$$
75-435
$$

C T S EXPERIMENT REPORT U-8
PHASE II

MATHEMATICS AND MATHEMATICS EDUCATION FOR
ELEMENTARY SCHOOL PERSONNEL IN REMOTE REGIONS

Dr. G. Vervoort

Phase II

January 1978

(2)

Mathematics and Mathematics Education

oe. \&Veronort

Page
I General Information Regarding Experiment U-8 1
A Identification 1
B Objective 1
C Summary of Experiment 1
D Milestone Chart 1
E Operational Plan 2
F Evaluation Plan 3
II Report of Phase II of Experiment U 8 5
A Summary of Proposal 5
B Progress Report 5
C Conclusions and Recommendations 9
III Appendices 12
A Content Outline and General Objectives of Course 13

1. The Language of Mathematics 14
2. The Arithmetic of Whole Numbers 20
3. Creating the System of Integers 34
4. The Rational for Rational Numbers 38
5. The World of Geometry 42
B Evaluation Instruments 43
Document A: General Instructions for Observers 43
Document B: Observer Procedure in the C1assroom 50
Document C: Observation Form: Coding Information 53
Document C1: Observation Form 57
Document D: Student Questionnaire 58
Document E: Description of Learning Environment, Part 1 61
Document F: Description of Learning Environment, Part 2 67
Document G: Interview Re Teacher Integration Into Community, Form 1 82
Document H: Interview Re Teacher Integration Into Community, Form 2 87

PAGE 2 Page
Document I1: Teacher Participation Inventory, Group 1 91
Document 12: Teacher Participation Inventory, Group 2 93
Document I3: Teacher Participation Inventory, Group 3 and Group 4 96
Document I4: Teacher Participation Inventory, Control Group 98
*Document J: Indices of Isolation 100
Document K: Background Information 105
Document L: Se1f-Concept Inventory 112
A) IDENTIFICATION:

1) Sponsor Number: $\mathrm{U}-8$
2) Title: Upgrading Mathematical Competence of Elementary School Teachers
3) Sponsor: Lakehead University
4) Experiment Leader: Dr. G. Vervoort
5) Contact Name: Same
6) Contact Address: Lakehead University, Thunder Bay, Ontario
7) Contact Telephone Number: 807-345-2121
B) OBJECTIVE:

To study the feasibility of the upgrading in both mathematics and mathematics Education of elementary school teachers in remote areas by means of satellite communication.
C) SUMMARY OF EXPERIMENT :

Every other evening for 30 weeks, a one hour interactive mathematics and mathematics education program was to be broadcast. Each hour of satellite presentation was to consist of a 20 minute video recorded lesson followed by a 10 minute two-way exchange by means of a two-way audio channel and a one-way telewriter signal. This was to be followed by another 20 minute video recorded lesson and a second live two-way telephone and one-way telewriter link. There were to be regular assignments as well as a text to complement the satellite presentation.
D) MILESTONE CHART:

September 1, 1974 - Funding for 20 minute pilot presentations completed. Broad course outline completed.
Begin production of pilots. Begin writing of supplementary materials. Begin collecting pre-test data on teachers. Establish initial contacts with other institutions.

March l, 1975 - Four pilot 20 minute presentations dealing with the background and teaching of the metric system completed. Begin formal approach to funding agencies.

May 1, 1975 - Finalize agreement with other institutions regarding their role in developing and evaluating the materials.

Auguṣt 1, 1975

August 31, 1976

April 1, 1977

- Detailed course outline completed.

Likely sources of funding established and tentative funding arrangements completed. Begin full scale production of 20 minute presentation.

- 20 minute mathematics content presentations completed. Writing of complementary mathematics content materials completed.
Collecting of pre-test data on teachers completed.
- 20 minute mathematics education materials completed. Writing of complementary mathematics education materials completed.
E) OPERATIONAL PLAN:

1) Pre-experiment operations
a) development of experimental 20 minute presentations including some pre-testing.
b) development of written material and material packages which are to accompany the video presentation.
c) collecting of data on success of alternative delivery including regular extension.
d) determine suitable tests for measuring the result of the satellite presentations.
e) contact and familiarization with school personnel at remote site.
f) formal agreement with all cooperating institutions.
g) licencing requirements.
2) Operations
a) Systems description
i) A 30^{\prime} dish at Shirley Bay was to be used to send the video signal of the pre-recorded sections of the program to the satellite, from where it would be rebroadcast to the various sites. Further rebroadcasting might have been arranged at each site if sufficient local interest existed.

The 8^{\prime} dish at Thunder Bay was to be used primarily for the interaction with the audience. It was to be available for audio contact with various sites as required throughout the hour. Simultaneous with the broadcast from the 30^{\prime} dish, a number of receiving stations were to be contacted, one at a time, for questions and comment. During the two 10 minute 'live' intermissions, a telewriter and audio signal were to be sent to all receiving stations simultaneously. Also comments from receiving stations were to be relayed 'live' to all stations during this period via the Thunder Bay dish.

The remaining on-site 8^{\prime} dishes were to be used to receive the video, audio, and telewriter signals from Shirley Bay and Thunder Bay as well as for sending an audio signal to Thunder Bay during the interactive parts.

The participants with 3^{\prime} dishes only would have to receive the pre-recorded programs via the postal service. They would run these tapes on their own machines and participate in the interactive audiotelewriter sessions only (see evaluation).
b) Content description

	Pre-recorded television program (video $\&$ audio) from Shirley Bay to all 8^{\prime} and 10^{\prime} dishes. Audio contact two-way between Thunder Bay and all receiving centers, one at a time.
0:20-0:30	Telewriter g audio signal from Thunder Bay to all 8^{\prime} and 10^{\prime} dishes simultaneously. Audio signal only to all 3^{\prime} dishes simultaneously. Audio input to Thunder Bay from selected dishes for broadcast to all dishes simultaneously via the Thunder Bay dish.
0:30-0:50	Pre-recorded television program (video \mathcal{G} audio) from Shirley Bay to all 8^{\prime} and 10^{\prime} dishes. Audio contact two-way between Thunder Bay and all receiving centers, one at a time.
0:50-1:00	Telewriter G_{G} audio signals from Thunder Bay to all 8^{\prime} and 10^{\prime} dishes simultaneously. Audio signal only to all 3 ! dishes simultaneous $1 y$. Audio input to Thunder Bay from selected dishes for broadcast to all dishes simultaneously via the Thunder Bay disc.

Participants: Elementary school personnel and members of the community who might be interested in upgrading their own or their children's mathematical competence.
F) EVALUATION PLAN:

1) Objectives
a) To measure the change in the mathematical competence of the participants.
b) To measure the change in the knowledge of mathematics education of the participants.
c) To measure the change in the mathematical competence of the children who are taught by the participants.
d) To compare the above results with results obtained by alternative modes and variation of course delivery.
2) Methodology

It is deemed important in experiments of this nature that the evaluation be objective as well as that it appears objective. For that reason OISE as an agency not immediately involved in project, was approached to do the evaluating.
A) SUMMARY OF PROPOSAL:

It was proposed that the year March 1, 1975 - March 1, 1976 be devoted primarily to the writing of necessary outlines, background materials, scripting video tape outlines, and producing a detailed evaluation protocol. The writing in turn would necessitate a detailed search for available and suitable video materials. It was expected that several scholars of other institutions would be sharing in this aspect of the undertaking.

In the proposal it was pointed out that the effective coordination of personnel and materials for a task of this complexity would require a full time coordinator and a secretary in order to assure the proper integration and sequencing of all mathematical and educational concepts into the scripts and guides. The coordinator would also be expected to consult with various experts,--mathematical, educational, and technical,--and meet frequently with such representatives of OISE, OECA, DOC, the Ministry of Education, and others, who might contribute to the development and evaluation of all materials. In addition the coordinator would consult with the school personnel and other members of the small Northern communities, both for informal pretesting of some of the materials and for collecting data for the formal evaluation.
B) PROGRESS REPORT:

A reduction of funding for the year to approximately 60% of the requested amount led to immediate, severe difficulties. Salaries for new graduates from teachers' colleges, without classroom experience, started at $\$ 12,000.00$ for 9 months of teaching. The project was limited to a scale of $\$ 1,000.00$ per month without any of the perks and benefits that accrue to the classroom teachers. A significant handicap was the fact that no commitment for employment could be given beyond March 1, 1976, a date which was particularly ill-suited for the traditional academic year. Also the relatively late date of the announcement, mid Apri1, contributed to further difficulties in recruitment as even those who might have been willing, had already signed contracts when the announcement of the position reached them. As a result it proved impossible to attract suitable candidates for the coordinator position, i.e. individuals with a knowledge of both mathematics and mathematics education, teaching experience, facility to deal with the public, teachers, and funding agencies, as well as writing ability.

Repeated approaches to all of the Canadian faculties of education and departments of mathematics led to a grand total of two applicants., Both were recent Ph.D. graduates in pure mathematics of foreign extraction with limited knowledge of the Eng1ish language and, unfortunately, without any experience with the North American school system.

Finally, a prospect was located in the U.S. The candidate had only just recently returned from work in Africa and as a result was still uncommitted. While some serious reservations were expressed regarding the suitability of the individual, it was decided no viable alternative existed. The new coordinator started in the middle of Septiember. Unfortunately, the initial misgiving proved to be well founded. With the first snap of cold weather in November, the person resigned without having made any contribution of significance to the experiment. A qualified teacher, temporarily out of work due to family circumstances, was hired as a replacement. While intelligent and willing, this person was engaged by the project for too short a time to make the contribution she might have made otherwise. As a result, the bulk of writing, coordinating and meeting rested on the shoulders of the primary investigator.

Meanwhile, two separate developments at Lakehead University affected the satellite project. The academic vice-president of the üniversity, Dr. Eldon, resigned to accept a new position with the Energy Board. He had been the primary facilitator and supporter of the project in the senior administration and provided the overall coordination between the project and the university. He was not replaced. A second unfortunate development related to the general economic condition and the, cutbacks in university funding. This resulted in rearranging of internal priorities. This in turn coupled with the departure of Dr. Eldon meant a significantly lesser degree of support from Lakehead University than expected. The release of all or most teaching duties of the primary investigator had been held out as a distinct possibility at an earlier date. This was no longer deemed feasible. Instead circumstances dictated that his teaching assignments were actually increased by some 33\%. These facts, further aggravated by some health problem of the primary investigator, meant that he could not always assign the experiment the number of hours it deserved and needed.
ar

Earlier it has been hoped and expected that other investigators at other institutions would participate and share in the development of the materials. A number of individual scholars from the University of Minnesota, Winnipeg, OISE, even the Israel Institute of Technology in Haifa, had expressed a willingness to participate. Again the lateness and shortfall in funding meant that these people were unable to make the necessary adjustments in their own schedules at such a short notice.

In order to solve the critical financial problem, a number of timeconsuming approaches and proposals were made to various private foundations and governmental institutions. While expressing more than polite interest and even encouragement, the respondents did not make any financial commitments to the project.

A further source of discouragement was the lack of cooperation and disinterest by the provincial bodies such as the Ministries in Toronto and the OECA. As time passed the primary investigator concluded that OECA had little desire to see this project succeed. For instance, the one 20 minute pilot produced by OECA during the previous year was not only twice as costly as one produced privately elsewhere, but also illsuited for its intended purpose. In fact, in the investigators'
opinion, it would have to be completely redone. Also while the video tape was produced by the end of March 1975, its delivery was delayed until Christmas 1976.

Their attitude was in sharp contrast with the response from private producers and distributors of mathematical films. They leaned over backwards to stretch regulations and conditions to allow free use of their materials for purposes of the experiment. Alas, not many of the available films were suitable for incorporation in the course as planned. The project involved a combined media approach with an interactive component but few of the existing materials were designed for that purpose. Of the more than 100 films which were viewed and evaluated for possible inclusion in the program, not more than 6 could be used without major modification. The available 'Open University' materials produced elsewhere were equally unsuited.

The evaluation component for the project was designed under the direction of Drs. H. Russe11 and R. Traub from OISE. A copy of the various evaluation forms and protocol developed for that purpose is included in the appendix. The support by OISE for the project was excellent. Additional excellent cooperation was received from the local Ministry of Education and the school boards who made many man hours of personnel and classrooms available to the project for the gathering of materials and the local production of an experimental video tape. The members of the Department of Communications, indeed the whole federal service in Ottawa, was most supportive throughout. They did the utmost to make every experiment succeed. In particular, Mr. Terry Kerr was a source of support and encouragement for many experimenters.

When the writing dimly appeared on the wall, a decision was to be made regarding the future of the project. The following alternatives and combinations thereof were considered:

1) Reduce the experiment to the mathematics component only. Consequences of such a curtailment were thought to include
a) a drastic reduction in enrollment. It was argued that it was precisely the promise of the mathematics education component with its constant references and applications for classroom behaviour that would entice the teachers to take the course in the first place. Without it few, if any, sections would be viable. The resulting small sample would prevent the drawing of any significant conclusions.
b) without the education component there would be little effect on the mathematical achievement of the student which was to be one of the goals of the experiment.

Therefore, this alternative was rejected:
2) Reduce the experiment to the mathematics education component only. Consequences were thought to include
a) a greatly watered down content of the presentation. It was considered not feasible to approach the 'how to teach' until at least the 'what to teach' was mastered.
b) a drastic reduction in the experimental population if (a) was replaced by a qualifying test, resulting in a sample too small for drawing any significant conclusions.

Therefore, this alternative was rejected.
3) Reduce the experiment in length to a few weeks of even a few days on1y. Consequences of this decision would have included
a) the denial of university credit of the course for the participants.
b) a drastic reduction in the number of participants resulting in a sample too small for drawing any significant conclusion.
c) a denial of provincial university funding for these students resulting in even higher experimental costs.
d) the effects of such a short course on the learning achievement of the participants would be minimal in difference with learning resulting from another media combination.

