Identifying priority areas to enhance monitoring of cetaceans in the Northwest Atlantic Ocean

Catalina Gomez, Christine M. Konrad, Angelia Vanderlaan, Hilary B. Moors-Murphy, Emma Marotte, Jack W. Lawson, Amy-Lee Kouwenberg, César Fuentes-Yaco, Alejandro Buren

Fisheries and Oceans Canada
Bedford Institute of Oceanography
P.O. Box 1006

Dartmouth, Nova Scotia
B2Y 4A2

Canadian Technical Report of Fisheries and Aquatic Sciences 3370

Canadian Technical Report of Fisheries and Aquatic Sciences

Technical reports contain scientific and technical information that contributes to existing knowledge but which is not normally appropriate for primary literature. Technical reports are directed primarily toward a worldwide audience and have an international distribution. No restriction is placed on subject matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences.

Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts.

Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service, Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name was changed with report number 925.

Rapport technique canadien des sciences halieutiques et aquatiques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un public international et ils sont distribués à cet échelon. II n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports techniques peuvent être cités comme des publications à part entière. Le titre exact figure au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la base de données Résumés des sciences aquatiques et halieutiques.

Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre.

Les numéros 1 à 456 de cette série ont été publiés à titre de Rapports techniques de l'Office des recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de Rapports techniques de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de Rapports techniques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 925.

Canadian Technical Report of Fisheries and Aquatic Sciences 3370

2020

IDENTIFYING PRIORITY AREAS TO ENHANCE MONITORING OF CETACEANS IN THE NORTHWEST ATLANTIC OCEAN

Catalina Gomez, Christine M. Konrad, Angelia Vanderlaan, Hilary B. Moors-Murphy, Emma Marotte, Jack W. Lawson, Amy-Lee Kouwenberg, César Fuentes-Yaco, Alejandro Buren

Fisheries and Oceans Canada
Bedford Institute of Oceanography
Dartmouth, Nova Scotia
B2Y 4A2
© Her Majesty the Queen in Right of Canada, 2020.
Cat. No. Fs97-6/3370E-PDF ISBN 978-0-660-34728-8

Correct citation for this publication:
Gomez, C., Konrad, C.M., Vanderlaan, A., Moors-Murphy, H.B., Marotte, E., Lawson, J., Kouwenberg, A-L., Fuentes-Yaco, C., Buren, A. 2020. Identifying priority areas to enhance monitoring of cetaceans in the Northwest Atlantic Ocean. Can. Tech. Rep. Fish. Aquat. Sci. 3370: vi + 103 p.

Table of Contents

ABSTRACT v
RÉSUMÉ vi
INTRODUCTION 1
MATERIALS AND METHODS 2
The NWAO study area 2
Cetacean data 2
Environmental data 5
Implementing SDMs to model habitat suitability 10
Evaluation of MaxEnt model performance 11
Sampling bias correction 12
Spatial correlation of habitat suitability 14
Consolidated priority areas to target monitoring efforts 14
RESULTS 18
Predictor variable contributions and model performance 18
Sightings maps and predicted habitat suitability maps 18
Interpreting results from this report 19
Blue whale 21
Fin whale 22
Sei whale 24
Minke whale 26
Humpback whale 28
Sperm whale 31
Sowerby's beaked whale 33
Killer whale 34
Long-finned pilot whale 35
Atlantic white-sided dolphin 38
Bottlenose dolphin 40
Short-beaked common dolphin 41
Risso's dolphin 43
Striped dolphin 44
White-beaked dolphin 45
Harbour porpoise 47
DISCUSSION 50
SDM results: indicators of priority areas for increased cetacean monitoring efforts 50
Interpreting results for marine spatial planning purposes 51
Recommendations for future work 53
ACKNOWLEDGMENTS 56
LITERATURE CITED 57
APPENDIX - SPECIES DISTRIBUTION MODEL RESULTS 66

Abstract

Gomez, C., Konrad, C.M., Vanderlaan, A., Moors-Murphy, H.B., Marotte, E., Lawson, J., Kouwenberg, A-L., Fuentes-Yaco, C., Buren, A. 2020. Identifying priority areas to enhance monitoring of cetaceans in the Northwest Atlantic Ocean. Can. Tech. Rep. Fish. Aquat. Sci. 3370: vi + 103 p.

Species Distribution Models (SDM) were used to predict seasonal suitable habitat of cetaceans during spring (2 species), summer (10 species), and autumn (7 species) in eastern Canadian waters off Nova Scotia, and Newfoundland and Labrador. Available cetacean sightings data from 1975-2015 was compiled from the Department of Fisheries and Oceans Canada (DFO), the Ocean Biogeographic Information System (OBIS), the North Atlantic Right Whale Consortium (NARWC), the Whitehead Lab at Dalhousie University, and the Environment and Climate Change Canada (Canadian Wildlife Service) Eastern Canada Seabirds at Sea (ECSAS) program. As proxies for prey availability, we selected five predictor environmental variables for our SDM: ocean depth, compound topographic index, sea surface temperature, areas of persistently high chlorophyll-a concentration, and regional chlorophyll-a magnitude. Habitats with high suitability in this report are interpreted as areas where cetacean monitoring efforts may be prioritized, and results can help direct future survey efforts. While the SDM developed are informative, this report also illustrates that our results do not necessarily provide a fully accurate representation of the current distribution of cetaceans in the region and thus their use in marine spatial planning processes should be accompanied by complimentary approaches such as acoustic and visual validation of the SDM results as well as additional monitoring and modeling efforts. This study represents a significant initiative in eastern Canada to highlight key areas for cetacean monitoring efforts in waters off Nova Scotia, and Newfoundland and Labrador. Future efforts will focus on improving these models to facilitate the inclusion of cetaceans in marine spatial planning processes that are currently underway.

RÉSUMÉ

Gomez, C., Konrad, C.M., Vanderlaan, A., Moors-Murphy, H.B., Marotte, E., Lawson, J., Kouwenberg, A-L., Fuentes-Yaco, C., Buren, A. 2020. Identifying priority areas to enhance monitoring of cetaceans in the Northwest Atlantic Ocean. Can. Tech. Rep. Fish. Aquat. Sci. 3370: vi + 103 p .

On a utilisé des modèles de répartition des espèces afin de prédire l'habitat convenable saisonnier de cétacés pendant le printemps (deux espèces), l'été (dix espèces) et l'automne (sept espèces) dans les eaux de l'est du Canada, au large de la NouvelleÉcosse et de Terre-Neuve-et-Labrador. On a compilé les données d'observation de cétacés recueillies de 1975 à 2015 par le ministère des Pêches et des Océans (MPO), le Système d'information biogéographique des océans (OBIS), le North Atlantic Right Whale Consortium (NARWC), le laboratoire Whitehead de l'Université Dalhousie et le programme Suivi des oiseaux de mer de l'est du Canada (SOMEC) d'Environnement et Changement climatique Canada (Service canadien de la faune). À titre d'indicateurs de la disponibilité de proies, on a choisi cinq variables environnementales prédictives pour les modèles de répartition des espèces utilisés, soit la profondeur de l'océan, l'indice topographique composé (CTI), la température à la surface de la mer, la superficie des zones où la concentration de chlorophylle a est toujours élevée, et l'ampleur de la concentration régionale de chlorophylle a . On considère que les milieux hautement convenables cernés dans le présent rapport sont des zones qui pourraient être prioritaires en matière d'efforts de suivi des cétacés. Les résultats figurant dans ce rapport permettront d'orienter les futures activités de relevé. Les modèles de répartition des espèces conçus sont informatifs, mais le rapport illustre également que les résultats obtenus ne fournissent pas nécessairement une représentation entièrement exacte de la répartition actuelle des cétacés dans la région. Par conséquent, l'utilisation de ces modèles dans le cadre de processus de planification spatiale marine devrait être combinée à des approches complémentaires, comme des activités de validation visuelle et acoustique des résultats issus des modèles, ainsi que des activités de suivi et de modélisation supplémentaires. L'étude en question représente une importante initiative menée dans l'est du Canada, qui vise à cerner les zones clés pour les activités de suivi des cétacés dans les eaux au large de la Nouvelle-Écosse et de Terre-Neuve-et-Labrador. Les futures activités, qui seront axées sur l'amélioration des modèles, permettront de faciliter l'inclusion des cétacés dans les processus de planification spatiale marine en cours.

INTRODUCTION

Cetacean effort-based surveys (e.g., line-transect surveys) have been conducted in only a quarter of the world's ocean surface (Kaschner et al. 2012), thus knowledge on cetacean distribution and density in many areas is generally limited. In Canada, the distribution and seasonal occurrence of cetaceans in most of the Northwest Atlantic Ocean (NWAO; waters off Nova Scotia, and Newfoundland and Labrador) is poorly understood (Breeze et al. 2002, Gomez and Moors-Murphy 2014). There is generally limited information available from effort-based surveys in most areas of eastern Canada (e.g., Lawson and Gosselin 2009, DFO 2019). This knowledge gap limits our ability to effectively monitor, manage and mitigate the impacts of human activities on cetacean species occurring in eastern Canadian waters, and has important implications for the monitoring and recovery of species at risk. Lack of information on cetacean distribution has limited their inclusion in network analyses related to the identification and delineation of Ecologically and Biologically Significant Areas (EBSAs) and Marine Protected Areas (MPA) in eastern Canada (e.g., King et al. 2013, DFO 2014). Therefore, information on cetaceans has been under-represented when identifying areas for protection.

During past DFO Canadian Science Advisory Secretariat (CSAS) processes related to spatial planning off eastern Canada, Species Distribution Models (SDMs) were recommended as an important tool for combining available opportunistic cetacean sightings data and relevant environmental data to predict suitable habitat for these species (King et al 2013). Cetacean sightings and environmental predictors have successfully been used in the development of SDMs for cetaceans in other regions (Ainley et al. 2012, Gregr 2011, Pendleton et al. 2012, Bombosch et al. 2014, Roberts et al. 2016). Consequently, a series of efforts prior to this report were conducted to implement SDM for a selection of cetacean species. A first effort by Gomez and MoorsMurphy (2014) implemented Maximum Entropy (MaxEnt) models for northern bottlenose (Hyperoodon ampullatus) and Sowerby's beaked whales (Mesoplodon bidens) using five environmental variables: ocean depth, seafloor slope, seafloor aspect, sea surface temperature and Chlorophyll-a concentration. This first effort provided significant recommendations to further refine these approaches, including the inclusion of a more comprehensive dataset of cetacean sightings and improved environmental predictors. Gomez et al. (2017) implemented these recommendations and proposed a SDM framework to update the datasets and methods as part of an iterative, adaptive process to identify suitable habitat for cetaceans. They implemented this framework to predict priority areas for enhanced blue whale (Balaenoptera musculus) and northern bottlenose whale monitoring efforts in eastern Canada. Cetacean sighting records were compiled to provide information on cetacean occurrence, and broad-scale environmental data were assembled, including datasets acquired via satellite remote sensing. The modeling framework and datasets compiled by Gomez et al. (2017) were used by Moors-Murphy et. al (2019) to predict suitable habitat for blue whales. The SDM outputs from Moors-Murphy et al. (2019), in combination with additional sources of information, were then used to identify important blue whale habitat in the Northwest Atlantic (Lesage et al. 2018).

Building upon these previous efforts in the NWAO, this report developed SDMs to predict seasonal suitable habitat for several cetacean species in the NWAO, with the goal of identifying and providing recommendations on areas where increased cetacean monitoring should be prioritized. This paper follows similar methods proposed by Gomez et al. (2017), while expanding the number of species considered, updating the boundaries of the study area, and improving the modelling framework. Further refining and validation of the SDM results will be necessary to continue the process of understanding the distribution of cetaceans in eastern Canada.

MATERIALS AND METHODS

The NWAO study area

The study area is situated in the Northwest Atlantic, encompassing waters off Nova Scotia, and Newfoundland and Labrador in eastern Canada. The NWAO comprises a continental shelf of varying breadth, characterized by complex topography including shallow banks, basins and submarine canyons, and bounded by convoluted coastlines and deep ocean basins (Breeze et al. 2002, Zwanenburg et al. 2002). In this study, the NWAO was delineated in the north by the northern tip of Labrador and in the south by the Fundian (or Northeast) Channel (Figure 1). Shallow coastal areas (waters $<50 \mathrm{~m}$ depth) as well as the enclosed areas of Bay of Fundy and the Gulf of St Lawrence are characterized by very different ecosystem dynamics compared with the rest of the NWAO (Araújo \& Bundy 2012, Zwanenburg et al. 2002) and were not considered in this study. Very deep waters ($>3000 \mathrm{~m}$) were also excluded from the study area as there were very few sightings off the continental shelf .

Cetacean data

This manuscript follows the proposed framework and modelling procedures developed by Gomez et al. (2017). This study used long-term cetacean catch and sightings data available and assembled in Gomez et al. (2017) from several sources: sightings databases from the Department of Fisheries and Oceans Canada (DFO) Maritimes region (MacDonald et. al. 2017), and Newfoundland and Labrador regions, the Ocean Biogeographic Information System (OBIS; http://www.iobis.org/), the North Atlantic Right Whale Consortium (NARWC; http://www.narwc.org/), the Whitehead Lab at Dalhousie University (http://whitelab.biology.dal.ca/), and the Environment and Climate Change Canada (Canadian Wildlife Service) Eastern Canada Seabirds at Sea (ECSAS) program (Gjerdrum et al. 2012). The data obtained from DFO, OBIS and NARWC are compilations of sightings from a variety of sources including governmental, non-governmental organizations, academia and industry, using aerial- and vesselbased platforms. Note that sightings data from these sources are not always effort corrected and distribution patterns based on these opportunistic sightings data are biased by when and where survey activities were conducted.

Locations of cetacean sightings (or catches, in some cases) from all sources were merged. Quality control checks included discarding all records outside of our study area and removing redundant records (identical species, day, month, latitude and longitude). The dataset does not include dead animal, stranding, entanglement or entrapment data.

The dataset encompasses records obtained during the whaling (catches or sightings, prior to 1975) and post-whaling periods (sightings only, 1975-2015). However, for all subsequent analyses in this study, only sightings of free-swimming whales, obtained during the post-whaling period (1975-2015), were used (Figure 1; $N=110,890$).

The data used in this study were extracted from the various databases listed above in 2016 and do not reflect any updates or corrections to the databases that have occurred since that time. The majority of sighting records extracted were from summer (June to August; $\mathrm{N}=76,399$), followed by autumn (September to November; $\mathrm{N}=$ 29,464), spring (March to May; $\mathrm{N}=4,113$), and winter (December to February; $\mathrm{N}=$ 914). Unfavorable weather and reduced visual effort in winter, spring, and autumn likely account for smaller number of sighting records in these seasons compared to summer.

Figure 1. Sightings of free-swimming cetaceans collected during the post-whaling period ($1975-2015$). A total of 110,890 records are contained within the study area (red line). Sources: Department of Fisheries and Oceans Canada (DFO, Maritimes Region and Newfoundland and Labrador Region databases), the North Atlantic Right Whale Consortium (NARWC), the Ocean Biogeographic Information System (OBIS), the Whitehead Lab at Dalhousie University, and the Environment and Climate Change Canada (Canadian Wildlife Service) Eastern Canada Seabirds at Sea (ECSAS) program.

