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I. Introduction 

1.1 Objectives 
The purpose of this research is to investigate statistical, i.e. non-deterministic, methods for modelling 

the electromagnetic interference and compatibility (EMI/EMC) in electronic systems. Although there 

exists an extensive amount of literature on deterministic electromagnetic modelling methods applied to the 

EMC problem, relatively little work has been done on the use of statistical techniques for characterizing 

the EMC in electronic systems. The first part of this research report consists of an in-depth critical 

literature review of the subject. In the second part, some of the statistical techniques which were found in 

the literature, as well as some newly proposed methods, are applied to the canonical system of a 

transmission line inside an enclosure with an external disturbing electromagnetic field. The goal of this 

second part is to determine the applicability and usefulness of these techniques to a typical EMC problem. 

Although the canonical problem chosen is relatively simple, both from a topological and geometric 

viewpoint, it allows for a thorough testing of the validity of the assumed premises and the utility of the 

proposed methods. Finally, conclusions and recommendations for future research are made. 

1.2 Background and overview of deterministic EMC analysis 

1.2.1 Electromagnetic topology 

Electromagnetic topology methods have been used in the past to break up an electronic system into 

parts relevant to the EMI/EMC problem. The electromagnetic topology consists of a description of the 

electromagnetically distinct volumes and their associated surfaces. Electromagnetic interactions occur 

between volumes through the associated surfaces [1, 2]. Other than being "a good way to think about 

electromagnetic interactions" the topology concept does not lend itself to quantitative study of the EMC 

problem unless some quantitative information is loaded into the topology. A relatively successful 

technique, in the area of electromagnetic pulse (EMP) studies, has been the use of norms to bound the 

energy and waveforms in the topology [3, 4, 5, 6, 7]. 

An attempt to generalize and quantify (to some extent) the use of electromagnetic topology, by 

introducing electromagnetic attributes, was described in [8]. In this work, use was made of the so called 

interaction sequence diagratn corresponding to a particular topology to keep track of the interaction paths 
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throughout the system. In [9], the problem was formulated usingfiizzy variables to describe the attributes, 

andfiizzy logic operators were used to propagate the attributes throughout the topology. The major problem 

with this technique is the lack of a validated database of electromagnetic attributes which is sufficiently 

comprehensive to make it useful to the EMC engineer. A quantitative technique for acquiring fuzzy data 

for some canonical systems was introduced in [10]. 

1.2.2 Deterministic formulations and numerical modelling 

A wide spectrum of deterministic formulations and corresponding numerical techniques to obtain 

solutions to the formulated problems exist for characterizing interactions such as the coupling of 

electromagnetic waves through apertures and onto cables and printed circuit boards (PCB's). Full-field 

formulations generally start with Maxwell's equations, or some derived potential equations in either an 

integral or a differential equation form, and then a numerical technique which is applicable to that form is 

used to solve for electromagnetic field quantities (or other derived variables such as voltage and current). 

Quasi-static and quasi-TEM (transverse electromagnetic) formulations are approximate 

representations of some electromagnetic field problems which result in efficient numerical solutions. As an 

example, the coupling of electromagnetic plane waves into printed multiconductor transmission line 

(MTL) networks, where the geometry and the electrical parameters are known, was considered in [11]. The 

methods developed therein can be applied to general networks of MTL's with non-linear loads. When a 

multiconductor transmission line network exists inside an enclosure, the field distribution inside the 

enclosure is much more complex than a plane wave and, for most coupling problems, a full-field analysis 

would be required. That is, most of the plane wave coupling models which exist in the literature would not 

be applicable. Some experimental, as well as Finite Difference Time Domain (FDTD) and Transmission 

Line Matrix (TLM) modelling results for this more difficult coupling problem, have been published in 

[12]. The configuration which was considered in [12] consists of a circuit board inside a metallic enclosure 

in which a monopole antenna is also present. The monopole was excited by a transient current and the 

resulting voltages on the circuit were measured. The full-field numerical modelling and the experiments 

agreed quite well. 

For realistic PCB's, containing hundreds of traces and nodes, numerical simulation of the problem 

would require enormous computational resources. At the same time "accurate" solutions, obtained from 

these types of numerical methods may not be necessary for EMI type problems. For many practical EMI 

applications only certain induced variables (maximum induced peak voltage, duration of peaks, induced 

enery etc.) are important. Moreover, the exact topology of the PCB in question may be unknown. One 

technique of coping with this type of uncertainty is the determination of bounds on the intensity of the field 

inside an enclosure. This approach was taken in the work reported in [13, 14, 15, 16, 17, 18, 19]. It should 

be noted that these investigations were not statistical in nature. 
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As can be seen, even the deterministic problem of determining voltages and currents induced on a PCB 

which is packaged in an enclosure is quite difficult to model. For more complicated systems, the numerical 

modelling becomes prohibitive. Some recent experimental and modelling research on the disruption of 

various state-of-the-art personal computers (PC's) which were exposed to microwave radiation in the 

frequency range of 1-4 GHz has been reported in [20].  The purpose in this work was to evaluate the high 

power microwave (HPM) threat in the context of electromagnetic terrorism--a subject of growing interest 

in the electromagnetic compatibility (EMC) cornmunity. Several PC's: 133, 200, and 300 MHz clock rates, 

were exposed to microwave energy in the controlled environment of an anechoic chamber. The energy was 

radiated using calibrated hom antennas and could be approximated as a plane wave at the location of the 

PC. Various modulations of the carrier frequency were used and the effects on the computers which were 

running a common spread-sheet software package, performing continuous disk/memory read-write 

operations, were noted. The effects varied from disk-access failure (requiring the operator to reboot the 

computer) to automatic power down (requiring the operator to disconnect the computer from the power 

mains before rebooting). One interesting result of these experiments was the relatively low electric field 

values which were capable of disrupting the PC; field values as low as 30 V/m caused disruption in some 

cases. Modelling the PC enclosure, using FDTD, revealed that the natural frequencies of the chassis 

resonances corresponded to the frequencies at which the disruptions occurred. Thus, in this case, numerical 

modelling of a simplified geometry representing the PC revealed the coupling mechanism which played 

the important part in the failure. 

1.2.3 Motivation for a statistical formulation and solution to the EMC problem 

Even if the assumption is made that a supercomputer and a state-of-the-art numerical technique were 

available, a deterministic solution to modelling the EMC in a complex system would be of little value 

because slight changes in the system configuration (for example, a slight rotation of the enclosure with 

respect to the incident wave, or a slight displacement of a cable in the system or a slight change in the 

frequency of the microwave or RF disturbing source) would change the resulting coupling. In contrast to a 

"deterministic" description when "local" properties of the fields are under consideration, statistical 

methods are based on the idea that we want to describe a physical quantity in "global" terms and thus small 

deviations of local behaviour would have little impact on the distribution parameters. Therefore a 

statistical characterization of the problem will allow for a better accounting of the uncertainties which are 

comrnon in such systems. It seems a reasonable assumption that a statistical characterization of, say, the 

electromagnetic field intensity inside an equipment enclosure, would not be sensitive to slight changes in 

the system configuration. On the other hand, it is important to determine which system parameters will 

change, or affect, the statistical description of the electromagnetic interactions. It is these system 

parameters which will need to be determined for any particular system which is being analysed. 
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The subject of Electromagnetic Compatibility is fundamentally a sub-area in the study of the reliability 

of electronic systems. It is somewhat surprising, therefore, that a statistical treatment of electromagnetic 

interference is not common and that the methods of such a treatment have not been fully developed. The 

reason seems to be that there is a lack of understanding on how to apply statistical methods to such 

complicated problems. It can be argued that a statistical description of EMI in complicated systems will 

become much more common in the future and thus it is important to develop and validate the mathematical 

techniques which can be used to efficiently implement such a characterization. 

1.3 Summary of the report 

The remainder of this report consists of a review of existing literature on the subject of statistical 

electromagnetic fields as applicable to EMC as well as some original material which we have developed in 

this area. An appendix giving an introductory overview of some basic statistical concepts is included at the 

end of the report. The purpose of this appendix is to give the reader a brief review but it also serves the 

purpose of establishing the notation which will be used in this report. Some deviation from this notation 

will occur from time to time when results from the literature are directly reported. 

Chapter II contains the literature review. It is broken up into the four main sub-areas which we have 

found the literature to be divided into. These are: a) the statistical description of fields inside complex 

enclosure and reverberation chambers; b) experimental results of electromagnetic coupling; c) the 

coupling of statistically described fields into transmission lines; and d) the statistical characterization of 

cross-talk in multiconductor transmission lines. Generally, it was found that a relatively substantial amount 

of work has been done on trying to characterize the statistical distributions which govern  the 

electromagnetic field in various circumstances. An attempt has been made to put physical understanding at 

the basis of the chosen distributions but we feel that the task has not been accomplished. It seems that 

different conditions require different distributions and the transition from one to the other is not smooth. 

We address this problem by the introduction of the K distribution in Chapter IV. Other work which is 

reviewed in this chapter includes experimental studies on large systems such as the EMFTAC test airframe 

and the Celestron 8 satellite. This data is important in that it gives one the opportunity to compare theory 

with experiment. The final two topics which are reviewed are the coupling to transmission lines as well as 

the cross-talk problem. It was found that almost all the theoretical work dealing with transmission lines has 

been based on simple quasi-TEM models of the lines. 

Chapter III gives a detailed account of the physics of resonant enclosures. The concepts of Quality 

Factor, Q, and modes of resonance are introduced in this chapter. The concept of electromagnetic 

resonance is fundamental in our study of the fields inside enclosures and in this chapter we attempt to bring 

the reader up to speed on the relevant physics and mathematics applicable to the subject. The simplest way 

to proceed, the way which is chosen, is with simple one dimensional and two dimensional examples of 
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resonance. We find that, even with these simple examples, once lossy boundaries are included, the 

deterministic mathematical description of the fields becomes quite difficult. In the one dimensional 

lossless resonator example, we first obtain an analytic solution based on the transmission line equations. 

Although useful, this form of solution does not give much insight into the resonances which are inherent in 

the problem. We go on to formulate the eignefunction expansion of the problem and in this form the 

resonant frequencies are clearly identifiable: they are the frequencies at which singularities exist in the 

solution. Once losses are introduced in the walls of the one dimensional resonator, a numerical technique 

must be used to determine the eigenvalues. We make an approximation, for the case of low losses, by 

performing a small parameter expansion of the eigenvalues (the normalized wall impedance being the 

small parameter with which the expansion is made). A second approximation, which we call the Morse 

Approximation, is introduced. This approximation consists of modifying the propagation constant of the 

waves inside the enclosure and keeping the eigenvalues the same as those of the lossless resonator. The 

modification requires a knowledge of the Q of the enclosure. Numerical examples are considered to 

exemplify the differences in the field solutions predicted by these various methods. It is shown that the 

main differences show up near the boundaries of the enclosure. It was found that the number of modes 

excited which carry significant energy is very low and this may be a concern since many of the statistical 

techniques which have been reported in the literature require that a large number of modes be present for 

the techniques to be valid. 

The Green function for the two dimensional resonator is considered next. It is shown how frequency 

stirring can be used to obtain a relatively uniform field intensity throughout the cavity. This is done by 

averaging the field intensity at an arbitrary point inside the cavity over a desired bandwidth. This average 

value is then compared to other points inside the cavity. It is found that as the frequency bandwidth is 

increased, the average value becomes more uniform as a function of position. Uniform field intensifies are 

desirable in such things as reverberation chambers which are used for electromagnetic compatibility 

measurements. 

Chapter III ends with a description of the power balance method for describing leaky/lossy enclosures. 

In this technique, the average field inside an enclosure is approximated by the knowledge of some 

relatively generic parameters. For instance, the Q of a cavity can be approximated by a knowledge of its 

volume, surface area, the conductivity of the walls, and the losses due to apertures existing in the walls. 

Once the Q is estimated, an approximation for the average field intensity inside the cavity can be obtained, 

under steady-state conditions, by a knowledge of the power input into the cavity (i.e. via sources external 

or internal to the cavity). Once the average field intensity is known, if the shape of the distribution is also 

known, then one parameter of the PDF for the field can be determined. The main importance of this 

method is the relatively few and generic attributes which need to be known about the enclosure; this makes 

the method applicable to many systems of interest. 
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In Chapter IV, we investigate some alternate more general distributions and propose a new class of 

distributions for describing the field inside enclosures. This new class, the K distributions, is well known in 

the statistics literature but has never been applied to the electromagnetic compatibility problem before. 

Basically these distributions are defined by the Bessel function of order  y, and are denoted as Kv(x) . It 

coincides with the Chi-square distribution for v = ce and it also contains the Lehman distribution for 

= 3 . A smooth transition between these two classes can be achieved by varying the parameter  y.  From 

another point of view, it is shown that the moments of the intensity of the random field described by a K 
distribution are always bounded by those of log-normal (upper bound) and those of the Chi-square and 

generalized Gamma distribution (lower bound). The fact that the K distributions are two-parameter 

distributions gives an additional degree of freedom for modelling purposes. Yet another useful property is 

the invariance of a K distributed random field under a linear transformation. This may be extremely useful 

when the effect of the external coupling into transmission lines is considered in more detail. 

In Chapters V and VI we apply the finite difference technique to two problems which are of great 

interest: a) the coupling of randomly oriented plane waves into enclosures with an aperture (Chapter V); 

and b) the coupling of statistically described fields to a single transmission line (Chapter VI). In the first 

problem the randomness is incorporated in the angle of incidence and polarization of the impinging plane 

wave. Full-wave finite difference time domain (FDTD) simulations are used to obtain data. The 

applicability of the method to derive the appropriate statistics of the electromagnetic field inside enclosures 

is proven. Using a simple example of a computer box with its front cover removed, we show that the K 
distribution provides a better fit to the numerical data than the Chi-square distribution at least for a cavity 

whose size is larger than the wavelength of the incident field. However more work is required to 

investigate the case when the frequency of the excitation is close to the cut-off frequency of the box. It is 

also shown that even a "weak randomization" (Le. averaging over only a few incident angles) of the 

incident field allows one to obtain results close to those predicted by statistical theory. Contrary to 

commonly made assumptions about the phase distribution inside an enclosure, the data in these 

simulations show that the phase distribution is not uniform but rather can be modelled as a mixture of 

Tikhonov distributions. 

In the second problem, the coupling field is described by its distribution and correlation length. The 

UWO FDTD program was used to perform the calculations in the enclosure problem. A novel computer 

program (which we call "STEM" for STatistical ElectroMagnetics) was written in the MATLAB 

environment for performing the calculations of the transmission line problem. In this code the quasi-TEM 

(transverse electromagnetic) approximation is made to model the transmission line and the coupling is 

represented as distributed voltages and currents along the line. These distributed sources are randomly 

aenerated according to a user specified distribution and correlation length. The Monte Carlo technique is 

used to generate the corresponding probability density functions for the voltages at the resistive 
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terrninations of the line. In this way the effects of different correlation lengths and different assumed field 

distributions on the termination voltages can be studied. It is shown that deviations of the coupling field 

statistics from Chi-square lead to similar deviations in the statistics of the induced voltages and currents at 

.the ends of the transmission line but this effect disappears when the length of the transmission line 

approaches several wavelengths. Furthermore, on one hand, we see that a completely decorrelated 

excitation along the line results in an almost Chi-square behaviour of the terminal voltages and currents 

even for relatively short (less then 0.25X ) transmission lines. On the other hand, highly correlated non-

Chi-square external fields result in highly irregular terminal voltage behaviour, i.e. deviations from the 

Chi-square statistics is significant even for relatively long transmission lines. 

We conclude, in Chapter VII, by overviewing what has been accomplished in this report and by 

making recommendations for future research. A complete set of references, segregated into subject areas, 

is included in Chapter VIII. An addendum report, consisting of the INSPEC literature search which was 

performed for this research, is also available. 
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II. Literature Review 

In this chapter, a review of the existing literature on statistical methods of characterizing 

electromagnetic compatibility problems is made. As was discussed in the introduction, the main reason for 

investigating statistical modelling techniques is that it is unreasonable to expect to perform a detailed 

electromagnetic field analysis of a large electronic system, complete with circuit boards, cables and 

electronics using a computational electromagnetics method. Modelling approximations must be made and 

these lead to uncertainty in the applicability of the results to the actual problem. It is surprising to find that 

it has taken so long, with respect to the development of EMC mathematical models, for researchers to 

investigate, develop and emphasize the need for statistical techniques. This review is divided into four 

parts: a) the statistical description of fields inside complex enclosures and reverberation chambers; b) 

experimental results of electromagnetic coupling; c) the coupling of statistically described fields into 

transmission lines; and d) the statistical characterization of cross-talk in multiconductor transmission lines. 

2.1 Statistical description of electromagnetic fields inside a complex enclosures 

2.1.1 Lehman's filndamental publication [33]  

Lehman's work [33], inspired by [58], is an attempt to describe the general statistics of the 

electromagnetic field inside an arbitrarily shaped, lossy, and electrically large cavity excited by an internal 

source. The goal was to derive an applicable distribution which does not depend on the particular cavity's 

shape and size. The following assumptions were made with regard to the cavity: a) the complex cavity 

assumption; b) the large number of modes assumption; and c) that all the modes excited have equal energy. 

Lehman defines a complex cavity as one in which the coherent contributions from the wall reflections are 

minimal. That is, at any point inside the cavity, the total electric field (or magnetic field) can be well 

approximated as the summation of a large number of non-coherent contributions. 

In [33], Lehman derives a novel, but approximate, form for the expansion of an arbitrary field inside an 

arbitrary enclosure. Various conclusions were drawn about the statistical properties inside a complex 

cavity. With the assumption of a large number of modes, the amplitude of each component of the field is 

shown to be distributed according to a normal (i.e. Gaussian) distribution. This automatically implies the 

fact that the magnitude of a component of the total electric field in a complex cavity obeys the Rayleigh 
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distribution and the square of a component of the time averaged total electric field is distributed according 

to a Chi-square distribution with two degrees of freedom (i.e. an exponential distribution). Yet another 

consequence of the overmoded cavity assumption defines the correlation properties of the field inside the 

enclosure. Expressions for the spatial Ks(r 1 , r2 ;w) , and temporal, K T(t i , t2 ;r,  t ,r2), correlation functions 

are.  given in [33]. 

One of the most fundamental conclusions obtained in this paper is the fact that the probability density 

function and the correlation functions are independent of the shape of the cavity as long as it satisfies the 

definition of a complex cavity, i.e. the theory states that for a given set of cavities with the same volume, 

V,  and quality factor, Q, the statistics will be the same. A number of other publications exist on this 

subject of relating Q and V to the cavity statistics and these are considered below. It is also shown in [33] 

that volume averages can be replaced by the ensemble averages'. This is important for the case of stirred-

mode chambers since with this fact one need only average the field at one point over stirrer positions and 

this will be equivalent to averaging the fields over the volume of the chamber. The theory also predicts the 

possibility of "statistical homogenization" of the fields inside an enclosure using frequency and phase 

stirring. This is based on the fact that the quality factor Q of any realistic enclosure is a slowly varying 

• function of the frequency. 

Although the theory in [33] is promising, some discrepancies between theoretical and experimental 

results, or so called "outliers" (values higher than those predicted by an exponential distribution), were 

reported in experimental tests. The possible cause of this, in mode-stirred chambers, was speculated on. 

