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ABSTRACT 

Live Gene Bank populations of Stewiacke River and Big Salmon River inner Bay of Fundy 
Atlantic Salmon (Salmo salar) have now undergone approximately three generations of captive 
breeding and rearing. Several characteristics of the Stewiacke Live Gene Bank program, 
including the maintenance of pedigree and other information on nearly all salmon spawned each 
year, make possible the monitoring of several key traits through time and the testing of some of 
the possible effects of the general Live Gene Bank program (and specific management 
strategies employed within), on several indicators of offspring performance. 

A moderate amount of intra-year (or intra-generation) variation was observed for nearly all of the 
approximately 15 traits studied, and differences between years were often significant. The 
timing of some of the larger among-year differences observed often overlapped with either 
changes in measurement methodologies used or captive rearing conditions employed. 
However, we observed very few trends or directional changes in measured traits, potentially 
indicative of either plastic responses to directional environmental (captive or wild) changes 
through time or adaptation to captive conditions. 

Our assessment of the overall general impact of the Live Gene Bank program on possible 
indicators of fitness was limited to testing for differences in performance traits across salmon 
that had experienced between 2.0 and 3.25 ancestral generations of captive breeding and 
rearing. Even so, survival in the wild from release at Age 0+ to recapture at Age 1+ appeared to 
decrease with increasing numbers of program generations, and this relationship was significant 
in one of four spawning years assessed. Results of investigations into some of the possible 
effects of individual variables, each associated with specific management strategies employed, 
on different metrics of offspring performance were mixed. Parental and maternal early juvenile 
rearing environments did not appear to influence offspring survival in the wild from release at 
Age 0+ to recapture at Age 1+ or Age 2+, approximately 15 and 27 months later, respectively, 
but it did appear to impact size (length and weight) of Age 1+ parr in the wild. We did not detect 
any effect of (1) parent family size in the wild, (2) parent Mean Kinship, (3) pedigree inbreeding 
(F), or (4) offspring expected heterozygosity, on any offspring performance trait measured. 
Female (but not male) parent age did have a significant (positive) impact on nearly all metrics of 
offspring performance assessed, and only some of this effect appears to be due to increasing 
egg size. 
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INTRODUCTION 

The Atlantic Salmon (Salmo salar) (inner Bay of Fundy (iBoF)) Live Gene Banking program 
(LGB), recently described in the companion document to this publication (O’Reilly et al. 2018), 
began in 1998 when some of the last wild-origin native iBoF juveniles were collected from the 
Big Salmon (BSR) and Stewiacke (STW) rivers, and were brought into DFO’s (Fisheries and 
Oceans Canada’s) biodiversity facilities for captive breeding and rearing. As of 2015, some 
adults in the Live Gene Banking program will have experienced three cycles or generations of 
Captive Breeding and Rearing (CBR), and associated offspring produced that year (as of 2017) 
will be well into their fourth generation; the proportion of program adults experiencing at least 
three generations of CBR is expected to increase through to 2019 or 2020. 

Well controlled, highly replicated experiments on model organisms, including invertebrate and 
vertebrate species, demonstrate that animals reared and bred in captivity for multiple 
generations adapt to captive conditions and experience cumulative genetic change that appears 
to reduce fitness in the wild (Woodworth et al. 2002; McPhee, 2003; Montgomery et al. 2010; 
Malo et al. 2010). Moreover, a number of recent studies involving several species of Pacific 
salmon have reported large reductions in wild fitness after only one or two cycles of captive 
breeding and rearing (Araki et al. 2007a, b, and 2009; Theriault et al. 2011; Christie et al. 2012). 
Finally, studies carried out on iBoF LGB salmon directly (de Mestral et al. 2013; Wilke et al. 
2014; N. Wilke, pers. comm.; I. Fleming, pers. comm.) reported environmental and/or selective 
effects of a single generation of CBR on several phenotypic traits studied, including egg size, 
parr size, smolt size, and smolt run timing. It is becoming increasingly apparent that genetic 
adaptation to captivity (and associated loss of fitness) is a more serious threat to future 
population restoration than previously recognized (Frankham 2008). Genetic management 
programs for endangered species intended for reintroduction into the wild need to be altered to 
explicitly address adaptation to captivity if future restoration efforts are to be successful 
(Montgomery et al. 2010). 

A number of modifications to conservation programs have been proposed to minimize rates of 
adaptation to captivity and loss of fitness over the years, many of which were recently reviewed 
by Williams and Hoffman (2009). These authors grouped the observed approaches into four 
main categories:  

1. minimizing selection (Sh2) for captivity via (a) the use of breeding programs (Equalization of 
Family Size or EFS and Minimization of Mean Kinship or MMK) or (b) naturalization of the 
rearing environment; 

2. fragmentation of populations; 

3. immigration of individuals from the wild into captive populations; and  

4. minimizing the number of generations spent in captivity (early return of populations to the 
wild, or delaying reproduction and cryopreservation of gametes). 

Many of the above measures have been employed, to some extent, in one or more of the 
region’s iBoF LGB programs. For example, in the STW iBoF LGB program, spawners are 
selected and paired using Ranked Mean Kinship (RMK) breeding protocols (O’Reilly et al. 
2018), designed to minimize average Mean Kinship (MK) in a population (Ivy and Lacy 2012). 
Theoretical (Ballou and Lacy 1995; Fernandez et al. 2001) and empirical studies (Lacy et al. 
2013; Willoughby et al. 2015) demonstrate that MMK programs are highly effective at 
minimizing loss of genetic variation and accumulation of inbreeding. It has also been suggested 
that MMK breeding protocols are expected to slow or even stop adaptation to captivity (Lacy 
2009). Although there are some indications that rates of evolutionary change in traits measured 
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may indeed be reduced under MMK compared to random mating (reviewed in Frankham 2008), 
there is little empirical evidence to date to indicate that fitness loss in the wild is also minimized 
(Williams and Hoffman 2009). Furthermore, after a few generations, once founder contributions 
are equalized, MMK is expected to approximate EFS (Montgomery et al. 2010; Frankham 
2008), and EFS is expected to relax selection against deleterious alleles, which could lower 
fitness in the wild (Rodriquez-Ramilo et al. 2005). Theoretical analyses suggest that relaxation 
of selection under EFS (or MMK after a few generations) will only occur in very large 
populations or over many generations (Fernandez and Caballero 2001; Theodorou and Couvet 
2003). These results have since been corroborated by empirical studies involving highly 
replicated lines of Drosophila melanogaster (Common Fruit Fly) maintained in captivity across 
38 generations; no difference was observed between individuals maintained under EFS versus 
under no management (free contributions) in (1) egg-to-adult viability, (2) mating success and 
(3) global fitness (Rodriguez-Ramilo et al. 2005). These authors did, however, report higher 
heritability for sternopleural bristle number and an increased number of microsatellite alleles 
(both measures of within-population genetic diversity), as expected, under EFS. The effects of 
MMK strategies (again, functionally similar to EFS after a few generations) on indicators of 
fitness have also been investigated directly in one vertebrate species, the White-footed Mouse 
(Peromyscus leucopus), where replicated lines were maintained in captivity across ten 
generations (Malo et al. 2010). Again, no negative effects of MMK breeding protocols on the two 
traits measured (sperm quality and fertility) were detected; rates of decline were similar 
compared to random mating. However, little information on the possible effects (positive or 
negative) of MMK breeding protocols on fitness is available for salmonids, a highly fecund group 
of organisms that normally experiences very high early juvenile mortality in the wild and 
potentially intense natural selection against maladaptive genes or gene combinations (Waples 
1999).  

Population ecologists have also expressed concerns over the use of MMK ranking and selection 
strategies under specific conditions, where breeders (originally born in captivity and released 
into natural river habitat) are obtained from the wild after a period of natural selection. For 
example, if large numbers of captive-bred individuals from multiple families are released into the 
wild, exposure to natural selection may be expected to reduce the size of less fit families relative 
to more fit families. Subsequent collections of later stage individuals from released groups 
would be expected to consist of fewer representatives of the remaining smaller less fit families 
and more representatives of the larger more fit families. On average, individuals belonging to 
these smaller families would be expected to exhibit lower MK values, and individuals from larger 
families, higher MK values. In theory, subsequent program-driven preferential spawning of low-
MK individuals obtained from the wild (relevant here, see below) may then increase the 
frequency of genes associated with reduced survival in the wild, thereby decreasing the average 
individual fitness of salmon in the wild over time. 

Given the broad theoretical concerns over the long-term application of MMK and/or EFS on 
fitness in the wild, information from additional species, particularly under-represented vertebrate 
taxa with different life histories and fecundities (such as Atlantic Salmon), would be useful in 
further assessing their possible effects. 

Another common recommendation to reduce rates of adaptation to captivity (reviewed by 
Williams and Hoffman 2009), is the naturalization of rearing environments. In the iBoF LGB 
program, less emphasis has been placed on modifying or naturalizing the hatchery 
environment. Instead, the majority of offspring produced each year are transferred to native river 
habitat at a very early stage (approximately 1.5 months post-hatch), where they reside for one 
to two years before a subsample is collected and returned to the hatchery. During this period, 
mortality, including possible selection-mediated mortality, can be quite high (Waples 1999); 
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individuals exposed to wild river conditions experience predation, competition for scarce 
resources, natural pathogen regimes, etc. These individuals are referred to here as “wild-
exposed” salmon. A small number of post-hatch fry (5–10 per family) are also retained in the 
hatchery for exclusive captive rearing through to maturity; individuals so managed are referred 
to as “captive-reared” salmon (see Figure 1 for a schematic depicting these two groups). 
Although some of these captive-reared salmon were spawned in the production of the next 
generation of LGB salmon, the ratio of wild-exposed to captive-reared salmon spawned in a 
given year has been steadily increasing, and the STW LGB program is now in the process of 
shifting towards the spawning of wild-exposed salmon only; captive-reared salmon are to be 
maintained only for contingency purposes.  

In addition to potentially minimizing rates of adaptation to captivity over time, early exposure of 
LGB parents (as juveniles) to natural river conditions may benefit the iBoF recovery program 
through several additional mechanisms. It has long been known that early exposure of 
organisms to certain environmental conditions can bring about non-genetic changes to the 
genome (including methylation of DNA (Deoxyribonucleic Acid)) that can affect gene 
transcription and ultimately the phenotype; this is indeed a likely basis of at least some of the 
phenotypic plasticity observed across a range of taxa studied. Surprisingly, a growing body of 
research, involving a wide range of studied species, is now indicating that some of these 
environmentally-induced non-genetic changes may be passed from generation to generation 
(reviewed in Bossdorf et al. 2008). If these intergenerational effects influence the offspring 
phenotype in a direction that increases survival when reared under conditions similar to that 
experienced by their parents during the same period of development, early exposure of a 
modest number of LGB parents (dozens) to natural river conditions may increase the survival of 
large numbers of offspring (hundreds of thousands) released into similar wild river 
environments, potentially benefiting supplementation and/or restoration efforts. Indeed, direct 
exposure of iBoF LGB BSR parents to native river conditions as juveniles has been shown to 
increase, by a factor of two, offspring survival in the wild when compared to offspring of 
genetically similar parents reared exclusively in captivity their entire lives (Evans et al. 2014). 
However, more research is needed to determine the generality of these findings and the extent 
to which this management strategy can be expected to benefit offspring of similarly reared 
parents in other conservation programs. Additionally, insight into the likely mechanisms behind 
these transgenerational effects (i.e., maternal egg provisioning, epigenetic, or genetic) would be 
useful in assessing the long-term impact of this conservation strategy and how best to employ it 
in restoring wild self-sustaining populations. 

Currently, STW Atlantic Salmon are spawned exclusively in their fifth year (at Age 4 relative to 
their hatch year, or Age 5 relative to their brood year or fertilization year) for the LGB program, 
in an attempt to minimize the number of cycles of captive breeding and rearing, the top (most 
likely to be effective) recommendation for minimizing adaptation to captivity (Williams and 
Hoffman 2009). In other words, offspring of STW salmon that are spawned in their fifth year only 
are managed according to the above “captive-rearing” and “wild-exposure” regimes (Figure 2), 
where representatives are recovered, genotyped, pedigreed and spawned in the production of 
the next generation of LGB program salmon. Many of these same salmon are also spawned in 
their fourth year (at Age 3 relative to their hatch year, or Age 4 relative to their brood year or 
fertilization year), but the offspring produced by these individuals are released throughout the 
STW River for supplementation purposes and none are recycled back into the LGB program. 
There are several additional implications of this conservation measure. First, Atlantic Salmon in 
general (Scott and Crossman 1998), and iBoF salmon in particular (Verspoor et al. 2002), often 
spawn at Age 3 (relative to their hatch year), after approximately two years (post-hatch) in 
freshwater and one year at sea. In the current STW LGB program, selection for maturation at 
this earlier age has been relaxed; individuals are spawned in the production of the next 
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generation of LGB salmon in their fifth year (at Age 4 relative to their hatch year, Age 5 relative 
to their brood or fertilization year). Second, in humans the incidence of genetic abnormalities, 
disease, and birth defects appears to increase with maternal (Hook 1981; Heffner 2004) and 
paternal (Kong et al. 2012; McIntosh et al. 1995) age; a similar association between parent age 
and genetic mutations or offspring defects may exist in other less well studied taxa, including 
Atlantic Salmon. Moreover, in Atlantic Salmon early offspring survival is strongly influenced by 
egg size and egg quality (Einum and Fleming 2000), which, in salmonids, is influenced by 
parent size (Hendry and Day 2003), which also generally increases with maternal parent age. 
Information on effects of parent age, particularly in the context of egg size, on survival in the 
wild would be useful in evaluating some of the potential consequences of delaying reproduction 
in STW LGB salmon until the fifth year. 

It is generally recognized that inbreeding and associated inbreeding depression represent a 
serious threat to small populations (Frankham and Ralls 1998). When evaluated using well-
controlled experimental designs, often carried out in captivity, researchers nearly always report 
some negative impacts of inbreeding on offspring performance (reviewed in Wang et al. 2002). 
Moreover, amounts of inbreeding depression associated with a given level of inbreeding are 
often higher when assessed in the wild where conditions are likely to be more stringent (Ryman 
1970; Thrower and Hard 2009). Finally, recent research involving large, well-controlled and 
highly replicated experimental designs have detected inbreeding depression (lower sperm 
motility and fertility) at very low levels of inbreeding (F=0.03; Malo et al. 2010), further 
highlighting the risk this phenomenon poses to long-term conservation programs involving 
closed finite populations, where some accumulation of inbreeding is unavoidable. 

Possible effects of inbreeding and outbreeding have recently been assessed in iBoF Atlantic 
Salmon (Houde et al. 2011; Rollinson et al. 2014). In these experiments, crosses were carried 
out within and between salmon obtained from the Great Village (GRV), Economy (ECO), and 
STW rivers, all from the Minas Basin side of the iBoF. Intentional crosses between known 
siblings (inbred crosses) were also carried out. Next, offspring from all six within- and between-
population crosses, as well as offspring of the intentional inbred crosses, were released into all 
three native river environments. Juveniles were sampled one and two years later via 
electrofishing, and relative survival of different cross types were assessed from recapture 
information. 

Even though survival was assessed in the wild, the experiment was well controlled (offspring 
from each population and hybrid cross were reared in all three river environments in a reciprocal 
translocation design), and multiple crosses were carried for each cross type; however, results 
were mixed. Houde et al. (2011), which assessed results from a single brood year, reported little 
evidence of inbreeding depression (reduced survival) from intentional full- and half-sibling 
crosses, little evidence of heterosis1 in between-population crosses, and a trend towards 
possible outbreeding in one hybrid population cross. On the other hand, Rollinson et al. (2014) 
assessed results across two brood years (including the year analyzed by Houde et al. 2011) 
and reported some evidence of inbreeding and outbreeding depression, results that varied by 
year, but more consistent negative effects of intentional full- or half-sib inbreeding than 
outbreeding. Further information from additional years, and crosses involving STW and other 
more divergent iBoF river populations, would be useful in assessing effects of existing levels of 
inbreeding and expected benefits of outbreeding. 

                                                

1 Heterosis, hybrid vigor, or outbreeding enhancement, is the improved or increased function of any 
biological quality in a hybrid offspring. 
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Natural environments are often very heterogeneous, fluctuating in space and time, and this 
variability can have large effects on the survival and reproductive success of organisms living 
within them. Natural selection and evolution have provided animals and plants several ways to 
accommodate this variability, thereby increasing their chances of surviving to successfully 
reproduce. Animals may respond to environmental variability in the short term (within a 
generation) via phenotypic plasticity (Thompson 1991), in the medium term (within a few 
generations) via epigenetic or other non-genetic transgenerational mechanisms (Foley et al. 
2009), and in the longer term (within a few to multiple generations) genetically through genetic 
adaptation. Atlantic Salmon reared in the hatchery environment may be expected to change 
phenotypically, epigenetically, and genetically in response to these different conditions. Indeed, 
hatchery-associated changes have been observed in egg size (Heath et al. 2003), behaviour 
(de Mestral and Herbinger 2013), body shape (Von Cramon-Taubadel et al. 2005), body 
colouration (Janhunen et al. 2009) and physiological condition (Berejikian et al. 2005). Important 
phenotypic traits known to be influenced by the hatchery environment and that are suspected of 
impacting survival and reproductive success in the wild should be monitored for change over 
time. 

Atlantic Salmon eggs and milt from European (EU) farm salmon were imported into Maine in 
1989–1994, and within a few years European genes permeated 30–50 percent of all local 
broodstock (Baum 1998). Juvenile hatchery farm salmon (identified from fin erosion and scale 
growth-ring data) collected from a New Brunswick river whose watershed was completely 
contained within the province exhibited multiple mitochondrial and DNA markers for EU 
ancestry, indicating that EU farm salmon were also being used by the aquaculture industry in 
Canada (O’Reilly 2006). Recently, markers for European ancestry have been detected in 
Atlantic Salmon juveniles collected from several rivers of the iBoF (O’Reilly et al. 2018). 
European (EU) and North American (NA) salmon have been reproductively isolated for 
approximately 1 million years (Hurst et al. 1999), and they exhibit deep genetic divergence, 
including chromosomal differences (Roberts 1970; Hartley 1987; Brenna-Hansen et al. 2012). It 
can therefore be expected that local farm salmon escapees of European origin may represent a 
greater threat to wild iBoF salmon relative to escapees of local origin. Several initially 
undetected putative European farm/iBoF hybrids (16) were unintentionally spawned in the STW 
LGB program, and hybrid offspring were released alongside other pure STW offspring into an 
isolated stretch of the Stewiacke River. The current pedigree-based wild-exposure program 
(Figure 2), with further details provided in O’Reilly et al. (2018), thus provides the opportunity to 
assess some of the possible effects of EU farm genes on early juvenile survival of STW salmon 
in the wild. 

The objectives of this study are as follows: 

1. to report on the direction and rates of change in a number of phenotypic characteristics 
across years and generations that might be expected to have been influenced by 
environmental and selective effects of captive breeding and rearing; 

2. to assess the effects of multiple cumulative generations of captive breeding and rearing on 
offspring survival in the wild; 

3. to test for possible effects of several variables associated with one or more specific 
management strategies or decisions, including parental rearing environment, cumulative 
ancestral rearing environment, Mean Kinship, parent family size in the wild, pedigree 
inbreeding, offspring genetic variability (expected observed family/offspring heterozygosity), 
cross type (outbreeding), and maternal and paternal parent age, on offspring performance in 
captivity and in the wild; and 



 

6 

4. to assess the effects of possible EU farm salmon genes, recently observed in several iBoF 
Atlantic Salmon populations, on early juvenile survival in wild iBoF river habitat. 

The above assessments of the effects of different variables, including some associated with 
specific management strategies, on offspring performance in the wild are possible because of 
two somewhat unique aspects of the STW LGB program. First, all STW LGB salmon spawned 
in the production of the next generation are tissue-sampled, genotyped, and pedigreed. Detailed 
information on parental rearing environments, number of program generations, Mean Kinship, 
pedigree inbreeding, molecular genetic heterozygosity, parent length, parent age, mean family 
egg size, mean family fry size, etc., are maintained on nearly all program individuals. Second, a 
similar number of offspring (as fry) are enumerated, equalized, and released into an isolated 
segment of the Stewiacke River, where they reside for one to two years before recovery as Age 
1+ or Age 2+ parr, at which time a subset of individuals are sampled, genotyped and pedigreed 
(Figure 2; see also O’Reilly et al. (2018) for more details). This allows assessment of the effects 
of many parental variables (such as parent age or parental rearing environment) on offspring 
survival and growth in wild native habitat. Very few pedigree-based, multigenerational studies of 
the effects of captive breeding include response data from individuals residing in truly wild 
environments; most involve assessments of performance in simulated wild environments 
(Woodworth et al. 2002; Malo et al. 2010), although there are some and they are becoming 
more common (Araki et al. 2007a, b; Christie et al. 2012; Hess et al. 2012; Theriault et al. 
2011). However, the primary purpose of the LGB activities (equalizing family size, releasing 
offspring into the wild, recovery of offspring, genotyping, pedigree assignment, etc.) associated 
with the production of the data analyzed here is the conservation of genetic characteristics of 
iBoF Atlantic Salmon, including the maintenance of genetic variation but also the minimization of 
adaptation to captivity. As a result, many elements of the “experimental design” (sample size, 
numerical evenness of crosses associated with different treatments, treatment group size, etc.) 
in this study are not, in a statistical sense, optimal for detecting differences between groups and 
reporting on the magnitude of specific treatment effects on offspring performance. However, in a 
number of instances, we feel that sample sizes and other program elements are adequate to 
make several important inferences, especially in the context of Maritime Atlantic Salmon 
conservation, and decisions may need to be made based on the balance of probabilities. 

METHODS 

MONITORING CHANGES IN PHENOTYPIC TRAITS OVER TIME 

Over the course of the LGB program (2000–2015), several traits were monitored at various life 
stages in endangered iBoF Atlantic Salmon from several stocks. A more in-depth monitoring 
program was established for the STW stock, which was chosen as the indicator river for the 
program (see Table 2 for a list of traits monitored in this group of salmon). 

Adult Size (Length, Weight and Body Depth) 

Each year at spawning, mature males and females were identified by their Passive Integrated 
Transponder (PIT) tag number or carlin tag number (2000–2001) and crossed according to a 
prescribed mating plan. Individual length and weight measurements, recorded to the nearest 0.1 
cm and 0.01 kg, respectively, were tracked for each spawning adult. These measurements were 
recorded for most of the duration of the program with length data dating back to 2000 and 
weight data dating back to 2005. Condition factor (CF) was calculated as:  

CF = 100(W/L3) (1) 

where, W = weight (g) and L = length (cm). 



 

7 

Since 2010, images have been captured of each spawning pair (left side of fish) using a 
mounted camera above a gridded platform. Using ImageJ 1.48v software (US National Institutes 
of Health, Bethesda, Maryland), adult images were used to measure body depth, anterior to the 
dorsal fin, to the nearest 0.001 mm, for each male and female spawner. 

Egg Size (Area and Weight) 

Since the 2013 brood year (BY), also referred to as spawning year, a subsample of eggs 
(20 to 30 eggs) from each cross were removed from the spawning bowl prior to the addition of 
milt. From the subsamples of pre-fertilized eggs, bulk weights (to the nearest 0.001 g) and 
images of 20 eggs per cross were obtained after blotting dry to remove excess water. Not every 
egg included in the egg images was included in the bulk weight estimates, and vice versa, as 
the subsample usually contained more than 20 eggs and the 2 were not done concurrently. 
Images were later processed, using ImageJ, to determine average egg area for each cross. 

In the 2011-2012 BY, egg weights were not obtained and experiments were carried out to 
determine the optimal time and method of capturing egg area. In 2011, a subsample of eggs 
from each cross was photographed after water hardening (i.e. water intake and membrane 
hardening). The first 30 crosses were omitted from analyses due to poor image quality (eggs 
were imaged out of water without blotting, making their edges indistinguishable from the pooled 
water). The remaining 58 crosses were imaged underwater, which provided higher quality 
images that could be processed later using ImageJ. In the 2012 BY, eggs were imaged out of 
water, after blotting excess water from egg surfaces (described in the above paragraph); this 
method has been used to date. 

Prior to 2011, rather than using images and weights to determine egg size, egg diameter was 
measured and subsequently used to calculate the egg area. When eggs reached the well eyed 
stage of development (i.e. shock; see below in Well Eyed Stage section), approximately 20 
crosses were selected for egg diameter measurements and fecundity counts (see selection 
criteria below). The average egg diameter was then determined by calculating the average 
length (cm/10 eggs) of three replicate samples and dividing by 10 eggs. 

To account for changes in the methodology, two correction factors were applied. The correction 
factors were based on repeated measurements of eggs taken at various developmental stages 
from a selection of 2015 BY crosses. Measurements were taken using the imaging method and 
measured egg diameter method described above. The first correction factor standardized for the 
methodology while the second accounted for the stage of egg development (Appendix Figures 
A1–A3). 

Fecundity 

Fecundity was estimated for each female based on the following length/count relationship: 

Fecundity = ab*FL (2) 

where, a and b are estimated parameters from a subsample of females, and FL = fork 
length (cm). This relationship was adjusted yearly based on the egg counts from a subsample of 
crosses (average of 22 crosses/year), selected to represent the range of female spawner 
lengths present within the brood year. The initial fecundity of the selected crosses was 
determined by hand counting at the well eyed stage and correcting for previous mortality based 
on the records. 

Starting with the 2010 BY, each cross was photographed at spawning to capture the initial 
fecundity. Initial images were taken of all the eggs (either pre-fertilized or after water hardening) 
out of the water, which resulted in poor quality images that had to be hand counted. In 2012, 
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each cross was photographed after water hardening. Eggs were placed in a shallow pan of 
water inside a light-dissipating camera tent to eliminate shadows and prevent glare. When 
required, eggs were split onto multiple trays to ensure they were only one layer deep, and 
imaged separately. These improved methods allowed images to be processed using ImageJ, 
which counted all the eggs automatically within the image. 

Relative fecundity was used to account for the influence of female size upon fecundity and was 
calculated as the number of eggs/ female weight (kg). 