In consideration of this, the alternative was rejected.
4) Reduce the experimental program to a live program only. Likely consequences were thought to include
a) a program that consisted almost entirely of the "talking face" format. Since the Stanford Study showed that remote learning depends as much or more on how the medium is used than on which medium is used, the results of a study based on poor materials would have little or no validity.
b) the program described in (a) would likely result in high drop-out rates which might be attributed erroneously to the satellite rather than the format thus harming future experiments.

In consideration of this, the alternative was rejected.
5) Rely entirely on existing materials and modify accordingly. This would in effect have reduced the project to another study on educational television without in any way making use of the additional potential of the satellite. In terms of the proposed research, this would be misleading and unnecessary.

Therefore, this alternative was rejected.
6) The final alternative was to reduce the study to a demonstration project, broadcasting live with interactive component from the DOC compound in Shirley Bay to campus. The audience would consist of teacher-students from Northern communities who had come to summer school. Thus at least some experience with the medium and audience reaction might be collected. However, due to low early registration that year, Lakehead University was unable to guarantee that the course would go.

Thus the last alternative had to be aborted.
As a result of the above considerations, Mr. Terry Kerr of DOC was informed experiment $U-8$ was withdrawn.
C) CONCLUSIONS AND RECOMMENDATIONS:

1) The rational for conducting a study on the feasibility and the relative effectiveness of satellite communication as a vehicle for delivery of higher education to people in remote areas, remains as valid as ever.
a) The development of educational communication resources to take full advantage of technology offers a means for restraining the enormous increase of educational costs and simultaneously coping with the knowledge explosion.
b) The justification for satellite technology, and any technology, is its social utility and effectiveness in comparison with other technologies.
c) No valid conclusions regarding its social utility and effectiveness can be drawn until extensive experimentation has been completed.
d) No experimentation is valid unless it is complete, i.e. until it explores the full range of possibilities.
2) Meaningful satellite experimentation for educational purposes will require
a) adequate funding for the acquisition of such staff and materials as are necessary for the experiment. It appears that at present there exists a gross imbalance between funding for technology and funding for use of the technology. As a result educational experiments
frequently end in failure or yield trivial or even misleading results.

The Alaska ATS - 6 experience is typical:
In scheduling, the series was allotted $\frac{1}{2}$ hour each week and funding for such an expanded program became a problem.

A lecture series originally broadcast was discontinued because of overwhelming disinterest by the rural teachers, and the remainder of the programs have been studio interviews, panel discussions and slide presentations on topics requested by the teachers. This program series also includes interaction time, but few village teachers respond consistently. This can be attributed either to the time the program is broadcast, lack of free time for teachers, or lack of any motivation within the series itself to encourage teachers to watch. Few teachers have responded to written requests for evaluation of the series.
b) long range funding, perhaps with an original commitment of three years with further support dependent on satisfactory evidence of work accomplished.
i) Cooperation and commitment of faculty from different institutions-researchers need to be assured of this since a project of this type requires the cooperation of many people from many institutions and involves coordinating sabbatical leaves, release time, weighing of priorities, etc. Academic support could have mushroomed but under the circumstances no outsiders were willing to commit significant amounts of research time to what was perceived as a gamble.
ii) Recruitment of qualified staff--competent support staff is difficult to recruit when no assurances of any kind can be given beyond the coming month of March. This matter is further aggravated by the fact that the academic year runs from September until August.
iii) Long range planning adequate for the task--there is a time lag of two or more years between the design of quality educational materials and production. This is the case even in such products as elementary school text books. It is likely to be larger with more complicated productions.
c) the production of suitable experimental materials. Few existing video materials could be incorporated in a meaningful way into the proposal. A casual survey of programs from satellite experiments elsewhere leaves one with the impression that the biggest contaminating factor
for scientific analysis is the persistent lack of quality of the materials.
d) formal commitment of support from
i) one or more policymaking bodies such as the Council of Ministers of Education, the Ministry of Colleges and Universities, or others. By the nature of the experiment there will always remain a number of unforeseen happenings and difficulties. However, the formal and real support of such an influential group make it much more likely that these obstacles will be overcome in a satisfactory manner.
ii) the sponsoring universities to ensure the smooth integration of the research project with the teaching and research of the department(s) involved. Such an agreement should include provision regarding

I alternate researcher (s) in the case of long term illness; death, or resignation.
II safeguards against policy shifts resulting from changes in the senior administration. III adequate facilities and release time for the primary investigator(s).
e) formal agreement between federal and provincial authorities regarding rights, responsibilities and degree of support committed to the experiment. In Ontario such an agreement should include references to
i) the Ministry of Colleges and Universities which during the preparation for the experiment did not indicate any support or interest regarding the project.
ii) OECA which rather than contribute to the success of the experiment was perceived as a hindrance.

In summary, in spite of the withdrawal of experiment $U-8$, the broader results of the total satellite project reflect foresight, courage, persistence, cooperation, and participation from many individuals, agencies, and institutions, who have been willing to commit time, spirit, energy, and resources to search for new ways of humanizing the technology offered by the Canadian satellites.

CONTENT OUTLINE AND GENERAL OBJECTIVES
 FOR MATHEMATICS COURSE

Course Objectives:

1) to remedy existing deficiencies in the students' ability to handle the basic operations
2) to provide a foundation and a logical development of the basic concepts and algorithms of elementary school mathematics
3) to provide the students with a collection of mathematical examples and illustrations which can be passed on to the elementary school pupil
4) if necessary, to change attitudes towards mathematics from passive endurance to a participating, appreciative acceptance

THE LANGUAGE OF MATHEMATICS
a) Introduction:

Mathematics all around us
Outline:
Common and uncommon examples of the importance of mathematics Reasons for learning and teaching mathematics, individual and societal
Changes in mathematics program in the school Goals, objectives, and approach of course Relation to consequent mathematics education course

Instance:
Extension of concept of "unknown" to include operations
Objectives!
The student will demonstrate
(a) an understanding of the role of mathematics in the modern world
(b) a rational for the learning and teaching of mathematics
b) The nature of mathematics:

The importance of vacabulary $O R$ Did Mary walk around the squirrel? Out1ine:

Mathematics as a science of necessary conclusions
Need for unambiguous vacabulary
Necessity for undefinedterms
Necessity of axioms
Necessity for formal rules of logic
Instance:
Distinction of walking around a tree and walking around a squirrel Ambiguity of common expressions such as: "bigger than" (2 3), "surprise", etc.

Objectives:
Student will demonstrate
(a) an understanding of both the power and limitations of a mathematical argument
(b) an appreciation of the necessity of a common collection of undefined terms and axioms
(c) an appreciation of the need to formalize the rules of logic
c) Sets, OR What you always wanted to know about sets, but were afraid to ask

Outline:
Review of necessity of undefined terms Set, subset, null set, element, universal set
Set short hand, "set builder notation"
Equaltiy, unequality of sets
Contains, contained in
Instance:
Chess set, set of dishes

Objectives:

The student will demonstrate an ability to
(a) write unabiguous descriptions of sets
(b) describe a set by its elements
(c) apply the concepts and notations of set, subset, null set, element, containment, universal set, equality and unequality of sets
d) One-to-one correspondence $O R$ Why some things are more equal than others Outline:

Ambiguity of "more", "less", "just as many"
Basic notion of counting
1-1 correspondence
Equivalent sets
Finite and infinite sets
Equivalence relation
Symmetric
Reflexive
Transitive
Instance:
Ambiguity of just as many
Objectives:
The student will
(a) recognize 1-1 correspondence between sets, finite or infinite
(b) demonstrate 1-1 correspondence where possible or recognize when it is impossible
(c) determine when sets are equivalent
(d) distinguish between equivalent and equal
(e) define, recognize, and be able to give examples of the equivalence relation and its components (reflexive, symmetric, transitive)
e) Set operations

Outline:
Intersection and union of given sets
Short hand
Venn diagrams, union and intersection
Intersection and union by set builder notation
Relative and absolute complement
Properties of union and intersection
Instance:
L.C.M. and G.C.D.

Finding number of people in a group given overlapping numbers

Objectives:

The student will be able to
(a) find the intersection of given sets by example, Venn diagrams, and "set builder" notation
(b) find the union of given sets by example, Venn diagrams, and "set builder" notation
(c) find the relative and absolute complement by example, Venn diagram and "set builder notation"
(d) demonstrate commutative, associative, and distributive properties of union and intersection by example
(e) define multiple union of intersection
(f) verify such statements as $(A \cap B)^{l}=A^{l} \cap B^{l}$, etc. using Venn diagrams
f) Logic and common sense

Outline:
Distinction logic and common sense - watch which runs 60 sec . late Review nature of mathematics and need for formal logic
Complete truth tables for union and intersection
Open versus closed sentences
Conjunction, disjunction, and truth tables
Negations, double negations, complement
Logical equivalence, proof of properties of intersection and union Converse, inverse, contrapositive Conditional, biconditional

Instance:
Isomorphism between hypothesis, convers, inverse, contrapositive table and multiplication of odd integers modulo 8

Objectives:

The student will be able to
(a) complete truth tables for union and intersection
(b) define and prove commutative, associative and distributive properties of union and intersection by truth tables
(c) define and recognize open and closed sentences
(d) define and recognize conjunction, disjunction and determine the truth value of the result
(e) formulate negations and double negations of open sentences
(f) state what is meant by logical equivalence and apply it to prove simple statements
(g) complete the truth table for the conditional and biconditional
(h) complete the truth table for converse, inverse, and contrapositive
(i) complete truth tables for combinations and negations of the above
g) Cartesian products of sets

Outline:
Cartesian product as basis for multiplication
Ordered pair
Cartesian product of two sets
Cartesian product of empty and non-empty set
Difference $A x(B x C)$ and (AxB) $x C$
Equivalence of $(A x B) x C$ and $A x(B x C)$
Instance:
Origin of terminology: Descartes, abscissa (scissors), etc.
Objectives:
The students will demonstrate
(a) an understanding of the concept of ordered pairs
(b) an ability to define the Cartesian product of two or more sets
(c) an ability to deal with expressions such as $\mathrm{A} \times \phi, \phi \times \mathrm{A}, \phi \times \phi$
(d) that $A x B \neq B \times A$ and that in general $A x(B x C) \neq(A x B) x C$
(e) that $\mathrm{Ax}(\mathrm{BxC}) \sim(\mathrm{AxB}) \mathrm{xC} \sim \mathrm{B} \times \mathrm{A} \times \mathrm{C}$ etc.
h) Operation $O R$ When ignorance is bliss

Outline:
Operations as an unknown
Concept of isomorphism
C-group versus rotation of triangle-versus permutations
Associative and commutative properties closure, identity

Instance:

Logarithm
Objectives:
Student will be able
(a) to read and interpret a finite table
(b) define and recognize an identity element in a table
(c) define and recognize an inverse.
(d) define the commutative property in general and tell whether or not a table is commutative
(e) define the associative property and test for selected cases
(f) define and recognize the closure property

II THE ARITHMETIC OF WHOLE NUMBERS

a) Counting and writing of numerals

Outline:
Survey of historical numeration systems
Egyptian
Babylonian
Chinese
Roman
American Indian
Hindu-Arabic

Instance:

Kensington stone
Objectives:
The student will
(a) have an appreciation and some knowledge of the development of the number symbols and the decimal system
(b) be able to translate roman numerals into hindu-arabic and vice-versa
b) Place value systems and bases $O R$ What was the matter with Alice in Wonderland

Outline:
Rational for exploring other bases
Demonstration of base 4
Demonstration of other number bases
Application of special properties of base 2
Operations with non-decimal bases
Mixed base operations of the pocket calculator

Instance:

Counting with Alice
Card sorting process
Objectives:
Student will demonstrate
(a) ability to regroup according to a given base
(b) translation from decimal to non-decimal base and vice-versa
(c) writing of a sequence of numbers in a non-decimal base
(d) understanding of decimal system by performing parallel operations in non-decimal base
c) Restrictions and advantages of other numeration systems

Outline:
Roman multiplication
Finger multiplication
Pro and con of small versus large bases Number versus numeral

Instance:
Greek development of geometry operations with figurate numbers
Objectives:
Student will be able to
(a) demonstrate finger multiplication
(b) list advantages and disadvantages of other numeration systems and other number bases
(c) define difference between number and numeral
d) Definition of whole numbers and counting

Outline:
Review sets
Review 1-1 correspondence
Definition of whole number by standard sets
Cardinal number
Properties of cardinal numbers of finite sets
Instance:
Bertrand Russell
Objectives:
The student will be able
(a) to give a definition of a standard set
(b) to recognize the special properties of standard sets
(c) to define the cardinal number of a finite set
(d) to apply the defintion of cardinal number
(e) know the properties of the cardinal number of finite sets
e) Operations and properties

Out1ine:

Review set operation
Unary, binary, ternary operations
Meaning of parenthesis (hamburger + mustard) + milk
Associative, commutative, distributive properties
Identities
Inverses
Instance:
Redefinition of addition, subtaraction and multiplication without "carrying", exploration of properties of this system

Objectives:
Student will be able
(a) to define and recognize unary, binary, and ternary operations
(b) to define, recognize, and illustrate the associative, commutative, and distributive properties in unfamiliar numerical operations
(c) to define, and recognize the identity and inverse in unfamiliar numerical operations
f) Mathematical definition of addition and its consequences

Outline:
Review properties of set operations
Apply set properties of standard sets to define addition Distinguish between addition of whole numbers and sets
Derive associative and commutative properties for addition
Generalization of properties
Equals added to equals law
Cancellation law for addition
Instance:

Objectives:
The student will be able to
(a) define the sum of two whole numbers in set-theoretic setting
(b) use these definitions to prove addition statements such as $2+2=4$
(c) use the definitions and corresponding set properties to
(d) generalize the associative and commutative properties and prove special cases
(e) give a mathematical explanation of the cancellation law for addition
g) Mathematical definition of subtraction

Outline:
Definition of inequality
Tricotomy law
Properties of inequalities
Definition of subtraction as inverse
Proof of basic subtraction theorems
i.e. if $a-c=b-c$ then $a=b$
$(a+c)-(b+d)=(a-b)+(c-d)$
$(a-b)=(a+c)-(b+c)$
Proof of basic inequality theorems $a<b$ and $c<d$, then $(a+c)<(b+d)$
$(a+c)<(b+c)$, then $a<b$
$\mathrm{a}=\mathrm{b}$ then $\mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{c}$
$a-(b+c)=(a-b)-c$
$(\mathrm{a}+\mathrm{b})-\mathrm{b}=\mathrm{a}$
Instance:

Objectives:
to define the inequalities < and >
to know the properties of inequalities
to define subtraction
to know the properties of subtraction
to be able to prove some basic subtraction theorems
to be able to prove some basic inequality theorems
h) Algorithms for Addition and Subtraction - When what is borrowed need not be returned

Outline:
Addition of 2 digit and 1 digit number in any base Addition of series of whole numbers Addition of 3 digit numbers by "carrying" Subtraction by basic method Subtraction by regrouping Subtraction by complements Subtraction by addition

Instance:

Ethical child who returned all that was borrowed

Objectives:

The student shall be able to
(a) write the basic addition table relative to any base ≤ 10
(b) justify the "carrying" process
(c) justify the procedure for adding a sequence of whole numbers (one digit)
(d) use an addition table as a subtraction table in any base ≤ 10
(e) justify subtraction by basic method
(f) justify subtraction by regrouping
(g) justify subtraction by complements
(h) justify subtraction by addition
i) Mathematical Definition of Multiplication

Outline:
Review cartesian product
Definiton of product of whole numbers
Commutative property of multiplication
Associative property of multiplication
Generalized commutative property
Cancellation law
Identity
Proofs of

$$
\begin{aligned}
& a \cdot 1=a \\
& a \cdot 0=0 \\
& \text { if } a \cdot b=0 \text {, then } a=0 \text { or } b=0
\end{aligned}
$$

Instance:

Objectives:
The student shall be able
(a) to define and elaborate on the definition of a product of whole numbers
(b) to state and prove the commutative property for multiplication of whole numbers
(c) to state and prove the associative property for multiplication of whole numbers
(d) to state the generalized commutative property for multiplication of whole numbers and prove special cases such as $(\mathrm{a} \cdot \mathrm{b}) \cdot \mathrm{c}=(\mathrm{c} \cdot \mathrm{a}) \cdot \mathrm{b}$ for multiplication
(e) to state the cancellation law of whole number
(f) to contrast the identities for addition and multiplication
(g) to prove $a \cdot 1=a$, $a \cdot 0=0$, if $a \cdot b=0$, then $a=0$ or $b=0$

Mathematical Definition of Division

Outline:

Definition of division as inverse of multiplication Lack of closure, commutative and associative properties
Basic facts for division by zero
Proof of ($\mathrm{b} \neq 0$)
$(\mathrm{a} \cdot \mathrm{b}) \div \mathrm{b}=\mathrm{a}$
Cancellation law for division
Dividend, divisor, quotient, remainder
Instance:

Objectives:
The student shall be able
(a) to define the quotient of 2 whole numbers
(b) to give counter examples for division of whole numbers with respect to closure, the commutative property, and the associative property
(c) to state and explain the facts regarding devision by zero
(d) to prove (a•b) $\div b=a$
(e) to illustrate the definition of devidend, divisor, quotient and remainder
k) The distributive properties

Outline:
Review distributive properties of union over intersection and intersection over union
Distributive properties of cartesian product over union and intersection Distributive properties of multiplication over addition and subtraction Removal of parenthesis and common factors Multiplication as repeated addition Generalized distributive property of * over ©

Instance:
Application of distributive property on pocket calculator to do problems such as $(8 \div 2)+(6 \div 3)$

Objectives:
The student shall be able
(a) to state and illustrate the distributive properties of cartesian product over union and intersection
(b) to state and prove the distributive property of multiplication over addition
(c) to apply the distributive property for removal of parenthesis and common factors
(d) to state, verify, and prove other ofrms of the distributive properties and extensions such as $a x(b+c+d)=a b+a c+a d$
(e) to state the meaning of the distributive property of * over © and verify it in finite fields
(f) to show that multiplication is distributive over subtraction
(g) to recognize and verify which operations of arithmetic distribute over which
८) Algorithms for multiplication

Out1ine:

"Russian Peasant" algorithm
Many-digit by one digit number in any base
Product of many-digit numbers in any base
Matrix multiplication
Napiers bones
Finger multiplication and proof
Short cuts in multiplication
Instance:
Russian Peasant multiplication and base two
Objectives:
The student shall be able
(a) to write the basic multiplication table in any base
(b) to use and justify the "Russian Peasant" algorithm
(c) to multiply a many-digit number by a single digit number and justify the process
(d) to multip1y a many-digit number by a many-digit number and justify the process
(e) to multiply many-digit numbers
(f) to use and justify matrix multiplication, napiers bones and finger multiplication
(g) to use and justify short cuts in multiplication based on the distributive property
m) Algorithms for division

Out1ine:
Review the definition of division with remainder Strategy for division
Division of many-digit number by single digit number in any base Standard division algorithm

Instance:
Child's view of division process
Objectives:
The student shall be able
(a) to carry out division with remainder using a multiplication table in any base ≤ 12
(b) to divide a many-digit number by a single digit number showing all details
(c) to divide by a many digit number and explain each step of the process
n) Division and divisibility - Rules for casting out nines and other pearls

Outline:
Development of rules of divisibility for $2,4,5,8,10$
Development of rules of divisibility for 3, 9
Development of rules of divisibility for 11
Combination of divisibility rules for $6,12,15,18$, etc.
Modification of divisibility rules in other bases
Casting out nines
Casting out ($k-1$) in other number bases

Instance:

A number in base k is divisible by ($k-1$) if and only if the sum of the digits is divisible by ($k-1$) ;

Objectives:
The student shall be able
(a) to apply and justify the rules of divisibility for $2,3,4$, $5,6,8,9,10,11,12$ and combinations of these
(b) to modify the rules of divisibility as required for other number bases
(c) to use the rule for casting out nines in multiplication problems
o) Common divisors and common multiples

Outline:
Factorization, prime numbers, sieve of Erastostencs
Fundamental theorem of arithmetic
Sets of divisors and their intersection
Greatest common divisor
Sets of multiples and their intersection
Least common multiple
Product of g.c.d. and l.c.m.
Instance:
Ullam's spirals and modern painters
为
Objectives:
The student shall be able
(a) $)_{i}$ to determine whether any number ≤ 500 is prime or composite
(b) to state the fundamental theorem of arithmetic
(c) to determine and define g.c.d. and l.c.m. in terms of set intersection
(d) to find the g.c.d. and 1.c.m. for three or more numbers
(e) to explain why one is considered neither prime nor composite
p) Perfect and amicab1e numbers - How to make a mathematical valentine

Outline:
Deficient and abundant numbers
Definition of perfect numbers
Perfect numbers and the Pythagoreans
Definition of amicable numbers
Number families
Some properties and problems with perfect numbers
Instance:
Mathematical valentine of 220 and 284 and some of its history
Objectives:
The student shall be able
(a) to determine whether a number is deficient or abundant
(b) to state and apply the definition of perfect number
(c) to state the definition of amicable pairs and verify it with the pair $(220,284)$
(d) to read and understand some passages regarding the history of numbers
q) Working with other number systems - When $2+2 \neq 4$

Outline:
Properties of odd and even numbers
Clock arithmetic
Congruence modulo m
Addition and multiplication of congruence classes
Subtraction and division of congruence classes (when possible)
Review of casting out nines
Instance:
Formula to determine what day one is born
Objectives:
The student shall be able
(a) to state and apply the properties of even and odd numbers
(b) to demonstrate an intuitive understanding of modular arithmetic in concrete instances
(c) to determine when two whole numbers are congruent modulo m through use of remainders
(d) to state the properties of congruence
(e) to state, prove, and apply the rules for addition and multiplication of congruences classes
(f) to state and apply the rules for subtraction and division of congruence classes and realize that division is not always possible
r) From guessing to mathematical induction

Outline:

```
Domino 1ines
    Ladders
    Sequence of igniting matches
    Analysis of inductive process
    Examples of informal proof by induction
```

Instance:

George Polya's examp1e of number of parts into which space is divided Objectives:

The student sha11 be ab1e
(a) to justify the inductive process with the aid of concrete materials
(b) to identify the steps in the inductive process
(c) to supply reasons for the steps in a given inductive proof
s) The lure of large numbers

Outline:
Nomenclature of 1 arge numbers
Disappearance of comma
Googol, googolplex
Examples
Scientific notation
Powers
Rules for multiplication and division by addition and subtraction of exponents

Instance:

Billion in Britain and the U.S. invention of the game of chess
Objectives:
The student shall be able
(a) to spe11 and order the terms million, billion, trillion, quadril1ion, quinti11ion, sexti11ion, septillion, octillion
(b) to correctly write the numerals correspondeing to these numbers
(c) to translate large numbers into scientific notation and vice versa
(d) to manipulate expressions in scientific notation
(e) to state, explain, and apply the rules for multiplication and division by addition and subtraction of exponents

III CREATING THE SYSTEM OF -INTEGERS
a) Creating negative integers - Your bank would not want to do without them

Outline:
Summary how the whole numbers are going to be extended by closure via the operations of subtraction, division, algebraic and transcendental numbers
Need for additional numbers
Number line
Raised signs
Absolute value
Interpretations of negative numbers

Instance:

Count down Satellite launching

Objectives:

The student shall be able
(a) to find the inverse of an integer
(b) to find the absolute value of an integer
(c) to find the value of expression involving both inverses and absolute value
(d) to distinguish between the concepts of "minus" "negative"
(e) to locate positive and negative numbers on the numberline
(f) to apply the notion of opposite quantities i.e. positive and negative in novel situations
b) Basic operations with integers - Why the product of two negatives is positive

Out1ine:
Need to extend the definitions of multiplication and division and to examine the properties of the extended system
Definition of addition for integers, associative and commutative properties, closure, identity, inverse
Subtraction for integers
Some basic theorems regarding addition and subtraction of integers Definition of multiplication for integers, first using patterns to establish the rules of operation, then proof for numerical examples only
Associative, commutative, distributive properties for multiplication, closure, identity
Some basic theorems regarding multiplication of integers
Definition of quotient $a \div b$ when $b \neq 0$
Properties of division of integers
Trichotomy law
Instance:
Number line for addition and subtraction Pattern grit for multiplication

Objectives:
The student shall be able
(a) to state why the operations need to be redefined for the integers and why the properties have to be re-investigated
(b) to define the sum of any two integers $f^{+}{ }^{n}+{ }^{+} m, \quad{ }^{-} n+{ }^{-} m,{ }^{+} n+{ }^{-} n,{ }^{+} n+0, \quad{ }^{-} n+0,{ }^{+} n+{ }^{-} m \quad$ for $n>m$, ${ }^{+}+{ }^{-} m$ for $n<m$)
(c) to find the sum of two or more integers
(d) to prove $a=b$ if and only if $a+c=b+c$ $a=b$ if and only if opp $a=o p p b$
(e) to state and apply the definition of subtraction of integers
(f) to evaluate simple and complex combinations of addition and subtraction
(g) to prove $a=b$ if and only if $a-c=b-c$ $a+b=0$ if and only if $a=o p p b$ $\operatorname{opp}(a+b)=o p p a+\operatorname{opp} b$ $a-b=(a+c)-(b+c)$
(h) assuming associativity, commutativity and distributive property to prove that

$$
\begin{aligned}
& a \cdot 0=0 \\
& a \cdot \text { opp } b=\text { opp } a \cdot b=\operatorname{opp}(a \cdot b) \\
& \text { opp } a \cdot \text { opp } b=a \cdot b
\end{aligned}
$$

(i) to find the product of two or more integers
(j) to prove for all integers

$$
\begin{aligned}
& (a+b)^{2}=a^{2}+2 a b+b^{2} \\
& (a+b) \cdot c=a c+b c \\
& a(b-c)=a b-a c
\end{aligned}
$$

(k) to evaluate complicated expressions involving multiplication, addition and subtraction of integers
(ℓ) to define the quotient $a \div b$ when $b \neq 0$
(m) to state and justify the properties of integers
(n) to evaluate simple and complex expressions involving the operation of division of integers such as
$\left.\left[\left({ }^{+} 12 \div 3\right)+4\right) \cdot 2\right] \div\left[\left(4{ }^{-} 5\right) \div 3\right]$
(o) to state the trichotomy law for integers
(p) to verify basic statements on equality such as if $a<b$, is $\quad \mathrm{a}<{ }^{-} \mathrm{b}$
(q) to state the properties of the additive identity and inverse and the multiplicative identity
c) Short cuts in calculation - How to do it faster and with less effort Outline:

$$
\begin{aligned}
&(8274+99)=(8274+100)-1 \\
&(24 \times 26)=(20+4)(20+6) \\
&=(20 \times 30)+(4+6) \\
&(24 \times 36)=(30-6)(30+6) \\
&=30^{2}-36 \\
&(a \cdot 25)=100(a \div 4) \\
& \text { a. }=10(a \div 2) \\
& \text { Multiplication by } 11
\end{aligned}
$$