Environmental data

A fundamental component of SDM is the selection of a suite of predictor variables that exhibit a spatial and temporal relationship with the location records for the species of interest, and thus, are useful to predict suitable habitat. Information on prey is an ideal predictor variable (e.g. Pendleton et al. 2012); however, information on the spatial and temporal distribution of cetacean prey is limited. Thus, as in previous studies with limited prey data (e.g., Gregr 2011, Roberts et al. 2016), we selected a suite of environmental variables that likely serve as proxies for prey availability (Table 1):

1) Ocean depth (Figure 2)
2) Compound Topographic Index (CTI; Figure 2)
3) Sea Surface Temperature (SST; Figure 3)
4) Persistence of high chlorophyll-a concentration (CHL pers; Figure 4)
5) Regional chlorophyll-a concentration magnitude (CHLmagn; Figure 5)

Areas of persistently high chlorophyll-a concentration (CHL $L_{\text {pers; }}$; Figure 4) and regional chlorophyll-a magnitude (CHLmagn; Figure 5) were derived by identifying and mapping phytoplankton-rich zones using satellite imagery to provide an indication of primary productivity (see Fuentes-Yaco et al. 2015 and Gomez et al. 2017 for a detailed description of methods). The study area was subdivided into neritic ($50 \mathrm{~m}-600 \mathrm{~m}$ depth) and oceanic (> 600m depth) regions. These regions were further subdivided into north and south sections following the boundaries of divisions 3 and 4 of the Northwest Atlantic Fisheries Organization (NAFO, Figure 4), as well as distinct bathymetric and hydrographic features (Devred et al. 2007, 2009, Longhurst 2007). Each one of these four large geographical regions has unique marine communities and food web systems (Devred et al. 2007, 2009, Longhurst 2007, NAFO 2014). For each of the regions, and for each season, we computed CHLpers and CHLmagn. For 2003-2014, CHLpers was calculated as a percentage of weekly composite images that a pixel's value was above the region's median value (in the same composite image) plus a half standard deviation. CHLmagn was the average of the median chlorophyll-a concentrations for the weekly composite images. To account for the time-lag for primary productivity to transfer to top predators (Croll et al. 2005, Jaquet 1996, Wong 2012), the SDMs from a given season used CHL data from that season ($\mathrm{CHL}_{\text {pers }}$ and CHLmagn) and for the season prior (lagged CHLpers and CHLmagn). For example, the spring SDMs used CHL data for spring and winter.

Shallow coastal areas in the ocean (<50m depth) typically contain a mixture of a constituents with different optical properties such as phytoplankton, other suspended particulates and yellow substances (Morel \& Prieur 1977). In addition, shallow waters are also influenced by the depth of the water column, and by the nature of the bottom. Consequently, these areas require detailed and customized algorithms to identify concentrations of chlorophyll-a (IOCCG 2000), which was not applied in this study. Thus shallow coastal areas were excluded from the analyses.

Figure 2. Physical environmental data used to predict suitable habitat for cetaceans in the study area (outlined in black): (A) ocean depth and (B) compound topographic index (CTI). CTI is derived from ocean depth (Evans et al. 2014) and represents peaks (high values of CTI), basins (low values), and flat surfaces (intermediate values; Gessler et al. 1995, Moore et al 1991, Andersen et al. 2013).

Figure 3. Average sea surface temperature (${ }^{\circ} \mathrm{C}$) during spring, summer and autumn, used to predict suitable habitat for cetaceans in the study area (outlined in black).
Seasonal climatologies were derived from semi-monthly composites for 2003 to 2014.

Figure 4. Persistence of high chlorophyll-a concentration (CHL ${ }_{\text {pers }}$) during spring, summer, autumn and winter, used to predict suitable habitat for cetaceans in the study area (outlined in black). Black lines show the subdivision of the study area into regions: neritic ($50 \mathrm{~m}-600 \mathrm{~m}$ depth) and oceanic regions ($>600 \mathrm{~m}$ depth), which were further divided into North and South (see Figure 5). CHLpers values were calculated as a percentage of time periods that the pixel's value was above the region's median value (in the same time period) plus a half standard deviation (see Fuentes-Yaco et al. 2015 for detailed description of the methods). Seasonal climatologies were derived from weekly composites for 2003 to 2014 (see Fuentes-Yaco et al. 2015).

Figure 5. Regional chlorophyll-a concentration magnitude (CHLmagn) during spring, summer, autumn and winter, used to predict suitable habitat for cetaceans in the study area (outlined in black). These values correspond to the average of the median chlorophyll-a concentration calculated to obtain the transformed chlorophyll indicators. Seasonal climatologies were derived from weekly composites for the 2003 to 2014 period (see Fuentes-Yaco et al. 2015). The study area was subdivided into neritic (between 50 m and 600 m depth) and oceanic ($>600 \mathrm{~m}$ depth). Neritic and oceanic regions were further divided into North and South.

Table 1. Environmental layers selected to predict the distribution of cetaceans in the NWAO. Seasonal values were derived from weekly composites for CHLpers and CHLmagn, and from semi-monthly composites for SST, for 2003-2014. All environmental layers were processed to have the same geographic extent and cell size (1.5 km), and converted to an ASCII raster grid format.

Variable	Units	Temporal resolution	Native Spatial resolution	Source
Ocean depth	metres	Static	1 km	Oceans and Coastal Management Division, Maritimes Region, DFO, Bedford Institute of Oceanography
Compound topographic index (CTI)	unitless	Static	1 km	Calculated using the Geomorphometry and Gradient Metrics Toolbox version 2.0 in ArcGIS (Evans et al. 2014)
Sea surface temperature (SST)	degrees Celsius	Seasonal	1.5 km	Derived from images from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Aqua satellite
Persistence of high chlorophyll-a concentration $\left(\mathrm{CHL}_{\text {pers }}\right)$	percentage	Seasonal	1.5 km	Derived from images from MODIS Aqua satellite (FuentesYaco et al. 2015)
Regional chlorophyll-a concentration ($\mathrm{CHL}_{\text {magn }}$)	milligrams/ metre ${ }^{3}$	Seasonal	1.5 km	Derived from images from MODIS Aqua satellite (FuentesYaco et al. 2015)

All environmental layers were processed to have the same geographic extent and cell size (1.5 km), and converted to an ASCII raster grid format using ArcGIS 10. Before running SDMs, we investigated correlation between the environmental variables, using the variance inflation factor (VIF; Zuur et al. 2010). An environmental variable's VIF is a measure of collinearity - how much of that variable's variation is explained by all other variables. In accordance with Zuur et al. (2010), we considered VIF values less than three to denote that the environmental variables do not exhibit collinearity and thus are relevant to use in the SDMs. CHLmagn was not included in the VIF calculations as it is comprised of only one value per unique region (Figure 5).

Implementing SDMs to model habitat suitability

We used SDMs to integrate information on the location of cetaceans with environmental variables to predict areas of suitable habitat, which are to be interpreted as priority areas for monitoring species in the NWAO. We used MaxEnt software (version 3.3.3k; Phillips et al. 2006), implemented using the 'maxent' function from the R package 'dismo' (Hijmans et al. 2017), to build each SDM because this tool performs well compared to other approaches when using species presence-only data (sightings data without associated effort) and when sample size is relatively small (Elith et al.

2006, Pearson et al. 2007, Tittensor et al. 2009). In multiple studies, MaxEnt has been used to exploit opportunistically collected data that lacks true absences, to predict important cetacean habitat (e.g., Ainley et al. 2012, Gregr 2011, Pendleton et al. 2012, Bombosch et al. 2014).

MaxEnt incorporates the presence locations for the species being modelled and a set of environmental data predictors across the study area (subsequently referred to as the landscape). The presence locations used include only one record of the target species per environmental grid cell. For each grid cell across the study area, the model calculates a probability of presence of an individual of the species of interest in that cell, relative to other cells in the landscape (Phillips et al. 2006, Merow et al. 2013), referred to as a relative occurrence rate (ROR). However, when assumptions of random sampling are not met, as is the case in our study, these ROR values are better interpreted as indices of predicted habitat suitability (Merow et al. 2013). To determine ROR values, MaxEnt contrasts environmental conditions at locations of species presence to conditions at a sample of background point locations within the landscape (Fithian \& Hastie 2013). Background points are randomly selected from the landscape, unless a list of background points is supplied (for details, see section below: 'background points based on non-TGS').

To allow comparison between results for different species, we used raw ROR values to calculate indices that ranged between 0 and 100 for the grid cells; the value assigned to each grid cell was the sum of that pixel's raw ROR and the RORs of all pixels of equal or lesser values, multiplied by 100. We used this cumulative index to generate habitat suitability maps as indicators of priority areas to target future monitoring efforts. High values indicate areas of predicted suitable habitat, where the target species is most likely to occur and thus these areas should be considered priority monitoring areas (Merow et al. 2013). The MaxEnt run settings are provided in Table 2.

Evaluation of MaxEnt model performance

The Area Under the Receiver Operating Curve (AUC) metric was used to evaluate the ability of the SDMs to discriminate correctly between sites associated with cetaceans' presence and the sample of points from the landscape (Phillips et al. 2006). For this, we selected the cross-validation option in MaxEnt as recommended in Merow et al. (2013) (Table 2) and we used the AUC to investigate the probability that a randomly-chosen cetacean presence location was ranked higher than a randomlychosen location in the landscape. An AUC value close to 1.0 indicates that the SDM has good discriminatory power; a value less than or equal to 0.5 indicates that the model prediction is no better than random (Fielding \& Bell 1997).

Table 2. MaxEnt run settings used to build SDMs for cetaceans in the NWO. Settings were selected following Phillips et al. (2006) and Merow et al. (2013).

Variable	Setting	Comments		
Random Seed	Yes	A sample of point locations from the landscape to represent the environmental conditions in the study area, selected randomly or based on a supplied list of non- target group species sightings, if applicable.		
Max Number of Background Points	10000	Reduces model over-fitting.		
Regularization Multiplier	1	Allows the model adequate opportunity for convergence.		
Output Grids	None			
Maximum Iterations	5000	0.00001		Convergence
:---				
Threshold				

		Assesses uncertainty in model predictions; it incorporates all available sightings, making better use of smaller datasets. Occurrence data is randomly split into a number Replicated Run equally-sized groups, and models are created leaving out each group in turn. The left-out groups are then used Type
for model evaluation.		

Sampling bias correction

Bias in the sampling effort within a study area can influence SDMs reliability and quality (Bystriakova et al. 2012, Fourcade et al. 2014). There are two types of sampling bias in this study: 1) cetacean records may be overrepresented in regions with high sampling efforts (e.g. in the Gully MPA or Bay of Fundy, where dedicated cetacean fieldwork has occurred for many years); and 2) cetacean records in suitable habitat may be absent due to lack of survey effort. We cannot correct for sampling biases directly, because most cetacean sightings gathered for this study were from opportunistic surveys and we do not have a measure of survey effort. Instead, we applied two methods to indirectly account for these biases: 1) mixed random-systematic sampling of target group species (TGS) to account for overrepresentation in areas of high effort and 2) using background points based on records of non-target group species (non-TGS) to
account for absences due to lack of effort (Gomez et al. 2017). These methods, as well as the SDM strategy used in this study, are summarized in Figure 6.

Figure 6. Summary of the SDM approach used to integrate information on the location of cetaceans and environmental variables to predict suitable habitat and priority monitoring areas for cetaceans in the NWAO.

Mixed random-systematic sampling of TGS - We refer to the cetacean species being modeled as the TGS (Tables 3 to 5). MaxEnt discards redundant TGS records that occur in the same grid cell of the environmental predictor raster layers (1.5 km resolution); however, it may still over-represent regions with high sampling efforts (Kadmon et al. 2004), especially if those regions of high effort are larger than the resolution of the environmental predictors. Thus, we replicated the SDMs after further reducing spatial aggregation of records; for each applicable season, we randomly subsampled one TGS record per grid cell on a 2.5 km and on a 5 km grid (e.g., Fourcade et al. 2014) and generated a SDM for each of these subsampled sets of records (Table 4). These models were in addition to a SDM with no subsampling (in all models, only one record of the target species within any given environmental grid cell
was included). For each season, SDMs were only built for species with at least 450 records (prior to subsampling) in that season as model implementation encountered errors at sample sizes below this count. For all species, sample sizes in winter were too low to implement SDMs (Table 3 and Table 4).

Background points based on non-TGS - When sampling effort across the study area cannot be reliably estimated, but many sightings of species other than one being modeled are available, these sightings can guide the selection of background points (Merow et al. 2013). If these other species, hereafter termed non-TGS, were observed using the same techniques as the TGS, then, based on the assumption that the TGS would have been observed if present, non-TGS sightings can serve as surveyed points (Merow et al. 2013). By selecting background points from surveyed locations, we exclude areas with no known survey effort from the landscape used to train the model. In this study, non-TGS comprised all free-swimming cetaceans except the TGS. NonTGS includes cetaceans that were not identified to species (e.g. unknown dolphin). For each combination of species and season that we analysed, we generated three lists of 'surveyed' background points (corresponding to environmental predictor variable grid cells): generally, points that were within a $1 \mathrm{~km}, 2.5 \mathrm{~km}$ or 5 km radius of a non-TGS record (Table 5). We will subsequently refer to these lists of background grid cells as bias maps. We created models based on each of these bias maps and one where background points were selected without reference to non-TGS records, to examine the effect of how strictly the landscape is restricted.

SDMs were generated for 12 species in each season for which these species had sufficient sample size (Table 3), using each combination of TGS subsampling resolution and background points (Tables 4 and 5). In this document we present results for ten species; North Atlantic right whales and northern bottlenose whales were not included as independent SDM studies are underway for these species.

Spatial correlation of habitat suitability

To assess the correspondence between all the habitat suitability maps generated for each species, we assessed their spatial correlation using the Pearson's rank correlation coefficient (r) (Quinn \& Keough, 2002).

Consolidated priority areas to target monitoring efforts

SDM quantitative outputs were divided in 4 arbitrary categories in Gomez et al. 2017: high (100 to 60%), moderate (60 to 40%), low (40 to 10%) and very low ($<10 \%$) suitability. When appropriate, areas of high suitability (60-100\%) from all scenarios of sampling bias correction (bias maps and subsampling) may be combined into one map per species. Consolidated outputs in this report indicate priority areas where monitoring efforts may be targeted.

Table 3. Counts of sighting records for free-swimming cetacean species observed in the study area from 1975 to 2015, by season. Seasons for which a given species had enough records ($n>450$) to implement the SDM are bolded and highlighted in green. Counts are prior to any subsampling or the removal of additional records of the same species within the same environmental grid cell. *Northern bottlenose whales and North Atlantic right whales, highlighted in grey, were not included in this report as independent efforts are underway for those species.

Table 4. Counts of sighting records for the target cetacean species, by season, used in the Species Distribution Models. Counts represent the number of sightings after subsampling (if any) and the removal of additional records of the same species within the same environmental grid cell. The counts are shown as a range in some cases as a result of randomization in the subsampling process. Counts include only free-swimming cetaceans observed in the study area from 1975 to 2015.

		Subsampling grid		
Season	Species	None	$\mathbf{2 . 5} \mathbf{~ k m}$	$\mathbf{5} \mathbf{~ k m}$
Spring	Humpback whale	355	$333-335$	$312-313$
Summer	Long-finned pilot whale	542	$416-421$	$363-366$
	Fin whale	2308	$1908-1923$	$1471-1477$
	Sei whale	434	$399-401$	$327-329$
	Minke whale	1727	$1429-1436$	$1093-1102$
	Humpback whale	3304	$2730-2757$	$2073-2078$
	Sperm whale	582	$529-532$	$451-453$
	Long-finned pilot whale	2229	$1930-1940$	$1643-1644$
	Atlantic white-sided dolphin	1811	$1510-1530$	$1185-1192$
	Short-beaked common dolphin	1073	$986-992$	$856-858$
	White-beaked dolphin	455	$431-433$	$383-387$
	Harbour porpoise	2329	$1569-1584$	$868-883$
Autumn	Fin whale	1229	$982-990$	$710-715$
	Minke whale	661	$563-567$	$446-447$
	Humpback whale	1685	$1450-1453$	$1154-1157$
	Long-finned pilot whale	702	$620-625$	$567-569$
	Atlantic white-sided dolphin	6997	$587-594$	$486-487$
	Short-beaked common dolphin	525	$494-496$	$451-454$
	Harbour porpoise	1117	$745-747$	$401-405$

Table 5. Number of background points used in the SDMs for each target group species (TGS) by season. A maximum of 10,000 background points (Table 2) were randomly selected from environmental predictor variable grid cells in the study area with records of non-target group cetacean species (non-TGS) observed in each season from 1975 to 2015. These background points were used to create a bias map of 'surveyed' cells for the SDMs, at three different resolutions (Figure 6). For SDMs without a bias map, 10,000 background points were randomly selected from across the entire study area, uninformed by non-TGS observations. At 1 and 2.5 km bias map resolutions, less than 10,000 background points were used because a smaller selection of predictor variable grid cells overlap with a non-TGS observation at those resolutions.