Well Eyed Stage 

When the eggs developed to the well eyed stage, they were subjected to a physical shock. This 
shocking process ruptures the sensitive yolk membrane of unfertilized and dead eggs, releasing 
the protein globulin, which precipitates when not in a salt solution within the yolk (Leitritz and 
Lewis 1980). The precipitate causes the eggs to turn white, making them more easily identified 
from living eggs and allowing their removal to prevent fungus from growing (Leitritz and Lewis 
1980). Starting in 2013, a subsample of 20 “dead” eggs (i.e. white eggs) was collected from 
each cross and stored in Stockard’s Solution. Stockard’s Solution both preserves and clears 
eggs as it causes the globulin precipitate to go back into solution. Eggs were examined under a 
dissecting microscope to identify the proportions that were unfertilized versus those that had 
reached various stages of early development. 

Egg mortalities for each cross have been recorded throughout the program. Since the 2010 BY, 
the eggs from each cross have been photographed to confirm the number of remaining eggs 
after removal of shocking mortalities. Imaging and processing methods followed the same 
procedures as described above for initial fecundity. 

Percent survival, from fertilization to shock, was determined for each cross using the following 
formula: 

% Survival = T2/T1*100 (3) 

where, T1 is the number of eggs per cross at fertilization and T2 is the number of eggs at shock. 
Survival was then adjusted based on fertilization rates to determine survival of fertilized eggs 
from 2013–2015. 

Fry Number and Size (Length and Weight) 

Since the 2006 BY, after shocking, a subsample of eggs from each cross was removed and 
placed in individual baskets for rearing in heath units through hatch. The number of eggs per 
cross, and therefore baskets (maximum of 200 eggs per basket), for these equalized family 
groups (EQU) varied by year (Appendix Table A1) in an effort to maximize the recovery of 
families, increase the effective population size, and minimize rates of loss of genetic variation. 
The EQU baskets were randomly assigned a location within the heath units and reared through 
hatch until the yolk sac was 98% absorbed (typically until April or May). Mortality was tracked in 
order to obtain estimates of remaining fry, and images have been taken for each cross since 
2010 to verify these estimates prior to release. Variance in family size was minimized again, just 
prior to release. This involved determining the target equalization family size (the maximum 
family size) for crosses, and then removal of excess individuals from larger families to achieve 
this number (see O’Reilly et al. (2018) for more details). Crosses were well mixed and then 
released into the Pembroke River above an impassable barrier (waterfall) to isolate EQU fry 
groups (wild-exposed LGB juveniles) from both a) juveniles released elsewhere in the STW for 
supplementation purposes, and b) offspring produced by released LGB adult salmon, returning 
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LGB salmon (released as juveniles) or (potentially) native remnant wild salmon or strays. 
Incidence and type of fry deformities were also tracked using the images taken prior to release. 

A subsample of fry (15–20 fry) from the 2012-2013 BY was removed from each cross (half from 
each of the two baskets per cross) during equalization to obtain weight and length 
measurements. To assess possible basket effects, 15 fry from each of the two baskets per 
cross were sampled separately for 2014 and subsequent brood years. Within 48–72 hours of 
equalizing, fry were euthanized using a concentrated anaesthetic solution (MS-222). Fry were 
then lightly blotted to remove excess water, and a bulk weight (to the nearest 0.001 g) recorded. 
Next, fry were positioned on their right side, straightened (not stretched) with the caudal fin 
spread out, and several images taken of each family set of fry. Processing of images with 
ImageJ allowed for length determination of each fry (to the nearest 0.001 mm). A family-specific 
condition factor was calculated (see formula 1 above), using the average fry length and an 
approximate individual weight determined from the bulk weights (i.e. weight/# of fry). 

Family-specific survival was calculated for shock to pre-release using formula 3. In this case, T1 
is the number per cross at shock and the T2 is the number at pre-release. 

Every year a subsample of 10–20 eggs from each cross was collected and reared communally 
at the Coldbrook Biodiversity Facility to the adult stage; these individuals constitute the captive-
reared (CAP) component of the STW population. This group served as a backup or alternate 
source of families, in case their wild-exposed siblings were not recovered from Pembroke. 

Parr Size 

Prior to the initiation of EQU releases into the Pembroke River (2000–2007), parr were collected 
via electrofishing from various locations throughout the Stewiacke River. In the fall of 2008, and 
subsequent years, wild-exposed (WE) parr (1+ and 2+, also referred to as Age 1 and Age 2), 
previously released as EQU fry (2006 BY), were recaptured from the isolated stretch of the 
Pembroke River. Parr were captured using a backpack electrofisher and brought back to the 
Coldbrook Biodiversity Facility for rearing to the adult stage. Starting in 2013, parr were 
anesthetized using MS-222 (Tricaine methanesulfonate) and individually tagged using a small 
PIT tag (8 mm) within 6 days of their arrival. Weight (0.01 g) and length (0.1 cm) measures were 
recorded and a condition factor was calculated using formula 1. Each fish was photographed 
and a tissue sample was collected for genetic analysis, which was performed by the Aquatic 
Biotechnology Laboratory, located at the Bedford Institute of Oceanography, Dartmouth, Nova 
Scotia. Microsatellite genotype information obtained was used to assign individuals to families 
via exclusion-based parentage analysis. In previous years, parr were reared at Coldbrook for up 
to a year and a half before tagging and tissue sampling, making growth in the wild 
indistinguishable from growth in the hatchery environment. 

Parentage assignment results were used to determine the age of WE juveniles (by identifying 
the cross of origin and the year the cross was carried out) and allowed for family-specific growth 
rates (FSG) to be calculated for their period of exposure to a wild environment as: 

FSG = (lnLT2-lnLT1)*100/t (4) 

where, ln = natural log, L = length (cm), T1 = time 1, T2 = time 2, and t = time or # days 
between T1 and T2. Additional calculations were carried out for family-specific growth rates 
substituting weight (g) for length in the above formula. 

Family size at capture was used as a proxy for survival in the wild (from release to recapture) 
using Formula 3. It should be noted, however, that this should be considered an approximate 
indicator of survival because although variance in family size at the time of release was 
minimized, and most (>80%) of all families released in a given year were identically sized, high 
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mortality prior to release for a subset of crosses resulted in some families (typically less than 
10%) consisting of fewer individuals. For many analyses, family size was standardized to the 
number of individuals released. For brood years when exact numbers of EQU fry releases were 
not known, 2006–2008 (Appendix Table A1), the initial EQU number collected per family 
(Appendix Table A1) was adjusted by the average survival from shock to pre-release, and 
subsequently used as the T1 in Formula 3. 

Smolt 

Smolt from the STW River system, originating directly from juvenile WE or supplementation 
releases, or as offspring of a) program adult releases, b) program adult returns (released as 
juveniles), or c) remnant wild adult salmon, were originally collected using a rotary screw trap 
(also known as a smolt wheel) located near the mouth of the Stewiacke River. In 2009, the 
rotary screw trap was replaced with a fyke net that was deployed on the Pembroke River (below 
the waterfall) to capture migrating WE individuals from the EQU fry distributions. Smolt collected 
are mostly approximately Age 2, therefore the majority of the 2009 collections would likely be 
from the 2006 BY. This was the first BY for EQU distributions to the Pembroke. Smolt 
collections from the Pembroke fyke net have diminished in recent years as resource availability 
and weather has limited the duration and timing of active fishing. 

Statistical Analysis (Trait Monitoring) 

One-way analyses of variance (ANOVA) was used to test for year effects on each monitored 
trait. All data were tested for normality. ANOVA tests are robust to violations of normality, 
particularly when datasets are large. However, when sample sizes were small, or the data 
highly skewed, non-parametric Kruskal-Wallis (KW) tests were performed. When the 
assumption of homogeneity of variances was violated, Welch’s ANOVA (ANOVAW) was used, 
as it allows for unequal variances.  

While it may be useful to determine variations from year to year, this was not the focus of these 
analyses. The main goal was instead to determine the magnitude and direction of any trends 
within the data over the years. Linear (LR) and quadratic regressions were used to determine 
overarching trends for each variable over time. When the data violated the assumptions of 
normality or equal variance, bootstrapping of the residuals using 10,000 iterations was applied, 
which is not subject to those assumptions. Bias corrected bootstrapped values were reported 
along with 95% confidence limits (ClLL=lower limit, ClUL=upper limit). Significance of the 
bootstrapped slope was determined by looking at the 95% confidence limits; if zero fell within 
the limits then the slope was not significantly different from zero. 

Two-sample t-tests were used to determine differences between groups, such as gender or 
methodology. Although t-tests are fairly robust to violations of certain data assumptions, the 
Aspin-Welch unequal variance test (T-testAW) was used when the variances of the two groups 
were not equal and the paired t-test (T-testP) was employed when the samples were not 
independent. If data were not normally distributed, or there were small sample sizes, the 
Wilcoxon Rank-Sum Test (WRS) was used to test for differences in medians. Pearson 
correlation coefficients (r) were used to evaluate the association between two variables; when 
the normality assumption was violated the Spearman Rank Correlation was used (rS). 

The covariate effect of program generation was analyzed for some variables with data ranging 
over the available years of the LGB program (2000–2015) (see below section on the Number of 
program generations for description of how program generation was determined). Generations 
with a sample size of 1 were removed prior to analysis. To ensure that there were no 
interactions between year and program generation on any tested variable, general linear models 
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(GLM) were used. If no interaction was detected, p-values from ANOVAs (one way, Welch’s, or 
Kruskal-Wallis when appropriate) were reported for the effect of program generation. Planned 
post-hoc comparisons were conducted to compare the following: founders (G0) to the first 
generation (G1), G1 to the second generation (G2), G0 to the last generation (Gn), G1 to Gn, and 
G2 to Gn. Post-hoc analyses were completed with Tukey-Kramer (TK) multiple comparison tests, 
Games-Howell (GH) when variances were unequal, or with Kruskal-Wallis multiple comparison 
Z-value test (KWz) with non-normal data. 

Averages are reported ± one standard deviation throughout. A critical value of α=0.05 was used 
for all statistical analyses. Data plots were constructed using the graphing program SigmaPlot 
11.0 (Systat Software Inc., San Jose, California), and statistical analyses were performed with 
the NCSS 2004 and NCSS 11 (NCSS, Kaysville, Utah) statistical packages and the RStudio 
1.0.44 (2009–2016 RStudio Inc., Boston, Massachusetts) statistical package. 

TESTING FOR POSSIBLE EFFECTS OF CAPTIVE BREEDING AND REARING ON 
OFFSPRING PERFORMANCE IN CAPTIVITY AND IN THE WILD 

As mentioned above, a suite of phenotypic, environmental and genetic information is maintained 
on nearly all STW LGB salmon, including actual male and female parents spawned in the 
production of the next generation STW LGB salmon. This information, including number of 
cycles of captive breeding and rearing, early parent rearing environment, Mean Kinship values, 
etc. (see below for details) was then used as predictor variables to explore possible effects of 
one or more aspects of the iBoF LGB program on one or more measures of offspring 
performance. 

Predictor Variables 

All of the predictor variables analyzed here, including early parental rearing environment, 
cumulative early parental and grandparental rearing environment (across the parents and 
grandparents), number of program generations, average parent family size in the wild, average 
parental Mean Kinship, maternal Mean Kinship, offspring pedigree inbreeding, offspring 
expected observed heterozygosity, population cross type (outbred versus inbred), paternal 
parent age at spawning, maternal parent age at spawning, and presence of European farm 
salmon ancestry, are ultimately based on parentage assignment and associated pedigree 
linkages. Estimates of pedigree inbreeding will also be strongly influenced by original kinship 
assignment results. Parentage and kinship assignment methods, and likely accuracy of the 
latter, have been described in O’Reilly et al. (2018), the companion document to this publication. 

Parental Early Juvenile Rearing Environments 

The parental rearing environment of a given family (offspring as eggs, fry, or parr) refers to the 
early juvenile rearing environment (late-stage Age 0+ fry to, generally speaking, Age 1+ or 
Age 2+ parr) experienced by one or both of its two immediate (direct) parents. The two early 
juvenile parental rearing environments possible are (1) captive, and (2) wild. A parent reared in 
the captive environment during this period is identified as “captive-reared”, and a parent 
released into the wild before being captured as “wild-exposed”. Since each family has both a 
maternal and paternal parent, there are four specific parent cross types with respect to their 
early environment: 

1. wild-exposed maternal/wild-exposed paternal (WExWE); 

2. wild-exposed maternal/captive-reared paternal (WExCAP); 

3. captive-reared maternal/wild-exposed paternal (CAPxWE); and 
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4. captive-reared maternal/captive-reared paternal (CAPxCAP). 

In order to test for maternal effects (and to increase sample size), we also grouped (a) WExWE 
and WExCAP together to create the general wild-exposed maternal parent cross type 
(WE female), and (b) CAPxWE and CAPxCAP to create the general captive-reared maternal 
parent cross type (CAP female). 

Cumulative Parental and Grandparental Early Juvenile Rearing Environments 

We also investigated possible cumulative effects of early (juvenile) exposure of parents and 
grandparents to captive versus wild environments on offspring growth and survival in the wild, 
though we did not distinguish between maternal and paternal (or grandpaternal and 
grandmaternal) effects. In other words, we looked for a possible association between 
cumulative ancestral early (Age 0+ fry to Age 1+ or Age 2+ parr) exposure to captivity (going 
back two generations) and offspring performance in the wild. Experimental families of fry 
released into Pembroke whose parents and grandparents were all wild-exposed were identified 
as exhibiting no (0) ancestral early captive rearing, while those whose parents and grandparents 
were all captive-reared were identified as exhibiting complete (1.0) ancestral early captive 
rearing. Because grandparents pass one quarter of their genes (including potentially 
epigenetically modified genes) on to their grandoffspring, and parents one half of their genes on 
to their immediate offspring, all intermediate levels of ancestral captive rearing were quantified 
as follows. Families descended from two captive-reared grandparents, two wild-exposed 
grandparents, and two wild-exposed parents, were considered to exhibit a level of cumulative 
ancestral captive rearing of 0.250 [(0.25+0.25)/2]; the sum of cumulative ancestral captive 
rearing contributed by the grandparents and parents is divided by 2 so that the metric ranges 
between 0 and 1.0. If three grandparents and one parent were captive-reared, and all other 
ancestors (one parent and one grandparent) going back two generations were wild exposed, a 
given family was considered to exhibit a level of cumulative ancestral captive rearing of 
0.625 [(0.25+0.25+0.25+0.5))/2]. 

Number of Program Generations 

The number of program generations (generations of captive breeding and rearing) experienced 
by a particular family (offspring of a particular cross) was obtained from pedigree information, 
and was taken to be the average number of generations of CBR experienced by each of its two 
parents, plus 1. For example, a family produced by the spawning of a G0-generation individual 
(a population founder) and a G1 salmon (the direct offspring of two G0 parents) experienced a 
total of 1.5 cycles of CBR [(0+1)/2)+1]. 

Mean Kinship 

In the early years of the iBoF LGB program, the MK value of a candidate spawner was taken to 
be the average kinship coefficient between that individual and all other living members of the 
population, including itself, and was calculated using pedigree information and formula 5.5 from 
Ballou and Lacy (1995) [see Figure 36 with associated text in O’Reilly et al. (2018), a 
companion document to this publication]. Beginning in the year 2005, it was noticed that large 
families with little relatedness to other families were being prioritized very low, with, in some 
instances, no or few representatives being selected for spawning at all. This unintended 
outcome of early MMK breeding protocols was observed in other conservation programs 
involving similarly fecund Pacific salmon species (O’Reilly and Kozfkay 2014) and in simulation-
based comparisons of the expected efficiency of several alternate breeding algorithms (Ivy and 
Lacy 2012). In response to this observation, MK values in the LGB program (from approximately 
2005 to 2012) were calculated assuming one representative per full-sib family. Therefore, in this 
analysis of the possible effects of MK prioritization of parents on offspring performance in the 
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wild, MK values were similarly calculated (assuming one individual per family). Specifically, the 
MK predictor variable against which offspring/family performance was being tested was taken to 
be the average of the two parents’ MK values so calculated (average parental Mean Kinship), 
though we also tested for possible effects of the MK value of the sole female parent (maternal 
Mean Kinship). Note that although STW salmon were selected for spawning using Ranked 
Mean Kinship from 2013 on (where family size was incorporated into calculations of MK values), 
the offspring/families involved in this study were produced in years when MK values were 
calculated as described immediately above and salmon selected using Mean Kinship Assist 
(O’Reilly and Harvie 2010; O’Reilly and Kozfkay 2014; O’Reilly et al. 2018 for more details). It 
should be noted that Ranked MK-based breeding programs also mitigate the impact of very 
large family size on MK values and the low prioritization of all representatives of larger families. 
Although many representatives of large families are prioritized low for spawning under this 
breeding program, some are more highly prioritized by the algorithm, with the ranking of at least 
one representative reflecting, to an increasing degree, relatedness among families. In order to 
minimize possible confounding effects of parental rearing environment on assessments of MK 
effects, analyses included only families (offspring) produced by two wild-exposed parents. 

Average Parent Family Size in the Wild 

Each year, representatives of STW LGB families are sampled/collected from the wild after 
residing in native river habitat for, generally speaking, one to two years (O’Reilly et al. 2018). 
Recovered families vary considerably in numerical size, from 1 to 17 in any given year 
(unpublished data). This variation in family size reflects a) numbers of fry released (but to a 
minimal extent in the period assessed), b) chance sampling effects, c) differential emigration out 
of the release/recapture site, and d) survival in the wild. Sample collections obtained 1 or 2 
years after release may be expected to contain more representatives of these larger (potentially 
higher surviving) families relative to their numerically smaller sized counterparts. In the absence 
of pedigree information, representatives from these larger numerically dominant families would 
be spawned more frequently than those from smaller families. If selection intensities were 
directional and strong, and variance in family size in sample collections obtained driven primarily 
by natural selection, this might be expected to minimize loss of fitness in the wild in the next 
generation. However, breeding programs that favour the selection and spawning of individuals 
from small families relative to large families (including EFS, MKA, and MMK), after a period of 
exposure to native wild river conditions, could minimize the between-family component of 
natural selection to wild conditions, possibly reducing some of the potential fitness benefits of 
this management strategy. Here, we test for possible immediate effects of, specifically, parent 
family size in the wild (and hence spawner selection regimes that incorporate family size 
information) on offspring performance in the wild. Specifically, the predictor variable used in the 
associated analyses is the mean of the family size of the male and female parents of a given 
cross (family) in electrofishing collections carried out on the Pembroke at Age 1, approximately 
15 months after release into the wild. This information will be compared with offspring 
performance in the wild in the same stretch of river (described in more detail below). Note that 
by definition, this analysis only includes families/offspring produced by the spawning of two wild-
exposed parents. 

Offspring or Family Pedigree Inbreeding 

Pedigree inbreeding was calculated using kinship coefficients obtained from the STW pedigree 
(see O’Reilly et al. 2018 for details). The level of pedigree inbreeding expected in the actual 
offspring/family for which trait performance (see below) was being assessed was used as the 
predictor variable. Also, note that in order to minimize possible confounding effects of parental 
rearing environment on performance, analyses included only families (offspring) produced by 
two wild-exposed parents. 
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Offspring Expected Observed Heterozygosity 

Offspring or family expected observed heterozygosity was calculated from the multilocus 
genotypes exhibited by its male and female parents, assuming Mendelian inheritance and 
independent assortment. For example, consider the two hypothetical parents (Parent 1 and 
Parent 2) and their respective multilocus genotypes. 

Table 1. Calculation of the Family Expected Observed Heterozygosity using a 2 loci example.  

Parent Locus 1, 
Allele 1 

Locus 1, 
Allele 2 

Locus 2, 
Allele 1 

Locus 2, 
Allele 2 

Parent 1 222 222 333 337 

Parent 2 222 226 361 365 

Family expected observed 
heterozygosity (single locus) 

50% 100% 

Family expected observed 
heterozygosity (multilocus) 

75% 

At Locus 1, all offspring will inherit a single 222 allele from Parent 1; half of these will inherit a 
second 222 allele from Parent 2 and the other half a 226 allele. The expected observed 
heterozygosity in the offspring (family) at this locus is 50%. At Locus 2, the 2 alleles observed in 
each of the 2 parents are different, and no 1 allele is common to both parents, so the expected 
observed heterozygosity in the offspring (family) at this locus is 100%. The average expected 
observed heterozygosity across the 2 loci is 75% [(50 + 100)/2]. All estimates of family expected 
observed heterozygosity used here were based on the same 12-locus set of microsatellites (see 
Table 20 in O’Reilly et al. 2018). Values so obtained were used as predictor variables in tests 
for associations between family expected observed heterozygosity and offspring survival. 

Population Cross Type (Outbreeding), North Minas Basin x Stewiacke  

Beginning in 2007, iBoF salmon from GRV, Debert (DEB) and ECO rivers (referred to 
collectively in this analysis as NMB salmon) were intentionally interbred with STW River salmon 
both to 1) capture genetic variation from wild-origin salmon collected from these three rivers, 
and 2) potentially minimize inbreeding and to increase allelic diversity in the STW LGB 
population. In order to test for possible heterosis effects in the offspring of these hybrid crosses 
(and, therefore, the presence of ancestral inbreeding and inbreeding depression in the STW 
population), we compared the performance of offspring of these outbred NMBxSTW crosses 
with that of offspring of crosses involving STW ancestry only, referred to here as inbred 
STWxSTW. Since the number of hybrid crosses for which offspring trait information was 
available in any one year was too small (1 to 10 depending on the year and trait studied) to test 
for differences between reciprocal cross types, crosses where the NMB parent was female and 
the STW parent male (NMBxSTW) were combined with crosses where the STW parent was 
female and the NMB parent male (STWxNMB) into the one cross type, identified as outbred 
NMBxSTW here. The F1 hybrid families were produced in each of the years 2007, 2008 and 
2009, but the timing of initiation of different trait monitoring activities constrained which offspring 
performance traits could be assessed in any given year (described in more detail below). Note 
that crosses exhibiting any known European ancestry were excluded from these analyses. 
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Population Cross Type (Outbreeding), Gaspereau x Stewiacke  

In 2013, 16 experimental hybrid crosses were carried out between STW and moderately 
divergent Gaspereau River (GAK) salmon (see O’Reilly et al. 2018 for information on 
phenotypic and genetic differences between these two groups). These crosses were performed 
because of concerns over the true origins of GRV and ECO salmon involved in other hybrid 
crosses studied here and elsewhere (Houde et al. 2011; Rollinson et al. 2014) and the 
expectation for heterosis. If ECO and GRV salmon were recent strays from the larger STW 
population, the scope for increases in genome-wide heterozygosity or the masking of 
deleterious recessive alleles from the mixing of genomes of these and remaining STW LGB 
salmon was very limited. The 16 outbred GAKxSTW hybrid families created are referred to as 
“outbred GAKxSTW”, and were produced by spawning each of 8 different GAK female salmon 
once with 1 of 8 different STW males, and each of 8 different STW female salmon once with 1 
of 8 different GAK males. Offspring of these 16 outbred crosses were reared, from fertilization 
on, alongside 16 paired GAKxGAK LGB (referred to here as inbred GAKxGAK) and 75 paired 
STWxSTW LGB (referred to here as inbred STWxSTW) crosses. In creation of both these latter 
2 sets of crosses, each female was spawned once with each male, in a series of paired 
spawnings, as described above for outbred GAKxSTW crosses. The number of hybrid crosses 
was again too small to analyze the 2 reciprocal cross types separately. Note that crosses 
exhibiting any known European ancestry were excluded from these analyses. 

Paternal and Maternal Parent Age at Spawning 

In the years 2008–2013 (the relevant brood years studied in this analysis), male and female 
spawners ranged in age from three to eight, though most were four years of age; in all 
associated analyses, parent or spawner age is based on the brood year or fertilization year of 
these individuals, and not the year of hatching. From 2013 on, in an effort to reduce the number 
of cycles of captive breeding and rearing, reproduction of STW salmon (for the LGB program) 
was delayed until Age 5 (no salmon were spawned for the LGB program in later years). In order 
to investigate possible immediate impacts of this management decision, we tested for possible 
effects of male and female parent age (in the brood years prior to 2013) on family/offspring 
survival in the wild. Since age is positively correlated with female body size at spawning, and 
female body size with egg size, we also assessed the effects of egg size on survival, and 
interactions between parent age and egg size in assessments of offspring survival. Parent age 
was determined by assigning offspring to known parental crosses, noting the year the relevant 
cross was carried out, and consulting records to determine the age of the parent at that time. 
See above for details on how egg size was assessed. Since we were investigating possible 
effects of female and male parent age separately, the predictor variables in these series of 
analyses were, specifically, female or male parent age at spawning (female or male age when a 
given cross or family, for which survival was being assessed, was produced). 

European Ancestry 

In 1999, three parr collected from the STW River as part of the G0 founder group exhibited 
multiple markers for European (EU) ancestry (O’Reilly et al. 2018). These three G0 founder 
salmon are suspected of being EU farm/STW F1 hybrids, exhibiting 50% EU farm salmon 
ancestry. Each undetected EU F1/STW hybrid was then inadvertently spawned with other pure 
STW LGB salmon to create F2, exhibiting 25% EU farm ancestry. In 2009, one such individual 
was spawned to produce an F3-generation EU/STW hybrid family exhibiting 12.5% EU farm 
genes; in 2010 to 2012, 16 F3-generation EU farm /STW salmon were spawned to create 16 
F4-generation EU/STW hybrid families, exhibiting 6.25% EU genes. In 2010–2013, as part of 
standard LGB operations (described above) a subset of these 17 EU farm/STW hybrid families 
were enumerated and released (as fry) into an isolated segment of the Pembroke River 
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(a tributary of the STW) alongside similarly managed STW-origin (STWxSTW) families, allowing 
assessment of the possible impacts of a relatively small percentage of EU farm ancestry on 
offspring survival in the wild. 

Response Variables 

We looked for possible effects of the above predictor variables, each associated with one or 
more elements of STW LGB management, on one or more response variables (indicators of 
offspring performance). Information associated with each response variable was obtained 
primarily from the STW WE LGB families, subsets of individual LGB crosses destined for 
release into Pembroke as Age 0+ fry for later capture as Age 1+ or Age 2+ parr for additional 
captive rearing, and subsequent recycling back into the LGB program as possible spawners. 