Instance:
"magic" number tricks
Objectives:
The student shall be able
(a) to justify some of the common calculation short cuts
(b) to apply these short cuts to find the correct answer within a set time limit
(c) to justify some "magic" number tricks
(d) to create some "magic" number tricks on her/his own
a) Development of rational number system

Out1ine:
Review development whole numbers to integers
Need to extend number system to satisfy closure of division
Representation of fractions as parts of objects and as points on number line
Definition of unit fractions
Definition of fractions
Definition of equivalent fractions
Review g.c.d.
Definition of fraction "in lowest terms"
Positive and negative numerators and denominators
Comparison of fractions
Instance:

Objectives:
The student shall be able
(a) to justify a further extension of the number system
(b) to represent fractions as parts of objects, and on the number line
(c) to state and apply the definition of fraction in concrete situation
(d) to define equivalent fractions
(e) to translate a given fraction into another with given numerator or denominator
(f) to know the meaning of a fraction "in lowest terms"
(g) to reduce a given fraction to lowest terms
(h) to define and correctly use the symbols

$$
-\left(\frac{a}{b}\right),\left(\frac{-a}{b}\right),\left(\frac{a}{-b}\right)
$$

(i) to insert the correct inequality sign between different fractions
b) Operations with fractions

Outline:
Distribution fraction and rational number
Addition of fractions with same denominators Addition of fractions with different denominators Properties of addition of rational numbers
Subtraction of fractions
Properties of subtraction of rational numbers
Multiplication of fraction with natural number
Multiplication of fractions
Properties of multiplication
Division of fractions
Properties of division
Mixed numbers
Instance:
Grit system for addition and multiplication of fractions
Objectives:
The student shall be able
(a) to distinguish between fraction and rational number
(b) to add fractions
(c) to state the properties of addition of rational numbers
(d) to subtract fractions
(e) to state the properties of subtraction of rational numbers
(f) to multiply fractions
(g) to state the properties of multiplication of rational numbers
(h) to divide fractions
(i) to state the properties of division of rational numbers
(j) to supply reasons for individual steps in given proofs of theorems dealing with operations on fractions
(k) to translate mixed numbers into standard notation and vice versa
(ℓ) to do arithmetic operations on mixed numbers
c) Decimal fractions

Out1ine:
Growing importance of decimal fractions
Change of decimal point to decimal comma
Translation of fractions to terminating decimal and vice versa
Decima1s' and percentages
Operations on decimals, rules for decimal comma
Review of laws of exponents, positive and negative
Decimal fractions and scientific notation
Repeating decimals
Translation of fractions to repeating decimals and vice versa
Instance:

- 9 = 1 ?

Objectives:
The student shall be able
(a) to use the correct notation for decimal fractions, terminating or non-terminating
(b) to determine whether a fraction can be changed to a terminating decimal
(c) to translate any fraction to a decimal and vice versa
(d) to translate decimal fractions to percentages and vice versa
(e) to carry out and justify the rules for basic operations with decimal fractions
(f) to translate any decimal, large or small to scientific notation
(g) to state, explain and apply the rules for operations with exponents, both positive and negative
d) Calculating with calculators

Outline:
Calculator gadget or godsend?
Experiences with basic calculators
Order of operations
Constant key
Floating decimal point
Operations with fractions
Operations beyond capacity
π
Compound interest
Square root
Instance:
Demonstration (or hands on experience) with different types of calculators

Objectives:
The student shall be able
(a) to operate a claculator in natural mode
(b) to illustrate and describe advantages of constant key
(c) to illustrate and describe advantages of a floating decimal point
(d) to list and describe main desirable calculator features
(e) to write a "program" for adding, subtracting, multiplying and dividing fractions without storage
(f) to write a "program" for finding square root with storage
(g) to distinguish which "program" or order of operations will result in the least cumulative error
(h) to state that
$\frac{355}{113}$ is a more desirable approximation of π than $\frac{22}{7}$

v THE WORLD OF GEOMETRY

a) Shapes and concepts

Outline:

Undefined terms: point, line, plane, space
Names for common planar figures
Names for common 3-dimensional figures
Names for 5 regular solids
Half lines, lines, segments, rays, notation
Angles and angle measure
Sum angles of a triangle
Curves, simple, closed
Definition of circle and sphere
Instance:

Objectives:
The student shall be able
(a) to distinguish between geometric terms as abstractions and their physical representation
(b) to name the common planar figures and describe their characteristic properties
(c) to name the common 3-dimensional figures and describe their characteristic properties
(d) to name and construct the 5 platonic solids and state the number of vertices, edges and faces of each
(e) to distinguish between line, segment, half line and ray
(f) to state the incidence properties of points and lines in the plane
(g) to state the separation properties of a plane by a line
(h) to define the measure of an angle and to identify a 45°, $60^{\circ}, 90^{\circ}, 135^{\circ}$, angle
(i) to state and demonstrate with concrete materials that the sum of angles of a triangle is 180
(j) to recognize and give examples of closed curves, simple curves, simple closed curves
(k) to define a circle and a sphere

1. Arrange co spend a brief time calking to the teacher before entering the classroom. Explain elearly and emphatically that in no way is the study neant to evaluate aparticular ceacher, and that none of the information you collect or observations you make will be given to anym one outside che research rean. Racher, the purpose of the study is to determine whether a pasticular mathematics education program produces changes in the way mathematice is roustaely caught in northern classroons. Thas it is imporeant that the teacher teach as he or she normally would, and not atcempt to ceach a "model lesson". As wello tell the teacher that, even though yous interese is in observing mathematics lessong, you do not wish the teacher to give any axtra time or emphasis to mathematics in the daily achedule. Tell the ceacher that he/she will be asked so esamine yous observation form after the lesson(s), and that his/her comente will be recorded and form part of the study data. Again, reassure the ceacher that all information will be kept completely confim dential, and that it will be read only by the person coding it for the purpose of combining it with observations from other mathematics classes.
2. Arrange to meet the ceacher after class to have him/her examine your observation forms and record any comments, as well as assist you in filling out the other necessary forma (see "Observer Procedure in the Classroon"。7(1))。
3. If you have not already been informed, find out how many grades or comparable instructional groupings there are in the classroom. Ask the teacher to help you sketch a Eloor plan of the classxoom with the positions of shese different instructional groups marked. (If this is difficult because chere la not a reasonably fired searing arrangement, make a note of this fact and include it with the data you subnit to the project ceam.)
4. Explain to the ceacher that you would like to briefly take several students aside, one at a time, immediacely after the mathematics lesson, to ask them a few questions. Show the teacher the Scudent Questionnaire (DOCUMENT D) to reassure $\mathrm{him} / \mathrm{her}$ about the nature of the questions. If the time mentioned is not conventent for the teacher, arrange a mutually satisfactory tine during your visit.
5. When you enter the classroom, sit as close as possible to whatever group is receiving machematics instruction. If there are several grade levels In the room, it may be necessaxy to nove a number of times while you are there.
6. Follow the steps described in DOCUMENT B ("Observer Procedure in the c1assroom") 。

APPENDIX: INSTRUCTIONS FOR SELECTING STUDENTS FOR

DOCUMENT A OBSERVATION AND/OR OUESTIONNAIRE ADMINISTRATION

Before you can properiy selece students for chese ewo purposes, it will be mecesbary for you to asoign to asch scudent in the classroon a unique number. There are several ways in which this can be done, none entirely satisfactory in practice. Depending on the parelcular situekion in which you find yourself, you will have to ubs your fudgement as to the best method of assigning these numbers. Here mre two gugeestiona:

1) When you and the tagcher draw up your floor plan of the classroom, number the seats in a lopical orderane.go, each row in curn front to back. Assign each child the number you have given his/her: seat. DISADVANTAGES:
a) The room may not have a figed seating plan.
b) If there lis a great desl of movement axound the classxoom, you may not remember which child goes with which desk. (If there is sufficient time, you may be able co overcome this handicap by making brief Idencliying notaclons on your plan-oe.g. "red shire"。)
2) Arrange to gec a libe of gevients ahead of elme from the teacher (the list may be, but need not be, in a particular order-ae.g.g alphabetical). Number the students in the order given on the Ilst.

DISADVANTAGES:
a) The obvious gseaf digadvantage is that you are now faced with the task of matchlaf pupil with name and number. It sould probably take an maxeasomable length of time to have the teacher identify each child for you, and you would still be faced with the problem of gemembering which child was which. (This could perhaps be overcome as in 1b) above。)

Whatever schene you settle on, you should, before the class you are observing begins, have each child fizmly idencified wich a number between 1 and whatever the total classroom population is. The neat problem is to select the pupils you will observe during the class. (The observacion procedure has you focus first on the teacher, then on two pupils in tura, then on the teacher again, then on two furcher pupils in curn, and so ono)

Attached to this document is a random number table, along with instructions on how to use it fo gelect a list of two-digit random numbers. Once you know the cotal size of the classroon population, draw a list from this table of two-digit numbers. For this purpose, consider the numbers from 1 to 9 na two-digit numbers and write chem as "01", "02", and so on Draw only numbers between 01 and the class size (i.e., if the classroom contains 25 pupils, do not include any numbers ovec 25). Your lise will alnost certainly contain duplications; that is quite acceptable, Eatend your list to approsimately 50 numbers; if you are obsexving more chan one class period taught by this teacher, add about 50 more numbers for each additional class pexiod. (This is not necessary in, for example, the case where you are observing lessons taught to several classes, but simultaneously. You need roughly 5 numbers for each 4 minutes of observation cine。)

When it is time to observe your first pupil, take the first number on your list. If that pupil is presenc, and is involved in mathematics, that is the pupil you will observe if not, proceed to the second number; continue until you reach a number identified with a pupil who is present and doing mathematics. Write that pupili's number in the boax above the first student colurn to be coded on the

Observation Form. Then make your observarions of that student. Continue down the ilst untll you reach another usable number; write it in the bos above the second scudent colum and nake your observations of that student. Follow this procedure each fime you are co obsexve a scudent. It may well be that the same student la observed nore than once during the class; this is not a problem.

After the class, when you are to adminiscer the Scudent Questionnaire, select the studencs to be quentioned by continuing down your 11st. The number of students to be questloned will vary with the size of the class. Count the number of students pho have been doing mathernaties during this period, and determine the number co be questioned as follows:

Class size	No. of quesefomnatres
105	1
$6-10$	2
$11-15$	3
$16-20$	4
etc.	

It may be that you eshause the numbers on your list, either during observations or during questionalize administracion. If so, begin again at che top of the 118t. Renember to allow more numbers for your nest observation to avoid a recurcence of chis problem.

NOTE: When you are admalstering questionalres, avoid duplications. If the same number comes up Ewice, do not question che student a second time; go on to the nert number inscead.

HOW TO USE THE TABLE OF RANDOM NUNBERS TO SELEGI YOUR LIST OF TWODIGIT NUMBERS.

You may begin ac any poinc in the cable and proceed in any direction, either horizontal or vertical. Once you beging however, please keep to the same direction and proceed sequenclally. Select each two-digit number you come to that falls within the range of the number of students in the class you are observing。

EXAMPLE: You are about to observe a clase of 25. You decide to begin on the eleventh line of the table (the one beginning " $4184984547^{\prime \prime}$) and to proceed 'horizontally left to xighe, taking rows down the table in turno

You will reject the firgt seven numbers you come to as too large (over 25); your first acceptable number is 05. Yous completed Ifsto-taking all numbers up to 25 In che order you reach them and no numbers over 25 mwill read:
$05,23,06,19,15,23,24,21,18,14,09,11,08,14,01,17,13,10,15,16$,
$06,11,02,18,16,22,25,20,20,01,15,10,24_{0}, 15,24,14,12,22,17,04$,
21, 15, 14, 15, 19, 15, 20, 20, 14, 09

The first student you observe wlll he student 05 , unless he/she is absent or doing something other than mathematics (in this case, you will observe student 23 first). Conelnue to observe students in order, inclurling duplications, until the end of the class. For instance, assuming all students are present and doing matheratics, if you observe 20 students ruxing the class you will have observed student number 23 on two different occasions; the same is true of studente 15 and 14.

With a class of 25 , you wish to question 5 students. Continue along your list, and you will find that the students you should speak to axe those with numbers $06,11,02,18,16$. If a duplicate had turned up in this group, you would skip the second (or third, etc.) occurrence of the number and select the next number from your lisc.

