L:L2 	3E 02 
13,7 	 -24 
1 34 	Tri 
135 	•1/X 	52 
136 	 A= 

 

137 	R TN 	24 
133 	R/S 	51  

Compute vx 
and store in R 4 

Compute 

cot wvx/z 

and subtract from 
first term . 



A.1.2.2. Rectangular Waveguide with Centered Ridge 

of Finite Thickness s. 

The expression for (B/Yo )/vx given in eqn. 3.9 can be 

programmed directly, and thus it is not necessary to consult 

Fig. 5.1-4 of the Waveguide Handbook [6]. However, the compu-

tation time will be longer by a factor two. 

For the sake of generality, a program for ridged 

waveguide with centered ridge cd finite thickness  will be 

given. The case of zero thickness is obviously included in 

this program. 

Two variations'oÉ the program are given, namely 

P-1: x is calculated when p, z, s and t are given 

P-2: p is calculated when x, z, s and t are given 

At the same time, the characteristic impedance  of such a wave-

guide can be evaluated using the results of the calculation of 

the guided wavelength. 
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RW - Double Ridged Guide 

X and Z o 

PROPAGATION IN RECTANGULAR WAVEGUIDE WITH  

CENTERED RIDGE OF THICKNESS s 

(HP 67/97) 

This series of programs calculates the roots of the 

transverse resonant condition f(x)=0 and the characteristic 

impedance of the . following structure: 

1 	
. Bo 1 	 1 

f(x) = «r.  tan u 	-- vxw + [ 	] vx - cot nvx( — - w) = 0 	(1) 
Yo 777x 	 z 

where p = X/X 	X = b/X ;t = d/b 
g 1/2 

v = [1-p2 ] 	,;z = b/a ;w = s/b 

X = free space wavelength, X = longit. guided wavelength 

Bo 1 	 Q cos
4
.wt/2  

and 7- 7\7'x  = 2 Uen(csc nt/2) 
1+Q sin 4,  nt/2 

+ 1
6 
 (vx)

2
(1-3 sin2 

nt/2)
2 cos 4 ut/2] 

1 

(2) 



with Q = [1-(vx) -1/2 	1  
(3) 
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The Standard Pack Routine "Calculus and Roots of f(x)" is 

used to calculate the root. Any of the above variables can 

be placed in the Ro -register. The function f(x) is programmed 

starting'at step 113. 	• 

The characteristic impedance based on a Voltage-

to-Current ratio is given . by  the following expression: 

120n 

Z 0  = Z 0  /p - 
1TVX 

B 1 -.- sin irwvx + [( Q 1  - )vx +tannvx ( 1  - w)] cos Trwvx t. 	 Yo vx 	2 z 

and is calculated following the solution of the transverse 

resonance condition. 

Remarks: 

The cutoff wavelength is obtained by setting p À/X 

equal to zero. However, since the characteristic impedance is 

infinity at cutoff, any attempt to evaluate Z0  at this wavelength ,  

results in an "ERROR". However, the value 13.2i0 = Z 0œ  can be ob-

tained by placing the value "one" (1) into the register containing p 

before evaluating Z o . 

Once the program has been keyed in, it can be stored on 

•  a blank magnetic card, including the routine  "Calculus and Roots 

of f(x)". The "Rad" and "DSP" modes will be registered automatically 

on the card at storage and will not have to be set afterwards. 



a 
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STEP 	.INSTRUCTIONS 	 INPUT- 	 KEYS 	OUTPUT 
DATA/UNITS. 	 DATA/UNITS 

. 	. 
1 	Load side 1 of HP-card 

"Calculus and roots of f(x) 	 • 

Select one of programs 	 . 	. 
(P-,1 :or> P72) 	depending on 	

• 

ràot to be evaluated 	 . 

• 3 	Key in selected program or 	 see HP - 
merge from magnetic ca±d, 	 inStructior. 
starting at step 113 

Select "RAD" mode and 	 . 	f 	RAD 
• Display mode 	(ex:5 decimals) 	 DSP 	5 	 ' 

Select function no. 1 . 	_ 	 1 	 A 	• 	1.00000 
----• 	-,::- __ 	_. 

Store value 	foi-  p or x in 	 p 	 - ID 
R11 'depending on program 	 or 	. 	STO 1 	or 

x  ,selected 	' 	
x 

7 	Store values for parameters 	z 	 STO 2 	z: 
• z, w and t 	 w- . 	STO 3 	w 

, 

	

t 	 STO 4 	t 

8 	Key in guess and calculate 	 0 

root (0.1 is a good initial 	Guess 	E 	 root 
guess in, most caSes). 

9 	Calculate characteristic im- 
.pedance. of_lowast 	mode., Z. 0 	 GSB 2 	 Z0  

10 	To calculate root and Z0  for 
different paraffieters, go to 

. step. 	6.. 

11 	Values for different terms cah 	 RCL 5 	vx 
. 	bé. recalled after root and Z o 	 RCL 6 	uvxw 
have been calculated 	 RCL 7 	(B /y )/vx 

0 1 0  1 

	

RCL 8 	uvx (i . - w) 



RW - Double Ridged Guide 

g and ZO 
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PROPAGATION IN RECTANGULAR WAVEGUIDE WITH  

'CENTERED RIDGE OF THICKNESS s  (Double Ridged Waveguide) 

(HP 67/97) 

This progf.am calculates b/x and the characteristic impedance Z o  

of  double ridged waveguide if p = 	, z=b/a, w=s/b and 
g 

t=d/b are given 

Program:  

Steps 000 to 112 see HP-routine 
"Calculus and Roots of f(x)" 

Registers: 

113 ii.BL1 	21 01 
11 4 	1 
115 RCLI 	36 46 
11E 	RCL1 	36 01 
117' 
118 	- 	-45 
11 	 54 
120 RCLO 	36 00 

121 STC5 	35 05 
17.7 	X 2  
124 	- 	-45 
125 y 	 54 
12i; 	1/ :4 
137 	1 	01 
125 
129 STOG 	35 06 
130 	P; 	16-24 
131 	RCL4 - 	36 04 
132 	 -35 
133 	2 	02 
134 	4 	-24 
135. STO7 	35 07 
136 	COS 
137 	 53: 
1:35 	STUS 	35 08 
139 	x2 	53: 
140 	 -35 
141 	RCL7 	36 07  
14 7' 
147: 	STO7 	35 07 
144 	 5 3 

 

5
3 

• 

1 1 
1 . 	

R0 	x 	
_-Guess -- __ 

• 
1 p 

} 

• . 	2 	oz 	 Store 
3 w 

Compute vx _ 	 .4 	t 
and store in R 	 5 vx 

5 	. 	6 Tr -WVX 
. 	 . 