These response variables were: 

a. family mean length (mm) (the average across individuals within a family) or average 
family mean length (the average of family means within a treatment group) as fry at 
Age 0+ (pre-release); 

b. individual or family mean length (cm) (the average across individuals within a family) or 
average family mean length (the average of family means within a treatment group) as 
parr at Age 1+ (post-capture from the wild); 

c. individual or family mean length (cm) of adult females at Age 4+ (age of adults based on 
the brood year or fertilization year); 

d. individual or family mean length (cm) of adult males at Age 4+ (age of adults based on 
the brood year or fertilization year); 

e. family mean weight (g) (the average across individuals within a family) or average family 
mean weight (the average of family means within a treatment group) as Age 0+ fry (pre-
release); 

f. individual or family mean weight; 

g. (the average across individuals within a family) or average family mean weight (the 
average of family means within a treatment group) of parr at Age 1+ (post-capture from 
the wild); 

h. individual or family mean weight (kg) of adult females at Age 4+ (age of adults based on 
the brood year or fertilization year); 

i. individual or family mean weight (kg) of adult males at Age 4+ (age of adults based on 
the brood year or fertilization year); 

j. family percent deformities at Age 0+ (fry, pre-release) (percentage of individuals within a 
family exhibiting deformities) or average family percent deformities (the average percent 
deformities across families within a treatment) at Age 0+ (fry, pre-release); 

k. average family incidence of deformities at Age 0+ (also equivalent to the proportion of 
sampled families exhibiting any deformities); 

l. standardized family size in the wild at capture at Age 1+ (family size at Age 1+ 
standardized to the number of fry released from the same family at Age 0+, discussed 
below); 

m. family percent survival in captivity from shock (at the egg stage, mid development) to pre-
release as Age 0+ fry; 
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n. family percent survival in captivity from shock (at the egg stage, mid development) to 
tagging (at approximately Age 4); 

o. family percent survival in the wild from release as Age 0+ fry to capture as Age 1+ parr; 

p. family percent survival in the wild from release as Age 0+ fry to capture as Age 2+ parr; 

q. family percent survival in the wild from Age 1+ parr to Age 2+ parr; 

r. percentage (or proportion) of increasingly later year class groups (Age 0+ pre-release fry 
then Age 1+ post-capture parr, then Age 2+ post capture parr) comprised of 
representatives of the different cross or groups types; and 

s. family specific growth rate (length) from release as Age 0+ fry to capture as Age 1+ parr. 

Information was also collected on egg size, an important covariant when assessing the effects 
of predictor variables like female spawner age on offspring survival in the wild. Details on how 
egg size (area), fry, parr and adult length and weight were obtained is given in the above 
methods section on Monitoring Changes in Phenotypic Traits Over Time. 

Estimates of survival in captivity from shock at Time 1 (at the egg stage, mid development) to 
pre-release as fry at Age 0+ (Time 2) were based on counts of all individuals in the experiment 
at both points in time and, therefore, directly reflect survival over the respective time interval; 
estimates of survival in captivity from shock at Time 1 (at the egg stage, mid development) to 
tagging at Age 4+ were based on counts of all individuals in the experiment at Time 1, but only 
a sample of remaining individuals at Time 2 (only a portion of captive-reared salmon were 
reared through to Age 4+, and only a fraction of these were tissue sampled and genotyped). 
Estimates of survival in the wild from release as Age 0+ fry to either Age 1+ or Age 2+ parr were 
based on complete counts at Time 1 but also on samples (electrofishing-based) of all remaining 
offspring from that cohort in native river habitat at Time 2. Estimates of survival in the wild from 
Age 1+ to Age 2+ were based on electrofishing samples of all remaining offspring at Time 1 and 
Time 2.It is important to note that although we are comparing relative survival across families (or 
between treatment groups), one or both of (1) random sampling effects and (2) differential 
emigration out of the research site, may also have contributed to numbers of individuals 
observed in sample collections and hence estimates of survival reported. More details about 
how survival estimates were carried out in captivity and in the wild during these different 
developmental periods are provided above in the section on Monitoring Changes in Phenotypic 
Traits Over Time. 

Additional details on egg and fry rearing conditions, enumeration of eggs post-shock, 
enumeration of fry pre-release, changes in rearing conditions across years, Pembroke habitat 
location and conditions, and electrofishing methodology can be found in O’Reilly et al. (2018). 

Offspring family size in the wild as parr at Age 1+ was standardized to slight differences in the 
number of fry actually released (FSWage1.std) across families as follows: 

FSWage1.std = (MFSage0/RFSage0)*FSWage1.obs 

where MFSage0 = the Maximum Family Size at release (Age 0+), RFSage0 = Released Family 
Size (the number of fry actually released from a given family at Age 0+), and FSWage1.obs = 
Family Size in the Wild at Age 1+ observed in electrofishing collections. 

When sample sizes permitted, we attempted to minimize the effects of possible confounding 
variables on the response variable (offspring performance) being assessed by restricting 
families included in the analyses to like-types with regards to other possibly important predictor 
variables. For example, in analyses of the effects of pedigree inbreeding on both survival in the 
wild to Age 1+ and length in the wild at Age 1+ (Figures 46 and 47), we included only those 
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families produced by two WE parents (minimizing early juvenile parental rearing environment 
effects on inbreeding results). Which groups/families types were included in a particular analysis 
is indicated in the corresponding figure legend. 

Statistical Analyses (Experimental Data) 

For all datasets involving continuous data, normality was assessed using the Shapiro-Wilk test, 
and homogeneity of variances using the Brown-Forsythe test. When all assumptions were met, 
differences between groups were tested using analysis of variance (ANOVA). When variances 
were not homogeneous but data were normally distributed, Welch’s ANOVA was used. When 
data were not normally distributed, data were first rank-transformed, and then analyzed using 
ANOVA; datasets that employed rank-transformed ANOVAs were further analyzed using the 
Kruskal-Wallis nonparametric test. Unbalanced, fixed-effects, nested ANOVA was calculated 
using the regression method, with family nested within parental/maternal rearing environment. 
When ANOVA, Welch’s ANOVA, and nested ANOVA analyses involved multiple groups, the 
Games-Howell test was used to determine pairs that differed significantly. Standardized sample 
effect size η2, the proportion of the total variance accounted for by the treatments, and its 95% 
confidence interval, were calculated using the formulas of Shieh (2013) for ANOVA, Welch’s 
ANOVA, and regression. Kendall’s tau was first converted to r2 using the formula of Walker 
(2003). Incidence of fry deformities is a categorical response variable, taking one of two values 
(presence or absence), and was analyzed using binary logistic regression. For proportion data 
we used the G-test of goodness of fit with Williams’ correction (Sokal and Rohlf 1981). 

All data analyses were generated using Microsoft Excel 2010 and the Real Statistics Resource 
Pack Software, Release 4.3, Excel add-on (Zaiontz 2015). 

RESULTS AND DISCUSSION 

TRAIT MONITORING RESULTS 

Size at Stage 

Spawning Adults 

No significant difference in length (Table 3) between mature spawning males and females was 
detected (T-testAW; p=0.6103) and the average length of all spawning adults was 
48.25 ± 10.23 cm. Adult length started at a minimum of 39.86 ± 4.47 cm in 2000 and increased 
to a maximum of 54.82 ± 10.36 cm in 2005, before levelling off around 46.04 ± 9.10 cm between 
2008 and 2015. Differences in weight associated with gonad development between the sexes 
caused a significant increase in the weight (T-test; p=0.0123) of females (1.65 ± 1.08 kg) 
compared to males (1.52 ± 1.18 kg). Male and female weight (Table 3) was highly variable and 
ranged from 0.05 to 6.95 kg and 0.26 to 10 kg, respectively. Condition factor (Table 3) was 
significantly higher (T-testAW; p=0.0000) in females (1.37 ± 0.19) compared to male spawners 
(1.22 ± 0.18) due to the added egg weight. 

To eliminate age-related differences, body characteristics (length, weight, condition factor, and 
body depth) of Age 4 spawning adults were compared (Figure 3) over all the years of the LGB 
program. In 2014, the program shifted to focus on Age 5 spawning adults; these are included in 
Figure 3 simply to maintain yearly continuity, but were excluded from statistical analyses. There 
was a significant difference (T-testAW; p<0.0001) between gender for all of the body 
characteristics compared (length, weight, CF, and body depth), with females typically exhibiting 
slightly larger body sizes. The average length for Age 4 spawning females was 41.89 ± 4.97 cm 
while males were 40.74 ± 6.77 cm, and ranged from a maximum of 47.57 ± 6.21 cm and 
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49.74 ± 7.21 cm in 2005 to a minimum of 38.24 ± 4.29 cm and 36.51 ± 7.04 cm in 2011 for 
females and males, respectively. Weight also peaked in 2005 (female, 1.50 ± 0.51 kg; male, 
1.61 ± 0.68 kg), with lows in 2011 (female, 0.76 ± 0.27 kg; male, 0.63 ± 0.32 kg), and averaged 
1.05 ± 0.48 kg for females and 0.85 ± 0.45 kg for males. Condition factor (Figure 3) had a 
narrow range around the average of 1.33 ± 0.20 and 1.22 ± 0.14 for females and males, 
respectively. As expected, Age 4 females (average of 9.85 ± 1.20 cm) had larger body depths 
compared to males (8.91 ± 1.64 cm) of the same age. 

No yearly trends were detected in the length of Age 4 spawners for either gender. The 
bootstrapped slope (mB) of the linear regression for Age 4 females (mB=0.0095) was not 
significantly different from zero as determined by the 95% confidence limits (CILL=-0.0667, 
ClUL=0.0846). Similarly, linear regression (LR) indicated no trend for Age 4 males (m=-0.0559, 
p=0.3374). The weights of Age 4 females (mB=-0.0525, CILL=-0.0708, ClUL=-0.0334) and males 
(LR; m=-0.0292, p=0.0264) had significant decreases over the years (Figure 3). In 2005, Age 4 
female and male spawning adults were on average 1.5 and 1.98 times heavier, respectively, 
than their counterparts in 2007–2013. Linear regression detected no trends in Age 4 spawner 
weight over the years 2007–2013 (female, m=-0.0127, p=0.3088; male, m=0.0259, p=0.0636). 
There was no change in the condition factor (Figure 3) of Age 4 spawning adults (LR; female, 
m=-0.0051, p=0.2185; male, m=-0.0063, p=0.1322) over the years. Condition factor was not 
affected by the 2005 year as both factors influencing CF (length and weight) increased 
proportionally. Although limited by the number of available years, a significant increase in 
female (LR; m=0.1752, p=0.0302) and male (LR; m=0.2991, p=0.0484) body depth was 
detected (Figure 3). 

To account for differences in rearing environments, Age 4 spawners were separated into wild-
origin (WO), wild-exposed (WE), and captive-reared (CAP) groups for analysis (Figure 4). Wild-
exposed (WE) females were significantly larger than WE males with an average length of 
40.98 ± 4.39 cm (T-testAW; p=0.0220), weight of 0.92 ± 0.42 kg (T-test; p=0.0001), and CF of 
1.29 ± 0.15 (T-test; p=0.0000). Linear regression did not detect any trends throughout the years 
for female length (m=-0.2360, p=0.1054) and CF (m=0.0019, p=0.7317), however female weight 
presented a significant decrease (mB=-0.0385, CILL=-0.0698, ClUL=-0.0042). WE males had an 
average length of 40.31 ± 6.10 cm, weight of 0.76 ± 0.36 kg, and CF of 1.19 ± 0.12 and did 
present significant decreases over time (length: m=-0.6209, p=0.0056; weight: m=-0.0582, 
p=0.0046; CF: m=-0.0163, p=0.0233). There was no difference detected in the length of WO 
females compared to WE females (T-testAW; p=0.1014); however, WO males were significantly 
longer than WE male spawners (T-test; p=0.0101; Figure 4). 

A significant difference in size was detected between genders (T-testAW; p<0.0009) for Age 4 
CAP adults; however, both sexes were consistently larger than their WE counterparts (T-testAW; 
p<0.0015) in length, weight and CF. The CAP adults were more variable over the years 
(Figure 4). The CAP females had an average length of 43.76 ± 5.56 cm ranging from 
40.71 ± 4.83 to 47.57 ± 6.21 cm while the yearly range for WE females was less than 5 cm. The 
CAP males were smaller than CAP females at 41.67 ± 7.97 cm but just as variable, ranging 
from 35.74 ± 7.14 cm to 49.74 ± 7.22 cm, a 14 cm difference while WE males differed by 
6.7 cm. The average weights for CAP males and females (Age 4) were 0.93 ± 0.52 kg and 
1.28 ± 0.47 kg, respectively, and the average CF was 1.26 ± 0.16 and 1.40 ± 0.25, respectively. 
No significant trend was detected with linear regression in CAP adult length (female: m=0.1193, 
p=0.3254; male: m=-0.3323, p=0.0912), weight (female: m=-0.0184, p=0.1785; male: 
m=-0.0091, p=0.6128), or CF (female: m=0.0069, p=0.3393; male: m=0.0010, p=0.8489) for 
either gender over the duration of the LGB program (Figure 4). 

Adult length measurements were available over the entire program and thus were used as a 
proxy to assess generational effects on spawning adult size (Figure 5). Males and females from 
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three groups were analyzed separately: all Age 4 spawning adults, WE, and CAP salmon. The 
WE and CAP groups start at G1, therefore wild-origin (WO) fish were included in both analyses 
to have a more complete dataset that includes the initial generation (i.e. G0). There was no 
interaction between year and program generation for any of the analyses (GLM; p=1.0000). 
There was a significant effect of program generation on both female (ANOVAW; p=0.0137) and 
male (ANOVA; p=0.0000) Age 4 spawners (Figure 5). Planned comparisons showed significant 
differences between G0 vs G1 (GH; p=0.0200) and G1 vs G2 (GH; p=0.0300) in female length 
(G0=41.29 ± 3.41 cm, G1=42.63 ± 5.74 cm, G2=40.96 ± 5.06 cm), and G1 vs G2 (TK; p<0.05) in 
male length (G1=41.91 ± 7.29 cm, G2=38.99 ± 6.60 cm). There was, however, no difference 
between the first 2 generations and the last generation of females (G3=40.70 ± 5.47 cm) or 
males (G0=40.87 ± 5.85 cm, G2.75=42.63 ± 9.03 cm). The overall trend was no change over 
generation for either gender as the slope of the linear regressions were not significantly different 
from zero (female, mB=0.2288, CILL=-0.1198, ClUL=0.5664; male, m=-0.3768, p=0.2184). 

No effect of program generation was detected for either gender (ANOVAW; p>0.0620) in the 
WO/WE group and average lengths were 40.99 ± 4.39 cm and 39.70 ± 6.10 cm for females and 
males, respectively (Figure 5). The WO/CAP group had larger variability over the generations 
and a significant generational effect was detected for both females (ANOVAW; p=0.0000) and 
males (ANOVAW; p=0.0012). First-generation CAP females (G1=43.62 ± 5.88 cm) were 
significantly larger (GH; p=0.0000) than WO females (G0=41.29 ± 3.41 cm). No other 
differences were detected, however a significant increase over program generation 
(G2.5=48.62 ± 1.76 cm) was observed (mB=1.7903, CILL=1.3009, ClUL=2.2806). Planned 
comparisons did not detect any significant differences between generations of WO/CAP males 
(G0=40.87 ± 5.85 cm, G1=43.17 ± 7.85 cm, G2=39.63 ± 6.85 cm, G2.75=46.77 ± 4.39 cm) and no 
trend was observed (mB=0.2851, CILL=-0.5100, ClUL=1.0848; Figure 5). 

Eggs 

Egg weight measurements have only been available for the last three years (Figure 6) and have 
averaged 0.101 ± 0.014 g, ranging from 0.0338 to 0.1467g. Welch’s ANOVA detected a 
significant effect of year (p=0.0330). This was most likely due to sample size and unequal 
variances, as a bootstrapped regression analysis found that the slope (mB=0.0008) was not 
significantly different from zero (CILL=-0.0012, ClUL=0.0027). 

Egg weight is the best measure of egg size; however, egg weight data availability was limited. 
Egg area was highly correlated (r=0.9479, p=0.0000) to egg weight when comparing family-
specific results from the 2013–2015 BY (Figure 7), and should be a good proxy for egg size. 

Although correction factors were applied, the egg area results processed from images were still 
slightly higher (T-testAW; p=0.0004) than those originating from ruler measurements, indicating 
that the corrections may not have compensated thoroughly for the differences (Figure 8). A 
significant effect of year was detected (ANOVAW; p=0.0000); however, this effect may be due to 
variance in sample size. When analyzing images, every cross was processed (approximately 
100 crosses per year), compared to a select number of crosses (approximately 20 crosses per 
year) from all previous years. To account for this, subsamples of crosses were selected from 
2011–2015 using the same selection criteria as 2002–2009. No significant yearly differences 
(ANOVAW; p=0.0673) were detected when analyzing the selected crosses from the 
2000-2015 BY. Egg area was on average 25.64 ± 2.95 mm2 and ranged from 23.71 ± 3.51 mm2 
to 26.54 ± 1.66 mm2. Similarly, no trend was found when analyzing the slope of the regression 
(m=0.0988, p=0.0597) of selected samples over the years (Figure 9), and the slight increase 
was probably due to remaining differences between the 2 methods. 

Egg area from selected samples, using the same correction methods as above, was plotted 
over the generations of the program in Figure 10. The program generation was determined by 
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adding one to the average generations of both parents. There was no effect of year (p=0.9616) 
and no interaction between year and generation (p=1.0000), using a two-factor GLM. There was 
an effect of generation, using Welch’s ANOVA for unequal variances, on corrected egg area 
(p=0.0202); however, all planned comparisons (i.e. G1 vs G2, G2 vs G3, G1 vs G3.875, and G2 vs 
G3.875) were not significant (GH; p>0.9900). The average egg area across all generations was 
25.67 ± 3.44 mm2 and ranged from 23.59 ± 4.68 to 30.73 ± 3.26 mm2. The slope of the 
regression was not significantly different from zero (m=0.1790, p=0.4814); however, from the 
third (26.54 ± 3.21 mm2) to the fourth (29.52 mm2) generations, there does seem to be a steady 
increase occurring along with a reduction of variance. It is likely these changes are due to the 
more accurate imaging method for determining egg area that began in 2011; all crosses from 
generations 2.75 to 4, with the exception of two, are from the 2011–2015 time period; however, 
it will be important to continue monitoring. 

Fry 

Size (length and weight) and CF of fry just prior to release into the wild was on average 
26.52 ± 1.39 mm, 0.137 ± 0.028 g, and 0.724 ± 0.073, respectively. Welch’s ANOVA detected a 
significant effect of year (p=0.000) for each parameter (Figure 11). When analyzing yearly 
trends, there was no significant change over the available years in the length of fry (mB=0.1162, 
CILL=-0.0080, ClUL=0.2427), but there were decreases in weight (mB=-0.0046, CILL=-0.0068, 
ClUL=-0.0023) and CF (LR; m=-0.0316, p=0.0000).Fry size was correlated to egg size; egg area 
and egg weight showed higher correlations to fry weight (egg area: r=0.6277, p=0.0000; egg 
weight: r=0.6223, p=0.0000) than to fry length (egg area: r=0.5681, p=0.0000; egg weight: 
r=0.5925, p=0.0000). Yearly data was limited and caution should be noted when analyzing 
yearly patterns, since the inclusion of additional years may drastically change the outcome. 

Parr 

Wild-exposed parr collected from the Pembroke River are predominately Age 1 or Age 2 parr, 
averaging 78% and 19% of brood year collections, respectively (2006–2012; Figure 14). 
Availability of parr measurements immediately after capture has resulted in two brood years for 
each age class: 2011-2012 for Age 1, and 2010-2011 for Age 2 (Figure 12). The average size of 
Age 1 parr was 8.94 ± 0.94 cm and 7.60 ± 2.53 g, while Age 2 parr were significantly larger at 
11.02 ± 0.85 cm (T-test; p=0.0000) and 14.28 ± 3.52 g (T-testAW; p=0.0000). Condition factor 
was not affected by an additional year in the wild; no significant difference in CF (T-test; 
p=0.0738) was detected between Age 1 (1.03 ± 0.09) and Age 2 (1.05 ± 0.08) counterparts. 
There was a significant effect of year (ANOVAW; p<0.0048) on the size and CF of both age 
classes of parr, where all fish caught in 2014 (2012 BY for Age 1, 2011 BY for Age 2) were 
smaller then fish caught in 2013 regardless of age (Figure 12). Although it is too early to indicate 
trends in the size of LGB parr after exposure to the wild, it is a starting point for future analyses. 

Growth (Specific Growth Rates) 

Due to the time lag and limited availability of size information collected from fry upon release 
into the wild (2012–2015 BY) and WE parr at time of recapture (2011–2012 BY), there is only 
one brood year where specific growth rate in the wild can be calculated. Age 1 WE parr 
collected from the Pembroke River in 2014 are offspring of the 2012 BY and can be compared 
to fry released in 2013 (Table 2) to calculate a growth rate for ‘release to Age 1’. Age 2 WE parr 
collected the same year, 2014, would result from 2011 BY and can be compared to Age 1 parr 
captured in 2013 to provide a growth rate for ‘Age 1 to Age 2’ (Figure 13). Growth rates were 
more than 3 times higher for the ‘release to Age 1’ time period (average FSG of 
0.396 ± 0.007 d-1 and 0.434 ± 0.024 d-1 for length and weight, respectively) compared to parr 
from ‘Age 1 to Age 2’ (average FSG of 0.046 ± 0.022 d-1 for length and 0.133 ± 0.069 d-1 for 
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weight) (Figure 13). Variability was also smaller from ‘release to Age 1’ with ranges of 0.032 d-1 
and 0.113 d-1 for length and weight, respectively, compared to 0.091 d-1 and 0.289 d-1, 
respectively, for parr from ‘Age 1 to Age 2’. 

There was a positive correlation between the size of fry and the size of Age 1 parr (length: 
r=0.3843, p=0.0003; weight: rS=0.3901, p=0.0003). As expected, the growth rates for weight 
were highly correlated to length for both growth periods, ‘release to Age 1’ (r=0.8735, p=0.0000) 
and ‘Age 1 to Age 2’ (rS=0.9255, p=0.0000). Growth rates for length and weight during ‘release 
to Age 1’ were compared to the corresponding family-specific measurement for the initial size of 
fry and the final size of Age 1 parr. There was a negative correlation between the FSG for length 
(r=-0.4328, p=0.0000) and weight (r=-0.5678, p=0.0000) with fry size, indicating that smaller fish 
demonstrated larger growth rates during the time period. A positive correlation was detected 
between FSG for length (r=0.6746, p=0.0000) and weight (rS=0.4505, p=0.0000) with parr size, 
showing that larger parr resulted from higher growth rates. The same pattern was observed 
when comparing ‘Age 1 to Age 2’ growth rates to Age 1 (length: rS=-0.6030, p=0.0000; weight: 
rS=-0.6934, p=0.0000) and Age 2 parr (length: rS=0.5405, p=0.0003; weight: rS=0.5591, 
p=0.0002) measurements. 

Sex Ratios 

With the exception of the first 2 years of collections, fish obtained from the wild were 
predominately made up of Age 1 parr (Figure 14), averaging 80% of each collection and ranging 
from 54% to 95%. The 2012 BY is only represented by Age 1 parr because older parr were 
collected in 2015, and genotyped in 2016, after these analyses were carried out. Age 2 parr 
made up an additional 20% (2002–2011) of collections and ranged from 5–42%. 

Figure 15 (Panel A) depicts the gender breakdown of Age 1 and Age 2 WE parr for each brood 
year. Although the number of parr collected varied throughout the years, the Age 1 parr sex 
ratio was approximately 1:1 (Table 4), and there was no difference (T-testP; p=0.1109) between 
the number of females and males. There was a significant difference (T-testP; p=0.0009) in the 
number of females and males for Age 2 parr (Figure 15, Panel A), however, with males 
occurring at a higher level. The ratio of females to males for Age 2 parr ranged from 1:2 in 2004 
to 1:7 in 2009 (Table 4). When plotting this data by capture year, rather than brood year, the 
trends are very similar, only slightly shifted (Appendix Figure A4), as Age 2 parr from 1 BY 
(e.g. 2009) would be collected (e.g. 2012) along with Age 1 parr from the following BY 
(e.g. 2010). 

Smolt collections, made up of predominately Age 2 individuals, were highly variable over the 
program, ranging from 0 to 185 fish (Figure 15, Panel B). In a paired t-test, a statistically 
significant difference was detected (p=0.0417) when comparing the numbers of each gender for 
smolt. Figure 15 (Panel B) indicates a pattern of typically higher numbers of female Age 2 smolt, 
an average of 3:1, in contrast to the higher male proportions collected as Age 2 parr (Table 4). 

The number of tagged CAP individuals has varied over the LGB program. When numbers were 
large, release of non-target salmon (individuals not needed for broodstock purposes) and 
mortalities made it difficult to tabulate gender and maturation statistics (Figure 15, Panel C). 
Those CAP salmon that remained and survived demonstrated an approximate 1:1 ratio of 
females to males (Figure 15, Panel C), with no difference between gender over the years (WRS; 
p=0.2777), similar to Age 1 WE parr (Table 4). 

Maturation 

The average age of maturation (as adults) for WE parr caught at (1) Age 1, and (2) any age, 
was 4.21 ± 0.41 for both age groups and there was no significant difference (T-test; p=0.8575) 
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between the two groups (Figure 16). With the exception of 2006, the average age of maturation 
for WE parr increased from 4.03 ± 0.17 in 2002 to 4.49 ± 0.50 in 2005 and then decreased 
again over the next few years (Figure 16). The results show a stronger fit (r2=0.1057) for a 
quadratic regression model rather than a bootstrapped linear model (r2

B=0.0085). Captive-
reared fish matured at a significantly younger age (T-testAW; p=0.000) than WE parr, with an 
average age of 4.08 ± 0.27. The average age of CAP fish decreased from 4.19 to 4.0 between 
2001 and 2011 (Figure 16), and a significant declining trend was detected over the years (mB=-
0.0140, CILL=-0.0173, ClUL=-0.0107). 

No differences (T-test; p>0.9215) were detected between WE parr caught at Age 1 and WE parr 
caught at any age when comparing the average percent of individuals (female, male, and both 
genders combined) per family that matured at Age 4 versus at any age. The number of females, 
males, and unknown gender fish are presented for CAP and WE parr at Age 1 in Figure 17. The 
average percent of family maturation for each gender, separately, only includes individuals 
whose gender was eventually determined; however, gender combined columns (i.e. both) also 
take into consideration individuals whose gender was never known, which can cause the results 
to be lower (i.e. percentage of a larger total number). 

The average percent of family maturation at Age 4 for CAP females, males, and both combined 
was significantly higher than WE counterparts (T-testAW; p<0.0038). However, the average 
percent of individuals that matured at any age was not different between the two rearing groups 
(T-test; p=0.6571). Gender differences indicate a significantly higher percent of CAP males 
matured at Age 4 than CAP females (T-testAW; p=0.0000), while a significantly higher percent of 
WE females matured at Age 4 than WE males (T-testAW; p=0.0000; Figure 17). 