BOCUMTNT A PAGE SEVEN

TABLE OF RANDOM NTTMBERS

$60 \quad 36594653$ 8379942402 3296007405 $\begin{array}{lll}19 & 32 & 25 \\ 38 & 45\end{array}$ 1122094747
$\begin{array}{lllll}35 & 07 & 53 & 39 & 49\end{array}$ $56 \quad 62334442$ $\begin{array}{lllll}36 & 40 & 98 & 32 & 32\end{array}$ 5762052606 $07 \quad 39 \quad 937408$

4261429297 3499441374 $\begin{array}{llll}99 & 38 & 54 & 16\end{array} 00$ $\begin{array}{ll}66 \quad 49 & 76 \quad 8646\end{array}$ 4850923929

0191828316 7007114736 1113307586 $\begin{array}{llll}78 & 13 & 86 & 65 \\ 59\end{array}$ 2748245476
$\begin{array}{lllll}98 & 95 & 37 & 32 & 31\end{array}$ 0995818065 1591706253 1964099413 8524435159

3175157260
8849299382 3093447744 $2288 \quad 848893$
7821216993
$68 \quad 9800 \quad 5339$ $144540 \quad 4504$ $\begin{array}{lllll}07 & 48 & 18 & 38 & 28\end{array}$ 2749998748 $\begin{array}{llll}35 & 90 & 29 & 13 \quad 86\end{array}$
$15 \quad 47048355$
$20 \quad 0949 \quad 8977$
$73 \quad 78 \quad 80 \quad 65 \quad 33$
$\begin{array}{lllll}60 & 53 & 04 & 51 & 28\end{array}$
$\begin{array}{llllll}44 & 37 & 21 & 54 & 86\end{array}$
$\begin{array}{llll}34 & 67 & 75 & 83 \\ 00\end{array}$
$45 \quad 30 \quad 50 \quad 7521$
5974767277 $16 \quad 52069676$
6865227376
$\begin{array}{lllll}79 & 37 & 59 & 52 & 20\end{array}$ $\begin{array}{llll}33 & 52 & 12 & 66 \\ 65\end{array}$
$59 \quad 58 \quad 94 \quad 90 \quad 67$
2055491409
$594047 \quad 2059$
$\begin{array}{llllllllll}88 & 65 & 12 & 25 & 96 & 03 & 15 & 21 & 91 & 21\end{array}$ $\begin{array}{llllllllll}74 & 84 & 39 & 34 & 13 & 22 & 10 & 97 & 85 & 08\end{array}$ $\begin{array}{llllllllll}28 & 59 & 72 & 04 & 05 & 94 & 20 & 52 & 03 & 80\end{array}$ $\begin{array}{llllllllll}74 & 02 & 28 & 46 & 17 & 82 & 03 & 71 & 02 & 68\end{array}$ $\begin{array}{lllllllllllll}65 & 74 & 11 & 40 & 14 & 87 & 48 & 13 & 72 & 20\end{array}$
$\begin{array}{lllllllll}74 & 91 & 06 & 43 & 45 & 19 & 32 & 58 & 15\end{array} 49$ $\begin{array}{llllllllll}61 & 31 & 83 & 18 & 55 & 14 & 41 & 37 & 09 & 51\end{array}$ $\begin{array}{llllllllll}76 & 50 & 33 & 45 & 13 & 39 & 66 & 37 & 75 & 44\end{array}$ $\begin{array}{llllllllll}11 & 65 & 49 & 98 & 93 & 02 & 18 & 16 & 81 & 61\end{array}$ $\begin{array}{llllllllll}92 & 85 & 25 & 58 & 66 & 88 & 44 & 80 & 35 & 84\end{array}$
$\begin{array}{lllllllll}01 & 15 & 96 & 32 & 67 & 10 & 62 & 24 & 83 \\ 91\end{array}$ $\begin{array}{llllllllll}55 & 82 & 34 & 76 & 41 & 86 & 22 & 53 & 17 & 04\end{array}$ $\begin{array}{llllllllllllllllll}66 & 82 & 14 & 15 & 75 & 49 & 76 & 70 & 40 & 37\end{array}$ $\begin{array}{llllllllll}96 & 27 & 74 & 82 & 57 & 50 & 81 & 69 & 76 & 16\end{array}$ $\begin{array}{lllllllll}43 & 94 & 75 & 16 & 80 & 43 & 85 & 25 & 96 \\ 93\end{array}$
$\begin{array}{llllllllll}71 & 85 & 71 & 59 & 57 & 68 & 97 & 11 & 14 & 30\end{array}$ $\begin{array}{llllllllll}92 & 78 & 42 & 63 & 40 & 18 & 47 & 76 & 56 & 22\end{array}$ $\begin{array}{lllllllll}04 & 92 & 17 & 37 & 01 & 14 & 70 & 79 & 39 \\ 97\end{array}$ $\begin{array}{llllllllll}45 & 19 & 72 & 53 & 32 & 83 & 74 & 52 & 25 & 67\end{array}$ $\begin{array}{llllllllll}15 & 19 & 11 & 87 & 82 & 16 & 93 & 03 & 33 & 61\end{array}$
$\begin{array}{lllllllllll}01 & 29 & 14 & 13 & 49 & 20 & 36 & 80 & 71 & 26\end{array}$
 $\begin{array}{llllllllll}66 & 16 & 44 & 94 & 31 & 66 & 91 & 93 & 16 & 78\end{array}$ $\begin{array}{llllllllll}54 & 15 & 58 & 34 & 36 & 35 & 35 & 25 & 41 & 31\end{array}$ $\begin{array}{lllllllllll}72 & 84 & 81 & 18 & 34 & 79 & 98 & 26 & 84 & 16\end{array}$
$\begin{array}{llll}39 & 52 & 87 & 24.84\end{array}$
$\begin{array}{lllll}81 & 61 & 61 & 87 & 11\end{array}$
0758616120
$90 \quad 76 \quad 70 \quad 42 \quad 35$
$\begin{array}{lllll}40 & 18 & 82 & 81 & 93\end{array}$
$\begin{array}{lllll}70 & 01 & 41 & 50 & 21\end{array}$
$37 \quad 2393 \quad 3295$ 1863737509 $0532 \cdot 7821 \cdot 62$ 9509667946
$43 \quad 25 \quad 384145$ $80 \quad 8540 \quad 9279$ $80 \quad 08 \quad 87 \quad 70 \quad 74$ $\begin{array}{lllll}80 & 89 & 01 & 80 & 02\end{array}$ 9312818464
$41 \quad 29 \quad 06 \quad 731.12$
0587001119
8244499005
$20 \quad 2478 \quad 1759$
4846085558
$\begin{array}{lllll}60 & 83 & 32 & 59 & 83\end{array}$ $43 \quad 5290 \quad 6318$ $88 \quad 72 \quad 25 \quad 67.36$ 9481331900 7445790561

8247425593 5334244276 $\begin{array}{lllll}82 & 64 & 12 & 28 & 20\end{array}$ 1357417200 $\begin{array}{lllll}29 & 59 & 38 & 86 & 27\end{array}$

$48 \quad 54535247$ | 75 | 12 | 21 | 17 |
| :--- | :--- | :--- | :--- | 9290413141 $69 \quad 90 \quad 26 \quad 3742$ 9497211598

$\begin{array}{llllllllll}18 & 61 & 91 & 36 & 74 & 18 & 61 & 11 & 92 & 41\end{array}$ $\begin{array}{llllllllll}74 & 62 & 77 & 37 & 07 & 58 & 31 & 91 & 59 & 97\end{array}$ $\begin{array}{lllll:llllll}32 & 39 & 21 & 97 & 63 & 61 & 19 & 96 & 79 & 40\end{array}$ $\begin{array}{llllllllll}78 & 46 & 42 & 25 & 01 & 18 & 62 & 79 & 08 & 72\end{array}$ $\begin{array}{lllllllll}62 & 09 & 53 & 67 & 87 & 00 & 44 & 15 & 89 \\ 97\end{array}$
$\begin{array}{llllllllll}12 & 30 & 28 & 07 & 83 & 32 & 62 & 46 & 86 & 91\end{array}$ $\begin{array}{lllllllllll}76 & 37 & 84 & 16 & 05 & 65 & 96 & 17 & 34 & 88\end{array}$ $\begin{array}{llllllllll}05 & 04 & 14 & 98 & 07 & 20 & 28 & 83 & 40 & 60\end{array}$ $\begin{array}{llllllllll}46 & 97 & 83 & 54 & 82 & 59 & 36 & 29 & 59 & 38\end{array}$ $\begin{array}{lllll:lllll}47 & 66 & 56 & 43 & 82 & 99 & 78 & 29 & 34 & 78\end{array}$
$04 \quad 2208 \quad 6304$ $\begin{array}{lllll}94 & 93 & 88 & 19 & 97\end{array}$ 6229064464 9042912272
$\begin{array}{llllllllll}83 & 38 & 98 & 73 & 74 & 64 & 27 & 85 & 80 & 44\end{array}$ $\begin{array}{llllllllllll}91 & 87 & 07 & 61 & 50 & 68 & 47 & 66 & 46 & 59\end{array}$ $\begin{array}{llllllllll}27 & 12 & 46 & 70 & 18 & 41 & 36 & 18 & 27 & 60\end{array}$ $\begin{array}{lllll:lllll}95 & 37 & 50 & 58 & 71 & 93 & 82 & 34 & 31 & 78\end{array}$
2071453295

3441482157 6343975363 6704909070 7949504146 9170430552
$\begin{array}{lllll}09 & 18 & 82 & 00 & 97\end{array}$ $\begin{array}{llllll}90 & 04 & 58 & 54 & 97\end{array}$ 7318950207 7576876490 5401644056
$\begin{array}{lllll}86 & 88 & 75 & 50 & 87\end{array}$ $449891 \quad 68 \quad 22$ 9339945547 $\begin{array}{llll}52 & 16 & 29 & 02 \\ 86\end{array}$ $047372 \quad 1031$
$\begin{array}{lllll}19 & 15 & 20 & 00 & 23\end{array}$ 3602400867 9445874284 $\begin{array}{llll}54 & 15 & 83 & 42\end{array} 43$ $\begin{array}{lllll}75 & 05 & 19 & 30 & 29\end{array}$
$\begin{array}{lllll}32 & 82 & 53 & 95 & 27\end{array}$ 5198150654 4767726269 2097181749 $66281310 \quad 03$

1．Begin by coding the first coding sheet，following the instructons given in MOCOMENT C（＂Observation Fom：Coding Information＂）．If this is the first lesson you are observing in the clasgroom，you will number this first sheet col．Fox nubsequent observations，numbering should follow sequen－ tially from the previous observation。（For esample，if your first obser－ vation requites 6 coding sheet $8_{\text {，}}$ numbered 001 to 006 ，the first coding sheet of your second ohservation nhould be numbered 007．）Rode the Identifying infomation at the top of the sheet．Then note the starting time in the upper xightwhand corner of the sheet and begin your observa－ tions．Coding should be done th fhe following order，working always from top to botcom of the sheet：

1）the orange area under＂Teacher＂（colunn numbers 20－25）：
11）the orange nrea under＂Students＂，first left side，then right alde（column numbers 20－28，then 29－37）；

111）the yellow area under＂Teacher＂（column numbers 26－31）；
iv）the yellow neea under＂Students＂，first left side，then right aide（column numbers 20－28，then 29－37）；
v）the green area under＂Teacher＂（column numbers 32－37）：
vi）the green area mader＂Students＂firgt left side，then right side （colurn numbers 20－28，then 29－37）。

2．When you have finished coding the Eirst sheet，note the time in the anm propriate spree in the top riphe corner of the sheet．Spend the next five
minutes generaliy observing; with paccicular attention to information required co fill out Document e ("Desexiption of Leaming Environment Pare One ${ }^{\text {PI }}$. Ic would be helpful co keep ruming totals relevant to items 3 and 5 of that document.
3. When five mimutes have pasaed, code another obsexvation sheet, using the same procedure, and numbering the sheet in sequence to follow the prem vious sheet. Be suse to note the beginalng and ending times.
4. Continue this sequence to the end of the mathematice period, alternating coding of the sheets with fiveminute general observation periods.
5. At the end of the mathematies period, complete one copy of nOCUMENT E ("Description of Learning Enviconment, Past One").
6. If the ceacher has given pemission, incerview the appropriate students. Ingtructions for selecting students are provided on the cover page of DOCUMENT D ("Studenc Questionnaine").
7. IF THIS IS NOT THE LAS' CLASS CONDUCTED BY THIS TEACHER THAT YOU WILL BE OBSERVING: Note the number of the last observation form that you coded, and contimue the sequence during the nest class pexiod.
8. IF this is the last class conducted by this teacher that you will be OBSERVING: Hold your prearranged interview with the teacher. Have him/her esamine your observation forms and make any comments he/she may wioh to add. Fill out DOCUMENT F ("Description of Learning Environment, Part Two") and record the eencher's comments. Administer DOCUMENT G ("Interview Re Teacher Integration into Communty, Form 1"). If this is the gecond visit so this teacher (i.e., after the instructional program has ended), administer as well DOCHENT I ("Teacher Particlpation in Progran") and DOCuNENT 3 ("Indices of Tbolation").

NOTE: DOCUMENT E ("Descetpeion of Learning Environment, Part One") should be filled out after each observation period, with appropriate identifying information (including observation sheet numbers) filled out on the cover sheet. DOCuMENT F ("Descripeion of Learning Envixonment, Part Two") is filled ous only once for each teacher, after you have completed all obsexvations of that reacher.

All numbers you enter should be right fustified with leading zeros where necessary. That is, the number should be writen with enough digits to fill all spaces allotted on the computer card. Where the number does not have enough digits to fill all the spaces, add zeros in front of the number to fill the spaces.

For example, two spaces are allocted to "Number of scudents in acea". If this number is 9。 entes is as "09"。

Note in particulas thas under the heading "Teacher", the category "No. engaged" is allocted ewo card spaces. Similarly, under che heading "Students", the categories "No. In math group" and "No. in math subgroup" are each allotted two card spaces. Please encer these as two-digit numbers.

IDENTIFYING INHORPATTON:

Columan

i This number is for the keypuncher only. Ignore it.
$2-5$ Dace. Colums 2 and 3 are for the day of the month, columns 4 and 5 for the month. Thus Sentember 27 would be coded as 2709.

Gold Teacher identification number. This will have been supplied to you.
12 col 13 Observer identification number. Encer the observer number you have been assigned.

14015 Number of students in clasaroom or area. Enter as a twondigit number.
16 You may find that there are several grades or comparable instructional groupings in the classroom. Record the number here. If there is only one grade or comparable grouping, code 1.

17-19 Observation number. Your first ohservation sheet for any one teacher will be numbered 001. Numbering will continue sequentially over one or more lessons and one or more days. Do not begin again at 001 at the start of a new lesson.

