

C.W.S. LIBRARY Yellowknife, N.W.T.

ENVIRONMENT CANADA LIBRARY,NOVA COIST PLAZA PO BOX 2310 5019-52 ST. YELLOWKNIFE,NT X1A 2P7

HYDROMETRIC DATA COLLECTION

IN THE

MACKENZIE RIVER BASIN

Ъy

K.F. Davies

Water Survey of Canada

Department of the Environment

for the

Environmental-Social Program Northern Pipelines

June 1973

Environmental-Social Committee Information Canada Northern Pipelines, Cat. No. R72-10673 Task Force on Northern Oil Development Report No. 73-5 The data for this report were obtained as a result of investigations carried out under the Environmental-Social Program, Northern Pipelines, of the Task Force on Northern Oil Development, Government of Canada. While the studies and investigations were initiated to provide information necessary for the assessment of pipeline proposals, the knowledge gained is equally useful in planning and assessing highways and other development projects.

·:

.

<u>SUMMARY</u>

This report outlines the operations of Water Survey of Canada in the Mackenzie Valley area, with particular emphasis on the period since the inception of the Environmental—Social Program, Northern Pipelines.

Prior to 1971 work in the Mackenzie Valley area by Water Survey of Canada was limited. During 1971 and 1972, ten stream gauging stations were constructed at various locations along the Mackenzie River and some of its tributaries. This brings the total number of stations in the Mackenzie Valley area to twenty-six. Eight of the gauging stations are stage only for navigation purposes. Stage and discharge data are collected at the remaining eighteen.

Sediment discharge data collection was commenced in 1972 at nine locations throughout the study area.

Measurement techniques have been changed to meet the needs of the large rivers. Tellurometers are being utilized for distance measuring, and echo sounders for depth measuring. The ERTS satellite system set up in the 1970's is being utilized to transmit stage data to Calgary from northern locations for use in navigation forecasts along the Mackenzie Waterway.

The present network of hydrometric stations in the Mackenzie area is not sufficient to supply the necessary data required for engineering designs on all streams by conventional methods. Correlations of flow rates between the gauged and ungauged areas have been attempted with limited success. These design problems as well as the chemical and biological studies underway that require hydrometric data will have to rely on theoretical methods to satisfy their requirements for flow data.

- i -

TABLE OF CONTENTS

	Page
SUMMARY	i
INTRODUCTION	1
RESUME OF EXISTING DATA	2
STUDY AREAS	6
METHODS OF DATA COLLECTION	7
Field Techniques	7
Water Level Recording	7
Flow Measuring	7
Sediment Measuring	8
Measuring Equipment	10
Experimental Techniques	11
Ancillary Data	12
Phasing of the Work	13
RESULTS	15
1971	15
1972	15
DISCUSSION	17
Relationship to Other Studies	17
Analysis of Results	18
CONCLUSIONS	19

•	IMPLICATIONS	S AND	RECOMMENDATIONS	20
	NEEDS FOR FU	JRTHE	R STUDY	21
	REFERENCES	. .		22
	APPENDIX .			23
	Table	1:	Simulated Flows for Ungauged Streams	24
	Table	2:	Design Floods for Selected Rivers Along the Mackenzie Highway Route	25
	Figure	1:	1972 Forecast Curves — Mackenzie River at Fort Providence, Mackenzie River at Fort Simpson	26
	Figure	2:	1972 Forecast Curve — Mackenzie River at Wrigley	27
	Figure	3:	1972 Forecast Curve — Mackenzie River at Norman Wells	28
	Figure	4:	1972 Forecast Curve — Mackenzie River at Sans Sault Rapids	29
	Figure	5:	1972 Forecast Curve — Mackenzie River at Fort Good Hope	30
	Figure	6:	Published Stage and Discharge Data — Mackenzie River at Norman Wells, Mackenzie River at Sans Sault Rapids	31
	Figure	7:	Mackenzie River Valley — Map showing Streamflow Gauging Stations	32
	Figure	8:	Mackenzie River Valley — Map showing Sediment Sampling Sites in 1972	33
	Figure	9:	Liard River at Fort Liard — Comparison of 1972 Monthly Flows to the Long-Term Means	34
	Figure	10:	Mackenzie River at Norman Wells — Comparison of 1972 Monthly Flows to Long-Term Means	35

Figure 1	1: Willowlake River near the Mouth — Comparison of 1972 Monthly Flows to the Long-Term Means	36
Figure 1	2: Guide Program for Sediment Survey	37
Figure 1	3: Redstone River near the Mouth — Cross-Sections .	38
Figure 1	4: Mackenzie River at Norman Wells — Relationship of River Stage to Mean Water Velocity	39
Figure 1	5: Mackenzie River at Norman Wells — Stage— Discharge Relationship	40
Figure 1	6: Liard River at Fort Liard — 1972 Daily Discharge Hydrograph	41
Figure 1	7: Willowlake River near the Mouth — 1972 Daily Discharge Hydrograph	42
Figure 1	8: Mackenzie River near Fort Providence — 1972 Daily Discharge Hydrograph	43
Figure 1	9: Mackenzie River at Fort Simpson — 1972 Daily Discharge Hydrograph	44
Figure 20	0: Mackenzie River at Norman Wells — 1972 Daily Discharge Hydrograph	45
Sediment	Summary - 1972:	
	10LA002, Arctic Red River near the Mouth	46
	10MD001, Firth River near the Mouth	47
	10GC002, Harris River near the Mouth	48

Discharge or Stage Summary - 1972:

.

10LA002, Arctic Red River near the Mouth — Discharge	57
10MD001, Firth River near the Mouth — Discharge.	58
10GC002, Harris River near the Mouth — Discharge	59
070B001, Hay River near Hay River — Discharge	60
07UC001, Kakisa River at outlet of Kakisa Lake — Discharge	61
10ED001, Liard River at Fort Liard — Discharge .	62
10ED002, Liard River near the Mouth $-$ Discharge .	63
10HC002, Mackenzie River below Blackwater River — Stage	64
10GB002, Mackenzie River at Camsell Bend — Stage	65
10LD001, Mackenzie River at Fort Good Hope — Stage	66
10FB001, Mackenzie River near Fort Providence — Discharge	67
10GC001, Mackenzie River at Fort Simpson — Discharge	68
10KA001, Mackenzie River at Norman Wells — Discharge	69
10GB003, Mackenzie River at McGern Island — Stage	70
10HA001, Mackenzie River at Old Fort Point — Stage	71
10KD002, Mackenzie River above the Ramparts — Stage	72
10KD001, Mackenzie River at Sans Sault Rapids — Stage	73

•

10HC001, Mackenzie River near Wrigley — Stage	74
10GC003, Martin River near the Mouth — Discharge	75
10MC002, Peel River above Fort McPherson — Discharge	76
10EC001, South Nahanni River above Clausen Creek — Discharge	77
10FA002, Trout River at Fort Simpson Highway — Discharge	78
10GB001, Willowlake River near the Mouth — Discharge	79

Photographs:

* ******

Firth River at Gauging Site	80
Sediment Pumping Sampler in Portable Shelter — Firth River	80
Water Survey of Canada Catamarans <i>Niska</i> and <i>Nanook</i>	81
Mackenzie River East Channel at Inuvik — Flooding in Spring of 1972	82

.

INTRODUCTION

One of the functions of Water Survey of Canada is the preparation of an inventory of surface water data in Canada. Prior to 1971, most of the work was carried out in the more populated areas of the country with little effort directed towards work in the Northwest Territories.

The increased oil activity, and the possibility of an oil or gas pipeline being constructed in the Mackenzie area, resulted in the realization that very little was known about water resources of the North and, specifically, of the area through which the pipeline would likely traverse.

The specific objectives of the Water Survey of Canada as related to the Mackenzie Pipeline Study are as follows:

- 1) To prepare an inventory of surface water data for the Mackenzie basin.
- 2) To provide basic hydrometric data to indicate possible flood magnitudes, and peak stages at break-up.
- 3) To provide river level forecasts on the Mackenzie navigation routes.
- 4) To document sediment transport in fish production areas.
- 5) To assist in programs to determine the pattern of flow through the Mackenzie Delta.
- 6) To act as a consultant, on matters pertaining to surface water, to other DOE services involved in the study.

A pipeline route along the Mackenzie Valley would cross many streams. The line would probably go over some of them, but would go under most of them. Rates of water flow, timing and magnitude of flood peaks, scour depths and ice thicknesses are some of the hydrologic parameters that are required for design and construction purposes.

RESUME OF EXISTING DATA

The availability of hydrometric data in the Mackenzie River basin is very limited. As of 1955, there were only nine hydrometric stations operating north of the 60th parallel and of these only two provided daily streamflow data (Clark, 1958¹). In 1960 an office was opened in Fort Smith, Northwest Territories, charged with the responsibility of establishing and maintaining streamflow and water level stations throughout the District of Mackenzie in the Northwest Territories. Priorities as to rivers gauged, gauge locations, etc., were first given to specifically expressed needs.

Using this criterion, a number of water level gauges were located along the Mackenzie River to aid in forecasting water levels for navigation purposes on the Mackenzie Waterway. Water Transport was, and still is, the major method of transporting goods to the Mackenzie area. (Figures 1 to 5 in the appendix show the results for the 1972 forecast season.) Current water levels at upstream sites on the Mackenzie, Fort Providence and Fort Simpson, and the Liard at Fort Liard, are telephoned to the Calgary office. The water levels, combined with estimated precipitation and antecedent moisture conditions, are used to forecast levels, three, four and five days in advance for Wrigley, Norman Wells, Sans Sault Rapids and Fort Good Hope. The forecast curves are under constant revision as inflow from the ungauged areas in the basin contribute and necessitate changes in the forecast levels.

Actual water level data from the downstream sites are transmitted to Calgary, where they are used to check the accuracy of the forecast values.

Stream gauges presently being operated on the Mackenzie River are

- 2 -

Great Bear River

Station

Record Available

Mackenzie River near Fort Providence		1958–72 stage and discharge
Mackenzie River at Fort Simpson	—	1938-72 stage and discharge
Mackenzie River at Camsell Bend		1972 stage only
Mackenzie River at McGern Island		1972 stage only
Mackenzie River near Wrigley		1963-67, 1971-72 stage only
Mackenzie River near Blackwater River		1972 stage only
Mackenzie River at Old Fort Point		1972 stage only
Mackenzie River at Norman Wells		1943-56, 1960-72 stage and discharge
Mackenzie River at Sans Sault Rapids		1962-64, 1968-72 stage only
Mackenzie River at Ramparts	-	1972 stage only
Mackenzie River at Fort Good Hope		1963-72 stage only
Mackenzie River above Arctic Red River		1972 stage and discharge

In addition to these gauges on the Mackenzie River, the following gauges are being operated on a number of the main tributaries. Stage record, as well as discharge data, is being collected at all these sites, unless indicated as stage only.

Left-Bank Tributaries		Record Available
Kakisa River		1962-72
Trout River	—	1965-72
Liard River at Fort Liard		1942-58 (stage only), 1959-72
Liard River near the Mouth		1972
Martin River		1972
Redstone River		1964-72
Arctic Red River		1968-72
Peel River		1969-72
Right-Bank Tributaries		Record Available
Harris River	—	1972
Willowlake River		1964-72

In 1972 a gauging station was established on the Firth River which rises in the British Mountains and flows north, entering the Beaufort Sea

1962-72

near Herschel Island. An example of streamflow and water level data is shown in Figure 6 in the Appendix.

Sediment discharge measurements (Figure 8) were taken in 1972 at the following sites:

- 1) Hay River at Hay River.
- 2) Kakisa River at outlet of Kakisa Lake.
- 3) Mackenzie River above Fort Simpson.
- 4) Liard River near the Mouth.
- 5) Harris River near Fort Simpson.
- 6) Mackenzie River above Arctic Red River.
- 7) Arctic Red River near the Mouth.
- 8) Peel River above Fort McPherson.
- 9) Firth River near the Mouth.

Daily sediment sampling, consisting of single samples from which the total sediment load could be calculated, were taken on the Hay River at Hay River and the Mackenzie River above Fort Simpson. Pages 46 to 56 in the Appendix show the sediment results for 1972.

The network of stations in the basin where sediment and flow data are being collected is increasing. However, the network is still not adequate to allow hydrologic analyses on all streams by conventional methods. Indirect measuring techniques and correlation analyses are used to define the unknown parameters on streams that do not have actual flow data.

The flow rates through the Delta channels have also been determined for winter and fall low flow conditions. Flow distribution and rates of flow are required in pollution studies and would be required in the event of an oil or toxic spill within the Delta complex. Flood and ice levels data would also be required for any design or construction work that would be undertaken within the Delta.

- 4 -

Extreme flood events in the Mackenzie Mountains area in the past few years have presented the opportunity to obtain estimates of peak flows on some of the western tributaries of the Mackenzie. MacKay, Fogarasi and Spitzer² obtained estimates of peak flows on the Keele, Mountain and Arctic Red Rivers after the 1969 high waters. High water in 1972 on the North and South Nahanni River has also been surveyed. A report on these extreme floods is being prepared for release in 1973. Figures 9 and 10 show the 1972 flows for the Liard River at Fort Liard and the Mackenzie River at Norman Wells compared to the long-term mean. Flows for 1972 at both sites were above the mean due to the high water in July and early August. In contrast, Figure 11 for the Willowlake River near the Mouth, as eastern tributary, shows flows for 1972 slightly below the long-term mean.

Two reports by Bennett^{8,9} on Great Slave Lake water levels and Mackenzie River water levels are currently available. Church^{10,11} on behalf of the Mackenzie Valley Pipeline Research, Ltd., has also prepared reports on "The Hydrology and Fluvial Characteristics of Rivers in North Alaska, Yukon, Northwest Territories and Northern Alberta!" These reports are not available for general distribution at this time.