No yearly differences were detected for WE individuals that matured at any age (KW; 
p=0.1474). There was an effect of year (KW; p=0.0000) for the average percent of WE females, 
males, and both combined, that matured at Age 4 per family (Figure 17). No linear trends were 
detected for WE males (mB=0.7390, CILL=-0.5546, ClUL=1.9795), and both genders combined 
(mB=0.9105, CILL=-0.0816, ClUL=1.8799); however a significant increase over time was detected 
for WE females maturing at Age 4 (mB=2.3113, CILL=1.2590, ClUL=3.3085). The CAP-reared fish 
(female, male, and both combined) that matured at Age 4, and any age, had a significant effect 
of year (KW; p=0.0000). No trend was detected for CAP individuals maturing at any age 
(mB=0.1624, CILL=-0.0279, ClUL=0.3524); however, there were significant increases over the 
years for CAP females (mB=2.1549, CILL=1.5678, ClUL=2.7259), males (mB=0.8771, 
CILL=0.3509, ClUL=1.3774) and both genders combined (mB=2.3367, CILL=1.8732, ClUL=2.7959) 
that matured at Age 4 (Figure 17). 

Survival 

Fecundity 

Fecundity results from all 3 methods and for all ages of female spawners are depicted in 
Panel A of Figure 18. Using a paired t-test, no significant difference was detected between 
fecundity counts and estimates (p=0.7585); however, there was a difference between images 
and estimates (p=0.0147). This difference may have been due to sample size, as the average 
difference was only 68.42 eggs and the 2 methods follow each other tightly throughout the last 6 
years (r=0.8828, p=0.0000; Figure 18, Panel A). Counts were not compared to images as they 
are simply a subset originating from the ImageJ results. There was a significant effect of year on 
all 3 methods (ANOVAW; p=0.0000), which was expected considering the large variation in 
fecundity; the minimum and maximum fecundity from the count method was 395 and 14,081 
eggs, respectively. The average fecundity from counts was 3,524 ± 2,348 eggs and ranged from 
1,445 ± 461 eggs in 2001 to 5,164 ± 3,337 eggs in 2007 (Figure 18, Panel A). 
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To compensate for age, Panel B of Figure 18 depicts fecundity for Age 4 spawners over the 
years. here was no difference between fecundity estimates and counts (T-testP; p=0.8450) or 
images (T-testP; p=0.4063). There was no effect of year on fecundity counts (ANOVA; 
p=0.23847), which averaged 1,832 ± 802 eggs; however, there was an effect of year on images 
(ANOVAW; p=0.0009) and estimates (ANOVAW; p=0.0000). Linear regression detected no 
significant trends for fecundity counts (m=-2.7776, p=0.8686) nor estimates (m=6.9748, 
p=0.1669). Fecundity from images was not analyzed for yearly trends as availability was limited 
to four years (Figure 18, panel B). 

Relative fecundity, eggs per unit weight of female, standardized the data by female size and 
reduced variability (Figure 18, Panel C). Once again, there were no differences between the 
various methods (T-testP; p>0.8300). No effect of year was detected on relative fecundity using 
count data (ANOVA; p=0.6167); however, Welch’s ANOVA found significant yearly differences 
for estimates (p=0.0000) and images (p=0.0006). Relative fecundities from counts averaged 
1,796 ± 587 eggs/kg across all years (Figure 18, Panel C). Linear regression analysis detected 
no yearly trends for relative fecundity from counts (m=0.3360, p=0.9793) and estimates 
(m= 6.9316, p=0.0689). A significant yearly decline was detected for relative fecundity from 
images (mB=-37.2357, CILL=-60.1966, ClUL=-12.0529); however, caution interpreting this result 
is required given the limited years of available data (Figure 18, Panel C). 

Fecundity and relative fecundity, determined by counts and estimates, were both plotted over 
program generation (Figure 19). Single observations were removed prior to analysis. No 
interaction was detected between year and generation (GLM; p=1.0000) for any response 
variable. There was no effect of program generation on fecundity (ANOVA; p=0.1805) or relative 
fecundity (ANOVA; p=0.3067) based on counts. Differences were detected for fecundity 
(ANOVAW; p=0.0000) and relative fecundity (ANOVAW; p=0.0000) from estimates. Fecundity 
estimates (Figure 19, Panel A) in G1 (3,121 ± 1,879 eggs) and G2 (3,338 ± 2,086 eggs) were not 
different from each other (GH; p=0.9500) or from G4 (3,464 ± 926 eggs; GH; p=1.0000), but 
were significantly larger than G3 (2,368 ± 1,208 eggs; GH; p=0.0000).Bootstrapped linear 
regression detected a decreasing trend in fecundity estimates over the generations 
(mB=-275.4284, CILL=-349.9040, ClUL=-199.3774). No trend for relative fecundity from estimates 
(LR; m=-13.9878, p=0.4390) was detected over the generations (Figure 19, Panel B). Games-
Howell post hoc tests found that relative fecundities from estimates for G1 (1,512 ± 213 eggs) 
was significantly lower than G2 and G3, 1,783 ± 333 and 1,886 ± 488 eggs, respectively, with 
p values of 0.0100 and 0.0000, respectively. The G1 and G2 were not different from the last 
generation, G3.875 (GH; p>0.2100), which had 1,716 ± 152 eggs. 

Survival Rates 

A paired t-test detected a significant difference (p=0.0001) between the 2 methods, mortality 
records and images, for the percent survival from ‘fertilization to shock’ (2010–2015; Figure 20). 
Kruskal-Wallis ANOVA on the ranks detected yearly differences in survival for both records 
(p=0.0000) and images (p=0.0000). Survival averaged 84.8 ± 18.5% for images while records 
averaged 84.8 ± 20.5% for the same time period (2010–2015). In 2003, there was a significant 
fungal outbreak that caused unusually poor survival (29.2 ± 27.4%); therefore, that year was 
excluded from the following analyses. The average survival from records for 2000 to 2015 
(without 2003) was 79.8 ± 23.7% and ranged from a minimum of 51.0 ± 30.1% to a maximum of 
92.0 ± 16.1% (Figure 20). Throughout the years, there was a significant increasing trend in 
survival from records (mB=1.4143, CILL=1.1697, ClUL=1.6625). The most significant increases in 
survival were the first three years of the program and the last two years (Figure 20). There was 
no significant difference in survival (ANOVA; p=0.1611), and no trend (mB=0.0090, CILL=-
0.3108, ClUL=0.3379), when looking across 2002–2013, and the average for the time period was 
82.4 ± 20.5%. 
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Average fertilization rates for 2013, 2014, and 2015 were 85.4 ± 17.0, 86.5 ± 15.0, and 
89.7 ± 13.9%, respectively, which did not differ significantly (ANOVA; p=0.1571) over the 
available years (Appendix Figure A5). Using the fertilization rates, mortalities were corrected to 
account for unfertilized eggs and accurately reflect survival (Figure 20). No significant difference 
was detected between the 2 methods (T-testP; p=0.9969) for the corrected survival rates. 
Although a limited number of years were available, no effect of year was detected for corrected 
records (KW; p=0.4447) and corrected images (KW; p=0.1720). After correcting for fertilization 
success, the average survival rate for ‘fertilization to shock’, 2013–2015, was 99.7 ± 1.6% for 
both records and images alike, significantly higher than the uncorrected survival rates for the 
time period (WRS; p=0.0000). 

Survival from ‘shock to pre-release’ (Figure 21) was equally high with an average of 
96.6 ± 6.8%. There was no trend over the years (mB=0.0868, CILL=-0.0405, ClUL=0.2173); 
however, some fluctuation between years did cause a significant year effect (KW; p=0.0000). 
The survival rates for this time period are derived from the equalized family groups (EQU), 
where the initial number of eggs taken from each cross increased from 110 to 400 between 
2008 and 2015 (Figure 21). The lowest survival, 87.0 ± 13.0%, occurred in 2011 when the EQU 
number rose to 400 eggs and were reared in containers within a trough instead of baskets in the 
heath units. Survival rebounded to 97.5 ± 3.2% the following year when eggs were reared within 
the heath units using 2 baskets per cross. Highest survival was in 2008 (98.9 ± 3.0%), with the 
lowest EQU number, and 2015 (98.9 ± 2.7%) when a filtration system was installed that reduced 
the sediment in the water (Figure 21). 

Figure 22 plots survival for the 2 time periods over program generation. After single 
observations were removed, no interaction was detected between year and program generation 
for either time period (GLM; p=1.0000). There was a significant effect of program generation 
detected for survival from ‘fertilization to shock’ (KW; p=0.0000). The G1 was significantly lower 
than G2, G3, and G4 (KWZ; z>4.1444), while G2 was not different from G3 (KWZ; z=0.3083) but 
was different from G4 (KWZ; z=2.0068). A significant increasing trend in survival, from 
63.03 ± 32.39% to 92.11 ± 13.03% (Figure 22), was detected over the generations for the 
‘fertilization to shock’ time period (mB=9.2486, CILL=7.9761, ClUL=10.5474). Survival from ‘shock 
to pre-release’ had a significant effect of program generation (KW; p=0.0000; Figure 22). 
Differences were found between both G1.5 (KWZ; z=2.7732) and G2 (KWZ; z=6.3987) compared 
to G3. No significant linear trend was detected over the program for survival from ‘shock to 
pre-release’ (mB=-0.2214, CILL=-0.7438, ClUL=0.3071). 

Table 5 reports the average family size at capture and the average percent family recovery (as 
a proxy for survival) for various ages of WE parr. Although the numbers are quite low, there was 
on average 4 times more Age 1 WE parr captured per family (1.40 fish) than Age 2 (0.36 fish). A 
clear increasing trend was detected in the total number of parr captured (i.e. any age) per family 
over brood year (mB=0.2344, CILL=0.2000, ClUL=0.2677). An effect of year (KW; p=0.0000) was 
detected for the percent survival in the wild of WE individuals from ‘release to recapture’ as Age 
1 parr (Table 5; Figure 23). The yearly trend was a significant increase over time (mB=0.1002, 
CILL=0.0628, ClUL=0.1379). Survival of WE Age 1 parr ranged from a minimum of 0.64 ± 0.79% 
in 2008 to a maximum of 1.71 ± 1.27% in 2010 (Table 5; Figure 23). Recapture was used as a 
proxy for survival, which would be affected by the number of fish that were targeted, and 
captured, on the day of electrofishing (Appendix Table A1). The number of collected parr for 
each BY has doubled, from approximately 200 in 2006–2008 to approximately 400 in 2010–
2012 (Table 5). 
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Fry Deformities 

Deformities (Appendix Figure A6) occurred in approximately 54% of all families over the last 6 
years (2010–2015), ranging from a minimum of 43% in 2010 to a maximum of 72% in 2011 
(Figure 24). There was a significant effect of year (KW; p=0.0000) on the rate of deformities. 
The rate of deformities from all families, between 2010 and 2015, averaged 0.56 ± 1.90% and 
ranged from a maximum of 0.91 ± 2.98% in 2010 to a minimum of 0.28 ± 0.56% in 2015 
(Figure 24). Although the average rates of deformity have been consistently low for all years, a 
significant decreasing trend was detected (mB=-0.1121, CILL=-0.1909, ClUL=-0.0067). 

TRAIT MONITORING DISCUSSION 

Size at Stage 

Female spawners were generally larger than male counterparts, particularly in weight, condition 
factor, and body depth, which could be attributed to larger gonad development. Captive-reared 
individuals were significantly larger, and more variable, in size at spawning than WE individuals, 
an advantage of their additional year of consistent feeding and familiarity to dry feed pellets. 
Other than a few exceptions, which can be explained by a limited availability of years (body 
depth) or highly influential years due to smaller sample sizes (WE male size), there was typically 
no significant trend over time for the size of spawning adults. 

Spawner length analyzed over program generation supports the recommendation, reviewed by 
Williams and Hoffman (2009), to increase the naturalization of rearing habitats in order to 
minimize rates of adaptation to captivity. There was no effect of generation on the length of 
WO/WE spawners, while WO/CAP females showed an increasing trend over program 
generation and CAP G1 were significantly larger than WO G0 individuals. 

Although other studies have found significant changes in parr size and egg size (de Mestral et 
al. 2013; Wilke et al. 2014; N. Wilke, pers. comm.; I. Fleming, pers. com.), the results of this 
study did not completely agree. Egg weight, although limited in the number of years, did not 
have a significant trend, but was highly correlated to egg area. There was no significant effect of 
year or program generation on egg area through the LGB program. Although no overall trend in 
egg area was detected throughout, an increasing trend, along with a reduction in variability, 
from G3 to G4 was emerging. These changes correspond to the change in methodology (use of 
ImageJ) and may be a result of the more accurate method used; however, it will be important to 
continue monitoring. Fry length showed no trend over the four years, while weight and CF 
decreased slightly. Data availability for fry and WE parr size are limited and should be 
interpreted with caution; however, it is a starting point for future years and should continue to be 
monitored. 

Growth 

Growth rate data was limited; therefore, no yearly trends could be analyzed for changes 
throughout the LGB program. Results showed that WE parr growth was significantly larger in 
the first year in the wild compared to the second year, and small fish grew faster and larger parr 
resulted from faster growth rates. 

Age 1 WE parr and CAP fish both had 1:1 sex ratios over the years, while there was more 
Age 2 male WE parr and more female Age 2 smolt.  

The CAP fish matured at a younger age compared to WE individuals, and a higher percent of 
CAP fish matured at Age 4 than did their WE counterparts. This may be explained by their 
larger size, caused by increased years of consistent feeding in a captive environment, initiating 
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earlier maturation. The CAP individuals may be subjected to higher rates of adaptation to 
captivity as there was a significant decreasing trend in the average age of maturation over the 
years with a corresponding increasing trend in the percent of CAP fish maturing at Age 4. No 
trend in the percent of fish maturing at Age 4 was observed for WE males, and both genders 
combined; however, an increase over the years was detected in WE females. All fish, whether 
CAP or WE, did mature as there was no difference between the two groups and no trend over 
the years for the percent of individuals that matured at any age. 

Survival 

Fecundity models have most likely estimated fecundity successfully over the years as no 
difference was detected between the various methods used. Two variables that could affect 
fecundity are female size and egg size; since no trends were detected in those variables, it was 
not unexpected to see that fecundity, and relative fecundity, likewise did not show any trends 
over the years. There was also no effect of program generation on fecundity, and relative 
fecundity, when analyzing count data. Increased sample size, and therefore an increase in 
power to detect small differences, led to a significant effect of program generation on fecundity, 
and relative fecundity, using estimates. There was a significant decreasing trend over 
generation for fecundity estimates; however, the first two generations did not differ significantly 
from the last generation, and no trend was detected in relative fecundity estimates over 
generation. Variation in fecundity seems to be decreasing over the generations. One 
contributing factor may be a decrease in the variability of female size in the last few years; 
however, methodology has also become more accurate with the use of ImageJ. 

Survival from ‘fertilization to shock’ has increased significantly over the years, particularly the 
first 3 years and the last 3 years of the program. An exception was in 2003, when a fungus 
outbreak caused unusually poor survival. Fertilization success was 87.17±15.4% from 2013–
2015 and after correction of unfertilized eggs, survival from ‘fertilization to shock’ was >99%. 
Since the fertilization success indicates that most of the mortality recorded during this time 
period is actually unfertilized eggs, the increase in survival over the years could indirectly be 
considered an increase in fertilization success. There was a similar increasing trend over 
program generation for survival from ‘fertilization to shock’; G1 was significantly lower than all 
other generations and G2 was significantly different from G4. This may be due to improving 
spawning and rearing techniques; however, it may also point to a selection for success in a 
captive environment. 

There was no trend detected for survival from ‘shock to pre-release’ over the years as it 
remained very high, with an average >96%. The yearly fluctuations that were evident are 
explained by changes in rearing practices over the years. Although differences were detected 
between some generations, there was no trend in survival from ‘shock to pre-release’ over 
program generation. Survival in the wild (from ‘release to recapture’) exhibited an increasing 
trend over the years; however, the number of individuals collected from the wild has also 
increased with year (approximately doubling from 2006–2012), which could be greatly 
influencing the results. 

EXPERIMENTAL RESEARCH 

Exclusion-based Parentage Assignment 

Many of the findings in this study were based on parentage assignment results and, in theory, 
could have been impacted by genotyping errors and/or mutations, and the resulting potential 
failure to correctly match offspring to their true parents. All offspring were tested against all 
biologically possible pairs of male and female LGB parents spawned using exclusion methods. 
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In Figure 25, we provide an example of exclusion results for the 198 CAP and 410 WE salmon 
(for a total of 608 candidate offspring) produced in 2010 tested against all known biologically 
plausible crosses. Comparisons between offspring and the first matching parental pair (that 
exhibited the most compatible loci, or the fewest mismatching loci) and the second-best 
matching parental pair (that exhibited the next most compatible loci, or the second-fewest 
mismatching loci) are presented. A total of 548 offspring were compatible with the first (best) 
matching parental pair at 100 percent of all loci (10, 11 or 12) assayed in all three individuals. A 
further 58 offspring were compatible with the first (best) matching parental pair at 91.67% (11 of 
12) of loci assayed, and only 2 offspring were compatible with the first (best) parental pair at 
83.33% (10 of 12) of loci assayed. Nearly all of the second-best matching parental pairs for 
these 608 offspring exhibited markedly fewer compatible loci (50 percent or less). This large 
discontinuity between the first and second-best matching parental pair (see Figure 25) indicates 
that it is highly unlikely that one or two genotyping errors in a given triad led to the failure to 
identify the true parental pair while incorrectly assigning an offspring to the next best (but 
incorrect) parental pair. 

Effect of the Early Parental Rearing Environment on Offspring Performance in the 
Wild 

We did not detect consistent (across years) or statistically significant effects of the early juvenile 
rearing environment of the parents (captive-reared vs wild-exposed) on early offspring survival 
in the wild, from release at Age 0+ to Age 1+ (approximately 15 months after releases). In 2009 
and 2012, average percent survival was highest for offspring of wild-exposed females (WE) x 
captive-reared males (CAP) (WExCAP), but in 2010 and 2011, survival was highest for offspring 
of CAPxCAP and CAPxWE parents, respectively (Figure 26). The only parent treatment group 
for which offspring survival was not higher than all others in at least 1 within-year comparison 
was WExWE. In fact, in all years, offspring survival in this group was similar to the lowest 
performing group (typically CAPxCAP, except in 2010). Additionally, many differences between 
pairs of treatment groups were modest (often within 25%) and, when larger, 1 or more treatment 
groups was often represented by relatively few families (e.g., WExCAP [7], CAPxWE [5], and 
CAPxCAP [2], in the year 2011). Finally, no differences among the four parental rearing group 
types in any of the four within-year comparisons were statistically significant (Table 6). Results 
were similar when combining WExWE and WExCAP, and CAPxWE and CAPxCAP groups to 
produce the 2 maternal groups, WE female and CAP female (Figure 27). Although offspring 
sample sizes (number of families and total numbers of individuals) associated with the 
contrasted parent group types were larger, patterns observed were again not consistent across 
years; offspring survival was higher for the WE female parent group in 2009 and 2012, but 
higher for the CAP female parent group in 2010 and 2011. Additionally, once again, no 
significant differences between treatment groups within any of the four spawning years 
assessed were detected (Table 6), despite these larger sample sizes. 

These results were different from those reported by Evans et al. (2014) in similar comparisons 
of early juvenile survival (in wild native river habitat) of offspring produced by wild-exposed BSR 
LGB vs captive-reared BSR LGB parents. Offspring of wild-exposed parents exhibited 
significantly higher survival (up to a two-fold increase) compared to offspring of captive-reared 
parents, and offspring of parents that spent two years in wild river conditions as juveniles 
exhibited higher survival compared to offspring of parents that spent one year in wild river 
conditions in their study (Evans et al. 2014). 

There are several possible reasons for the observed divergence in results (failure to detect 
parental rearing environment effects on offspring survival in the wild). First, Evans et al. (2014) 
included only 2 cross types in their experiment, wild-exposed females x wild-exposed males, 
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and captive-reared females x captive-reared males, equivalent to our WExWE and CAPxCAP 
cross types, Figure 26. This aspect of their design increased the magnitude of potential parental 
environment effects on offspring survival across all of their compared groups, as both parents 
associated with the contrasted cross types studied were exposed to a given environment as 
juveniles. A second possible reason for some of the differences observed between these 2 
studies is that the average number of offspring recovered per family was very low in our study 
(2.5–4.5, depending on the year), compared to their study (approximately 12) for Age 1+ 
offspring sampled from the wild. This demonstrates an important disadvantage of carrying out 
research coinciding with conservation activities (implementation of the LGB program). Average 
family size at the time of capture, despite similar sampling effort (electrofishing and genotyping 
of offspring) was much lower here because the set of offspring analyzed in this study was 
produced by over 100 crosses; this many crosses was necessary to maintain large effective 
population size, a requirement of the conservation program. The greater number of parent 
group types here (4) versus in their study (2) (also a function of the different program objectives) 
also impacted offspring group size, which may also have contributed to differential abilities to 
detect differences between the 2 studies. However, even with the current experimental design 
(number of crosses, number of treatment groups, and number of offspring sampled at Age 1+) 
we did indeed detect both (a) statistically significant differences between treatment groups for 
some predictor (independent) variables, and (b) consistent patterns of effects across years for 
these same variables (discussed below). In other words, we do expect to be able to detect 
moderate-to-large differences in survival when they do exist. Additionally, it is also possible that 
female parent age (which appeared to have a large effect on offspring survival across all years, 
discussed further below) may have impacted our results, depending on how adults of various 
ages were distributed across parent types. However, as discussed further below, at least some 
portion of the observed female parent age effect appears to be associated with egg size, and 
egg size was not found to be a significant covariate in analyses of the effect of parental rearing 
environment presented here (results not shown). 

Potential biological reasons for observed differences between studies are as follows. First, it is 
possible that mortality associated with variance in family size on the BSR is more selection-
mediated, resulting in greater genetic differences between sampled wild-exposed and captive-
reared BSR parents compared to analogous sets of STW parents, which in turn may have 
conferred greater survival advantages to offspring of BSR wild-exposed x wild-exposed parents 
in their study. It is also possible that differences in the rearing environments at Mactaquac (for 
BSR salmon) and Coldbrook (for STW salmon) throughout the life cycle of captive-reared 
parents, and/or during the early or mid-to-late portions of the life cycle of wild-exposed parents, 
could have impacted the results. If, for example, environmental conditions experienced by 
captive-reared salmon at one of the two facilities were less divergent from those experienced by 
wild-exposed salmon, the scope for differential offspring performance (via either genetic or 
epigenetic mechanisms) might be reduced. 

It is perhaps worth noting that although differences in offspring survival between parent group 
types here were not (overall) consistent or statistically significant, the average percent offspring 
survival for WExWE groups was higher than CAPxCAP groups in three of four within-year 
comparisons (Figure 26). Were we to have assessed parental rearing effects for a single brood 
year (as done in Evans et al. 2014), either in 2009, 2011 or 2012, and compared WExWE and 
CAPxCAP groups only, the directionality of differences reported across the two studies would 
have been the same (WExWE>CAPxCAP). Also, the approximate magnitude of differences 
observed (approximately 10–20%) would have been similar between the 2 studies, if 
comparisons in Evans et al. were restricted to similar offspring (sampled at Age 1+) and parent 
groups (their WE1 crosses, involving parents that spent approximately 1 year in the wild); 
though differences here would not have been statistically significant. If trends across both 
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studies are considered, a general conclusion of this research would be that offspring of WExWE 
crosses may exhibit higher survival than offspring of CAPxCAP crosses, and that spawning of 
exclusively WE parents may increase offspring survival relative to the spawning of exclusively 
CAP parents. However, here, in all 4 within-year comparisons, offspring of WExCAP crosses 
appeared to exhibit higher survival compared to offspring of WExWE crosses (often by as much 
as approximately 50%), though differences were not significant 

Effects of the early juvenile rearing environment of the parents (WExWE vs WExCAP vs 
CAPxWE vs CAPxCAP) (Figure 28), or early juvenile rearing environment of the maternal 
parent (WE female vs CAP female) (Figure 29), on offspring survival in the wild from release at 
Age 0+ to Age 2+ (approximately 27 months after releases) were different than observed at 
Age 1+ (for overlapping spawning years, 2009–2011), though some general similarities in the 
relative ranking of different parent groups were observed. For example, offspring survival to 
both Age 1+ and Age 2+ was higher for WExWE relative to CAPxCAP parental groups in 2009 
and 2011, but the opposite was true in 2010 for both offspring groups. Overall, results were 
perhaps the most divergent for the two offspring group types (Age 1+ vs Age 2+) when the 
number of families associated with at least one parent group type was very low (e.g., in the 
spawning year 2011). The relative ranking of maternal groups was similar for the Age + and 
Age 2+ offspring groups in 2009 and 2010 when the number of families involved was high, but 
not in 2011, when the number of families in the CAP female maternal group was low (7). No 
consistent patterns were observed across spawning years within the Age 2+ offspring group, 
and no differences between groups within a given brood year comparison were significant 
(Table 6). Note that results in this analysis are further complicated by the fact that percent 
survival to Age 2 also reflects possible differences in timing of smolt out-migration (Age 2 vs 
Age 3) between groups, and will not be discussed further. 

The early juvenile rearing environment experienced by maternal and paternal parents may, at 
least in some years, impact offspring size (especially length) in the wild at Age 1+. Because 
length data of wild-exposed parr was only available from the year 2013 on, size data for 
offspring of wild-exposed and captive-reared parents exist only for 2011 and 2012 spawning 
years. In 2011, average family mean body length of offspring at Age 1+ was similar across all 
four parent group types (Figure 30, see also Figure 31), and differences were not significant in 
ANOVA (Table 6) and unbalanced fixed effects ANOVA (Table 7), though it should be noted 
that the number of families in the CAPxWE (5) and WExWE (2) groups were very limited. In 
2012, where the numbers of families in CAPxWE and CAPxCAP groups were higher, the length 
of offspring at Age 1+ was more divergent across groups, a consistent trend across groups 
reflecting the amount of wild exposure was observed, with (WExWE > WExCAP > CAPxWE > 
CAPxCAP) (Figure 30, see also Figure 31), and differences were significant (ANOVA, p = 
0.0167, Table 6 and unbalanced fixed effects ANOVA, p = 0.0044, Table 7). Of the six possible 
pairwise group comparisons within this analysis, only WExWE vs CAPxCAP, involving the most 
divergent parent cross types, was significant (p=0.0185, Table 8); p-values for WExWE vs 
CAPxWE and WExCAP vs CAPxCAP, both involving different maternal parent types, were 
0.0995 and 0.0845, respectively (Table 8). 