NoTE: Each time you begin a new coding sheet and enter the observation number, enter the time after "BEGIN" at the top right of the sheet. When you finish coding the sheet, enter the time after "END" at the top right of the sheet.

TEACHER INFORMATION:

Column
20 Teacher position. Code as followg: 1: geated at own desk
2: seated elsewhere in the room 3: Btanding and/or walking about the soom
4: out of the room
5: other
21-22 Number engaged. Record here as a two-digit number the number of stum dents to whom the teacher is directing attention or communication (e.g., "one" is recorded as " 01 "). If the teacher is engaged with a group or class as a whole, and is working on a question-and-answer basis with one, student at a time, then the number engaged is the whole group, despite the fact that at the moment of observation the teacher may be focussing on only one student.

23 Proximity of teacher to student(s) with whom he/she is engaged. Code as follows: 1 is touching

2: elose enough to touch but not couching
3: beyond arms ${ }^{\circ}$ reach but within 10 feet (approximatelymo if in doubt. code 3)
4: further than 10 feet away
In a questionandeanswer incerchange with the entire group during which Individual students are selected to answer, code the prosimity as 4 unless the entire group is within 10 feet.

24-25 Activities. Circle only one box on the observation form to indicate the activity in which the teacher is engaged at the moment of observation.

Code
01 Task direction-i.e., descrining the mechanics of a task students will be required to undertake.

02 Lecturing-i.e., speaking continuously (but not dictating) to more than five students.

03 Dictatingem.e. giving orally material for students to write down.
04 Restoring discipline.

DOCUMENT C
PAGE THREE
05 Reading-i.e., reading aloud to a group.
06 Discussingoni. e_{0} 。 discisssing with more than five students or engaging In a question answer session with more than five students.

07 Consultingonioe discussing sonething with or explaining something to five or fewer scudents.

08 Listening to student recitation.
09 Harking seatwork at student ${ }^{\rho}$ B seat.
10 Observingoi. e_{0} o observing students individually, in groups, or as a clase.

11 Drawing-i.e.o drawing diagrams or writing material on blackboard, overhead projector or other visual aid.

12 Working aloneon. e_{0}, on Eask other than that described in 11 .
13 Doing maintananceos.go getting suppiles, sharpening pencils, cleaning blackboard.

14 0ther.

Columns 26 to 31 and 32 co 37 under "Teacher" are coded in exactly the same way as columns 20 to 25 . The order of coding the sheet will have been explained to you before you begin your observations, so you will know at what point to code these colamns.

STUDENT INFORMATION:

Coluran
Student positiono Code as follows: 1: at own deak
2: sitcing or lying on floor near own desk or with math group
3: elsewhere in room
4: out of room, elsewhere in school
21 Proximity to teacher. Code as follows (same codes as for teacher):
1: touching
2: close enough to touch but not fouching
3: beyond arns ${ }^{\circ}$ reach but within 10 feet (approximately--if in doubt code 3)
4: further than 10 feet away
Sex. Code as follows: 1: female
2: male

Column

23-24 Number in math group. Enter as a two-digit number the number of students in the mathematics group under observation.
$25-26$ Number in math subgroup. If the mathematics class or group is divided into subgroups. indicace the number of students in the subgroup of which the observed student is a part. If the mathematics group is not divided into subgroups, enter the same number here as you did for "Number in math group"。 |

NOTE: You will have co use your fudgement as to what constitutes a "mathematics group" and a "mathematics subgroup". In general terms, a "group" is a collection of students working on the same general assignment at roughly the same level. A "subgroup" is a subset of these students working on a specific task as part of the general task. For example, all Grade 2 students may be working on measurement by being divided into groups of two to carry out measurements of different objects in the room. Here the "group" would be the whole Grade 2 class, and the "subgroup" would be the two acudents carxying out a particular measuring task.

27-28 The activicies Ilsted are either explained under "Teacher Information" or are self-explanatory. Circle only one box to indicate the activity which the student is engaged in at the roment of observation.

Column 29 to 37 under "Students" are qoded in exactly the same way as columns 20 to 28 . Againg adhere to the order of coding explained to you earliex. DATE \square TEACHER I \qquad OBSERTVFR ID \qquad END \qquad NO. OF STUDENTS IN AREA \square NO. OF INSTRUCTIONAL GROUPS (GRADES) IN AREA \square \square

OBSERVATION NO. | 17 | 18 | 19 |
| :--- | :--- | :--- |
| | | |

Determine from your lise of xandom numbers which students you should question (follow the procedure for selection outlined in DOCUMENT A). The interviews should take place immediately after the mathematics class, if possible. If the teacher has advised you that this 13 not possible, you will have arranged a mutually satigiactory time。

Interview each of the gtudencs in tum where your questions and the student's angwers will not be heard by other students. Begin the interview something 1ike this:
"I am exying to find out what studencs like you think about arithmetic.
Would you help me by ansmering a few questions?"
Ask the studene the quegtions on the following pages, and record his/her answers.

Date \qquad
Teacher ID
Observer ID
Observation Nos。*
Student No.*
Student ${ }^{9}$ g Grade Level \qquad
*In the space for Observation Nos. \quad record the range of numbers of the observation sheets coded during this period-m.g. "001m005". In the space for Student No.. record the random number assigned to chis studens.

1. Do you like ardihmetic?

Why? or Why not?
2. If you were at home and had nothing else to do, would you ever do some arithnetic like you are learning now, fust for fun?
3. Do you ever need to use arichmetic outside school? (If "yes") When for esample?
4. (If the answer to (3) is "yes") What other places can you think of where you might need to use arithmetic?
0
(If che anower to (3) is "no") Can you think of any places where you might need to use your arithmetic?
5. Do your mom and dard or any other grown-ups you know use arithmetic much?
(If "yes") ,Can you chink of times you have seen them using it?
6. Do your paxents think arithmetic is something you need to learn?

Do you chink that they like axithmetc?
7. What do you like best about your artchmetic lessons?
B. What do you like least about your arithmetic lessons?

Thank you for helping me.
\qquad of \qquad

Date \qquad
Teacher ID \qquad
Observer In \qquad

This form refers to mathematics class(es) observed under observation numbers
\qquad to \qquad ${ }^{\circ}$

The observer ahould fill out Part i (five ficems) while still in che classroom area, after observing each mathematies class. If there is an apparent difference on any of the points between mathematics class and any other fnstructional period, fill out the form only as it applies to the mathematics class.

1. STUDENTS ${ }^{\text {P }}$ MBILITY: How much freedom do the studeats mppear to have to move around the room (or area) and/or school? (Check one response.)
A. Students must ask permission to leave their desks or work tahles.
B. Students are not required to ask pemission to leave their desks or work tables and move arourd the room; there are no other facilities in the school to which chey might wish to go.
C. Students are not required to ask permission to leave their desks or work tables, but usually are not allowed to move in and out of the room or area to use the library, resource centre or similar facility except in special circumstances or in class groups.
D. Students are not required to ask pemission to leave their desks or work sables, but must ask permission to move in and out of the classroom or area to use the library, resource centre or similar facility. Permission is usually given readily.
F. Students do not need permission of the teacher to leave the classroom but freely move in and out of the r-om or area to use the library, resource centre or similar facility.
2. LEARNING ENVIRONMENT: Where do leaming activitiea take place during the school day? (Check one response.)
A. Learning activities take place almost entirely at the studencis own desk or table.
B. Learning activities take place in a number of different places (centres) within the classroom area.
C. Learning acrivities take place in a number of different places (centres) chroughout the school.
D. Learning activities take place both inside and outside the school-1.e., the community and its institutions are incorporated into the learning environment。
3. TEACHER FOCTIS: That size of student groun is most often addressed by the teacher at one time? Answer on the basis of what you see as the main teacher focus during the mathematics lesson. (Check one response.)
A. The teacher directs attention to more than one class or frade or other instructional prouping.
B. The teacher directs attention to the mathematics class ns a whole。
C. The teacher directs attention to suhgrouns of the class.
D. The teacher directs attention to individual students.
E. The teacher constantly varies his/her focus.
4. APPEAL TO STUDENT INTEREST: How does the teacher appear to relate his/her teaching to the interests of the students in the mathematics class? Fstimate the percentage of time spent on each of the following categories.
A. The teacher lectures and/or orders the students to do exercises without any particular appeal to student interest in mathematics.
B. The teacher attempts to create or augment interest, but interest that is extrinsic to mathematics (for example, use of a film, competition or prize).
C. The teacher attempts to create or augment interest which is intrinsic to mathematics (for example, use of numerical puzzles, use of questions or statements that pose apparent paradoxes and encouragement of discussion directed at resolving those paradoxes).
D. The teacher appeals to existing interests of individual students and attempts to relate them to mathematics (for example, the teacher uses a Grade Six student's interest in electricity as an aid in learning addition of fractions by having her make circuit calculations).

5．INDIVIDUAL ATYENTION：What proportion of class time does the teacher spend dealing with individual students？（Check one response．）

A．Less than 10\％。

B． 10% ษ० 25% 。

C．More than 25% ，less than 75% ．

D． 75% or more。

Date \qquad
Teacher ID
Observer ID

This form refers to machematics class(es) observed under observation numbers
\qquad to \qquad。

The obsexver should fill out Part 2 (14 itcens), after all classes have been observed for any one teacher, and during the post-observation interview with that teacher.
6. TEACHER ROLE: What role does the teacher usually play in the student's contact with the mathematics he/she is learning? (Check one response.)
A. The teacher chooses topics for seudy and provides instruction through a sequence of highly-structured lessons, including a lecture and close supervision of student learming activities.
B. The teacher chooses topics for study and organizes instructional activities which are generally not highly structured.
C. The students choose topics for study within broad puinelines and the teacher organizes instructional activities which are generally highly structured.
D. The students choose topics for study within broad guidelines and the teacher organizes instructional activicies which are generally not highly structured.
E. The teacher provides guidance as a resource person to whom students come when in need of assistance.
7. NETERMINING INSTRUCTINNAL OBTFCTIVES: Who sets most of the instructional objectives of the mathematics program? (Meck one response.)
A. Instructional objectives are set by the school board and/or central
administrative staff.
B. Instructional objectives are set by the principal and/or vice-primeipal.
C. Instructional objectives are determined by the teacher(s).
D. Instructional objectives are set by the parents.
E. Instructional ohjectives are set by the students.
8. CONTENT ORGANIZATION: How is course content organized as part of the program? (Check one response.)
A. Content is organized along traditional subject matter lines (e.g., mathematics, science, social studies).
B. Content is combined into two or more groupings of subjects (e.g.o envirommental studies, conmunication arts)。
C. Content is integrated; there is no attempt to organize content into suhjeces or groupings.

9．DFVELOPMENT OF PATERIALS：How much personal Involvement do teachers and／or students have in the development of materials for the classroon？（Check one response．）

A．There is Iitcle involvenent of teachers and／or students in developing material－－i．e．，most materials in use are ready－ro－use＂packages＂ （sets of mathematics texts，computer－assisted instruction，etc．）．

B．There is some involvement of teachers mador students in developing
materials－－i。e。，most materials in use are things chosen by teaners
and／or students from a variety of sources in a ready－to－use form
（books not in series，abacus，collection of mathematical puzzles，ecc．）．

C．There is a great deal of involvement of teachers and／or students in developing materials－i．e．，most materials in use have been developed or adapted by teachers and／or students specifically for situations which arose in this classroom（collections of obfects for use in working out arithmetic problems，student－made puzzles，etco）。
10. SELECTION OF MATERIALS: How much involvement do students have in selecting materials with which to work? (Check one response.)
A. The student is assigned materials nrescribed for all members of his/her class (the same materials for all students in the same class).
B. The student is assigned macerials prescribed for all mewhers of his subgroup of the class the same materials for all strients in the same subgroup, different materials for different subgroups).

Co The student is assigned materinls nrescribed for him/her individually.
D. The student chooses from alternatives suggested by the teacher.
F. The student chooses from all the materials availabie and may bring in materials from outside the classroom.
11. FLEXIBILITY OF ENVIROMENT: Who makes the decisions about the arrangement and the setting of the learning area? (Cheek one response.)
A. The arrangement of furaiture and equipment in the learming area is decided upon by the adrainistrative staff.

Bo The arrangement of furniture and equipment in the learning area is decided upon and changed by the teacher(s).
C. The arrangement of furniture and equipment in the learning area is decided upon and changed by the students.
D. The arrangement of furniture and equipment in the learning area is decided upon and changed by agreement between students and teacher(s)。
12. STUDENT PACING: At what pace is the student expected to work? (Check one response.)
A. The student is expected to work at a pace set for all members of the class.
B. The student is expected to work at a pace set for the memhers of his subgroup of the class.
C. The student works at a pace prescribed for him individually.
D. The studene sets his own pace.
13. INDEPENDENT STUDY TIME: How much time for independent stury in mathematies is routinely available? (This is time in which students work by themselves on projects of their choice, within the wide-range ohfectives of the mathemacics course-e.goo during a unit on elementary functions and patterns a student might use his Indenendene study time to play number pames.)
(Check one response.)
A. More than one hour per week is allocated for iniependent study time.
B. About 30 to 60 minutes per week is allocated for independent study time.
C. Some time is allocated for indenendent stury, hut less than 30 minutes per week.
D. No time is allocated for incependent study, but students who finish their regular ciass work ahear of the class may use the extra time for this purpose.
E. Indenendent study time is not avallable.
\qquad
14. STUDENT INTERACIION: Fow much opnortunity does the student have to interact, through discussion, with his peers? (Check one resoonse.)
A.- Interaction with peers through discussion is not encouraged. each student is expected to work indenendently without exchanging ineas with his peers.
B. Interaction with peers through discussion is pemitted after assignments have been completed.