One possible explanation for the existence of these differences may be the small number of excited modes 

(i.e. not enough for a valid application of the theory). A number of additional unsolved problems in the 

theory are also discussed. In fact, there is no precise definition of what a "complex cavity" means. It is not 

possible a priori to validate the complexity of a cavity for every cavity of interest. The only practical way 

to proceed is to assume the complexity of the cavity based on experience with various other cavities and 

then to use experimental data to justify the assumption. One possible way to validate this assumption 

would be to numerically determine the mode shapes of cavities with complex shapes. This would not be a 

particularly difficult computation since the walls of the cavity can be assumed to be perfectly conducting. 

Other authors of the same research group have considered an overmoded cavity as just an electrically large 

cavity, that is, assuming that its characteristic dimension is larger than (6 —> 10) X [34-41] and assuming 

also that the cavity has a high Q. The "ideal" results depend on the cavity not having a frequency-

dependent Q and on all parts of the cavity being equally shielded (i.e. no sub-enclosures within the 

enclosure, no regions with closely spaced walls which could act like a waveguide below cutoff, and no 

observations made at points significantly illuminated by direct radiation from the driving source) [39]. The 

1. A phenomena similar, or inverse, to ergodicity [24]. 
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case of evanescent waves was not considered at all; this makes the applicability of the theory to smaller 

systems questionable. In fact, the case of small enclosures will be an area of future study. 

The source of outliers in mode-stirred chamber experiments has not been established. Since the mode-

stirred chamber is essentially a rectangular enclosure with a mechanical stirrer to introduce complexity, it 

is not difficult to envision that the complexity assumption is not satisfied for some orientation of the stirrer. 

The coherent contribution from these outlier modes would dominate the measured response and the 

derived distributions would not be valid for this case'. One of the major difficulties, from our perspective, 

is the fact that the theoretically predicted Chi-square distribution is a one parameter distribution; that is, its 

variance is defined by its mean, and vice versa. However, this condition is not satisfied in practice. One 

suggestion has been to use a log-normal distribution (which is a two-parameter distribution) to obtain a 

better agreement with experiments. However, it has been lcnown for a long time that this distribution is not 

accurate in describing the tails. 

2.1.2 R. Holland and R. St. John group publications [34-39] 

A number of publications have made an attempt to use the results described above in some practical 

applications. The following is a short description of these works. Various authors have considered the 

statistical distribution of the electromagnetic field or power flux in a reverberation chamber. The frequency 

of excitation or sensor (i.e. receiver) position are chosen as independent random variables, i.e. stirring can 

be achieved either by frequency modulation or by randomizing the geometry. It was concluded in [34-35] 

that a normal distribution of a field component (Chi-square for power flux) does not fit a number of 

experimentally and numerically obtained data. Thus an attempt to modify the results of the original papers 

[33, 34, 38] was undertaken. This resulted in, what has come to be known as, the Lehman distribution with 

so-called trends, considered in [33-38]. 

The main idea behind the Lehman derivation, is that the power flux density z 1  is still represented by 

the Chi-square distribution with two degrees of freedom, but now it is modulated by another random 

variable z, to incorporate the fact that the exte rnal illumination may come from three different spatial 

directions and every one of them has two possible polarizations. Thus, z 2  may be thought of as a Chi-

square distribution with six degrees of freedom. Their product produces the Lehman distribution. 

Four different models, based on Chi-square, Lehman, log-normal and a mixture of the log-normal and 

the Chi-square distributions are used to approximate the real statistics in a complex cavity. The manuscript 

1. A similar phenomena can be observed in communication channels. In fact, if there is no Line Of Site (LOS) from the 

transmitting to the receiving antenna, the field distribution is due to a large number of small diffusion components, 

carrying approximately the saine  amount of energy which are randomly and uniformly shifted in phase. This creates a 

Gaussian distribution of the field and thus a Rayleigh distribution of its magnitude. If an LOS is present, it will dominate 
the diffusion components and the distribution of magnitudes appears to be a Rician distribution [30]. 
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of [36] mostly concentrates on attempts to obtain the distribution of field components, given that the 

distribution of the power flux density is assumed to be the Lehman distribution. 

Most of the material, produced by the Lehman-Holland-St. John group, and scattered through a 

number of conference publications, is concentrated in [36] and, in an up-coining book [39]. The main 

contribution of [36] is the development of an algorithm which models cable-drive fields simultaneously 

having a Chi-square power flux intensity distribution and the physically mandated local autocorrelation 

function at a spatial point as frequency is swept or at a fixed frequency as the power flux sensor is moved 

around to map the cavity response. It is proposed that this algorithm could later be used in a circuit analysis 

code to analyse a circuit representing part of an enclosed system's wiring. 

The paper treats the deviation of real cavity statistics from the theoretically ideal Chi-square 

distribution of power flux density as an effect of "trends" - relatively slow varying modulations due to 

violation of ideal assumptions in the Lehman original paper [33]. In addition to the Lehman original six 

degree of freedom illumination [40], they deal with frequency dependent cavity Q's, cable attenuations, 

etc. Numerical techniques, allowing one to "demodulate" these trends are described. 

The most recent publications deal with numerical, [62, 64-67, 69], and experimental, [43, 44, 47, 60, 

61, 68, 70], verification of fields applied to equipment under test in a reverberation chamber. The Method 

of Moments (MoM) is used to predict the induced currents in a monopolar antenna [38-41]. The MoM 

produces a linear predictor equation and thus it makes it easy to calculate the statistics of the current, once 

a Gaussian distribution of electric and magnetic field is assumed. In fact, any linear transformations will 

result in a Gaussian process again, but possibly with a different correlation function. A Gaussian 

distribution is defined by its first two moments, thus only two quantities need be measured in practice to 

validate the results. Similar work was reported in [42] where the so-called Maximum-to-Mean ratio was 

experimentally compared against theoretical results. 

2.1.3 D. Hill group publications [43 -48] 

In this group of papers, the reported research is on stirred-mode chambers. In this application, it is 

important to create a statistically uniform electromagnetic field inside a chamber. This is usually achieved 

by mechanical stirring, however frequency stirring can also be used. 

The first paper published by the authors, [43], considered the coupling of an electromagnetic field into 

a coaxial air line through a small aperture. An analytical (and deterministic) model was developed and then 

experimental results, conducted in a reverberation chamber, were compared against this theory. The 

random nature of the field which was to be measured, prompted the consideration of the excitation of an 

arbitrary antenna by a random field. To achieve this goal the authors represented the incident field a sum of 

partial plane waves over all real angles. The following assumptions were made about the statistical 
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properties of the field: 

• Two partial plane waves corresponding to different incident angles are independent; 

• The energy of these partial waves are equal 

These are the same assumptions which were made in Lehman's paper [33]. The integral expression was 

then derived for the average energy coupled into the antenna. Later, the spatial correlation function, 

coinciding with those in [33], was introduced in a short letter [46]. 

The next paper, [45], addresses problems in the mathematical modelling of the shielding effectiveness 

of electrically large enclosures which contain apertures and interior loading. Some mathematical 

expressions for the enclosure's Q were developed. These equations take into account wall losses, 

absorption and aperture leakage. An important contribution is that these formulas are generic, i.e. they are 

independent of the specific aperture dimensions, shape of the enclosure, etc. We describe these results in 

detail in Chapter III. 

Investigations related to the creating of a statistically uniform electromagnetic field using frequency 

stirring were reported in [44]. A two dimensional geometry of a rectangular cavity, excited by a line source 

was considered. The exact solution was found first for the case of perfectly electric conducting (PEC) 

boundaries. Then, this solution was modified using the analytic continuation of the real wavevector, k, 

into the complex plane, i.e. k, = k(1—j/2Q), where Q is the cavity quality factor. A further 

development was again based on the assumption that the statistical properties of the field are spatially 

uniform throughout the cavity. It was also assumed that the line source radiates the same field in a lossy 

enclosure as in a free space environment. These are equivalent to the assumption that the cavity itself is 

electrically large and that the source is located far from the walls. Expressions for Q in terms of lossy wall 

parameters are then developed [44, 48]. With these expressions in hand, the author considers frequency 

stirring of the chamber. An expression for the mode density as a function of the Q, the excitation 

frequency, and the chambers dimensions was found. It was then assumed that the excitation itself is 

■,videband and thus excites more modes than just a single frequency excitation. This contributes to 

ameliorating the field uniformity (i.e. the more modes which are excited simultaneously the better the field 

uniformity). Multiple source as well as phase stirring were also considered. However it was mentioned that 

to achieve better results some mechanical stirring is still necessary. 

2.1.4 Other publications 

One of the pioneering works on statistical modelling of mode-stirred chambers is [69]. Here it is stated 

(as has been stated in [33] and other publications) that in order to get a statistically uniform field, the 

chamber has to be electrically large, overmoded, and observations should be made far from the walls. It is 

stated that the number of modes is approximately equal to n = abc/X 3  where  a,  b and c are the room 
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dimensions and X is the wavelength. 

Six components are needed to describe both E and H fields at every point. Each of these components is 

assumed to be the sum of a large number of random variables (mode amplitudes) and thus should be 

normally distributed. It is also argued that these six components have to have a zero mean if there is not a 

significant direct-path signal from the antenna in the chamber to the measurement point. This may be 

achieved by placing an antenna close to and pointing into a corner of the chamber. This model leads to a 

Chi-square distribution with six degrees of freedom - a very slight generalization of the statistics used by 

the Lehman group. However, if a probe responds only to one component, then the statistics will be reduced 

to the Chi-square distribution with two degrees of freedom. 

The paper also describes how the PDF can be used to build an optimal estimator of the distribution 

parameters - something totally neglected by other researchers. An example is developed for the case of the 

Chi-square distribution with two degrees of freedom. These estimates are later used to calculate a 

chamber's quality factor Q.  

Similar investigations as to those of the statistics of an electromagnetic field inside enclosures can be 

found in more classical papers which deal with the wave propagation in a random medium. Many authors 

came to the conclusion that the magnitude of the electromagnetic field in this case is also distributed 

according to the Rayleigh law. A systematic derivation can be done on the basis of a perturbative 

diagrammatic technique [81-82]. This technique is based on the solution of the wave equation, for a scalar 

field component, with a random wave number: 

{V 2  +k[1 1,t(r)] } E(r, w) = 0 	 (1) 

supplemented with a proper source. In the diagrammatic approach one computes moments of the intensity 

I = IE(r, (0)1 2  and then constructs the PDF of the distribution p i(I) . As in the Price or Lehman papers, a 

large number of approximately equal eigenmodes provide the necessary conditions for such statistics. 

It was pointed out in [81], that the Rayleigh distribution applies to the case of a monochromatic wave 

propagating in an open system. A different type of problem arises if one considers the wave equation (1) in 

a closed geometry without sources. In this case one inquires about the statistical properties of a single 

eigenstate E a(r) I  , i.e. about the distribution  p i(l) of the quantity / = lEa(r)1 2 . It was shown in [81, 86] 

that the main part of the distribution is described by the Porter-Thomas (Pi') statistics: 

[ 
ppT(/) = j2-Vruexp / 

I. This is another limiting case. It seems to be a reasonable assumption that real situation in a leaky cavity can be 

described by some intermediate case. 

(2) 
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where V is the volume of the cavity and nzpri  = 1/V.  It is easy to see that the Porter-Thomas statistics is 

a particular case of the Gamma distribution (see Chapter IV for a more detailed description of this family). 

The following idea was suggested in [811: let us assume that the cavity is weakly coupled to the 

environment (for example, through a small aperture). Then, by placing a monochromatic source inside the 

cavity [86] and tuning its frequency,  w,  to a resonance, one will generate in the cavity an intensity pattern 

1(r) which closely follows the pattern of I E(r)I2  of the eigenstate a with frequency (J OE  w.  Thus, the 

intensity distribution will be given by the Porter-Thomas statistics (2). On the other hand, for a sufficiently 

strong coupling, in an open system, the distribution should obey the Chi-square statistics. The main result 

of [81] consists in the construction of the interpolating distribution between these two distributions. 

In the same paper, the following differences between an open and a closed system were considered, 

using a simple picture of the addition of many random waves. In an open system, a field component E(r, t) 
can be viewed as the sum of a large number N of travelling waves arriving at a point r from various wave 

processes: 

1 E(r, t) = 	cos(en +kn  • r – c ) t) 
n = 1 

where the phases en  are completely random and all the amplitudes have been taken to be equal (one could 

assume random independent amplitudes without any change in the results). The wave vectors k n  are 

uniformly distributed on a d -dimensional sphere (d = 2, 3 ) of radius k0 . The instantaneous local field 

intensity is defined as E(r,  t) 2 .  The measured quantity is, however, the intensity averaged over one period, 

that is 

w/27E 

2.rt = 	f E(r, t)2dt = —1 V cos [On  – + (ka –km ). r] 2N 

(3) 

(4) 

The same expression can be obtained if the complex form of (3), that is 

n = 1 

is assumed and the intensity is defined as IE(r)I 2  . In the limit, as N 	, the distribution of the real and 

the imaginary parts of E(r) become Gaussian, thus leading to a Chi-square distribution [33]. Let us note 

that travelling waves can be created in closed cavities by means of space, frequency or phase stirring [44] 

(as well as absorption by walls). 

In a closed (i.e. resonant) system the field is viewed as a sum of many standing waves: 
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1 E(r, t) = 	cos(o n i-kn  • r)coscot 
„IN 

n = 1 

or, after time averaging of the intensity I = ler, t)I 2  

27c/co 

= —27t f I E(r, t)I 2 dt = —1 	cos[On - Om + (k n - km ) • r]cos[On + O m + (kn + km ) • r] 4N .4-a 
0 	 m, = 

Let us emphasize here that O n  is fixed and deterministic for the case of standing waves. In the limiting case 

as N—*  oo,  the Porter-Thomas statistics (2) for the intensity I can be derived [81]. Detailed investigation 

of the statistics of the mixture of travelling and standing waves will be conducted during the next stage of 

this research. 

Thus, two different extreme cases - standing waves or travelling waves only - will lead to two different 

results. In one case it is the well known Chi-square distribution [33], in the other is the Porter-Thomas. 

statistics, widely used in the physics community but rarely used in the electrical engineering community. 

This gives yet another explanation of what should be understood by the term "overmoded" cavity [33]. An 

"overmoded" cavity is one in which no standing waves exist, or in other words where the standing wave 

ratio SW R is very low. This is achieved when the cavity has a lot of leakage or when it is well stirred. 

This approach looks competitive with that which we are considering throughout this current report. It 

is partially implemented in our StEm Tool (see Chapter VI for details). However we propose to investigate 

this subject in depth during the next stages of this research. 

2.2 Experimental results of electromagnetic coupling 

In [34-36], some measurements were conducted in order to validate some of the models we have 

mentioned. In particular, the EMFTAC 720 (EMP Test AirCraft facility) shell' was externally illuminated 

by an elliptically polarized antenna and the frequency was swept from 0.1 to 1 GHz. The estimated mean 

and variance values of the induced currents on an internal cable were then used to generate a model 

distribution and this was compared against measured data. A numerical transmission-line model of the 

tested cable was created: length 20 m, characteristic impedance about 30 52, standoff h = 5 cm, per unit 

length inductance L = 1 /?n, and the capacitance was chosen to provide a propagation velocity equal 

to the speed of light. The cable was divided into 200 segments and excited by 1000 different frequencies 

which were exponentially stepped between 100 MHz and 1 GHz. The phase quadrature magnetic driving 

fields on each segment of cable were randomly chosen according to a Gaussian model [36]. 

1. Essentially, EMPTAC is a gutted 720 airframe. The electromagnetic energy is leaking inside EMPTAC through 

existing deliberate and inadvertent apertures and antenna feed cables [35 ] . 
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Some data, related to the power-flux distribution in the Celestron 8 satellite are discussed. The 

applicability of the Lehman distribution is considered with respect to this data [34-36]. 

An exte rnally illuminated, leaky, resonant-waveguide was used to test the Lehman statistics in [34-36]. 
The enclosure contained cables and the currents at their terminals were measured. The frequency was 

swept from 0.3 to 3.0 GHz to obtain the necessary stirring. 

Experiments with a 1.2 x 1.2 x 7.3 m 3  sheet-metal walled chamber illuminated from one end were 

reported in [35]. The electric field was swept from 300 MHz to 3 GHz and was measured using an ACD-

4D sensor connected to an HP8753 network analyser through an amplifier. The cavity was illuminated by 

a log-periodic antenna and driven by a network analyser. The currents were generated on the shield of a 

1.2 m long coaxial cable which was placed in a variety of orientations in the illuminated enclosure and was 

terminated directly to the conducting walls of the chamber. The currents were measured through a Fisger 

PNF-65 probe. The placement of the current probe was in the centre of the cable. The electric-field probe 

was moved around within the volume for the four sets of data (usually between one and two meters from 

the cable). The orientation of the illuminating antenna was also changed. 

An experimental study of the coupling of an electromagnetic field into a shielded cable through an 

aperture was reported in [43]. Measurements of the shielding effectiveness were conducted in a 

reverberation chamber over the frequency range of 1 to 18 GHz. The parameters of the apertures and 

coaxial air line were: line radius b = 3.5 mm, aperture location zo  = 10.7 cm, aperture radius a = 1 
mm, and characteristic impedance Z, = 50  Q. A second air line was also constructed with a larger 

aperture of a = 1.5 mm. 

A rectangular cavity having size 1.75 x 0.629 x 0.514 m, made of an aluminium alloy (FAA cavity) 

was built to validate the results obtained in [60]. Glass containers of salt water was used to introduce 

absorption losses. A circular aperture of radius r = 1.5 cm and three salt-water spheres of radius 

I-, = 6.6 cm were used in the experiments. Double-ridged horns were used for the transmitting and 

receiving signals in the range of 1 to 18 GHz. The measured Q was compared against the theoretical 

results. 

A 4.57 x 3.05 m "two-dimensional" cavity with a line source and a quality factor Q = 10 5  was 

considered in [47]. The effect of the bandwidth of the excitation on the uniformness of the field inside the 

cavity was investigated. It was shown that the uniformity is improved if the source has a larger bandwidth. 

Also it was reported that frequency stirring improves uniformity at points close to the walls of the cavity. 

A 10  x20  x 8 ft. mode-stirring chamber was investigated in [44]. Point measurements were made at 

ten locations and three frequencies: 4, 6, and 8 GHz. The square-law probe voltage was expected to be 
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exponentially distributed. A number of outliers were reported and their nature was not identified. 

2.3 Coupling of st,atistically described fields to transmission lines 

There are a few different ways of how a statistical description can be introduced into the problem of an 

external electromagnetic field coupling to a transmission line. First of all, one can assume that a plane 

wave of unicnown polarization and direction of arrival hits a deterministically described transmission line. 

In this case, a Monte-Carlo simulation is easy to implement - each trial is nothing but a deterministic 

problem. This approach has been used in order to estimate the impact of an external field on power lines 

and is described in a number of papers [50, 52-57]. 