- 5 -

STUDY AREAS

The area of the Water Survey of Canada pipeline study consists of the Mackenzie drainage basin from Hay River through the Mackenzie Delta and the north slope of the Yukon Territory from the British Mountains to the Beaufort Sea. Within the area a number of rivers have been selected for study.

Requests for data on specific streams in the area required by other study groups are given first priority. Gauges have been installed on the Martin and Harris Rivers to assist study by the Fisheries Research Board. Measurements were also taken on the Rengleng River and Campbell Creek to assist other facets of their study. Gauges were installed at these two sites in March, 1973 and will be operational at spring break-up. The Firth River was instrumented at the request of the Fisheries Service for data on north-slope streams. The monitoring of flows, through the Delta channels is being done at the request of the Glaciology Division. Water Quality Division are using all our streamflow data in their chemical analysis studies. Snow survey programs are also being undertaken at selected areas throughout the basin at the request of Atmospheric Environment Service. Six storage precipitation gauges are being operated for the same agency.

- 6 -

METHODS OF DATA COLLECTION

1. Field Techniques

1.1. Water Level Recording

Most stream gauging stations are located at remote sites, necessitating the use of reliable equipment that can operate for several months without servicing. The piece of equipment normally used to collect stage or water level data is the Leupold Stevens A-35 Analog Recorder. This recorder is driven by a servo manometer or pressure sensing device which senses the changes in river level and up-dates the recorder.

To keep the equipment operating twelve months of the year, it was necessary to develop heating devices which would keep the equipment at suitable operating temperatures, using a minimum of fuel. Propane catalytic heaters with low temperature thermostats and specially designed heat compartments were found to be most economical.

1.2. Flow Measuring

Discharge or flow measurements are made at monthly intervals at each stream gauge location. It is known that the velocity of the water varies from surface to stream bed, and from one side of the river to the other. The stream bed is also constantly shifting or changing in cross-sectional configuration. To get an accurate measurement of the total discharge through the crosssection, the section is first arbitrarily divided into a minimum of twenty sections. Measurements of width, depth and mean velocity are obtained for each section. Mean velocity may be derived from one position within the vertical section, usually at six-tenths of the depth, or from the average of the velocities at two points usually two-tenths depth and eight-tenths depth.

The area "a" for each segment is obtained by multiplying the width "w" by the depth "d." The discharge "q" for the segment is then obtained by multiplying area "a" by mean velocity "v."

The total discharge for the river, at that particular time, is then obtained by summing the discharges from all the individual segments.

 $Q = q_{1} + q_{2} + q_{n}$ $= a_{1}v_{1} + a_{2}v_{2} + a_{n}v_{n}$

1.3. Sediment Measuring

Figure 12 in the Appendix shows a typical sampling program for sediment discharge. A sampling program is prepared for each stream where sediment data are to be collected.

Measurements are usually made by the depth-integrating method to determine the amount of suspended sediment load carried in the entire cross-section of the stream and to determine the average suspended sediment concentration in the cross-section. It is known that the concentration of suspended sediments tends to increase from the surface of the water in the stream to the stream bed, and to vary from side to side. When making depth-integrated sediment discharge measurements, the stream cross-section is divided into at least five equal-flow portions. A representative suspended sediment sample is taken in each portion by sampling from top to bottom at a constant rate. For each part of the cross-

- 8 -

section, the suspended sediment discharge "r" may be computed by multiplying the flow "q" by the suspended sediment concentration "c."

r = qc

For the whole cross-section, the suspended sediment discharge "R" may be computed by adding the sediment discharges for the separate areas.

$$R = q_{1}c_{1} + q_{2}c_{2} + q_{n}c_{n}$$

The individual or "daily" suspended sediment samples, taken at a specific location in a cross-section, are collected daily during periods with average or high sediment concentration. In the periods with very heavy sediment concentration, two or three sediment samplings are taken per day, while in the periods with low concentration, one individual sediment observation every few days is felt to be sufficient. The relationship between the suspended sediment concentration of the individual samples and the average concentration in the cross-section determined from the suspended sediment discharge is established for every station. Using this relationship, the sediment concentrations of the individual observations are adjusted to reflect the average suspended sediment loads, in tons per day, are computed on the basis of stream discharges and the adjusted suspended sediment concentrations.

The individual samples are usually collected by an "observer" who lives near the measuring site and is hired by Water Survey of Canada to collect these samples at pre-determined intervals. In most locations in the Mackenzie River basin, an observer

- 9 -

is not available. It is then necessary to use automatic sampling systems. These systems are programmed to take samples at various time intervals dependent on the water elevation. They can be set to sample as often as every half hour through to once a day in regular flow periods, or to shut off completely in low flow periods. These units can usually be left unattended for periods of up to one month, except in high flow periods when the number of samples taken may exceed the capacity of the machine (usually 40 samples) or when the battery voltages may drop below working level due to the accelerated samplings.

Suspended sediment measurements are presently being made at nine locations in the study area, with daily samples being collected at two of the locations.

1.4. Measuring Equipment

Heavy sediment samplers and sounding weights, ranging in weight to three hundred pounds, are required to properly sample flow rates and sediment loads in the large rivers encountered in the Mackenzie basin. To handle these loads large, stable boats are required. Three catamarans were purchased for this job. These units are twin-hulled, 33-foot vessels with a 14-foot beam. Powered winches are available fore and aft on the boats, allowing simultaneous sediment and flow measurements to be made. Limited accommodation for a crew of three is available on board. The boats are equipped with all the necessary radios, lights, etc., to comply with the communications and navigation regulations of the waterway.

2. Experimental Techniques

In any of the work on the rivers, it is necessary to know the position of the sampling points relative to the shoreline. Previous methods involved using a sextant and a measured baseline laid out on one shore. This method is time consuming and relatively inaccurate. In 1972, most of the distance measuring work on the larger rivers was done using a tellurometer. This is a measuring device using the time of travel of high frequency radio waves between the two units that make up the set. Distances of many thousands of feet can be measured to close accuracy using this instrument. The unit is designed to be operated from a boat or other moving platform, and can make the necessary compensation as the inter-unit signals are lost due to boat movements.

The tellurometer is also being used in an experimental method of making a river discharge measurement, the "Moving Boat" method. Distances, water depths and water velocities are all recorded continuously and simultaneously as the boat traverses the river on a fixed course. Using this method, a discharge measurement can be made in about ten per cent of the normal time required. The method is still experimental; however, once perfected it will be a fast, safe method of obtaining flow measurements in flood stages where floating debris will not allow anchoring of the boat in the river as in the case of a normal discharge measurement.

One problem that has plagued the water level forecast network in the Northwest Territories is the difficulty in obtaining water level information in Calgary in time to make proper forecasts. In areas where telephone or radio facilities are not available, delays of two to three days result before data reaches the forecast office. In an effort to solve this problem, Water Survey of Canada purchased and installed two

- 11 -

"Data Collection Platforms" at Fort Simpson and Norman Wells to be used in conjunction with the ERTS satellite. Water level data is transmitted via the satellite to the receiving station in the U.S.A. It is then telexed to Ottawa and to Calgary. Utilizing this system, data is received in Calgary about 90 minutes after it leaves the platform. These platforms can be connected directly to the existing recording equipment at the gauging site. Data from any remote site within the range of the satellite path can now be received in Calgary within a very short time. It is hoped that more of these platforms can be purchased and installed in the remote Mackenzie Mountains area where storm events that contribute significant flows to the Mackenzie River system can be detected and used in the water level forecasts.

3. Ancillary Data

During the course of a flow measurement, a number of vital parameters are recorded. River cross-sections at the measuring site are obtained at the time of each measurement. These cross-sections can be compared and changes in stream bed configuration can be detected (Figure 13 in Appendix). Velocity profiles can also be measured and plotted.

Ice thicknesses and rates of ice formation can be computed from the discharge measurements taken during the winter months. A publication on ice thicknesses of selected streams is presently available with data to 1970³. Data to 1972 will be available in 1973.

Water temperatures taken at the time of each discharge measurement have also been compiled and are available to 1970 in published form⁴. An updated version will also be available in 1973.

The data collected using an A-35 recorder is a strip chart record of continuous water level data. This chart is collected each

- 12 -

month and brought to the office where average daily water levels are computed from the continuous record. A relationship between water level and rate of flow is computed using the monthly discharge measurements (Figure 15 in Appendix). This relationship, plus the daily water level, is used to compute daily flow rates. Publication of daily and monthly flow rates is available to 1971⁵. Daily flow and water level data for 1972 is available in unpublished form from the District Office in Calgary.

4. Phasing of the Work

The collection of flow and water level data in the field is the culmination of considerable planning and study in the office. Streams to be gauged are first chosen on the basis of specific expressed needs, or in some instances, as a stream representative of a specific area. Aerial and land reconnaissance is then undertaken to locate suitable gauge sites and suitable landing areas for aircraft in summer and winter. An excellent gauge location will often have to be abandoned in favour of a less favourable location because of the lack of suitable areas to land fixed-wing aircraft.

Once the choice of location has been made, the construction of the monitoring facilities must be undertaken. The cost of the basic instrumentation, plus the high cost of labour and access to these remote sites, results in expenditures of \$10,000 on the average for each site chosen. When the cost of operation, in the order of \$800 per month, is added to the initial cost, it can be appreciated that great care must be taken in choosing the gauge location to get maximum output for the funds expended.

In an effort to improve coverage of the study area and to

- 13 -

reduce travel times to the measuring sites, field offices were established at Fort Simpson and Norman Wells. These offices, along with the sub-office located at Inuvik, are each responsible for a specified area within the study area with regard to field data collection and streamflow and water level analysis. ý

Sediment data analysis is the responsibility of the sediment laboratory in Hay River. This is a portable laboratory unit set up to analyze all the sediment samples collected in the Mackenzie study area. The results of the analysis are sent to Calgary where they are processed and published on an annual basis⁶.

RESULTS

1. 1971

Five continuous recording water level stations were established on the Mackenzie River in answer to a specific request from the federal Department of Public Works to improve water level forecasts for navigation purposes.

A stream gauge was installed on the Liard River near the confluence with the Mackenzie River for stage, discharge and sediment data.

A stream gauge was established on the Firth River, a tributary to the Beaufort Sea near the Alaska—Yukon border.

Reconnaissance was undertaken at seventeen tributaries to the Mackenzie River to locate possible stream gauging sites.

2. 1972

Gauging stations were constructed at three sites:

- a) Mackenzie River above Arctic Red River.
- b) Harris River near Fort Simpson (an eastern tributary).
- c) Martin River near Fort Simpson (a western tributary).

Four of the five water level stations operated for the Department of Public Works in 1971 were moved down stream to new sites.

Sediment data collection was started at the following sites:

- a) Hay River near Hay River.
- b) Kakisa River at outlet Kakisa Lake.
- c) Mackenzie River above Fort Simpson.
- d) Liard River near the Mouth.
- e) Harris River near Fort Simpson.

- f) Mackenzie River at Norman Wells.
- g) Mackenzie River above Arctic Red River.
- h) Arctic Red River near the Mouth.
- i) Peel River above Fort McPherson.
- j) Firth River near the Mouth.

A series of miscellaneous measurements were made in conjunction with the Glaciology Division, Arctic Hydrology Section, to determine the distribution of flow through the Mackenzie River Delta. Knowledge of flow patterns through the Delta is required for transportation of supplies to the various drilling sites. Results to date are inconclusive and further work and analysis is required.

A limited regional hydrology analysis study of the Northwest Territories, including the Mackenzie River basin, was undertaken. Monthly flows and annual floods have been generated for some ungauged streams. Limited results are available due to the lack of streamflow data (Table 1).

Discussions were held with Bolter, Parish and Trimble, Hydrology Consultants, to determine peak flows to be used in the design of culverts along the first few hundred miles of the Mackenzie Highway. These design floods would also be required in the design and analysis of pipeline crossings. (Results in Table 2 of the Appendix.)

Data collection platforms were installed at Fort Simpson and Norman Wells. These units transmit water level information to Calgary via the ERTS satellite and receiving stations based in the United States. The water level data received are used in the daily Mackenzie Navigation Forecasts.

Streamflow and/or water level data were collected at twenty-four sites and sediment data at nine sites.

DISCUSSION

1. Relationship to Other Studies

Streamflow data is a hydrologic parameter that is utilized in many related studies. Gauging stations were located on the Harris, Martin and Rengleng Rivers and Campbell Creek at the request of the Fisheries Research Board. They require streamflow rates in their studies of aquatic organisms. Pre-disturbance rates of sediment discharge are also required to assess after-effects on the aquatic ecology of streams.

The Water Quality Division is utilizing all available flow data to quantify their chemical analysis studies.

Snow survey data and precipitation accumulation gauge data are being obtained at a number of sites on behalf of the Atmospheric Environment Service.

Some low flow data has been utilized by the Fisheries Service in conjunction with their studies on the north slopes of the Yukon Territory.

The results from the extensive measuring program undertaken in the Mackenzie Delta area on behalf of Glaciology Division will be useful in determining the distribution of flow throughout the myriad of channels within the Delta complex.

Water level forecasting will continue to be an important function of Water Survey if construction of the pipeline commences. Most of the construction material would probably be shipped to the area via barge along the Mackenzie River. The studies and improvements to the forecast methods presently being undertaken would be of utmost importance with this increased loading on the river.

2. Analysis of Results

It is not economically feasible to gauge all streams in an area. A study of such factors as drainage basin, topography, and climatic similarity is first undertaken to identify streams that are similar in nature, and to choose one or two that are representative of the area in question. Data collected on these representative or "index" streams can be used to simulate data on the ungauged streams in the area. This type of study was undertaken in late 1972 with data available to October, 1972 (Kerber 1973⁷). Mean annual floods and mean monthly flows for June to September have been generated for fourteen tributaries to the Mackenzie. Table 1 in the Appendix gives these results.