		Bias map resolution		
Season	Target group species	$\mathbf{1} \mathbf{~ k m}$	$\mathbf{2 . 5} \mathbf{~ k m}$	$\mathbf{5 k m}$
Spring	Humpback whale	558	3477	10000
	Long-finned pilot whale	550	3329	10000
Summer	Fin whale	5073	10000	10000
	Sei whale	5333	10000	10000
	Minke whale	5145	10000	10000
	Humpback whale	4797	10000	10000
	North Atlantic right whale	5141	10000	10000
	Sperm whale	5297	10000	10000
	Long-finned pilot whale	4944	10000	10000
	Atlantic white-sided dolphin	5111	10000	10000
	Short-beaked common dolphin	5187	10000	10000
	White-beaked dolphin	5316	10000	10000
	Harbour porpoise	4890	10000	10000
Autumn	Fin whale	2489	10000	10000
	Minke whale	2530	10000	10000
	Humpback whale	2325	10000	10000
	North Atlantic right whale	2336	10000	10000
	Long-finned pilot whale	2458	10000	10000
	Atlantic white-sided dolphin	2489	10000	10000
	Short-beaked common dolphin	2489	10000	10000
	Harbour porpoise	2401	10000	10000

RESULTS

Predictor variable contributions and model performance

As proxies for prey availability, we selected five predictor environmental variables for our SDMs: ocean depth, compound topographic index, sea surface temperature, areas of persistently high chlorophyll-a concentration, and regional chlorophyll-a magnitude. These environmental variables did not exhibit collinearity (VIFs < 3; Table 6) and thus all were used in the SDMs.

There were sufficient sighting records to produce SDMs for two cetacean species during spring, ten during summer, and seven during autumn (excluding North Atlantic right whales and northern bottlenose whales; Table 3). Mean AUC values in all scenarios of sampling bias correction were larger than 0.58 , indicating that all model predictions are better than random, and often AUC values were greater than 0.70 , indicating that many SDMs have good discriminatory power (Tables 7-25).

SDM results using different bias maps and subsampling grids are reported in Figures A1-A19. As observed in Gomez et al. (2017), in general, maps that did not incorporate a bias file and included the total set of TGS sighting records (no subsampling) predicted a more conservative proportion of priority habitat compared with models that did utilize the bias files, and subsampled cetaceans records, which illustrate a more conservative prediction. This is represented by low correlation values in the different scenarios of bias correction (Table A1-A20). We consider all outputs from these scenarios of sampling bias correction to be reasonable predictions in which to target monitoring efforts. We therefore used a precautionary approach by combining outputs from all scenarios of sampling bias correction to indicate consolidated priority areas where monitoring efforts may be targeted (Figures 8-12, 15,16,18, 21, 22).

The relative contribution of each environmental variable to the SDM are presented in Tables 7-25. Mean relative contributions of the predictor environmental variables to these SDMs varied by species and season. Ocean depth, SST and summer CHLpers often contributed the most to the SDM (Tables 7-25). However, the relative contributions of environmental predictors varied substantially in some cases, depending on the bias map and subsampling grid used (Tables A1-A19).

Sightings maps and predicted habitat suitability maps

Given that all models predictions are better than random, it was considered appropriate to combine areas of high suitability (60-100\%) from all scenarios of sampling bias correction (bias maps and subsampling) across all seasons into one map per species. These consolidated outputs indicate priority areas where monitoring efforts may be targeted. For each species, maps of sightings and predicted areas of high priority are presented in Figures 7-22. Maps of sightings are accompanied by information on the species' residency in the NWAO (migratory or resident), conservation status, and known prey preferences (as reviewed by Gomez and Moors-Murphy 2014; see Appendix 1 and 2 in that document).

The following information summarizes general patterns in the predicted distribution of cetaceans for all scenarios of sampling bias correction:

- Priority areas for monitoring fin whales (Figure 8) and minke whales (Figures 10) were, in general, predicted across most of the study area when accounting for all different scenarios of sampling correction, although the deep water areas and Flemish cap had overall lower predictions.
- Priority areas for monitoring sei whales included primarily the Scotian Shelf, Bay of Fundy, north area of the Labrador shelf, and the Flemish cap (Figure 9).
- Priority areas for monitoring humpback whales were predicted on the Scotian Shelf, the Newfoundland Shelf, and a portion of the Labrador shelf (Figure 11).
- Priority areas for monitoring sperm whales included primarily deep water of the Scotian, Newfoundland and Labrador shelf edges, and a portion of the Bay of Fundy (Figure 12).
- Priority areas for monitoring long-finned pilot whales were predicted in the Scotian Shelf, and deep water areas in the offshore margins of the Newfoundland and Labrador shelves, including several submarine canyons and basins (Figure 15).
- Priority areas for monitoring Atlantic white-sided dolphins included the Scotian Shelf, the Bay of Fundy, the Newfoundland shelf, and deeper waters of the Labrador shelf and the Laurentian Channel (Figure 16).
- Priority areas for monitoring short-beaked common dolphins included the Scotian Shelf, deep water areas in the offshore margins of the Scotian Shelf, and south of the Newfoundland shelf (Figure 8). Predictions were very low for the Labrador region.
- Priority areas for monitoring white-beaked dolphins included the Bay of Fundy, the Newfoundland and Labrador shelves, and excluded deep-water areas of the shelf edges in most cases (Figure 21).
- Priority areas for monitoring harbour porpoises included, in particular, the Bay of Fundy and the northern area of the Scotian Shelf, Newfoundland shelf and Labrador shelf edge (Figure 22).

Interpreting results from this report

This study represents an important initiative in eastern Canada to highlight key areas for cetacean monitoring in waters off Nova Scotia, and Newfoundland and Labrador. High priority areas in this report are interpreted as areas where cetacean monitoring efforts should be prioritized. In this context, SDM results can direct future
survey and monitoring efforts for particular cetacean species (see also Gomez et al. 2017).

Our predictions do not represent the current distribution of cetaceans in the region because this is beyond the objectives of this report and is beyond the scope of our model's evaluation capabilities (Gomez et al. 2017). Our aim was to capture general conditions that may direct where to focus monitoring efforts. We used cetacean sightings from 1970-2015, and dynamic environmental predictors (CHL and SST) that use seasonal averages across multiple years. Therefore, persistent patterns over time (between 1975 and 2015) are the main patterns expected to be captured by these models. Further, SDM results presented here are not the same as species density maps; rather, they portray predicted suitable habitat based on environmental characteristics and sightings data that are not always derived from effort based surveys. Consequently, the use of the SDM outputs in marine spatial planning process should be accompanied by complimentary approaches such as acoustic and visual validation of the SDM results as well as additional modeling efforts already available for the area. The discussion section provides some examples on how to interpret SDM outputs for these purposes.

All SDM outputs for the various scenarios of sampling bias correction in the appendices (Figures A1 - A19) are reasonable predictions (mean AUC values >0.58). Consequently, areas that are consistently predicted as having high suitability across all scenarios are potential areas in which to target monitoring efforts.

Table 6. Variance inflation factor (VIF) values indicating lack of collinearity between environmental variables: ocean depth, CTI, SST, and CHL pers (note: CHLmagn was not included in this analysis, because it has only four values; see Figure 5). VIF <3 denote environmental variables that do not exhibit collinearity with the other variables and thus are relevant to use in the SDMs (Zuur et al. 2010).

Environmental Variable	Spring SDMs	Summer SDMs	Autumn SDMs
Ocean depth	1.45	1.14	1.15
CTI	1.06	1.06	1.07
SST	1.66	1.33	1.11
CHLpers	1.58	1.19	2.07
Lagged CHL	1.66	1.24	2.32

Blue whale (Atlantic population)

Figure 7. Sightings of blue whales by season, collected from 1975 through 2015 ($n=315$, within study area outlined by black line, see Table 3).

Fin whale (Atlantic population)

Figure 8. Sightings of fin whales by season, collected from 1975 through 2015 ($n=9444$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high ($60-100 \%$) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer and autumn. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 7. Relative contribution of each environmental variable to the fin whale summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs $(n=100)$. AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (\geq 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mea n	sd
none	none	4.4	14.2	0.4	31.4	34.4	0.5	14.7	0.81	0.04
	1 km	26.3	23.7	2	4.1	3.3	7.6	33	0.6	0.06
	2.5 km	9	12.3	0.5	8.2	18.3	2.6	49.1	0.67	0.06
	5 km	6.1	9	0.6	12.8	22.6	2.3	46.4	0.7	0.06
2.5 km	none	5.4	17.1	0.2	23.4	39.9	0.7	13.3	0.81	0.04
	1 km	41	41.3	1.9	0.1	2.3	7.2	6.1	0.58	0.06
	2.5 km	16.5	16.5	0.6	11.5	21.1	2.4	31.3	0.64	0.06
	5 km	9.9	11	0.9	12.9	26.6	2.4	36.2	0.68	0.06
5 km	none	6.6	20.5	0.4	15.2	44.1	1.4	11.8	0.79	0.05
	1 km	21.6	34.7	3.5	2.2	2.5	4.6	30.8	0.6	0.07
	2.5 km	37.1	32.9	3	2.9	14.2	2	7.8	0.61	0.07
	5 km	17.1	16.9	1.2	4.2	38.4	1.7	20.5	0.64	0.07

Table 8. Relative contribution of each environmental variable to the fin whale autumn species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs $(n=100)$. AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (\geq 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	$\underset{\text { pers }}{\mathrm{CHL}}$	mean	sd
none	none	10.2	9.7	0.4	40.2	8.7	28.6	2.1	0.87	0.04
	1 km	40.4	9.1	1.6	2.8	4.5	37.8	3.7	0.64	0.07
	2.5 km	14.6	7.2	1.2	7.6	7.5	57	5	0.73	0.07
	5 km	11.6	5.5	0.8	9.1	6.6	61.9	4.5	0.76	0.07
2.5 km	none	13.3	11.3	0.8	42.4	7.9	22.1	2	0.87	0.04
	1 km	65.1	15.3	2.3	0.2	1	11.1	5	0.6	0.08
	2.5 km	23.5	7.5	1.3	10.4	6.4	46.6	4.4	0.69	0.08
	5 km	15.3	6.1	1	12.2	9.6	52	3.8	0.73	0.08
5 km	none	18.6	17.4	0.5	37.3	7.2	17.5	1.5	0.85	0.05
	1 km	39.2	31	1.8	0.6	0.4	21.2	5.6	0.61	0.1
	2.5 km	55.4	12.9	3.2	6.3	3.1	11.6	7.5	0.62	0.09
	5 km	36.5	7.2	1.3	9.3	9.8	30.9	5	0.68	0.09

Sei whale (Atlantic population)

Sei whale
 Balaenoptera borealis

Residency: migratory
Diet: specialist; large zooplankton, especially copepods and euphausiids.
Potentially small squid and fish.

| SARA STATUS |
| :---: | :---: |
| Endangered |
| Threatened |
| Special Concern
 No Status |
| EOSEWIC STATUS
 Endangered
 Threatened
 Special Concern
 Not at Risk
 Data Deficient |

Figure 9. Sightings of sei whales by season, collected from 1975 through 2015 ($\mathrm{n}=1170$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high (60-100\%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 9. Relative contribution of each environmental variable to the sei whale summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (\geq 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	$\underset{\text { pers }}{\text { CHL }}$	mean	sd
none	none	9	9.2	0.6	22.2	37.2	1.9	19.8	0.87	0.07
	1 km	8.1	16.9	1.4	0.2	17.6	15.4	40.4	0.73	0.1
	2.5 km	13.4	11.7	0.9	5.8	24.3	6.3	37.6	0.76	0.1
	5 km	13.9	11.7	0.6	14.4	20.4	4.7	34.3	0.79	0.1
2.5 km	none	10.2	8.3	0.6	18.8	38.6	1.8	21.8	0.86	0.08
	1 km	10.7	14.6	0.8	0.4	15.9	15.5	42.1	0.72	0.1
	2.5 km	14.7	10.2	1	5.3	23.6	6.5	38.8	0.75	0.1
	5 km	13.9	10.7	0.7	13.7	20.5	5	35.5	0.79	0.1
5 km	none	9.8	10.6	0.6	35	20.6	2.9	20.5	0.84	0.08
	1 km	5.6	19.5	0.7	0.4	14.8	14.5	44.5	0.70	0.11
	$2.5 \text { km }$	12.5	14.5	0.4	0.9	27.3	6.8	37.6	0.72	0.11
	5 km	13.7	12.5	0.7	7.1	24.7	5.2	36.1	0.76	0.11

Minke whale (Atlantic population)

Figure 10. Sightings of minke whales by season, collected from 1975 through $2015(\mathrm{n}=7210$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high ($60-100 \%$) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer and autumn. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 10. Relative contribution of each environmental variable to the minke whale summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs $(\mathrm{n}=100)$. AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (\geq 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	13.5	8.6	0.6	5	53.4	0.9	18.1	0.84	0.04
	1 km	36.7	11.4	2.7	2.1	24.4	14.4	8.4	0.66	0.06
	2.5 km	22	9.1	2.5	7.8	14.6	4.5	39.6	0.72	0.06
	5 km	13.6	8.7	0.9	8.6	20.3	4	43.8	0.75	0.06
2.5 km	none	13.3	8.9	0.6	5.9	51.2	0.6	19.5	0.83	0.05
	1 km	38.7	9.9	2.9	0.2	36.4	10.2	1.8	0.63	0.06
	2.5 km	28.7	8.6	2.6	4.7	19.2	3.6	32.6	0.7	0.06
	5 km	16.9	8.3	0.8	6.9	24.1	3.9	39.2	0.73	0.06
5 km	none	21	10.8	0.3	1.9	54.6	1.3	10	0.82	0.06
	1 km	30.4	9	2.6	0.1	48.2	2.8	6.9	0.62	0.08
	2.5 km	41.3	11.9	4.2	4.8	27.8	2.6	7.3	0.66	0.07
	5 km	28.8	9.6	1.7	4.8	30.2	3.1	21.8	0.69	0.07

Table 11. Relative contribution of each environmental variable to the minke whale autumn species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (\geq 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	13.7	9.4	0.4	18.9	10.3	43.7	3.7	0.86	0.06
	1 km	35	41.5	8.2	1.5	1.7	9.8	2.3	0.61	0.09
	2.5 km	11.2	15.5	2.8	1.7	1.8	63.7	3.4	0.71	0.09
	5 km	6.1	11.2	1.9	1.6	3.1	71.4	4.6	0.74	0.09
2.5 km	none	17.3	11.3	0.8	10.5	15.2	41.4	3.4	0.85	0.06
	1 km	34	38.4	10.5	8.1	5.7	2.3	0.9	0.58	0.1
	2.5 km	15.8	19.7	2.3	1	2.7	54.1	4.3	0.68	0.1
	5 km	8.5	13.1	2.5	1.2	3.9	67	3.8	0.72	0.1
5 km	none	21.8	14.3	0.5	13	13.4	34.4	2.5	0.83	0.07
	1 km	16	19.6	8.7	33.3	13.6	6.1	2.9	0.58	0.11
	2.5 km	28.9	32.7	3.2	1.5	1.5	29.6	2.6	0.61	0.11
	5 km	15.7	18.7	2.2	2	2.7	55	3.7	0.66	0.11