Another approach is to treat the excitation as deterministically known but treat the transmission line 

parameters as random variables. This approach is well suited for investigating the coupling of 

electromagnetic waves produced by a single known source (usually modelled as a plane, cylindrical or 

spherical wave) into PCB's whose parameters are random due to manufacturing tolerances. The 

uncertainties in such parameters are relatively small and this allows one to treat the problem in the frame of 

small perturbation theory. A number of papers can be found on this subject [50, 51, 52]. 

The most relevant formulation to EMC is, however, the case where the external field itself is 

considered as a random field'. This allows one to incorporate uncertainties in the receptor location, 

incident field parameters, and most important, allows one to approximate the effect of an enclosure of 

unknown geometry. The simplest model immediately follows from the Lehman theory. However, due to 

the discrepancies between predictions and measurements, this model cannot be universally accepted. Only 

a token number of papers are known which consider more sophisticated models. Most of them have 

appeared during the last few years in conference publications. [37, 65-68]. 

2.4 Statistical description of cross-talk in multiconductor transmission lines 

An experimental study of cross-talk in twisted-pair communication cables was undertalcen in [52]. 

This study revealed that a simple Gaussian probability density function model for pair-to-pair cross-talk, 

where the Gaussian PDF must be truncated to fit experimental measurements is not desirable since in 

practical repeater design applications it is the extreme tail region, below 0.1 percent, which is important. It 

was shown, using measured crosstalk data from 619 cables, that the gamma distribution is a more 

satisfactory approximation than the conventionally accepted normal distribution for modelling multi-pair 

crosstalk behaviour (using a decibel scale). 

A strict analytical approach to evaluating the coupling between wires in a three conductor transmission 

line was undertaken in [51]. The distances between the wires and the ground plane were assumed to be 

1. Here the term "random field" refers to a random function of three spatial variables 
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uniformly distributed within finite regions and the corresponding distribution of the coupling was 

computed using calculated distributions of the per-unit-length inductance and capacitance. The probability 

density function which was obtained confirms the fact that experimental data produces PDF's having 

relatively longer tails than a simple Gaussian PDF. A direct generalization of this method to the case of 

four or more wires is quite difficult; however, some attempts to build a suitable approximation were 

undertaken in [63]. 

A number of statistical models have been deduced from direct Monte-Carlo simulations of cross-talk. 

For example, Monte-Carlo simulations wherein various PCB parameters were randomized were reported 

in [52]. The worse-case scenario, i.e. maximum possible over-voltage, was then found using these 

simulations. Similar work was conducted in the case of multi-wire communication cables [63, 39]. A 

detailed investigation and statistical characterization of the cross-talk in MTL bundles consisting of more 

than 100 conductors was undertalcen in [63]. In this work analytical, numerical, and experimental results 

were reported. 

All of these statistical investigations show that useful models of structures with uncertain parameters 

can be derived using both analytical techniques and brute force Monte-Carlo processing using numerical 

techniques or experimental data. Once available, such statistical models of the expected electromagnetic 

interference can be considered in the design and simulation of digital devices. 
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III. The Physics of Complex Enclosures 

In this section we investigate the physics of electromagnetic fields existing in, what have come to be 

known as in the statistical EMC literature, complex enclosures. The term "complex" refers to an enclosure 

in which the boundaries do not define a simple geometric object such as a sphere or a rectangular 

parallelepiped (or box). Additionally, there exist electromagnetic losses in the complex enclosure which 

are due to one or more of the following physical features: lossy or non-perfectly conducting walls, 

apertures which allow energy to escape, and absorbing structures such as printed circuit boards and cables 

inside the enclosure. The complexity of the enclosure is a measure of how many of these features exist. A 

relatively generic theory of these enclosures has been developed by Hill et al. [45, 48, 691. The main 

electromagnetic concepts which is used for that theory are the concepts of resonance, quality factor Q, and 

the number of spatial frequency modes which are excited. In order to get a good understanding of these 

electromagnetic concepts, we begin by investigating some analytic and quasi-analytic solutions to lossy 

one dimensional and two dimensional resonators: a terminated transmission line and a hollow waveguide 

with an infinite line-source excitation. 

3.1 Resonance of a one dimensional enclosure 

Consider a one dimensional resonator which is terminated by lossy walls. This is equivalent to a single 

transmission line which is terminated at each end with impedances (voltage along the line maps to the 

electric field and current along the line maps to the magnetic field). First, we will develop an exact 

analytical expression for the field inside this 1-D resonator by modelling it as a transmission line with a 

current source excitation somewhere along the line. This expression will be compared against the 

eigenfunction expansion, obtained for the lossless case and modified using Morse's method [21]. Limits of 

this approximation are investigated. An approximate expression for the eigenvalues of the mixed boundary 

problem are also found. 

3.1.1 Solution based on transmission line equations 

Consider the transmission line of length  d,  excited by a point harmonic source of current is  , located at 

the point z = z0 , as shown in Fig. 1. This is equivalent to a one dimensional resonator. The walls of this 

resonator are lossy and can be modelled by termination impedances, Z,,, , on the transmission line. The 
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characteristic impedance of the transmission line is assumed to be real Zo  =  R0 . In free space we have 

Zo  = fl o = JI.to/E0  and the velocity of propagation (or phase velocity) is vp  = c = (110 E 0 ) -I/2 . The 

normalized termination impedances, , are defined as 

= Z„/Z0  = rw + jx„. 

Assuming a time-harmonic source of angular frequency co , the corresponding propagation constant is 

defined as [87] 

(8) 

= (i) / V (9) 

Z„ 

Figure 1. Geometry of the problem 

Both load impedances can be transformed to the source point, at location z = zo , according to the 

standard impedance transformation equation (see page 248 in [87]): 

cos [3z0  + jsin Pzo  

Lcos [3(d— zo) + jsin[3(d— zo ) 
Zr  = Zo 	  

cos f3(d— z o ) +Aw sin[3(d— zo ) 

This allows us to find the corresponding driving currents, and thus, the voltage along the line as (see page 

248 in [87]) 

Z , E  1  rZ , = 	= 
s Zr  ÷ Z1 I 	r  

V 1(z 1) = Ecos f3z1  j//Z0  sin f3z1  = Ecos  13z 1 — j—E Zo  sin [3z /  

cos f3zo  +A,,, sin Pzo
sin[3zi

] 
=  E[cos [3z/ 	cos [3zo +jsin 5z0 

[L cos [3(z /  —  z0 ) —jsin [3(z /  — 20 )1 

Z1  =  Z013 
 

=E  LcosPz o  + jsin [3z0  cos [3z o  + jsin [3z 0  
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V ,.(z,.) = Ecos[3z,.– j/ rZo sidz,. = 	
.E  

cosfl(d– zo ) +Awsini3(d– zo)
sinPz = E[cos Pz,. – iLcosp(d– zo) +jsinr3(d–zo) 

ErL cos PI (d – Z r  – z o ) + jsin [3(d – – zoi 
 L 	zo ) +jsinf3(d–z0 ) 

Defining the new variables, z 1  = – z + zo  and z,. = z – z 0 , as in Fig. 1 allows us to re-write (13)-(14) as 

[  Lcosf3z + jsinPz 
171(z i) = Lcosf3z 0  + jsinflzo  

(14) 

(15) 

r  w cosi3(d—z) +jsin13(d–z) 
V,.(zr) = ELL cosp(d— zo) +/sin P(d – zo)J 

z o < z d 	 (16) 

This form of the solution allows a fast and simple calculation of the electromagnetic field inside the one-

dimensional cavity, however, it does not give a deep insight into the structure of the eigenmodes, which is 

of primary interest here. 

3.1.2 Eigenmode expansion, Method A: expansion in terms of sines and cosines 

We again use the transmission line analogy but now we obtain an eigenfunction expansion of the 

electromagnetic field (i.e. voltage) inside the one dimensional resonator. In the lossless case the 

eigenfunctions are either sines or cosines, depending on how the z-axis is chosen. The system of 

differential equations to be solved is 

—d V(z) + jœLl(z) = 
dz 

—d 1(z) + j wCV(z) = 48(z zo) dz 

, 0<z<d 	 (17) 

where L and C are the per unit length inductance and capacitance of the transmission line, the Dirac delta 

function term 48(z – z o) takes into account the current source located at z =  z0 , L = go  and C = E0  

From these, a second order differential equation for the voltage along the line can be derived as 

2 
_-V(z) + f3 2 V(z) = –jcoL1 3.8(z – z o) 
dz 2 

where p = cofré = co/va . For the lossless case the boundary conditions state that the voltage (i.e. the 

electric field) is zero at z = 0 and z =  d.  The solution in terms of an eigenfunction expansion for this 

lossless case is given in [23] as 

(18) 
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(19) 

(20) 

sin(nt 7 )sin( 1-11z) –jto2  Li  
V(z) 	d 

s 	d •-° 	d 
2r 

n = I 	
r32 (M1) 2 	 • 

d 

Note that singularities in the solution exist at the resonance frequencies given by 3n by 

2d.,/71' 2d ptf.70 .  

The solution becomes more difficult to obtain when the walls of the resonator are lossy. In order to 

simplify the equations, we introduce a new coordinate system defined as 

u = z– a,a = d/2 	 (21) 

Thus the boundary conditions of the corresponding transmission line equations will be specified at 

u =  ±a.  The eigenfunctions are obtained by solving for the homogeneous transmission line equations 

which are now given by 

d —V(u) + j(DLI(u) = 0 
du 

, –a < u  <a  

It follows from (22) that 

I(u) – 	d  V( ) u  • jct.) du 

At the terminations of the transmission line, the current and voltage are related by Ohm's law, that is 

V(–a) + ZwI(–a) = 	—d  V(u)i 	= 0 icoLdu 

fni — 

d —I(u) + jcoCV(u) = 0 
du 

U = 

Zw d (V(a)–Zw l(a) = V(a) + 	u) 
jœLdu u= a 

=0 	 (25) 

As before, it follows from the transmission line equations that both the voltage V(u) and the current 

/(u) obey the second order wave equation, that is 

2 	 2 
—d V(u) + {3

2 	= 0 , -d I(u) + p2 i(U) = 0 	 (26) 
du 2 	 du 2  

The eigenfunctions of this equation are the sine and cosine functions 

1-1(u) = A cosyu + Bsinyu 	 (27) 

where the coefficients A,  B and eigenvalue y should be chosen to satisfy the boundary conditions (24) 

and (25) as well as represent a solution for the particular position of the exciting source. The final solution 

for the voltage or current along the line will be made up of an infinite surrunation of these eigenfunctions. 

The result will have the form of a series containing both cosines and sines: 
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v( ti)  = E A n cosyn u + Bn sinyn u. 	 (28) 

n =o 

Taking the derivative of (27) with respect to u and calculating the values of ru) and Ir(u) at 

u = ±a one obtains 

	

I'(—a)  = A cosya—Bsinya , '1P(u) 1 u  = _a  = yA sinya + yB cosya 	 (29) 

11(a) = Acosya+ Bsinya , IP(u)i 

	

lu =a = — yA sinya + yBcos ya 	 (30) 

Substitution of (29) and (30) into boundary conditions (24) and (25) one obtains 

Z„ 
A cosya—Bsinya—=IyA sinya + yB cosya] = 0 	 (31) 

ja)L 

Z„ 
A cosya + Bsinya + =—. [— yA sinya + yB cosy(/' = 0 	 (32) 

icuL 

and, after summing these two last equations, we get 

Zn, 
2A cosya--L 2yA sinya = 0 jco 

On the other hand, after subtraction of the first from the second, we get 

Zn, 
y2Bsinya + —2 Bcosya = 0. 

 jcoL 

These equations lead to the following two transcendental equations for the eigenvalues  y,  

independent on the magnitude of the coefficients A and 0, ; these are 

_ jœLa yatanya — 
Zn, ' 

yacotya — —ja)La . Z, 

It is worth noting that if Zn, = 0,  then (35) and (36) reduce to 

tanya = ce, Y2n +1 = ;.1 (2n + 1) = 7-i  (2n + 1) 

It 	it 
tanya =  0,  Y . 2 n = —(2n) = —(2n) 

2a 	d 

(33) 

(34) 

which are 

(35) 

(36) 

(37) 

(38) 

which means that the eigenvalues are the familiar perfectly conducting parallel plate resonator eigenvalues 

[87]: 

TC /It 
yin  =  7 .  

For any transmission line with per unit length parameters L = p. and C = E we have 

(39) 
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ya tanya 

ya cot ya 

jœaZ0 = jr3a 
vp  

jcoa Zo = jpa, 
 vp  Zn, 

(42) 

(43) 

(45) 

(46) 
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v = (LC) -1/2  , Zo  = L,17/7' 	 (40) 

and therefore 

L = Z0  /v 	 (41) p 

and (35) and (36) become 

Equation (42) has infinitely many roots yn  which are complex, in general. Let us assume that they 

have been calculated (i.e. by some numerical procedure) and let us calculate the ratio of the coefficients of 

the eigenfunctions: 

En  = B 0/ A, 	 (44) 

corresponding to each eigenvalue  y,. This can be achieved by dividing boundary condition (31) by A n  and 

solving for En  to get 

Zn, 
icosyna 	LYn 

—= s nya 
ico 

sinyn a +.7—yn cosyna 
jcoL 

From (35) we have jcoL/Z = y n tanyna which, after substitution into (45), gives 

sinya  
cosyn a — 

tanyna B n  
	  — 0 B n  = 0 

Cn  = A n = 	cosyn a 
sinyn a + 	 

tanyn a 

This simple result is a consequence of a symmetry of the problem, that is, both boundaries have the same 

impedance. It allows us to choose only the cosine term for the eigenfunction, that is 

= cosyn u 	 (47) 

Since in general, the eigenvalues, yn , are complex numbers, (47) represents a decaying cosine wave. 

Recalling that u = z—d/2 , we finally obtain 

= cos y n(z — e ) 	 (48) 

In the very same way eigenfunctions can be found corresponding to the eigenvalues found using (36). 

S. Primak and J. LoVetri 	 - 26 - 	 Statistical ENIC 

en = 



Zn, d 
11(2a) + 

jcoL
—
dz

T(z) = 0. 
z = 2a 

(52) 

A 2 e 2ga = B2 e-2 1'a 

Aella = 

The Physics of Complex Enclosures 

3.1.3 Eigenmode expansion, Method B: expansion in terms of exponentials 

In this case we are looking for the eigenfunctions in the form 

T(z) = A ellz + Be -1-u , 

'Ir(z) = gAegz-Be -gz] 

subject to the boundary conditions 

(49) 

(50) 

_ Zw  d 
7, 11  (z) Jo) az 

= 0  
z = o 

(51) 

From the first boundary condition, we obtain 

A + B - -=1.1.(A - B) = 0 
jcoL 

which can be rewritten as 

	

irA+B-1 	lrl+B/A1 

	

jcoL = gLA -B 	-B/AY 

The second boundary condition is used to find 

Ae 2 I-ta +Be-2ga 1rA  
it LA 

_ Bip.[Ae2ga_Be-2p.a ]  = 0  

or, after some rearranging 

which, in turn  is equivalent to 

and we have 

B/ A = ±e 211° . 

Substituting this and (41) into (54) gives us the two equations 

.ta tanhj.ta = 

.13a 
gacothi_ta = - 

These equations coincide with (42) and (43) if p. = jy.  . Finally, this last substitution gives 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 
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. 

(63) 

(68) 

(69) 

(70) 

(71) 
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_ 
ya tanya 

j[3a 
– 	<=> 	cotya = –j—

Pa

(ya) 	 (61) 
c. w  

yacotya = 	<=> 	tanya = j--'1 (ya) 	 (62) 
‘otv 	 Pa 

3.1.4 Solution of the transcendental equations for small losses 

Let us assume that the wall losses are small and that the parameter  L  in equations (61)-(62) is much 

smaller then one, that is 

In this case, i.e. the case of high Q cavities, an approximate solution of the transcendental equations which 

give us the eigenvalues can be obtained using a small parameter expansion [88]. In this case, yn  is 

represented as a series expansion with respect to small parameter I Li  : 

Y n = Y on + ILI(Yfi lr)  +ly51} ) ) 	(Y;z 2r)  + ..111, ) ) + 	n = 1, 2, ... 	 (64) 

where yon  are solutions corresponding to the case of L  = 0, i.e. lossless case. We obtain 

yona • tanyo„a = 	<=> 	cotyona = 0 	 (65) 

yona cotyon a = no 	<=> 	tanyona = 0 	 (66) 

and )1,k), ye) are real and imaginary coMponents of kth  order correction term. Here we will confine 

ourselves with only the first order correction term, i.e. we will assume that 

Yn = YOn 1I(Yiz ir)  +le) 	 (67) 

The exact form of the yon  is well known as 

Tc(2n + 1) 
YOn = 	2a 	' n  = 1 ' 2' 

for equation (65) and as 

it2n 
yon 

= 
 ---- ,n = 1, 2, ... 

for equation (66). These two are equivalent to 

mn rut 
Yon = —2a = 	n = 1, 2, ... 

The next step is to use a small argument approximation for tanx and cotx , that is we will use 

tan [(?o „ + 	(er) 	)))a ] tanyo„a + 	(Y;j )  +../Y} )) = a ILI (Yg)  /Y51} )) • 

After substituting this into (62) the following approximate equation is obtained 

tany,,a a ILI (y;.) + jy;i p) = — a(yo
" 

+ 	+ jyg))) = pa  yona 	(72) 
[3a 	Pa  
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n Een z  

1 - j-"y 
- 	i3  

-2Bn  [. 
	 jsiny z —y cosy n + p n 	nz] •  
1 - 

p n 

n(z) = B „ (77) 
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(73) 

(74) 

where 	= arg (L) . This immediately produces 

Y ir )  +iY;11 )  = j-Fa- Yon 

and thus 

Yn Yon + 	 Y ( 1  + j1) pa  On 	On 	pa  

and yon  is given by (68) or (69). A similar equation was obtained in [89]. 

3.1.5 Eigenfunction expansion 

The next step is to find the coefficients A and B in eigenfunction expansion (49). To achieve this, 

equation (53) is rewritten as 

= o 
n 

which gives 

(75) 

1 + yn 

1 — 	n  

A n  = -B „ (76) 

i.e. the eigenfunctions are 

Note that there are no singularities in this solution. The remaining coefficient is obtained by expanding the 

source in terms of the eigenfunctions. Note, that for the case of lossless boundaries, i.e. =  O,  we obtain 

IMO) = Ilf„(2a) = 0 as required. 

3.1.6 Morse approximation and the number of modes excited 

The general eigenmode expansion for the fi eld inside a perfectly conducting one dimensional 

resonator is written as [23, page 871 1  

2 
e° sin( n"1 sin(nnl 

d 	d  
V (z) = 	 (78) 

d ‘-.1 
n = 1 	p2 _ (nn)

2 
c 	d  

where for this lossless case, pe  = p = 0) F.07, is the propagation constant and we have chosen the 

magnitude of the current source Is  in equation (19) such as to remove the coefficient in front of the 
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(80) 

(81) 

(82) 

(83) 

(84) 
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summation. The approximation which was suggested by Morse [21] is to use a modified propagation 

constant which, for the one dimensional resonator, is given by 

1 f3, = p(1 -; 2—Q) . 	 (79) 

In other words, one may rearrange the denominator in (78) in such a way that the effect of losses will be 

incorporated as changes in f3 rather than changes in y,,  given by (74). To do this, the quality factor Q 

must be chosen in such a way that 

fv,2_ yan  = 

or, using (74) and (79) 
( A \ 2 

f3 2 1 --/2—Q)
2 —

icin  n 	pa  

which expands to 

) 2) .1 	1 ) 	 2 ( 	 w  r32(1 	–yOn
2 	fq2 	1 	_ 

= 	YOn 	pa 	Pa 	• 4Q 

Keeping only terms of order 	and 1/Q we obtain 

1 2LYIL 4 LYÔn 
= 	= Q 	r32 	pd f32 

Of 

od p2 	Pd 	- 

	

P 2 	.0 
i 	. 