Table 2 in the Appendix shows the design floods on a number of tributaries to the Mackenzie River. These values were prepared by Bolter, Parish and Trimble in their role as Hydrology Consultants to the Department of Public Works on the Mackenzie Highway project.

There is still a requirement for additional index stations in the Mackenzie River basin to fill in the gaps along both the east and west sides of the basin.

- 18 -

CONCLUSIONS

Water levels for navigation on the Mackenzie River can be accurately predicted for the downstream sites during periods of normal or low flow. There is at present, however, no monitoring of extreme storm events in the Mackenzie Mountains areas with sufficient lead time to forecast the extent of high water and to make this data available to the user.

The design of bridges, culverts and pipeline crossings will require a high factor of safety as insufficient flood data are available to allow proper analysis of the individual streams using conventional methods.

IMPLICATIONS AND RECOMMENDATIONS

Stream flow rates vary on a statistical basis, thus requiring a number of years of data for proper evaluation. There seems little chance that sufficiently long records can be obtained before a pipeline application to permit adequate analysis. There are, however, a number of parameters on which data can be collected on a short-term basis and that could be used in pipeline design and construction;

- a) Scour depths can be ascertained from discharge measurements before and after major flood events.
- b) Dates of freeze-up and break-up are utilized in planning construction phases of bridges, river crossings, river access, etc.
- c) Relationships of mean water velocity to stage can be prepared and made available for reference in case of oil or other toxic spills where travel times are required.
- d) Rates of ice build-up on the river can be determined from discharge measurements taken during the winter months.

Along the Mackenzie Valley there are at present many streams for which no hydrologic data are available. In most cases it is not possible to simulate flows on these streams as there is a complete absence of base data in the area. Stream gauges will be installed in some of these areas in 1973. The data required for engineering design for specific streams will not be available in sufficient length for several years, so that any design features developed now should include a high factor of safety.

NEEDS FOR FURTHER STUDY

Streamflow data are deficient on both sides of the Mackenzie. A minimum network of gauging stations which would allow simulation of streamflow on the eastern tributaries would consist of stations on the following rivers:

- 1) Ochre River.
- 2) River between Two Mountains.
- 3) Blackwater River.
- 4) Big Smith Creek.
- 5) Brackett River.
- 6) Hanna River.
- 7) Hare Indian River.
- 8) Travaillant River.
- 9) Rengleng River.

A few western tributaries should be instrumented with the standard recording equipment as well as data collection platforms for the ERTS program. These stations would be used for basic data purposes, and directly for navigation forecasts. Probable rivers to be gauged would be:

- 1) North Nahanni River.
- 2) Wrigley River.
- 3) Keele River.
- 4) Mountain River.
- 5) Ramparts River.
- 6) Ontaratue River.

Data from these fifteen sites would greatly increase the amount of knowledge available in the study area. Several years of data from these sites along with the sites already monitored would be sufficient to allow simulation and extrapolation of basic hydrologic parameters for all the streams in the Mackenzie Valley from the 60th parallel through to the Mackenzie Delta and the Alaska-Yukon Border.

REFERENCES

- 1) Clark, R. H. Notes on the Water Resources of the Mackenzie River Basin. Inland Waters Directorate, Environment Canada, Ottawa, 1958.
- 2) MacKay, D. K., Fogarasi, S., and Spitzer, M. Documentation of an Extreme Summer Storm in the Mackenzie Mountains, N.W.T.
- 3) Water Survey of Canada, Environment Canada, Calgary. Ice Thickness of Selected Streams in Alberta, Saskatchewan and the Northwest Territories. 1971.
- 4) Water Survey of Canada, Environment Canada, Calgary. Water Temperatures of Selected Streams in Alberta, Saskatchewan and the Northwest Territories, 1970. 1971.
- 5) Water Survey of Canada, Environment Canada. Surface Water Data, Yukon and Northwest Territories, 1971. Annual Publication.
- 6) Water Survey of Canada, Environment Canada. Sediment Data for Canadian Rivers. Annual Publication.
- 7) Kerber, R. E. Mackenzie River Flow Study for Ungauged Areas. Water Survey of Canada, Environment Canada, Calgary, 1973.
- Bennett, R. M. Study of Probability and Frequency of Mackenzie River Water Levels. Water Survey of Canada, Environment Canada, Calgary, 1970.
- 9) Bennett, R. M. *Great Slave Lake Water Levels 1934-72*. Water Survey of Canada, Department of the Environment, Calgary, 1972.
- 10) Church, M. Reconnaissance of Hydrology and Fluvial Characteristics of Rivers in Northern Alaska and Northern Yukon Territory: for Mackenzie Valley Pipe Line Research, Ltd., 1971.
- Church, M. Reconnaissance of Hydrology and Fluvial Characteristics of Rivers in the Mackenzie Valley, Northwest Territories, and in Northern Alberta: for Mackenzie Valley Pipe Line Research, Ltd., 1971.

<u>APPENDIX</u>

Table 1

Simulated	Flows	for	Ungauged	Streams
0 1 1 4 0 0 4		T A A	ongaagoa	

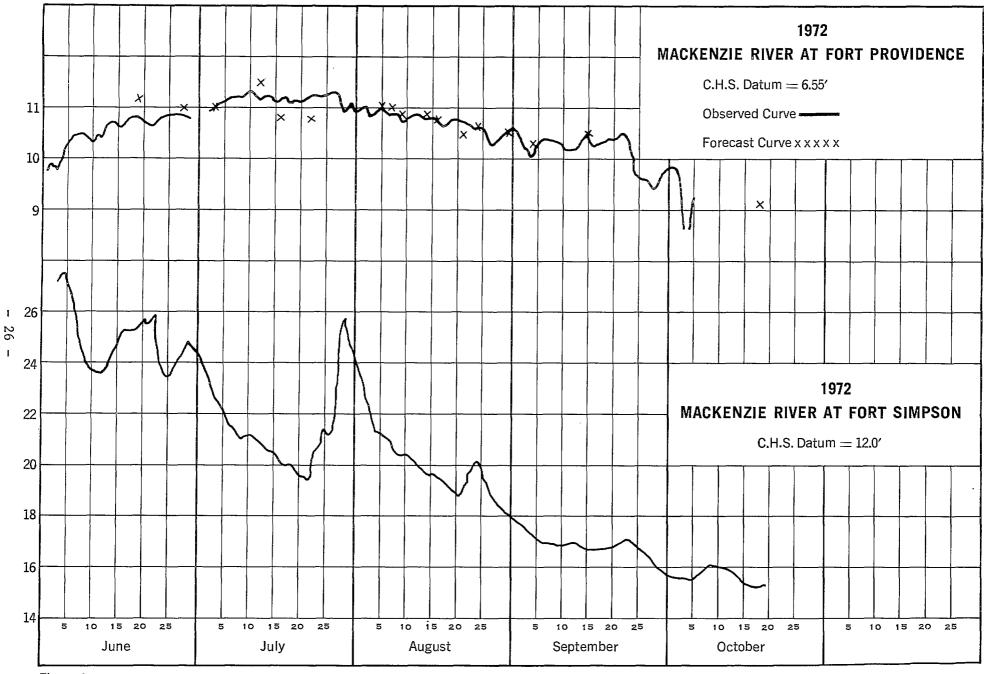

Stream	Approximate Drainage Area	Mean May Flow	Mean June Flow	Mean July Flow	Mean August Flow	Mean September Flow	Mean Annual Flood
Rabbitskin River	3,800	1,270	1,750	800	300	100	2,500
Horn River	8,390	2,200	4,900	3,750	3,300	2,800	11,500
Root River	3,870		12,800	8,950	6,000	4,600	29,500
North Nahanni River	5,470		16,000	12,500	11,500	7,600	39,500
Keele River	10,250		23,000	22,500	34,000	13,500	62,000
Blackwater River	6,530	1,850	3,500	3,000	2,550	2,000	7,800
Carcajou River	3,570		12,000	8,400	5,200	4,000	26,000
Mountain River	5,780		16,200	13,000	12,800	8,000	40,000
Ontaratue River	2,300		9,200	5,600	2,500	2,200	20,000
Ramparts River	3,250		11,500	7,700	4,600	3,500	26,000
Hare Indian River	5,980		3,150	2,570	2,300	1,750	5,800
Hart River	14,650		29,000	29,500	6,400	17,500	83,000
Snake River	8,410		20,400	18,700	24,000	11,500	52,000
Peel River	12,100		25,500	26,500	46,000	15,000	69,000

Table 2

Design Floods for Selected Rivers Along the Mackenzie Highway Route*

		<u> </u>
River	Drainage Area	Discharge
Martin	784 sq. mi.	24,000 cfs
Shale	106 sq. mi.	6,800 cfs
Willowlake	8,330 sq. mi.	90,000 cfs
River between two mountains	1,328 sq. mi.	23,400 cfs
Hodgson	124 sq. mi.	6,200 cfs
Ochre	448 sq. mi.	18,600 cfs
Whitesand	130 sq. mi.	9,200 cfs
Rainbow	26 sq. mi.	1,800 cfs
Blackwater	4,110 sq. mi.	65,000 cfs
Steep	56 sq. mi.	6,700 cfs
Saline	117 sq. mi.	9,000 cfs
Little Smith	184 sq. mi.	10,400 cfs
Big Smith	412 sq. mi.	18,000 cfs

* - Data contributed by Bolter Parish Trimble Ltd., Consulting Engineers

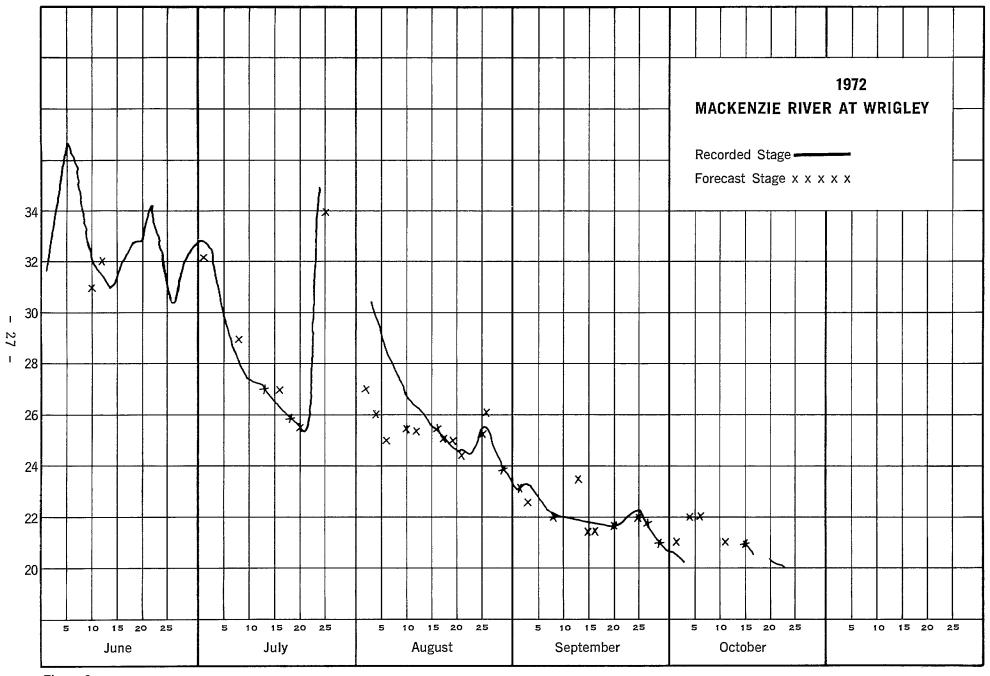
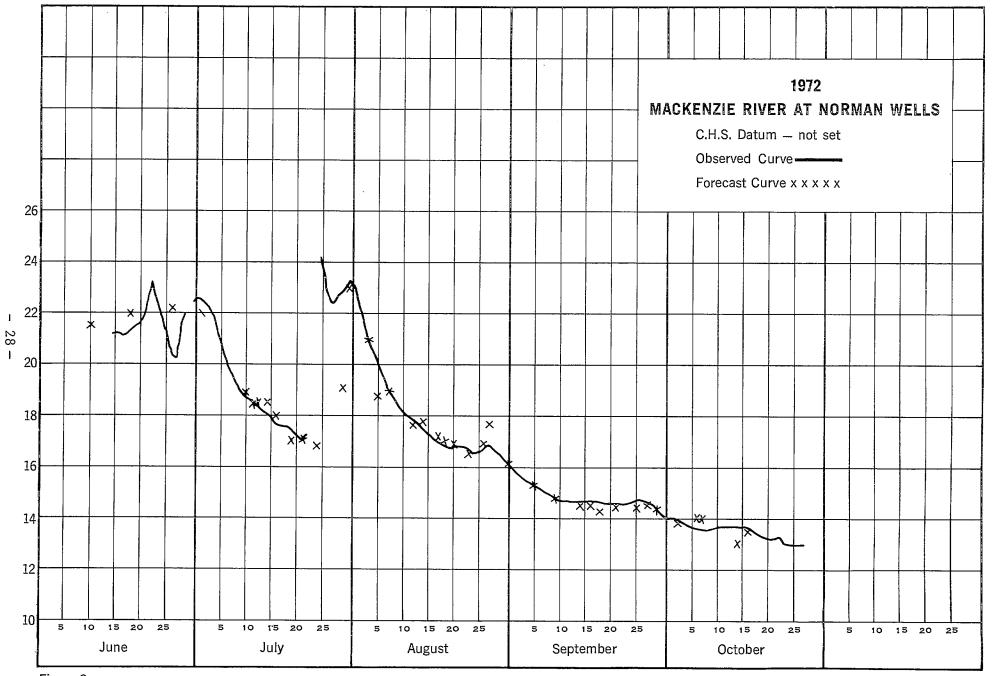



Figure 2.

l

Figure 3.