Humpback whale (Atlantic population)

Humpback whale

COSEWIC STATUS
Endangered Threatened
Special Concern Not at Risk Data Deficient

Endangered
Threatened
Special Concern
Not at Risk
Data Deficient

Residency: migratory
Diet: generalist; small pelagic fish (e.g. herring, capelin), large zooplankton, small pelagic squid

Figure 11. Sightings of humpback whales by season, collected from 1975 through $2015(\mathrm{n}=15057$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high (60-100\%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during spring, summer and autumn. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 12. Relative contribution of each environmental variable to the humpback whale spring species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (\geq 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	$\underset{\text { magn }}{\mathrm{CHL}}$	Lagged CHL pers	$\underset{\text { pers }}{\mathrm{CHL}}$	mean	sd
none	none	39.8	32.8	4.9	3.9	5.6	9.3	3.7	0.8	0.07
	1 km	18.6	60.5	1.8	2.7	12.1	3.6	0.7	0.64	0.11
	2.5 km	28.1	57.1	3.8	1.6	3.4	4.2	1.8	0.71	0.1
	5 km	35	49.5	3.5	1.5	2	5.1	3.3	0.72	0.1
-------7m	none	43.9	33.8	4.9	5.9	2.1	5.8	3.5	0.8	0.08
	1 km	24.8	48.2	1.8	4.1	18.4	2.3	0.4	0.65	0.11
	2.5 km	31.7	48.4	4.1	1.2	9.3	3.7	1.7	0.72	0.1
	5 km	38.8	42.1	3.1	1.8	7.5	4.2	2.5	0.72	0.11
- -7 km	none	41.6	34.5	4	5.3	2.2	9.3	3.1	0.8	0.08
	1 km	18.4	53.7	2.3	3.4	19.1	2.7	0.4	0.67	0.11
	2.5 km	26.7	52.6	3.7	1.7	10.6	3.1	1.5	0.72	0.11
	5 km	34.3	45.9	3.3	1.8	8.5	3.8	2.4	0.72	0.1

Table 13. Relative contribution of each environmental variable to the humpback whale summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	$\underset{\text { pers }}{\mathrm{CHL}}$	mean	sd
none	none	35.6	23.1	0.9	5.8	19.7	1.4	13.6	0.77	0.03
	1 km	41.4	29.2	1.4	8.1	7.4	8.8	3.7	0.63	0.04
	2.5 km	45.8	31.6	1.7	0.8	3.3	10.2	6.6	0.68	0.04
	5 km	44.4	20.9	1.6	1.0	2.0	6.7	23.4	0.69	0.04
2.5 km	none	38.8	24.3	0.8	13.5	6.6	2.1	13.9	0.77	0.04
	1 km	32.7	8.3	0.8	33.1	15	6.6	3.4	0.63	0.05
	2.5 km	47.2	31.8	1.6	1.9	6.9	7.9	2.8	0.67	0.05
	5 km	47.5	23	1.5	0.1	7.7	6.3	13.9	0.68	0.05
5 km	none	41.6	30.3	0.7	5	7.1	2.3	13.1	0.76	0.05
	1 km	22.6	3.8	0.7	46.4	9.6	2.1	14.8	0.67	0.05
	2.5 km	40.9	14.1	0.9	28	10.8	4.4	0.9	0.66	0.05
	5 km	47.1	27.1	1.0	0.3	17.4	5.0	2.0	0.66	0.05

Table 14. Relative contribution of each environmental variable to the humpback whale autumn species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	22.2	26.8	0.1	1.9	17	30.5	1.5	0.83	0.04
	1 km	27.1	62.1	2.5	3.5	0.1	1.5	3.3	0.64	0.06
	2.5 km	30.9	57.8	1.0	0.9	0.1	6.2	3.0	0.74	0.05
	5 km	27.6	45.1	0.5	1.2	0.7	21.3	3.6	0.76	0.05
2.5 km	none	23.3	28	0.1	2.2	18.1	27.2	1.1	0.83	0.04
	1 km	22.8	53.4	3.1	15.6	1.2	0.7	3.2	0.65	0.07
	2.5 km	30.1	60.5	1.0	0.7	0.1	4.5	3.0	0.73	0.06
	5 km	30.9	51.1	0.8	1.0	0.1	12.3	3.8	0.74	0.06
5 km	none	22.5	37.4	0.2	1.0	22	15.7	1.1	0.82	0.05
	1 km	13.1	33.8	2.3	39.2	3.1	2.7	5.7	0.68	0.07
	2.5 km	24.7	51.1	1.4	13.2	1.0	1.9	6.7	0.72	0.07
	5 km	32.3	57.4	0.4	0.5	0.1	3.8	5.5	0.72	0.06

Sperm whale

Sperm whale
 Physeter macrocephalus

COSEWIC STATUS

Source: Garth Mix, GMIX Designs
Residency: present year round
Diet: deep-water squid and fish

Figure 12. Sightings of sperm whales by season, collected from 1975 through 2015 ($\mathrm{n}=1139$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high ($60-100 \%$) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 15. Relative contribution of each environmental variable to the sperm whale summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs $(n=100)$. AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (\geq 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	44.3	11.9	6.6	14.9	10	5.3	7.1	0.87	0.06
	1 km	80.3	8.5	2.1	3.3	2.1	2.6	1.2	0.81	0.07
	2.5 km	75.6	10.2	3.8	1.2	3.3	3.9	2	0.82	0.07
	5 km	69.6	12.2	4.2	0.1	6.1	4.4	3.5	0.82	0.07
2.5 km	none	47.9	10.4	5.5	11.5	11.5	6	7.1	0.86	0.06
	1 km	78.3	7.9	2.1	6.4	1.9	2.1	1.2	0.81	0.07
	2.5 km	76	8.2	3.9	4.3	2.7	3.6	1.4	0.81	0.08
	5 km	70.5	10.4	4.1	3.2	5.3	3.7	2.8	0.82	0.07
5 km	none	49.2	7.6	4.3	7.8	18.1	7.1	5.9	0.85	0.06
	1 km	72.4	7.7	1.2	12.6	1.4	2.3	2.4	0.8	0.08
	2.5 km	72.6	6.4	3.4	10.9	2.7	3.2	0.8	0.8	0.08
	5 km	68.7	7	3.8	11	4.8	3.3	1.4	0.8	0.08

Sowerby's beaked whale

Mesoplodon bidens

Source: Garth Mix, GMIX Designs
Residency: possibly present year round
Diet: generalist; mesopelagic fish, likely mesopelagic squid

Figure 13. Sightings of Sowerby's beaked whales by season, collected from 1975 through 2015 ($\mathrm{n}=$ 55 , within study area outlined by black line, see Table 3).

Killer whale (Atlantic population)

Killer whale

SARA STATUS
Endangered
Threatened
Special Concern
No Status

COSEWIC STATUS
Endangered Threatened
Special Concern
Not at Risk
Data Deficient

Residency: present year round
Diet: herring and other fish species

Figure 14. Sightings of killer whales by season, collected from 1975 through 2015 ($n=370$, within study area outlined by black line, see Table 3).

Long-finned pilot whale (Atlantic population)

Long-finned pilot whale
 Globicephala melas

COSEWIC STATUS

Endangered Threatened
Special Concern Not at Risk
Data Deficient

Residency: present year-round
Diet: Small pelagic squid, small pelagic fish (e.g. mackerel), mesopelagic squid, mesopelagic fish

Figure 15. Sightings of long-finned pilot whales by season, collected from 1975 through 2015 ($\mathrm{n}=$ 5133 , within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high (60-100\%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during spring, summer and autumn. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 16. Relative contribution of each environmental variable to the long-finned pilot whale spring species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	13.3	25.9	7.8	3.6	47.2	0.9	1.3	0.89	0.05
	1 km	33.1	23.6	10.4	3.9	8.8	8.3	12	0.65	0.09
	2.5 km	26	27.9	8.7	2.4	17.1	6.2	11.8	0.78	0.08
	5 km	24.5	27.3	9.7	4	19.1	5.3	10.1	0.81	0.08
2.5 km	none	11.1	28.1	9.1	2.9	46.1	0.6	2.0	0.88	0.06
	1 km	33.8	25.6	11.4	5.5	4.2	8.2	11.3	0.65	0.1
	2.5 km	28.3	29.6	8.4	3.9	13.7	6.3	9.8	0.75	0.09
	5 km	25.6	29.2	10.3	4.1	18.2	4.3	8.3	0.78	0.09
5 km	none	9.5	29.2	8.1	2.3	47.3	1.0	2.6	0.87	0.06
	1 km	37.6	23.4	12.2	7.3	3.0	7.2	9.3	0.65	0.11
	2.5 km	32.2	29.5	7.1	4.1	12.4	6.9	7.8	0.73	0.1
	5 km	26.6	32.7	8.0	4.6	15.5	5.4	7.1	0.76	0.09

Table 17. Relative contribution of each environmental variable to the long-finned pilot whale summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs $(\mathrm{n}=100)$. AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	8.9	33.3	3.5	46.7	2.4	3.1	2.0	0.78	0.04
	1 km	31	21.6	0.6	1.6	0.5	1.7	42.9	0.71	0.04
	2.5 km	41.7	41.8	2.1	1.3	1.2	1.9	10	0.71	0.05
	5 km	36.4	50	2.5	1.2	4.8	1.5	3.5	0.7	0.05
2.5 km	none	9.7	31.8	2.3	44.5	4.5	3.8	3.3	0.78	0.05
	1 km	31.8	15.7	0.5	2.6	0.8	1.6	46.9	0.7	0.05
	2.5 km	45.1	36.3	1.6	0.9	2.0	2.5	11.6	0.7	0.05
	5 km	41.5	44.9	2.6	0.4	4.5	2.2	3.9	0.69	0.05
5 km	none	11.1	32.9	2.1	41.7	5.2	3.9	3.2	0.77	0.05
	1 km	32.4	11	0.6	2.3	0.9	1.9	50.8	0.71	0.05
	2.5 km	52	26.6	0.9	1.8	1.7	2.9	14	0.69	0.06
	5 km	49.5	34.7	2.5	0.3	4.8	2.4	5.7	0.68	0.06

Table 18. Relative contribution of each environmental variable to the long-finned pilot whale autumn species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	19.4	48.5	2.9	5	5.4	4.6	14.2	0.81	0.07
	1 km	51.5	16.6	1.3	2.5	2.4	22.8	2.9	0.78	0.06
	2.5 km	60.8	26.1	2.3	2.9	3.7	1.3	3.0	0.8	0.07
	5 km	62.2	29	3.5	2.4	0	0.9	2.0	0.79	0.07
2.5 km	none	23.4	42.7	4.1	5.9	4.0	5.6	14.4	0.81	0.07
	1 km	54.7	11.9	1.4	2.9	1.4	25.9	1.8	0.78	0.07
	2.5 km	65.8	20.7	2.6	2	4.0	1.7	3.3	0.79	0.07
	5 km	66.1	24.2	4.1	2.3	0.1	0.8	2.3	0.78	0.07
5 km	none	19.7	42.4	7.9	4.6	5.9	3.5	16	0.8	0.08
	1 km	51.1	12	1.4	2.6	2.6	27.8	2.4	0.78	0.07
	2.5 km	59.2	19.3	2.3	2.3	11.2	3.8	1.7	0.79	0.08
	5 km	63.8	22.7	4.0	2.1	4.9	0.9	1.7	0.77	0.08

Figure 16. Sightings of Atlantic white-sided dolphins by season, collected from 1975 through 2015 (n = 4455, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high (60-100\%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer and autumn. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 19. Relative contribution of each environmental variable to the Atlantic white-sided dolphin summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (\geq 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	$\underset{\text { magn }}{\mathrm{CHL}}$	Lagged CHL pers	$\underset{\text { pers }}{\mathrm{CHL}}$	mean	sd
none	none	4.9	20.3	0.6	44.6	10.3	1.3	18	0.82	0.04
	1 km	5.3	9.9	2.5	19.7	1.2	50.4	10.8	0.61	0.06
	2.5 km	11.5	16.4	1.2	15.9	1.0	19.1	34.8	0.66	0.06
	5 km	8.6	13.5	1.0	19.6	1.9	11.8	43.6	0.69	0.06
2.5 km	none	5.2	18.2	0.3	41.5	14.4	2.8	17.7	0.81	0.05
	1 km	6.4	9.4	1.6	18.7	4.4	49.1	10.3	0.59	0.07
	2.5 km	14.3	17.3	1.2	16.5	1.6	21.9	27.2	0.65	0.07
	5 km	9.9	12.3	0.9	19.8	3.7	13.4	40	0.68	0.07
5 km	none	5.6	22.8	0.3	38	17.5	2.8	12.8	0.8	0.05
	1 km	5.7	5.7	3.4	8.5	14.5	26.6	35.6	0.61	0.07
	2.5 km	13.8	17.3	2.6	22.1	0.9	29.8	13.4	0.61	0.07
	5 km	12.1	15.9	0.7	22.6	3.4	16.4	28.9	0.64	0.07

Table 20. Relative contribution of each environmental variable to the Atlantic white-sided dolphin autumn species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDMs that have good discriminatory power. Variables with a mean contribution of at least one third (\geq 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	$\begin{aligned} & \text { CHL } \end{aligned}$	Lagged CHL pers	$\underset{\text { pers }}{\mathrm{CHL}}$	mean	sd
none	none	3.6	6.0	0.5	44.2	7.2	35	3.5	0.83	0.07
	1 km	19.4	21.2	2.9	0.8	5.1	15	35.7	0.62	0.09
	2.5 km	7.9	24.6	1.8	4.5	2.3	45.8	13	0.7	0.09
	5 km	4.8	19	1.2	7.2	5.4	54.7	7.7	0.74	0.09
2.5 km	none	5.0	6.6	1.0	35.4	13.9	34.5	3.6	0.81	0.08
	1 km	28.1	21.4	2.3	1.6	4.3	4	38.3	0.61	0.1
	2.5 km	10.8	26.8	2.2	6.0	3.0	36.4	14.9	0.68	0.1
	5 km	6.5	20.5	1.2	7.6	6.8	48.7	8.7	0.71	0.1
5 km	none	6.2	8.6	0.6	--3.7	39.6	28.3	3.0	0.79	0.08
	1 km	19.4	22.1	2.8	2.7	3.1	16.9	32.9	0.61	0.12
	2.5 km	11.9	48	2.9	5.5	1.7	16	13.9	0.63	0.11
	5 km	6	33.5	2.5	5.8	6.9	34.7	10.6	0.67	0.1

Bottlenose dolphin (Atlantic population)

Bottlenose Dolphin

Tursiops truncatus

Residency: present year round
Diet: miscellaneous fish (e.g. cod, herring, sardines), small squid

Figure 17. Sightings of bottlenose dolphins by season, collected from 1975 through $2015(\mathrm{n}=306$, within study area outlined by black line, see Table 3).