7 (B /Y )/vx . 	 • 0 0 
8 evx(1  - w) • z 

Compute Q and 

store temporarily 

in R6 

1Compute 

( Bo/Y0 ) /vx 

R7 
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• 145 	RCLE 	36 06 
147 	 -35 
148 	1 	01  

• 149 	+ 	•-55 
150 	 -24 
151 	RCL7 	36 07 
152 	1 f 
1531./1 • 
154 	+ 
155 	RCL7 	35 . 07  
156 
157 	3 	03 
155; 	x. 	— 275 
i 59 	1 	01 
1 60 	- 	-4,5 

• 161 	RCL5 	36 03 
• 162 	x 	-35 	 • 

163 RCL8 	OE 
164 	X 
165 	4 	04 
166 	.= 	-24 

	

5,7 	. 
168 	+ 	-55 
169 	• 	02 
170 	x 	-35 
171 	STO7 3 0 
172 RC15 	36

5 
05

7 	
Compute nvx 

173 	 : and store tempo- 
174 RCL5 	36 	rarily in 12 8  
175 	P 	16-24 
176 	x 
177 	STO8 	35135  
178 	RCL.3 	36 03 
1 79 	X 	-35 	7rwvx in R6 
180 STO6 	06 
181 	TiN 	45 
182 F.fL4 	36 04 	Compute 
183 	 -24 	remainder 
184 of f (x) 
135 	Q! 	lé: 02 
186 	1 • X 	52 
187 	RCL3 	3503 	1 
188 	- 	-45 
109 POLO 	36 08 
190 	X 	-35 
191 	ST 08 	35 08 
192 	TAN 
193 
194 	 d= 

195 t: 1 a 	 4:7 
1 96 :i:LBUZ 
197 RCL5 	36 05 	Compute Z o  
198 	1CL5 	36 05 
.195 	RCL7 	36 07 
2130  

201 pcis 
202 	2 	02 
203  

. 204 	TAN • 	43 
-55 

206 RCL6 - 36 06 1 
207 	CDS 	42 
208 	X 	. 	-35 
209 R0L6 	56 06 1  
210 • 	SIN .1 
211 	RCL 	 • 3é.: 84 

-212'. 	«+ 

	

rzz 	• 

-24 ' e.1 
'215 	RCL1 	3601 . 

217 	3 	03 
218 0, 
219  

	

( 	. 	07 
220 	 •7= 

	

H 	16-24 
•

-7, 	 Z 7= 
0 

223• R TN 	24 
224 	RSS 
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PROPAGATION IN RECTANGULAR WAVEGUIDE WITH  

CENTERED RIDGE OF THICKNESS s .  (Double  Ridged Waveguide) 

RW - Double Ridged Guide 

X and Z 0 

This program calculates X/X mand the 

of double fidged waveguide if x = b/X , z=bia, w=s/b and 

(HP 67/97) 

characteristic impedance Z o  

t=d/b are given 

Program: 

Steps 000 to 112 see HP-routine 
"Calculus and Roots of f(x)" 

115 *LBL1 	21 01 
114 	1 	« 	• 01 
115 	Prri. I 	36 45 
116   WI_ 	3500  
117 A L 

118 	 -45 
112 	sr X 

• 120 	RCL 1 	56 01 
121 	x 	-35 
122 2705 	35 05 
12,7 	g 2 	53 

• • 124 
125 	 54 
125 	1sX 	51 
127 	1 
128 	 -4, 

12.9 	8706 	35 06 
130 	Pi 	16-24 
151 	RCL4 	36 04  
132 
133 	2 	02 
134 	 -24 
135 3707 	35 07 
136 	008 	42 
157 	x2 
138  5708 	35 05 
135 	x 
140 	s 
141 	PCL7 	3607 

Compute vx 
and store in R 

5 

Compute Q and 

'store temporarily 

in R6  

41•n ••nnn 

rCompute 
r 	• 

Bo /Y0 )/vx 

R7 

2 	z 
3 
-4 
5 vx 
6 ir-wvx 
7 (Bo0)/vx 

1 	• 8 irvx(— - w) 

142 	SIN 	41 
14,7 • STO7 	3'5 a7 
144 	X 2  
lefe 	 - • 



214 	4. 	e...t 
215 RCLO' 	36 00 

. 21 6 	-  
21 7   3 	- 	03 

07 
213 	( 	07 
-D-7ep, 
4.4. 	 x 	 -35 
-2•"1 	P i 	/6-24 
222 	x 	_35 	;2d7• 

RTN 
24 F"; 	

17% 

7 1 	RI:1R 	35 08 203 

	

-24 	, 
204  TAN 
205 	 -55 
206 RCLS 	5606 
*207 	COS 
208 	 -35 
299  RCL 6 	36 06 
210 	S iN 	 41 
211 	RCL4 	36 04 
=17 

— D3 

A-19 

. 	146 	R C: L 6 	,:lb. i:) 	• 
147 - x 	-35 
14:: 	1 	el 	! 

	

- 149 	+ 	 -55 	1 

	

'1.50 	« 	 -24 	I 
•. 151 	RCL7 	36 07 	1. 

• 152 	' 	1/X. 	..., 	: 

153 	- Lti - 	• 	32 

	

.154 	+ • 	. -55, 	. i 
155 	RCL7 - • 36 07 	i 
155 	X 2 	. 	53. 	1 : 1177 	3 	' ...i.,71.: 
1 	

i 
,5:: 	X 	 ...,,.. 	I 

153 	1' 	01 	I 
- 	160 	- 	. 	-..h.i 

	

. 151 	RCL5 ; 	36 05 
.162 . 	x 	. 	-33 
163 • RCL8 	36 08 

• 164 	.x 	-,5 -5 
165 	• , - 

	

..f 	04 
166 	i- 	-24 
167 	X2 	• 	53 
160 	+ 	 -55 
169 	:, 	. 	02 
170 	x 	-35 
171 . ST07 .- 35 07 	Compute nvx 	. 
172 • Rr1.5 	36 05 	and store tempo- 
173 	x 	-35 	rarily in R

8 - 1 74 • R C L5 	36 05 	' 	 . . • 

	

. 175 	P i  ' 	16-24  . 	 . 

	

. 176 	X 	 7r 

177 	!;•T.OS 	35 08 	 • 	  
176 RE.L3 	36 83 	171-wvx in R

6 • - 	1 179 	s 	-33 	1 
1.S0 	STO6 	35 06 	 . 	 • 	 . 

181 . TAN 	43 	' Compute 	. . 
182 	RCL4 	,tn t 4 

	

— -1 . 	remainder 	• . : 
183 	 -24 	of f (x) 	. 
1 94 	+ 	 -55  
185 	RCL2 	36E1. 	. , 	• 1 185 	1 f•X 	52 	 . 
187RCL3 	Jb L 

	

."' 13 	. 	 . 
1:. 	—  

• 189 	1-7:C La 	36 OE 	 . 	• 
130 • 	x 	-35 	 . 	. 191 	3 TOR 	35 08 	I . 	 • 
192 	TAN 	. 43 
193 	1,.. ;, X 	52 	I 	 " 
194 	- 	-45 	 . 
195 	RTI4 	i..,- 
.19 	*LEI_ 2 	z. Lie: 
197 RCL5 	 _ 	Compute Z 

198 RCL5 	36 05 
• 139 	RCL 	 ( 

200 
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APPENDIX.2 

Appendix 2 presents Fortran IV programs to evaluate 

the guided wavelength and the characteristic impedance of 

unilateral, bilateral and insulated fin line. They are based 

on the transverse resonance conditions and the expression for 

the characteristic impedance of ridged waveguide derived in 

the present report. 

The program for unilateral fin line contains an addi-

tional routine that plots the normalized wavelength Â/À vs 

the normalized frequency b/à. The same routine may also be 

used for the other programs if desired. 

In addition to the geometrical dimensions and the 

dielectric constant E
r 

of the substrate material, the correction 

factor G must be input. G is obtained as a function of w=s/b 

and t=à/b from Fig. 3..10, p. 30 of the present report. 