`gwY.In 	4 1 It'l YL 
This gives us an approximation to the quality factor for small losses (i.e. ILI «1). Let us note that in 

general (84) produces a complex number. 

We see that the coefficient of each eigenfunction in (78) is given by 

sin
• 

2 	d 
(itnzo) 

cn  = 

N,vhich is the magnitude of the n-th spatial mode. Thus it can be seen that this magnitude is uniformly (i.e. 
independent on z)  bounded by 

1 

f32( 1_ .•1 
 2  _(712  

 Pd d2132, d 

As the mode number, n, increases, the cn  become smaller and smaller. This means that only a few modes, 

d [3 ,,2 _. (2 7e (85) 

Icn i < (86) 
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for a given geometry and frequency, are excited with appreciable energy. Any mode which is close to a 

possible resonance will dorninate. A second conclusion which can be made is that, taking into account the 

uniformness of the bound (86) (in the sense that it does not depend on the source position), no sign ifi cant 
randomization of the modes can be achieved by moving the source location z = z 0 . The latter could be 

accomplished by using either frequency variation or (equivalently) wall displacement (i.e. a vibrating 

wall). In both cases this would be equivalent to stirring the electrical length of the resonator. 

3.2 Numerical simulations of the one dimensional resonator 

In this section we give the results of a number of simulations which were conducted in order to better 

understand the effect of the wall losses on the field inside the one dimensional resonator. They are briefly 

described in this section. The corresponding figures are Figs. 2 to 6. In general, three methods were used: 

a) the one referred to as "exact" in the figures is the solution given by equations (13)-(16); b) the one 

referred to as "Bal. cls" refers to the closed form solution given by Balanis in [23, p. 870] which is valid 

only for the lossless case; and c) the method referred to as "Bal. har" refers to the harmonic lossless case 

expansion also given in [23, p. 8711. These are compared against the eigenfunction expansion using the 

Morse approximation for the lossy case given by (78) (labeled "Morse har" in the figures), and against the 

expansion 

nnzo) 
sin • (Tull 

—

d  

V(z) = E 
i32  

n = 1 

with yn  given by (74). This last approximation is labeled "UWO" in the figures. 

3.2.1 Consistency of all solutions for the case of lossless walls 

The purpose of simulating the lossless case is to show that all three methods give the same results in 

the case of no losses in the walls, i.e. when =  0. A few different electrical lengths of the resonator was 

considered: small (L/X <  1),  intermediate (L/X – 1 ) and large  (L/X > 1). It can be seen from Fig. 2 that 

all the methods are in very good agreement with each other. 

3.2.2 Effects of losses on the field distribution inside 1 -D resonator 

In this section we investigate, using plots for various configurations, how lossy walls affect the 

accuracy of the different approximations we have considered so far. The results for the configurations 

listed in Table are plotted in Figs. 2 - 9 

(87) 
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Table 1: List of one dimensional 

Figure No. 	L = Ziy/Zo 	 L m, Lnt, 	location of source, zo  

3 	0.05, 0.1, 0.2, 0.1+j0.1 	1, 0.3 	 0.3 

4 	0.05, 0.1, 0.2, 0.1+j0.1 	1, 0.8 	 0.3 

5 	0.05, 0.1, 0.2, 0.1+j0.1 	1, 1.2 	 0.3 

6 	0.05, 0.1, 0.2, 0.1+j0.1 	1, 6.2 	 0.3 

It can be seen, that the Morse modification works almost as well as the complicated modification 

developed here and thus it can be used as the main model for two and three dimensional resonator 

investigations. 

3.3 Summary of one dimensional resonators 

We have found that the Morse modification of Green function for the case of a resonator with lossy 

walls produces a reasonable approximation of the exact solution. The method of approximation should 

extend to the case of two and three dimensional resonators. It was found that the number of modes excited 

which carry significant energy is very low; this is a concern  since many of the statistical techniques which 

have been repo rted in the literature require that a large number of modes be present for the techniques to be 

valid. 
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Figure 2. The case of a lossless one dimensional resonator 
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Figure 3. The case of a lossy one dimensional resonator 
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Figure 4. The case of a lossy one dimensional resonator 

= 0.05, 0.1, 0.2, 0.1 + j0.1 , 	= 0.8 , L = 1 m, source at zo  =  0.3) 
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Figure 5. The case of a lossy one dimensional resonator 
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Figure 6. The case of a lossy one dimensional resonator 
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3.4 Fields inside a two dimensional enclosure 

3.4.1 The two dimensional model 

Consider a two dimensional cavity of size a X b m2  with an infinite line source of harmonic current 

having a radial frequency of co and which is located at (x0 , y0 ) inside the enclosure. The corresponding 

geometry is shown in Fig. 7. The intensity of the source 1 0  and the cavity's quality factor Q are assumed 

to be known. 

(88) 

mp 0 ...... ..... 
0 I 	* m 	 tel me. me. 	 te eteeefeeefee±::::;:feffl 

a  

non-perfectly 
conducting walls 

Figure 7. Geometry of the problem 

3.4.2 Solution in terms of standing waves 

The infinitely long current source produces a transverse magnetic field to the z-direction, TMz . The 

non-zero components are Ez , Ho  and FIN .  The magnetic field components can be derived from the z - 

directed electric component Ez  as 

H H 

	

aE, 	DE 
= 	 = 

jo)go 	
, ay 	Y 	J(Di.LoaX 

Using the standard separation of variables technique [22], the following double summation can be obtained 

for the electric field E» 
— 

4/copt. 0/0 	sin (m7rx0/a) sin (mnx/ a) sin (nny 0/b) sin (Fury/ b) 
.E.(r, y) — ab EE 	k2_ (nat/a) 2  — (nn/b)2 	

(89) 

in  =  in  = 1 
Here c 0  and go  are the permittivity and permeability of the assumed vacuum inside the enclosure, the 

wave vector, k, is defined as k = co/vp  = cofé070  and vp  = 1/„[E 070  is the velocity of propagation in 

the vacuum. It is possible to replace the second summation (based on the index n) in (89) to obtain the 

following alternative expression for Ez  [23, pp. 870-871 1  

00 

—2jwi.t o lo 	sin(notx 0/ a)sin(innx/ a) 
a 	 k m  sin (k.b) 

m =I 

where k m  is defined as 

sin [kpi (b — y0 )] sin (kpiy) y <y0 

 sin(kpiy0 )sin[k1 (b — y)] y>  y0  
E.  — (90) 

- 38 - 	 Statistical ENIC S. Primak and J. LoVetri 



The Physics of Complex Enclosures 

km  = k2 1 ' 	i nIalt) 	
(91) 

2  

This second form of the solution converges much faster than (89) and thus should be used in any 

computations. However, in order to validate the program, we will compare the results, obtained both from 

(89) and (90), against each other. 

It can be easily seen by inspection, that both (89) and (90) have singularities at the resonance 

frequencies defined by 

w nin  = c ki(Itni) 2  +(It
b a 

This is an obvious consequence of the assumed zero losses in the cavity. If there exist some losses in the 

walls and/or interior of the cavity, they can be generally described through the cavity quality factor Q. As 

in the one dimensional case, the Morse modification [21] can also be applied for this two dimensional 

resonator. In this case, the wave vector k in (89) and km  in (90) are each replaced by a modified complex 

wave vector given by 

k.  = k(1- 	 (93) 

In this case (89) and (90) remain finite for any real frequency  w.  Details about the calculation or 

approximation of Q itself can be found in [45, 69] and will be summarized in the last part of this chapter. 

3.4.3 The uniform -field approximation 

It is convenient to normalize the electric field Ez  inside the cavity. One of the methods, suggested by 

Hill [44], uses the following idea. It is assumed that the line source radiates the same power in the lossy 

cavity as it does in a free-space (large cavity assumption). The free space electric field of a line source is 

given by 

E - -M-to/o H,F) (kp) 
4 

where p = jx2  + y2  is the distance from an observation point to the source, and H,f.) is the zero-order 

Hankel function of the second kind [28]. We can now use the following asymptotic expression for 142 ) 
(see 9.2.4 on page 364 in [28]): 

2 -J(k P Hi)2 )(kp) = j—e 	4 • nkp 

The total radiated power, Pr , is now given by 

(92) 

(94) 

(95) 
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1E1 2  
Pr  = 27cpS,. = 	- = 110 1 2 n 0k/4 

no 

Here S r  is the radiated power density per unit arc length and Ti o  = ,ip.0 /E 0  is the intrinsic impedance of 

the assumed vacuum surrounding the line source. RMS values are used for 10  and E.  

It is now assumed that the total radiated power Pr  is uniformly spread throughout the cavity. From the 

definition of the quality factor Q it follows that 

u omo lEzorab 
Q - 	 (97) 

Pr 	Pr 

where U = e o lE,0 1 2ab is the stored energy in the cavity (per unit length in the z direction, a and b are as 

in Fig. 7). Thus, solving (97) with respect to the field Ez  and using (96) for radiated power, one can obtain 

that a "uniform" electric field Ezo  should obey the following equation 

l Ezol = Vol% Q • 4ab 	
(98) 

Normalization of Ez  by the factor lEzo l not only brings down the values of the field to within a small range 

for any frequency and any large values of Q, but may also describe the deviation of the realistic field from 

the "uniform" one, i.e. may also describe how well the cavity is stirred (lEz/Ezol 1 for a well stirred 

cavity; however, normalization is meaningful only for relatively large Q values and large cavities). 

3.5 Numerical simulations of the two dimensional enclosure 

3.5.1 Equivalence between two methods 

In order to validate both (89) and (90) some numerical examples were investigated. The same 

parameters as in [44] were chosen: a = 4.57  m,  b = 3.05  m, and xo  = yo  = 0.5  m. The electric field, 

E_ was calculated along the x -axis for y = 1.5 m and normalized by (98). The quality factor, Q, was 

chosen to be 10 5  for frequencies below 4 GHZ, and 1.5 x 10 5  for higher frequencies. The results for 

various frequencies are shown in Fig. 8, the details of which are found in Table 2. The values of the 

minimum number of modes with appreciable energy for each case are also shown in the table. 

Table 2: Description of the parameters for plots shown in Fig. 8 

f, GHz 	a/X 	b/X 	1n1 in  = (2f)max(a, b)/c [125] 

	

0.05 	0.76 	0.5 	 1 

	

0.2 	3.04 	2.03 	 6 

	

0.8 	12.2 	8.1 	 24 

2 	30.5 	20.3 	 60 

4 	 61 	41 	 121 

6 	 91 	 61 	 182 

(96) 
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Figure 8. Comparison of the results of 1-D and 2-D summations, equations (89) and (90), normalized by 

using equation (98): a) fo  = 50MHz, b) fo  = 200M 1-Iz , c) fo  = 800MHz , d) fo  = 2GHz, 

e) fo  = =I.GHz , f) fo  = 6GHz 
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3.6 Frequency Stirring 

It was also shown in [44], that a homogenisation of the electric field inside a cavity can be achieved by 

frequency stirring of the current source. In this section we try to reproduce most of the results obtained in 

[44] in order to gain a better understanding of the wideband distribution of fields inside cavities. 

Let the source be uniformly stirred in the frequency band BW around the central frequency  f0.  As can 

be seen from the previously derived formulas for the field solutions (i.e. equations (89) and (90) and the 

associated supporting equations) the field at any point inside a cavity (excluding possibly the areas near the 

boundaries) have a strong dependence on frequency. If a relatively wideband probe (with bandwidth 

greater then BW ) is set at a point inside the cavity, a measure of the squared current (or voltage) induced in 

this probe will be proportional to the squared value of the field averaged over the frequency band, that is 

J0 +L1W12 

1 1?,(x) (E 0(f, x)1 2) = 	f 	IE z(f, x)I 2df 

fo - BW/2 

or, normalizing the field by the magnitude of the "uniform" field previously defined 

to + is  WI 2 

= 	4ab  
Q11012111ÎBW 1 iEzu;x12df 

f,_BW/2 

The results of numerical simulations of (100) for different values of parameters are shown in Fig. 9. 

Figure 9. Frequency stirring of the cavity (Intensity is shown in dB): a) f = 2GHz, b) f = 4GHz 
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3.7 Power balance 

We now consider a very general technique for handling generic cavities in an approximate way. This 

technique, generally known by the name of power balance, allows one to make reasonable estimates about 

the average field inside an arbitrary enclosure. The theory was espoused by Hill and others in [45, 48, 69]. 

Let us consider a plane wave illuminating a cavity with an aperture as shown in Fig. 10. The cavity may 

contain a load inside and thus there exists the possibility for some power to be absorbed by the load. Under 

steady-state conditions, a power balance is achieved which means that the power Pt  transmitted into the 

cavity is balanced by the power Pr  reradiated out of the cavity plus the power Pt  absorbed by the load and 

the power dissipated by the cavity walls [43, 45], that is 

The transmitted power can be calculated through the power density S i  of the incident wave and the 

equivalent cross-section of the aperture ar  as 

Pr = arSt • 	 (102) 

The cross-section cr i  depends on aperture type, size, incidence angle and polarization of the excitation. 

Some generic formulae allowing one to estimate this parameter are considered in the next section. 

S t  

(103) 

Figure 10. Geometry of the problem 

Another parameter which will be useful in our investigations is the cavity quality factor, Q, which 

relates the energy Us  stored inside the cavity and the energy absorbed inside the cavity (including 

reradiated energy), that is 

	

coU 	WUs   = 	= 
PI + Pr 	Pt 	atS t  

or, assuming that Q is known 
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— Q cr S 
U  — 

The last equation is important in determining the energy parameter of the statistical distribution of the 

field inside the cavity. In fact, if plEi (lEI, m2E) describes the statistics of the magnitude of the electric field 

density inside the cavity, then 

CO 

Qcy 
= — = E r Eo  Vf lEl 2p 1E1 (1E1, m 2E)4E1 	 (105) 

where V is the volume of the cavity. Usually, a certain family of distributions, which depend on one or two 

parameters, are chosen to describe the statistical properties of the fields. Equation (105) allows us to 

determine one of these unknown parameters. For the case of the Rayleigh distribution, which contains only 

one parameter, an estimate of the left side of equation (105) would be enough to completely determine 

p idEl, M 2E) . Extra information would need to be measured or estimated in some way if a two-parameter 

distribution is to be found. It is logical to use (105) to obtain an expression for the scale parameter of the 

distribution being considered (for example cr 2  for Rayleigh, 13 for Gamma, and b for K) as a function of 

the shape parameter (V for K distribution, a for Gamma, etc.). More details are given in the next chapter. 

3.8 Generic description of the Quality Factor of cavities 

As is clear from the previous section, it is very important to obtain a good estimate for the quality 

factor Q of a cavity. Using the definition of Q as 

1 Pr + PI 	P  wall + Pabs P  r 	P  wall Pabs 	P  r 	1 	1 	1 — 	 _ 	= 
Q 	coUs 	coUs 	U co s 	U 	Qw Qabs Qr 

where P - wall and Pabs  are the power losses in the walls and the power absorbed by the internal loads, 

respectively (e.g. circuit boards, cables, etc.), and Pr  is the radiation losses. Q w , Qabs  and Q,. are 

corresponding quality factors. In the following subsections a short review of generic equations for these 

quantities is given. 

3.8.1 Wall Losses 

The wall losses can be approximated using the skin depth approximation by averaging over all incident 

angles, polarizations, and individual cavity modes. The result for Q w , i.e. the quality factor due to the 

walls of the enclosure, is then given by [45] 

3V  
Qw — 2 

where 

(104) 

(106) 

(107) 
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6=  I  2  

4C°1-twa 	—40 

and where S is the cavity surface area, 15 is the skin depth,  p. ,  is the wall permeability, and cr w  is the wall 

conductivity. This result was generalized in [48], to show that 

31kI2V 	= 
Qw = 4,sp,rRe(k)' 

Similar questions were considered in [69] for a rectangular cavity of size a, x bc  x cc , where the 

following expression was obtained for the chamber's quality factor 

Q  (  3 V  ) 1 	  
, V = ac bccc , S = 2(ac b c +bc cc +ac cc ) 	(110) 

+ (37rc/co)(1/a, + 1/b c. + 1/cc ) 

A more accurate approximation, involving a so called local analysis, was reported in [70] where it is shown 

that (110) should be modified to 

24(i) V 2  

Q — 
1.48,(16co VS + 97tcS 2 ) • 

3.8.2 Absorption 

In general the absorption cross section, a a , of a lossy object depends on the incident angle and 

polarization of the impinging plane wave. Based on the assumption that the field in the cavity is statistical, 

i.e. all directions and polarization of an incident field are present, the concept of an averaged (aa) cross-

section can be introduced. Here the expectation is taicen over all possible incident angles and polarizations. 

If M absorbers are present in the enclosure, the total absorbing cross-section is 

(aa) = E (a ai) 	 (112) 

= 

n,vhere (aai) is the averaged cross-section of each individual absorber. The total power density Pi  coupled 

into each absorber is then 

Pi  = S„(csai) 	 (113) 

where S c. is the cavity power density. In [45] the corresponding quality factor is then given as 

2it V  
Qabs 	cii) • 

(108) 

(109) 

(111) 

(114) 
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3.8.3 Aperture leakage 

A relation, similar to (113), has been developed for power leakage through apertures: 

S c (ai) 
PaP — 2 

Here (a1) is the transmission cross section of the aperture averaged over all possible angles and 

polarizations. A factor of 1/2 is due to the fact that the energy propagates only in one direction (outside 

the enclosure). If a number of apertures are present, the total transmission cross-section is given as a sum 

of individual cross-sections ( 01k) 

( 0 1) = E ( uc) 
k =1 

As a result, a quality factor Qap  corresponding to the energy leakage through the apertures is given in [45] 

as 

4m V  
aP = 

3.8.4 Receiving antenna 

In order to calculate the power dissipated in the load of a receiving antenna, the concept of the 

averaged (over all directions and polarizations) effective area (il e) of the antenna can be introduced. It is 

defined in the very same way as the averaged cross-section or transmitting cross-section. Having this, the 

energy absorbed by the antenna is given by [45] 

Pan = Mlle) 	 (118) 

It is accepted in [45], based on the results of [69], that 

(Ae)  = niX 2  
87t 

where m is an impedance mismatch factor [69]. The corresponding quality factor is 

Qan 	m x3 

In general, a transmission line can be treated as an antenna as well. The simplest model would include 

a separate treatment of each trace as a monopole over a ground plane. However, we would like to 

investigate this in more detail using numerical techniques. Some details are given in Chapter VI. 