Short-beaked common dolphin (Atlantic population)

Figure 18. Sightings of short-beaked common dolphins by season, collected from 1975 through 2015 ($\mathrm{n}=2351$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high (60-100\%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer and autumn. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 21. Relative contribution of each environmental variable to the short-beaked common dolphin summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs $(\mathrm{n}=100)$. AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (\geq 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	8.5	30.8	3.2	54	0.2	1.4	1.9	0.83	0.05
	1 km	1.5	51.9	4.0	1.8	5.6	0.8	34.5	0.72	0.06
	2.5 km	1.1	70.5	10.4	4.6	0.5	2.9	9.9	0.71	0.06
	5 km	1.0	74.8	9.2	5.1	0.1	6.1	3.6	0.71	0.07
2.5 km	none	8.0	31.4	2.7	54.2	0.4	1.5	1.7	0.83	0.05
	1 km	1.6	52.1	3.0	1.5	4.9	0.9	36.1	0.72	0.06
	2.5 km	1.0	71.7	8.7	4.5	0.5	3.4	10.2	0.71	0.06
	5 km	1.0	77.9	7.8	4.0	0.2	6.3	2.9	0.71	0.07
5 km	none	7.6	35.1	2.9	50.6	1.2	1.2	1.3	0.83	0.06
	1 km	2.0	48	1.6	1.2	5.9	1.4	40	0.72	0.06
	2.5 km	1.0	71.3	5.9	3.6	1.0	2.8	14.5	0.7	0.07
	5 km	0.8	80.3	5.0	3.4	0.2	7.4	3.0	0.69	0.07

Table 22. Relative contribution of each environmental variable to the short-beaked common dolphin autumn species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs $(n=100)$. AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (\geq 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	$\underset{\text { magn }}{\mathrm{CHL}}$	Lagged CHL pers	$\underset{\text { pers }}{\mathrm{CHL}}$	mean	sd
none	none	20.4	25	0.5	10.5	32.1	7.8	3.8	0.84	0.06
	1 km	11.2	27	0	2.6	0.3	57.1	1.8	0.78	0.06
	2.5 km	17.8	51	0.3	2.0	0.3	23.8	4.8	0.77	0.07
	5 km	19.3	59.6	0.7	1.5	0.5	12.5	5.9	0.76	0.08
2.5 km	none	18.2	25.8	0.6	14.2	30.4	7.5	3.2	0.83	0.06
	1 km	11.6	26.6	0	2.4	0.3	56.8	2.3	0.78	0.06
	2.5 km	18	49.4	0.5	2.2	0.4	24.8	4.8	0.77	0.07
	5 km	20.1	58.3	1.1	1.2	0.4	13.7	5.2	0.76	0.08
5 km	none	17.9	28.1	0.5	17.3	24.5	7.6	4.1	0.83	0.06
	1 km	11.3	26.4	0	2.6	0.3	57.1	2.3	0.77	0.07
	2.5 km	16.9	49.5	0.4	2.0	0.3	25.1	5.8	0.76	0.08
	5 km	18.4	60.8	0.4	1.2	0.6	14	4.6	0.75	0.08

Risso's dolphin (Atlantic population)

Risso's dolphin

Grampus griseus
Residency: ocassional
Diet: not available

SARA STATUS
Endangered
Threatened
Special Concern
No Status

COSEWIC STATUS

Endangered Threatened
Special Concern
Not at Risk
Data Deficient

Figure 19. Sightings of Risso's dolphins by season, collected from 1975 through 2015 ($n=124$, within study area outlined by black line, see Table 3).

Striped dolphin (Atlantic population)

Figure 20. Sightings of striped dolphins by season, collected from 1975 through 2015 ($n=126$, within study area outlined by black line, see Table 3).

White-beaked dolphin (Atlantic population)

Figure 21. Sightings of white-beaked dolphins by season, collected from 1975 through 2015 ($\mathrm{n}=772$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high (60-100\%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 23. Relative contribution of each environmental variable to the white-beaked dolphin summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	28.1	41.9	6.1	0.3	1.3	4.1	18.3	0.82	0.07
	1 km	6.3	26.6	1.3	53.2	6.3	2.5	3.8	0.86	0.05
	2.5 km	7.6	59.2	2.1	15.4	6.8	4.6	4.3	0.84	0.06
	5 km	8.7	71.8	2.8	1.5	4.7	5.1	5.5	0.83	0.06
2.5 km	none	27.6	43.9	7.0	0.3	1.4	4.1	15.8	0.82	0.07
	1 km	5.3	21.1	1.1	61.3	6.7	1.5	3.0	0.86	0.05
	2.5 km	8.2	48.7	2.1	28.4	5.7	3.6	3.4	0.84	0.06
	5 km	7.9	72.3	3.1	3.1	5.8	4.1	3.7	0.82	0.06
5 km	none	31	44.9	5.3	0.4	2.2	3.6	12.5	0.82	0.07
	1 km	5.2	18.5	1	66.3	6.7	1.0	1.3	0.86	0.05
	2.5 km	6.8	39.4	2.1	40.3	7.1	2.2	2.1	0.84	0.06
	5 km	7.0	60.8	2.6	17	7.1	3.0	2.5	0.81	0.07

Harbour porpoise (Atlantic population)

Harbour porpoise
 Phocoena phocoena

COSEWIC STATUS
Endangered Threatened
Special Concern Not at Risk Data Deficient

Residency: present year round
Diet: small pelagic schooling fish (e.g. herring), demersal fish (e.g. Atlantic cod)

Figure 22. Sightings of harbour porpoises by season, collected from 1975 through 2015 ($\mathrm{n}=27809$, within study area outlined by black line, see Table 3). Yellow indicates consolidated SDM outputs: areas with high (60-100\%) relative occurrence rate for any scenarios of sampling bias correction (bias maps and subsampling) during summer. SDM outputs indicate priority areas where monitoring efforts may be targeted.

Table 24. Relative contribution of each environmental variable to the harbour porpoise summer species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	1.4	2.7	0.9	10.1	53.3	1	30.6	0.88	0.02
	1 km	0.1	20.5	0.1	6.4	14.6	2	56.3	0.77	0.04
	2.5 km	0	15	0.3	8.5	15.4	1.2	59.5	0.85	0.03
	5 km	0.1	13.5	0.3	11.1	17.6	1.3	56	0.86	0.03
2.5 km	none	1.8	4	0.5	5.5	54.2	0.9	33.1	0.9	0.03
	1 km	1.2	25.4	0.5	6.8	17.1	1.1	47.8	0.76	0.04
	2.5 km	0.1	18.5	0.2	4.7	22.4	1	53.1	0.85	0.04
	5 km	0.2	15.3	0.3	6	25.2	0.9	52.2	0.87	0.04
5 km	none	2.1	6.6	1.3	5.3	51.6	1.1	32	0.9	0.04
	1 km	9.6	27.1	1	5	17.5	2.9	37	0.76	0.06
	2.5 km	1.5	23.1	0.9	3.8	26	2.3	42.4	0.82	0.06
	5 km	0.4	18.7	0.8	7.9	26.3	1.2	44.7	0.85	0.05

Table 25. Relative contribution of each environmental variable to the harbour porpoise autumn species distribution model for each model scenario. Contributions and area under the curve (AUC) values were averaged across model runs ($n=100$). AUC values greater than 0.70 indicate SDM that have good discriminatory power. Variables with a mean contribution of at least one third (≥ 33), or fifth (≥ 20) are highlighted in dark and light grey, respectively.

Grid Resolution		Mean Environmental Variable Contribution						AUC		
Subsampling	Bias Map	Ocean depth	SST	CTI	Lagged CHL magn	CHL magn	Lagged CHL pers	CHL pers	mean	sd
none	none	4.3	6.0	0.1	22.2	10	54.1	3.3	0.93	0.02
	1 km	2.0	14.9	0.8	3.2	5.8	66.6	6.8	0.76	0.05
	2.5 km	1.7	11	0.7	7.0	5.1	70	4.5	0.89	0.03
	5 km	1.1	9.2	0.5	4.4	5.9	72.3	6.6	0.91	0.03
2.5 km	none	4.0	5.2	0.8	24.3	4.7	54.6	6.4	0.93	0.03
	1 km	3.0	22.8	1.2	7.6	3.1	55.1	7.2	0.75	0.06
	2.5 km	1.4	13.4	1.3	5.5	3.9	67.7	6.9	0.87	0.04
	5 km	2	11.9	0.8	4.7	7.0	63.9	9.6	0.9	0.04
5 km	none	5.7	8.7	2.4	11.7	18.4	45.4	7.7	0.91	0.05
	1 km	10.6	45.1	4.1	3.2	3.1	16.8	17	0.73	0.08
	2.5 km	3.6	28.8	1.2	1.2	9.5	47.2	8.4	0.83	0.07
	5 km	2.0	22.5	0.8	3.8	9.1	51.5	10.3	0.87	0.06

Figure 23. Sightings of cetacean species that were rarely observed in the study area (outlined by black line), collected from 1975 through 2015 (sightings within study area: total $n=28$, range: $1-13$). Belugas may belong to either St. Lawrence Estuary or Arctic populations, thus COSEWIC status varies from Special Concern to Endangered while SARA status is Endangered or Not Assessed. Gervais' beard whales and Atlantic spotted dolphins have not been assessed by COSEWIC or SARA, while the remaining four species are considered Not at Risk by both COSEWIC and SARA.

DISCUSSION

Long-term cetacean sightings data from government, non-government, academic, and industry sources were assembled for this project. When there were sufficient numbers of sightings by species and season, we developed SDMs for each species using a set of environmental variables to predict priority areas in eastern Canadian waters off Nova Scotia, and Newfoundland and Labrador. This section provides general information about these SDMs, and some recommendations on how to interpret and use these spatial outputs.

SDM results: indicators of priority areas for increased cetacean monitoring efforts

Environmental data used to model species distributions should ideally be collected in the same time frame as the sightings data, to best reflect conditions experienced by the observed animals and thus allow the development of dynamic spatial planning tools (Hazen et al. 2018). Given the lack of sightings data from effort-based surveys on a monthly and seasonal time-period in the study area, the sightings data in the SDM were consolidated by season, across years. Thus, we correspondingly used an amalgamation of dynamic environmental data (SST, CHLpers and CHLmagn, by season) collected from 2003-2014 (during which 41\% of cetacean sightings in the study area were collected), to explore general patterns of species' preferred habitat conditions. In some cases, the relative importance of environmental predictors for a given species varied by season (Tables 7-25). Seasonal variation is not surprising as our study area is characterized by marked seasonality, which induces changes in the spatial and temporal availability of resources (Fuentes-Yaco et al. 2015) and thus can change cetacean habitat preferences across seasons (Lambert et al. 2017). The relative importance of environmental predictors also varied by species (Tables 7-25). Cetacean species have different ecological requirements, which are partially reflected in the relative contribution of environmental predictors to the SDMs.

In particular, ocean depth contributed to the SDM predictions for fin whale, minke whale, humpback whale, sperm whale, and long-finned pilot whale (Tables 7-25). Ocean depth has been identified as important in predicting the distribution of cetaceans in previous SDM studies (e.g. Abgrall 2009, Mannocci et al. 2015). For instance, Abgrall (2009) highlighted the importance of ocean depth in predicting the distribution of baleen whales in waters off Newfoundland, particularly in areas characterized by deep water and steeper seabed slopes (Abgrall 2009). Deep water and steep topography were also often identified as the most important variables explaining the presence of deep diving whales, such as sperm whales and northern bottlenose whales (Moors-Murphy 2014, Gomez et al. 2017). Ocean depth has been important in the process of defining cetacean hotspots in many ecosystems (e.g., Cañadas et al. 2005, Hooker et al. 1999, MacKay et al. 2016) and thus it is an important predictor to be considered in SDM studies. Ocean depth contributed significantly more to cetaceans' habitat preferences than CTI (which was used here as a measure of topography). CTI is derived from ocean depth, but represents different habitat characteristics. CTI reflects peaks, basins and flat surfaces of the ocean floor. Those characteristics may be relatively less important in predicting cetacean habitat compared with ocean depth in our models. Alternatively, CTI
may not emerge as an important feature because the scale it was calculated on may not be the scale relevant to the animals.

SST provided significant contributions to the SDMs for harbour porpoise, whitebeaked dolphins, Atlantic white-sided dolphins, short-beaked common dolphins, longfinned pilot whale, humpback whales, fin whales, and minke whales. SST is an important predictor of diversity and abundance of marine life (Worm et al. 2003, Morato et al. 2010, Pirotta et al. 2011, Whitehead et al. 2010) and provides information about dynamic thermal mesoscale processes that can potentially be linked to cetacean distribution. For example, SST maps highlight areas related to increased biological productivity and aggregated prey, particularly at persistent thermal fronts where higher food densities are found, leading to predictable feeding locations for many marine species (Podesta et al. 1993, Etnoyer et al. 2006). Such areas in our study area include regions where warm waters from the Gulf Stream meet the cold waters from the Labrador current. SST, therefore, captures important seasonal and spatial processes that are important for cetaceans and cetacean prey distribution. For species with sufficient data available, further investigation may also reveal patterns at a finer temporal scale (e.g., daily SST have proven to be important predictors for harbor porpoises, Gilles et al. 2016).

Predictors related to chlorophyll-a provided significant contributions to the SDMs for fin whales, sei whales, minke whales, long-finned pilot whale, short-beaked common dolphins, harbour porpoise, and Atlantic white-sided dolphins. Areas with relatively high chlorophyll-a concentration have been used in other SDM studies to locate biological hotspots (Palacios et al. 2006, Kobayashi et al. 2011) and as a proxy for the amount of primary production, which is important for predicting cetacean distribution (Jaquet \& Whitehead 1996, Ferguson et al. 2006, Mannocci et al. 2015). Regional CHLmagn also captures the distinctiveness of geographic regions shown in Figure 5, which are characterized by unique marine communities and food web systems (Devred et al. 2007, 2009, Longhurst 2007). Cetaceans were not among the marine species used to characterize these regions; however, the relatively high contribution of regional CHLmagn suggests that this partitioning is important to understanding spatial ecology for some cetacean species.

Interpreting results for marine spatial planning purposes

An AUC value close to 1.0 indicates that the SDM has good discriminatory power, whereas a value ≤ 0.5 indicates that the model prediction is no better than random (Fielding \& Bell 1997). With most AUC values indicating relatively good model performance (>0.70 for most model runs; Tables 7-25), our SDMs can be interpreted as areas to prioritize cetacean monitoring in waters off Nova Scotia, Newfoundland and Labrador regions. The following are important considerations for using outputs of this report:

- Cetacean sighting records compiled in this work were largely collected through platforms of opportunity rather than systematically. Therefore, sampling effort
was often not recorded. Areas, seasons, and species with low sampling effort are underrepresented, and it is possible that important habitats may not be captured in this report's predictions. The lack of highly suitable habitat in some cases may be the result of a lack of effort and not necessarily low suitability.
- The use of all non-TGS in the bias files assumes that all of the surveys record all species types. Some surveys may not record all species even when present and therefore, the bias file is likely missing non-TGS records. One consideration in future approaches may be to limit the non-TGS records to surveys that may be similar in nature and species types that may be similar to the focal species.
- AUC values reflect the probability of having a higher predicted suitability value in a randomly chosen presence cell compared with a randomly chosen absence cell (Elith et al. 2006). This is problematic for SDMs that lack true absence data (Lobo et al. 2008), and there is a lack of alternatives to evaluate model performance for this type of presence-only approach (Merow et al. 2013), although see Muscarella et al 2014 and Cobos et al 2019). However, AUC values are considered reliable to compare models generated for a single species in the same area and the same predictors (Fourcade et al. 2014).
- \quad SDMs in this study used seasonal averages, and cetacean data from 1975-2015. SDMs do not take into account monthly or inter-annual variations in the distribution of cetaceans, and more recent cetacean sightings data (e.g., from 2016 to present) are available. They also do not capture fluctuations in environmental conditions that impact cetacean prey or long-term changes in environmental conditions (e.g., climate change). This limits their availability to be used in dynamic spatial management efforts.
- There is additional uncertainty associated with using environmental predictors from shorter time frames compared with the cetacean sightings. This limitation may have implications for our predictions as there are large scale changes that have occurred in the NWAO that are not captured due to environmental predictors available for more recent time frames.
- There are likely additional environmental predictors not included in this study that may impact cetacean prey. Inclusion of cetacean prey, or better predictor variables as proxies for cetacean prey, would likely improve predictions as more data becomes available.
- This report used MaxEnt due to the nature of the available cetacean sightings, which were largely opportunistic for most of the species. However there are other approaches, such as those that also allow to estimate pseudo absences. Thus, we recommend testing other algorithms to compare outputs and ultimately improve predictions of suitable habitat for these species.
- SDM outputs sometimes vary considerably under the different sampling bias correction. When background points are selected randomly from within the study area (i.e. without a bias map), MaxEnt is expected to predict wider ranges of suitable habitat (Merow et al. 2013). In our case, and in Gomez et al. (2017), the opposite pattern was observed: predictions seemed to be more restricted when bias maps were not included. In these models without bias maps, there is also a trend that the Scotian Shelf - an area of relatively high densities of sightings (due at least in part to greater presence of vessels/observers in this area) - is deemed more highly suitable than in models with a bias map. Despite this variation, all SDM outputs presented in the scenarios of sampling bias correction are reasonable predictions with which to target monitoring efforts (Figures A1-A19). We therefore combined all the different models into one all-inclusive predictive output.
- How would the inclusion of human drivers (e.g. offshore development, shipping) that may result in the avoidance of areas or degradation of habitat (seasonally or at some point during the study period) by some species affect these models?