A.2.1 

UNILATERAL FIN LINE 
C 	 FORTRAN 

FUNTION: THIS SUBROUTINE CALCULATES AND DRAWS THE (31)1 DEI:' 
 WAVELENGTH IN UN :t: 	FIN LINE 

• 
INPUTS: z(ASPECT RATIOyB/A)e. T(NORMALIZED GAPrD/B)eW(NORMALIZED 

DIELECTRIC THICKNESSYS/B.M ER(DIELECTRIC CONSTANT)e 
• G(NORMALIZED CORRECTION FACTOR) 

• 

DIMENSION A(40s, 100)eB .(4.0) 
DIMENSION P(40)X(40)PZE(40) 
INTEGER DOTpHYPHEN9STARpBLANKyDASH 
INTEGER ApIX.., J.X 
REAL XPI, ByXIP201, 2F 
REAL AO9CYEvE ,.., 0..P..SYTPUrVvWs., XvZYDIPDOeERPOIPOO!., PI 
REAL AlvA2YA3YA4 
DATA DOTs.HYPHENeDASH, 11 - 1 ,'1 1 / 
DATA STARYBLANK.i'VP"/ 
TYPE *y/TNPUT DATAYZyTYW9E.R.iGi 
ACCEPT *pZyTyWyERyG 
WRITE(61) . 

1 	FORMATUlie5Xy31HP(WAVELENGTH/GUIDED WAVELENGTH)p 
- 1 5XY16H X(B/WAVELENGTH)e5Xp29HZE(CHARACT. IMP. 0E -FIN LINE)e//) 

PI=3..14159 
S=SIN(T*PI/2.›) 

• C=COS(T*PI/2)**4 
XI=0.5 
DO 5 De1r30 
OI=1./((1.  
DI=2..*XI*(AL00(1./S).WI*C/(1.+OI*See.4)+XI**2/16 

1 *(1.•3.*S**2)**2*(:) 
E=DI—COS(PI*XI/Z)/SIN(PI*XI/Z) 
IF(ABS(E)+LE.1.E —04)00 TO 10 
IF(E..LEe.0.)00 TO 4 
XI=XI-0+5*0.5**I 
00 . To . 

4 	XI=XI4-0.5*0.5**I 
CONTINUE 
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I 

CHARACTERISTIC IMPEDANCE OF RIDGED WAVEGUIDE AT INFINITE 
FREQUENCY IS CALCULATELG 

10 	Z0=120.›*PI**2*XI/(DI+SIN(PI*XI/2.›/Z)/COS(PI*XI/2a7Z)) 
DO 100  ::::1 y.40  
P(I)=003*I-0,.03 

2 	U=(AB5ŒR—P(I)**2))**0e5 
lPe(AB3(1+—P(I)**2))**045 
S=3IN(T*PI/2e) 
C=COS(T*PI/2)**4 
X(I)=0;•5 
,D0 90 J=1!, 30 
ODel./((i—(U*X(I))**2) .**0.5)—ie 
DI=2,;*U*X(I)*(ALOG(1.›/S)+(:I*C/(1,>4.QI*S**4)4.(U*X(I))**2/16. 

1 *(1+-3.›*8**2)**2*C) 
• IF(P(I),›GEal*)00 TO 20 

Q0e:1.›.«(16—(V*X(I))**2)**0*5)—le 
•DO=2*1*X(I)*(ALOG(1:./S)+00*C/(1,,4-(0*S**4)1- (V*X(I))**2/16* 

1 *(1.›-3+*S**2)**2*C) 
• (V/U)**24.0*(1—(V/U)**2) 

A1.24*PI*X(I)*V*(0e5/Z—W) 
A2=2,>*PI*W*X(I)*U-FATAN(U/V*SIN(A1)/COS(A1)) 
A3=PI*X(I)*V/Z 
AO=USV*COS(A2)/SIN(A2)+COS(A3)/SIN(A3) 
E=F*DII(U/V+DO•A0 
GO TO 30 

20 	Fnn—OV/U)**24-0*(1-(V/U)**2) 

e*V*X(I)*(AL00(1*/S)+00*C/(1a+00*S**4)—(V*X(I))**2/16* 
1 * 0 1.-3,>*S**2)**2*C) 

A4ne2.)*PI*W*X(I)*U4-ATANOU/V*TANH(2A(PI*X(I)*V*(0•>5/7. — W))) 
AO=U/V*COS(A4)/SIN(A4)-1-1/TANH(PI*X(I)*V/Z) 
E=F*DI*U/V—DO —AO 

30 	IF(A ( S(E)*LE-04)00 TO 92 
IF(E.›LE*0*)G0 TO 00 
X(I)=X(I)-0+5*0(.5**J 
GO TO 90 

80 	X(I)::::X(I).1.0+5*05**J 
90 	CONTINUE 
92 . 	IF(P(I)‹.Ub0G)00 TO 93 

ZF(I)=ZO/P(I) 	 • 
00 TO 94 

9$  
94 	WRITE(61.95)P(I)!, X(I)Y2T(I) 
95 	FORMAT("16XYF7.›3!, 21XYF7*4Y2OXYF105) 

• 100 	CONTINUE 
.r 
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I. 	 . 	 . 

• 

II '-•£Hu************************************************************* -  

THE FOLLOWING PART OF PROGRAM IS USED TO DRAW DIAGRAM 

C *************************************************************** 

- 	 — 
110 	FOR1ATUl'e38HY—AXIS=P(WAVELENGTHIGUIDED.WAVELEN3TH)ylv 

1 23H X —AXIS=X(B/WAVELENOTH)) 
DO 200 I=1,40 . 
XP=X(I)*200. 
IX=XP 
IF( P—IX)*GEe0.5)G0 TO 150 
JX=IX 
GO TO 160 	 . 

150 	JX=IX+1 
160 	DO 100 J=1 e100 

A(41 —ImJ)=BLANK 
IF(J*EU,›JX)00 • O 170 
IF(J4.EU.›20.›OR,,J,›EU*40e0RJ4EU*60,›OR.›J+E( 	0e0ReJ.èEW>100) 

1 A(41 —ImJ)=DOT 
IF(JE0e.1)A(41—ImJ)=DASH 
IF(I+E(L.1)A(41—IeJ)=HYPHEN 
GO TO 100 

170 	A(41 —ImJ)=STAR 
180 	CONTINUE 
200 	CONTINUE 

DO 300 I=1m40 

WRITE(6m200)B(I)m( (U ImJ)mJ=im100) 
290 	F0RMAT("m15)(mF4e2m1Xml00A1) 
$00 	CONTINUE 

WRITE(6m350) 
350 	FORMAT("m )OXP1H0m17)(m3H01m17)(m3H0+2m17Xe3H0e3m17Xv3H0.4m 

1 17Xv3H(W3m//) 
WRITE(6m400)ZmTeWmERmG 

400 	FORMAT("m15Xe35HOUIDED WAVELENGTH IN UNILATERAL FINe/m 
1 16Xm4HB/A=mF442m6HP D/13=mF42m6M S 1 1 =mF543m5He ER=mF5*27 
2 4HP 0=mF442) 

STOP 
END 



Me 	1111, Olt 	MO OOP MI ON OM ONO OWN ell Me IMO OS MI MO OBI 

PKWAVELENGTH/GUIDED WAVELENGTH) 	X(B/WAVELENGTHY 	-- 2T(CHARACT* IMP,› OF FIN LINE) 

.• 000 
0.03K) 
O 060 
0 4 090 
0 4 120 
0 .150 
0 . :1.80 
O 210 
0 4 240 
O 270 
0+300 
O 330 
o +  :560 
0+390 
0 +420 
0 . 450 
0+48K) 
O 510 
0 . 540 
O 570 
0 600 

.• 630 
0 • 660 

.• 690 
0 720 
0 , 750 

.• 780 
0 4810 
O 840 
0+870 
0+90K)  
0 +  930 
0 +96K) 
0 4990 
1 020 

050 
1 . 080 
1 .1 :1.0 

. :140 
:1.70  

0 15'2 2 
0 1522 
0.1524 
0 .1526 
0 4. 1530 
0+1535 
0 .1542 

e 549 
e 1.558 

0 e :1568 
0 e 1579 
0 . :1.592 

4 1607 
0 e 1623 
0 4  1.641 
0+ :1.661 
0 e 1684 
04  1709 
0 41737 
0 1767 
0 • 1802 
0 * 1840 
0 . :1883 
0 4 193:1 
0 1985 
0 • 2047 
0+2118 
0 2200 
0 • 2296 
0+2410 
0 . 2547. 
0 • 2716 
0 . 2930 
0 . '32.10 
0 3594 . 