(115) 

(116) 

(117) 

16u 2 V 
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3.9 Aperture excitation 

A plane wave incident on an aperture in a perfectly conducting sheet is considered in [45] as a model 

for the excitation of a cavity through an aperture. For electrically large apertures, the geometrical optics 

approximation yields the following expression for aperture cross-section a, 

a = Acosei 	 (121) 

where A is the aperture area and 0i is the incidence elevation angle. Thus at  is independent of frequency, 

polarization, and azimuth of the incidence field. For this case, the average cross-section is shown to be 

(ai) = (Acos0 1) = A(cos0i) = . 

For electrically small apertures, it is stated in [45], based on polarisability theory (see [79, 80] for more 

details), that the transmitted fields are due to the induced electric and magnetic dipole moments. This 

yields a transmission cross-section that is proportional to frequency to the fourth power 

at  = G(—) 4 	 (123) 

where the constant G depends on incidence angle and polarization, and c is the speed of light in vacuum. 

For the case of a circular aperture of radius a equations (122) and (123) can be reduced to 

, 	na2  
(ai) = 

16co 4 a6  
( at> = 	 (125) 

9.rcc 4  • 

A much more complicated situation is observed in the resonance region, i.e. when the wavelength is 

comparable to the aperture size. The only reasonable way to proceed in this case is to apply numerical 

techniques. 

In a couple of recent publications [39, 15] the following approximate equations for the cross-sectional 

area were given. For a circular aperture of radius a , shown in Fig. 11 

{

F1 = [cn/co r ] 4 	below resonance 

2Fi Ft, 
at(co) = P( 0, era 2 	 near resonance 	 (126) 

F1 + Fr  

F h  = 1 A- [CO r" (CO —  w0)] 2  0)]2  above resonance 

where co t. is the resonance frequency, given as 

27tc 
co r  = (0.25 —> 0.293)— 	 (127) 

and co o  is an adjustable parameter to provide for the proper resonance peak of at  , and k = 2ncù/c . The 

(122) 

(124) 
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J i (kasin0) 

kasine 
(COS 2 0 COs 2 4) 	sin 2 4)) P ( e , 4)) - (128) 

1 2a 

1 
a  

— 

2/a 2  + b2  
(130) 

J 1 (kasin0 cos 4)) 
kasin0 cos (I) 

J 1 (kbsin0  cos 4)) 
 kbsinOcosti) 

P(0 , (I)) 
2 

(cos 2 0 cos 2 0 + sin2 4)) . 
2 

(131) 
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function p(0, 0) is given as 

Figure 11. Circular aperture 

Figure 12. Rectangular aperture 

A similar equation can be found for a rectangular geometry as shown in Fig. 12. In this case 

{

crt(Q)) = P(0, (P)ab 

= [ 0o/0.),1 4  

2Fi Fh  
F F 

F h  = 1 + [CO r/ (CO — 01 2  

below resonance 

near resonance 

above resonance 

(129) 
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IV. Field Statistics for Lossy Cavities 

4.1 Motivation and Generic Model 

The idea of characterizing the electromagnetic field inside of cavities statistically is of recent interest 

to researchers, mainly because of two factors. First of all, modern equipment is quite complicated from an 

electromagnetic point of view and an accurate numerical modelling is rather impossible because of the 

overwhelming amount of calculations and memory which would be required. The situation is further 

complicated by the fact that for many applications some of the parameters of the disturbing 

electromagnetic energy are unknown. The second factor is the continued development of reverberation 

chambers for testing of an equipment's response to an unlcnown (or partially unknown) environment. This 

requires, by its very definition, the creation of a statistical field. That is, one in which the field parameters 

fall within some range of values over the exposed area. These two problems explain the recent significant 

interest of the EMC conununity in statistical electromagnetics. 

An exact analytic expression for the electromagnetic field inside a large empty cavity with lossy walls 

and apertures does not exist. The only closed form solutions which are known are for the case of simply 

shaped cavities with perfectly conducting walls. However, as was shown in the previous chapter, these 

expressions can be modified to produce a number of useful results for the case of lossy walls and more 

general shapes. One of the main goals of this study is to understand the structure of the field inside a cavity, 

i.e. understand how the electromagnetic field can be represented in terms of a small set of parameters. The 

power balance method described in the previous chapter is a very useful method in this regard. 

A very useful way to represent the total field inside an enclosure is to decompose the field in a sum of 

elementary waves (or modes). These can be written generally as a i(r;t)e:14'i (")  , i = 1, 2, ..., N(t) and 

assumed to be independent identically distributed complex random variables with arbitrarily distributed 

and arbitrarily correlated real and imaginary parts. The numbers of modes  N(t) and N(ti), measured at 

two different time instances, t i  and ti  , are also correlated. A way to define the process governing the 

fluctuations of N(t) was suggested in [90] based on the so-called generalized birth and death model [91]. 

The classical Gaussian model is reasonable whenever the total field can be thought of as the sum of 

contributions from a large number of independent random variables. 
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It was discovered in [90] that other distributions can be attributed to the random fluctuation in the 

number of waves which contribute to the total field. These arise from a random walk in two dimensions 

where the number of terms fluctuates according to a negative bimodal distribution [91, 92]. Further 

generalization of this model can be found in [93] where a non-uniform phase distribution is considered and 

in [93] where a biased random walk is introduced. In both cases the negative-bimodal distribution for the 

number of steps produces a generalized K distribution for the amplitude of the total field as the mean 

number of steps grows to infinity. 

Otherwise, the total field can be thought of as the result of a composite mechanism, wherein a 

complex, possibly correlated, Gaussian process with fast fluctuations is' modulated by an underlying, non-

negative random process (texture coMponent) which decorrelates on a much longer scale [95, 9611. A 

complete statistical characterisation for this model, often referred to as compound-Gaussian,, is available 

only in the case of infinitely slow variations of the modulating component. In this situation, the process 

degenerates to a spherically invariant random process (SIRP) and its multidimensional PDF can be given 

in terms of the first-order PDF of the modulating variable and of the covariance function of the Gaussian 

process [97]. A rather deep insight, highlighting the relations between compound-Gaussian and random 

walk models, is presented in [90]. 

4.2 General form of the electromagnetic field intensity PDF 

4.2.1 Kluyver equation 

Let us assume that any electric field component, E(r,t), inside a general cavity, is represented as a 

sum of N modes which are statistically independent of each other [98]: 

E(r;t) = eh" 	a ifr;twq,z(r;t) 	 (132) 

= 

Note that the expansion Chosen above is a complex field having a frequency (i) with a slowly vary.  ing 

envelope. 

Some additional knowledge about the statistical properties of ai(r;t) and tp i(rg) is needed in order to 

derive the statistics for the amplitude of E(r;t). Independence between ai(r;t) and Oi(r;t) can be assumed 

if the enclosure is large compared to the wavelength, and is well stirred or well randomized by a large 

number of loads inside the cavity, i.e. the strong dependence on deterministic boundary conditions is 

removed [44, 58]. The field intensity of one component, I(ra), is defined as 

l(ra) = IE(r;t)I2 	 (133) 

The proper statistics for .1(r;t) have been derived in [98] and is given by 
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oo 

Pi(I;N) = f J0ck/big-1 (Jo caiismdisi = Iff ocuinulluo ca i u»du. 	(134) 

O i = 1 

Here averaging brackets <.> are used to show averaging over each a i  . Note that we keep the number of 

modes, N, as a parameter to emphasize that only a finite number of modes are taken into account. Since we 

have this PDF with the mode number as a parameter, we can actually use (134) to calculate the PDF of 

intensity for the case of a random number of excited modes. This last equation is called the Kluyver 

equation and was first derived in [100]. It is impossible to calculate this integral analytically for all 

possible distributions of the individual scatterers. However, an exact solution can be obtained for some 

important cases, including the K distributions considered below. 

If the statistical prope rties of each individual mode are assumed identical then (134) can be rewritten 

simply as 
CO 

1 p i(I ;IV) = 
2
-1 Jo(Uji)U(J0 (ai U))NdU. 

4.2.2 Moments of the intensity 

Despite the difficulties in calculating the PDF in (134), an exact expression can be obtained for its 

moments. The following derivations follows that given in [101] and is based on the moment generating 

function O N(X) , defined as 

CO 

ON(X) = ip i(cs;N)e-xada 

The corresponding moments m k  of a PDF p(a) can be found as [99]: 

, a  

M k = 	eN(x)i x  .0 

or, from (137), as coefficients of the Taylor series expansion of O (X) around X =  0:  

00 

in iv(x) = 

k = o 

After substitution of (134) into (136) one obtains 

(135) 
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(143) 

(144) 

(145) 

(146) 
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00 	 N 

= j  f Jo(Udii)U11(./0 (ai U)>dU e-x ado.  

N 

= - 	(J0 (ai nclU f JeLic-s)e -xadcr 
2 

An analytic expression for the inner integral 

CO 

F(U) = 	J0(U,s173.)e-xedcs 	 (140) 

can be found using the standard integral (6.614-1 on the page 709 in [27]): 

00 

fe -avv(P-rx)dx = „' i.ZexP(-8 2c3 [I1(v -1)(8 2a) — 	+1)(8a2)1 
2 	 2 

and if the following correspondence is introduced 

= 

we can evaluate  F(U) as 

TC
( 	

U2 	U2  
r(i) — 	exP --2)[i

f 
 1/2( 

, 	
i/2(8x) 4 X 3 	8X 

This last expression can be further simplified if one observes that (10.2.13 and 10.2.14 on page 443 in 

[28]) 

1_11 2 (z) —1 112(z) = 
II 4Z 

which results in 

	

(U2 	
exp--7,0, 

	

) 	0 A 	1  F(U) = 	 ex, 2) 
5ciexP 	 72 	X e( 4X 

and, after substitution into (139), produces 

N 
1 	rp 

ON(X) = f Ull (J0 (ai  U))  
0 	i = 1 

	

N 	 iV 

= in <J0 (,,F1.27xaffid.rexp(—x) = (1 II (Jo  4,1727xai)dxexp(—x)) 

	

o =1 	 o =1 
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(149) 
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Here, the following normalization was used: 

U2  x = — 
4X 

As the next step, the Bessel function inside the integral can be expanded in terms of power of x 2 , and 

thus, in powers of X. In fact, the corresponding Taylor expansion can be found in [28] (9.1.10 on page 

360) as 

k 
4 

J0(z) = E 	
z2) 

 

k = 0 

and thus 

CO 

(-Xa?x)k 	(....ukapcxk 

	

Jo GITI.X7cai) .. E 	i 	_ z 	 i  Xk 
k!k! 	 k!k! 

	

k = 0 	 k = 0 

2k ix k i  
1  n Jo(4rFaai) = 	

(_1)k,a 

n  E  kiuci!  A 

i=1 	 i= lici =o 

It follows from the last equation that O N(X) is a multidimensional confluent hypergeometric function of N 

variables [28] 

ON(X) = 111 2(1;1;... ;1 ;-Xa ja;-Xa 22 ;... ;-Xa) 	 (151) 

and, thus 

(147) 

k! k!  

inn  = ( 

CO 	 CO 	 CO 

ii!)2  E E E 
= 0 k2 = 0 k,v  = 0 

N n(ai2.ki, 

=  

	

f N 	2 

f[ k!  

	

-'1=1 	- 

(152) 

E lc, = n 

where (a7 k) is the 2k -th moment of the distribution p a(A) of a single mode, i.e. 

- 
( 01 7.k) = jA2k pa,(A)dA 	 (153) 

and the right-hand side consists of those terms of the multiple sum satisfying the condition Eki  = n. Let 

us for simplicity assume here that all modes are distributed alike, i.e. they have equal moments and drop 

subindex i in the future considerations. For the first four moments the following relations can be deduced 
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from (152) [91]: 

= N (a2) 

1712 
 = 2(1— 1 — + 1 m? 	N) Ar( a2)2 

M 3 	)( 	2) 	9 (, 1) (WI) 4.  = 6(1 —Kr  i —Kr  +7/  — /v)( a2)2 N2( a 2)3 m i  

— 1)(1 — 	+ 
IN/I 	IV A 	Iv) N 	 NJ (a2> 2  

18( 	1)(a` ) 2  16( 	1)  ( a6)  + 1 ( a s) 

N2U 	(a 2) 4  ÷ 

 

N2 	N (a 2) 3  N3  (a2) 4  

and so on. 

Several important conclusions can be drawn from (152). First of all, if the number of modes 

approaches infinity N —›co, the normalized moments approach those of the Chi-square distribution with 

two degrees of freedom 

lim 	 — n! . 
N —> .4111 1 )n 

independently of the original distribution of a single mode. This is in complete agreement with 

fundamental The Large Number Theorem [24, 29]. At the same time (152) allows us to demonstrate how 

fast this distribution converges to the Chi-square distribution. In fact if all the modes have the same 

constant deterministic value of amplitude, say  a,  then (152) approaches the Chi-square as 1/N.  However 

any randomness in the modes' energy will cause the second term in (155) to remain relatively big even for 

large N.  It is convenient to define the so called "effective number of modes"' as 

N
eff 

— N (a 2)2 (159) 
(a4) 

For some distributions this number may be much smaller than N and this will result in a large deviation 

from the Chi-square distribution. In fact, if approximately Neff >  10,  then deviations from Chi-square 

statistics are relatively small. However, if Neff  — 1 distinct deviations can be found from these statistics. 

Finally, if Neff  < 1 then very little similarity can be found between the real statistics and those predicted by 

the Chi-square distribution. 

Another reason for deviations from the Chi-square distribution maybe the fact that the number N of 

modes does not remain constant. Also, the phase of the modes cannot always be considered as uniformly 

distributed. 

1. Effective number of scatterers in [91]. 

m 4  

(158) 

S. Primak and J. LoVetri 	 - 54 - 	 Statistical EMC 



Field Statistics for Lossy Cavities 

4.2.3 Two -parameter distributions 

Some experimental results related to the statistical modelling of the electromagnetic field inside 

cavities were reported in [58, 38]. It is generally accepted there that the Chi-square distribution gives only 

a rough approximation of the true statistics. It was also found that the Lehman distribution, that is 

4  p(x) = b —x 3 K2 	— (bx) t> 0 8  

provides a much better fit to the experimental data. However, this distribution is still one-parameter and, in 

our opinion, lacks the required flexibility which would allow it to approach the Chi-square distribution in a 

limiting sense. We therefore suggest that the class of model distributions be expanded so as to give 

consideration to the various two-parameter distributions which are available. The following requirements 

should be satisfied for these models: 

• the Chi-square distribution for the intensity (and Rayleigh for the magnitude) should correspond to 

a set of particular values of the parameters; 

• the tail of the distribution should be heavier than that of the Chi-square distribution in order to 

comply with experimental results [34-48]. This is also equivalent to the requirement that the 

moments of the distribution should grow faster than that of the Chi square. 

There are a number of families which satisfy these two major requirements. However, we would like to 

emphasize here that one family, the so-called K distributions, also have some additional attractive features 

such as 

• the Lehman distribution is a particular case of the K family, (i.e.  y  =  3);  

• a number of analytical results can be obtained, including an exact expressions for the distribution 

of the intensity, magnitude and instantaneous values; and, 

• there are convenient means of generating such distributions. 

The last three properties make the K family the most attractive model for investigating the statistical 

properties of the electromagnetic field inside leaky cavities. However, other classes of PDFs will also be 

considered. The next few sections contain a comprehensive description of the K distribution, including the 

expression for the PDF, CDF, moments, etc., and also describe a few other families which were considered 

by different researchers as models for experimental data. We leave the important question of the numerical 

generation of random processes with a prescribed distribution until Chapter VI, where the equations 

derived here are incorporated into a software tool. 

(160) 
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4.3 The K distribution as a model for the electromagnetic field inside enclosures 

4.3.1 PDF and CDF 

A two parameter family of K distributions is described by the following equation [91-98 ] : 

, 	2b (bxy p(x) = 	 _ 1 (bx),y>0,x0 

where b and y are scale and shape parameters and Kv  _ 1 (0) represents the modified Bessel function of the 

second lcind of order  V  - 1 I . The corresponding CDF can also be expressed in terms of modified Bessel 

functions: 

P(x) = fp(t)dt 
=

bv
)( ILti))

v Kv_1(bt)dt 

bx 
1 	 2 	y 2v -1F()f yv K, _ i (y)dy = 	Kv (Y)1 v 

o 

2 by K (bxy K  - 	 2 (bxy- hill 	(l _ (bx) 	 (bx) = 1- 
F(v) 2 	v  

= K (bx) 
oF(VÀ 2 	v 	F(vA 2 	v  

where the following integral relation (11.3.27 on the page 484 in [28]) was used 

f tv K v  _ i (t)dt = - zv K v (z) +2v - Inv) . 	 (163) 

The dependence of the PDF and the CDF on the shape parameter y for constant mean is shown in Fig. 13. 

4.3.2 Characteristic Function 

The characteristic function e(s) of the PDF in (161) can be found as its Fourier transform, that is 

(161) 

0(s) = f p(x)exp(jsx)dx = f 2b 	K
- 

v i (bx)exp(jsx)cbc J r(v) 2  

00 

by - 
	 xv _ i (bx)exp(jsx)dx - F(v)2v 

o 

,Frb 2vr(2v)  	 1 	42v, y 1 ;v + 3 js +  
- 1-(v)I-(v + 3/2)(b-js) 2 v 	2 	2' js - 

1. This function is also known as MacDonald's function [27, 281 

(164) 
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Here, the following standard integral (6.621-3 on the page 712 in [27]) was used: 

- 
fxp.- t e-cuKdx)dx  =  ,,Fc( 2 f3 )Y  r(I-L + 	Y) 1 ;i,t+ 1  al  

py-t -Fy 1-'01 + 1/2)  

with p, =  v+ 1, y = v - 1 ,  1  =  b, c  = -js and F is the hypergeometric function [28]. 

K-PDP venation on parameter v 	 K-COR vadation  041  parameler v 

(165) 

Figure 13. Dependence of the PDF (left) and CDF (right) on parameter v with constant mean value. The 

case v = 100 is almost identical to the Rayleigh distribution with the same mean value. 

4.3.3 Moments 

The moments m k  of this distribution can be found by integrating (161) with appropriate weight X k  : 

00 	 CO 

= f xkp (x)dx  = k  
x  I-(v)  

0 
CO 

1 
2vbkr(v) 

f 	A(bx)v +k r-s-v  (bx)d(bx) -  
0 

r(V 	)1"(1 
I 	f v + k K t 	v  _ i (t)dt - ( 2bi 	2  

2v -1 biT(v) 	 r(v) 

Here standard integral (6.561.16 on page 684 in [27]): 

m k  
(166) 
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f .0-1 K,„(ax)chc = 2P. - ta -(g + or( 	w)rt' 	 
2 	2 

was used with }.4, = v+k,w =v-- 1 and a =  1. In part icular, (166) gives the following expressions for 

the mean and the second moment: 

r(v + 1-) r(3. 
2 	2) U) 	(v  
b 	T(v) 	b r(v) 

(b2) 	n2  r(V +ivT( 2)  (2b) 2 V rr((v)  V)1! 	2b) 2v  

The normalized moments of the distribution in (161) are given by 

(167) 

r(v + firri + 

	

(2) k 	2) 	2) 

	

1)) 	r(v)  

[ r(v +1)I-Mk  

	

1( 2b) 	r(v) 	I 

J
r(V 	rk - 	1(v) 

	

2 	2  

	

rkn) 	rk(y + 1) 

	

2) 	2) 

(170) .  