Due to the reasons listed above (and summarized in Gomez et al. 2017), results in this report do not represent a complete and current distribution of cetaceans in the region. Thus, its use in marine spatial planning processes should be accompanied by complimentary approaches. For example, important habitat for blue whales in the Northwest Atlantic was identified using a combination of approaches related to blue whale distribution and krill aggregation (observed or predicted) (Plourde et al. 2016, Lesage et al. 2018, Moors-Murphy et. al 2019), including the SDM approach described in this report. Consequently, SDM predictions presented in this report should not be used on their own. Rather, outputs should be used together with other sources of information (such as: prey distribution, tagging data, detections from acoustic monitoring, other data on cetacean occurrence, and other modeling efforts already available for the area) to delineate important habitat. The use of multiple sources of information in Lesage et al. (2018), in addition to SDM predictions, represents a good framework in which to properly use the outputs of this report in marine spatial planning processes.

Recommendations for future work

Gomez et al. 2017 provide an extensive list of recommendations to improve the approach and predictions illustrated in this report. Here we highlight some of those key recommendations that should be taken into consideration when conducting further SDM exercises for cetaceans.

Sightings data collection and management: A significant amount of effort was put into collating cetacean sighting records from multiple sources/databases, removing duplicate data and quality checking the sightings data. In some cases, existing sightings records were not included in this study because they were not captured in the databases from which the data used here were extracted. Ensuring that existing DFO
cetacean sightings databases capture all known sightings records within the study area would facilitate future data gathering and modelling efforts. This is especially important in the case of sightings in areas for which there currently exist few records, such as deep off-shelf waters. For example, records from marine mammal observers onboard offshore seismic vessels from seismic surveys occurring off Nova Scotia in 2013 and 2014 (LGL 2013, 2014) could be included in the SDM to have a better representation of deep-water areas. Further, a centralized cetacean sightings database that captures data from all regions in a standardized way and removes duplicate or inaccurate data to ensure that data extracted is of the highest quality possible would greatly facilitate modelling efforts.

Model validation using new sightings data: Validation of model results can be conducted by using sighting records obtained from more recent cetacean surveys in eastern Canada (e.g., the North Atlantic International Sightings Survey (NAISS) conducted in 2016; Lawson and Gosselin 2020) or more recent North Atlantic right whale survey efforts that have been occurring since 2017; DFO 2019). Until the SDMs models in this report are validated with independent datasets such as these, particularly in areas with low sighting efforts, the SDM results should be used primarily to direct monitoring efforts.

Updating models using new data: New sightings data can be used not only to validate these SDMs, but also to update them. When enough data becomes available, the models may be able to account for monthly or inter-annual variations in the distribution of cetaceans and potentially investigate long-term fluctuations in environmental conditions that may impact cetacean prey.

Use of acoustic data on cetacean presence: Incorporating cetacean acoustic detection data into SDM is highly recommended. Some of this data is already available and includes occurrence data from autumn, winter and spring, which typically have less visual-based effort relative to summer (Lesage et al. 2018). With these data, we can more closely examine areas highlighted as suitable in the SDM, and we can do so across all seasons.

Incorporating better predictors: Future SDM efforts will likely benefit by including additional predictor data layers such as thermal fronts, prey distribution or human drivers. Selecting useful predictors may depend on the species whose distribution is being modelled, and the model's intended use (Kenchington et al. 2019). The approach presented in this report was for multiple species, but future single-species studies should examine individual species ecology to select meaningful environmental predictors for the target species. The importance of carefully selecting biologically meaningful variables is evidenced by Fourcade et al. (2017), who show that SDMs that use variables with no biological relevance can be misleadingly classified as good or even excellent using common evaluation measures. Incorporating better predictors will be also relevant in in the context of climate change as species will shift their distribution in responses to changes in temperature (Greenan et al. 2019).

Use of additional satellite-derived information: Satellite-derived information can be further explored and utilized to fully take advantage of its ability to improve environmental predictors. Fuentes-Yaco (com pers) proposed the use of satellitederived information on selected wavelengths to better understand the spatial and temporal distribution of marine species. Fuentes-Yaco et al. (in press) is producing specific Moderate Resolution Imaging Spectroradiometer (MODIS) products at a spatial resolution of 250 m per pixel that can be applied for this purpose. Preliminary tests using this dataset have given promising results (Fuentes-Yaco and Clay 2018). The mechanisms of visual foraging by cetaceans to find prey patches, and the role of colour vision has been explored in multiple studies (Griebel and Peich 2003, Dugan et al. 2015, Fasick and Robinson 2016, Cronin et al. 2017). Remote detection of whales from space (Fretwell et al. 2014) and of whales' prey, zooplankton, is also currently being developed and explored (Trudnowska et al 2015; Basedow et al 2019). Before they can be applied to modelling species distributions, these approaches must be improved using more advanced sensors such as the Visible and Infrared Imager/Radiometer Suite (VIIRS) (https://oceancolor.gsfc.nasa.gov/data/viirs-snpp/) and the Ocean and Land Colour Instrument (OLCI) (https://oceancolor.gsfc.nasa.gov/data/olci-s3a/).

ACKNOWLEDGMENTS

CG was supported by a Natural Sciences and Engineering Research Council postdoctoral Visiting Fellowship funded by the Strategic Program for Ecosystem-Based Research and Advice (SPERA), and the Marine Spatial Planning program. CK was supported by SPERA. We thank Jessica Wingfield and Phil Greyson for assisting with production of maps. We thank Paul Regular, Yolanda Wiersma, Garry Stenson, and Derek Tittensor for helping and providing ideas for the analysis and discussion of data. We also thank the following people and institutions for providing sightings of cetaceans: Fisheries and Oceans Canada Maritimes and Newfoundland regions, Hal Whitehead at Dalhousie University, the Canadian Wildlife Service of Environment and Climate Change Canada, the North Atlantic Right Whale Consortium (NARWC), the University of Rhode Island's Bureau of Land Management for air and opportunistic sightings from the Cetacean and Turtle Assessment Program (CETAP), Lamont-Doherty Earth Observatory, LGL Ltd. Environmental Research Associates, the National Science Foundation marine seismic surveys, sightings from R/V Song of the Whale 1993-2013 (International Fund for Animal Welfare c/o MCR International (http://seamap.env.duke.edu/dataset/1158)), and the NOAA Northeast Fisheries Science Center (NEFSC) for sightings from the Aerial Survey - Summer 1998 and the Right Whale Aerial Survey. We thank World Wildlife Fund Canada (in particular Tonya Wimmer) for supporting the preparation of the cetacean sightings data in DFO Newfoundland region and for ideas. We thank NASA's Ocean Biology Processing Group and NOAA for the remotely-sensed images and DFO/BIO's Remote Sensing Unit for processing the data. We thank Marty King and Derek Fenton for support, suggestions and ideas. Finally, we thank Laura Feyrer and Shelley Lang for their comments and suggestions to improve the quality of the manuscript.

LITERATURE CITED

Abgrall P (2009) Defining critical habitat for large whales in Newfoundland and Labrador waters - Design and assessment of a step-by-step protocol. In Cognitive and Behavioural Ecology Programme. Memorial University of Newfoundland, St. John's, NL. xix + 284 pp.

Ainley DG, Jongsomjit D, Ballard G, Thiele D, Fraser WR, Tynan CT (2012) Modeling the relationship of Antarctic minke whales to major ocean boundaries. Polar Biol 35: 281-290

Andersen JM, Skern-Mauritzen M, Boehme L, Wiersma YF, Rosing-Asvid A, Hammill MO, Stenson GB (2013) Investigating annual diving behaviour by hooded seals (Cystophora cristata) within the Northwest Atlantic Ocean. PLoS ONE 8: e80438

Araújo JN, Bundy A (2012) Effects of environmental change, fisheries and trophodynamics on the ecosystem of the western Scotian Shelf, Canada. Mar Ecol Prog Ser 464: 51-67

Basedow, S.L., McKee, D., Lefering, I., Gislason, A., Daase, M., Trudnowska, E., Egeland, E.S.., Choquet, M., \& Falk-Petersen, S. (2019). Remote sensing of zooplankton swarms. Scientific Reports, 9:686, DOI:10.1038/s41598-018-37129.

Bombosch A, Zitterbart DP, Van Opzeeland I, Frickenhaus S, Burkhardt E, Wisz MS, Boebel O (2014) Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res Pt I Oceanogr Res Pap 91:101-114

Breeze H, Fenton DG, Rutherford RJ, Silva MA (2002) The Scotian Shelf: An Ecological Overview for Ocean Planning. Can Tech Rep Fish Aquat Sci 2393. x + 259 pp.

Bystriakova N, Peregrym M, Erkens RHJ, Bezsmertna O, Schneider H (2012) Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Syst Biodivers 10:305-315

Cañadas A, Sagarminaga R, De Stephanis R, Urquiola E, Hammond PS (2005) Habitat preference modelling as a conservation tool: Proposals for marine protected areas for cetaceans in southern Spanish waters. Aquat Conserv 15:495-521

Cobos, M. E., A. T. Peterson, N. Barve, and L. Osorio-Olvera. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281.

Croll DA, Marinovic B, Benson S, Chavez FP, Black N, Ternullo R, Tershy BR (2005) From wind to whales: Trophic links in a coastal upwelling system. Mar Ecol Prog Ser 289:117-130

Cronin TW, Fasick JI, Schweikert LE, Johnsen S, Kezmoh LJ, Baumgartner MF. 2017 Coping with copepods: do right whales (Eubalaena glacialis) forage visually in dark waters? Phil. Trans. R. Soc. B 372: 20160067.

Devred E, Sathyendranath S, Platt T (2007) Delineation of ecological provinces using ocean colour radiometry. Mar Ecol Prog Ser 346:1-13

Devred E, Sathyendranath S, Platt T (2009) Decadal changes in ecological provinces of the Northwest Atlantic Ocean revealed by satellite observations. Geophys Res Lett 36:1-6

DFO. 2014. Offshore ecologically and biologically significant areas in the Scotian Shelf Bioregion. DFO Can Sci Advis Sec Sci Advis Rep 2014/041

DFO. 2019. Review of North Atlantic right whale occurrence and risk of entanglements in fishing gear and vessel strikes in Canadian waters. DFO Can Sci Advis Sec Sci Advis Rep 2019/028

Dungan, S.Z., Kosyakov, A., and Chang, B.S.W. (2015). Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment Mol. Biol. Evol. 33(2):323-336 doi:10.1093/molbev/msv217.

Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Zimmermann NE (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129-151

Etnoyer P, Canny D, Mate BR, Morgan LE, Ortega-Ortiz JG, Nichols WJ (2006) Seasurface temperature gradients across blue whale and sea turtle foraging trajectories off the Baja California Peninsula, Mexico. Deep Sea Res Pt I Oceanogr Res Pap 53: 340358

Evans JS, Oakleaf J, Cushman SA, Theobald D (2014) An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, version 2.0-0. Available:
http://evansmurphy.wix.com/evansspatial. Accessed: 2015 Dec 2
Fasick, J.I. and Robinson, P.R. 2016. Adaptations of Cetacean Retinal Pigments to Aquatic Environments. Front. Ecol.Evol.4:70. doi: 10.3389/fevo.2016.00070
Fourcade Y, Besnard AG, Secondi J. 2017. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol Biogeogr. 2018;27:245-256. https://doi.org/10. 1111/geb. 12684

Fretwell PT, Staniland IJ, Forcada J (2014) Whales from Space: Counting Southern Right Whales by Satellite. PLoS ONE 9(2): e88655. doi:10.1371/journal.pone. 0088655

Fuentes-Yaco, C. and Clay, S. 2018. Remotely-sensed Derived Oceanographic Index for Potential Location of Right Whales in the Canadian Maritime Region. Ocean and Ecosystem Sciences Division, BIO, DFO. Internal Report - January 2018.

Fuentes-Yaco, C., Parsons, S., Hardy, M., Clay, S., Horne, E., Law, B., Caverhill, C., Perry, T., Neary, S., LeBlanc, C., Chénier, R., Faucher, M-A, Breton, M., Mariampillai, D. In press. The importance of including satellite remotely-sensed ocean colour analyses to the planning of airborne lidar bathymetry. Can. Tech. Rep. Fish. Aquat. Sci.

Ferguson MC, Barlow J, Reilly SB, Gerrodette T (2006) Predicting Cuvier's (Ziphius cavirostris) and Mesoplodon beaked whale densities as functions of the environment in the eastern tropical Pacific Ocean. J Cet Res Man 7: 287-299

Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38-49

Fithian W, Hastie T (2013) Finite-sample equivalence in statistical models for presenceonly data. Ann Appl Stat 7: 1917-1939

Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 9:1-13

Fuentes-Yaco C, King M, Li WKW (2015) Mapping areas of high phytoplankton biomass in the offshore component of the Scotian Shelf Bioregion: A remotely-sensed approach. Can Sci Advis Sec Res Doc, Fisheries and Oceans Canada, Ottawa

Griebel, U., and Peichl, L. 2003. Colour vision in aquatic mammals-facts and open questions. Aquatic Mammals: 29.1, 18-30.

Greenan BJW, Shackell NL, Ferguson K, Greyson P, Cogswell A, Brickman D, Wang Z, Cook A, Brennan CE and Saba VS (2019) Climate Change Vulnerability of American Lobster Fishing Communities in Atlantic Canada. Front. Mar. Sci. 6:579. doi: 10.3389/fmars.2019.00579

Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modelling and spatial prediction of soil attributes. Int J Geogr Inf Sci 9:21-432

Gilles A, Viquerat S, Becker EA, Forney KA, Geelhoed SCV, Haelters J, Nabe-Nielsen J, Scheidat M, Siebert U, Sveegaard S, van Beest FM, van Bemmelen R, Aarts G (2016) Seasonal habitat-based density models for a marine top predator, the harbor porpoise, in a dynamic environment. Ecosphere 7:e01367

Gjerdrum, C., D.A. Fifield, and S.I. Wilhelm. 2012. Eastern Canada Seabirds at Sea (ECSAS) standardized protocol for pelagic seabird surveys from moving and stationary platforms. 31 Canadian Wildlife Service Technical Report Series No. 515. Atlantic Region. vi +37 p .
Golding N, Purse B (2016) Fast and flexible Bayesian species distribution modelling using Gaussian processes. Methods Ecol Evol 7: 598-608

Gomez C, Moors-Murphy HB (2014) Assessing cetacean distribution in the Scotian Shelf Bioregion using habitat suitability models. Can Tech Rep Fish Aquat Sci 3088: iv + 49 pp.

Gomez C, Lawson JW, Kouwenberg AL, Moors-Murphy H, Buren A, Fuentes-Yaco C, Marotte E, Wiersma Y, Wimmer T. 2017. Predicted distribution of whales at risk: identifying priority areas to enhance cetacean monitoring in the Northwest Atlantic Ocean. Endang Species Res 32: 437-458.

Gregr EJ (2011) Insights into North Pacific right whale Eubalaena japonica habitat from historic whaling records. Endanger Species Res 15: 223-239

Hazen EL, Scales KL, Maxwell SM, Briscoe DK, Welch H, Bograd SJ, et al. (2018). A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4:eaar3001.