 0 4155 
0 503:1 
0 . 6407 
0 + 8:16K) 
0+9692  

:1000+00000 
589:1.6997:1 
2945 • 84985 
:1963 .90002 
:1472 • 92505 
1:178 +33997  

981 . 9500:1 
841 .67:139 
736 . 46252 
654 • 63336 
589 .16998 
535 e 60907 
490 97501 
453 . 20770 
420 83569 
3924 78000 
368.23123 
346 • 57059 
327 . 31665 
3:10 08948 
294 • 58496 
280 557:13 
267 e 80453 
256 * 16086 
245 e 48747 
235 66798 
226 • 60382 
218 . 21 .111 
210 41783 
203 :16206 
196 438998 
190 05482 
184 • :1562 
178+53635 
:173+28529 
:1684 33429 
:163 . 65833 
:1594 23512 • 
:1554 04474 
5 :1, , 3 

(00 

t\.) 

1 
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sie to se as es es es gm es es re es OS 	me es Ma MO an 

Y-AXIS=KWAVELENGTH/GUIDED WAVELENGTH) 
X-AXIS=X(B/WAVELENOTH) 

1.17 1 
1.14 : 
1.11 : 
1.08 1 
1.05 : 
1.02 1 
0.99 : 
0.96 
0.93 : 
0.90 : 
0.87 1 
0.84 
0.81 1 
0.78 
0.75 : 
0.22 : 
0.69 1 
0.66 1 
0.63 : 
0.60 1 
0.5% : 
0.54': 
0.51 
0.48 1 
0.45 1 
0.42 : 
0.39 1 
0.36 : 
0.33 1 
0.30 1 
0.27 : 
0.24 1 
0.21 1 
0.18 1 
0.15 1 
0.12 1 
0.09 1 
0.06 : 
0.03 1 
0.00 
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1 • 

INSULATED FINS 
FORTRAN IV 

FUNCTION: T • IS SUBROUTINE CALCULATES THE (3UIDED WAVELENGTH 
AND CHARACTRISTIC IMPEDANCE IN INSULATED FINS. 	• 

C 	INPUTS: 2:(ASPECT RATIO7B/A)P T(NORMALIZED GAP7D/BM W(NORMA- 
C 

	

	 LIZED DIELECTRIC THICKNESSI.S/B)P ER(DIELECTRIC CONSTANT) 
G(NORMALIZED CORRECTION FACTOR) 

C ******************************************************************** 
C 

—A-26  — 

A . 2 . 2 

1 

DIMENSION X(40)7P(40)7ZE(40) 
REAL T707PIvZvPvER7W7V7U7X7S7C7017DI7E7F7A 
REAL XIvZ072E7A1 
TYPE *7'INPUT DATA': 2:71747E 1  G' 
ACCEPT *77.7T7W7ERI.G' 
1IRITE(671)Z7TvWvER70 
FORMA1( 1 1 1 75Xv4HB/A=7E4.276W; D/B=7F4.276W; S/B=7E5.375M ER=7 

1 	F5e2v4•9 G=7F4.27//) 
PI=3e14159 	• 
S= 3 IN(T*PI/2.) 
C=COS(T*PI/2.)**4 

C ******************************************************************* 

CHARACTRISTIC IMPEDANCE AND CUTOFF OF EQUIVALENT RIDGED 
C 	WAVEGUIDE IS CALCULATED BELOW 
C 	. 
C *************************************************W***************** 
C 

XI=0. .5 • 
DO 5 .1=1730 
QI=1./((i. —Xi**2)**0.5) —le 
DI=2.*XI*(ALO (3 (1./S)+QI*C/(1.4.0I*S**4)+XI**2/16. 

1 *(1.-3.*S**2)**2*C) .  
E=DI—COS(PI*XI/Z)/SIN(PI*XI/Z) 
IF(ABS(E).LE.1.E —04)00 TO 10 

XI=XI-0.5*0.5**I 
GO TO 5 

4 	KI=XI-1.0.5*0.5**I 
5 	CONTINUE ' 
10 	Z0=120.*PI**2*X1/(DI+SIN(PI*XI/2./Z)/COS(PI*XI/2./ 1 )) 

'WRITE(6715)XIV 1 0  

' 15 	FORMAT("75)(737HCUTOFF FOR EQUIV. RIDGED WAVEGUIDE IS7Fà..47 
1 //75X746HCHARACT. IMP. OF RIDGED WAVEGUIDE AT INFINITE e 
2 SHFREQ. ISVF10.37///v5X731HP(WAVELENGTH/GUIDED WAVELENGTH)7 
3 5X716• X(B/WAVELENOTH)75X725HZE(CHARACT. IMP. OF ::l:  ../../ 



‘C *0**************************************************************** 
C 
C 	THE GUIDED WAVELENGT • AMD CHARACTRISTIC IMPEDANCE OF INS (JLATED 
C 	FINS ARE CALCULATED BELOW 
C 
C ******************************************************************* 
C 

DO 100  I:::1 40  
P(I)= ( 403*I-003 .  
Vel:(ABS(1 	 )**0*5 
U=(ABS(ER-P(I)**2))**05 

DO 90 Jrz:1Y30 

DI= 2,)*U*X(I)*(AL00(1 ,›/S)+0I*C/(1,>4.QI*Se(4)-KU*X(I))**2/16.: 
1 *(1+-3..*S**2)**2*C) 

IF(P(I)GE1.)00 TO 20 
V/U)**2) 

Al=PI*W*X(I)*U+ATAM(U/V*SIN(PI*X(I)*V*(1,›/Z-W)) 
J.  v/COS(PI*X(I)*V*(1*/Z-W))) 

A=U/V*COS(A1)/SIM(A1) 	 . 
E::F*DI*U/V -A 
GO TO 30 

, 20 	F:::1- (V/U)**24-0*(1i.4-(V/U)**2) 
Al::::PI*X(I)*W*U .FATAN(U/V*TAMH(PI*X(I)*V*(1,›/Z-W))) 

(A1)/SIM(A1) 
E=F*DI*U/V -A 

30 	IF(ABS(E)<WE‹.1+E -04)00 TO 50 
InE*LE*0,>)00  TU)  40 

' 	X(I)X(I)-0,:5*0+5**J 
GO TO 90 

40  
90 	CONTINUE 
50 	IF(P(I)*E1),>0)00 TO 60 	 . ZE(I)=ZO/P(T) 

GO TO 70 
60 	ZE(I)=9000 
70 	WRITE(6P80)P(I)YX(I)YZE(I) 
80 	FORMAT("Y16XPF7e3721XeF7I.4Y2OXYF105) 