Co Interaction with peers through discussion is encouraged by the teacher and a regular part of the leaming.
15. PERR GROUP ASSISTAMCE: To what extent do stuients work with other students on mathematics work? (Check one response.)
A. Scudents independently seek assistance fin their mathematies work fron other students; this is accepted and encouraged as a valle way of seeking solutions or of exploration.
B. There is student-to-student assistance on a eeacher-initiated basis
(e.g., the eacher assigns a good mathematics student to help a poorer studene)。
C. Assistance comes almost entirely from the geacher.
16. OTHER ADULT INVOLVEMFNT: To what eatent are adults other Ehan eachers involved in the mathematics program?

A。 All teaching is done by the regular classron teacher and/or mathematics specialists.
B. Although most of the teaching is done by the elassroom teacher andor mathematics speciailsts, ocasinnally there are parents, volunteers or other visitors who have special knowledpe of a copic, or who help in a practical way in the classroom.
C. Although much of the reaching is done by the classroom teacher and/or machematics specialists, there are regularly involved parents, volmeeers and frequent visitors whose involvement is considered an important part of the learaing experience.

17. COOPERATIVE TEACIIFG: To what extent do eeachers teach their mathematies program together and share information ahout students?

A. There are no other teachers teaching mathematies in this school.
B. Teachers teach independently of one another and share Iittle or no
information about students.
C. Teachers teach together but do not share information about students.
D. Teachers teach indepencentiy hut do sinare information about students.
E. Teachers teach together and share information about studenes.
18. USE GF LEARNING AIDS: Who selects and uses the leaming aids employed in the classroom? (Check one response.)
A. The teacher takes responsinility for selecting and using leaming aids.
B. The teacher takes responsibility for selecting leaming aids; the students use chem.
C. The stuments take responsibility for selecting and using learning aids.
19. FVALUATION PROCEDIRES: What types of tests andfor other evaluation instruments are used in evaluation of student progress in mathematics? (Check the one response which describes the most important evaluation instrument(s) used.)
A. Evaluation is based on work samples and reported aneciotally.

Bo Evaluation instruments used were developer in this classroom.
C. Evaluation instruments were developed within this schnol (for example, by other teachers or in previous years).
D. Evaluation instruments used were developed by school board consultants or similar personnel for ase throughour the county or region.
E. Standardized instruments are usea.

DOCIMENT G: INTERVIEW RE TEACHER INTEGRATION INTO COMMONITY. PAGE ONE FORM 1.

Explain to the teacher that the questions you are about to ask are about his/her relationshios with people in the communty and/or area, and about his/her feelings about working and living in the north.

The eeacher may be uneasy and inclined to be defensive unless the purpose of the interview is clearly explained. Emphasize that you are not in any way assessing or rating the teacher. Explain that you are interester only in exploring common difficulties of adjustment to working and living in the north, and that the project of which this interview forms a part is aimed at least parclally at finding ways to make that adjuscment easiex. Fmphasize that the ceacher ${ }^{\circ}$ a monyalty is guaranteed, that only an identifying code numher will be assoclated with his/her responses, and that the code will be avallable only to a handful of researchera.

If a relevant question occurs to you as a result of something the teacher says, don't feel Ifrited to the questions ilsted here. This is intended as a framework fox the incerview rather than a definicive Itst of anestions.

Teacher ID
Observer: In

1. I'd like to ask you about your social relationships with members of the communtty which your school serves.
a) Do you have regular social contacts with people whose home is in the comunity? Kow regulasly? What sorts of contact are chese (exchanging home visits, actending church, involvement in sports activities, etc.)ç
b) What proportion of your social contacts would you estimate are with itinerants (teachers from outside the commulty, ofl company geologists, members of the armed forces, etco)? That sorts of contacts are these (see examples ahove)?
c) Are there members of the communlty with whom you would maintain contact if you should leave the community?
d) Do you feel accepted as a member of the communty? How do you think you ase cegarded by most members of the comnunity?
2. Now I'd like co ask you aboue your involvement, if any, in community organizations and activities.
a) Have you in the past year been involved with a community organization or participated in any communicy evenes? Jf go, in what role? If so, by preference or because you felt it was expected of you? If not, why not?
3. The sext few questions are about your feelings for the north.
a) How would you deseribe your feelings about the north?
b) (If ceacher is not originally from the north) If you had to make the decision to come here againg would you selll choose to come?
c) Would you consider making your nemanent home in che north?
d) (If the answer so e) is "no") Fould you consider returning to the north for another period? Under what conditions?
4. Do you have axy general comments to make ahout your experience in the north, and in this community in pareicular? FORM 2.

Carefnily explain to the community member you are interviewing that you are not assessing the ceachas as an ladividual. Fnphasize that you are interested only in studying difficuleles of adustment to working and living in the north, with a view to helping make this adustment asias. Fhphasize also that his/her responses will be kapt cocally confidential, that there is no possibility that the teacher or anyone familiar with the teacher will ever see the questionnaire with the name of the Beacher or of the person you are lnterviewing associated with it. The informacion on che questionnaixe will be coded, and combined with information from gimilar quesefomaires to pive an overall picture of the difficulter of ceachers in naking the adjusement to noxthem lifeo

Teacher In
Ohserver In \qquad

1. How would you say [the teacher] is regarded by members of the communty? (Record comments as accurately as possible. Is the teacher referred to stricely in the role of teachereaioeog in terns which might apply to any teacher? Or, to the teacher referred co as an individualminor example, a reference so a particular interest of the ceacher, auch as "John likes to drop down to the Legion and shoot a little pooll")
2. Does it seen go you that [the teacher] likes the north? (If applicable) no you think living is such as isolated communtey bothers him/her?
3. Does [the ceacher] have many gocial contacts in the comunity? What sorts of contaces are these (eschanging home visita, atcending church, involvement in aports activictes, ete.)?
4. Does [the ceacher] participate in comunity activities? (If "yes") no you feel he/she partieipates because he/she wants to, or because he/she feels if, is espected?
mCTMFNT H PAGE FOUR
5. Do you have any general comenta you would iske to make about how fthe teacherd has adjusted to living in the north in general and in your cormunity in paxticulax?

Explatn to the teacher that it is necessary co know the extent to which he/she parcicipated in the program in oxder to be able so evaluate the program's effectiveness. Assure the ceacher that anonymity will be preserved, and that there is no assessment involvert.

Teacher in
Observer ID

DOCUMENT I-I
PAGE THM
i

1. How many of the weekly assignments in the mathematics cousse did you complete and have marked?
\qquad "
2. Did you recelve a university credic for the mathematics course?
\qquad
3. How many of the weekly assignments in the mathematics education course did you complete and have marked?
\qquad
4. Did you receive a university credit for the mathematics education course?

Explain to the ceacher that it is necessary to know the eatent to which he/she participaced in the program in order to be able to evaluate the program's effectveness. Assure the teacher that anonymity will he preserved, and that chere is no assessment involved.

Teacher If

Observer In

1. Did you attend the orientation week at the bopinning of the program?
\qquad
2. How many of the weekly assignments in the mathematics course did you complete and have marked?
\qquad
3. How many of the weekly assignments in the mathematics education course did you complete and have marked?
\qquad
4. Of the occasions avallable for telephoning, what percentape would you eatimate you used? (Check one response.)

100\%
90\% : : 099
75% eo 89%
50% to 74%
25% to 49%
1\% とo 24%
0
5. Did you attend the final session with your instructor?
6. Did yous reeelve a university credit for the course in mathematics?
7. Did you recelve a unversity credit for the course in mathematics education?

Explain to the eacher that it is necensary to know the extent to which he/she participated in che program in orter to be able to evaluate the program's effectiveness. Assure the teacher that anonymity will be preserved, and that chere is no assessment involved.

Teacher in
Ohserver In

1. How many of the weekly ansignments in the mathematics course did you complete and heve marked?
2. How many of the weekly assignments in the mathematies education course did you complece and have marked?
3. What percentage of the video presentations and related discussions would you estimate you accended? (Check one response.)

100\%
90\% 60 99%
75% ¢0 89%
50\% to 74\%
25% eo 49\%
1\% 80 24%
0
4. Did you receive a university credit for the course in mathematics?
5. Did you receive a university credit for the course in mathematics education?

DOCUMENT I-4: TEACHER PARTICIPATION INVENTORY, CONTROY GROPIP. PAGR ONR

Esplain to the teacher that ehe infommation you are requesting is part of a study of the effects of different cypes of training and study in methods of teaching mathemacies. Assure the teacher chat anonymity will he preserved, and that there is no assessment involved.

[^0]Ohserver In

1. During the past aight monehs, have you recelved any special training in etther machematies or methods of teaching mathematics?

If "yes"。 please deseribe this eraintng.
2. nuring the past eight months, have you undertaken a study propram desimned by yourself in mathematies or methods of teachtng mathematics (stury hevond the reading you would normally do to keep un with developments in this field)?

If "yes"p please deserithe the propram.

Erplain to the teacher chat his/her answers to these questions will enahle us to assess the degree of fandation of the school and the community (if any) in which it is locaced. If the teacher is uncertain of the exact answer to a particular question, he/she should give his/her hest estimate.

For some of the questions (travel, mail delivery, etco) answers may vary with the season. For these questions, two answer spaces are provided. In the first, give the answer applicable to summer: in the second, the answer anplicable to wintex.

Teacher ID \qquad
Observer ID \qquad

MOCIMENT J PACE TVO

1. flow many Gtudents atcend she school in which you geath?
2. How many fullotime eeachers (including yourself) beach at yous achool?
3. How large an aren (in square miles) does your school aexve?
4. What is the total population of your school apea?
5. If your sehool is located in or near a communty, what is the population of ehat community?
6. If your school is not located in or near a community, or if your commuity has a populaiton less than 1,000 what is the distance in miles to the nearest comunicy with a populacion of 1,000 or mose?
7. What is the distance in miles to the nearest commaity with a ponulation of 20,000 or more?
8. Io a dadly aewspaper regulaxly avallahle co you?
(If "yes") Hos many davs afcer publication is it available co you?. (If availahle on day of publication, write 0_{0})
9. How may radio acations do you usually recelve?
10. Do you have repular access to a television set? (If "yea") How many channels do you usually receive?

MCRMENT J PAGE THREE
11. Which of the following are commonly used means of access to your school area? (Check all applicable answers.)

SUMRER WLNTER
road vehicle
train
plane
boat
other (spectfy at left)
12. How often is chere regularly acheduled transportation in and out of your area? (Check one response.)
more than once a day
once a day
1 to 6 times a week
1 to 3 sines a month
less than once a month
13. How often do you eravel to comimaties ourside your school area for reasons uncelated to teaching? (Check one response。)
l or more times a week
1 eo 3 efmes a month
less than once a month
14. What is the distance in miles between your school and the nearest post office?

DACTMMENT: J
page foutr
15. How Erequent $2 s$ mail delivery co chis pose office from distant cormunities? (Check one response.)

5 or more cimen a week
1 to 4 times a week
1 to 3 efmes a month
less shan once a month
16. How frenuent is mail delivery to your school from this post office? (Check one response.)

5 or more times a week
1 to 4 times a week
1 to 3 times a month
less than once a month
17. गo you have access to a celephone?
(If "yes") How often do you use the telephone to place calls outside your behool area or to receive calls from outsifle your school area? (Check one response.)
more chan once a day
onee a day
1 co 6 elmes a week
1 to 3 eimes a month
less than once a month

MCIMFRNT I
PAGK FITF
18. Can you think of any other factors which might help us define the degree of isolation of your schonl area?

SECTION I: PERSONAB, INTORPATETON

1. Date of hireh:

Day Month Year
2. Sear (check):
male \qquad female
3. Members of my fanily living with me are (check): none
father
\square
mother
\square
$-$
brochers and sisters \square

How many? \qquad husband or wife
children
$-$
How many? \qquad
ocher (specify below) \qquad How many? \qquad
\&o My first languape is \qquad -

Ocher lanpuapes apoken read writcen
nOCTMMENT K
PAGF ITIN

SFCTION II: FNUCATIONAL BACRGROINS
5. ANSTNER THIS OUESTION IF YOITP IUAST YEAR OF SECONDARY EDUCATION WAS IN ONTARIO, OR IF YOY HAVE NO SECONDARY FDUCATION.

The hiphest level of secondary education I succesafuliy completen was (check one):
no secondiary ediucation \qquad
Grade Nine \qquad
Grade Ten \qquad
Frade Fileven \qquad
Grade Twelve
Grade Thicteen \qquad
;
6. ANSWFR THIS OIPETTON IF YOPR LAST YEAR OF SECONDARY EDICATION VAS OMTSIDE ONTARIO.

My last vear of secondary education was in:
Province (if in Canada) \qquad
Country (if other chan Canada) \qquad

The highest level of secondary education I successfully completed was \qquad \therefore

The Oncario eauivalent of this level is $-$
7. ANSWER THIS OUBSTION IF YOVY LASt YRAR OF SECONDARY FDUCATYON NHICH
 EDUCATINN IN MATHFMATICS.

The highest level of secondary education in mathematios T successfully completed was (check one):
no secondary education in mathematics \qquad
Grade Nine mathematics \qquad
Grade Ten mathematics \qquad
Grade Eleven mathematics \qquad
Grade Twelve mathematics
Grade Thireeen mathematics
 inclumen matheratios was nimstine netarson.