Hijmans R, Phillips S, Leathwick J, Elith J. (2017). dismo: Species Distribution Modeling. R package version 1.1-4. https://CRAN.R-project.org/package=dismo

Hooker SK, Whitehead H, Gowans S (1999) Marine protected area design and the spatial and temporal distribution of cetaceans in a submarine canyon. Conserv Biol 13:592-602

IOCCG (2000) Remote Sensing of Ocean Colour in Coastal, and Other OpticallyComplex, Waters. Sathyendranath, S. (ed.), Reports of the International Ocean-Colour Coordinating Group, No. 3, IOCCG, Dartmouth, Canada

Jaquet N (1996) How spatial and temporal scales influence understanding of sperm whale distribution: a review. Mammal Rev 26:51-65

Jaquet N, Whitehead H (1996) Scale-dependent correlation of sperm whale distribution with environmental features and productivity in the South Pacific. Mar Ecol Prog Ser 135:1-9

Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401-413

Kaschner K, Quick NJ, Jewell R, Williams R, Harris CM (2012) Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PloS one 7: e44075

King M, Shackell N, Greenlaw M, Allard K, Moors H, Fenton D (2013) Marine protected area network planning in the Scotian Shelf Bioregion: Offshore data considerations. DFO Can Sci Advis Sec Doc 2013/064. vi + 24 pp.

Kobayashi DR, Cheng IJ, Parker DM, Polovina JJ, Kamezaki N, Balazs GH (2011) Loggerhead turtle (Caretta caretta) movement off the coast of Taiwan: Characterization of a hotspot in the East China Sea and investigation of mesoscale eddies. ICES J Mar Sci 68:707-718

Lambert C, Pettex E, Dorémus G, Laran S, Stéphan E, Van Canneyt O, Ridoux, V (2016) How does ocean seasonality drive habitat preferences of highly mobile top predators? Part II: The eastern North-Atlantic. Deep Sea Res Pt II Top Stud Oceanogr. Available online July 12016

Lawson JW, Gosselin JF (2009) Distribution and preliminary abundance estimates for cetaceans seen during Canada's marine megafauna survey - a component of the 2007 TNASS. DFO Canadian Science Advisory Secretariat Research Document. 2009/031

Lawson, J.W., and Gosselin, J.-F. 2020. Abundance and distribution of cetaceans
during the North Atlantic International Sighting Survey (NAISS) in 2016. Department of Fisheries and Oceans. Canadian Science Advisory Secretariat Research Document 2020/xxx. iv + 49 p.

Lesage, V., Gosselin, J.-F., Lawson, J.W., McQuinn, I., Moors-Murphy, H., Plourde, S., Sears, R., Simard, Y. 2018. Habitats important to blue whales (Balaenoptera musculus) in the western North Atlantic. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/080. iv + 50 p.

LGL Limited. 2013. Environmental assessment of Shell Canada Ltd.'s Shelburne Basin 3-D Seismic Survey. LGL Rep., SA1175. Rep. by LGL Limited, St. John's, NL and Mahone Bay, NS, for Shell Canada Limited, Calgary, AB. 127p +Appendices.

LGL Limited. 2014. Final environmental assessment of BP Exploration (Canada) Limited's Tangier 3-D Seismic Survey. BP Document NS-HS-REP-BP-01-000 and LGL Rep. SA1222. Rep. by LGL Limited, Mahone Bay, NS and St. John's, NL for BP Exploration Canada Limited, Calgary, AB. 177 p + appendices.

Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: A misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145-151

Longhurst AR (2007) Ecological Geography of the Sea 2nd ed. San Diego: Academic Press

MacKay MM, Würsig B, Bacon CE, Selwyn JD (2016) Humpback whale (Megaptera novaeangliae) hotspots defined by bathymetric features off western Puerto Rico. Can J Zool 94: 517-527

MacDonald, D., Emery, P., Themelis, D., Smedbol, R.K., Harris, L.E., and McCurdy, Q. 2017. Marine mammal and pelagic animal sightings (Whalesightings) database: a user's guide. Can. Tech. Rep. Fish. Aquat. Sci. 3244: v + 44 p.

Mannocci L, Monestiez P, Spitz J, Ridoux V (2015) Extrapolating cetacean densities beyond surveyed regions: habitat-based predictions in the circumtropical belt. J Biogeogr 42:1267-1280

Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter. Ecography 36:1058-1069

Moore ID, Grayson RB, Ladson AR (1991) Digital Terrain Modelling: A Review of Hydrological, Geomorphological, and Biological Applications. Hydrol Processes 5:3-30

Moors-Murphy HB (2014) Submarine canyons as important habitat for cetaceans, with special reference to the Gully: A review. Deep Sea Res Pt II Top Stud Oceanogr 104:619.

Moors-Murphy, H.B., Lawson, J.W., Rubin, B., Marotte, E., Renaud, G., and FuentesYaco, C. 2019. Occurrence of Blue Whales (Balaenoptera musculus) off Nova Scotia, Newfoundland, and Labrador. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/007. iv + 55 p.

Morato T, Hoyle SD, Allain V, Nicol SJ (2010) Seamounts are hotspots of pelagic biodiversity in the open ocean. PNAS 107:9707-9711

Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22:709722

Muscarella, R., P. J. Galante, M. Soley-Guardia, R. A. Boria, J. M. Kass, M. Uriarte, and R. P. Anderson. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5:1198-1205.

NAFO (2014) Report of the 7th Meeting of the NAFO Scientific Council (SC) Working Group on Ecosystem Science and Assessment (WGESA). NAFO SCS Doc 14/023, Dartmouth, NS

Palacios DM, Bograd SJ, Foley DG, Schwing FB (2006) Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Sea Res Pt II Top Stud Oceanogr 53:250-269

Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J Biogeogr 34:102-117

Pendleton DE, Sullivan PJ, Brown MW, Cole TVN, Good CP, Mayo CA, Pershing AJ (2012) Weekly predictions of North Atlantic right whale Eubalaena glacialis habitat reveal influence of prey abundance and seasonality of habitat preferences. Endang Species Res 18:147-161

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231-259

Pirotta E, Matthiopoulos J, MacKenzie M, Scott-Hayward L, Rendell L (2011) Modelling sperm whale habitat preference: A novel approach combining transect and follow data. Mar Ecol Prog Ser 436: 257-272

Plourde, S., Lehoux, C., McQuinn, I.H., and Lesage, V. (2016). Describing krill distribution in the western North Atlantic using statistical habitat models. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/111. v + 34 p

Podestá GP, Browder JA, Hoey JJ (1993) Exploring the association between swordfish catch rates and thermal fronts on US longline grounds in the western North Atlantic. Cont Shelf Res 13:253-277

Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge: Cambridge University Press. 527 pp.

Roberts JJ, Best BD, Mannocci L, Fujioka E, Halpin PN, Palka DL, Garrison LP, Mullin KD, Cole TVN, Khan CB, McLellan WA, Pabst DA, Lockhart GG (2016) Habitat-based cetacean density models for the US Atlantic and Gulf of Mexico. Sci Rep 6:22615

Taylor BL, Baird R, Barlow J, Dawson SM, Ford J, Mead JG, Notarbartolo di Sciara G, Wade P, Pitman RL (2013) Orcinus orca. The IUCN Red List of Threatened Species 2013: e.T15421A44220470. http://dx.doi.org/10.2305/IUCN.UK.2013-
1.RLTS.T15421A44220470.en. Downloaded on 14 June 2016.

Trudnowska, E., Sagan, S., Kwasniewski, S., Lawdarecki, M., and Blachowiak-Samolyk, K. (2015). Fine-scale zooplankton vertical distribution in relation to hydrographic and optical characteristics of the surface waters on the Arctic shelf. J. Plankton Res. 37(1): 120-133. doi:10.1093/plankt/fbu087

Tittensor DP, Bac AR, Brewin PE, Clark MR, Consalvey M, Hall-Spencer J, Rogers AD (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeogr 36:1111-1128

Waring GT, Hamazaki T, Sheehan D, Wood G, Baker S (2001) Characterization of beaked whale (Ziphiidae) and sperm whale (Physeter macrocephalus) summer habitat in shelf-edge and deeper waters off the northeast US. Mar Mam Sci 17:703-717

Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Sea Res Pt II Top Stud Oceanogr 54:211-223

Whitehead H (2013) Trends in cetacean abundance in the Gully submarine canyon, 1988-2011, highlight a 21\% per year increase in Sowerby's beaked whales (Mesoplodon bidens) Can J Zool 91:141-148

Whitehead H, MacLeod CD, Rodhouse P (2003) Differences in niche breadth among some teuthivorous mesopelagic marine mammals. Mar Mam Sci 19:400-406

Whitehead H, O'Brien K, Worm B (2010) Diversity of deep-water cetaceans and primary productivity. Mar Ecol Progr Ser 408:1-5

Wishner K, Durbin E, Durbin A, Macaulay M, Winn H, Kenney R (1988) Copepod patches and right whales in the Great South Channel off New England. Bull Mar Sci 43:825-844

Wong SNP (2012) A Pelagic Paradox: The Ecology of a Top Predator in an Oceanic Desert. PhD thesis, Dalhousie University, Halifax, Nova Scotia

Worm B, Lotze HK, Myers RA (2003) Predator diversity hotspots in the blue ocean. PNAS 100:9884-9888

Zuur AF, leno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3-14

Zwanenburg KCT, Bowen D, Bundy A, Drinkwater K, Frank K, O'Boyle R, Sinclair M (2002) Decadal changes in the Scotian Shelf large marine ecosystem. Large Marine Ecosystems 10:105-150

APPENDIX - SPECIES DISTRIBUTION MODEL RESULTS

Figure A 1. Habitat suitability index for fin whale during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 2. Habitat suitability index for fin whale during autumn, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 1. Pearson's correlation between for the 12 summer SDMs for fin whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km											
none	none	1.00	1.00	0.99	0.38	0.25	0.05	0.66	0.57	0.45	0.78	0.75	0.67		
	2.5 km		1.00	0.99	0.38	0.25	0.06	0.66	0.58	0.46	0.78	0.76	0.69		
	5 km			1.00	0.38	0.26	0.07	0.65	0.58	0.47	0.78	0.76	0.69		
1 km	none				1.00	0.91	0.78	0.78	0.79	0.78	0.69	0.69	0.71		
	2.5 km				1.00	0.94	0.61	0.67	0.84	0.54	0.63	0.69			
	5 km					1.00	0.45	0.54	0.79	0.36	0.47	0.56			
2.5 km	none								1.00	0.96	0.78	0.93	0.88	0.86	
	2.5 km				1.00				0.85	0.86	0.84	0.86			
	5 km								1.00	0.71	0.80	0.88			
5 km	none												1.00	0.96	0.90
	2.5 km				1.00				0.97						
	5 km								1.00						

Table A 2. Pearson's correlation between the 12 models for the autumn SDMs for fin whale.

Figure A 3. Habitat suitability index for sei whale during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 3. Pearson's correlation between the 12 models for the summer SDMs for sei whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5km	5km	none	2.5 km	5km	none	2.5 km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.99	0.53	0.50	0.47	0.61	0.60	0.56	0.63	0.62	0.59		
	2.5 km		1.00	0.99	0.55	0.52	0.49	0.63	0.62	0.58	0.65	0.64	0.60		
	5 km			1.00	0.54	0.52	0.49	0.63	0.62	0.59	0.65	0.64	0.61		
1 km	none				1.00	1.00	0.98	0.97	0.97	0.96	0.93	0.94	0.95		
	2.5 km				1.00	0.99	0.95	0.96	0.97	0.92	0.94	0.95			
	5 km					1.00	0.92	0.94	0.96	0.88	0.90	0.93			
2.5 km	none								1.00	1.00	0.97	0.98	0.99	0.98	
	2.5 km				1.00				0.98	0.98	0.99	0.99			
	5 km								1.00	0.95	0.96	0.98			
5 km	none												1.00	1.00	0.98
	2.5 km				1.00				0.99						
	5 km								1.00						

Figure A 4. Habitat suitability index for minke whale during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015 . Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 5. Habitat suitability index for minke whale during autumn, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 4. Pearson's correlation between the 12 models for the summer SDMs for minke whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5km	5km											
none	none	1.0	0.99	0.99	0.53	0.44	0.32	0.73	0.70	0.63	0.77	0.75	0.74		
	2.5 km		1.0	0.99	0.54	0.45	0.33	0.73	0.70	0.63	0.77	0.76	0.74		
	5 km			1.0	0.54	0.46	0.35	0.73	0.70	0.65	0.77	0.75	0.75		
1 km	none				1.0	0.96	0.84	0.87	0.90	0.87	0.8	0.82	0.83		
	2.5 km				1.0	0.92	0.79	0.85	0.86	0.70	0.74	0.79			
	5 km					1.0	0.62	0.72	0.81	0.51	0.55	0.70			
2.5 km	none								1.0	0.98	0.9	0.96	0.96	0.93	
	2.5 km				1.0				0.95	0.94	0.94	0.96			
	5 km								1.0	0.83	0.85	0.94			
5 km	none												1.0	0.99	0.92
	2.5 km				1.0				0.93						
	5 km								1.0						

Table A 5. Pearson's correlation between the 12 models for the autumn SDMs for minke whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.98	0.47	0.43	0.37	0.56	0.55	0.51	0.59	0.58	0.58		
	2.5 km		1.00	0.99	0.48	0.45	0.38	0.57	0.56	0.51	0.60	0.59	0.59		
	5 km			1.00	0.48	0.46	0.41	0.55	0.55	0.52	0.58	0.58	0.58		
1 km	none				1.00	0.98	0.93	0.88	0.91	0.92	0.81	0.83	0.84		
	2.5 km				1.00	0.97	0.83	0.86	0.90	0.76	0.80	0.82			
	5 km					1.00	0.74	0.78	0.85	0.67	0.72	0.75			
2.5 km	none								1.00	$\begin{aligned} & 0.99 \\ & 1.00 \end{aligned}$	0.94	0.96	0.95	0.93	
	2.5 km				0.96				0.93		0.94	0.93			
	5 km				1.00				0.89		0.92	0.94			
5 km	none												1.00	0.98	0.95
	2.5 km				1.00				0.98						
	5 km								1.00						

Figure A 6. Habitat suitability index for humpback whales during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015 . Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 7. Habitat suitability index for humpback whales during spring, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in spring from 1975 to 2015 . Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 8. Habitat suitability index for humpback whales during autumn, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in autumn from 1975 to 2015 . Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 6. Pearson's correlation between the 12 models for the spring SDMs for humpback whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5km	5km	none	2.5km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.98	0.18	0.15	0.14	0.52	0.47	0.48	0.64	0.61	0.58		
	2.5 km		1.00	0.98	0.21	0.18	0.17	0.55	0.51	0.52	0.67	0.65	0.61		
	5 km			1.00	0.21	0.18	0.18	0.55	0.51	0.53	0.67	0.65	0.62		
1 km	none				1.00	1.00	0.99	0.79	0.83	0.81	0.70	0.74	0.76		
	2.5 km				1.00	1.00	0.77	0.82	0.80	0.67	0.71	0.74			
	5 km					1.00	0.76	0.81	0.79	0.67	0.71	0.73			
2.5 km	none								1.00	$\begin{aligned} & \hline 0.99 \\ & 1.00 \end{aligned}$	0.99	0.97	0.98	0.98	
	2.5 km				0.99				0.95		0.97	0.97			
	5 km				1.00				0.95		0.97	0.98			
5 km	none												1.00	0.99	0.98
	2.5 km				1.00				0.99						
	5 km								1.00						