When WExWE + WExCAP, and CAPxWE + CAPxCAP groups are combined to produce the 
WE female and CAP female groups, respectively, patterns across years are consistent 
(WE female > CAP female) (Figure 32); differences in 2011 are not significant (p= 0.1718), but 
differences in 2012 were highly significant (p=0.0007) (Table 6). 

Overall, similar patterns were observed across parent group types for the weight response 
variable. In the 2011 spawning year, average family mean body weight of offspring at Age 1+ 
was similar across all four parent group types (Figure 33, see also Figure 34), and differences 
were not significant in ANOVA (Table 6) and unbalanced fixed effects ANOVA (Table 7). In 
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2012, a consistent trend across parent group types reflecting the amount of wild exposure was 
observed, with WExWE > WExCAP > CAPxWE > CAPxCAP (Figure 33 and Figure 34), and 
overall among-group differences were significant in ANOVA (p=0.0146, Table 6) and 
unbalanced fixed effects ANOVA (p=0.0032, Table 7). Of the six possible pairwise group 
comparisons within this analysis, WExWE vs CAPxCAP (p=0.0217) and WExWE vs CAPxWE 
(p=0.0310) were significantly different (Table 8). When comparing across years, the relative 
ranking of average family mean body weight across parent environment types was the same, 
with the exception of WExCAP and CAPxWE groups in 2011, which were very similar. 

When WExWE + WExCAP, and CAPxWE + CAPxCAP groups are combined to produce the 
WE female and CAP female groups, respectively, patterns across years were consistent 
(WE female > CAP female) (Figure 35); differences in 2011 were not significant (p= 0.4842), but 
differences in 2012 were highly significant (p=0.0004) (Table 6). Offspring egg size was not 
observed to be a significant covariate with parental rearing environment in any size comparison. 
Evans et al. (2014) did not detect any size differences between wild-exposed and captive-
reared offspring groups analyzed. 

Effects of Cumulative Ancestral Early Rearing Environment on Offspring 
Performance in the Wild 

If trans-generational effects of exposure of ancestors (parents and grandparents) as early 
juveniles to captivity were cumulative, we might expect descendants of both parents and 
grandparents that were all reared in captivity from pre-release to Age 1+ to perform much worse 
in the wild than descendants of both parents and grandparents that were all reared in the wild 
during this same period, with descendants of parents and grandparents reared under a mixture 
of captive and wild conditions (some reared in captivity, others in the wild) exhibiting 
intermediate levels of performance. 

We either detected no association between the extent of cumulative ancestral early juvenile 
exposure to captivity on offspring survival in the wild from release to Age 1+ (years 2009, 2010, 
and 2012) (Figure 36, Table 9), or a possible positive relationship in year 2011 (Figure 36, 
Table 9, p=0.0237), with descendants (offspring) exhibiting more cumulative early captive 
rearing appearing to show higher percent survival in the wild to Age 1+ (Figure 36). Offspring 
egg size was found not to be a significant covariate in this analysis. 

No association was observed between cumulative ancestral captive rearing and offspring 
survival in the wild from release to Age 2+ for the spawning years 2009–2011 (Table 9), though 
there was a trend towards lower survival with increased cumulative captive rearing in 2011 
(Table 9, p=0.0599) (see also Figure 37). However, since Age 2+ parr are collected in later 
summer/early fall, any differences in survival that were observed could reflect both variation in 
mortality and out-migration as smolt earlier in the spring. 

We also tested for a possible association between cumulative ancestral early juvenile exposure 
to captivity and family (offspring or descendant) mean length in the wild at Age 1+ (Figure 38). 
Overall, we find little evidence for an association in the two years tested; mean family length 
appeared to increase slightly with the amount of ancestral captive rearing in 2011 but appeared 
to decrease as ancestral captive rearing increased in 2012 (Figure 38), though neither 
relationship was statistically significant, with p-values of 0.4249 and 0.0551, respectively 
(Table 10). 

Effect of Number of Program Generations on Offspring Performance in the Wild 

Immediately above, we tested for possible cumulative effects of ancestral captive rearing 
environments (from release as fry at Age 0+ to Age 1+ or Age 2+) on offspring performance in 
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the wild. In that analysis, we attempted to isolate only the effects of the early juvenile rearing 
environment of ancestors (parents and grandparents), from several weeks post-hatch to Age 1+ 
or Age 2+, on offspring performance. Here, we investigate the effects of an increasing number 
of program generations (or complete cycles of captive breeding and rearing), with each cycle 
including the combined effects of 

a. one round of captive or artificial breeding; 

b. rearing of all from fertilization to post-hatch in captivity; then 

c. a mixture of captive rearing (for a portion of the population) and wild exposure (for the 
remainder of the population) from release to Age 1+ or Age 2+; and then 

d. further captive rearing of all from Age 1+ or Age 2+ to maturity as adults, right through 
until spawning. 

The number of program generations experienced by offspring/families compared are not all 
whole numbers (e.g., 2.5) because many of the crosses that produced them were between male 
and female parents exhibiting a different number of program generations (e.g., 1.0 and 2.0). 
Program generations experienced by offspring included in this study begin at 2.0 because 
survival data for offspring in the wild were not available for spawning years 2000–2008; program 
generation 1.0 offspring, direct descendants of G0 founders, were produced in these earlier 
years.  

In general, the number of program generations was not strongly correlated with survival in the 
wild, but some possible associations were observed. No statistically significant relationship 
between survival, release to Age 1+, and program generations was observed in spawning years 
2009, 2011 and 2012 (Table 9), though survival mostly appeared to decline with increasing 
program generations (Figure 39). In 2010, however, survival was negatively correlated with 
increasing number of program generations (p=0.0242). 

de Mestral et al. (2013), in a study of the environmental and selective effects of the iBoF LGB 
program on multiple phenotypic traits (smolt run day, smolt length, weight, and condition factor) 
in BSR smolt in the wild, did not find that trait values varied consistently with increasing 
numbers of program generations. In fact, the average trait value of G2 generation program 
smolt was often intermediate between G1 smolt and wild-origin smolt reared under common 
native river conditions (de Mestral et al. 2013). Similarly, early juvenile growth rates of G1 and 
G2+ (a mixture of G2 and G3) BSR LGB salmon analyzed by Wilke et al. (2014) were nearly 
indistinguishable, though both were highly divergent from offspring of wild G0 generation 
salmon, when reared in common captive environments. Although divergence in phenotypic traits 
between offspring of wild and captive G1 salmon are often quite large (Araki et al. 2007b), 
reflecting the combined maternal (egg size or resource partitioning) and genetic responses to 
these different environments, further genetically based trait divergence is likely to accumulate 
more slowly, and could be more difficult to detect. Captive populations of Drosophila 
melanogaster maintained at 100 and 250 individuals across 50 generations exhibit very different 
levels of mean fitness when reared under stringent environmental conditions compared to truly 
wild flies, but divergence in mean fitness between populations maintained in captivity between 
two and five generations is very modest (see Figure 3 in Woodworth et al. 2002). 

It should also be noted that because early survival information in the wild in this study was only 
available from 2009 on (discussed above), the total number of program generations across 
which differences in survival could be compared was very limited (1.0 to 1.25 generations, 
Figure 39). Differences in survival between offspring of G0 and G2+ generation salmon 
(juveniles exhibiting 1.0 and 3.0+ program generations of captive breeding and rearing), more 
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relevant to assessments of cumulative impacts of the STW LGB program to date, might have 
been greater. 

Effect of Parent Family Size in the Wild on Offspring Performance in the Wild  

In principle, variation in family size observed in STW River wild-exposed parr collected at 
Age 1+ (O’Reilly et al. 2018) may be partially or largely driven by selection-mediated mortality in 
the wild. Small and large families observed in yearly sample collections of wild-exposed parr 
may be genetically and qualitatively quite different, with individuals from small families being 
less fit than individuals from large families. In our current STW LGB program (which is based on 
Ranked Mean Kinship breeding protocols), individuals in small families are assigned lower 
Mean Kinship (MK) values than individuals in large families (at least in initial MK calculations; for 
details see O’Reilly et al. 2018; Ivy and Lacy 2012), and are prioritized higher for spawning. This 
could increase the frequency of less fit genes, lowering the fitness of the entire population. 

We found no relationship between average parent family size (the average of the male and 
female parents’ family sizes) at Age 1+ in the wild and offspring family size at Age 1+ in the 
same wild habitat. In 2010, 2011 and 2012, standardized offspring family size of parents from 
small families (0–1.5) ranged considerably, from small (0) to large (16), and did not appear to be 
quantitatively different than parents from large family sizes (>1.5) (Figure 40). Indeed, 
standardized offspring family size was not associated with average parent family size in any of 
years 2010 to 2012 (p=0.2522–0.6489, Table 10). 

Effect of Mean Kinship on Offspring Performance in Captivity and in the Wild 

We also looked for possible effects of prioritizing low-MK individuals on fitness directly, by 
testing for associations between average parent MK values (the average of the male and female 
parents of a given family/offspring) and 

a. family/offspring survival in the wild from release to Age 1+; 

b. family/offspring survival in the wild from release to Age 2+;  

c. family/offspring survival in the wild from Age 1+ to Age 2+; and 

d. family/offspring survival in captivity from the egg stage at shock to tagging/genotyping at 
Age 4. 

Survival data were included for families produced by two wild-exposed parents only, including 
for (d) above, to control for possible effects of parental rearing environments on results. 

No association between average parental MK values and any of the above metrics of 
family/offspring survival (in any year, in any environment) was observed (Figures 41–44, 
Table 9), except one. The MK values were positively associated with percent survival, release to 
Age 1+, for the set of families produced in the year 2010 (Figure 41) (p=0.0018, Table 9). In 
other words, families produced in 2010 that exhibited higher MK values appeared to exhibit 
higher survival than families exhibiting lower MK values. However, note that of the four 
spawning years tested (2009–2012), a significant association (though negative) was also 
observed between survival in the wild from release at Age 0+ to Age 1+ and the number of 
program generations for the set of wild-exposed families produced in 2010 (Figure 39, Table 9); 
families with more program generations exhibited lower survival than families with fewer 
program generations that year. No association, positive or negative, was observed in any other 
year. Family MK values are expected to increase with a higher number of program generations 
due to additional co-ancestry between spawner pairs. In other words, at least some of this 
apparent association between MK and survival in 2010 may have been driven by increasing 



 

34 

numbers of program generations, which may have impacted offspring survival this one year. 
Indeed, in 2010, MK values do appear to increase with program generations, particularly from 
2.25 to 3.0 generations, though the relationship is not statistically significant (p=0.1082, data not 
shown). No association between maternal MK values and family/offspring survival from shock to 
tagging (approximately Age 4) in captivity was observed, for any of the sets of families produced 
in the years 2007–2012 (Figure 45, Table 9). 

Malo et al. (2010) compared several indicators of fitness (sperm production, fertility, and 
resistance to osmotic stress) in White-Footed Mice maintained across a much longer period 
(10 generations) under 3 different breeding regimes (minimization of Mean Kinship, random 
mating, and selection for docility), and did not find any negative effect of minimization of mean 
kinship breeding protocols on fitness at the end of the study. In their experimental design, 
program generations did not confound assessments of Mean Kinship effects; comparisons were 
made between separate Mean Kinship versus random mating lines, both reared through to the 
tenth generation. 

Our results on the effects of (1) parent family size in the wild and (2) parent MK values on 
offspring performance in the wild, however, do not indicate that selection during wild exposure is 
not important, and that the effects of MMK breeding programs do not need to be monitored 
going forward. It is possible that selection intensities are relatively modest, and that their effects 
of variation in family size low compared to stochastic influences, as observed elsewhere across 
a range of other taxa studied (Snyder and Ellner 2018). If selection is weak but consistent and 
directional, MMK breeding programs and the preferential spawning of low MK salmon could still 
represent a long-term risk to the population, although it should also be understood that going 
forward, MMK will approximate EFS. 

Effect of Pedigree Inbreeding on Offspring Performance in Captivity and in the 
Wild 

No association was found between the amount of pedigree inbreeding (F) calculated for families 
and any metric of family/offspring performance, including 

a. survival in the wild from release at Age 0+ to Age 1+; 

b. family mean length at capture at Age 1+; 

c. family mean weight at capture at Age 1+; 

d. average family incidence of deformities as age 0+ fry in captivity, and; 

e. percent deformities as Age 0+ fry in captivity, in any spawning year dataset assessed 
(Figures 46–50, Tables 9, 10, and 11). 

In the year 2015 (one of six years assessed), there may have been a slight (non-significant) 
trend towards increasing incidence of deformities with increased inbreeding (p=0.1451), but it 
should be noted that levels of inbreeding in this set of families was very low (generally 0.002–
0.006) (Figures 46–50 here; see also Figure 51 in O’Reilly et al. 2018). In addition to overall low 
levels of pedigree inbreeding and limited ranges in values of F across which performance was 
assessed, several other factors may have contributed to the reported lack of any association 
between these metrics. First, in all years, when even moderate levels of inbreeding were 
observed, very few (one to a few) families exhibited these higher values (Figures 46–50; see 
also O’Reilly et al. 2018), contributing to very unbalanced experimental designs. Second, 
estimates of F used here consider only pedigree information from the G-1 generation forward; 
relatedness due to the co-occurrence of common G-2 or earlier generation ancestors was not 
included. Third, kinship reconstructions of first-order relatedness amongst G0 salmon was not 
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expected to be completely accurate (especially when family sizes were small) (see O’Reilly 
et al. 2018 for more details), resulting in somewhat imprecise estimates of even pedigree 
inbreeding (F) values used here. Finally, other aspects of this dataset (including mean family 
size of wild-exposed offspring at Age 1+ parr and uneven treatment group sizes), were not 
optimal for the detection of small differences between treatment groups (discussed above). 

Effect of Expected Observed Heterozygosity on Offspring Performance in 
Captivity and in the Wild 

Given the limited pedigree depth upon which calculations of F above are based, and expected 
inaccuracies of some G0 kinship assignments and their possible impacts on some estimates of 
pedigree F, we also tested for associations between another possible indicator of inbreeding 
and offspring performance. Multilocus microsatellite genotypes (molecular genetic information) 
from male and female parents were used to calculate the expected observed molecular genetic 
heterozygosity of their offspring (see Method section for more details). Offspring or family 
expected observed heterozygosity was then compared with three metrics of family performance, 
(a) survival in the wild from release at Age 0+ to Age 1+ for the spawning years 2009–2012, 
(b) average family incidence of deformities of Age 0+ fry in captivity for the spawning years 
2010–2015, and c) family percent deformities of Age 0+ fry in captivity also for the spawning 
years 2010–2015. No statistically significant association between family/offspring observed 
expected heterozygosity and family/offspring performance was observed for any trait in any 
spawning year (Figures 51–53, Tables 9 and 11). Although p-values for the comparison 
between observed expected heterozygosity and family percent deformities (Figure 43) 
approached significance (0.0762, Table 9) in the 2014 spawning year comparison, it should be 
noted that there were a large number of pairwise comparisons involving this performance 
metric (6). 

Effect of Cross Type on Offspring Performance in Captivity and in the Wild 

In 2007 to 2009, a small number of crosses were carried out between salmon obtained from the 
ECO, GRV and DEB rivers (small North Minas Basin drainages potentially harbouring residual 
populations of salmon) and STW River salmon in an attempt to preserve genes from these 
nearby iBoF sources and possibly minimize the extent of inbreeding in the STW LGB 
population. Some information on offspring performance (survival in the wild from release at 
Age 0+ to Age 1+, length of males and females at Age 4, and weight of males and females at 
Age 4) is available for these outbred crosses (Outbred) and for non-outbred or potentially inbred 
STW crosses (Inbred STW) to assess some of the effects of this action on STW LGB salmon 
(Figures 54–58). Outbred families (N=10) produced in 2009 (the only year information is 
available for the relevant offspring trait) appear to exhibit approximately 2 times greater survival 
in the wild from release at Age 0+ to Age 1+ compared to inbred STW families (N=91) (Figure 
54), and this difference is significant (p=0.0368, Table 6). This possible heterosis could be due 
to the mixing of genes from these potentially different populations in the F1 hybrids. However, it 
should also be noted that (a) the number of outbred crosses was small, (b) these results could 
be driven by just two or three high performing STW or NMB parents involved in the Outbred 
crosses (Figure 54, lower panel) and (c) large potentially confounding parental effects have 
been noted by Houde et al. (2010) in their analyses of inbreeding versus outbreeding effects 
involving STW, GRV and ECO salmon populations. Additionally, Houde et al. (2011) did not 
observe increased survival of offspring of STWxECO or STWxGRV crosses over STWxSTW 
crosses, though in the second year of the same study (Part II), Rollinson et al. (2014) may have. 
Clearly, possible benefits of further outcrossing in this population need to be investigated, 
especially since levels of inbreeding in the STW LGB population are expected to increase in the 
near future (O’Reilly et al. 2018). However, it should also be understood that nearly all available 
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NMB Atlantic Salmon have already been interbred with STW River salmon; Gaspereau River 
salmon are the only remaining Minas Basin salmon available to introgress into the STW gene 
pool (discussed below). 

Outbred male and female salmon produced in the years 2007, 2008 and 2009 generally 
appeared to exhibit decreased family mean length or weight compared to inbred STW salmon at 
Age 4 (Figures 55–58), but sometimes the opposite pattern was observed, and no statistically 
significant differences between were observed (Table 6). 

In the year 2013, 16 crosses were carried out between salmon from the genetically (O’Reilly 
et al. 2018) and phenotypically divergent Gaspereau River population and STW LGB salmon. 
Offspring from these crosses were reared alongside 16 pure Gaspereau River and 75 pure 
Stewiacke River crosses, and the following traits monitored: 

a. survival from shock to release as fry at Age 0+;  

b. average family mean fry (Age 0+) length;  

c. average family mean fry (Age 0+) weight; and  

d. average family percent deformities of Age 0+ fry. 

Outbred hybrid crosses (GAKxSTW, referred to as Outbred) exhibited slightly lower average 
shock to pre-release survival compared to the two pure treatment groups (GAKxGAK and 
STWxSTW, referred to as Inbred GAK and Inbred STW, respectively), though differences were 
not significant (Figure 59, p=0.1099, Table 6). Data from these three sets of families (cross 
types) on survival in the wild from release as fry at Age 0+ to Age 1+ was not available at the 
time these analyses were carried out. However, preliminary analysis conducted since then 
suggest that hybrid families do not exhibit higher survival than non-hybrid families in the wild 
and that differences across all three cross types are modest and non-significant (de Mestral, 
pers. comm). Average family mean fry weight and length across these three groups were very 
similar (Figures 60 and 61), and differences observed were not significant (Table 6). Average 
percent deformities were many times higher (10X) in the outbred group compared to the two 
inbred groups (Figure 62), though levels were low (below 2%) for all, and differences were, 
perhaps surprisingly, non-significant (Table 6). 

As mentioned previously, GAK and STW salmon exhibit a moderate degree of genetic 
divergence, and potentially important life history differences. We do not recommend 
introgression of GAK genes into the STW LGB population at this time, but outbreeding 
(introgression of non-native genes) should be considered if evidence of biologically meaningful 
levels of inbreeding depression are observed in the future. STW (and GAK) populations should 
continue to be monitored for possible signs of inbreeding depression. Levels of known 
(pedigree) inbreeding across STW families created during standard LGB operations has been 
increasing from 2000 to 2015 (see Figure 51 in O’Reilly et al. 2018), and is expected to increase 
further in the near future. This will create additional challenges for detecting inbreeding effects 
by looking for correlations between pedigree F and offspring performance, using standard LGB 
trait data only. Therefore, consideration should be given to carrying out additional experimental 
outcrosses between STW River salmon and individuals from other source populations known to 
be at least moderately reproductively isolated (and genetically divergent) from STW salmon. 

Effect of Maternal and Paternal Age on Offspring Performance in Captivity and in 
the Wild 

The current conservation program for the STW LGB population includes the delaying of 
reproduction to year five (to Age 5, where age is based on the brood year or fertilization year, 
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Age 4 where age is based on the year of hatch). The STW River salmon may also be spawned 
in their fourth year, but associated offspring are released for supplementation purposes only and 
are essentially lost to the LGB program (these crosses, and the offspring produced, do not 
impact allele or genotype frequencies in the STW LGB population). In order to assess possible 
negative effects of delaying reproduction on the STW LGB population, some of which may have 
had a genetic basis and could possibly be passed from generation to generation, we tested for 
associations between paternal and maternal age and several measures of offspring 
performance, including average family mean length of Age 0+ fry, average family mean weight 
of Age 0+ fry, average family mean length of Age 1+ parr, average family mean weight of 
Age 1+ parr, average family percent survival from shock to pre-release fry at Age 0+, and 
average family percent survival from release as Age 0+ fry to capture as Age 1+ parr. Effects of 
egg size, as a possible important covariate in assessing parent age effects on fry length at 
Age 0+ was also investigated. 

Male parent age at spawning in general does not appear to be associated with any measure of 
offspring performance. Average family mean length and weight of Age 0+ fry and Age 1+ parr 
produced by male parents of varying ages (and in particular those produced by Age 4 vs Age 5 
male parents, where averages were based on large numbers of families) were similar, with most 
error bars overlapping (Figures 63–66). Additionally, when slight differences were observed, 
directional trends in length or weight with increasing age were usually absent (Figure 63, length 
at Age 0+, spawning year 2012; Figure 64, weight at Age 0+, spawning year 2012; Figure 65, 
length at Age 1+, spawning years 2011 and 2012; Figure 66, weight at Age 1+, 2012). All 
associations between paternal age and length or weight of fry at Age 0+ were non-significant 
once egg area effects were taken into account (Table 12). Similarly, paternal age was not found 
to be associated with length or weight of parr at Age 1+ (Table 10). Shock to pre-release 
survival at Age 0+ appeared to increase with male parent age, at least from Age 4 to Age 5 
(where the number of families involved was generally quite large) in spawning year datasets 
2008, 2009, 2011, but appeared to decreased with age in 2010, 2012, 2013 (Figure 67); age 
was only correlated (positively) with shock to pre-release survival in the 2009 dataset 
(p=0.0451, Table 9). Similar results were observed for comparisons between male parent age 
and survival in the wild from release as fry at Age 0+ to Age1+. No consistent trend was 
observed between survival and male parent age across any one spawner year dataset (Figure 
68), and survival was correlated with age (positively) only in the 2010 dataset only (p=0.0401, 
Table 9). Average percent survival was higher for Age 5 compared to Age 4 male parents (both 
consistently represented by large numbers of families) in 2009, 2010, and 2011, but not in 2012, 
where the opposite trend was observed but where differences were comparatively large; 
differences in release to Age 1+ survival between Age 4 and Age 5 parents was very modest in 
2009 and 2011 (Figure 68). 

On the other hand, maternal parent age at spawning appeared to have a large and consistent 
effect on multiple measures of offspring performance. Average family mean length and weight of 
Age 0+ fry generally increased with maternal parent age in the two spawning years for which 
data were available (Figures 69 and 70), and the overall association between both response 
variables and female age, independent of egg size, was significant in the 2012 comparisons 
(p=0.0300 and p=0.0023, respectively, Table 12). Average family mean length and weight of 
Age 1+ parr also appeared to generally increase with maternal parent age (Figures 71 and 72), 
particular between ages 4 and 5, each represented by large numbers of families, and 
associations in 2012 were again significant (p=0.0388) or highly significant (p=0.0041), 
respectively, for these two response variables (Table 10). 

Average percent survival from shock to pre-release as Age 0+ fry also appeared to generally 
increase with female parent age in all six spawning years investigated (2008–2013), at least to 
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Age 5 (Figure 73); trends were more variable from Age 6 on, when the number of families 
associated with a given parent age was greatly reduced. This apparent association between 
shock to pre-release survival and female parent age was significant in 2009 (p=0.0409) and 
highly significant in 2011 (p=0.0030), but not in the remaining years (Table 9). 

Average percent survival from release at Age 0+ to Age 1+ in the wild similarly appeared to 
generally increase with female parent age, particularly across ages 4 and 5 (when the number 
of families associated with a given female parent age was high), for all four years investigated 
(2009–2012); trends after female parent Age 5 were again variable but survival appeared to 
generally increase further with female parent age, at least until Age 6 (Figure 74). Associations 
between female parent age and survival in the wild from release to Age 1+ were highly 
significant (p<0.01) for all four spawning year datasets (Table 9). Egg area was observed to be 
strongly associated with survival to Age 1+, with larger eggs exhibiting higher survival than 
small eggs in both years investigated (2011 and 2012, Figure 75); this association was highly 
significant in both years (p<0.0001, Table 9). 

In summary, we do not see any indicators of potential concerns with the delay of spawning of 
STW salmon for LGB purposes (where offspring are intended to be recycled back into the 
program), at least until Age 5 (for male or female salmon). Indeed, based on several metrics, 
offspring survival through to at least Age 1+ might be expected to increase with female parent 
age, in part due to associated increases in egg size. In fact, these results, and the known 
relationship between female age and fecundity, provide important insight into potentially efficient 
ways of markedly increasing smolt production in this river, a key recommendation of the 15-year 
iBoF LGB review (DFO 2018). Many non-targeted STW adult salmon (salmon not identified by 
Ranked MK breeding programs as important broodstock) are currently either released post-
maturation but before spawning or immediately after spawning at Age 4. If more non-targeted 
Age 4 females were retained and spawned again at Age 5 for supplementation purposes, the 
resulting larger number of offspring (due to both an increase in the number of female parents 
but also increases in female body size and hence individual fecundity) and expected increases 
in offspring survival (both in captivity from shock to pre-release and in the wild from release to at 
least Age 1+) could result in a multiplicative increase in the number of late-stage juveniles and, 
potentially, out-migrating smolt. If this increase in smolt numbers is sufficiently large, this might 
lead to the possible return of a handful of adults to the STW in the years ahead, providing the 
potential for some selection to current marine conditions. 

Earlier, we discussed how many experimental design elements in this study (including mean 
family size at capture at Age 1+, and the unevenness of sample sizes of contrasted treatment 
groups) were driven by the primary objective of associated activities, the implementation of the 
STW LGB program. These limitations were expected to impact, to some degree, our ability to 
detect differences and to estimate the magnitude of effect of some predictor (independent) 
variables on response (dependent) variables like early juvenile survival in the wild. These 
findings on the effects of female age (and egg size) on offspring performance also indicate that 
effects of moderate size (when they exist) can be detected given the LGB program-driven 
experimental design used here to test the effects of all other predictor variables discussed 
above (e.g. parental rearing environment, MK values, etc.) on many response metrics analyzed 
here. 