- 100 -- --- CONTINUE 	 .•,.. _ 	• 	••....... _ .......,_..... •___. 
' 	STOP 

END 



MOU MS lie Me Ili IIle Ili OM MO MO OM MIN OMNI Me Me MO OS tell 
B/A=0.50; D/B=0.13; S/B=0.072; ER= 2.22; G=0.37 

CUTOFF FOR EQUIV. RIDGED WAVEGUIDE 10.1702 = >4 

CHARACT. IMP+ OF RIDGED WAVEGUIDE AT INFINITE FREQ. IS 176.75099 Offl,1:5 

P ( WAVELENGTH/GUIDED WAVELENGTH ) 	x(B/W(VELEMOTH) . 	ZF ( CHARACT e IMP  •  OF.  FINS)  e)14tAS 

(o0) .0.000 
0.030 
0.060 
0.090 
0.120 
0.150 
0.180 
0.210 
0.240 
0+270 
0.300 
0.330 
0.360 
0.390 
0.420 
0.450 
0.480 
0.510 
0.540 
0.570 
0.600 
0.630 
0.660 
0.690 
0.720 
0.750 

'--. 0.780. 
0.810 
0.840 
0.870 
0+900 
0.930 
0.960 

- 0.990 
1.020 
1.050 
1.000 

0+1487 
0.1487 
0.1489 
0.1491 
0.1495 
0+1499 
0.1505 
0.1512 
0.1520 
0.1530 
0.1540 
0.1552 
0.1566 
0.1581 
0+ 1598 
0.1616 
0.1637 
0.1660 
0.1685 
0.1713 
0.1744 
0.1779 
0.1818 
0+1861 

 0.1909 
0.1964 
0.2027 
0.2098 
0.2181 
0.2278 
0.2393 
0.2531 
0.2703 
0 ;2920 
0.3206 
0.3600 
0,4183 

9000 • 00000 
589 :1  •  69971 
2945 

 
• 84985 

1963. 90002 
1472+92505 
1:178.33997 

98 :!.  •  95001 
841.67:139 
736 46252 
654+63336 
589 :16998 
535 60907 
490 9750:1 
453 20770 
420 83569 
392 e 78000 
368 23:1. 23 
346 57059 
327 3 :I. 665 
3 :1.0  08948 
294 58496 
280 e 557 :13 
267 80453 
256 16086 
245 . 48747 
235 e 66798 
226 . 60382 
2:18 . 21 :11 1 
2:10+41783 
203 • 16206 
196438998 
:1. 90  405402 
:184 0 1 1 5 6 2 

53-635 
:173.20529 
168 • 33429 
167,65033 

› 

co 



A.2.3 
C 	BILATERAL FINS 
C 	FORTRAN IV 

c 	FuNcrioN: THIS SUBROUTINE CALCULATES THE GUIDED WAVELENGTH 
AND CHARACTRIST1C IMPEDANCE IN BILATERAL FINS 

INPUTS: Z(ASPECT RATIOYD/A)9 T(NORMALIZED GAPYD/B)e W(NORMA- 
' 	C 	 LIZED DIELECTRIC THICKNESSvS/B)e ER(DIELECTRIC CONSTANT )P 

0(NORMALIZED CORRECTION FACTOR) 
C 
C 
C ******************************************************************** 

DIMENSION. X(40)mP(40)!, 2T(40) 
REAL TYGyPI -YZYPrERYWYV7UvXYSYCKUYDIYEeFrA 
REAL XIYZ0rZFYA1 	 • 
TYPE *YLINPUT DATA: ZyTyWYERY0 1  
ACCEPT *PZYTPWyERy0 
WRITE(61.1)ZYTYW)ER,0 
FORMAT( 1 1 1 r5Xv4HB/A=PF4e2y6H; D/B=pF4+2e6H; S./er;:pF5e3r5Hi;..ER=!.. 

1 	F5e2y4F.H; (3=rF4e2r/3) 
PI=3, 14159 
Ser-SIN ( T*P I /2 e ) 
C 2eCOS 1*P:172 • )**4-  

C ******************************************************************* 

CHARACTRISTIC IMPEDANCE AND CUTOFF OF EQUIVALENT RIDGED 
C 	•WAVEGUIDE  ES  CALCULATED BELOW 

C **********************************************************M****** 

:1. 

I =0 . 
DO 5 1=1,30 
OI=le/((le—XI**2)**0e5)—le 
DI=2**XI*(ALOG(le/S)+QI*C./(1.4-0I*S**4)+XI**2.1 16e 

1 *(1+•3e*S**2)**2*C) 
EnuSIN(PI*W*XI)/COS(PI*W*XI)/T-FDI—COS(PI*XI*(le/Z —W))/ 

r 131Kpl*xietr.-tz-te)-r. 
IF(ABS(E)eLEe1eE-04)00  10 10 

 IF(EeLEe0e)00 TO 4 
XI=XI-0e5*Oe5**I 
00 10  .5 -  

4 	XI=XI-1-0.5*0e5**I 
- 

 
5= 	CONTINUE 	

. 	. . 

10 	Z0=120e*PI**2*XI/(SIN(PIMXI)+DIILSIN(PI*)<I/2e*(le/Z —W)) 
1 *COS(PI*W*XI)/COS(PIW(I/2e*(le/Z —W))) 

WRITE(6e15)XIY20. 
15 	FORMAT("y5XY37HCUTOFF FOR EQUIVe RIDGED WAVEGUIDE ISYFàe4b. 

1 //Y5Xe46HCHARACTe IMPe OF RIDGED WAVEGUIDE AT INFINITE 1,  
2 BHFREQe I 5 PF10e5v///s, 5X1, 31HP(WAVELENOTH/GUIDED WAVELENOTH)Y 
3 5X3, 16H X(B/WAVELENOTH )  'P25HZF(CHARACTe 1 MP*  01  FINS)Y//) 



1 
1 

1 

-A-30  - 

i 	C 
! 	C 	THE GUIDED WAVELENG • H AND CHARACTRISTIC IMPEDANCE OF BILATERAL 

- c; . 	FINS ARE . CALCULATED BELOW 
C 
C ******************************************************************* 

	

II 	
• C 

DO 100  ï: :i.  

geU(s )D 4(.)*I- 03  .... 	** * 

	

I 	- U=(AB( 

	

1 	 SER-P(I)**2))**0.5 
''°(1 -P(I)**":')) 	0 5 

	

.i 	 X(I)=04,45 	. 	• 

	

H 	 DO 90 J=1930 

	

8 	. 	..  ,...2..x(.)*( ALOG ( 1* /S )4.0I*C/ ( 1 + +0I*S**4 )4. ( ile< ( I)  )**2/16* 
..: 	- 	1 	*( 1 e -31.*S**2 )**2*C ) 

II IF(P(I)*GE*1*)00 TO 20 

DOn..:24,*V*X(I)*(AL00(1*/ 6 )4.00*C/(1++00*S**4)4-(V*X(I))**2/16* , ., ., 

	

 

I/ 	
1 *(1*-3**8**2)**2*C) 

: 
E=U/V*SIN(PI*W*X(I)*U)/COS(PI*W*X(I)*U)4.0*DI*U/V+DO-A 	. 
GO TO 30 

	

li 	
- 	20 

, 
 

DO=2**Ve((i)*(AL00(1*/S)+Q0*C/(1e+CIO*S**4)-(V*X(I))**2/16* 
1 *(1*-3.*S**2)**2*C) 

	

1 I 	
H 

	

, 	 AnnU/V*SIN(PI*W*X(I)*U)/COS(PI)KW*X(I)*U) 
F...teA4.0*DI*U/V-D0-1*/TANH(PI*X(I)*V*(1*/Z-W)) 

	

H 	30 	IF(AB6(E)*LEeleE-04)00 TO 50 . 
IF(E*LE*0*)00 TO 40 

	

1 	. 
i 

! 	 , 

	

. 	 GO TO 90 

	

40 	X(I)=X(I)4.0*5*0*5**J 

11
90  

	

: . 50 	IF(P(I).E.U.0*)00 TO 60 

	

' 	CONTINUE 
! t i 	 . 