4.3.4 Intensity distribution 

If the magnitude distribution is given by a family of K distributions, i.e. by (161), then the distribution 

of its square 1 = :C 2  is the intensity distribution,  p(1), related to (161) by a simple transformation [99]: 

b (b 11) v  K (b,f1) b 2 (b  fr„ v-1  
p(l) = 	-  	21'(v) I\ 2 ') 	Kv-1(b^f1) 	 (171) 

The dependence of the PDF and the CDF on the shape parameter v for a constant mean is shown in Fig. 

14. 
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Figure 14. Dependence of the PDF (left) and the CDF (right) of intensity of the K-distribution on parame- 

ter v with constant mean value. The case v = 100 is almost identical to Chi-square distribution with the 
same mean value. 

The moments of this intensity distribution can be related to the moments of the distribution in (161) by 

CO 

mk, = fIkp i(OdI = f lk 	(—  
21-(v) 2 

= b 2   (bxr -1  f x2 k 
2F(v) 2 ) 	

K i (bx)2xdx 
o 

= 2f x2k  b
2F( 

(bx) v  Kv-1 (bx)dx 
o  

v) 2 

2) 2/My + k)k!  = M2k  = (b 	r(v) 

and thus, the average value of the intensity is 

2yr(v + ur(2)  4v 
m

1 i
= 

(b 	2r(v) b 2  

Equation (173) also allows us to obtain an expression for the normalized moments of the intensity: 
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(2 2nr(v  + l 

I 	• 	 fnK — 

tnni 	
b)r()z) n!  
	  = n! F(v + n) _ n 	

V n  l

(v + 1)(v + 2)...(v + n — 1) 

	

(mti)(m)'1
((-1.) 

2 2  " 	r(V)Vn 	 - 1  

	

) v) 	 (174) 

I 	 = 4 1 + 1)(1 + -2) ... (1 + n---7-1) - f (1 + IX' + 
. 
. . (1 + n-TH 

v 	v  

I using the fact that  f, x  = n! for the Chi-square distribution [90 ] . This last equation means that if the shape 

parameter v approaches infinity, then the PDF (161) approaches the Chi-square PDF. At the same time, 

I the normalized moments of the K distribution are always greater than those of the Chi-square, that is 

fliK >  fnx 	 (175) 

I 4.3.5 Distribution of instantaneous values [32] 

I The PDF of instantaneous values  p(x)  and the PDF of magnitude pA (A) are related by the Blanc-

Lapierre transformation [99 ] 1 , if the corresponding phase is uniformly distributed on the interval [0, 270 

1 	

and is statistically independent of the magnitude. This transformation is given by 

	

- 	 - 

1111 
p (x) = —1 f exp [-jsx]dsipA (A)J0(sA)dA . 	 (176) 

, 	 2n 

	

_.. 	o 

Let us first find the characteristic function of the PDF in equation (176) using the Bessel transform [99 ]  

I 
bv 	+ I  0x(s) = fpA (A)J0(sA)dA - 	, 	SA YK, _ i  (bA)J0(sA)dA . 	 (177) 

1 • 	

0 	r ,r(v) 0 
It can be calculated using standard integral (6.576-7 on the page ,694 in [27 ] ) 

I 	•  fx f(p. + ii + 1)  

	

1 ,I1,(ax)Kn (bx)dx = 2 11  +flagbT1 	 (178) ( a z 4, b2)I.L+11+ I 
o 

I  where the following transformation of variables should be used: 

I ii, = 0,a = s,x =A,n=v-l. 	 (179) 

This yields 

ill
ex(s) - 	

by+ I 	 1-(v)  
- 	

b2v 

	

2v- tr(v) r- 'b"-1 ( a 2 + b2)v 	( s z + b2.)v ' 	 (180) 

1 

	

	

The PDF px (x) can be found using an inverse Fourier transform of its characteristic function, given in 

(180) [99 ] : 

1. This is a particular case of (146) for N = 1 

1 
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CO 	 CO 

1 	 h2" 
p(x) = 	f ex(s)expc—isx)ds 	f "P(— isx)d 	f 	exp (-isx) 	

ds 
s 

(is + b)v (- is + b)v ( s2 b2)v 
00 

b2 "
2  —

2n 
f (is + b) 2  (-- iS b) - exp(-isx)ds 

The last integral is a tabulated integral (3.384-9 on the page 321 in [271): 

0)_2 4 1P1 2" -  f 	+jx)-211 (13-jx) -24'e-iPxdx = 211(2 	w 	(2131p1)  
F(2 11) 	O, -2i  

-00 

thus, setting 

b,p—>x,x—>s 
2 

(181) 

(182) 

(183) 

the expression for the PDF becomes 

	

b2v l lv-I 	 2-2v+ib 
p(x) = —27t 27t(2b) -v x W 	(2b1x1) 

r(v) 	
= 	

r(V) (2b1xl) v-  W0 	(2bixi). 	(184) 
o' -2 - v 	 ' 2- -v 

This equation can be further simplified using the following expression for the Whittaker function 

Wo, 1 / 2 _,,,( 0) , first in terms of the Kummer function U(a, b, z) (equation 13.1-33 on page 505) and then in 

terms of the modified Bessel function K of the second kind (equation 13.6.21 on page 510 in [281): 

W 0  1 	,Z, = 	
/2 

exp(-;.) i -v 2  z U(1 - v, 2 - 2v 	_ z 1 

,rv 	
z 	2bixi 

and thus 

2- + 1/21, v-- 
Px(x) - 	(blx1) 2 K 1 (blx1) 	 (186) 

r(v),ht 	v- - 2 

Thus, the distribution of instantaneous values, corresponding to the K distribution of magnitude is 

again expressed in terms of the modified Bessel function  K.  The dependence of the PDF and CDF on the 

shape parameter v for a constant mean are shown in Fig. 15. 

(185) 
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6-POF .nst values variaton on parameter v  K-COF: n nsi val vanaben on parameter v 

Figure 15. Dependence of the PDF (left) and the CDF (right) on parameter v with a constant mean value. 

The case v = 100 is almost identical to the Rayleigh distribution with the same mean value. 

4.4 Other candidates 

4.4.1 The generalized Gamma distribution 

The Generalized Gamma distribution, described by the PDF 

1  
PGi(i) = fl 	

P -1  e-I15 	 (187) 
aF(a) 

is a straightforward generalization of the exponential distribution (i.e. it coincides with the Chi-square 

distribution with n 2 degrees of freedom if a =  f12, and with the Porter-Thomas distribution with 

=  1/2). The Gamma distribution gives rise to generalized Laguerre polynomials and the Gram-

Charlier expansion, widely used in statistics and communications theory [99]. It is easy to find (see [102]) 

that the moments of the PDF (187) are given by 

+ n) 
M Gin = r(Œ)  P 

and thus 

r(cc + n) ,-,
n  inGin 	r(Œ) P r(a, 1-  n) 	 _ 		_ fcn = (mGilyi 	(r(c4  +  1)13' 	F(a)a°

r(Œ) ' -) 

4.4.2 The log -normal distribution 

The general form of the PDF for the log-normal distribution is given by the following equation [102 ] : 
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PL(1) 
= 	exp r oni-a) 21  

zaffir 	L 	2a 2  J .  

Despite its complicated appearance, the expression for its moments is rather simple [102]: 

n 2 a2 
an+ — 

inLin = e 	2 

This results in the following expression for normalized moments 

n 2  a2 
an+ — 	
e2 	

(n2  -n) 2  

f 	 2 = e 	2 	. 

( MLilr 	an + 2 

We see that the normalized moments of the log-normal distribution grow exponentially. This explains the 

very heavy tail of this distribution. The log-normal distribution is usually used in combination with the 

normal distribution to obtain stronger tails than that for the Gaussian [39]. 

4.4.3 The Weibull distribution 

Yet another generalization of the Chi-square distribution is the so-called Weibull distribution, which is 

frequently used to describe processes with a rapidly decaying probability of large values. Its PDF is given 

by 

p wi(1) =  

with corresponding moments 

m win = 3'T(1 + -71) 

This can be recast in terms of normalized moments as 

pinkTo + -11) 	ro +Li) 

fnW 

(pi/Œru+-i,))" 

4.4.4 Comparison of the statistical moments for various intensity distributions 

Let us compare consecutive normalized moments for the various distributions considered above, that 

is, let us consider the ratio 

	

f1+ 	tfl, 	L) /lni.çz+ 1 ) 

g 	— 	  

	

f 	in in/ trt71  

For the K distribution, it follows from (174) that this ratio is 

(196) 
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gnK - 

(n + 1)! F(v + n + 1) 
r(v)v" + 1  

r(v + n) 
n! 

F(v)v" 

–  (11+  1)(1 – n + nf2K/2) 	 (197) 

It follows from (197), and the fact that f2x  = 2 for the Chi-square distribution, that 

gnx  = (n + 1) 	 (198) 

Based on (192) and the non-negativity of E, equation (196) for the case of the log-normal distribution can 

be rewritten as 

For any of these distributions f2( .)  2, and thus it can be represented as 

f2( „)  = 2(1 + E) 	 (200) 

where the parameter E is a non-negative number. Consequently, the following estimates can be given: 

g nic  = (n + 1)(1 + nE) > n + 1 = gnx , 	 (201) 

g ni, = 2"(1 + Er _k (n + 1 )( 1  + ne) = g nK. 

This last inequality is based on the facts that 2 n  > n + 1 for n> 1 , and (1 +  E)>  1 + ns. The last estimate 

follows from the Newton binomial expansion 

(1 + E) n  = 1 + ne + ... + En 1 + nE 	 (203) 

The first estimate can be proven as follows. Let us consider the function 

h(t) = 2t–t – 1 	 (204) 

Its derivative is 

—d  h(t) = 2t1n2 – 1 
dt 

which is a positive number for t>  1, and, thus 

h(t) > h(1) = 2 1  – 1 – 1 =  O. 

This is equivalent to 2' > t + 1 which completes the proof. 

The consecutive normalized moments of the generalized Gamma distribution are also between those of 

the Chi-square and those of log-normal which can be seen from the following simple calculations: 

nu + n + 1) 
f G(n + I) 	r(Œ)Œn  + 1 	na, + II + 1) 	CC + n 

g nG = — 	 — 	 — 	— 1 + KA — 1) = 1 + n + 2En 	(207) 
p 

J Gn 	r(Œ + n) 	F(Œ + n)a, 	a, 
r(a,)Œ" 

However, they are still less than the corresponding moments of the K distribution: 

= 1  +n  +2Etz – (n + 1)(1 + nE) = (1 – n)nE < 0 	 (208) 

(202) 
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A similar calculation can be performed for the Weibull distribution. In fact, using the equation for 

normalized moments (195), one can obtain that 

n 1 	n 	 n + 1 
nt + + —) F(1 + —) OE  

CL 	1 
 ro + —

a

) 
— 	 (209) 

r(tz + 1)(1 + 1 ) NI + -1 ) 	ro + 1) nt + -n ) 
a 	a 	a 	a 

which grows slower than for the Chi-square. 

Thus, the moments of the K distribution always lie between those of the generalized Gamma 

distribution (including Chi-squared) and those of the log-normal distribution having the same mean and 

variance. 

4.5 Conclusions 

The following conclusions can be drawn from the above considerations. A family of K distributions is 

an attractive model for describing a random field inside cavities. It coincides with the Chi-square 

distribution for y =  ce and it also contains the Lehman distribution for v =  3. A smooth transition 

between these two classes can be achieved by varying the parameter  y.  From another point of view, it was 

shown that the moments of the intensity of the random field described by a K distribution are always 

bounded by those of log-normal (upper bound) and those of the generalized Gamma distribution (lower 

bound). This also gives an additional degree of freedom for modelling purposes. Yet another useful 

property is the invariance of a K distributed random field under a linear transformation. This may be 

extremely useful when the effect of the exte rnal coupling into transmission lines is considered. The models 

considered here have been implemented in the UWO StEm Tool which is described in more details in 

Chapter VI. 

gn IV = 
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Figure 16. Geometry of the problem 
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V. FDTD Simulation of a Computer Box 

In this chapter a full-field time domain analysis of a plane wave impinging on a computer case, using 

the finite difference time domain technique (FDTD), is conducted in order to estimate the statistics of the 

electromagnetic field inside the case. The impinging plane wave is a transient Gaussian pulse containing 

frequencies up to about 3 GHz. The Fourier transform is used to obtain frequency domain information and 

this allows us to investigate the internal field at various practical frequencies of interest. Details of the 

FDTD technique will not be discussed as this is a very well known technique and information on its merits 

is widely available. 

5.1 Geometry of the problem 

Consider a standard computer box of size 0.35m x 0.45m x 0.17m . We treat this as a rectangular 

cavity which is open on one side, as shown in Fig. 16. The opening may represent a dielectric (plastic) 

panel at the front of the computer or just a model for a side which has many apertures. 

x 

The impinging plane electromagnetic wave has a Gaussian time variation given by 

E(t) = E6nc exp[_(t — t o ) 2 1 
2p2 i 

where t = to  represents the time location of the field maximum and p describes the width of the Gaussian 

pulse [122]. The incident electric field was polarized in the a direction and the incidence plane was y — z 

plane. A typical input file for the UWO FDTD program is shown in Fig. 17. The total side of the grid in 

(210) 
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cells was 73 X 110 X 110, or 883,300 cells and the simulation was run for 1024 time steps (allowing the 

use of the Fast Fourier Transform in obtaining frequency domain data). The cells were cubical having a 

size of 5 mm and the time step was set to the Courant limit, that is àt = 9.6 ps for a total simulation time 

of about 10 ns. First order Mur boundary conditions was used. 

************************************************************************ 
* Input data file for PiPm pulse hitting an empty PC box 
*********************************************************************** 
.formulation 
scattering 
.Problem size: lower_x, upper_x, lower_y, upper_y, lower_z, upper_z 
0 73 0 110 0 110 
.Number of time steps and output frequency of the data 
1024 8 
.Space increment: delta_x, delta_y, delta_z 
1 
073 0.005 
1 
0 110 0.005 

0 110 0.005 
.Directory to which output the files 
/home/faculty/primalcfFDTD/WORKS/PC/T1/ 
.Boundary conditions: specify with characters ('e' or 'a') 
aaeaaa 
.Mur 
1 
.Animator output of Ex, Ey, Ez at x=38 plane 
total 1 38 7 X38 
.Animator output of Ex, Ey, Ez at y=55 plane 
total 2 55 7 Y55 
.Animator output of Ex, Ey, Ez at z=45 plane 
total 3 45 7 Z45 
.Test point 
incident 38 55 45 1 Inc 
.Test point 
incident 38 55 45 2 Inc 
.Test point 
incident 38 55 45 2 Inc 
.Object: Wall 1 
20 53 20 21 0 90 1 1 999 
.Object: Wall 2 
20 21 20 90 0 90 1 1 999 
.Object: Wall 3 
20 53 89 90 0 90 1 1 999 
.Object: Wall 4 
52 53 20 90 0 90 1 1 999 
.Field IC's 
gaussian 
001 0 - l00 32 

Figure 17. Typical UWO FDTD input file 
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Simulations were conducted for four incidence angles of incoming electromagnetic plane wave: 

0 1  =  00,  0 2  =  100,  0 3  =  200, and 04  = 30° for a constant angle of (I) =  900. For each angle, time 

domain data for the Ex  component of the field were recorded at all the points of the FDTD grid 

corresponding to the planes: x =  25,  x =  30,  x =  35,  x = 40 and x = 45 cells respectively. At every 

point the 1-1-.1 of the time domain data was performed and the magnitude and phase of the field at two 

frequencies f1  = 0.8 GHz and f1  = 1.9 GHz was found. The results were used to produce histograms of 

the field characteristics throughout the corresponding planes. The "experimental" histograms are 

compared against the Rayleigh distribution having the same first moment and the K distribution with the 

same first and second moments. Details of the parameter estimation procedure can be found in [130]. 

5.2 Simulation results 

The following Figures 18-19 reflect results obtained by means of numerical simulation described in 

the section above. It can be clearly seen that for frequency f = 1.9 GHz the K distribution provides a 

very good fit to the numerical data. However, it is worth noting that the phase distribution is far from being 

uniform and should be modelled as a weighted sum of Tikchonov distributions. The detailed investigation 

of these questions will be conducted in the next project. 

It can also be seen that the approximation is worsening as the frequency decreases to f = 0.8 GHz. 

This can be explained by the fact that for the lower frequencies the number of modes allowed and excited 

is smaller. In fact, only few modes may exist in our experiment. However, the K distribution still provides 

the best fit. A similar picture can be observed when frequency stirring of a closed high Q cavity is 

investigated [44]. Some numerical results are shown below in Fig. 20. 

5.3 Conclusions 

The following conclusions can be drawn from these numerical experiments. 

1) The applicability of the FDTD simulations to derive the appropriate statistics of the 

electromagnetic field inside enclosures is proven. 

2) The K distribution provides a better fit to the numerical data than the Chi-square distribution at 

least for a cavity whose size is larger than the wavelength of the incident field. However more 

work is required to investigate the case when the frequency of the excitation is close to the cut-

off frequency of the box. 

3) It is shown that even a "weak randomization" (i.e. averaging over only a few incidence angles) 

of the incidence field allows one to obtain results close to those predicted by statistical theory. 

4) As it can be seen from Fig. 18, the phase distribution is not uniform, and can be modelled as a 

mixture of Tikhonov distributions. 
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Figure 18. Results of simulating an open computer box at frequency f = 1.9 GHz : 
a) incidence angle e  =  00, V  = 2.6 , b) incidence angle 0 =  100, y = 1.9 , 

c) incidence angle 0 =  20°, y = 2.0 , d) incidence angle 0 = 30°, y  = 2.4 , 

e) averaged over the four angles, y = 2.25 , f) typical phase distribution, 
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Figure 19. Results of simulating a open computer box at frequency f = 0.8 GHz : 
a) incidence angle 0 =  00, V  = 1.7 , b) incidence angle B  =  100, y = 1.7 , 

c) incidence angle B  =  20°, y = 2.0 , d) incidence angle 0 = 30°, V  = 2.5 , 

e) averaged over the four angles, y = 2.0 , f) typical phase distribution, 
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d) 25065  

Figure 20. Results of simulating a closed two dimensional cavity of size 3.54 x 4.05 m excited by 
a line source, located at xo  = yo  = 0.5in : 

a) f=  4 GHz , Q = 105  ,  y = 0.5 , b)  f=  8 GHz , Q = 105  ,v  = 0.8 , 
c)  f=  4 GHz , Q = 100  ,v  = 0.9 , d)  f=  8 GHz , Q = 100  ,v  =  1.2.  
The bandwidth of the excitation is Af = 10 MHz for all cases. 
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VI. The Coupling of Statistical Fields to Transmission Lines 

In this chapter we consider the simulation of a randomly distributed field which couples to a 

transmission line. In previous chapters, an attempt was made to describe the statistics of the 

electromagnetic field inside an enclosure. Here, we take such a field and assume that it couples to a 

transmission line which is present inside the enclosure. The main choice one has to make about how to 

model the physics of this problem is whether to use a full-wave model or to use an approximate quasi-

TEM transmission line based model. The latter, although less accurate, requires much less computer 

resources. On the other hand, since the purpose of the simulations is to generate data which can be used to 

generate statistical distributions govern ing the load voltages at the terminals of the transmission line, it is 

hoped that the small inaccuracies will not affect the statistics of these load voltages. In future research, the 

differences between the two models, with respect to the generation of such Monte Carlo type data, will be 

investigated further. 