My last year of secondary ertucation in mathematios was in:
Provinee (if: fin Canara) \qquad
Country (if other than Canada) \qquad

The highest level of secondary efucation thathematics inccessfully compleced was \qquad -

The natario enuivalent of thes level is。
9. T. have the following university education (please indicate all degrees held):
no university education
some university education, degree incomnlete major field(s) of scudy, if any \qquad
general bacheloris depree (specify $\mathrm{B}_{\mathrm{o}} \mathrm{A}_{0}, \mathrm{~B}_{0} \mathrm{Sc}_{\mathrm{o}}$, ef.c.) mator field(s) of scurly, if any \qquad
honours bachelor's degree (spectfy BoAog Bosc.e etc.) major field(s) of study \qquad
master ${ }^{0} \mathrm{~s}$ degree (specify $\mathrm{M}_{0} \mathrm{~A}_{0}, \mathrm{M}_{0} \mathrm{Se}_{0}$, etc.) malor field (s) of study \qquad

mator field(s) of study \qquad
other depree, diploma, etc. (specify)
major field(s) of sturly, if any \qquad

DOCUMENT K PAGE FIVF
10. I have the following number of fullovear univernity courses in mathemarics (counc sementer courses as one-half course each):
none
EO 5
\longrightarrow

58 to 10
108 to 15 i

15各 to 20
mose than 20 $+$
11. My ceacher eraining was caken at (name (s) of insticution(s)): \qquad
\qquad
\qquad

I hold the following diplomas, certificates, degrees, etc. in education:
\qquad
\qquad
\qquad
\qquad
\qquad

12. ANSIER ThIS OUESTION IF YOH HAVE ATTFNDED ANY POSTSBCONDARY EDUCATIONAL INSTITHTION OTHER THAN A INIVERSITY OR A TEACHER TRATNING INSTYTUTION.

Name of Insticucion

Number of years completed
Major field(s) of study, if any \qquad
Diploma, certificate, etc. earned
Number of full-year mathematics courses

Nane of Institution
Number of years completed
Mator field(s) of study, if any \qquad
niploma, certificate, etc. earner
Number of Gulloyear mathematies courses

SFCTION III: TEACHING EXPFRIENGE

13. As of August 1977, I have completed years of teaching.
14. I have taught at the following grade levels (check): RIndergarten Grade Five \qquad
Grade One \qquad Grade Six \qquad
Grade Two \qquad Grade Seven \qquad
Srade Three Frade Efight \qquad
Grade Four Secondary \qquad
Other (specify) \qquad
15. nuring the 1977-1978 school year, I will be teaching at the following grade level (s) (check):

Kindergarten
Grade Five \qquad
Grade nne
Grade six \qquad
Grade Two \qquad Trade Seven \qquad
Frade Three
Grade Fight \qquad
Grade Four \qquad Secondary \qquad
Other (specify) \qquad

This hooklet contains a number of statements to help you describe yourself as you see yourself and as you chink about yourself in relation to other people. There are no right or wrong answers. Your honest nersonal opinion ts the heat answer.
vour responses to the statements in this inventory will be kent completely confidential, and will not he used to assess you or rate you in any way. They will be read only by the person who transfers them to computer cards to be stored under a code number for combination with responses from othex teachers. In particular, none of this information will be given to your instructors or employers. It is, however, of great importance to the researchers, who are attemptinf to assess the effects of life in the north on the selfoconcept of teachers, and to find ways to ease the common difficulties of adjustment to chis way of life. Pherefore, please answer all questions as honestly as you can. accordtis to the directions on the following page.

Thank you for your assiscance.

Please read each of che statements on the following pages carefully, and respond eo it as if you were describing yourself fo yourself.

For each statement, select one of the four responses listed helor:
Circle 1 if the statement is complecely false.
Circle 2 if the statement is mostly false.
Circle i if the statement is mostly true.
Circle 4 if the statement is complecely true.
This scale will be reneaced on each nage for your convenience.

There are several statements included in the inventory that deal with your feelings and attitudes toward vour ethnic group. These statements are indieated by an ascertsk (*). If vou are a member of a minnrity ethnic group (i.e., other than white Anglo-Sazon), please respond to these questions in the concext of your actual situation. If, on the other hand, you are a maforitv group memher, we ask you en respond to the questions in a hypochetical stcuation. Please try to imagine yourself as you are, but living in a situation in which whice Anglowaxons are the minority amons a quite different cultural groun. These instructions apply to all chose $\underset{\sim}{\text { aluestinns, and only those aues- }}$ tions, mariced wich an asterisk.

No not spend too much time on anv one statement.

To not omit any statement.

1. I do not like some peonle.
2. I have never gossiped.

1234
3. I feel much more coneented with the old faniliar surroundings.

1234

Wh. T tale nride in mvethnic noticin.
123.34
5. I belfeve I am in the world to build rather than to descroy.

1234
*h. T lile to associate with persons of my own ethnic eroun rhile outside of schnol.

1234
7. T must have an insniring header in orifer to to my hest work. $\quad 1 \quad 2.34$
8. Most of the efme I do things without thinking about them first.

1234
9. I would like to ernlore the crater of an active volcano.

1234

1n. I mould like to leam orie lind of tob and then stick to te.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
11. I think T. am an fmportarit person to my friends and family.

1234
1.2. In unexpected situations ? am often at a loss as to what to do.

1234
13. T hecome so attached to my fryends that T can hardly get along whout them.

DOCTMENT S. PAGE FOUR

1: complecely false 2: mostly false $9:$ mosely true $4:$ complecely true
14. I would Ilke io seek one undersea caves. 1234
15. Good rules of etionette are very imporeanc. $123 \quad 3 \quad 4$
16. I often share my feelings with students.12334
17. I Jike to think about what it would be lite to be a movie star. 1223.4
18. Pisuallv I exy to understand the other nerson's noint of vfew. $1 \begin{array}{lll}1 & 2 & 3\end{array}$
19. People should have personal heroes.$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
20. Movies which glorify gangsters undexmine the morals of children。 $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
21. I have some weaknesses but they don ${ }^{\text {it }}$ hother me. 1234
22. I would like to do stumt flying in an air circus. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
23. I Ifke co ride mith dacedevil drivers. $123 \quad 3$
24. It means a Rreat deal to me to be different. $123 \quad 3 \quad 4$
25. I I1Fe my looks fust the way they are.$123 \quad 4$
26. T. would lite eo settle down for the rest of my life fin one vilace.$1 \begin{array}{llll}1 & 2 & 3\end{array}$

MOCTMENT L PAGF FIVE
*27. I nrefer the food of neher ethnic grouns to that of my own groun.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
28. I alvays encourage students to try something new and to foin in new activities.
$1 \quad 2 \quad 3 \quad 4$
29. When shopping I would much rather look at things without heln from a salesman.
$1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
30. No matter what pame I plav, I always play to wino
$1 \quad 234$
31. I would like fo work as a flyfip-traneze artise.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
32. I would like to go on the first rocket-ship expedition to the moon.
$1 \begin{array}{llll}1 & 2 & 3\end{array}$
*33. I feel embarrassed by wearing my native costume in nublic.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
34. With my students I always try to practise what I preach.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
35. Y alwavs hated to have my narents tell me what to do.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
36. T. would like to cross the Shara nesert in a caravan.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
37. I like to imagine myself to he the hern of suceess stories.
3. $2 \quad 3 \quad 4$
38. Trusually try to avoid rough or dangerous games.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
39. I don't much care for penple who try to impress you.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$40. I like to watch movies showing violent murders.$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$41. Then I play a game I never think of cheatiag.1234
42. In order to be hanpy I alwavs have to feel free to come and go as I like. $123 \quad 4$
43. I like to have as much fun as possible even in a serious situation. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
44. All works of art should convev a sertous message. $1 \begin{array}{llll}1 & 2 & 3\end{array}$
45. I hate to be expected to do a fob that I know little about. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
46. Radical politicians should be depored from the country. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
47. I would atcemnt to fidv un a hotel room before checting out. 1.2 .3
48. nfen feel I nught to get along hetter with ocher neople. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
49. I तo not come un to the expectations of my family. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
50. T alwavs let my students know what I exnect of them. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
5.1. T. alwavs mate sure that I am adentately prepared for class. 1. $2 \begin{array}{lll}3 & 3\end{array}$
5?. The surest vav to a neaceful world is to tmprove neonle?s morals.$1 \quad 2 \quad 3 \quad 4$

```
1: comnletely false 2: mostly false 3: mostly erue 4: completelv true
```

453. Penple should be married according to the traditions

1234 of their culcure.
54. I often nrepare for examinations by last-minute cramming.
$1 \begin{array}{llll}1 & 2 & 3\end{array}$
55. It is amusing to see some neonle get finen a predicament.

1234
56. food manners are about the most important thing a parent can teach a child.

1234
57. I am often sleeny in a school ne training class.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
58. Sometimes I have thoughts too had to talk aboit.

1234
59. I usually try to get someone to heln me with cough assionments.

124
60. Sometimes I feel uneasy when I look down from high nlaces.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
61. I would like to go on an expedition to the South Pole.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
62. I would like no run river ranids in a motorboat.

1234
463. I use my native language while speaking with my own neonle.
$\begin{array}{llll}2 & 2 & 3 & 4\end{array}$
64. I. almost always ask the advice of an older and more exnertenced person before maling imnortant personal decisions.
$12 \quad 3 \quad 4$
*65. I would like to go to movies set in my own culture.

DOCTMENT I PAGE PISHT

1: completely false 2: mostly false 3: mostly true $4:$ completely true
66. I work hese when compettion is keenest.
1234
67. People waste coo much tine trying to plan everything ahead of elme.

1234
68. I like the company of people who are always cracking jokes.

1234
69. I leam the name of each sturlent as soon as possinle, and use that name often.

12334
70. I always keep my distance fyom strange dogs.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
71. I would like co ride one a storm in a small boac.

1234
72. I always permit students to challenge my oplnions.
123.4
73. I often find myself opposing customs that are oldefashioned.
$1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
74. When I visit a new city I like to po on a gutded toux.

1234
75. A good boss ought to spend a great deal of itme checking up on his/her suhordinates.
$123 \quad 3$
76. Most neople have standards of conduct that are too low.

1234
77. I often discuss my personal problems with others.

1234
78. $\{$ can take care of myself in any situation.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

1: completely false 2: mostly false 3: mostly erue 4: completelv true
79. I like to wear clothes of the same type that others wear.
1234
90. I am always honest in my dealings with people. 12034
81. Sometimes I get satisfaction out of breaking the rules.

1234
*82. I nrefer to assoctate with stucients of my own ethnic group while in schnol.

1234
83. J. never laugh at a firty ioke.

1. 234
2. I dislike following a set schedule.

1234
85. I would Ifke to see a snohblish rich man suddenly go broke. $\quad 1 \quad 2 \quad 3 \quad 4$

AR6. J. do not like to read literature and fiction wricten by authors of my own ethnle sroup.

1234
87. I would try to avoid giving my name as witness to an accident:

1234

Q月. I never become angry.
1234
89. T. am often flat hrole.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
*oo. J. do not like to attend social and culcural events involvinf nennle of my own ethnic group.

12 . 4
91. If usually set help when I have to male an fmortant deciston.
1.234
92. I take pery onnorcuntry to establish a hiph degree of individual communication with my studenes.

1234

Q93. T like to identify with leaders from my own ethnic hackground.
1.2 .3
94. T have no erouble in exncessing my feelings to those around me.

1234
995. I feel that my ethnie proun is noe as good as other ethnic groups.
$123 \quad 3 \quad 4$
96. nn soctal occasions 7 knor exactily hov to handle every situacton.
123.4
b97. I Ifke to study the history of my orm peonle.
12234
98. Many of my frienis are unconvencional in the way they live.

1234
99. Peonle should act as thev please without worrving about the oninions of ochers.
123.4
100. T consider myself to be a dedscaced norter.

1234
101. T sometines carry a goot luck charm.

1234
102. I often discuss my nersonal problems with a close friend.
103. I usuallv act on the nefnctnle that Eomorrow will take care of icself.

1234

DOCYMENT L PAGT ELFMTN

1: completely false 2: mostly false 3: mostly true $4:$ completely true
104. I always avoid dark alleys when walking alone ak nifhe.1.234
105. I feel that neonle do not erunt me. 1234
106. Strict home discinline would nrevent mish of the crime in our sociecv. 12334
107. I like heing the wav I am. $123 \quad 34$
108. IE is best if a nerson just cries to be himself and not: pretend. 1234
109. I lite so wasch circus clowns. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$
110. Life has a lot to offer me.1234
0111. T like co actend church and religious festivals supporied hy my own ethnic group. $123 \quad 3 \quad 4$
112. I would like to live with or near my parents as lnng as nosstble. $1 \begin{array}{llll}1 & 2 & 3 & 4\end{array}$11.3. I am a strong heliever in luck.1234
1.14. Many times T enioy being by myself.12.34
115. T. Itke to make up exciting plots with myself an a characeer. 1. 234
116. I usually find myself going along with the crowd since I don't want to be left out of things. $\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

DOCIMANT L PAGE TWFLJF

1: comnletely false 2: mnstly false 3: mostly true 4: completely true
117. Children should be firmly disciplined when they disohey their parents.
12.34
*1.18. I do not like to listen to music oroduced hy people of my orn ethnic groun.
$1 \quad 2 \quad 3 \quad 4$
119. I let my students know that I am aware of and interested
in them.
$123 \quad 4$

12n. I seldom know ahead of time how I will spend the evening.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
121. I sometimes forget to mail a letter at the time I intend to.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
122. I like to finagine what I vould do if I won the grand.
prize in a hig contest.
123. T. respect penple who have a lnt of power.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$
124. Bad news is easier to bear if you have a frlend with you.
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

VERVOORT, G.
Mathematics and mathematics education for elementary school personnel in remote regions

P
91
C655
V47
1978

DATE DUE
DATE DE RETOUR

LOWE-MARTIN No. 1137

[^0]: Teacher
 In