11 	

‘.... 

. 60 	
IMI-TO —70-   
ZF(I)=9000e 

70 	WRITE(6Y80)P(I)YX(I)PU(I) 
. 80 

100 	
FORMAT("1,16XYF7+3Y21XYF7*4P2OXPF10*5) 

I/ 
 

CONTINUE - 
STOP 
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B/A=0.50; D/B=0 ..13; S/B=0.072; ER= 2.22e.  (30.37 

CUTOFF FOR EQUIV. RIDGED WAVEGUIDE 1+41525 =  X I  

CHARACT, IMP, OF RIDGED WAVEGUIDE AT INFINITE FREU,.IS 176+68607 OliMS 

X(B/WAVELENGTH) • 	ZF(CHARACT,. IMP+ OF FINS) OUNtt P(WAVELEN(3TH/GUIDED WAVELENGTH) 

0,000 
0.030 
0.060 
0.090 
0+120 
0+150 
0.180 
0.210 
0.240 
0.270 
0+300 
0.330 
0.360 
0+390 
0.420 
0.450  
0.480 
0+510 
0.540 
0.570 
0.600 
0.630 
0.660 
0.690 
0.720" 
0.750 
0.780 
0.810 
0.840 
0+870 
0+900 
0..930 • 
0.960 
0+990 

1.050  

0+1394 
0+1395 
0+1396 
0+1399 
0.1402 
0.1407 
0+1413 
0.1419 
0.1427 
0.1437 
0.1447 
0.1459 
0+1472 
0+1487 
0.1504 
0.1522 
0+1543 
0+1566 
0.1591 
0.1619 
0+1651 
0+1686 
0.1725 
0+1769 
0.1819 
0+1876 
0+1941 
0+2016 
0.2104 
0.2209 
0,2335 
0.2490 
0.2687 
0.2946 
073301- 

 0,3831 

9000,00000 (91*) 
5809.53564 
2944.76782 
1963.17859 
1472+38403 
1177.90723 
981.58929 
841+36224' 
736419202 
654.39288 
588+95361 

• 535.41235' 
. 490.79465 
453+04120 
420+68112 
392.63571 
368.09598 
346+44327 
327.19641 
309.97556 
294+47678 
280.45407 
267+70615 - 
256.06677 
245.39731 
235.58142 
226+52058 • 
218.13095 	• 
210.34055 
203,08743 

. 196+31784 
• 189.98502 - 

- 	184+04799 
178+47076 	. 

168.27245 

› 

1 
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for p < 1 

-(u/v)cot{2rwxu + 

d q u 2 
+ 

1 tan
-1

((u/v)tan2nxv(--- - 2z + 
 E

B 
'l 	vx -cot 22---Irv  = 
Yo vx 

w)]J 

0 	(3s) 

(1) 

presented 
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FIN LINE DESIGN MADE EASY 

Wolfgang J.R. Hoefer, . 
Dept. of Electrical Engineering, 

University of Ottawa, 
Ottawa, Ont., Canada. 

ABSTRACT 

This paper presents a simple but accurate method to calculate the guided wavelength and characteristic.im-
pedance of various fin line configurations. The transverse resonance condition is solved using available data 
on capacitive irises in waveguides and a novel diagram for evaluating the influence of a dielectric sheet on the 
iris capacitance. . 

Introduction  

The simplicity of Meier's
1,2

formulae for fin line 
parameters as well as the accuracy of Hofmann's 3 , 4  nume-
rical solution of the fin line problem can only be 
fully exploited by the designer if he chooses the same 
geometries and dielectric constants as these authors in 
order to apply their results directly. Otherwise, 
either a test measurement or an involved computer solu-
tion  is required to predict fin line performance. 
Saad and Begemann5  have published approximatè but still 
Cumbersome expressions for the effective permittivity 
and characteristic impedance of fin lines, which are 
satiSfactory for thin substrates only. 

The purpose of this paper is to present an accu.- 
rate,yersatile and simple method to calculate the 
guided wavelength and impedance of various fin lines, 
using available data for waveguide discontinuities and 
a novel diagram for the evaluation of the susceptance 
of dielectrically supported irises in waveguides. 

Theory  

Calculation of the Guided Wavelength  

The guided wavelength is found by evaluating the 
first root of the transverse resonance condition. This 
'condition contains the susceptance of a capacitive iris 
modified by the presence of a dielectric sheet. Both 
the iris susceptance and the correction factor are 
available in graphical form, thus the computational ef-
fort is kept at a minimum. 

The method is best explained by briefly revisiting 
the ridged waveguide (Fig. la). The transverse reso-
nant condition can be written as follows: 

X 	
b 	' a b 1 

1-3- 	 - cot w -s- -x— 0 

in the Waveguide Handbook
6

, Fig. 5.1-4, provided X 
8 

therein is replaced by Xt  of this paper. Close ins-

pection of Fig. 5.1-4 in [6] shows that this term is 
rather insensitive to changes of the parameter b/X t  as 

long as the latter is smallerthan 0.4, which is prac.- 
tically always the case. Thus, a very good approxi-
mation for b/X t  can be found by introducing into 

equ. (1) the value of [(Bu/Y0)(Xt/b)] for b/X t 	O. 

The root is accurate within a feW percent. If a 
approximation is desired, an improved value for 

[(B
a 
 /Y )(X

t 
 /b)] corresponding to the just calculated 

0 	• 

b/X is introduced into equ. (1). The guided wave-

length 

X = X [1-(X/X
t
)
2 ]  1/2 

8 

where X is the free space wavelength. 

Fin Lines  

When a dielectric sheet of permittivity Cr  is 

added at one side of the ridge, as shown in Fig. lb, 
the capacitance of the covered half of the discdnti-
nuity is increased by a factor somewhere between 1 and 
Cr , depeilding on the thickness of the sheet. This cor- 

rection factor  has been calculated by numerically eval-
uating the ratio 

F 
Slot susceptance for finite sheet thickness  -  Slot susceptance for infinite sheet thickness 

and normalizing it to make it independent of e
r

. 
7 The procedure for this evaluation was outlined by Cohn. 

The results are presented graphically in Fig. 2. The 
guided wavelength in the fin line can now be determined 
in exactly the same way as for the ridged waveguide by 
introducing the graphically available values for the 
discontinuity susceptance6  and the correction factor 
(Fig. 2) into the transverse resonance condition of the 
structure, and then finding the lowest root of this ex-
pression. 

The resonance conditions for three fin line confi-
gurations will be given with the following abbrevia-
tions: 

d/b = t; s/b = w; b/a = z; X/X = p 

2 1/2 
8 

u;  0 1-1,21 ] 1/2 = v  
b/X = x; [It r 

X = x/v•' X
tl 
 = x/u; b/Xto = vx, to  

b/X
l 
 - ux. 

t 

X = fin line wavelength; X
to

, 

guided wavelengths in air 
respectively. . 