Table A 7. Pearson's correlation between the 12 models for the summer SDMs for humpback whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.98	0.54	0.47	0.32	0.63	0.60	0.51	0.73	0.69	0.60		
	2.5 km		1.00	0.99	0.55	0.49	0.34	0.65	0.61	0.53	0.74	0.70	0.62		
	5 km			1.00	0.60	0.52	0.38	0.68	0.65	0.58	0.77	0.74	0.66		
1 km	none				1.00	0.98	0.91	0.96	0.98	0.97	0.92	0.94	0.96		
	2.5 km				1.00	0.95	0.93	0.95	0.97	0.88	0.91	0.94			
	5 km					1.00	0.83	0.87	0.92	0.76	0.81	0.88			
2.5 km	none								1.00	0.99	0.95	0.97	0.98	0.96	
	2.5 km				1.00				0.97	0.95	0.97	0.98			
	5 km								1.00	0.90	0.93	0.97			
5 km	none												1.00	0.99	0.95
	2.5 km				1.00				0.97						
	5 km								1.00						

Table A 8. Pearson's correlation between the 12 models for the autumn SDMs for humpback whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5km	5km	none	2.5 km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.99	0.67	0.65	0.61	0.73	0.71	0.68	0.78	0.76	0.73		
	2.5 km		1.00	0.99	0.67	0.65	0.62	0.73	0.71	0.68	0.78	0.76	0.74		
	5 km			1.00	0.69	0.68	0.65	0.76	0.74	0.71	0.80	0.78	0.76		
1 km	none				1.00	0.99	0.95	0.93	0.93	0.92	0.91	0.92	0.91		
	2.5 km				1.00	0.97	0.92	0.93	0.93	0.89	0.91	0.92			
	5 km					1.00	0.91	0.93	0.95	0.87	0.90	0.93			
2.5 km	none								1.00	0.99	0.97	0.99	0.99	0.98	
	2.5 km				1.00				0.99	0.97	0.98	0.99			
	5 km								1.00	0.94	0.96	0.98			
5 km	none												1.00	0.99	0.98
	2.5 km				1.00				0.99						
	5 km								1.00						

Figure A 9. Habitat suitability index for sperm whale during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 9. Pearson's correlation between the 12 models for the summer SDMs for sperm whales.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5km	5km	none	2.5 km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.99	0.53	0.50	0.47	0.61	0.60	0.56	0.63	0.62	0.59		
	2.5 km		1.00	0.99	0.55	0.52	0.49	0.63	0.62	0.58	0.65	0.64	0.60		
	5 km			1.00	0.54	0.52	0.49	0.63	0.62	0.59	0.65	0.64	0.61		
1 km	none				1.00	1.00	0.98	0.97	0.97	0.96	0.93	0.94	0.95		
	2.5 km				1.00	0.99	0.95	0.96	0.97	0.92	0.94	0.95			
	5 km					1.00	0.92	0.94	0.96	0.88	0.90	0.93			
2.5 km	none								1.00	1.00	0.97	0.98	0.99	0.98	
	2.5 km				1.00				0.98	0.98	0.99	0.99			
	5 km								1.00	0.95	0.96	0.98			
5 km	none												1.00	1.00	0.98
	2.5 km				1.00				0.99						
	5 km								1.00						

Figure A 10. Habitat suitability index for long-finned pilot whales during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 11. Habitat suitability index for long-finned pilot whales during spring, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in spring from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 12. Habitat suitability index for long-finned pilot whales during autumn, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 10. Pearson's correlation between the 12 models for the spring SDMs for long-finned pilot whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5 km	5km		
none	none	1.00	0.99	0.98	0.71	0.67	0.64	0.73	0.68	0.66	0.76	0.72	0.69		
	2.5 km		1.00	0.99	0.72	0.68	0.66	0.73	0.69	0.67	0.76	0.74	0.70		
	5 km			1.00	0.72	0.68	0.66	0.73	0.70	0.68	0.76	0.74	0.71		
1 km	none				1.00	0.99	0.98	0.93	0.92	0.92	0.90	0.90	0.90		
	2.5 km				1.00	1.00	0.93	0.93	0.93	0.89	0.91	0.91			
	5 km					1.00	0.91	0.92	0.93	0.88	0.90	0.91			
2.5 km	none								1.00	0.99	0.97	0.98	0.98	0.97	
	2.5 km				1.00				0.99	0.97	0.98	0.98			
	5 km								1.00	0.95	0.96	0.98			
5 km	none												1.00	0.99	0.97
	2.5 km				1.00				0.99						
	5 km								1.00						

Table A 11. Pearson's correlation between the 12 models for the summer SDMs for long-finned pilot whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5 km	5km		
none	none	1.00	0.99	0.99	0.41	0.36	0.26	0.53	0.48	0.41	0.58	0.54	0.47		
	2.5 km		1.00	0.99	0.38	0.33	0.24	0.50	0.45	0.39	0.55	0.51	0.45		
	5 km			1.00	0.40	0.35	0.26	0.51	0.46	0.40	0.56	0.52	0.46		
1 km	none				1.00	0.99	0.97	0.94	0.95	0.94	0.89	0.89	0.89		
	2.5 km				1.00	0.98	0.93	0.94	0.94	0.87	0.88	0.89			
	5 km					1.00	0.89	0.91	0.93	0.84	0.85	0.87			
2.5 km	none								1.00	0.99	0.97	0.97	0.95	0.94	
	2.5 km				1.00				0.99	0.96	0.96	0.95			
	5 km								1.00	0.94	0.95	0.95			
5 km	none												1.00	0.99	0.97
	2.5 km				1.00				0.99						
	5 km								1.00						

Table A 12. Pearson's correlation between the 12 models for the autumn SDMs for long-finned pilot whale.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5km	5km	none	2.5km	5km	none	2.5km	5km		
none	none	1.00	0.98	0.98	0.49	0.45	0.41	0.51	0.47	0.43	0.55	0.52	0.49		
	2.5 km		1.00	0.98	0.53	0.48	0.44	0.54	0.51	0.46	0.58	0.55	0.52		
	5 km			1.00	0.51	0.47	0.43	0.52	0.49	0.45	0.56	0.54	0.51		
1 km	none				1.00	0.99	0.98	0.97	0.97	0.96	0.96	0.97	0.97		
	2.5 km				1.00	0.99	0.95	0.96	0.96	0.95	0.96	0.96			
	5 km					1.00	0.94	0.95	0.95	0.93	0.94	0.95			
2.5 km	none								1.00	1.00	0.99	0.99	0.99	0.99	
	2.5 km				1.00				0.99	0.98	0.99	0.99			
	5 km								1.00	0.98	0.98	0.99			
5 km	none												1.00	1.00	0.99
	2.5 km				1.00				1.00						
	5 km								1.00						

Figure A 13. Habitat suitability index for Atlantic white-sided dolphin during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 14. Habitat suitability index for Atlantic white-sided dolphin during autumn, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 13. Pearson's correlation between the 12 models for the summer SDMs for Atlantic white-sided Dolphin.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5km	5km	none	2.5 km	5km	none	2.5 km	5km		
none	none	1.00	0.99	0.99	0.55	0.41	0.22	0.78	0.73	0.63	0.84	0.82	0.77		
	2.5 km		1.00	0.99	0.55	0.41	0.22	0.78	0.74	0.64	0.84	0.82	0.77		
	5 km			1.00	0.55	0.42	0.23	0.78	0.74	0.65	0.84	0.83	0.78		
1 km	none				1.00	0.96	0.84	0.86	0.88	0.88	0.77	0.80	0.82		
	2.5 km				1.00	0.93	0.77	0.82	0.86	0.66	0.71	0.76			
	5 km					1.00	0.60	0.66	0.77	0.47	0.54	0.64			
2.5 km	none								1.00	0.98	0.92	0.95	0.95	0.94	
	2.5 km				1.00				0.96	0.93	0.95	0.95			
	5 km								1.00	0.84	0.88	0.94			
5 km	none												1.00	0.99	0.94
	2.5 km				1.00				0.97						
	5 km								1.00						

Table A 14. Pearson's correlation between the 12 models for the autumn SDMs for Atlantic white-sided Dolphin.

Bias map		None		1 km		2.5 km		5 km					
	Subsampling	none	2.5 km	5 km									
none	none	1.00	0.98	0.99	0.27	0.24	0.17	0.28	0.26	0.21	0.35	0.30	0.29
	2.5 km	0.98	1.00	0.98	0.26	0.24	0.16	0.27	0.26	0.20	0.33	0.29	0.28
	5 km	0.99	0.98	1.00	0.26	0.24	0.17	0.27	0.25	0.21	0.33	0.29	0.28
1 km	none	0.27	0.26	0.26	1.00	0.96	0.90	0.90	0.89	0.88	0.82	0.82	0.83
	2.5 km	0.24	0.24	0.24	0.96	1.00	0.96	0.86	0.89	0.90	0.75	0.80	0.83
	5 km	0.17	0.16	0.17	0.90	0.96	1.00	0.81	0.84	0.89	0.67	0.73	0.80
2.5 km	none	0.28	0.27	0.27	0.90	0.86	0.81	1.00	0.97	0.94	0.93	0.92	0.93
	2.5 km	0.26	0.26	0.25	0.89	0.89	0.84	0.97	1.00	0.96	0.89	0.93	0.93
	5 km	0.21	0.20	0.21	0.88	0.90	0.89	0.94	0.96	1.00	0.85	0.89	0.94
5 km	none	0.35	0.33	0.33	0.82	0.75	0.67	0.93	0.89	0.85	1.00	0.97	0.93
	2.5 km	0.30	0.29	0.29	0.82	0.80	0.73	0.92	0.93	0.89	0.97	1.00	0.96
	5 km	0.29	0.28	0.28	0.83	0.83	0.80	0.93	0.93	0.94	0.93	0.96	1.00

Figure A 15. Habitat suitability index for short-beaked common dolphin during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 16. Habitat suitability index for short-beaked common dolphin during autumn, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in autumn from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 15. Pearson's correlation between the 12 models for the summer SDMs for short-beaked common dolphin.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5 km	5km		
none	none	1.00	1.00	0.99	0.62	0.60	0.55	0.78	0.77	0.70	0.87	0.85	0.82		
	2.5 km		1.00	0.99	0.62	0.60	0.55	0.78	0.77	0.70	0.87	0.85	0.82		
	5 km			1.00	0.63	0.61	0.57	0.79	0.77	0.72	0.87	0.86	0.83		
1 km	none				1.00	1.00	0.97	0.94	0.94	0.95	0.87	0.89	0.90		
	2.5 km				1.00	0.98	0.93	0.94	0.95	0.86	0.88	0.90			
	5 km					1.00	0.89	0.91	0.95	0.81	0.84	0.87			
2.5 km	none								1.00	$\begin{aligned} & 0.99 \\ & 1.00 \end{aligned}$	0.97	0.97	0.97	0.97	
	2.5 km				0.98				0.95		0.97	0.97			
	5 km				1.00				0.91		0.93	0.96			
5 km	none												1.00	1.00	0.98
	2.5 km				1.00				0.99						
	5 km								1.00						

Table A 16. Pearson's correlation between the 12 models for the autumn SDMs for short-beaked common dolphin.

Bias map		None			1 km			2.5 km			5 km		
	Subsampling	none	2.5km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5km	5km
none	none	1.00	0.99	0.99	0.60	0.58	0.57	0.64	0.62	0.62	0.74	0.72	0.72
	2.5 km		1.00	0.99	0.60	0.58	0.57	0.64	0.62	0.62	0.73	0.71	0.71
	5 km			1.00	0.62	0.60	0.59	0.65	0.64	0.64	0.75	0.73	0.74
1 km	none				1.00	1.00	1.00	0.97	0.97	0.96	0.93	0.93	0.93
	2.5 km					1.00	1.00	0.96	0.96	0.96	0.92	0.93	0.93
	5 km						1.00	0.96	0.96	0.96	0.92	0.92	0.92
2.5 km	none							1.00	1.00	0.99	0.97	0.97	0.96
	2.5 km								1.00	0.99	0.96	0.97	0.96
	5 km									1.00	0.96	0.97	0.96
5 km	none										1.00	1.00	0.99
	2.5 km				1.00	0.99							
	5 km					1.00							

Figure A 17. Habitat suitability index for white-beaked dolphin during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015. Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 17. Pearson's correlation between the 12 models for the summer SDMs for white-beaked dolphin.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5 km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.97	0.71	0.70	0.69	0.74	0.73	0.72	0.77	0.75	0.75		
	2.5 km		1.00	0.98	0.70	0.69	0.67	0.73	0.71	0.71	0.75	0.73	0.73		
	5 km			1.00	0.71	0.70	0.70	0.72	0.72	0.72	0.74	0.74	0.74		
1 km	none				1.00	1.00	0.98	0.96	0.97	0.96	0.96	0.97	0.97		
	2.5 km				1.00	0.99	0.95	0.96	0.96	0.95	0.96	0.97			
	5 km					1.00	0.94	0.95	0.97	0.93	0.95	0.96			
2.5 km	none								1.00	1.00	0.98	0.98	0.98	0.98	
	2.5 km				1.00				0.99	0.98	0.98	0.98			
	5 km								1.00	0.96	0.97	0.98			
5 km	none												1.00	1.00	0.99
	2.5 km				1.00				0.99						
	5 km								1.00						

Figure A 18. Habitat suitability index for harbour porpoise during summer, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in summer from 1975 to 2015 . Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Figure A 19. Habitat suitability index for harbour porpoise during autumn, based on the averaged relative occurrence rate output from the MaxEnt models. Within the study area (black outline), the model used the geographic locations of sightings in autumn from 1975 to 2015 . Models were run for 12 combinations of subsampling grid resolution and bias map grid resolutions.

Table A 18. Pearson's correlation between the 12 models for the summer SDMs for harbour porpoise.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5km	5km	none	2.5km	5km	none	2.5km	5km	none	2.5 km	5km		
none	none	1.00	0.99	0.98	0.62	0.64	0.59	0.69	0.69	0.66	0.75	0.75	0.73		
	2.5 km		1.00	0.99	0.63	0.64	0.60	0.69	0.69	0.66	0.75	0.75	0.73		
	5 km			1.00	0.58	0.61	0.58	0.65	0.65	0.63	0.71	0.72	0.70		
1 km	none				1.00	0.99	0.92	0.97	0.96	0.95	0.96	0.95	0.94		
	2.5 km				1.00	0.96	0.96	0.96	0.96	0.95	0.95	0.95			
	5 km					1.00	0.89	0.91	0.95	0.90	0.91	0.92			
2.5 km	none								1.00	0.99	0.97	0.99	0.98	0.97	
	2.5 km				1.00				0.99	0.99	0.99	0.98			
	5 km								1.00	0.97	0.97	0.98			
5 km	none												1.00	1.00	0.99
	2.5 km				1.00				0.99						
	5 km								1.00						

Table A 19. Pearson's correlation between the 12 models for the autumn SDMs for harbour porpoise.

Bias map		None			1 km			2.5 km			5 km				
	Subsampling	none	2.5km	5km	none	2.5 km	5km	none	2.5km	5km	none	2.5km	5km		
none	none	1.00	0.99	0.98	0.78	0.78	0.76	0.83	0.82	0.75	0.85	0.85	0.82		
	2.5 km		1.00	0.99	0.79	0.79	0.77	0.84	0.83	0.76	0.85	0.86	0.83		
	5 km			1.00	0.80	0.80	0.79	0.83	0.83	0.77	0.84	0.85	0.84		
1 km	none				1.00	1.00	0.98	0.97	0.97	0.93	0.94	0.95	0.94		
	2.5 km				1.00	0.97	0.94	0.97	0.96	0.90	0.92	0.95			
	5 km					1.00	0.85	0.91	0.96	0.80	0.84	0.91			
2.5 km	none								1.00	$\begin{aligned} & 0.99 \\ & 1.00 \end{aligned}$	0.92	0.98	0.98	0.95	
	2.5 km				0.96				0.96		0.97	0.98			
	5 km				1.00				0.88		0.91	0.97			
5 km	none												1.00	0.99	0.94
	2.5 km				1.00				0.96						
	5 km								1.00						