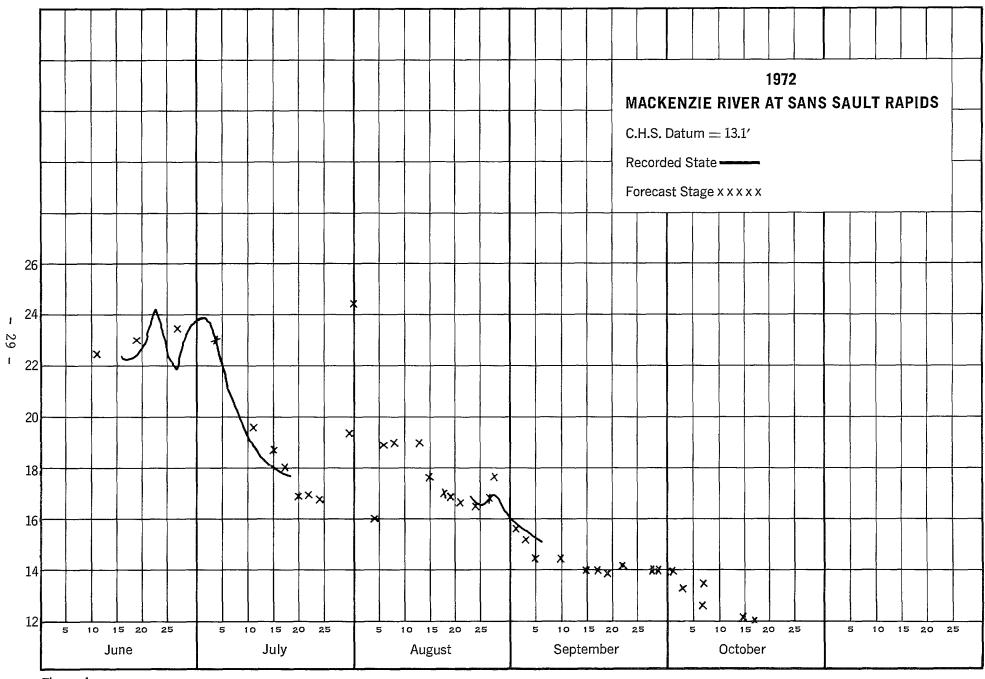


Figure 4.

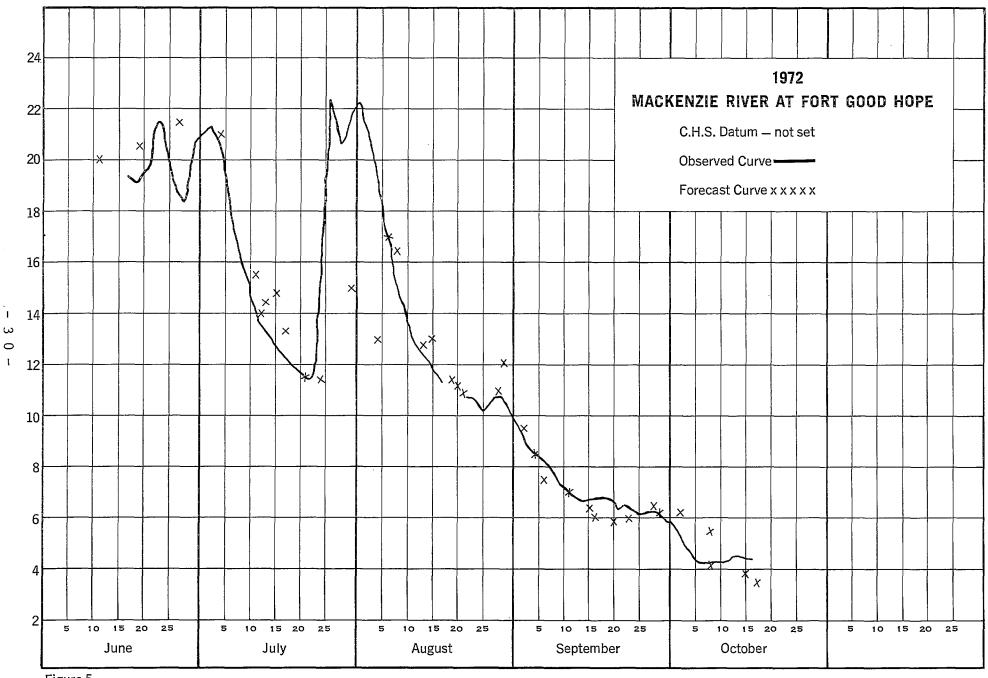


Figure 5.

Y.

MACKENZIE RIVER AT NORMAN WELLS - STATION NO. 10KA001 DAILY DISCHARGE IN CUBIC FEET PER SECOND FOR 1970

DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	DAY
1 2 3 4 5	88800 B 88700 B 88600 B 88500 B 88500 B 88400 B	86300 B 86200 B 86100 B 86000 B 85900 B	83800 B 83700 B 83700 B	83600 B 83700 B 83800 B	109000 H 111000 H 114000 H 118000 H 120000 H	594000 604000 600000	560000 541000 520000 505000 503000	413000 412000 403000 393000 389000	353000 350000 352000 353000 360000	304000 303000 303000 302000 302000 302000	239000 B 232000 B 225000 B 220000 B 220000 B 215000 B	133000 B 131000 B 129000 B 127000 B 127000 B 125000 B	1 2 3 4 5
6 7 8 9 10	88400 B 88300 B 88200 B 88100 B 88000 B	85800 B 85800 B 85700 B 85600 B 85500 B	83400 B 83300 B	84100 B 84200 B 84400 B	123000 H 125000 H 129000 H 132000 H 132000 H	636000 617000 621000	504000 511000 543000 558000 548000	381000 372000 364000 360000 372000	367000 362000 354000 349000 343000	303000 305000 309000 313000 315000	210000 B 205000 B 200000 B 196000 B 192000 B	123000 B 122000 B 121000 B 120000 B 120000 B 119000 B	6 7 8 9 10
11 12 13 14 15	87900 B 87900 B 87800 B 87700 B 87600 B	85400 B 85300 B 85200 B 85100 B 85000 B	83100 B 83100 B	85000 B 85200 B 85500 B	140000 H 148000 H 153000 H 160000 H 166000 H	679000 706000 699000	532000 523000 510000 494000 477000	433000 489000 481000 451000 432000	339000 333000 329000 326000 325009	316000 315000 307000 299000 B 292000 B		118000 B 117000 B 116000 B 115000 B 115000 B 114000 B	11 12 13 14 15
16 17 18 19 20	87500 B 87500 B 87400 B 87300 B 87200 B	85000 B 84900 B 84800 B 84700 B 84700 B	83100 B 83100 B 83100 B	86400 B 86800 B 87300 B	177000 H 184000 H 195000 H 210000 H 230000 H	715000 701000 676000	477000 502000 510000 495000 467000	424000 412000 409000 466000 517000	323000 321000 320000 318000 316000	286000 B 282000 B 278000 B 274000 B 274000 B 270000 B	163000 B 160000 B	113000 B 112000 B 111000 B 110000 B 109000 B	16 17 18 19 20
21 22 23 24 25	87100 B 87100 B 87000 B 86900 B 86800 B	84600 B 84500 B 84400 B 84300 B 84300 B 84200 B	83100 B 83100 B	89200 B 90100 B 93000 B	250000 E 270000 E 291000 E 325000 E 355000 E	621000 605000 601000	508000 726000 683000 574000 513000	486000 464000 445000 426000 426000 409000	312000 313000 311000 309000 309000	266000 B 262000 B 258000 B 254000 B 254000 B 250000 B	149000 B 147000 B	108000 B 107000 B 106000 B 105000 B 105000 B 104000 B	21 22 23 24 25
26 27 28 29 30 31	86700 B 86700 B 86600 B 86500 B 86400 B 86300 B			99000 B 100000 B 102000 B 106000 B	389000 E 420000 E 455000 E 491000 E 532000 552000	592000 589000	480000 465000 453000 441000 426000 417000	398000 392000 384000 376000 368000 362000	309000 308000 308000 307000 307000 305000	251000 B 252000 B 253000 B 253000 B 253000 B 250000 B 246000 B	139000 B 137000 B 135000 B	104000 B 103000 B 103000 B 102000 B 102000 B 102000 B	26 27 28 29 30 31
TOTAL	2713900	2383200	2582500	2660200	7311000	18997000	15966000	12883000	9884000	8773000	5290000	3530000	TOTAL
MEAN AC-FT MAX MIN	87500 5380000 88800 86300	85100 4730000 86300 84000	83300 5120000 83900 83100	88700 5280000 1 106000 83500	236000 4500000 552000 109000	633000 37700000 715000 572000	515000 31700000 726000 417000	416000 25600000 517000 360000	329000 19600000 367000 305000	283000 17400000 316000 246000	176000 10500000 239000 135000	114000 7000000 133000 101000	MEAN AC-FT MAX MIN
SUMMAR	Y FOR THE	YEAR 1970											

MEAN DISCHARGE, 255000 CFS TOTAL DISCHARGE, 185000000 AC-FT MAXIMUM DAILY DISCHARGE, 726000 CFS ON JUL 22 MINIMUM DAILY DISCHARGE, 83100 CFS ON MAR 13

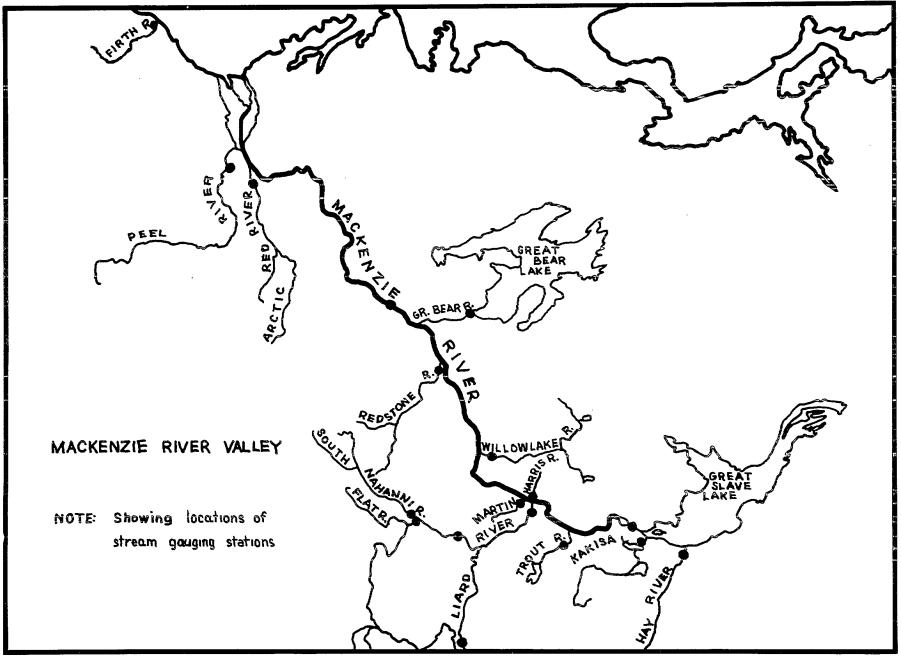
MAXIMUM INSTANTANEOUS DISCHARGE 759000 CFS at 1800 mst on jul 22

MACKENZIE RIVER AT SANS SAULT RAPIDS - STATION NO. 10KD001 Daily water level in feet for 1970

TYPE OF GAUGE - RECORDING LOCATION - LAT 65 16 54 N LONG 126 50 58 W DRAINAGE AREA 606000 SQ MILES

DAY	JAN	FEB	MAR	APR	MAY	ЛЛГ	JÜL	AUG	SEP	OCT	NOV	DEC	DAY
1		14.97					19.03	16.19		12.98	25.69		1
2		14.90					18.66	16.08		12.96	25.78		2
3		14.81					18.24	16.09		12.90	25.93		3
4		14.75					17.92	15.94		12.84	25.74		5
5		14.71					17.71	15.73		12.83	25.6B		
										10105	23105		5
6		14.65					17.75	15.59		12.83	25.31		6
7		14.55					18.14	15.34		12.90	24.92		ž
8		14.51					18.29	15.14	14.87	12.99	24.90		8
9		14.43					18,67	14.89	14.65	13,17	24.71		ğ
10		14.36					18,90	14.96	14.47	13.26	24.07		10
11		14.30					18.51	15.74	14.33	13.23	23.57		11
12		14.23					18.19	17.37	14.16	13,27	23,33		12
13		14.15					17.85	18.12	14.04	13.17	23.27		13
14		14.05					17.54	17.82	13.88	13.04	23.16		14
15		14.01					17.21	17.14	13.89	12.90	22.88		15
16		13.95											
17		13.95					17.11	16.72	13.96	12.95			16
18		13.88					17.36	16.66	13.75	13.02			17
19		13.00					17.61	16.75	13.65 13.57	13.18 13.33			18
20							17.24	17.97	13.56	13.32			19
20							17.24	11.91	13.30	13,34			20
21							21.33		13.44	13.43			21
22				··			22.69		13.27	14.02			22
23							23.55		13.31	14.17			23
24							21.61		13.23	14.20			24
25							19.70		13.21	14.21			25
26						20.43A	18.41		13.21	14,22			26
27						20.06	17.71		13.14	14.21			27
28	15.12A					19.65	17.31		13.08	15.76			28
29	15.11					19.43	17.01		13.10	20.35			29
30	15.08					19.25	16.67		13.07	22.11			30
31	15.02						16.32			24.79			31

TYPE OF GAUGE - RECORDING LOCATION - LAT 65 42 00 N LONG 128 50 00 W A-MANUAL GAUGE


B-ICE CONDITIONS

NATURAL FLOW

NATURAL FLOW

WATER LEVELS ARE REFERRED TO ASSUMED DATUM.