• 
Resonant Condition for Unilateral.Fin Line (Fig. 1.b)  

where X
t 

is the transverse guidèd wavelength. 
X B 

The term in square brackets is 1 — the( 
Y 

_gh 
2 	

o 	
b' 

[ ya 

better. 

X
8 
 is then found by writing: 

(2) 

X
tl 

= transverse 

and dielectric 



1 

. for p > 1 

- 	tan,mwxu + 	 V,7) ww 
11 "^ 

Bd 1 ] ,u,2 

[ Ea 1 ] 
Yo 

vxvx - coth 	w 1 w)  =0 

for p > 1 . 	 • 

-1 	 1 --(u/v)cot{2wwxu + tan [(u/v)tanh 2rxv(--- - w)]] . . 2z 

+.F 	-i— v, v—cot 
1 . 

Cd 11 u2 	[Ba 1 

o 
 nxv . 

z 

-where F = -(v/u)
2 
+ G[1,h(v/u)

2
] 	. 	

. 

Resonant Condition fer-Bilateral Fin Line (Fig. 1.c)  

(u/v) tan wwxu + 
Bd 1— (u

-)2 vx 
ux v  

+[
•-e- "=-] 	- cot irxv(l - w)• * 0 
Y
o 
vx 

B 

for p < 1 

(3b) 

(4a) 

(5a)  

(5b)  

where F = (v/u)
2 

+ G [1-.(v/e)
2'  
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infinite frequency, which can be obtained from Cohn's 8 . 
paper on properties of ridged waveguides. The eval-
uation of p has just been described. 

- Results  

The 	
• 

resonant conditions have been programmed on a 
11P-57 calculator and solved using the standard program 
"Calculus and Roots of f(x)". Fig. 3 showa p = X/X 

8 
as a function of x = b/X for a unilatèralfin line and 
for the corresponding ridged waveguide (c

r 
 = 1). For 

comparison, measurements made by Meier
2 
 and calcula- 

tions made by Hofmann3  are shown for thassae fin line. 
Agreement with both authors is excellent-. -. ,,The diagram 
also shows the cutoff wavelengths of the guides 
(at, À/X g  = 0) *. ,  

• 
In order to find the lowest root of the resonant 

condition, an initial guess for x must be made such 
that the program converges to the desîreevalue. A 
good initial guess is x = b/X o 

 , where 	the cut- 
c 	cô 

off wavelength of the empty waveguide of identical di-
mensions. 

Fig. 4 shows results for bilateral fin lines with 
values published by Saad and Bege mann5 . Unfortunately, 
the authors do not specify the frequencies at which the 
dielectric constant has been measured. Discrepancies 
between results reach up to five percent for thick 
substrate (c/b = 0.228). 

(4h) 

• -Resonant Condition for Insulated Fins (Fig. 1.d)  

for p < 1 

--(u/v) aot {wwxu + tan-1  [ (u/v)tanw xv( - w)]] 

+_ 
 [

Bd 1 = 2 

1 

-where F as in (3a) 

for p > l •  

-(u/v)cot {wwxu + tan-1  [(u/v) tanh wxv(-1- w)1} 

[B, (1 1 	2 
F 	ux (-;)u vx  ° 

- 
where F as in (3b) 

• 

As in the case of ridged waveguide,  the values for 

[.. 

B 	 B
a 1 	 . • 

-ii  -1.- and — can, for a.  first approximation, 
Y
1 

ux 	Y
o 

vx 

be those for l/ux and l/vx = 0. . Once the root of the 
=resonance condition is found, the Choice of the suscep-
tances can be improved accordingly. 

For the solution of the resonant condition; either 
p * X/X

8 
 can be fixed while x = b/X is searched, or 

x is fixed  and the  corresponding p is found. 

Characteristic ImpedanCe  

Satisfactory values for the characteristic impe-
dance of fin lines can be obtained with the expression 

z  =z  x /X = z /p 
0 	00  g 	cre 

where Z is the characteristic impedance of a ridged 
00  

wiveguide of identical cross-sectional dimensions at 

Conclusion 

The availability in graphical form of values for 
capacitive irises in rectangular waveguides, and of à 
novel graph for evaluating the iris capacitance in the 
presence of a dielectric sheet, enable the fin line 
designer to accurately predict the guided wavelength 
in fin lines of any cross-sectional dimensions and 
substrete permittivity. The mathematical complexity 
of the solution does not - go'beyond finding the root of 
a transcendental equation, a task easily accomplished 
by small programmable computers. Nevertheless, the 
accuracy approaches that of a numerical solution and is 
limited only by the accuracy of the graphs, which is 
typically.less than 4Z: 
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FIN LINE PARAilETERS CALCULATED WITH THE TLM - METHOD 
_ 

ABSTRACT  • . 	• 
The guided wavelength in fin line is calculated using the Transmission Line ilatrix (TLM) method. The 

resonant frequencies of fin line cavities are evaluated on a computer, yielding the dispersion characteristic of 

the fundamental and higher order modes of propagation. 
• 

Introduction  
• 

Variouà methods  for the evaluation of fin-line pa-
rameters have been presented by Meierl, Hofmann2  Saad 
and Begemann3  and Hoefe .r4 . In addition, a method for 
analyzing the transition from fin-line to a below-
cutoff waveguide has been reported by Saad and 
Schnenemann5 . In the present paper, the application of 
the Transmission Line Matrix  (UN) technique to the fin 
line problem is demonstrated for the following reasons: 

a) To verify and eventually to refine the various 
methods mentioned above, 

b) To calculate the equivalent lumped element circuit 
of fin line discontinuities which have not been eval-
uated to date. 

The number of results given in the present paper is 
rather limited because of the considerable size of 
memory and the large CPU-time required for the calcula-
tion of a given structure. 

. . 	 The TLM - Method  

The transmission-line matrix (TLM) method was de-
veloped by Akhtarzad and Johns6  and was applied by 
these authors to the analysis of three-dimensional re-
sonating structures. The dispersion characteristics of 
waveguide structures and discontinuities can be ob-
tained by calculating the resonance frequencies of ca-
vities exhibiting the pertinent cross-sectional geo-
metry and containing the discontinuities under inves-
tigation. To this end, field propagation in the struc-
ture is simulated by the propagation and scattering of 
impulses in a three-dimensional transmiàsion line 
lattice characterised by the parameter AZ (distance 
between adjacent nodes. Boundaries (electric and mag-
netic walls) and dielectrtc interfaces can be simulated 
by introducing stubs which modify in an appropriate way 
the impedance across nodes situated at the boundaries 
or inside the dielectric. Valid results are obtained 
if the distance between nodes is smaller than 0.1 X, 
where X is the free-space wavelength corresponding to 
the resonance frequency of interest. On the other hand, 
.the minimum value for Alt is limited by considerations 
of available computer memory. 	 - 

To start the calculation, one or more nodes (depen-
ding on the mode to be investigated) are excited ly an 
impulse. The propagation of the impulses across the 
three-dimensional network is calculated in real time. 
After a sufficient number of iterations (forth-and-back 
trips of impulses across the structure),the impulse res-
ponse of the structure is picked up at strategic output 
points, chosen again according to the expected field 
distribution. Speaking in terms of measurements, the 
position of the input and output nodes is chosen in the 
same way as the position of field probes for excitatien  

and detection of modes in a resonator.  In the TLM- - 
progïam, however, the "probes" do not interact with the 
field and thus are non-perturbing. " 

From the time domain output, the eigenvalues of the 
structure in the frequency domain are obtained via 
Fourier Transform. The number N of iterations must be 
sufficient to obtain satisfactory resolution in the 
frequency domain. The finite character of . N liMits 	the 
response in the time domain and thus determines  the re-, 
solution of maxima and minima  in the  frequency spectrum. 