In transmission line type modelling, the effect of the coupling field is taken into account via distributed 

source voltages and currents along the transmission line length. Thus, the second choice to be made is to 

incorporate the statistical properties of the field by: a) assuming a plane wave coupling and randomizing its 

parameters (i.e. incidence angle, polarization, frequency, phase, amplitude); or b) generating a random 

field with a given distribution and spatial correlation and injecting this directly into the transmission line. 

The problem with the first choice is that, although some of the statistics have been derived assuming a 

multiple plane wave model, the structure of the field inside an enclosure has more complicated features 

than those of a plane wave in general (i.e. the wave impedance is not equal to the intrinsic impedance and 

E is not necessary orthogonal to H). Thus, we choose to generate a statistical field with a desired 

distribution and spatial correlation and to inject this field directly into the source terms of the transmission 

line equations. 

One advantage of this procedure is that, if it is successful, it effectively decouples the enclosure 

problem from the transmission line coupling problem. This is necessary if the topological formulation 

discussed in the introduction is to be used in the future along with statistical characterizations. The success 

of this method cannot fully be ascertained until an experimental investigation is conducted. This will be 
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{dV 4. z 1  = vs (x)  
dx ,0<x<d. 
dl 
dx

+YV = f(x) + YV = (x) dx 

(212) 

Vj+ 1/2 = V((j 1/2)Ax), 

1 

j = 0...N-1 
j = 0...N 	• 

(214) 

j = 1...N —1 

j = 1...N 
(215) 
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one of the goals of future research. For now, in this chapter, we outline how these calculations are carried 

out.  

6.1 Solution of the inhomogeneous transmission line equations 

Consider a section of transmission line having a length d, per-unit-length parameters: L,C, R, and G, 

and terminated at x = 0 and x = d with lumped Thevenin sources having voltage sources denoted as V 7- 
and 1/72  and impedances Z 1  and Z2 respectively (see Fig. 22 for voltage and current directions). The 

characteristic impedance is given by 

z 	R_  j  +jcoL  
o — G+jf.0C 

and the system of ordinary differential equations which must be solved for the time-harmonic voltage and 

current along the line is given by 

(211) 

where Vs(x) , and  T(x) are distributed per-unit-length voltage and current sources along the line which 

model an electromagnetic field coupling to the line. Boundary conditions are imposed such that 

Kirchhoff's voltage and current laws are satisfied at the terminations, that is 

[ V(0) Z 1 1(0)= VT!  
lV(d) — 1,1(d) = V  T2 

We can solve this system by using a finite difference method. The line is discretized using N equal 

intervals of length Ax such that d = NAx . The 2N + 1 discretized voltages and currents are interlaced 

along the line and defined as 

(213) 

Using centred differences, the differential equations in (212) become the 2N — 1 algebraic equations 

J Vj  + i  /2 - Vj _ 1  / 2  + àaZij = Ax Vsi  

 = Avl s  j-I/2 

and at the boundaries we have two equations 
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(217) 

(218) 

/0 

V112  

'1  

VN— 1/2, 

IN 

, b =  LX  x=  

The Coupling of Statistical Fields to Transmission Lines 

{ VI /2 — Vo  + ( z) i0  = '
2
7 V(s; 

Note that we have used ix/2 since the discretization at the boundaries is only over half a cell. Now since 

1/0  and Viv  do not exist, we can use the boundary conditions given by (213) and substitute 

{

Vo = VT1  —Z1!0  

into (216) to get 

{ V1/2 + (Z1 + ItXZ)/() = —AgVe  + V 2 0 	T1 

The discretized system can be written in matrix form as 

Ax = b 	 (219) 

where 

vso vn 
2 	ix 

4/2 

(216) 

Viv  = VT2  + Z1 /1  = VT2  + IN  

— V 

(220) 

1/2  

VT2 
2 Ex_ 
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X = A
-t

b . (222) 

qi= 	Px(z)dz = 
Y1  + Y2  

x( 2 ) 
(225) 
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Z, + —àxZ 1 	0 0 0 ... 0 0 	0 	0 2 

-1 	àxY 1 0 0 ... 0 0 	0 	0 
0 	-1 àxZ 1 0 ... 0 0 	0 	0 

(221) 

0 	0 	0 0 0 ... -1 tizZ 1 	0 
-1 àx Y 	1 

-1 Z2  + — Z 
 2 

These equations allow us to model the coupling of the external field into the transmission line. The effect 

of the statistical field shows up only on the right hand side vector b. Thus, once the inverse of A is found, 

that is A
-1  , the response x to any random field b is obtained by a simple matrix multiplication: 

A=  

Thus we see that it is very simple to generate Monte Carlo data for this model assuming that we have a 

method of generating the random fields, b, with a prescribed distribution and spatial correlation. This part 

is taken up in the next section. 

6.2 Random field generation 

6.2.1 An exponentially correlated Markov chain 

In this section we consider the discrete time scheme which arises from the approximation of a 

continuous time continuous Markov process using Markov chains. Following [32], we represent the 

random process x(t) as the finite Markov chain y. with N states: 

Y1 < Y2 < • • • < Y/V • 

If the stationary random process x(t) is described by the marginal PDF p(x) or its cumulative distribution 

function (CDF) 

X  

P x(x) = 	p ,(z)dz 	 (224)  j. 

then the probability q i  of the i-th state y i  of the approximating chain can be expressed as 

(Y1 +Y2) 
2 

(223) 
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(Yi  
2 

qi = f px(z)dz 
(Y _ 1 + yi) 

2 

p ( 
	

Yi+ 1)  p 	-• 1 + Yi) 	- 2 , 	N 1 
) 

(226) 

(227) 

(228) 

(231) 

(232) 

	

91 91 	91 

	

= 92 92 	92 
... .- 

9N 9N 9N 

Q2 

It is easy to check that 

and [32] 
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qN  = 	f px(z)dz = 1 _ p x(Y  - 1 + Y  , 
2 	) 

'(N -1+  
2 

We denote the transition probability matrix by T = [Tk,1 ] where 

Tk,1 = Prob{y. = 	= y/ }, k,1 = 1, 2, ..., N, 

which is the probability of the event y. = yk  when  y,, 	y/  and fits the conditions 

= 1,k= 1, 2, ..., N. 	 (229) 

k=1 

It is well known that the stationary probabilities qk  are obtained as the eigenvectors of the transition 

probability matrix T corresponding to the eigenvalue X = 1 

Tq = qk , k = 1, 2, ..., N. 	 (230) 

i=1  

The transition matrix T determines the mathematical properties of the Markov chain [99]. The same 

matrix defines the power spectrum in the stationary case. However we consider the inverse problem, 

having defined only the stationary probabilities of the states. For a case where the correlation function is an 

exponential one the solution was obtained in [32]. We follow this procedure here to obtain the chain 

approximation with a finite number of states. 

To achieve the first goal, we define the following matrix Q in terms of the probabilities of the states 

det[Q — XI] = (1 — X)(—X)N -1 . 	 (233) 
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(236) 

(237) 

(238) 
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In terms of the matrix  Q,  the transition matrix T can be defined as [32] 

T = Q + d(1 — Q) , 	 (234) 

where 0 É d <1 will define the correlation properties (described below) and I is the unit matrix. At the 

same time T fits condition (230). 

For any integer ni we obtain the following expression from (234) and (232) 

Tm = Q + dm(I —Q). 

Since  d is a positive number less than 1, we obtain 

lim Tm = Q, 
Iri-><>. 

which means that the Markov chain described by (234) becomes ergodic [99] and has the stationary 

probability given by qk . 

Next, we consider the correlation function R„, of the Markov chain y. . In terms of the stationary 

probability qk , we obtain the average and the square average as 

N 

(yin)  = E Ykqk ,  

i=1  

N 
< y m2) = E  ybk•  

j=1  

To calculate the correlation function, we consider the two-dimensional probability which may be 

obtained from (235) as 

Q( 171 )(k, 1) = Probiy,„ = Y pY 0  =y}  = {qk+ dm ( 8k,i —  qk)} (11 ,  

where ni> 0 and Q(m)(k, 1) stands for In steps transitional probability. It is easy to find that (239) fits the 

consistency relation 

N 	 N 

E Q(..)(k, 1) = E Q(m)(1,k) = q 1  . 	 (240) 

k-1 	 k =1 

The correlation function  R,,,  is an even function of in defined as 

R ni  = R_,,, = KY m Y0) — (3 1  m)2 	 (241) 

Substitution of equations (237) to (240) into equation (241) produces 

(239) 
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R. = R, 	(Y mY o) — (Y /11) 2  = E Y kY 1 P rob {y. =Y k ,Y0 = Y1} — (Y n1 2  = 
k, 1 = 1 

(242) 

E YkYi{qk dm ( 8k,1 —  q k)} e  1 1 — (Y m) 2  = E YkYiqkqi+ dm  E YkY1(8k, 1 - qk)q1 — 	= 
k, 1 = 1 	 k, 1 = 1 	 k,1 = 1 

j2) _ 	= dim' 	_ 

which is the exponential function with a correlation length defined as 

Ncorr = 

The sequence corresponding to the transition matrix T = [Tk, 1 1 can be generated by the following 

recurrent equation [32]: 

Y m = F(Y m - 1, 	,  in = 0, ±1, ±2, 	 (244) 

where  Ç  is an independent random number uniformly distributed over the interval [0,1] , and 

F(y 11  _ 1 , Cm ) is a discontinuous function of Ç,  defined as 

Yi 	0 <s 
Y2 	< 	1,1 + T21  

Y3 	+ T2 ,  < 	+ T2, 1+ T3,  / • (245) 

1 — TN, I<Ç 1 

Solving (244) numerically, we obtain a sample of Markov chain with the exponential correlation and given 

probabilities of the states. 

6.2.2 Program description 

Two MATLAB programs have been written in order to implement the algorithm described in the 

previous section: rnd m and rnd_f ield .m. The function rnd.m is a direct implementation of 

equations (231), (234), (244) and (245) and is used to generate a given number of samples, assurning that 

the probabilities q i  of the states of Markov chain are given and a certain correlation coefficient d is 

expected. This function is called from rnd_f ield . m. 

The function rnd_f ield .m is a function where the required probabilities of states  q1  and the 

correlation coefficient d are effectively calculated. As the output this function produces a normalized, 

complex valued, electric (or magnetic) field. The average value of the magnitude of this field is 

A (1E1) = I—
V

, (1M) = 1— 
P2 	 fl  

The required intensity can be achieved by scaling these fields by a constant. 

Yiv 

(246) 

RY = 
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Currently, the following distributions are implemented in this program: 

• the K-distribution [123] (set Type = 'K') (for magnitude) 

2b bxy 
P(x)  

• the Rayleigh distribution [123] (set Type = 'Rayleigh') (for magnitude) 

x 	[ x2  — p(x) = cr2 exp 	' > 0 , X 0 	 (248) 

• the Gamma distribution [123] (set Type = 'Gamma') (for intensity) (the case a = 0.5 

corresponds to the Porter-Thomas distribution) 

1  
P(x) = Œ)X  -1 e-xig 	 (249) 

Pnc 

• the log-normal distribution [123] (set Type = 'Log-Normal') (for intensity) 

p(x) - 	1 
 exp [-

(lnx - lnm)21 
(250) 

x 'an 	2a2  J 

and 

• the Weibull distribution[123] (set Type = 'Weibull') (for intensity) 

p(x) = (Eïxct -  I er3 	 (251) 

Once the average value of the generated field is fixed by (246), only one "shape" parameter (i.e.  y for 

K,  a for Gamma and Weibull, a for log-normal and none for Rayleigh) should be specified in the field 

ParA. The number of states approximating the continuous distribution is specified by the parameter NBins. 

The phase is assumed to be distributed according to the Tikhonov distribution [99] 

1  
P(q)) = 	eDcos(1) 	 (252) 

27t /0(D) 

where  1 ,  is the modified Bessel function [28]. For small values of the parameter  D,  which should be 

specified in the field ParP, p(4,) in equation (252) becomes the uniform distribution of phase 

1 
p(d?) 2ic 

Another limiting case, D = co,  corresponds to a fixed (deterministic) phase, i.e. p(I)) = 8(4)). The shape 

of the distribution for different values of D is shown in Fig. 21. 

The corresponding spatial correlation is calculated using the discretization interval  ix  (i.e. parameter 

Dx) and interval of spatial correlation xeo „ (i.e. parameter Xcorr) as 

(247) 

(253) 

S. Primak and J. LoVetri 	 - 79 - 	 Statistical EMC 



The Coupling of Statistical Fields to Transmission Lines 

X corr 	NcoràX • 

6.3 Numerical Results 

The following example is considered. It is assumed that field inside a cavity is distributed according to 

the Lehman distribution, i.e. according to the K distribution with parameter y = 3 [123]. The correlation 

interval for the magnitude is chosen to be xco„ = X/6 and the phase is assumed to be uniformly 

distributed on the interval [0, 27t] . Frequency of the excitation is chosen to be f = 0.8  GHz.  This 

corresponds to the free space wavelength of X = 37.5  cm.  We assume that the typical transmission line of 

the PC mother board has a length of 5  cm ,  which results into the electrical length of 0.133. The 

transmission line is assumed to have a characteristic impedance of 5052 and to be terminated by matched 

impedances. Fig. 21 shows the results of the simulation and the corresponding report can be found in 

Section 6.3.2. It can easily be seen that the distribution of voltage and current on both terminals greatly 

deviates from the Gaussian one. 

6.3.1 Default Input Parameters 

The following parameters are used as default in LTWO STEM Ver. 1.0 Tool. All values are referred to 

variables shown in Fig. 22. 

(254) 
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CPF of IlleVfar  CPF of tau 

Figure 21. Results of numerical simulation of the random field coupled to a transmission line. The top two 

pictures refer to the near-field voltage and current, and the lower two pictures refer to far-end voltage and 

current. Distribution of instantaneous values are considered. 
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Table 3: 

Default 	Variable No. 	Parameter Comments value 	designation 

Electric Length, LA1/4, 	1 	 TL.ElectricLength 	unitless 

Length, L 	 1 	 TL.Length 	meters 

Char. Impedance Z0 	50 	 TL.Z0 	 Q 

Near end load Z„, 	50 	 TL.Znear 	 Q 

Far end load Zfar 	50 	 TL.Zfar 	 Q 

Near end voltage source 	0 	 TL.Vnear 	 V 

Vnear 

Far end voltage source 	0 	 TL.Vfar 	 V 
V near 

Frequency, f 	 300 	Field.Frequency 	MHz, calculated through 
L and LA. 

Correlation interval 	1/6 	Field.Xcorr 	X 

Xcorr for magnitude 

Correlation interval 	1/6 	Field.Pcorr 	X 

Kcorr, for phase 

Distribution of the mag- 	Rayleigh 	Field.DistType 
nitude 

Parameters of the magni- 	0 	 Field.pA 	 Does not matter for the 
tude distribution 	 Rayleigh distribution 
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Table 3: 

Default 	Variable 
No. 	Parameter Comments value 	designation 

Parameter for the phase 	0 	 Field.pPh 	 Corresponds to uniform 
distribution, D 	 phase 

Average value of E field 	1 	 Field.Em0 	V/m 
magnitude, lEmo l 

Average value of H field 	1 	 Field.Hm0 	A/m 
magnitude, IH. 0 1 

Discretization parameter 	50 	Numbers.N 	Number of points per 
N 	 wavelength 

Number of bins in histo- 	100 	Numbers.Nbins 	Shows home many bins 
gram 	 will be considered when 

histogram is built 

Number of trials 	1000 	Numbers.Ntrials 	Number of trials in 
Monte-Carlo simulation 
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6.3.2 Example of the generated report 

This report is created on 01-Mar-1999 at 12:00:00 AM 

by UWO STEM Tool Ver 0.3 

TL parameters 

Electric length: 	0.133 

Characteristic impedance: 	50.000 + j 0.000 

Far end load: 	50.000 + j 0.000 

Near end load: 	50.000 + j 0.000 

Exte rnal field parameters 

Frequency, MHz: 	800.000 

Normalized Em field: 	1.000 

Normalized Hm field: 	0.003 

Con.  interval for magnitude: 0.167 

Con.  interval for phase: 	0.001 

Distribution type: 

Parameter pA: 	3.000 

Parameter D: 	0.000 
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6.4 Conclusions 
A prototype of the UWO StEm Tool 1.0, which allows a user to investigate the coupling of random 

electromagnetic fields to a transmission line, has been developed and described in this chapter. Despite the 

fact that a very specific configuration has been implemented, this tool allows us to capture quite a few 

statistical tendencies. Mainly, it is shown that deviations from the Chi-square distribution for the statistics 

of the intensity of the coupling field lead to similar deviations in the statistics for the instantaneous values 

of the induced voltages and currents at the ends of the transmission line. This effect disappears when the 

length of the transmission line approaches several wavelengths. However, this situation is impossible as far 

as PCB traces are concerned if the dimensions of the cavity itself are of the order of only a few 

wavelengths. In turn, non-Chi-square distributions of the terminal currents and voltages may lead to 

heavier tails of the corresponding PDF, thus resulting in more probable overvoltages. The specific effects 

of these overvoltages should be studied separately and this will depend on the application. 

Yet another important feature, easily found by conducting numerical experiments, is that highly 

resonant behaviour of a cavity leads to a non-uniform phase distribution, and this causes significant 

deviations from the Chi-square distribution for the statistics of the intensity of the coupling field. We 

recommend that a detailed investigation of this phenomenon be considered in a future project. 

We also confirmed that it is important to consider the spatial correlation properties of the external 

field. In fact, a completely decorrelated excitation results in an almost Chi-square behaviour of the terminal 

voltages and currents even for relatively short (less then 0.25X ) transmission lines, while highly correlated 

non-Chi-square external fields result in highly irregular terminal voltage behaviour, i.e. deviations from 

the Chi-square statistics is significant even for relatively long transmission lines. 

As was mentioned above, the StEm Tool implements only the simplest mathematical models of 

external field coupling to a transmission line. We suggest that more work be done on the validation of the 

applicability of such models for the case of random excitation. Another direction which should be explored 

is to extend the capability of the software tool to include the treatment of multiconductor transmission 

lines. This will require some more research on numerical techniques that allow the generation of non-

Gaussian random fields. 
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VII. Conclusions and Recommendations 

7.1 Overview and conclusions 

In this preliminary study, we have attempted to review the relevant material on the use of statistical 

techniques for characterizing electromagnetic interactions in electronic systems. There have been many 

studies in the past, but no systematic method of applying such techniques exists as of yet. It is safe to say 

that most studies have been undertaken on simplified systems, such as the single interaction path shown in 

Figure 23. Here, even though there are many physical ways in which energy can enter the interior volume, 

the interaction path between exterior volume and interior volume is conceptually a single path. These types 

of single path systems are what have been mostly studied in the literature. 