Figure 6.

۱,

Figure 7.

- 32 -

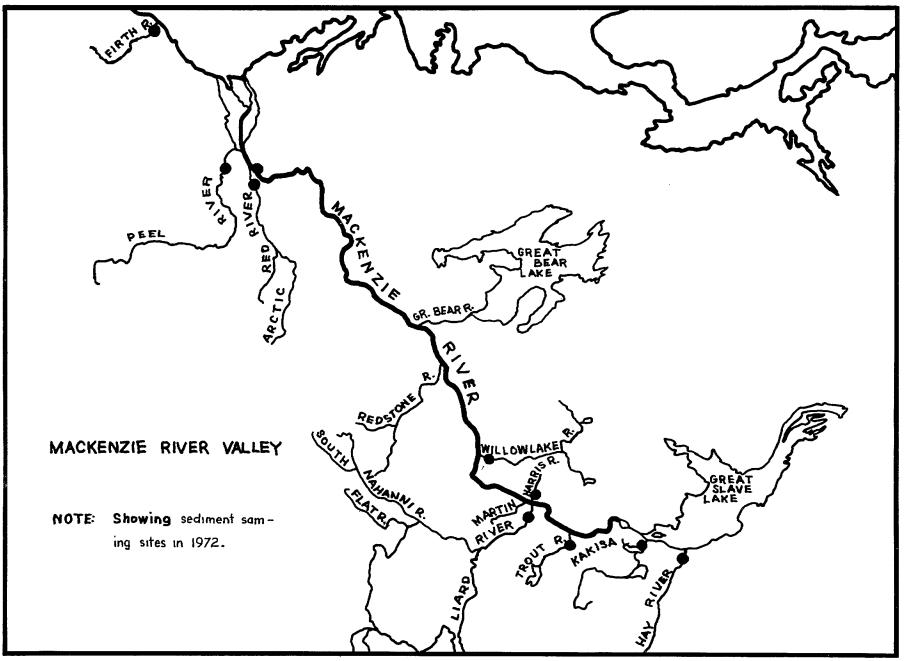


Figure 8.

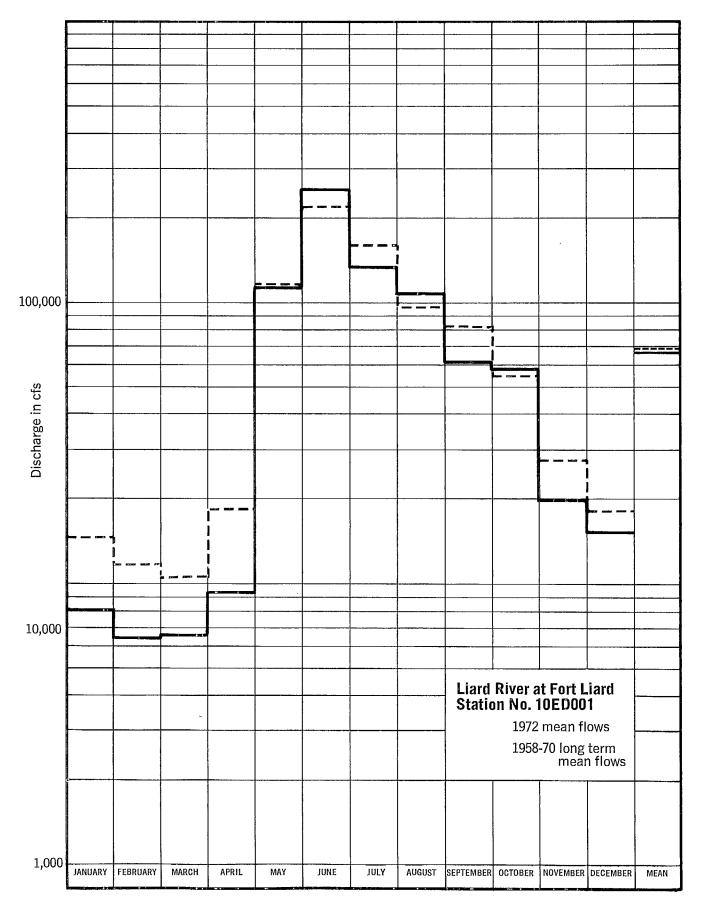


Figure 9.

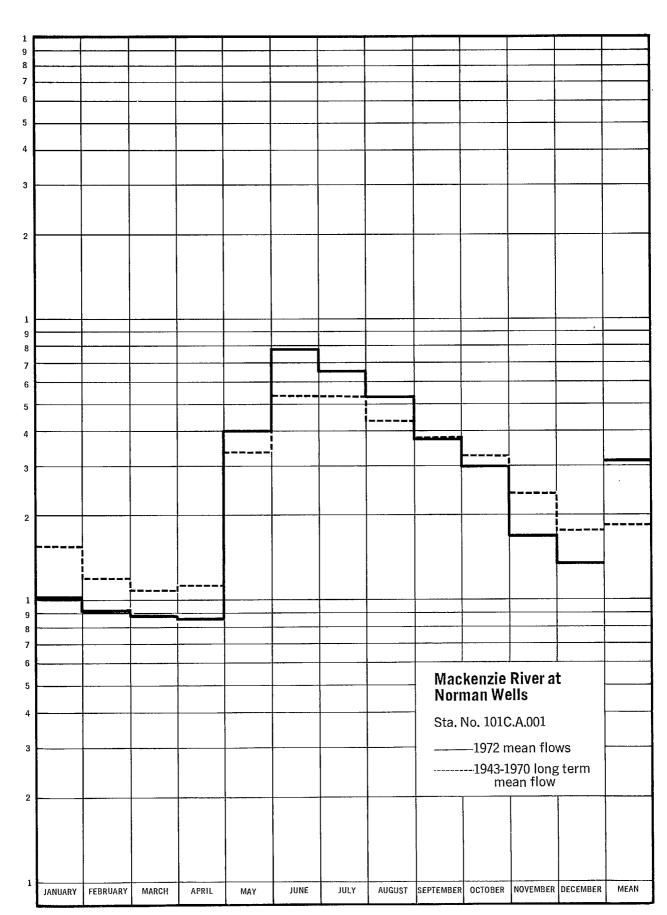


Figure 10.

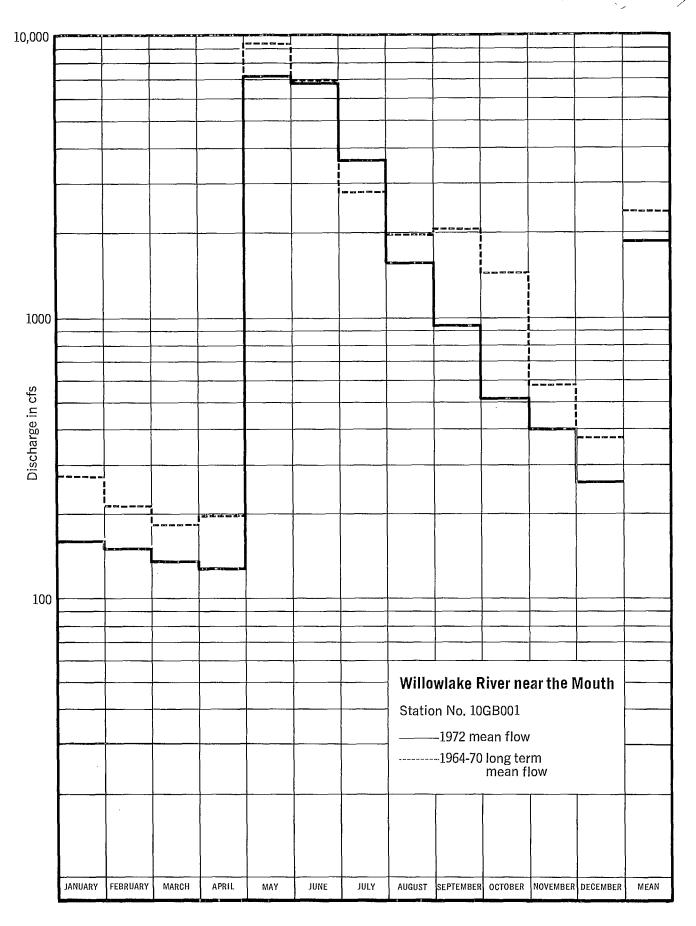


Figure 11.

DEPARTMENT OF ENERGY, MINES AND RESOURCES -INLAND WATERS BRANCH — WATER SURVEY OF CANADA

Mackenzie River at Norman Wells

Station No. 10KA001

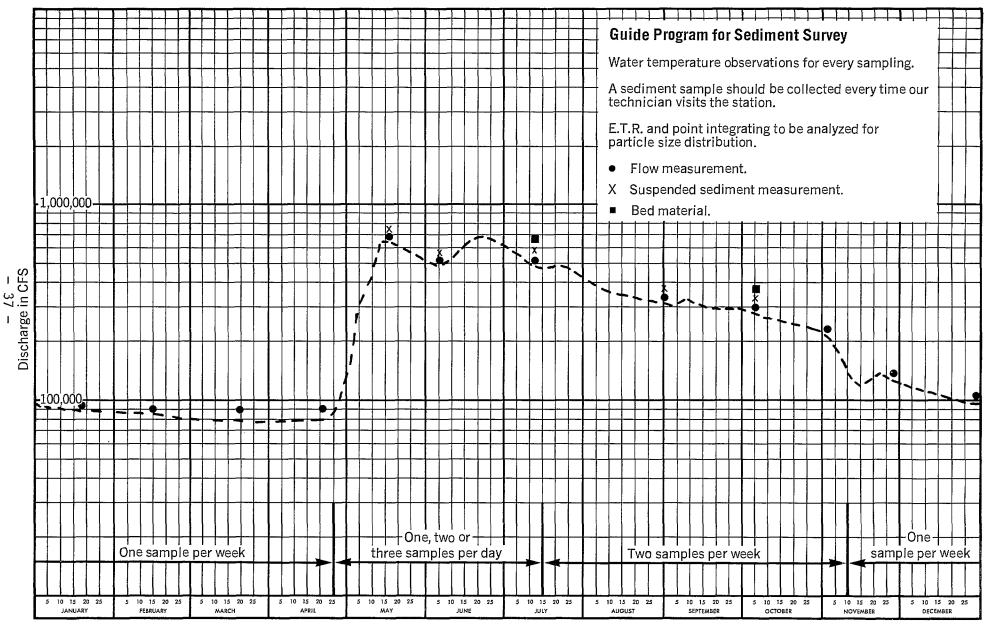


Figure 12.

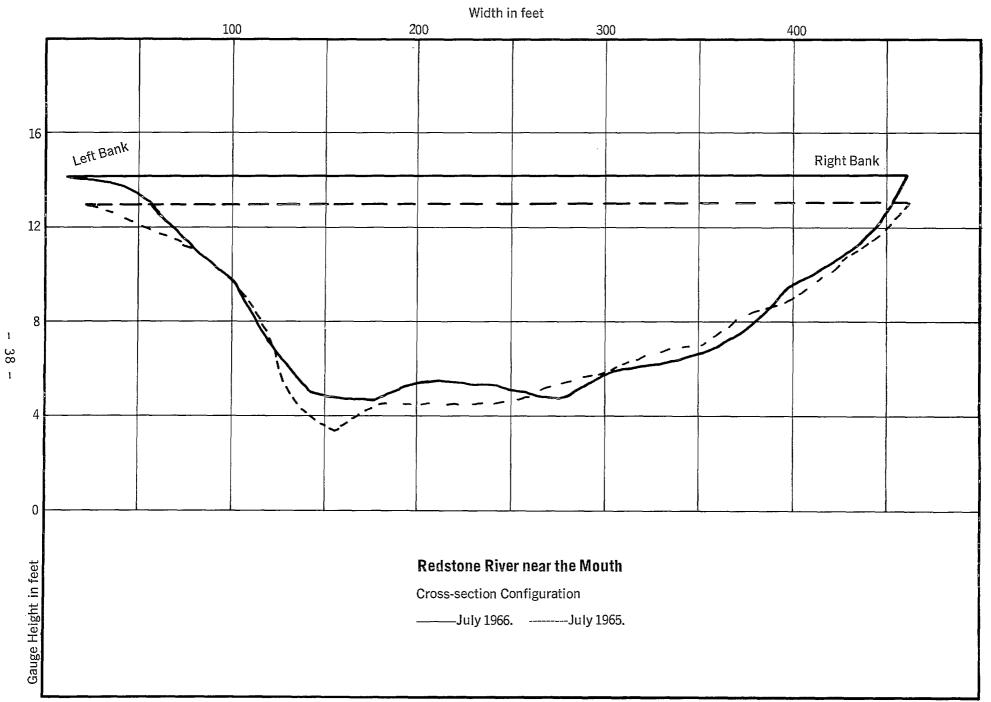


Figure 13.