Features of the Computer Program 	• 

' 	The original program published by Akhtarzad 7  has - 
been modified by A. Roe (co-author) and co-workers to 
gain a factor 5 in CPU:time and a factor 2 in memory 
size. This has been achieved by incorporating the sub-
routines into the main program. Still, for the struc-
tures  calculated in the present paper, considerable 
memory is required, particularly because-fin line  struc-
tures  With relatively thin dielectric and small fin-
spacing require at least three nodes within the smallest 
dimension to yield satisfactory accuracy. 

A value of At = .4 mm has been chosen for the dis-
tance between adjacent 'nodes. A typical program for a 
cavity of 20 x 10 x 4 mm requires a memory close to 
1 M-octets, and an IBM 360 runs for about 240 CPU-min-
utes to exècute 1000 iterations, These requirements 
are obviously the major drawback of the TLM-method, 
but on the other hand, any structure can be handled 
regardless of complexity of its geometry. 

Computations and Results  

A rectangular- cavity containing a unilateral fin 
line'structure was adopted for TLM computations. Fig.1 
defines the parameters of the structure. Resonant 
modes are charàcterized, as in empty rectangular cavi-
ties, by indices 2,, m, n representing the number of 
half-periods in x, y and z direction respectively. 

Resonant frequencies were calculated with the TLM-
method and compared with results obtained by solvi.ng  
transverse resonant conditions as shown by Hoefer". 
Several special cases for which exact analytical solu-
tions exist, were chosen to verify the accuracy of the 
TLM-program. 

Since the TE10 
fin line mode is of particular in- 

terest, the c-dimension should ideally be the longest 
dimension in order to separate it well from the other 
modes. However, this would require excessive computer • 
memory,and shorter lengths c < a,b had to be chosen. 



411-m 20 . ago 

, 	.= 10.4 zza 

c= 7.2 =  

> d b a 10.4 mm 

•e  = 1  

Resonant Frequency (GHz) 
TLM 	Exact 

.Error 

.16.221 	16.257 --0.2% TE 
.110 

• • Table 1 Resonant frequency of empty cavity. 
- Comparison.of  TU! and exact solution. 

• 

CONFIGURATION 2: Dielectric-Filled Cavity  

20 Fan 
b m. 10.4 mm 

- c 	ana 

= b 10.4 mm 

= a = 20 mm 
er  2.22 _ 

1 
--/10 

101 

n/a 	n/a 

b75-4-  0.80 

29.20 TE
301 

n/a 27.033 	n/a 

• 	 Resonant Frequencies (GHz) 	Error 

TLM 	Exact  

TE 	 33.52 	31.866 	5.2% .  
• 101- 	- 

TE301 
	

44.67 	41.522 	7.6% 

TE 
 501 	
52.40 	50.567 	3.6% 

TE
102 	

59.42 	57.673 	3 	Z 

TE 	 63.39 	62.026 	2 	Z 7ni 

Tâleie 3 Resonant frequencies of cavity with dielectric 
slab (Cr  = 2.2). Comparison of TLM and . 

exact solutions. 

., CONFIGURATION 4: Cavity Containing.Centeed Thin Fins • 

a = 20 mm 

b à 10.4 mm 

c= 7.2= 

4 = 1.6 mm . 
C = 1 

Resonant Frequencies 

Hoefer
4 

Effective Diel. 
Constant 	• 
e
eff

= (X/X
g

)2 

4 
TLM 	Hoefer 

...Mode 

TLM 

20.63 

23.25 

20.60 

21.473 

Resonant Fre'quencies 

TLM  

14.49 

20. 19 
s. 

Effective Diel. 
Constant 	2  
e

ff-  
- (X/A ) 

e 
Hoe fer 

n/a 

1.282 

Hoefer
4- 

TI161 

n/a TE110 
11.1.11 

18.40 1.065 TE101 

Table 5 Resonant frequencies of cavity containing uni-
lateral fin line. Comparison of TLM solutions 
and solutions obtained with method described 

by Hoefer
4

. TE101 
is the fundamental fin line 

mode. 

Resonant 
TLM 

Frequency (Clz) 
Exact 

Error 

• TE
110 	

10.91 	10.911 	OZ 

Table 2 Resonant frequency of dieiectric-filled 
cavity (e = 2.22). 

Comparison of TLM and exact solution . 

CONFIGURATION 3: Cavity with Dielectric Slab  

I. 

a:20 mm 

b à 10.4 im 

c= 4 mm 

d = b 10.4 mm 

s = 2 mm 

er 
 = 2.2 

- 21.38 - 

Fig. 1 Rectangular cavity containing unilateral fin 
line 

I -CONFIGURATION 1: Empty Cavity  

4 Resonant frequencies of cavity with centered 
fins. Comparison of TLM solutions and solu- 
tions obtained using transverse resonance con-

. ditions. TE
101 

is the fundamental fin line 
mode. 

CONFIGURATION 5: Cavity Containing Unilateral Fin Line  

d a 1.6 mmH 

s = 1 mm 

e
r 
 a2.22 

a = 20 = 
b 10..4 mm 

Ca 7.2=  

I. 



• Fig. 2 Rectangular cavity containing a fin line step 
—.discontinuity at its centre. 	- 

II

•  

• .1-CONFIGURATION 6: Cavity Containing a Fin line Step 
. Discontinuity at its Centre (See 

. 	 .-Fig. 2) 

um 

• •b =_10.4 =d1 
 = 1.6 ma 

•  

1 
e-e 6.4 um 

41
2 
= 3.2 = 

d2 
4 au 

•-d2 
= 5.6 = 

p. WV 	• 

•-Table 6 Ràsonant frequencies of cavity conteiming a 

• - fin line step discontinuity. In the TE101- 
. 	. 

-mode, a current node is situated at the dis- - 

• • • ...-continuity, while in the TE102
-mode, a voltage 

• 

TE
101 

TE102 

-.obtained with TLM-method 

'node occurs at this position. d1= 1.6=. 

	

22.82 	22.56 	21.99 	23.40 

	

45.91 	46.13 	46.82 	45.7 

' -Resonant Frequencies (GHz) - 

by 
extrarolation 

zin 	 -ea 

Structure of 
Fig. 2 
f 22.5 GHz 

0 

I .  Fig. 3 Equivalent parameters for a step discontinuity • 
of fin line, calculated with the TLM-method. 

• 

_ 

B 
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.1 

d
2
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1 
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1 
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•Fig. 3 shows the calculated equivalent parameters of 
the discontinuity for the resonant frequency of the 
fundamental fin line mode TE101 , as well as the equi- 

valent circuit itself. The accuracy is estimated to 
be about 1- 10% 

Conclusion  

'The TLM-method yields resonant frequenties of rec-
tangulai Cavities accurate within ± 0.5Z, if the cavi-
ties are homogeneously filled with dielectric. In the 
presence of a centered dielectric slab (c r=2.2), the 
UM-calculated frequencies are typically 5% too high. 
If fins are introduced into the cavity, TLM-frequencies 
are 8Z higher than frequencies obtained with formulae 
for ridged waveguides. Similar discrepancies exist. 
between TLM frequencies for unilateral fin line and 
frequencies obtained with Hoefer's 4  method. Conse-
quently, the effective dielectric constant c

eff 
for 

unilateral fin line is 17Z smaller when calculated with 
the TLM-method. Further study is necessary to deter-
mine the reason for these differences. 
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