Effect of European Ancestry on Offspring Performance in the Wild 

European/STW hybrid families (referred to as EU hybrid) produced in each of the four spawning 
years (brood years) assessed (2009 2012) appear to exhibit lower average percent survival in 
the wild from release as fry at Age 0+ to Age 1+ (15 months after release) compared to pure 
STW families (referred to as STW) that experienced a similar number of program generations 
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(Figure 76), though differences in the 2012 spawning year comparison were very small, and 
differences in any single spawning year comparison were non-significant (Table 6). Similar 
results were observed in analyses based on Age 2+ parr (Figure 77); average percent survival 
in the wild from release at Age 0+ to Age 2+ was lower for EU hybrid families compared to STW 
families (Figure 77), though differences for any single spawning year comparison were non-
significant (Table 6). Since Age 2+ parr were sampled via electrofishing in September, several 
months after some Age 2+ individuals would have been expected to out-migrate as smolt, 
differential results in this comparison possibly reflect both variations in mortality and emigration 
rates as Age 2+ smolt. Still, it is interesting to note that in all seven comparisons of Age 1+ or 
Age 2+ salmon where differences reflect, at least in part, variation in mortality in the wild, 
average percent survival of European/STW hybrid families (or average percent recovery of 
families) was lower than that of comparable STW families. Additionally, if results at Age 2+ do 
largely reflect differences in out-migration rates between EU hybrid and STW salmon, this would 
also be of concern, since age of smoltification in iBoF salmon may be adaptive, and 
introgression of EU farm genes may be altering this trait. 

We also compared the relative proportion of European/STW hybrid offspring (EU hybrid, black 
portion of bars) to pure STW offspring (STW, grey portion of bars) over time, from release as fry 
at Age 0+ to Age 1+ to Age 2+, by spawning year (individually) and across all spawning years 
(Figure 78). Offspring across all families within a cross type were combined. Information for 
Age 2+ parr in 2012 was not available at the time these analyses were carried out. In the 2009, 
2010 and 2011 spawning year comparisons, the relative proportion of EU hybrid to STW salmon 
appeared to decline from release at Age 0+ to Age 1+. Whether or not differences were 
statistically significant was not tested in the 2009 comparison because of null values for the EU 
hybrid 1+ group (no EU hybrid offspring were observed in the collection, despite the release of 
large numbers of Age 0 EU hybrid fry), but differences in proportions were significant in the 
2010 and 2011 comparisons (p=0.0155 and 0.0424, respectively, Table 13). When all spawning 
years were combined, the proportion of EU hybrid to STW salmon appeared to decline from 
release at Age 0+ to Age 1+, and differences were significant (p=0.0085, Table 13). Similar 
results were observed when comparing relative proportions of EU hybrid to STW offspring at 
Age 0+ vs Age 2+; proportions of EU hybrid to STW observed in collections appeared to decline 
over time for all three spawning year comparisons for which data were available (2009, 2010, 
and 2011). Again, whether or not differences were significant were not tested in the 2009 and 
2010 comparisons because of null values for the respective EU hybrid 2+ groups, though 
proportions across the 2011 spawning year comparison were not significant. When data from all 
spawning years were combined, the proportion of EU hybrid to STW offspring appeared to 
decline between release at Age 0+ and Age 2+, and differences were significant (p=0.0460, 
Table 13). When combining data across all spawning year comparisons (increasing the number 
of families included in the analysis), a consistent pattern of decreasing proportions of EU hybrid 
to STW offspring from Age 0 to Age 1 to Age 2 was observed (Figure 78, All Years). This result 
would be expected if the effects of EU genes on survival were cumulative, at least to Age 2+. 
However, as discussed above, the latter half (Age 1+ to Age 2+) of this apparent declining trend 
in the proportion of EU hybrid to STW offspring may have been influenced, at least in part, by 
the differential age of outmigration of smolt between these two cross types, with more offspring 
of EU hybrid salmon leaving the release-recapture site as Age 2+ smolt, several months before 
the relevant sampling collections occurred. Note that age of smoltification is strongly influenced 
by specific growth rates (Bailey et al. 1980; Metcalfe et al. 1988), and that Age 1+ EU hybrid 
offspring appear to be larger than STW salmon at this same age (Figure 79), though we did not 
test whether differences were statistically significant. 

Although the number of families exhibiting EU farm genes included in this study was modest 
(17), and spread out over four spawning year collections of families, it should be noted that the 
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number (and proportion) of STW LGB families potentially impacted by EU farm genes increased 
across generations in this population, and that nearly five percent of all 2016 candidate 
spawners may have exhibited some level of EU farm ancestry (based on high stringency 
criteria, see Table 95 in O’Reilly et al. 2018). Moreover, EU farm ancestry may be even more 
prevalent in other iBoF LGB populations (including the BSR), though percent EU ancestry within 
individuals (at least in the STW LGB population) may be declining through time (O’Reilly et al. 
2018). 
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TABLES 

Table 2. List of traits monitored in Stewiacke River Atlantic Salmon for the Inner Bay of Fundy Live Gene Bank Program. Dashes (-) denote empty 
or blank cells; WE=Wild-exposed; CAP=Captive Reared. 

Group or Life 
Stage 

Trait Method Years Available 
Corresponding Brood 

Year 

Spawning Adult Length Individual 2000–2015 2000–2015 

Weight Individual 2005, 2007–2015 2005, 2007–2015 

Body Depth Images 2010–2015 2010–2015 

Egg Weight Bulk weights 2013–2015 2013–2015 

Area Measured (select crosses) 
Images 

2002–2009 
2011–2015 

2002–2009 
2011–2015 

Initial Fecundity Counts (select crosses) 
Estimates 
Images 

2000–2015 
2000–2015 
2010–2015 

2000–2015 
2000–2015 
2010–2015 

% fertilization at Shock - 2014–2016 2013–2015 

Eggs remaining after Shock Records 
Images 

2001–2016 
2011–2016 

2000–2015 
2010–2015 

Equalized Fry Number Remaining Records 
Images 

2009–2016 
2011–2016 

2008–2015 
2010–2015 

Deformities Images 2011–2016 2010–2015 

Length Individual 2013–2016 2012–2015 

Weight Bulk weights 2013–2016 2012–2015 

WE Parr Length Individual 2013–2014 2011–2012 (Age 2) 
2010–2011 (Age 3) 

Weight Individual 2013–2014 2011–2012 (Age 2) 
2010–2011 (Age 3) 

Smolt Gender/Maturation - 2004–2015 2001–2012 (Age 3) 

CAP offspring as 
Adults 

Various (Length, weight, body 
depth, maturation, etc.) 

Individual 2004–2015 
2005–2015 

2000–2011 (Age 4) 
2000–2010 (Age 5) 

WE offspring as 
Adults 

Various (Length, weight, body 
depth, maturation, etc.) 

Individual 2006–2015 
2007–2015 

2002–2011 (Age 4) 
2002–2010 (Age 5) 
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Table 3. Body characteristics (length, weight, and condition factor) of all spawning Stewiacke River adult Atlantic Salmon from the Live Gene Bank 
Program for each brood year. Weight and condition factor were not recorded in 2000–2004. Dashes (-) denote empty or blank cells; SD=Standard 
Deviation. 

Sex and  
Year 

Length 
(cm) 

Length 
(cm) 

Length 
 (cm) 

Length 
(cm) 

Weight 
(kg) 

Weight 
(kg) 

Weight 
(kg) 

Weight 
 (kg) 

Condition 
Factor 

Condition 
Factor 

Condition 
Factor 

Condition 
Factor 

- Average SD Minimum Maximum Average SD Minimum Maximum Average SD Minimum Maximum 

FEMALE - - - - - - - - - - - - 
2000 40.76 3.01 33.00 50.00 - - - - - - - - 
2001 45.91 5.80 33.80 63.00 - - - - - - - - 
2002 50.74 6.51 38.10 65.00 - - - - - - - - 
2003 50.91 8.00 35.60 78.00 - - - - - - - - 
2004 51.90 10.19 30.00 76.00 - - - - - - - - 
2005 51.30 7.57 28.40 72.20 1.97 0.97 0.54 6.20 1.39 0.25 0.83 2.79 
2006 52.07 10.35 35.00 80.90 2.04 0.46 1.54 2.72 1.21 0.24 0.89 1.75 
2007 51.71 11.62 31.80 85.00 2.24 1.90 0.30 10.00 1.36 0.26 0.93 3.00 
2008 44.96 9.19 29.60 71.80 1.39 1.02 0.26 5.40 1.33 0.20 0.56 2.41 
2009 47.85 9.31 31.80 78.00 1.69 1.10 0.40 7.53 1.38 0.17 0.96 2.12 
2010 46.52 8.74 30.90 71.50 1.60 1.09 0.40 5.32 1.41 0.15 0.95 1.90 
2011 42.86 8.63 25.40 66.00 1.19 0.83 0.31 3.75 1.34 0.17 0.94 2.21 
2012 47.58 9.23 32.40 75.00 1.66 1.21 0.40 5.80 1.35 0.23 0.58 2.72 
2013 45.53 6.74 32.80 70.00 1.38 0.74 0.44 4.98 1.35 0.15 0.88 1.64 
2014 48.87 5.19 38.80 64.60 1.62 0.54 0.69 3.46 1.34 0.11 1.14 1.61 
2015 47.47 5.55 32.80 59.00 1.61 0.52 0.52 2.73 1.45 0.13 0.82 1.82 

MALE - - - - - - - - - - - - 
2000 38.95 5.42 15.50 51.00 - - - - - - - - 
2001 46.32 7.43 25.00 62.50 - - - - - - - - 
2002 51.67 7.14 29.70 71.00 - - - - - - - - 
2003 49.91 7.51 30.00 69.00 - - - - - - - - 
2004 56.50 10.84 27.20 80.00 - - - - - - - - 
2005 58.34 11.53 33.00 81.00 2.67 1.47 0.58 6.82 1.20 0.25 0.65 2.70 
2006 52.94 13.79 26.90 85.40 1.65 0.50 0.78 2.12 1.09 0.20 0.91 1.46 
2007 48.05 11.63 22.00 85.60 1.49 1.24 0.22 7.54 1.15 0.19 0.54 1.80 
2008 45.51 12.08 20.10 74.90 1.43 1.19 0.12 4.92 1.25 0.16 0.94 2.09 
2009 46.50 13.05 18.70 91.90 1.53 1.29 0.08 7.43 1.28 0.15 0.96 1.71 
2010 47.03 11.08 22.10 75.60 1.47 1.07 0.16 4.76 1.22 0.12 0.60 1.53 
2011 41.36 10.49 17.00 72.80 1.00 0.84 0.05 4.34 1.18 0.12 0.83 1.50 
2012 46.65 10.46 25.60 81.20 1.46 1.23 0.19 6.95 1.24 0.15 0.88 2.21 
2013 44.19 6.24 20.80 58.60 1.07 0.40 0.11 2.20 1.19 0.15 0.60 1.52 
2014 45.97 8.92 25.40 72.10 1.32 0.86 0.22 5.33 1.23 0.11 1.00 1.66 
2015 45.87 7.22 31.10 64.50 1.33 0.57 0.42 3.09 1.33 0.25 1.07 2.98 
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Table 4. Gender ratios (Females / Males) of wild-exposed parr (Age 1 and Age 2) and smolt, and captive-
reared Atlantic Salmon from the Stewiacke River Live Gene Bank Program. Dashes (-) denote empty or 
blank cells. 

Brood Year Female (F) Male (M) Sex Unknown Ratio (F/M) 

a) Wild-exposed Parr, Age 1 
2000 0 0 0 - 
2001 2 6 0 0.33 
2002 66 71 10 0.93 
2003 36 39 0 0.92 
2004 64 70 2 0.91 
2005 43 39 2 1.10 
2006 60 70 0 0.86 
2007 64 79 1 0.81 
2008 57 39 0 1.46 
2009 106 108 1 0.98 
2010 149 173 8 0.86 
2011 156 175 43 0.89 
2012 0 0 354 - 

b) Wild-exposed Parr, Age 2 

2000 2 5 0 0.40 
2001 22 41 2 0.54 
2002 8 37 0 0.22 
2003 2 13 1 0.15 
2004 14 24 0 0.58 
2005 0 4 0 - 
2006 9 22 1 0.41 
2007 7 43 0 0.16 
2008 22 51 1 0.43 
2009 8 54 0 0.15 
2010 9 32 1 0.28 
2011 0 0 69 - 
2012 0 0 0 - 

     
     
     

c) Smolt 

2000 0 0 0 - 
2001 0 4 0 - 
2002 18 28 2 0.64 
2003 10 4 0 2.50 
2004 127 57 1 2.23 
2005 70 0 0 -  
2006 133 39 2 3.41 
2007 128 22 0 5.82 
2008 4 1 0 4.00 
2009 9 0 0 - 
2010 0 0 0 - 
2011 0 0 0 - 
2012 0 0 0 - 

d) Captive Reared Salmon 

2000 91 81 248 1.12 
2001 95 47 190 2.02 
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Brood Year Female (F) Male (M) Sex Unknown Ratio (F/M) 
2002 150 122 26 1.23 
2003 117 119 165 0.98 
2004 40 49 0 0.82 
2005 89 77 1 1.16 
2006 49 35 0 1.40 
2007 104 96 0 1.08 
2008 93 102 2 0.91 
2009 103 97 0 1.06 
2010 93 102 3 0.91 
2011 61 73 6 0.84 
2012 0 0 128 - 
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Table 5. Average (± one standard deviation) family size at fry release and at capture, and the percent family recovery (as a proxy for survival in the 
wild) for wild-exposed Atlantic Salmon parr collected from Pembroke River and reported by brood year. Dashes (-) denote empty or blank cells. 

Brood 
Year 

Family 
Size at Fry 

Release 

Family Size at Capture Percent Family Recovery/Survival (%) Parr Collected 

Age 1 Parr Age 2 Parr Any Age 
Release to 

Age 1 
Release to 

Age 2 
Age 1 to 

Age 2 Age 1 Age 2 Total 

2000 - 0 0.04 ± 0.22 0.10 ± 0.37 - - - 0 7 17 

2001 - 0.07 ± 0.34 0.57 ± 1.03 0.69 ± 1.22 - - 50.00 ± 54.77 8 65 79 

2002 - 1.28 ± 2.92 0.39 ± 0.95 1.70 ± 3.48 - - 63.82 ± 91.77 147 45 195 

2003 - 0.56 ± 1.30 0.12 ± 0.55 0.68 ± 1.57 - - 22.62 ± 74.34 75 16 91 

2004 - 0.77 ± 1.48 0.21 ± 0.63 0.99 ± 1.81 - - 24.34 ± 66.25 136 38 176 

2005 - 0.58 ± 1.99 0.03 ± 0.16 0.60 ± 1.99 - - 6.25 ± 24.59 84 4 88 

2006 110* 0.75 ± 1.08 0.18 ± 0.46 0.97 ± 1.26 0.70 ± 1.02** 0.17 ± 0.43** 18.72 ± 40.38 130 32 168 

2007 120* 1.06 ± 1.11 0.37 ± 0.56 1.57 ± 1.34 0.91 ± 0.96** 0.32 ± 0.48** 31.86 ± 49.55 144 50 215 

2008 137 ± 33 0.92 ± 1.15 0.71 ± 0.99 1.70 ± 1.87 0.64 ± 0.79 0.49 ± 0.69 55.18 ± 67.17 96 74 178 

2009 146 ± 15 2.09 ± 2.42 0.60 ± 0.91 2.71 ± 2.85 1.42 ± 1.64 0.41 ± 0.63 41.32 ± 70.45 215 62 279 

2010 173 ± 24 2.95 ± 2.27 0.38 ± 0.65 3.37 ± 2.49 1.71 ± 1.27 0.21 ± 0.37 16.35 ± 34.15 330 42 377 

2011 328 ± 77 3.78 ± 3.01 0.70 ± 0.95 - 1.16 ± 0.87 0.22 ± 0.37 23.51 ± 45.79 374 69 453 

2012 325 ± 102 3.40 ± 3.05 - - 1.03 ± 0.84 - - 354 0 354 

2013 367 ± 42 - - - - - - - - - 

2014 349 ± 30 - - - - - - - - - 

2015 359 ± 46 - - - - - - - - - 

* Family size at release was not known; therefore the initial EQU number collected per family at shock was adjusted by the average survival (96.6 %) from ‘shock 
to pre-release’. 

** Calculated using the estimated family size at fry release for T1 of Formula 3. 
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Table 6. Test statistics for ANOVA and Welch’s ANOVA, including p-value, effect size eta-squared, and 
the 95% confidence interval for eta-squared for each analysis year.  

Independent 
Variable 

Dependent 
Variable 

Figure 
Number Year P-Value 

Eta-Squared 
(η2) 

95% Confidence 

Interval for η2 

Par.R.Env. Surv,0+ to 1+ 26 2009 0.9111 0.0061 0–0.0302 
Par.R.Env. Surv,0+ to 1+ 26 2010 0.7244 0.0128 0–0.0555 
Par.R.Env. Surv,0+ to 1+ 26 2011 0.2244 0.0548 0–0.1471 
Par.R.Env. Surv,0+ to 1+ 26 2012 0.5345 0.0297 0–0.1039 

M.Par.R.Env. Surv,0+ to 1+ 27 2009 0.9704 <0.0001 0–0.0037 
M.Par.R.Env. Surv,0+ to 1+ 27 2010 0.8411 0.0004 0–0.0342 
M.Par.R.Env. Surv,0+ to 1+ 27 2011 0.2770 0.0149 0–0.1035 
M.Par.R.Env. Surv,0+ to 1+ 27 2012 0.8149 0.0007 0–0.0509 

Par.R.Env. Surv,0+ to 2+ 28 2009 0.5072 0.0263 0–0.0915 
Par.R.Env. Surv,0+ to 2+ 28 2010 0.0878 0.0619 0–0.1474 
Par.R.Env. Surv,0+ to 2+ 28 2011 0.5775 0.0249 0–0.0912 

M.Par.R.Env. Surv,0+ to 2+ 29 2009 0.9413 <0.0001 0–0.0184 
M.Par.R.Env. Surv,0+ to 2+ 29 2010 0.1838 0.0169 0–0.0933 
M.Par.R.Env. Surv,0+ to 2+ 29 2011 0.2057 0.0199 0–0.1136 
M.Par.R.Env. Fam Len, 1+ 32 2011 0.1718 0.0282 0–0.1392 
M.Par.R.Env. Fam Len, 1+ 32 2012 0.0007 0.1692 0.0337–0.3276 

Par.R.Env. Fam Len, 1+ 30 2011 0.6796 0.0230 0–0.0991 
Par.R.Env. Fam Len, 1+ 30 2012 0.0167 0.1684 0.0055–0.3147 
Par.R.Env. Fam Wei, 1+ 33 2011 0.9356 0.0057 0–0.0284 
Par.R.Env. Fam Wei, 1+ 33 2012 0.0146 0.1735 0.0079–0.3201 

M.Par.R.Env. Fam Wei, 1+ 35 2011 0.4842 0.0072 0–0.0892 
M.Par.R.Env. Fam Wei, 1+ 35 2012 0.0004 0.1805 0.0401–0.3390 

Crs,out.inb,NMB Surv,0+ to 1+ 54 2009 0.0368 0.0433 0–0.1423 
Crs,out.inb,NMB Fam LenF,4+ 55 2007 0.4704 0.0330 0–0.2880 
Crs,out.inb,NMB Fam LenF,4+ 55 2008 0.5071 0.0159 0–0.1868 
Crs,out.inb,NMB Fam LenF,4+ 55 2009 0.7561 0.0022 0–0.0911 
Crs,out.inb,NMB Fam LenM,4+ 56 2007 0.8680 0.0009 0–0.0950 
Crs,out.inb,NMB Fam LenM,4+ 56 2008 0.0936 0.2165 0–0.5177 
Crs,out.inb,NMB Fam LenM,4+ 56 2009 0.4212 0.0176 0–0.1647 
Crs,out.inb,NMB Fam WeiF,4+ 57 2007 0.2430 0.0841 0–0.3623 
Crs,out.inb,NMB Fam WeiF,4+ 57 2008 0.4136 0.0240 0–0.2062 
Crs,out.inb,NMB Fam WeiF,4+ 57 2009 0.5762 0.0070 0–0.1178 
Crs,out.inb,NMB Fam WeiM,4+ 58 2007 0.9566 0.0001 0–0.0334 
Crs,out.inb,NMB Fam WeiM,4+ 58 2008 0.4692 0.0445 0–0.3439 
Crs,out.inb,NMB Fam WeiM,4+ 58 2009 0.4902 0.0133 0–0.1561 
Crs,out.inb,GAK Surv,Shk to 0+ 59 2013 0.1099 0.0416 0–0.1260 
Crs,out.inb,GAK Fam Len, 0+ 60 2013 0.8685 0.0027 0–0.0322 
Crs,out.inb,GAK Fam Wei, 0+ 61 2013 0.2105 0.0295 0–0.1053 
Crs,out.inb,GAK Perc. Deform. 62 2013 0.2990 0.0230 0–0.0928 
Crs,EUHyb,STW Surv,0+ to 1+ 76 2009 0.1354 0.1080 0–0.3649 
Crs,EUHyb,STW Surv,0+ to 1+ 76 2010 0.1084 0.0836 0–0.2934 
Crs,EUHyb,STW Surv,0+ to 1+ 76 2011 0.2180 0.0210 0–0.1221 
Crs,EUHyb,STW Surv,0+ to 1+ 76 2012 0.8296 0.0011 0–0.0798 
Crs,EUHyb,STW Surv,0+ to 2+ 77 2009 0.3659 0.0411 0–0.2756 
Crs,EUHyb,STW Surv,0+ to 2+ 77 2010 0.3127 0.0340 0–0.2189 
Crs,EUHyb,STW Surv,0+ to 2+ 77 2011 0.7752 0.0011 0–0.0575 

Par.R.Env. = parental rearing environment or the early juvenile parental rearing environment experienced by a 
family’s maternal and paternal parents 
M.Par.R.Env. = maternal parental rearing environment or the early juvenile rearing environment experienced by a 
family’s maternal parent 
Surv,0+ to 1+ = average family percent survival in the wild from release at Age 0+ to Age 1+ 
Fam Len, 1+ = average family mean length at Age 1+ 
Fam Wei, 1+ = average family mean weight at Aage 1+ 
Crs,out.inb,NMB = cross type, Outbred (NMBxSTW) versus Inbred STW (STWxSTW) 
Fam LenF,4+ = average family mean length at Age 4+, females only 
Fam LenM,4+ = average family mean length at Age 4+, males only 
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Fam WeiF,4+ = average family mean weight at Age 4+, females only 
Fam WeiM,4+ = average family mean weight at Age 4+, males only 
Crs,out.inb,GAK= cross type, Outbred (STWxGAK) vs Inbred GAK (GAKxGAK) vs Inbred STW (STWxSTW) 
Surv,Shk to 0+ = average family percent survival in captivity, shock (egg stage) to pre-release at Age 0+  
Fam Len, 0+ = average family mean length at Age 0+ 
Fam Wei, 0+ = average family mean weight at Age 0+ 
Perc. Deform. = average family percent deformities 
Crs,EUHyb,STW = cross type, EUxSTW hybrid vs STWxSTW 
Surv,0+ to 2+ = average family percent survival in the wild from release at Age 0+ to Age 2+ 
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Table 7. Test statistics for unbalanced, fixed-effects ANOVA, including p-values for the rearing 
environment group effect and the family within rearing environment subgroup effect for each analysis 
year. 

Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
Figure 

Number Year 

Rearing 
Environment P-

Value 
Family Within Rearing 
Environment P-Value 

Par.R.Env. Ind. Len, 1+ 31 2011 0.7300 <0.0001 

Par.R.Env. Ind. Len, 1+ 31 2012 0.0044 <0.0001 

Par.R.Env. Ind. Wei, 1+ 34 2011 0.9351 <0.0001 

Par.R.Env. Ind. Wei, 1+ 34 2012 0.0032 <0.0001 

Par.R.Env. = parental rearing environment or the early juvenile parental rearing environment experienced 
by a family’s maternal and paternal parents 
Ind. Len, 1+ = length of individual parr by family at Age 1+ 
Ind. Wei, 1+ = weight of individual parr by family at Age 1+ 
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Table 8. Test statistics for Games-Howell post-hoc tests for ANOVA, Welch’s ANOVA, and unbalanced, 
fixed-effects ANOVA, including groups compared, p-values, and the 95% confidence interval for the 
difference between means for the 2012 analysis year. 

Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
Figure 

Number Group 1 Group 2 P-Value 

95% Confidence 

Interval for Means 

Par.R.Env. Fam Len, 1+ 30 WExWE WExCAP 0.9441 -0.3149–0.4805 

Par.R.Env. Fam Len, 1+ 30 WExWE CAPxWE 0.0995 -0.0460–0.7119 

Par.R.Env. Fam Len, 1+ 30 WExWE CAPxCAP 0.0185 0.0612–0.8163 

Par.R.Env. Fam Len, 1+ 30 WExCAP CAPxWE 0.3103 -0.1427–0.6431 

Par.R.Env. Fam Len, 1+ 30 WExCAP CAPxCAP 0.0845 -0.0365–0.7474 

Par.R.Env. Fam Len, 1+ 30 CAPxWE CAPxCAP 0.8459 -0.2737–0.4843 

Par.R.Env. Fam Len, 1+ 31 WExWE WExCAP 0.7587 -0.1468–0.3265 

Par.R.Env. Fam Len, 1+ 31 WExWE CAPxWE 0.0182 0.0441–0.6321 

Par.R.Env. Fam Len, 1+ 31 WExWE CAPxCAP 0.0040 0.1343–0.8684 

Par.R.Env. Fam Len, 1+ 31 WExCAP CAPxWE 0.1450 -0.0550–0.5515 

Par.R.Env. Fam Len, 1+ 31 WExCAP CAPxCAP 0.0262 0.0374–0.7856 

Par.R.Env. Fam Len, 1+ 31 CAPxWE CAPxCAP 0.7111 -0.2447–0.5713 

Par.R.Env. Fam Wei, 1+ 33 WExWE WExCAP 0.8464 -0.0006–0.0011 

Par.R.Env. Fam Wei, 1+ 33 WExWE CAPxWE 0.0310 0.0001–0.0016 

Par.R.Env. Fam Wei, 1+ 33 WExWE CAPxCAP 0.0217 0.0001–0.0018 

Par.R.Env. Fam Wei, 1+ 33 WExCAP CAPxWE 0.2410 -0.0003–0.0014 

Par.R.Env. Fam Wei, 1+ 33 WExCAP CAPxCAP 0.1617 -0.0002–0.0016 

Par.R.Env. Fam Wei, 1+ 33 CAPxWE CAPxCAP 0.9752 -0.0007–0.0009 

Par.R.Env. Fam Wei, 1+ 34 WExWE WExCAP 0.4300 -0.0002–0.0008 

Par.R.Env. Fam Wei, 1+ 34 WExWE CAPxWE 0.0101 0.0002–0.0015 

Par.R.Env. Fam Wei, 1+ 34 WExWE CAPxCAP 0.0103 0.0002–0.0018 

Par.R.Env. Fam Wei, 1+ 34 WExCAP CAPxWE 0.2083 -0.0002–0.0012 

Par.R.Env. Fam Wei, 1+ 34 WExCAP CAPxCAP 0.1220 -0.0001–0.0015 

Par.R.Env. Fam Wei, 1+ 34 CAPxWE CAPxCAP 0.9391 -0.0007–0.0011 

Par.R.Env. = parental rearing environment or the early juvenile parental rearing environment 
Fam Len, 1+ = average family mean length at Age 1+ 
Fam Wei, 1+ = average family mean weight at Age 1+ 
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Table 9. Test statistics for Kendall’s coefficient of rank correlation analysis, including tau, p-value, effect 
size eta-squared, and the 95% confidence interval for eta-squared for each analysis year. 

Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
Figure 

Number Year Tau P-Value 

Eta-
Squared 

(η2) 
95% Confidence 

Interval for η2 

Amt.J.Cap.R Surv,0+ to 1+ 36 2009 0.41 0.1599 0.3627 0–0.6486 

Amt.J.Cap.R Surv,0+ to 1+ 36 2010 0.12 0.4239 0.0347 0–0.2273 

Amt.J.Cap.R Surv,0+ to 1+ 36 2011 0.23 0.0237 0.1300 0.0094–0.3012 

Amt.J.Cap.R Surv,0+ to 1+ 36 2012 0.04 0.7146 0.0032 0–0.0831 

Amt.J.Cap.R Surv,0+ to 2+ 37 2009 0.11 0.7389 0.0302 0–0.3705 

Amt.J.Cap.R Surv,0+ to 2+ 37 2010 0.12 0.4530 0.0377 0–0.2328 

Amt.J.Cap.R Surv,0+ to 2+ 37 2011 -0.21 0.0599 0.1036 0.0025–0.2688 

Prog.gen. Surv,0+ to 1+ 39 2009 -0.05 0.5308 0.0065 0–0.0753 

Prog.gen. Surv,0+ to 1+ 39 2010 -0.17 0.0242 0.0707 0.0061–0.1788 

Prog.gen. Surv,0+ to 1+ 39 2011 -0.16 0.0626 0.0648 0.0006–0.1876 

Prog.gen. Surv,0+ to 1+ 39 2012 0.08 0.3540 0.0170 0–0.1119 

Avg.Par.MK Surv,0+ to 1+ 41 2009 0.07 0.5526 0.0134 0–0.1641 

Avg.Par.MK Surv,0+ to 1+ 41 2010 0.27 0.0018 0.1698 0.0379–0.3227 

Avg.Par.MK Surv,0+ to 1+ 41 2011 0.07 0.3918 0.0129 0–0.1103 

Avg.Par.MK Surv,0+ to 1+ 41 2012 0.11 0.3089 0.0313 0–0.1845 

Avg.Par.MK Surv,0+ to 2+ 42 2009 -0.005 0.9730 <0.0001 0–0.0149 

Avg.Par.MK Surv,0+ to 2+ 42 2010 0.02 0.8742 0.0006 0–0.0505 

Avg.Par.MK Surv,0+ to 2+ 42 2011 0.12 0.1858 0.0351 0–0.1553 

Avg.Par.MK Surv,1+ to 2+ 43 2009 -0.18 0.2758 0.0750 0–0.3147 

Avg.Par.MK Surv,1+ to 2+ 43 2010 -0.04 0.6802 0.0043 0–0.0895 

Avg.Par.MK Surv,1+ to 2+ 43 2011 0.13 0.1773 0.0423 0–0.1782 

Avg.Par.MK Surv,egg to 4+ 44 2007 0.01 0.9430 0.0002 0–0.0521 

Avg.Par.MK Surv,egg to 4+ 44 2008 0.06 0.5378 0.0099 0–0.1157 

Avg.Par.MK Surv,egg to 4+ 44 2009 0.04 0.7680 0.0035 0–0.1232 

Avg.Par.MK Surv,egg to 4+ 44 2010 0.01 0.8794 0.0005 0–0.0474 

Avg.Par.MK Surv,egg to 4+ 44 2011 -0.13 0.1760 0.0382 0–0.1606 

Avg.Par.MK Surv,egg to 4+ 44 2012 0.05 0.7053 0.0051 0–0.1184 

M.Par.Mk Surv,egg to 4+ 45 2007 -0.04 0.7421 0.0030 0–0.1170 

M.Par.Mk Surv,egg to 4+ 45 2008 0.004 0.9685 <0.0001 0–0.0103 

M.Par.Mk Surv,egg to 4+ 45 2009 -0.07 0.4692 0.0129 0–0.1627 

M.Par.Mk Surv,egg to 4+ 45 2010 0.01 0.8981 0.0003 0–0.0408 

M.Par.Mk Surv,egg to 4+ 45 2011 -0.14 0.1099 0.0486 0–0.1773 

M.Par.Mk Surv,egg to 4+ 45 2012 -0.03 0.7283 0.0029 0–0.1050 

F (offspring) Surv,0+ to 1+ 46 2009 0.06 0.6840 0.0088 0–0.0820 

F (offspring) Surv,0+ to 1+ 46 2010 -0.06 0.5667 0.0081 0–0.0726 

F (offspring) Surv,0+ to 1+ 46 2011 -0.06 0.5328 0.0093 0–0.0894 

F (offspring) Surv,0+ to 1+ 46 2012 0.05 0.6728 0.0069 0–0.0860 

F (offspring) Perc. Deform. 50 2010 0.004 0.9632 <0.0001 0–0.0128 

F (offspring) Perc. Deform. 50 2011 0.02 0.7817 0.0015 0–0.0572 

F (offspring) Perc. Deform. 50 2012 0.06 0.5601 0.0075 0–0.0877 

F (offspring) Perc. Deform. 50 2013 -0.07 0.4416 0.0128 0–0.1031 

F (offspring) Perc. Deform. 50 2014 0.04 0.7162 0.0032 0–0.0739 

F (offspring) Perc. Deform. 50 2015 -0.07 0.3961 0.0137 0–0.0941 

H (offspring) Surv,0+ to 1+ 51 2009 -0.18 0.1754 0.0784 0.0050–0.2021 

H (offspring) Surv,0+ to 1+ 51 2010 0.14 0.1218 0.0498 0.0002–0.1510 

H (offspring) Surv,0+ to 1+ 51 2011 0.07 0.4253 0.0127 0–0.0983 

H (offspring) Surv,0+ to 1+ 51 2012 0.03 0.8115 0.0020 0–0.0640 

H (offspring) Perc. Deform. 53 2010 -0.02 0.8158 0.0008 0–0.0418 
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Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
Figure 

Number Year Tau P-Value 

Eta-
Squared 

(η2) 
95% Confidence 

Interval for η2 

H (offspring) Perc. Deform. 53 2011 -0.08 0.3520 0.0145 0–0.1017 

H (offspring) Perc. Deform. 53 2012 0.09 0.3143 0.0204 0–0.1191 

H (offspring) Perc. Deform. 53 2013 0.02 0.8590 0.0007 0–0.0508 

H (offspring) Perc. Deform. 53 2014 0.16 0.0762 0.0610 0–0.1905 

H (offspring) Perc. Deform. 53 2015 -0.11 0.1776 0.0301 0–0.1279 

Age, paternal Surv,Shk to 0+ 67 2008 -0.01 0.9428 0.0001 0–0.0243 

Age, paternal Surv,Shk to 0+ 67 2009 0.18 0.0451 0.0798 0.0064–0.2002 

Age, paternal Surv,Shk to 0+ 67 2010 -0.03 0.7212 0.0019 0–0.0503 

Age, paternal Surv,Shk to 0+ 67 2011 0.14 0.1084 0.0500 0–0.1663 

Age, paternal Surv,Shk to 0+ 67 2012 -0.09 0.3324 0.0191 0–0.1166 

Age, paternal Surv,Shk to 0+ 67 2013 0.01 0.9042 0.0003 0–0.0415 

Age, paternal Surv,0+ to 1+ 68 2009 -0.07 0.4387 0.0107 0–0.0869 

Age, paternal Surv,0+ to 1+ 68 2010 0.16 0.0401 0.0636 0.0040–0.1691 

Age, paternal Surv,0+ to 1+ 68 2011 -0.005 0.9584 <0.0001 0–0.0177 

Age, paternal Surv,0+ to 1+ 68 2012 -0.17 0.0651 0.0709 0.0011–0.2004 

Age, maternal Surv,Shk to 0+ 73 2008 0.12 0.2112 0.0325 0–0.1309 

Age, maternal Surv,Shk to 0+ 73 2009 0.19 0.0409 0.0871 0.0088–0.2096 

Age, maternal Surv,Shk to 0+ 73 2010 -0.04 0.6098 0.0040 0–0.0600 

Age, maternal Surv,Shk to 0+ 73 2011 0.27 0.0030 0.1716 0.0459–0.3142 

Age, maternal Surv,Shk to 0+ 73 2012 -0.03 0.7268 0.0025 0–0.0672 

Age, maternal Surv,Shk to 0+ 73 2013 0.11 0.2726 0.0275 0–0.1340 

Age, maternal Surv,0+ to 1+ 74 2009 0.38 <0.0001 0.3224 0.1697–0.4525 

Age, maternal Surv,0+ to 1+ 74 2010 0.36 <0.0001 0.2867 0.1488–0.4110 

Age, maternal Surv,0+ to 1+ 74 2011 0.43 <0.0001 0.3875 0.2218–0.5164 

Age, maternal Surv,0+ to 1+ 74 2012 0.24 0.0087 0.1377 0.0248–0.2820 

Egg area Surv,0+ to 1+ 75 2011 0.44 <0.0001 0.4106 0.1745–0.5743 

Egg area Surv,0+ to 1+ 75 2012 0.33 <0.0001 0.2454 0.0904–0.3940 

Amt.J.Cap.R.= amount of cumulative early juvenile captive rearing experienced by a given family’s immediate parents 
and grandparents 
Surv,0+ to 1+ = average family percent survival in the wild from release at Age 0+ to Age 1+ 
Prog.gen.= number of program generations, or generations of captive breeding and rearing  
Avg.Par.MK = average parental Mean Kinship 
Surv,0+ to 2+ = average family percent survival in the wild from release at Age 0+ to Age 2+ 
Surv,1+ to 2+ = average family percent survival in the wild from Age 1+ to Age 2+ 
Surv,egg to 4+ = average family percent survival in captivity from shock (egg stage) to Age 4+; adult age is based on 
the individual’s brood or fertilization year 
M.Par.Mk = Mean Kinship of the maternal parent 
F (offspring)= pedigree inbreeding for offspring/family 
Perc. Deform. = average family percent deformities 
H (offspring) = offspring Exp.Obs.Mol. Gen. Heterozygosity, or the expected observed heterozygosity in the 
offspring/family based on the molecular genetic data for the parents 
Age, paternal = age of paternal parent at spawning 
Surv,Shk to 0+ = average family percent survival in captivity, shock (egg stage) to pre-release at Age 0+ 
Age, maternal = age of maternal parent at spawning based on the individuals brood or fertilization year 
Egg area = egg area, mm2 
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Table 10. Test statistics for linear regression analyses, including slope, p-value, effect size eta-squared, 
and the 95% confidence interval for eta-squared for each analysis year. 

Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
Figure 

Number Year Slope P-Value 
Eta-Squared 

(η2) 
95% Confidence 

Interval for η2 

Amt.J.Cap.R. Length, 1+ 38 2011 0.46 0.4249 0.0139 0–0.1373 

Amt.J.Cap.R. Length, 1+ 38 2012 -0.68 0.0551 0.0677 0–0.2208 

Fam size, par Fam size, off 40 2010 0.4814 0.2522 0.2509 0–0.6158 

Fam size, par Fam size, off 40 2011 -0.1733 0.6481 0.0370 0–0.4188 

Fam size, par Fam size, off 40 2012 0.2540 0.6489 0.0058 0–0.1298 

F (offspring) Length, 1+ 47 2011 -4.18 0.6260 0.0043 0–0.0917 

F (offspring) Length, 1+ 47 2012 12.03 0.6266 0.0886 0–0.5499 

F (offspring) Weight, 1+ 48 2011 -0.02 0.4194 0.3371 0–0.7035 

F (offspring) Weight, 1+ 48 2012 0.02 0.6883 0.0612 0–0.5231 

Age, paternal Fam Len, 1+ 65 2011 -0.11 0.3239 0.4571 0–0.7523 

Age, paternal Fam Len, 1+ 65 2012 -0.06 0.4356 0.2116 0–0.6284 

Age, paternal Fam Wei, 1+ 66 2011 -0.0004 0.1783 0.6752 0–0.8432 

Age, paternal Fam Wei, 1+ 66 2012 -0.0001 0.4210 0.2238 0–0.6348 

Age, maternal Fam Len, 1+ 71 2011 0.42 0.1420 0.9511 0–0.9716 

Age, maternal Fam Len, 1+ 71 2012 0.16 0.0388 0.8055 0–0.9017 

Age, maternal Fam Wei, 1+ 72 2011 0.001 0.1911 0.9125 0–0.9504 

Age, maternal Fam Wei, 1+ 72 2012 0.0004 0.0041 0.1215 0.0131–0.2739 

Amt.J.Cap.R.= amount of cumulative early juvenile captive rearing experienced by a given family’s immediate parents 
and grandparents 
Length, 1+ = family mean length of wild-exposed parr at Age 1+ 
Weight, 1+ = family mean weight of wild-exposed parr at Age 1+ 
Fam size, par = average parental family size at Age 1+, or the average of a family’s maternal and paternal family size 
in the wild at Age 1+ 
Fam size, off = std. offspring family size at Age 1+ or offspring family size in the wild at age 1+ standardized to slight 
differences in numbers of individuals released across families 
F (offspring) = pedigree inbreeding for offspring/family 
Fam Len, 1+ = average family mean length at Age 1+ 
Fam Wei, 1+ = average family mean weight at Age 1+ 
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Table 11. Tests statistics for binary logistic regression analyses, including p-values, for each analysis 
year. 

Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
Figure 

Number Year P-Value 

F (offspring) Incid. deform. 49 2010 0.8170 

F (offspring) Incid. deform. 49 2011 0.7058 

F (offspring) Incid. deform. 49 2012 0.8849 

F (offspring) Incid. deform. 49 2013 0.4409 

F (offspring) Incid. deform. 49 2014 0.7908 

F (offspring) Incid. deform. 49 2015 0.1451 

H (offspring) Incid. deform. 52 2010 0.5675 

H (offspring) Incid. deform. 52 2011 0.7650 

H (offspring) Incid. deform. 52 2012 0.5701 

H (offspring) Incid. deform. 52 2013 0.8989 

H (offspring) Incid. deform. 52 2014 0.2866 

H (offspring) Incid. deform. 52 2015 0.4861 

F (offspring) = pedigree inbreeding for offspring/family 
Incid. deform. = incidence of deformities (observed = 1.0 or not = 0) in a given family, averaged across 
families exhibiting a given level of inbreeding 
H (offspring) = offspring Exp. Obs. Mol. Gen. Heterozygosity, or the expected observed heterozygosity in 
the offspring/family based on the molecular genetic data for the parents 
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Table 12. Test statistics for multiple linear regression analyses with egg area as a covariate, including p-values for spawner age and egg area, 
overall p-value, slope, effect size eta-squared, and the 95% confidence interval for eta-squared for each analysis year. 

Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
[non-egg 

area 
variable] 

Figure 
Number Year 

Age 
P-Value 

Egg 
Area 

P-Value 
Overall 
P-Value Slope 

Eta-
Squared 

(η2) 
95% Confidence 

Interval for η2 

Age, paternal Fam Len, 0+ 63 2012 0.7310 <0.0001 <0.0001 -0.04 0.6764 0.5394–0.7506 

Age, paternal Fam Len, 0+ 63 2013 0.8368 <0.0001 <0.0001 -0.05 0.4000 0.2167–0.5254 

Age, paternal Fam Wei, 0+ 64 2012 0.7162 <0.0001 <0.0001 0.0006 0.8001 0.7085–0.8465 

Age, paternal Fam Wei, 0+ 64 2013 0.9481 <0.0001 <0.0001 -0.0003 0.4744 0.2951–0.5881 

Age, maternal Fam Len, 0+ 69 2012 0.0300 <0.0001 <0.0001 0.26 0.6968 0.5665–0.7665 

Age, maternal Fam Len, 0+ 69 2013 0.9487 <0.0001 <0.0001 -0.02 0.3997 0.2163–0.5251 

Age, maternal Fam Wei, 0+ 70 2012 0.0023 <0.0001 <0.0001 0.006 0.8244 0.7429–0.8652 

Age, maternal Fam Wei, 0+ 70 2013 0.4451 <0.0001 <0.0001 0.003 0.4786 0.2998–0.5916 

Age, paternal = age of paternal parent 
Age, maternal = age of maternal parent 
Fam Len, 0+ = average family mean length at Age 0+ 
Fam Wei, 0+ = average family mean weight at Age 0+ 
Adult or parent age used is based on the individual’s brood or fertilization year 
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Table 13. Test statistics for G-tests for goodness of fit including groups compared, p-value, Cramer’s V 
statistic, and the 95% confidence interval for Cramer’s V for each analysis year and for all years 
combined. Lineage = EU hybrid (F2–F4 EU x STW) versus STW (pure Stewiacke). 

Independent 
Variable 

(Predictor) 

Dependent 
Variable 

(Response) 
Figure 

Number 
Group 

1 
Group 

2 Year 
P-

Value 
Cramer’s 

V 

95% 
Confidence 

Interval for V 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 1+ 2009 n/a n/a n/a 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 1+ 2010 0.0155 0.2777 0.0483–0.5025 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 1+ 2011 0.0424 0.1215 0–0.2389 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 1+ 2012 0.9592 0.0038 0–0.0737 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 1+ All 0.0085 0.1086 0.0274–0.1894 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 2+ 2009 n/a n/a n/a 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 2+ 2010 n/a n/a n/a 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 2+ 2011 0.5210 0.0890 0–0.3594 

Lineage 
Proportion 
EU hybrid 

78 Fry Age 2+ All 0.0460 0.2178 0–0.4316 
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FIGURES 

 

Figure 1. Schematic of the original Stewiacke River inner Bay of Fundy Live Gene Banking program 
(2000–2005). First, the original founders were crossed according to breeding protocols described within. 
Two sets of five eggs were then taken from each family, and the first set combined to form Group A and 
the second set Group B. Both sets of families were reared communally exclusively in captivity through to 
maturity as adults. Individuals so managed are referred to as ‘captive-reared’ salmon. Nearly all 
remaining offspring were released throughout the river as unfed fry. After one to two years of exposure to 
native river conditions, several hundred were caught via electrofishing and brought back to the hatchery 
for captive rearing through to maturity as adults; all juveniles not captured lived their remaining lives in 
river habitat or out-migrated into waters of the Bay of Fundy/Gulf of Maine (few were expected to return 
given current marine conditions). These electrofished ‘wild-exposed’ juveniles were then reared alongside 
their exclusively captive-reared siblings, during which time all or most individuals from both groups were 
genotyped and pedigreed. At or around spawning time, a portion of mature adults (captive-reared and 
wild-exposed) were released into native river habitat to potentially free spawn in the wild, while the 
remaining were artificially spawned in the production of the next generation of Stewiacke River inner Bay 
of Fundy Atlantic Salmon. 
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Figure 2. Schematic of the present-day Stewiacke River inner Bay of Fundy Live Gene Banking program 
(2006+). Atlantic Salmon are crossed according to a minimization of mean kinship breeding protocol 
described within. Two sets of five eggs are then taken from each family, and the first set combined to form 
Group A and the second set Group B. Both sets of families are reared communally exclusively in captivity 
through to maturity as adults. Individuals so managed are referred to as ‘captive-reared’ salmon. Four 
hundred eggs from each family are also taken and reared in isolation (by family) until post-hatch, after 
which all surviving fry are enumerated, variance in family size minimized by removing individuals from 
larger families (see text for more information), and all combined and mixed prior to release into Pembroke 
River, an isolated tributary of the Stewiacke River system. After one to two years of exposure to native 
river conditions, several hundred are caught via electrofishing and brought back to the hatchery for 
captive rearing through to maturity as adults. These electrofished ‘wild-exposed’ juveniles are then reared 
alongside their exclusively captive-reared siblings, during which time all or most individuals from both 
groups are genotyped and pedigreed. All remaining offspring are released throughout the river as unfed 
fry for supplementation purposes; after one to two years, most surviving offspring out-migrate to Bay of 
Fundy/Gulf of Maine (few are expected to return given current marine conditions). At or around spawning 
time, a portion of mature adults (captive-reared and wild-exposed) are released into native river habitat to 
potentially free-spawn in the wild, while the remaining are artificially spawned in the production of the next 
generation of Stewiacke inner Bay of Fundy Atlantic Salmon. 
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Figure 3. Average (+/- standard deviation) body characteristics at spawning for all Age 4 (2000–2013) and 
Age 5 (2014–2015) adult Atlantic Salmon. In 2014, the Live Gene Bank program changed to spawning 
salmon exclusively at Age 5; in previous years salmon were mostly spawned at Age 4. Adult age used 
here is based on the brood or fertilization year of individuals.
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Figure 4. Average (± standard deviation) body characteristics at spawning for wild-origin, wild-exposed, and captive-reared adult Atlantic Salmon 
at Age 4 (2000–2013) and Age 5 (2014–2015). In 2014 the Live Gene Bank program shifted from predominately spawning Age 4 adults to one 
that focused on Age 5 only. Adult age used here is based on the brood or fertilization year of individuals. 
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Figure 5. Average (± standard deviation) fork length at spawning for all spawners, wild-origin, wild-
exposed, and captive-reared adult Atlantic Salmon at Age 4 over program generation of the Live Gene 
Bank program. Adult age used here is based on the brood or fertilization year of individuals. 
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Figure 6. Average egg weights (g) for Atlantic Salmon families within each brood year of the Live Gene 
Bank program. The box plots represent the 10th, 25th, 75th, 90th percentiles while the solid black line 
represents the median and the red dashed line is the mean.
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Figure 7. Family-specific correlation of egg weight (g) and egg area (mm2) for Atlantic Salmon families in 
brood years 2013–2015 of the Live Gene Bank program. 
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Figure 8. Average (± standard deviation) egg area (mm2) for Atlantic Salmon eggs from prescribed mating 
pairs within the Live Gene Bank program. Prior to 2010, egg area was calculated from average egg 
diameters measured from approximately 20 selected families at the well eyed stage (i.e. shock). No egg 
area/diameters were recorded for 2010. After 2010 egg area was calculated from images of all families 
using the ImageJ program; images were taken of pre-fertilized eggs in all years with the exception of 
2011 where they were photographed after water hardening. Two correction factors (see Appendix Figures 
A1–A3) were applied, first to standardize between the two methods used and second to standardize the 
egg areas to a pre-fertilization stage, indicated by the dark bars. 
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Figure 9. Regression of egg area from Atlantic Salmon families on the years of the Live Gene Bank 
program, corrected for the method and standardized to a pre-fertilization stage. From 2002–2009, egg 
area was calculated from average egg diameters measured from approximately 20 selected families at 
the well eyed stage (i.e. shock); after 2010, egg area was calculated from images of all families using the 
ImageJ program. For years where all crosses were analyzed (2011–2015), only the data for 
approximately 20 selected crosses are presented, using the same selection criteria as the previous years. 
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Figure 10. Average (± standard deviation) corrected egg area (mm2) for Atlantic Salmon families 
throughout the generations of the Live Gene Bank program. Correction factors were applied (see 
Appendix) to standardize for method and stage of egg development. 
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Figure 11. Family average (15–20 fry per family) body characteristics, A) length, B) weight, and 
C) condition factor, of Atlantic Salmon fry from families within the Live Gene Bank program. Box plots 
indicate median (solid black line), mean (dashed red line) and 10th, 25th, 75th, 90th percentiles. 