Mackenzie River at Norman Wells

Relationship of River Stage to Mean Water Velocity

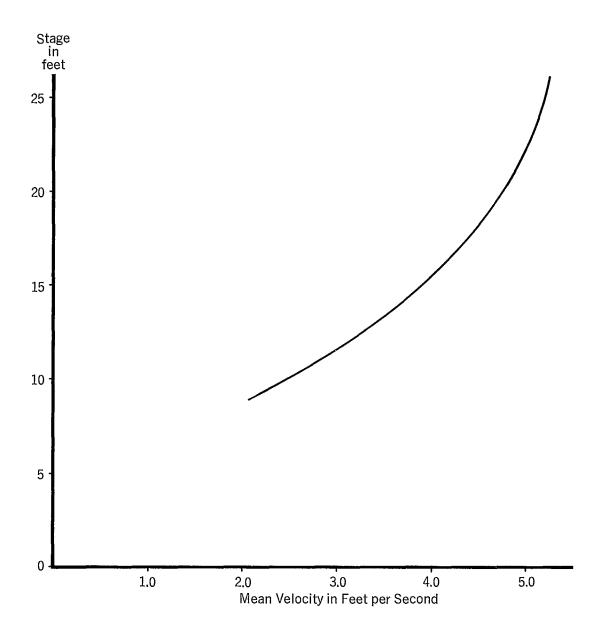
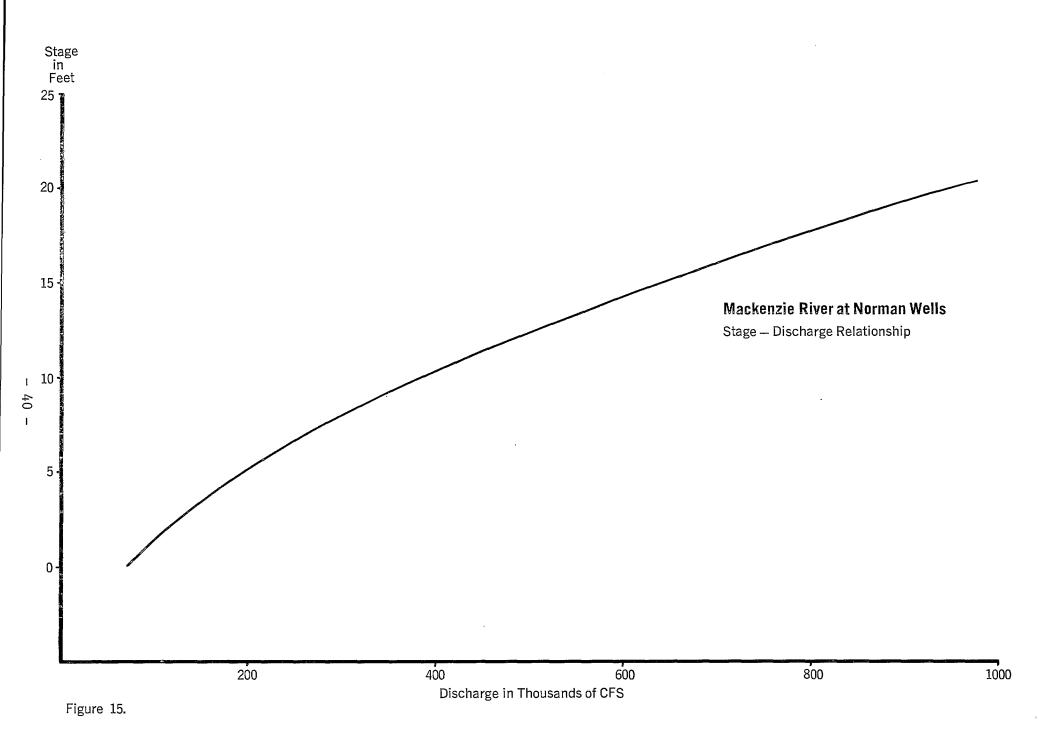



Figure 14.

DEPARTMENT OF ENERGY, MINES AND RESOURCES -

INLAND WATERS BRANCH -- WATER SURVEY OF CANADA

Liard River at Fort Liard

Station No. 10ED001

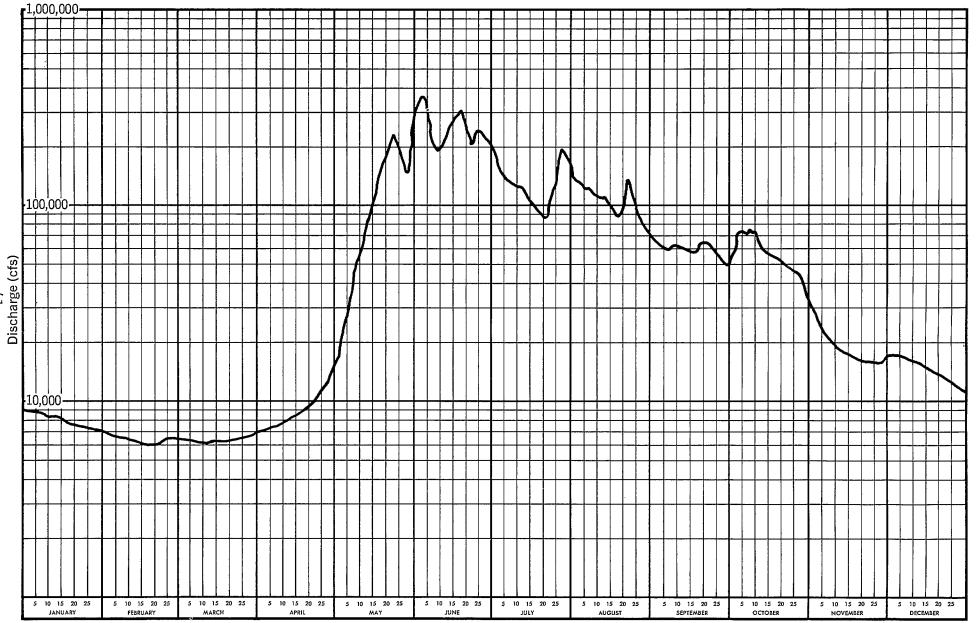
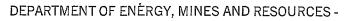



Figure 16.

1

INLAND WATERS BRANCH -- WATER SURVEY OF CANADA

Willowlake River near the Mouth

Station No. 10GB001

1

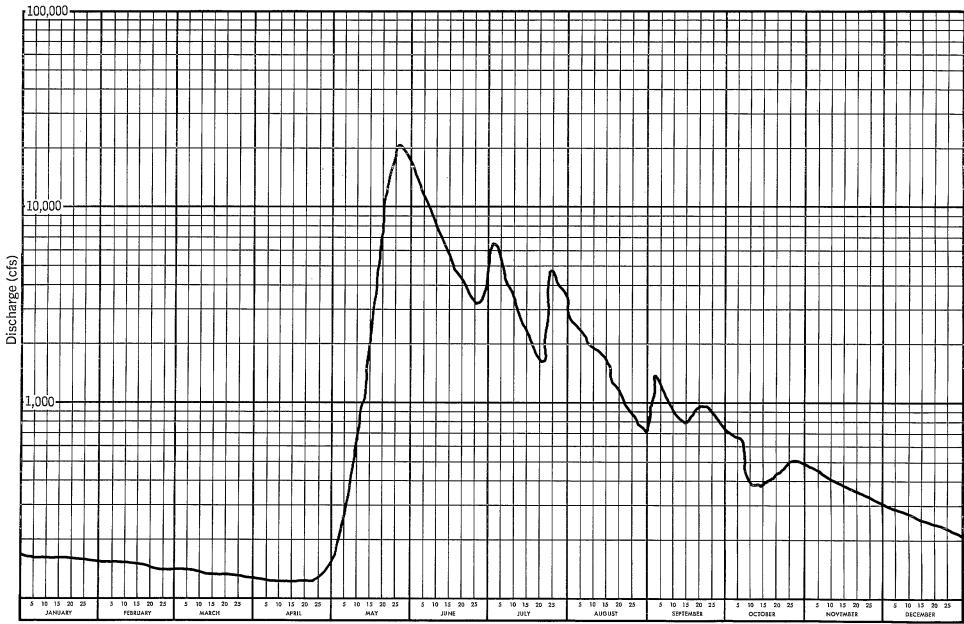


Figure 17.

ł

DEPARTMENT OF ENERGY, MINES AND RESOURCES -INLAND WATERS BRANCH – WATER SURVEY OF CANADA

Mackenzie River near Fort Providence

Station No. 10FB001

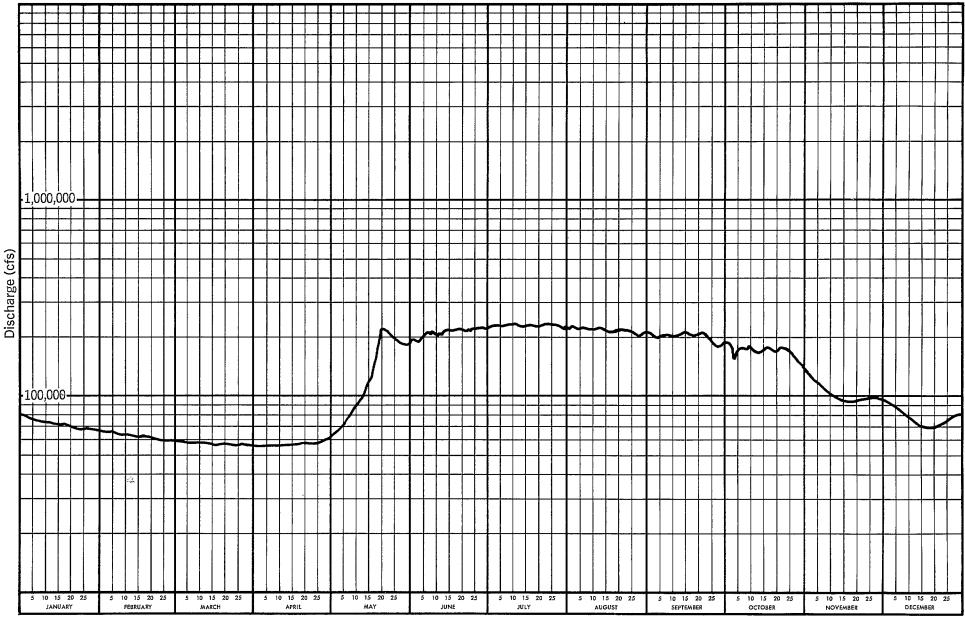


Figure 18.

ı

DEPARTMENT OF ENERGY, MINES AND RESOURCES -INLAND WATERS BRANCH - WATER SURVEY OF CANADA

Mackenzie River at Fort Simpson

Station No. 10GC001

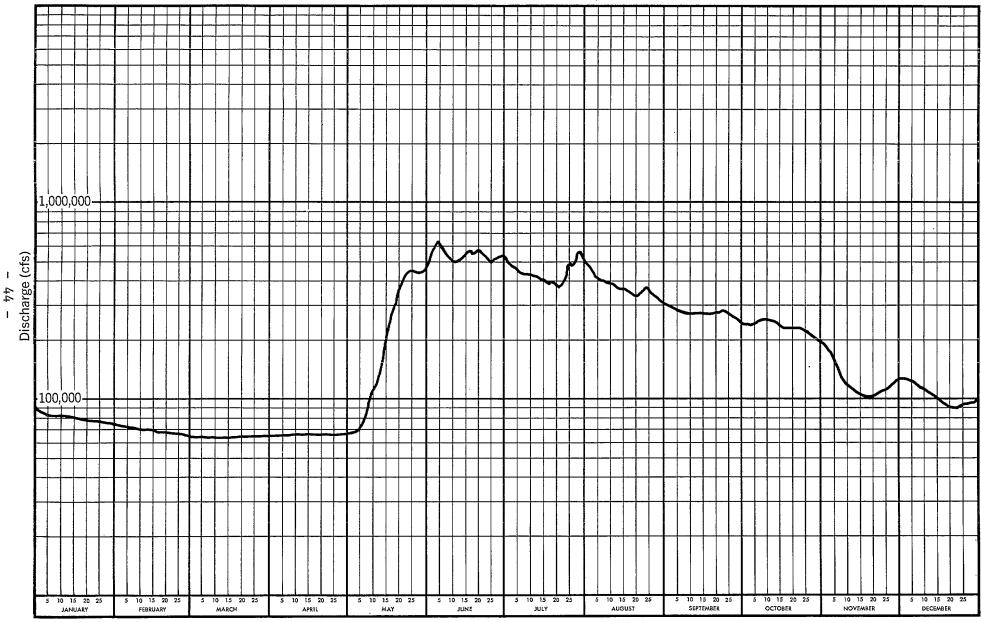


Figure 19.

Т

DEPARTMENT OF ENERGY, MINES AND RESOURCES -INLAND WATERS BRANCH – WATER SURVEY OF CANADA

Mackenzie River at Norman Wells

Station No. 10KA001

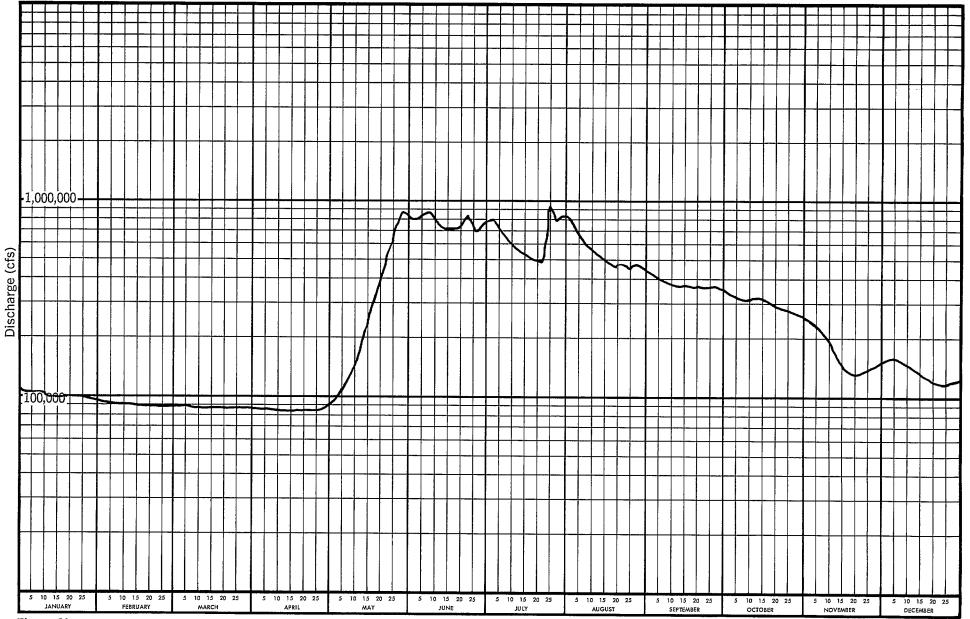


Figure 20.