Interaction 
Path Node 

Figure 23. Penetration through an enclosure as a node-edge-node link. 

One interesting outcome of these studies is that the statistical characterization of the electromagnetic 

fields inside the interior volume is mostly independent of the method of penetration. The total energy 

which enters the enclosure is important, but, at least for over-moded cavities, the entry path is unimportant. 

This fact may change when we consider enclosures which are close to or below the cut-off frequency. We 

plan to study such enclosures in the next phase of the study. 

We have proposed the K distribution as a better way of characterizing the statistics of fields inside an 

enclosure. This distribution is a two-parameter distribution which will allow us more flexibility in 

characterizing the fields. The advantages and disadvantages of using this family of distributions were 

discussed and its relationship to other commonly used distributions such as the Lehman and the Chi-square 

distributions were described. 
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A preliminary investigation of two problems which are of great interest in the electromagnetic 

compatibility community was undertaken. These are: a) the coupling of randomly oriented plane waves 

into enclosures with an aperture (Chapter V); and b) the coupling of statistically described fields to a single 

transmission line (Chapter VI). The finite difference time domain technique was used to perform the 

simulations. Results of the first investigation showed that the K distribution is useful for describing the 

statistics of the fields inside an enclosure. It was also shown that even a "weak randomization" of the 

incident field allows one to obtain results close to those predicted by statistical theory. The phase 

distribution inside an enclosure is shown to be non-uniform and can be modelled as a mixture of Tikhonov 

distributions. 

A computer program was written for performing the calculations of the transmission line problem in 

which the quasi-TEM approximation was made and the coupling was modelled as distributed voltages and 

currents along the line. It was shown that deviations of the coupling field statistics from Chi-square lead to 

similar deviations in the statistics of the induced voltages and currents at the ends of the transmission line 

but that this effect disappears when the length of the transmission line approaches several wavelengths. A 

completely decorrelated excitation along the line results in an almost Chi-square behaviour of the terminal 

voltages and currents even for relatively short transmission lines, whereas for highly correlated non-Chi-

square external fields, a highly irregular terminal voltage behaviour is observed. 

All these conclusions and observations allow us to assume that a number of meaningful results can be 

obtained during the next stage of this project. In particular, the effect of different apertures and the "filling" 

of the box should be investigated in more detail. 

7.2 Recommendations for future work 

The following is a list of recommended steps which should be followed for future work: 

1) The StEm software package should be expanded to contain more features. This would include 

the ability to describe a cavity in generic terms such as an area, a volume, a number of apertures, 

and the conductivity of the enclosure walls, etc.; 

2) More full-wave simulations of complex cavities such as computer boxes with apertures and 

transmission lines should be conducted in order to obtain a larger set of data on which to validate 

the statistical methods; 

3) The collected data should be analysed in order to identify the important degrees of freedom, and 

some probabilistic models of interaction between an external field and muticonductor 

transmissions line should be created. Special attention should be paid to the investigation of the 

correlation properties of the electromagnetic field components; 

4) A further investigation and clarification of the term "complex cavity" should be undertaken. An 

analysis of the relationship between the statistical distribution parameters and the parameters of 

arbitrary cavities should be developed further and validated using the simulation data; 
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5) An investigation of complex cavity behaviour at frequencies close to or below the cut-off 
frequency should be made. Statistics of the mixture of standing and travelling waves should be 
conducted. 

6) More general structures of MTL networks should be considered. Each MTL should be described 
by a simplified probabilistic model. Dependence of the induced terminal voltages and currents 
on the cavity parameters and the transmission line parameters should be investigated. 

7) Requirements for the possible experimental validation of all the statistical approaches which are 
developed should be specified. 

Although this list of recommendations is quite lengthy we believe that the time frame of one year of 

intense research should be enough to cover most, if not all, of these topics. Of course, during the course of 

these investigations, it is always possible that future results may lead us into a different direction. 
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VIII. Appendix: Review of Some Basics on Statistics and Stochastic Processes 

In this short appendix, some basic statistical definitions, facts, and methods are reviewed. The purpose 

is to briefly overview the relevant statistical background which is used in this report and to define the 

notation which is used. The reader is referred to the standard texts on statistics and probability theory for 

more in-depth accounts of the material. 

8.1 Basic definitions 

An experiment is a set of rules governing an operation which is performed. An outcome is a result 

realized after performing the experiment once. An event is a combination of outcomes. An event which is 

equal to an outcome is also called an elementary event. As. an example, which is pertinent to the EMC 

problem, an experiment may be an electromagnetic measurement which is made on a system. Such a 

measurement may be the value of the electric field inside an enclosure given some rules of malcing the 

measurement (e.g. probes to use, locations to probe inside the enclosure, description of the environment 

surrounding the enclosure, etc.). The results of a single measurement would be an elementary event while 

a measurement being one out of a set of outcomes would define an event. 

The probability of an event is defined as follows. If an event A happens nA  times when an experiment 

is performed N times, then the probability of the event A is defined as 

n, 
Pr{A} = 	 (255) 

the probability of an event A or event B happening is given as 

nA + nB Pr{A or B} = 	, 	— Pr{A} + Pr{B} N-1 IV 

where it has been assumed that events A and B are disjoint (i.e. they cannot possibly occur at the same 

time). All elementary events are by definition disjoint. From a knowledge of the probability of all the 

elementary events in an experiment, the probability of any event can be determined. 

Outcomes, and thus events, may not be numerical entities. For example, the outcome of an election can 

(256) 
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be assigned a probability but the outcome itself is not mathematical in nature. A mapping, or function, 

which assigns a number to each outcome in an experiment is called a random variable. A random variable 

can be discrete, when the mapping is to the integers (a finite or infinite set), or it can be continuous, when 

the mapping is to the real numbers (a finite or infinite interval). Once a random variable is defined, say X, 
then a distribution fiinction, F(x) or P(x), can be defined as 

F(x0) = Pr{X Sx 0 } 	 (257) 

where the set of values, {X .5. x 0 },  defines an event. (Note that the distribution function is sometimes 

called the cumulative distribution function, CDF or just distribution.) Two important properties of any 

distribution function are: 

F(--..) = 0 and F(..) =  1. 	 (258) 

It is also easy to see that a distribution function is a monotonically increasing function of its argument. 

Another important function is the probability density function, p x(x) 1 , (or just density function) which 

is defined as the derivative of the distribution: 

à  d p x(x) = 
dx• 

Therefore, the inverse operation holds: 

xo  
F(x0) = 	px(x)dx 	 (260) 

We also have the important property, that 

X2  

Prtx, 	= f px(x)dx. 
x i  

It is easy to see that the probability density function can never be negative, and the integral of the PDF 

from — 00 to .0 must be unity. 

The characteristic fiinction, O x(jco) , corresponding to a probability density function, say px(x) , of a 

random variable X is just the conjugate of the Fourier transform of the PDF, that is 

Ox(jœ) = flpx(x)exp(jolx)dx 	 (262) 

where we are using a negative exponential in the definition of the Fourier transform, as is usual. 

If we are interested in the probability of two events happening, we can define two random variables, X 

1. Here the subscript X indicates which random variable is considered while x is the independent continuous variable. 

(259) 

(261) 
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and Y say, and ask what is the probability that X takes on the values x 1  < X  5_ x2  (an event) while Y takes on 

the values y 1  < Y y 2  (another event). We would then require a two dimensional or joint probability 
density fiinction, p xy (x, y) , such that 

2x2 
Pr{x t  < X ..1c2  and y < Y y,} = 

J
f pxy (x, y)dxdy 

yt 

The effect of one random variable on another is measured by the conditional probability. The probability 

of an event A given that event B has occurred is defined by the conditional probability Pr{A/B}, and can 

be calculated as 

à  Pr{A and B} 
Pr{A/B} = Pr{B} 

Two events are independent if 

Pr{A/B} = Pr{A} 	 (265) 

Thus, by the definition of conditional probability, if two events are independent of each other, then the 

probability that they both occur is just the product of the two probabilities for the two events, that is 

Pr{A and B} = Pr{A}Pr{B} 

In terms of the probability density functions, independence of two random variables implies that 

Pxy(x, Y) = Px(x)Py(Y) ,  

that is, the joint probability density function is the product of the individual densities. 

8.2 The Gaussian, uniform, Rayleigh, and Chi-square density functions 

The most common PDF is the Gaussian density function which is defined as 

[ (x nz) 21 
e xp Px(x) =  	 (268) 

„fra 	2a2  

where the given parameters, ni and a2 , are known as the average or mean and variance of the PDF. A 

sketch of this PDF is shown in Fig. 24. The average value m determines the centre of the so-called bell-

shaped curve and the variance a2  determines the spread (i.e. a larger variance means a larger spread). 

(263) 

(264) 
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Figure 24. Sketch of the Gaussian density function 

The integral of the Gaussian function is given by the so-called Error function defined as 

= f x  -y2/2 , 
erf (x) 	 e 	ay . . 

Another commonly occurring density function is the uniform density filliction which is defined as 

	

{0 

	x < 0 

px(x) = 1/x0 	('ii.x.,ro  

	

0 	x xo  

and is sketched in Fig. 25. (Note: xo  is a given parameter.) 

(269) 

p„,-(x) 4 
1 /x0  

xo  

Figure 25. Sketch of the uniform density function 

Given two random variables, X and Y, which are Gaussian distributed, the square-root of the sum of the 

squares of the two random variables (assuming that the two random variables are independent of each 

other, have zero mean and an equal variance, as defined below) will have a Rayleigh density fiinction 

which is defined as 

r 	[—r2 1 
a- 	2 a- 

0 

{ 
r > 0 

PR(r) =  

r < 0 

where 

r = .‘1 x2 + y2 . 

S. Primak and J. LoVetri 	 - 92 - 	 Statistical EMC 



( /Fccr 1 )-I  

( r27ccr2 ) -1  

A sketch of the Rayleigh distribution is shown in Fig. 26. 

PR(r) 

9:2 > a 

z > 0 
(274) 

z < 0 

(276) 

(277) 

Appendix: Review of Some Basics on Statistics and Stochastic Processes 

Figure 26. Sketch of the Rayleigh density function 

If we were interested in r2  instead of r we would find that r2  was Chi-square distributed with 2 

degrees of freedom. If we take the sum of the squares of n variables, that is 

2 	2 	2 	2 
Z = X1  +X2 +X3  + + X  

then we get a Chi-square distribution with n degrees of freedom. The mathematical form of this probability 

density function is given by 

{ 	
z" .,  p ( -.- 1 

PZ(Z)  = 2n/2 (n/2 — 1)! ex 2  ) 

0 

where the symbol "!" denotes factorial. 

8.3 Functions of a random variable 

Consider a random variable, X, having a PDF of px(x). Now consider another random variable, Y, 

‘vhich is a deterministic function of X. This can be denoted as y = g(x) and the event {x 1  < X  x2 } 
corresponds to the event {y i  < Y y2 } where  y 1  = g(x i ) and y2  = g(x 2) and it is assumed that y 1  <y2  

if x 1  < x2 . The events are identical and therefore share the same probability, that is 

Pr(x i  < X .5. x 2 1 = Pr{y 1 <1' y2 } 	 (275) 

and 

f px(x)dx = 	p y(y)dy 

from which, letting x, --> x 1 ,  we get 

Px(XI)  
Pe 	= Py(YI)dY 	 dy/ dx .  

(273) 

n/2— I 
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If we had y i  > y, we would then get 

x(x 
v(Y 

Thus in general, we have 

px(x l ) -  
	 ay 	Px(g 1 (Y)) 

PY(Yi) - I dy / dx nd p(y) - l 	 Idy / dxl 

Care must be taken when the function g(x) is not monotone since then more than one interval in x will 

correspond to a single interval in y. (Consider g(x) = x2  for instance where the interval 0  <y 1 

corresponds to the two intervals  0<  x 1 or -1 > x 0.) 

8.3.1 The sum of two random variables 

Consider two statistically independent random variables, X and Y, and take the random variable Z to be 

the sum of the two. That is, z = x + y. The probability distribution is given by the double integral 

zo 	 zo-y 

F z(z o) =:f f 	px y(x, y)dx dy = f f 	p x(x)p y(y)dxdy 	 (280) 

and therefore the PDF is given by 

r oo 

pz(z 0) = àtF z(Z0) = Loal y(Y)P x(Zo - Y)dY = P y(2) * P x(Z) 	 (281) 

where flz) * g(z) represents convolution between the functions f(z) and g(z). That is, the probability 

density function of the sum of two independent random variables is the convolution of the two individual 

PDF's. This implies that in terms of the characteristic functions, O x(jc.o) and O y(jw), we have 

ez(jco) = O x(jc))e y(jco) 	 (282) 

8.3.2 Expected values: mean, moments, and variance 

The probability of a random variable X being in the interval {kAx - Ax/2  < X  kàx + Ax/2 } is 

given by 

ktlx + dr/2 

j" 	P x(x)dx 
kàx- dr/ 2 

which for Lx --> 0 can be written as px(kAx)àx . The average value of the random variable can be written 

as 

(283) 

• 94 - 	 Statistical EMC S. Primak and J. LoVetri 



(287) 

(288) 

(289) 

(290) 

Appendix: Review of Some Basics on Statistics and Stochastic Processes 

E kAx{p x(IcAx)Ax}X avg 

 k = 

which as Ax --> 0 becomes the integral 

X avg  = mx  = 	x px(x)dx • 	 (285) 
-O. 

The average value is also called the mean or expected value and is given the symbol m x  as above. This 

notation refers to the fact that the mean is the first moment of the PDF (or the moment with respect to x). 

We can, in general take the moment with respect to any function of x, that is we can form the integral 

mg(x) = f g(x) p x(x)dx 	 (286) 

which, if we have a random variable Y which is a function of X, y = g(x) say, then the above integral 

beco  mes  

,- 
m  ex) 	f g(x) p x(x)dx 	yp x(g-t  (y)) dy 

I dy / dx1 	p y(y)dY = Yalrg = [g(41 C1Vg • 

Some other notations which are used are 

= g(x)  = E{ex) } 

where the latter means the "expected value" of g(x). The expected value of g(x) = x 2  is called the second 

moment and is explicitly defined as 

m 2 = f X2  px(x)dx 
-00 

For a Gaussian distributed random variable having mean m and variance a , that is 

1 (x - m) 21 
p 	 xx (x) - 	e p[- 

„,/27r a 	2a2 j 

it can be shown that 

E{x} = m x  =  in, 	 (291) 

E{(x-m) 2 }  = a2
. 	 (292) 

In fact, E{(x - m x ) 2 } is defined as the variance of any random variable. The positive square root of the 

variance is called the standard deviation (i.e. a in our notation). A useful relationship between the 

variance and the second moment is given by 

(284) 

CO 
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1 
= E{x 2

} — (E{x}) - 	 (293) 

8.4 Review of stochastic processes 

A stochastic process is an ensemble of random functions of either a discrete or continuous variable, 

like time, along with the associated statistical properties. If x(t) represents a stochastic process then for 

every specific value of t, say t = to , xo  = x(t0) is a random variable which can be described by a one 

dimensional probability density function p(x 0) (where we've dropped the subscript for notational 

convenience). The random variables associated with N specific values of t, say t = {t 1 , t2 , til }  can be 

completely described by the N-dimensional PDF p(x i , x2, ..., x,v) . In order to describe the complete 

stochastic process we would require an infinite dimensional PDF. Since this is impossible, it is common to 

resort to a description of the stochastic process through its moments, that is 

m(t) = E{x(t)} = f x(t) Px(x(t)) dx 

the first moment, is the time-varying mean of the ensemble. The second moments are given by 

Rxx(tI, t2) = E{x(t i )x(t 2)} = 	x ix2p(x i , x2)dx i dx 2  

for any t 1  and t2  where x 1  = x(t 1 ) and x2  = x(t2) . This is referred to as the correlation between the two 

random variables. 

If a stochastic process is such that the overall statistics are independent of the time reference we call it 

a stationary process. Thus for a stationary process, x(t), the time translated process, x(t — , will have the 

same statistics for any value of T.  Therefore the mean will be independent of t and the correlation will 

depend only of the distance separating t 1  and t2 . That is 

Rxx(t i , t2) = R 1x(t2  — t i ) = R(t) 	 (296) 

where  t  = t, — t 1 . The function  R(t) is called the autocorrelation of the stationary process, x(t). For 

sufficiently larger than the correlation interval Tcon., such that  x(t 1 ) and x(t2) are independent random 

variables, the autocorrelation simplifies to the square of the mean, that is 

Rxx(t2  — t 1 ) = E{x(t 1 )x(t2)} = E(x(t 1 )}E{x(t 2)} = m2 . 	 (297) 

We say that the process is uncorrelated for values of t  greater than  

A stochastic process is called ergodic if any single sample function of the process contains all the 

information about the statistics of the process. This allows one to find the mean by measuring only one 

function in the process and averaging, that is 

T/2 

in = E {x(t)} = lim f 	x i(t)dt 
TT _T/2 

(298) 
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where x i(t) denotes a particular sample function. An ergodic process must be stationary since the mean 

does not vary as a function of time but it is not true to say that all stationary processes are ergodic since our 

stochastic process may contain a sample function which is exceptional to the rest and whose statistics 

measured on the t axis are different than the ensemble statistics. (The ensemble statistics in this latter 

situation may still be independent of t, i.e. stationary.) For an ergodic process the autocorrelation is found 

from any sample function by 

T/2 

= E{x(t)x(t + } = lim 	f 	x i(t)x i(t + t)dt. 	 (299) 
-T/2 

Note that in (298) and (299), under the assumption of ergodicity, the mean and autocorrelation can be 

found without knowledge of the probability density functions. This is the great advantage in analysing 

ergodic stochastic processes and this assumption is made whenever feasible. 
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IX. Additional Comments and Clarifications 

9.1 Comments on Chapter III 

9.1.1 Complex Q 

It appears in the text that a correction factor Q in the Morse's approximation (79) is a complex 

quantity if 	is a complex number 

Pd f3 2 	Pd ra2 _Jo% = 	= --e 
'e 	4 	')'(in 	I%VI Yn  

However, for any real normalized impedance  L, this value can be interpreted as a conventional 

quality factor defined in a way similar to (97) 

1 	Pr — = — 
Q 	cl.)U 

where U = E o lEzorab is the stored energy in the cavity and Pr  is the active loss in the walls. We suggest 

that the "complex" Q, can be defined as follows: 

1 

 

'r +./Xw Pr+..1X,v 	1 	.X‘v 	1 	. 1 —— +j— = — + = j-
coU + 	coU 	Q coU Q Qw  

Here, X w  represents the reactive power stored in the walls. Thus, the real part of the complex  1 /Q  is just 

the inverse of the conventional Q while its imaginary part can be considered as a ratio of the reactive 

power stored in the walls with respect to the reactive power stored in the cavity. 

9.1.2 How small  L  should be? 

Our approximation produces better results when the correction factor is smaller, i.e. 

(300) 

(301) 

(302) 

However, this expression approaches infinity at the rate 
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d r = g;-, 

assuming that all other parameters are fixed. This explains why our approximation produces better results 

for lager cavities. 

(304) 
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