 

71 

 

Figure 12. Family average of Live Gene Bank offspring body characteristics, A) length, B) weight, and 
C) condition factor, for wild-exposed Atlantic Salmon parr captured at Age 1 and Age 2 on the Pembroke 
River and measured within 6 days of capture. Box plots indicate median (solid black line), mean (dashed 
red line) and 10th, 25th, 75th, 90th percentiles. 
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Figure 13. Growth rates (length and weight) for wild-exposed Atlantic Salmon parr captured from the 
Pembroke River at Age 1 and Age 2. Measuring of fry at release and parr at capture began in 2013, 
which corresponds to the 2012 brood year (BY) for fry and 2011 BY for Age 1 parr. Due to the time lag of 
various life stages (i.e. Age 1 parr captured in 2014 are 2012 BY) and available data, only one year was 
available for each time period. Growth rates for parr between ‘Age 1 and Age 2’ were determined by 
comparing parr captured as Age 2, in 2014, to family-specific counterparts captured as Age 1, in 2013; 
‘release to Age 2’ was not possible due to a lack of fry measurement for the 2011 BY. Box plots indicate 
median (solid black line), mean (dashed red line) and 10th, 25th, 75th, 90th percentiles. 
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Figure 14. Percent of Age 1 and Age 2 Atlantic Salmon parr collected from the wild for each brood year of 
the Live Gene Bank (LGB) program, with the total number of parr (open circles) captured from each brood 
year superimposed. In later years, parr came from the isolated section of the Pembroke River (seeded 
with fry from the LGB program); however prior to 2006, parr were collected from various locations 
throughout the Stewiacke River system. Due to the time lag in development, only Age 1 wild-exposed 
parr numbers are available for the 2012 brood year. 
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Figure 15. Gender breakdown of A) Age 1 and Age 2 wild-exposed (WE) Atlantic Salmon parr collected 
from the wild, B) WE smolts (predominately Age 2), and C) captive-reared (CAP) individuals for each 
brood year of the Live gene Bank program. In later years, WE individuals came from the isolated section 
of the Pembroke River (seeded with WE fry from the program); however prior to 2008 and 2009, WE parr 
and smolts, respectively, were collected from various locations throughout the Stewiacke River system. 
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Figure 16. The average (± standard deviation) age of maturation of captive-reared (CAP) Atlantic Salmon 
and wild-exposed (WE) parr collected at various ages for the Live Gene Bank program. Due to the time 
lag in development, offspring from the 2011 brood year would only be Age 4 in 2015 (i.e. the last year of 
analysis); therefore only those fish are included, while others are yet to mature. Those individuals that 
matured as precocious parr were not included in the average age of maturation. Adult age is based on 
the brood or fertilization year. Age of maturation is relative to the brood or fertilization year. 
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Figure 17. The yearly average (± standard deviation) of the percent of Live Gene Bank captive-reared 
(CAP) and wild-exposed (WE) Atlantic Salmon parr collected at Age 1 that matured at Age 4, and 
cumulatively for Age 4 and Age 5, per family. Male and female percentages only include individuals 
whose gender was eventually known, however gender-combined columns (i.e. Both) also take into 
consideration individuals whose gender was unknown, which can cause them to be lower. The number of 
male, female, and unknown individuals for each brood year is superimposed. Due to the time lag in 
development, only fish that matured in their fourth year are available for the 2011 brood year, and a 
higher number of unknown fish are recorded. The horizontal dotted line indicates the 100% average 
family maturity level. Adult age used here is based on the brood or fertilization year of individuals. 
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Figure 18. Average fecundity (± 1 standard deviation) of Live Gene Bank (LGB) program Atlantic Salmon 
females determined from three different methods (counts, estimates, and images) for A) all females and 
B) Age 4 females. Relative fecundity, the number of eggs per unit weight of the female, is depicted for all 
three methods in Panel C. Each year, from 2000–2009, a selection of families (approximately 20 crosses) 
were chosen and hand counted (i.e. counts) in order to determine an equation to estimate the fecundity 
for all crosses. After 2009, images of each cross were taken and processed using ImageJ to determine 
the fecundity for each family. Using the same selection criteria as previous years, approximately 20 
crosses were chosen for each year from 2010–2015 to represent the “counts” and create an estimated 
equation to determine estimates for comparison across the entire LGB program. Adult age used here is 
based on the brood or fertilization year of individuals. 

  



 

78 

 

Figure 19. Average fecundity (panel A) and relative fecundity (Panel B), determined from counts and 
estimates for Atlantic Salmon females, throughout the generations of the Live Gene Bank program. Each 
year, from 2000–2009, a selection of families (approximately 20 crosses) were chosen and hand counted 
(i.e. counts) in order to determine an equation to estimate the fecundity for all crosses. After 2009, images 
of each cross were taken and processed using ImageJ to determine the fecundity for each family. Using 
the same selection criteria as previous years, approximately 20 crosses were chosen for each year from 
2010–2015 to represent the “counts” and create an estimated equation to determine estimates for 
comparison across the entire LGB program. Single observations were removed and error bars represent 
one standard deviation. 
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Figure 20. Average family survival (%) of Atlantic Salmon eggs from the Live Gene Bank program from 
fertilization (November) to the well eyed stage, also referred to as shock (approximately February). 
Results were determined from mortality records for the time period and recently through images taken at 
spawning and after shock. The proportion of “dead” eggs that were actually unfertilized were determined 
using a subsample (20 eggs) taken at shock and cleared with Stockard’s Solution to record development. 
Mortality records were then corrected to compensate for unfertilized eggs that were initially identified as 
dead eggs. Dotted line indicates 100% survival and error bars represent one standard deviation. The 
vertical dashed line indicates the beginning of corrected values. 
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Figure 21. Average family survival (%) of Atlantic Salmon eggs and fry from the Live Gene bank program 
from the well eyed stage (February), also referred to as shock, to pre-release (approximately May). 
Mortality records for this time period were determined from the Equalized Family Groups (EQUs), where 
the initial number of eggs for each family was collected at shock (indicated by the circles) and reared 
separately through hatch. Just prior to release in the spring, the remaining number of unfed fry for each 
family was determined through imaging. The EQU groups were initially reared in one cup placed 
randomly in a Heath Unit (solid black circles). In 2011 the number was too large for one cup so separate 
containers were placed in a trough (solid red circle). Returning to the cup method for later years, two cups 
were used (200 eggs/cup) and placed randomly in Heath units (open circles). Dotted line indicates 100% 
survival and error bars represent one standard deviation. 
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Figure 22. Average family survival (%) of Atlantic Salmon egg and fry for two time periods, ‘fertilization to 
well eyed stage (i.e. shock)’ and ‘shock to pre-release’, depicted over the Live Gene Bank program 
generations. Dotted line indicates 100% survival and error bars represent one standard deviation. 
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Figure 23. Average family survival (± standard deviation) of Atlantic Salmon fry from the Live Gene Bank 
program from release to the wild to recapture as wild-exposed Age 1 parr, 2006–2012 (red and grey 
bars). Just prior to release in the spring, the remaining number of unfed fry for each family was 
determined through imaging and when necessary equalized a second time before being released into an 
isolated stretch of the Pembroke River. When the exact numbers released for each family were not 
known (2006–2008) the initial equalized (EQU) basket number was corrected by the average survival 
from ‘shock to pre-release’ (red hatched bars). The number recaptured was used as a proxy for survival in 
the wild. 
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Figure 24. Rate of Live Gene Bank Atlantic Salmon offspring deformity within each family (i.e. conjoined, 
skeletal deformities, blind, or underdeveloped) taken from images of equalized groups prior to release. 
The incidence of family deformity is superimposed (connected red crosses). Box plots indicate median 
(solid black line), mean (dashed red line) and 10th, 25th, 75th, 90th percentiles. 
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Figure 25. Exclusion-based parentage assignment results for 608 wild-exposed and captive-reared 
offspring produced in 2010, tested against all biologically possible sets of known LGB crosses. Candidate 
offspring and the best or first matching candidate parental pair tested were almost always (606 of 608) 
compatible at 100 or 91.67% of the 10–12 loci common to all three individuals (black bars). Candidate 
offspring were compatible with the second best matching parental pair at a much reduced percentage of 
loci assayed, generally 50% or less (grey bars).  
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Figure 26. Average family percent survival from release as Age 0+ fry to capture as Age 1+ parr for four 
parental rearing environment types, where one or both parents were wild-exposed (WE) or captive-reared 
(CAP); female parent is specified first, followed by the male in all four parent type designations. Results 
are given for spawning years 2009–2012. Sample sizes (number of families) for each group are indicated 
above their respective bars. 
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Figure 27. Average family percent survival from release as Age 0+ fry to capture as Age 1+ parr for two 
maternal parent rearing environment types, wild-exposed (WE) female and captive-reared (CAP) female, 
for spawning years 2009–2012. Sample sizes (number of families) for each group are indicated above 
their respective bars. 
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Figure 28. Average family percent survival from release as Age 0+ fry to capture as Age 2+ parr for four 
parental rearing environment types, where one or both parents were wild-exposed (WE) or captive-reared 
(CAP); female parent is specified first followed by male parent in all four parent type designations. Results 
are given for spawning years 2009–2011. Sample sizes (number of families) for each group are indicated 
above their respective bars. 
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Figure 29. Average family percent survival from release as Age 0+ fry to capture as Age 2+ parr for two 
maternal parent environment types, wild-exposed (WE) female and captive-reared (CAP) female, for 
spawning years 2009–2011. Sample sizes (number of families) for each group are indicated above their 
respective bars. 
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Figure 30. Average family mean length (cm) of parr captured at Age 1+ for four parental rearing 
environment types, where one or both parents were wild-exposed (WE) or captive-reared (CAP); female 
parent type is specified first, followed by the male parent type in all four parent type designations. Results 
are given for spawning years 2011 and 2012. Sample sizes (number of families) for each group are 
indicated above their respective bars. Error bars represent one standard error. 
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Figure 31. Length (cm) of individual parr captured at Age 1+ by family for four parental rearing 
environment types, where one or both parents were wild-exposed (WE) or captive-reared (CAP); female 
parent is specified first followed by male parent in all four parent type designations. Results are given for 
spawning years 2011–2012. 
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Figure 32. Average family mean length (cm) of parr captured at Age 1+ for two maternal parent rearing 
environment types, wild-exposed (WE) female and captive-reared (CAP) female, for the years 2011 and 
2012. Sample sizes (number of families) for each group are indicated above their respective bars. Error 
bars represent one standard error. 
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Figure 33. Average family mean weight (kg) of parr captured at Age 1+ for four parental rearing 
environment types, where one or both parents were wild-exposed (WE) or captive-reared (CAP); female 
parent type is specified first, followed by the male parent type in all four parent type designations. Results 
are given for the spawning years 2011–2012. Sample sizes (number of families) for each group are 
indicated above their respective bars. Error bars represent one standard error. 
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Figure 34. Weight (kg) of individual parr captured at Age 1+ by family for four parental rearing 
environment types, where one or both parents were wild-exposed (WE) or captive-reared (CAP); female 
parent type is specified first, followed by the male parent type in all four parent type designations. Results 
are given for spawning years 2011–2012. 
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Figure 35. Average family mean weight (kg) of parr captured at Age 1+ for two maternal parent rearing 
environment types, wild-exposed (WE) female and captive-reared (CAP) female, for the spawning years 
2011–2012. Sample sizes (number of families) for each group are indicated above their respective bars. 
Error bars represent one standard error. 
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Figure 36. Family percent survival from release as Age 0+ fry to capture as Age 1+ parr for varying levels 
of cumulative early (juvenile) captive rearing (across the parents and grandparents). Results are given for 
spawning years 2009–2012. Average percent recovery at each level of captive rearing is indicated by a 
large X. 
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Figure 37. Family percent survival from release as Age 0+ fry to capture as Age 2+ parr for varying levels 
of cumulative early (juvenile) captive rearing (across the parents and grandparents). Results are given for 
spawning years 2009–2011. Average percent recovery at each level of early juvenile captive rearing is 
indicated by a large X. 
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Figure 38. Family mean length (cm) of captured Age 1+ parr for varying levels of cumulative early 
(juvenile) captive rearing (across the parents and grandparents) for the spawning years 2011–2012. 
Average family mean length at each level of captive rearing is indicated by a large X. 
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Figure 39. Family percent survival from release as Age 0+ fry to capture as Age 1+ parr for families 
exhibiting different numbers of program generations for the spawning years 2009–2012. Average percent 
recovery for different program generations is indicated by a large X. 
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Figure 40. Standardized offspring family size in the wild at capture at Age 1+ versus average parental 
family size in the wild at capture at Age 1+ for the spawning years 2010–2012. Average offspring family 
size at each level of parental family size is indicated by a large X. Results include data from offspring of 
wild-exposed parents only. 
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Figure 41. Family percent survival from release as Age 0+ fry to capture as Age 1+ parr versus the 
family’s average parental mean kinship (MK), for the spawning years 2009–2012. Results include data 
from offspring of two wild-exposed parents only. 
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Figure 42. Family percent survival from release as Age 0+ fry to capture as Age 2+ parr versus the 
family’s average parental mean kinship (MK), for the spawning years 2009–2012. Results include data 
from offspring of two wild-exposed parents only. 
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Figure 43. Family percent survival from capture as Age 1+ parr to capture as Age 2+ parr versus the 
family’s average parental mean kinship (MK), for spawning years 2009–2011. Results include data from 
offspring of two wild-exposed parents only. 
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Figure 44. Family percent survival in captivity from shock (at the egg stage, mid-development) to tagging 
(approximately Age 4) versus the family’s average parental mean kinship (MK) for spawning years 2007–
2012. Results include data from offspring of two wild-exposed parents only. 
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Figure 45. Family percent survival in captivity from shock (at the egg stage, mid-development) to tagging 
(approximately Age 4) versus the family’s maternal mean kinship (MK) for spawning years 2007–2012. 
Results include data from offspring of two wild-exposed parents only. 
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Figure 46. Family percent survival from release as Age 0+ fry to capture as Age 1+ parr versus level of 
offspring pedigree inbreeding, for the spawning years 2009–2012. Results include data from offspring of 
two wild-exposed parents only. Average percent recovery across families for a given level of inbreeding is 
indicated by a large X. 
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Figure 47. Family mean length (cm) at capture as Age 1+ parr versus offspring pedigree inbreeding, for 
the spawning years 2011–2012. Results include data from offspring of two wild-exposed parents only. 
Average family mean length at each level of offspring pedigree inbreeding is indicated by a large X. 
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Figure 48. Family mean weight (kg) at capture as Age 1+ parr versus offspring pedigree inbreeding for 
spawning years 2011–2012. Results include data from offspring of two wild-exposed parents only. 
Average family mean weight at each level of offspring inbreeding is indicated by a large X. 
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Figure 49. Average family incidence of deformities at the Age 0+ fry stage versus offspring pedigree 
inbreeding, for the spawning years 2010–2015. Results include data from offspring of captive-reared and 
wild-exposed parents. 
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Figure 50. Family percent deformities at the Age 0 fry stage versus offspring pedigree inbreeding for 
spawning years 2010–2015. Results include data from offspring of wild-exposed and captive-reared 
parents. Average percent deformities across families at each level of inbreeding is indicated by an X. 
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Figure 51. Family percent survival from release as Age 0+ fry to capture as Age 1+ parr versus offspring 
expected observed heterozygosity, for the spawning years 2009–2012. Results include data from 
offspring of two wild-exposed parents only. 
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Figure 52. Average family incidence of deformities of Age 0+ fry versus the offspring expected observed 
heterozygosity, for the spawning years 2010–2015. Results include data from offspring of captive-reared 
and wild-exposed parents. 



 

112 

 

Figure 53. Family percent deformities of Age 0+ fry versus offspring expected observed heterozygosity, 
for spawning years 2010–2015. Results include data from offspring of wild-exposed and captive-reared 
parents.  
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Figure 54. Average (upper panel) and individual (lower panel) family percent survival from release as 
Age 0+ fry to capture as Age 1+ parr for two parental cross types, North Minas Basin X Stewiacke 
(outbred) and Stewiacke X Stewiacke (inbred STW), for the spawning year 2009. Sample sizes (number 
of families) for each group are indicated above their respective bars. 
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Figure 55. Average family mean length (cm) at Age 4+, females only, for two parental cross types, North 
Minas Basin X Stewiacke (outbred) and Stewiacke X Stewiacke (inbred STW), for the spawning years 
2007–2009. Sample sizes (number of families) for each group are indicated above their respective bars. 
Error bars represent one standard error. Adult age used here is based on the brood or fertilization year of 
individuals. 
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Figure 56. Average family mean length (cm) at Age 4+, males only, for two parental cross types, North 
Minas Basin X Stewiacke (outbred) and Stewiacke X Stewiacke (inbred STW), for the spawning years 
2007–2009. Sample sizes (number of families) for each group are indicated above their respective bars. 
Error bars represent one standard error. Adult age used here is based on the brood or fertilization year of 
individuals. 
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Figure 57. Average family mean weight (kg) at Age 4+, females only, for two parental cross types, North 
Minas Basin X Stewiacke (outbred) and Stewiacke X Stewiacke (inbred STW), for the spawning years 
2007–2009. Sample sizes (number of families) for each group are indicated above their respective bars. 
Error bars represent one standard error. Adult age used here is based on the brood or fertilization year of 
individuals. 
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Figure 58. Average family mean weight (kg) at Age 4+, males only, for two parental cross types, North 
Minas Basin X Stewiacke (outbred) and Stewiacke X Stewiacke (inbred STW), for the spawning years 
2007–2009. Sample sizes (number of families) for each group are indicated above their respective bars. 
Error bars represent one standard error. Adult age used here is based on the brood or fertilization year of 
individuals. 
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Figure 59. Average (upper) and individual (lower) family percent survival, from shock (at the egg stage, 
mid-development) to pre-release as Age 0+ fry, for three parental cross types, Gaspereau X Stewiacke 
(outbred), Gaspereau X Gaspereau (Inbred GAK), and Stewiacke X Stewiacke (Inbred STW) for the 
spawning year 2013. Sample sizes (number of families) for each group are indicated above their 
respective bars. 
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Figure 60. Average family mean length (mm) of Age 0+ fry for three parental cross types, Gaspereau X 
Stewiacke (outbred), Gaspereau X Gaspereau (Inbred GAK), and Stewiacke X Stewiacke (Inbred STW) 
for the spawning year 2013. Sample sizes (number of families) for each group are indicated above their 
respective bars. 
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Figure 61. Average family mean weight (g) of Age 0+ fry for three parental cross types, Gaspereau X 
Stewiacke (outbred), Gaspereau X Gaspereau (Inbred GAK), and Stewiacke X Stewiacke (Inbred STW) 
for the spawning year 2013. Sample sizes (number of families) for each group are indicated above their 
respective bars. 
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Figure 62. Average family percent deformities of Age 0+ fry for three parental cross types, Gaspereau X 
Stewiacke (outbred), Gaspereau X Gaspereau (Inbred GAK), and Stewiacke X Stewiacke (Inbred STW) 
for the spawning year 2013. Sample sizes (number of families) for each group are indicated above their 
respective bars. 
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Figure 63. Average family mean length (mm) of Age 0+ fry versus age of the paternal parent at spawning, 
for spawning years 2012–2013. Sample sizes (number of families) for each group are indicated above 
their respective bars. Error bars represent one standard error. Spawner age used here is based on the 
brood or fertilization year of individuals. 
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Figure 64. Average family mean weight (g) of age 0+ fry versus age of the paternal parent at spawning, 
for spawning years 2012–2013. Sample sizes (number of families) for each group are indicated above 
their respective bars. Error bars represent one standard error. Spawner age used here is based on the 
brood or fertilization year of individuals. 
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Figure 65. Average family mean length (cm) of Age 1+ parr versus paternal parent age at spawning, for 
spawning years 2011–2012. Sample sizes (number of families) for each group are indicated above their 
respective bars. Error bars represent one standard error. Spawner age used here is based on the brood 
or fertilization year of individuals. 
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Figure 66. Average family mean weight (kg) of Age 1+ parr versus paternal parent age at spawning, for 
spawning years 2011–2012. Sample sizes (number of families) for each group are indicated above their 
respective bars. Error bars represent one standard error. Spawner age used here is based on the brood 
or fertilization year of individuals. 
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Figure 67. Average family percent survival from shock (at the egg stage, mid-development) to pre-release 
as Age 0+ fry versus paternal parent age at spawning, for spawning years 2008–2013. Sample sizes 
(number of families) for each group are indicated above their respective bars. Spawner age used here is 
based on the brood or fertilization year of individuals. 
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Figure 68. Average family percent survival from release as Age 0+ fry to capture as Age 1+ parr versus 
the paternal parent age at spawning, for spawning years 2009–2012. Sample sizes (number of families) 
for each group are indicated above their respective bars. Spawner age used here is based on the brood 
or fertilization year of individuals. 
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Figure 69. Average family mean length (mm) of Age 0+ fry versus maternal parent age at spawning, for 
spawning years 2012–2013. Sample sizes (number of families) for each group are indicated above their 
respective bars. Error bars represent one standard error. Spawner age used here is based on the brood 
or fertilization year of individuals. 



 

129 

 

Figure 70. Average family mean weight (g) of Age 0+ fry versus maternal parent age at spawning, for 
spawning years 2012–2013. Sample sizes (number of families) for each group are indicated above their 
respective bars. Error bars represent one standard error. Spawner age used here is based on the brood 
or fertilization year of individuals. 
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Figure 71. Average family mean length (cm) of Age 1+ parr versus maternal parent age at spawning, for 
spawning years 2011–2012. Sample sizes (number of families) for each group are indicated above their 
respective bars. Error bars represent one standard error. Spawner age used here is based on the brood 
or fertilization year of individuals. 
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Figure 72. Average family mean weight (kg) of Age 1+ parr versus maternal parent age at spawning, for 
spawning years 2011–2012. Sample sizes (number of families) for each group are indicated above their 
respective bars. Error bars represent one standard error. Spawner age used here is based on the brood 
or fertilization year of individuals. 
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Figure 73. Average family percent survival from shock (at the egg stage, mid-development) to pre-release 
as Age 0+ fry versus maternal parent age at spawning, for spawning years 2008–2013. Sample sizes 
(number of families) for each group are indicated above their respective bars. Spawner age used here is 
based on the brood or fertilization year of individuals. 
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Figure 74. Average family percent survival from release as Age 0+ fry to capture as Age 1+ parr versus 
maternal parent age at spawning, for spawning years 2009–2012. Sample sizes (number of families) for 
each group are indicated above their respective bars. Spawner age used here is based on the brood or 
fertilization year of individuals. 
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Figure 75. Family percent survival from release as Age 0+ fry to capture as Age 1+ parr versus the 
average family egg area (mm2), for spawning years 2011–2012. 
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Figure 76. Average (upper panel) and individual (lower panel) family percent survival from release as 
Age 0+ fry to capture as Age 1+ parr, for European farm/Stewiacke hybrids (EU hybrid) and pure 
Stewiacke (STW) lineage salmon for the spawning years 2009–2012. Only those Stewiacke families 
exhibiting a similar number of program generations as the European farm/Stewiacke hybrids families 
compared in a given year were included. Sample sizes (number of families) for each group are indicated 
above their respective bars.  
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Figure 77. Average (upper panel) and individual (lower panel) family percent survival from release as 
Age 0+ fry to capture as Age 2+ parr, for European farm/Stewiacke hybrids (EU hybrid) and pure 
Stewiacke (STW) lineage salmon for the spawning years 2009–2012. Only those Stewiacke families 
exhibiting a similar number of program generations as the European farm/Stewiacke hybrids families 
compared in a given year were included. Sample sizes (number of families) for each group are indicated 
above their respective bars.  
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Figure 78. Percentage Age 0+ released fry (Fry), captured Age 1+ parr (1+), and captured Age 2+ 
parr (2+) groups comprised of European farm/Stewiacke hybrid (EU hybrid) and pure Stewiacke lineage 
(STW) salmon, for the spawning years 2009–2012 (and all four spawning years combined). Only those 
Stewiacke families exhibiting a similar number of program generations as the European farm/Stewiacke 
hybrid families compared in a given year were included. Data for Age 2+ parr for the 2012 spawning year 
were not yet available when these analyses were carried out. 
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Figure 79. Family specific growth rate (length) from release as Age 0+ fry to capture as Age 1+ parr for 
European farm/Stewiacke hybrids (EU hybrid) and pure Stewiacke (STW) salmon for the spawning year 
2012. Only those Stewiacke families exhibiting a similar number of program generations as the European 
farm/Stewiacke hybrids (EU hybrid) families compared in a given year were included. 
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APPENDIX 

Table A1. Egg and fry numbers for Equalized Family Groups reared at Coldbrook Biodiversity Facility and released into an isolated stretch of the 
Pembroke River, Stewiacke River system, and later collected as wild-exposed parr for the Live Gene Bank Program 

Spawning 
Year 

Eggs 
Per 

Family 
Number of 

Baskets 

Equalized 
as Fry 
(Y/N) 

Number to 
Equalize to 

EQU Fry 
Released 

Collection 
Year 

(1+ parr) 

Total Parr 
Collected 

(1+ and 2+)** 
Target 

Number 

Number of 
Days 

Electro-
fishing 

Number 
of Teams 
Electro-
fishing 

2006 110 1 N NA 18,721* 2008 148 150 1 1 

2007 120 1 N NA 16,508* 2009 177 150 1 1 

2008 150 1 N NA 14,083 2010 158 150 1 1 

2009 150 1 N NA 30,150 2011 390 400 1 2 

2010 200 1 N NA 19,081 2012 455 400 1 2 

2011 400 2 N NA 32,784 2013 460 400 1 2 

2012 400 2 Y 359 33,822 2014 531 500 1 2 

2013 400 2 Y 376 39,665 2015 NA NA NA NA 

2014 400 2 Y 356 35,927 2016 NA NA NA NA 

2015 400 2 N NA 38,496 2017 NA NA NA NA 

*Exact release numbers were not available therefore totals here are the total number of eggs collected from all the families at shock. Average 
survival for the time period was 96.6%. 
**Total parr collected may not match with data found in other sections as this number includes mortalities prior to tagging, untagged fish, non-
genotyped fish, and a few Age 0+ and trout that may have been mistakenly collected. Other sections report only genotyped individuals. 
NA indicates not applicable (no equalization done). 
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Figure A1. Family-specific regression and correlation of Atlantic Salmon egg areas determined from the 
two methodologies used throughout the Live Gene Bank program to calculate egg area (V ruler versus 
images). At the well eyed stage, also referred to as shock (approximately 3 months after spawning), 
3 replicates of 10 eggs each were measured for a total diameter using a specialized V-shaped ruler. The 
average egg radius was determined and the area was calculated and compared to egg areas determined 
from images of the same 30 eggs using the ImageJ software. The equation was used to correct data 
collected in 2002–2009 from eggs measured at shock with the V-ruler method. 
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Figure A2. Family-specific regression and correlation of Live Gene Bank Atlantic Salmon egg areas 
calculated from images taken at pre-fertilization and after water hardening. Equation was used to correct 
data collected in 2011 from images taken after water hardening and standardize to a pre-fertilization 
stage. 
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Figure A3. Family-specific regression and correlation of Live Gene Bank Atlantic Salmon egg areas 
calculated from images taken at pre-fertilization and at the well eyed stage, also referred to as shock 
(approximately 3 months after spawning). Equation was used to correct data collected in 2002 – 2009 
from eggs measured at shock and standardize to a pre-fertilization stage. 
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Figure A4. Gender breakdown of Age 1 and Age 2 wild-exposed (WE) Live Gene Bank (LGB) Atlantic 
Salmon parr collected from the wild and plotted by capture year (rather than brood year). In later years, 
WE individuals came from the isolated section of the Pembroke River (seeded with WE fry from the LGB 
program); however prior to 2008, WE parr were collected from various locations throughout the Stewiacke 
river system. 
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Figure A5. Average percent fertilization rate for Live Gene bank families taken from subsamples 
(20 eggs) of Atlantic Salmon egg mortalities at the well eyed stage (i.e. shock) and cleared in Stockard’s 
solution. The box plots represent the 10th, 25th, 75th, 90th percentiles while the solid black line represents 
the median and the red dashed line is the mean. 



 

144 

 

Figure A6. Legend of various types of deformities observed in Live Gene Bank Atlantic Salmon fry prior to release in the spring. 
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