I

ARCTIC RED RIVER NEAR THE MOUTH 10LA002

1972 Sediment Results

- Computed daily mean concentrations -- none -- not enough information collected.
- (2) Three "daily" suspended sediment samples than near the mouth of the river which is nearly fifty air miles from the measuring site. No tie-in with measuring site.

July 13, 1972		729 mg/1
Aug. 15, 1972	-	107 mg/1
Sept. 8, 1972	-	208 mg/1

(3) Four depth integrated suspended sediment measurements.

Date	Mean Concentration	Flow
June 16, 1972	1,667 mg/1	21,900 cfs
July 22, 1972	358 mg/1	10,200 cfs
Aug. 29, 1972	104 mg/1	8,000 cfs
Sept.21, 1972	114 mg/1	8,350 cfs

Mean particle size values for June 16 and July 22 measurements are attached.

- (4) Two bed material measurements July 22 and September 21.Mean cross section particle size values attached.
- (5) Miscellaneous water temperatures.

FIRTH RIVER NEAR THE MOUTH 10MDOO1

1972 Sediment Results

- Computed daily mean concentrations -- none -- insufficient number of samples.
- (2) One "Daily" suspended sample

June 21, 1972 - 37 mg/1

(3) Two depth integrated suspended sediment measurements.

Date	Mean Concentration	Flow
July 25, 1972	23 mg/1	3,200 cfs
Sept.12, 1972	3 mg/1	1,640 cfs

- (4) One bed material measurement unable to derive mean particle size values.
- (5) Miscellaneous water temperatures.

HARRIS RIVER NEAR THE MOUTH 10GCO02

1972 Sediment Results

- (1) Computed daily mean concentrations -- none -- insufficient numbers
 of samples taken.
- (2) Five "daily" suspended samples all dip samples.

July	5,	1972		2 mg/1
July	10,	1972	-	2 mg/1
July	14,	1972		3 mg/1
July	20,	1972	-	0 mg/1
Aug.	10,	1972	-	1 mg/1

HAY RIVER NEAR HAY RIVER 070B001

1972 Sediment Results

- Computed daily mean suspended sediment concentrations -- for July and August.
- (2) Six "daily" suspended samples

July	21,	1972	-	619	mg/1
July	25,	1972	-	116	mg/l
July	28,	1972	-	44	mg/1
Aug.	1,	1972		18	mg/l
Aug.	4,	1972		9	mg/l
Aug.	9,	1972	_	8	mg/1

(3) Three depth integrated suspended sediment measurements.

Date	Mean Concentration	<u>K</u> Factor	Flow
July 17, 1972	40 mg/1	1.03	5 ,8 60 cfs
July 21, 1972	626 mg/1	1.00	6,370 cfs
Aug. 22, 1972	10 mg/1	0.95	1,970 cfs

Mean particle size values for July 21 measurement are attached.

(4) Miscellaneous water temperatures.

,

HAY RIVER NEAR HAY RIVER

Daily Mean Sediment Concentration in Milligrams per Litre for 1972

DAY	JULY	AUGUST
1	46 E	17 S
2	113 E	14
3	246 E	12
4	411 E	11 S
5	497 E	9
6 7 8 9 10	474 E 411 E 336 E 271 E 220 E	9 8 8 8 8 8
11	183 E	8
12	140 E	8
13	103 E	7
14	65 E	9
15	28	12
16	11	15
17	109 S	14
18	853	13
19	880	12
20	762	12
21	647 S	12
22	503	10 S
23	358	9
24	221	8
25	124 S	8
26 27 28 29 30 31	95 66 46 S 31 20 15	7 7 7 6 6
TOTAL	8,285	301
MEAN	267	10
MAX	880	17
MIN	11	6

E---Estimated

S---Samples Collected This Day

KAKISA RIVER AT OUTLET KAKISA LAKE 07UC001

1972 Sediment Results

- Computed daily mean concentration -- none -- insufficient number of samples.
- (2) Two "Daily" suspended samples.

July	19,	1972	-	7	mg/1
Aug.	10,	1972	-	9	mg/1

(3) Miscellaneous water temperatures.

LIARD RIVER NEAR THE MOUTH 10ED002

1972 Sediment Results

- Computed daily mean concentrations -- none because of lack of consistency in sampling locations and insufficient number of samples.
- (2) Eight "Daily" suspended samples.

June	28,	1972		978	mg/1		
July	10,	1972		241	mg/1		
July	14,	1972		186	mg/1		
July	25,	1972	-	1,303	mg/1 -	Dip	Samp1e
July	27,	1972		983	mg/1 -	Dip	Sample
July	27,	1972		1,182	mg/l		
Aug.	2,	1972		641	mg/l		
Sept.	15,	1972		69	mg/l		

(3) Two depth integrated suspended sediment measurements.

Date	Mean Concentration	Flow
July 27, 1972	1,546 mg/1	290,000 cfs
Sept.15, 1972	73 mg/1	70,600 cfs

Mean particle size values for the July measurement are attached.

(4) Miscellaneous water temperatures.

MACKENZIE RIVER ABOVE ARCTIC RED RIVER 10LA003

1972 Sediment Results

- Computed daily mean concentrations -- none because of insufficient frequency of sampling.
- (2) Two "Daily" suspended samples

Aug. 15, 1972 - 379 mg/1 Sept. 9, 1972 - 223 mg/1

(3) One depth integrated suspended sediment measurement.

Date	Mean Concentration	Flow		
July 13, 1972	295 mg/1	609,000 cfs		

Mean particle size values for this measurement are attached.

- (4) One bed material measurement July 13. Mean cross section particle size values attached.
- (5) Miscellaneous water temperatures.

MACKENZIE RIVER ABOVE LIARD RIVER 10GC004

77

1972 Sediment Results

(1) Computed daily mean concentration -- June 1 to August 31.

(2) Five "Daily" suspended samples

5

June	28,	1972	-	17	mg/l
July	10,	1972	-	23	mg/l
July	14,	1972	-	21	mg/l
July	27,	1972	-	19	mg/l
Aug.	2,	1972	-	17	mg/1

MACKENZIE RIVER ABOVE LIARD RIVER

Daily Mean Sediment Concentration in Milligrams per Litre for 1972

DAY	JUNE	JULY	AUGUST
1	12	18	17
2	12	19	17 S
3	12	19	16
4	12	20	16
5	12	20	17
6 7	13	20	16
7	13	21	16
8	13	22	15
9	13	22	14
10	13	23 S	14
11	14	23	15
12	14	22	15
13	14	22	15
14	14	21 S	15
15	14	20	15
16	15	20	14
17	15	19	14
18	15	19	14
19	15	18	14
20	15	18	14
21	15	19	14
22	15	19	14
23	16	20	13
24	16	20	13
25	16	21	12
26	16	20	12
27	17	19 S	12
28	17 S	19	12
29	17	18	12
30	18	18	12
31		18	12
TOTAL	433	617	441
MEAN	14	20	14
MAX	18	23	17
MIN	12	18	12
		-	

S - Sample(s) collected this Day

PEEL RIVER NEAR FT. MCPHERSON 10MC002

~ ·

1972 Sediment Results

- Computed daily mean values -- none -- insufficient number of samples taken.
- (2) No "daily" samples taken.
- (3) Two depth integrated suspended sediment measurements.

D	ate		Mean Concentration	<u>Flow</u>
July	18,	1972	207 mg/1	17,800
Sept.	8,	1972	133 mg/1	36,339

(4) One bed material measurement - July 18. Mean cross section particle size values attached.

STATION NAME Arctic Red River near The Mouth

STATION NUMBER _10LA002

				Daily	Discharge	in C u bic	Feet per s	second for	1972				
Doy	January	February	March	April	May	June	July	August	September	October	November	December	Day
1	555B	330B	301B	334B	1430B	31,200B	18,700	8130	7330	3370	1130B	711B	1
2	546B	329B	300B	336B	1490B	35,500B	15,900	7870	6790	3250	1020B	709B	_ 2
3	538B	328B	301B	337B	1550B	39,900B	13,600	15,700	7000	3140B	979B	706B	3
4	529B	327B	302B	338B	1600B	44,200	12,200	17,700	8740	3030B	896B	704B	1
5	520B	326B	303B	339B	1660B	48,600	10,500	13,800	9160	2940B	822B	702B	5
6	511B	325B	305B	340B	1720B	39,400	8980	10,800	8270	2820B	767.B	700B	6
7	503B	324B	306B	341B	1780B	33,700	8070	9010	7410	2720B	761B	698B	7
8	494B	323B	307B	342B	1830B	35,100	7610	8070	6710	2630B	759B	696B	8
9	485B	322B	308B	344B	1890B	34,100	8480	8010	6030	2550B	757B	694B	9
10	476B	321B	309B	345B	1950B	28,700	7840	9520	5740	2460B	755B	692B	10
11	468B	320B	310B	346B	2000B	31,500	6870	10,200	5350	2380B	753B	690B	11
12	459B	319B	311B	347B	2060B	28,900	6280	8860	5200	2290B	751B	688B	12
13	450B	318B	313B	404B	2120B	23,500	5860	7670	5350	2200B	748B	685B	13
14	441B	317B	31 4B	461B	2170B	23,600	5530	7060	5890	2120B	746B	683B	14
15	433B	316B	315B	518B	2230B	23,800	5400	7390	9160	2050B	744B	681B	15
16	424B	315B	<u>316</u> B	575B	2290B	22,600	5530	7640	11,200	1990B	742B	679B	16
17 [415B	314B	317B	633B	2350B	20,300	6030	7270	12,700	1900B	740B	677B	17
18	406B	313B	318B	690B	2400B	18,000	6030	6950	12,800	1830B	738B	675B	18
19	398B	312B	320B	747B	2460B	20,000	5790	10,500	11,700	1770B	736B	673B	19
20	389B	311B	321B	804B	3170B	18.000	6920	14,900	9830	1700B	734B	671B	20
21	380B	310B	322B	861B	4050B	16,000	6920	12,900	8360	1630B	732B	669B	21
22	371B	309B	323B	918B	5690B	12,700	10,700	10,700	7110	1580B	730B	667B	22
23	363B	308B	324B	975B	9430B	10,600	14,800	9280	5930	1510B	727B	665B	23
24	354B	307B	325B	1030B	8740B	9890	14,700	8390	4940	1450B	725B	663B	24
25	345B	306B	326B	1090B	9990B	10,600	13,200	7690	4520	1400B	723B	661B	25
26	336B	305B	328B	1150B	9890B	10,900	11,100	7810	4220	1340B	721B	659B	26
27	335B	304B	329B	1200B	9430B	14,800	9310	8240	3970	1300B	719B	657B	27
28	334B	303B	330B	1260B	13,800B	19,000	8240	7530	3730	1270B	717B	655B	28
29	333B	302B	331B	1320B	18,100B	21,100	7900	8070	3530	1220B	715B	653B	29
30	332B	\searrow	332B	1380B	22,500B	21,600	9580	8450	3370	1220B	713B	651B	30
31	331B	\sim	333B	\sim	26,800B	\sim	9070	8040	\geq	1200B	\searrow	649B	31
										· · · · · · · · · · · · · · · · · · ·	27 700	01 077	TO
	13,254	9164	9800	20,105	178,570	747,790	287,640	294,150	212,040	64,260	23,300	21,063	ME
AN	428	316	316	670	5760	24,900	9280	9490	7070	2070	777	679	AC
-FT	. 26,300	18,200	19,400	39,900	354,000	1,480,000		583,000	421,000	127,000	46,200	41,800	MA
		770	ママフ	1700	26 000	10 600	10 700	17 700	12 800	3370	1130	711	- MA
X.	555 331	330 302	333 300	1380 334	26,800 1430	48,600 9890	5400	17,700 6950	12,800 3370	1200	713	649	MI

SUMMARY FOR THE YEAR 1972

MEAN DISCHARGE: 5140	TYPE OF GAUGE - Recording	A - MANUAL GAUGE
TOTAL DISCHARGE: 3,730,000	LOCATION: LAT. 66 47' 10"	B - ICE CONDITIONS
MAXIMUM DAILY DISCHARGE: 48,600	LONG.133 6' 00"	E - ESTIMATED
MINIMUM DAILY DISCHARGE: 300	DRAINAGE AREA: 5840 sq. miles	NATURAL FLOW

х

STATION NAME ______ Firth River Near The Mouth

STATION NUMBER 10MD001

y January	February	March	April	May	June	· July	August	September	October	Navember	December	Doy
						7,600	11,000	5,860	730B	450B	100B	1
						6,670	7,780	5,020	720B	440B	90B	2
						7,850	5,570	4,330	710B	430B	80B	3
						7,740	4,350	3,750	700B	420B	70B	4
						7,030	3,570	3,350	700B	410B	60B	5
						13,400	3,080	2,970	690B	400B	50B	6
						8,970	2,840	2,630	690B	390B	30B	_ 7
						6,430	3,600	2,360	680B	380B	20B	- 8
						5,360	5,090	2,120	670B	370B	<u>10B</u>	9
						4,660	5.500	1,970	<u>660B</u>	370B	0	10
				100B		3,980	7,300	1,800	660B	360B	0	11
						3,800	10,200	1,640	650B	350B	0	12
						3,640	8,900	1,500	640B	<u>350B</u>	0	13
						3,440	6,670	1,400	630B	340B	0	14
						3,400	5,430	1,350	620B	<u>330B</u>	0	15
						3,490	9,360	1,310	610B	320B	0	16
						5,740	9,560	1,190	600B	<u>300B</u>	0	17
						5,140	7,670	1,120	590B	290B	0	18
						3,820	6,430	910	580B	280B	0	19
					3,120A	4,590	5,760	890B	570B	270B	0	20
			1		5,450	6,340	5,280	870B	560B	260B	0	21
					12,900	5,930	4,570	850B	550B	240B	0	22
					11,800	4,920	3,980	840B	540B	230B	0	23
					11,000	3,820	4,970	830B	540B	220B	0	24
					12,200	3,210	6,080	820B	530B	210B	0	25
					12,700	2,660	4,880	800B	520B	200B	0	26
					18,200	2,360	4,550	780B	510B	190B	0	27
					14,300	2,150	4,480	760B	500B	160B	0	28
					11,800	1,910	4,460	750B	490B	140B	0	29
	\searrow				9,480	1,760	4,390	740B	480B	120B	0	
	\square		\square		\geq	4,300	5,310	$\geq \leq$	460B	\square	0	31
						156110	182610	55510	18780	9020	510	T
L						5040	5890	1850	606	300	16.5	M
-						310000	362000	110000	37300	17900	1010	A
т.						13400	11000	5860	730	450	100	M
						1760	2840	740	460	120	0	M
											-	
LARY FOR T	HE YEAR 197	2										
DISCHARG	E: 230	-		л	YPE OF GAU	GE - Recor	rding		Λ -	MANUAL G/	\UGE	
L DISCHAR		-			LOCATION:				В –	ICE CONDE	ITIONS	
	DISCHARGE:			I		LONG.139				ESTIMATE		

STATION NAME Harris River near the Mouth

STATION NUMBER 10GC002

Day	January	February	March	April	May	June	July	August	September	October	November	December	Day
											0.10 B	0	1
2											0.10 B	0	2
3								-			0.10 B	0	3
4 ⊨								-			0.10 B	0	4
5						<u>`</u>	<u>19.5 A</u>				0.10 B	0	5
6											0.10 B	0	6
7											0.10 B	0	7
8											0.05 B	0	8
											0	0	9
<u>0</u>								1.3 A			0	0	10
								1.3			0	0	<u> </u> 11
2								1.2			0	0	12
3				· · · ·				1.2			0	0	13
4	• • •				· · ·			1.3	· · · · · · · · · · · · · · · · · · ·		0	0	14
5		+		ļ				1.2			0	0	15
6								0.87			0	0	16
<u>7</u>								0.80			0	0	17
8								0.76			0	0	18
9 ⊢		· · · · ·						1.1		0.40 B	0	0	19
0						70 7 4		1.3		0.40 B	0	0	20
						38.3 A		1.9		0.40 B	0	0	21
2								2.9		0.35 B	0	0	22
3								2.2		0.35 B	0	0	23
24								1.9		0.30 B	0	0	24
6		· · · · · · · · · · · · · · · · · · ·	•					1.6		<u>0.30 B</u>	0	0	25 26
7					-			1.5		0.25 B	0	0	
28					+			1.4		0.15 B	0	0	27 28
								1.3		0.10 B	0	0	28 20
		~	1					1.2		0.10 B	0	0	30
n –		\leq		\sim	1			1.2	\sim	0.10 B	l [×]	0	31
_							·	1.2		<u> </u>			· · · · ·
AL											0.75	0	TOT
N											0.03	0	MEA
FT.											1.49	0	AC-
											0.10	0	MAX
											0	0	MIN
C-IAR)	FOR TH	E YEAR 197	2										
N DI	ISCHARGE	:			Т	YPE OF GAU	GE - R	ecording		Α -	MANUAL GA	UGE	
) I SCHARG				L	OCATION:	LAT.			В –	ICE CONDI	TIONS	
		DISCHARGE:			_		LONG.			E -	ESTIMATED		
		DISCHARGE:			Γ	RAINAGE AR				NIA T	URAL FLOW		
										IN/3 1	UKAL LUN		

Daily Discharge in Cubic Feet per second for 1972

L Т.

STATION NAME Hay River near Hay River

STATION NUMBER 070B001

1

				Daily	Discharge	in Cubic	Feet per s	second for	1972				
Day	January	February	March	April	May	June	July	August	September	October	November	December	Day
1	154 B	_80 B	55 B	53 B	138 B	10,400	4,550	2,900	1,350	535	362 B	176 B	11
2	146 B	83 B	.51 B	52 B	120 B	9,870	4,750	2.750	1.270	515	311 B	176 B	2
3	140 B	84 B	46 B	51 B	126 B	9,230	5,120	2,630	1,210	515	302 B	176 B	3
4	138 B	86 B	45 B	5 <u>0 B</u>	358 B	8.700	5.950	2.620	1,150	535	332 B	174 B	4
5	136 B	87 B	44 B	47 <u>B</u>	462 B	8,300	6.820	2,620	1,110	540	<u>344 B</u>	174 B	5
6	136 B	85 B	41 B	43 B	500 B	7,910	6.910	2,610	1,080	525	329 B	170 B	6
7	134 B	85 B	39 B	40 <u>B</u>	7,500 B	7,690	6,670	2,600	1.050	510	305 B	176 B	7
8	134 B	85 B	37 B	34 B	20,000 B	7,490	6,350	2,520	1.010	505	302 B	178 B	8
0	128 B	78 B	32 B	28 B	36,000 B	7,160	5,970	2,480	960	530	302 B	172 B	9
10	124 B	76 B	28 B	25 B	35,700 B	6,930	5,630	2,310	912	350 B	296 B	172 B	10
11	116 B	76 B	29 B	25 B	35,000	6,650	5,460	2,390	852	466 B	278 B	180 B	11
12	112 B	76 B	30 B	23 B	34,900	6,350	5,350	2,380	831	414 B	251 B	172 B	12
13	102 B	77 B	44 B	20 B	34,500	6.140	5,180	2,390	796	545 B	239 B	168 B	13
11	96 B	78 B	49 B	18 B	34,300	5,990	4,990	2,440	761	466 B	236 B	166 B	14
15	88 B	83 B	51 B	16 B	34,100	5,930	4,850	2,500	754	434 B	230 B	162_B_	15
16	89 B	85 B	54 B	15 B	33,800	5,760	4,760	2,560	747	466 B	214 B	158 B	16
17	88 B	89 B	56 B	14 B	33,800	5,510	5,990	2,560	782	434 B	214 B	160 B	17
8	83 B	92 B	53 B	13 B	33,600	5,320	7,830	2,420	704	430 B	212 B	154 B	18
19	82 B	90 B	51 B	12 B	33,100	5,230	7,710	2,340	674	430 B	206 B	153 B	19
20	80 B	89 B	48 B	15 B	31,700	5,150	7,050	2,210	656	394 B	200 B	150 B	20
21	85 B	85 B	49 B	16 B	29,400	5,000	6,370	2,090	620	347 B	200 B	147 B	21
22	88 B	78 B	· 56 B	14 B	26,600	4,900	5,710	1,980	605	344 B	200 B	143 B	22
23	96 B	71 B	62 B	14 B	23,700	4,810	5,110	1,890	585	354 B	198 B	140 B	23
24	94 B	69 B	64 B	16_B	20,900	4,730	4,680	1,830	575	344 B	196 B	137 B	24
25	94 B	70 B	59 B	20 B	18,600	4,680	4,330	1,790	560	362 B	188 B	134 B	25
26	90 B	69 B	56 B	31 B	16,700	4,650	4,000	1,710	550	281 B	186 B	131 B	26
27	82 B	64 B	53 B	48 B	15,200	4,660	3,770	1,610	545	248 B	186 B	129 B	27
28	78 B	57 B	52 B	77 B	13,900	4,590	3,500	1,520	545	230 B	184 B	126 B	28
29	76 B	57 B	51 B	122 B	13,000	4,550	3,250	1,460	545	414 B	182 B	123 B	29
30	72 B	\sim	51 B	144 B	12.000	4,550	3,050	1,440	530	335 B	178 B	120 B	30
31	77 B	\leq	51 B	> <	11,100	\square	3,010	1,380	\geq	378 B	\geq	117 B	31
	3,238	2,284	1,487	1,096	640,804	188,830	164,670	68,930	24,319	13,176	7,364	4,814	TOT
ΓAL	104	2,284	48	37	20,700	6,290	5,310	2,220	810	425	245	155	MEA
AN T		4,530	2,950	2,170	1,270,000	375,000	327,000	137,000	48,200	26,100	14,600	9,550	AC-
	6,420 154	4, 530 90	2,930	144	36,000	10,400	7,830	2,900	1,350	545	362	178	MAX
κ.	154 72	90 57	28	144	120	4,550	3,010	1,380	530	230	178	117	MIN
Ν.	12	57	20	12	120	4,550	3,010	1,500	350	250	110	111	1.1714

Daily Discharge in Cubic Feet per second for 1972

SUMMARY FOR THE YEAR 1972

MEAN DISCHARGE: 3,060 cfs.	TYPE OF GAUGE - Recording	A - MANUAL GAUGE
TOTAL DISCHARGE: 2,220,000 ac-ft.	LOCATION: LAT. 60 44 45 N	B - ICE CONDITIONS
MAXIMUM DAILY DISCHARGE: 36,000 cfs.	LONG. 115 51 20 W	E - ESTIMATED
MINIMUM DAILY DISCHARGE: 12 cfs.	DRAINAGE AREA: 18,500 sq. miles	NATURAL FLOW

1 60 1

STATION NAME Kakisa River at Outlet of Kakisa Lake

STATION NUMBER _07UC001

				Daily	Discharge	in Cubic	leet per	second for	1972				
Day	January	February	March	April	May	June	July	August	September	October	November	December	Day
1	224 B	147 B	108 B	118 B	260 B	2.850	3,400	1.760	1,170	794	659 B	578 B	11
2	216 B	146 B	108 B	124 B	264 B	3,060	3,320	1,450	1,220	880	668 B	586 B	2
3	212 B	140 B	106 B	126 B	268 B	3,300	3,210	1,760	1,200	1,170	686 B	586 B	3
4	216 B	138 B	104 B	126 B	272 B	3,380	3,130	1,620	1,050	960	704 B	578 B	4
5	200 B	138 B	102 B	132 B	276 B	3,430	3,090	1,590	1,030	910	<u>704 B</u>	<u>578 B</u>	5
6	197 B	138 B	100 B	134 B	285 B	3,490	2,980	1,600	1,030	840	695 B	556 B	6
7	194 B	134 B	94 B	138 B	290 B	3,620	2,930	1,600	1,010	840	695 B	549 B	7
8	194 B	136 B	94 B	140 B	295 B	3,600	2,820	1,540	990	880	677 B	549 B	8
9	194 B	134 B	90 B	143 B	300 B	3,920	2,610	1,550	990	920	677 B	556 B	9
0	185 B	134 B	88 B	146 B	320	4.020	2,680	1,510	980	860	677 B	549 B	10
1	182 B	132 B	88 B	155 B	350	4,120	2,620	1,470	950	850	668 B	542 B	11
2	179 B	128 B	88 B	161 B	386	4,200	2,790	1,410	950	776	668 B	535 B	12
з [178 B	126 B	86 B	167 B	446	4,100	2,450	1,380	920	785	650 B	528 B	13
4 [176 B	124 B	84 B	173 B	507	4,140	2,490	1,360	920	758	650 B	521 B	14
5	175 B	122 B	80 B	170 B	578	4,240	2,610	1,350	960	749	659 B	521 B	15
6	174 B	122 B	80 B	173 B	650	4,260	2,490	1,320	980	659	634 B	521 B	16
7	172 B	118 B	80 B	182 B	767	4,120	2,330	1,290	950	626	634 B	514 B	17
3	171 B	118 B	80 B	188 B	880	4,120	2,320	1,240	900	713	634 B	514 B	18
9	169 B	120 B	80 B	194 B	1,010	4,200	2,250	1.270	880	785	634 B	507 B	19
0	168 B	118 B	80 B	208 B	1,130	4,160	2,230	1,250	890	749	626 B	500 B	20
1	167 B	116 B	84 B	212 B	1,180	4.180	2,150	1,260	776	767	626 B	500 B	21
2	165 B	114 B	86 B	220 B	1,350	3,880	2,090	1,260	812	713 B	602 B	500 B	22
3	163 B	114 B	88 B	220 B	1,470	3,960	2,130	1,240	890	731 B	602 B	494 B	23
4	161 B	108 B	92 B	228 B	1,620	3,880	2,090	1,240	930	749 B	602 B	494 B	24
5	159 B	116 B	96 B	232 B	1,760	3,720	1,920	1,300	910	704 B	602 B	488 B	25
6	157 B	114 B	100 B	244 B	1,940	3,800	1,970	1,320	890	686 B	586 B	482 B	26
7	155 B	114 B	104 B	244 B	2,100	3,720	2,090	1,230	910	668 B	594 B	476 B	27
8	153 B	112 B	106 B	244 B	2,180	3,680	2,030	1,170	850	668 B	586 B	476 B	28
9	151 B	112 B	108 B	256 B	2,430	3,620	1,980	1,230	840	659 B	586 B	476 B	29
0	149 B	\geq	110 B	256 B	2,540	3,380	1,910	1,210	794	668 B	578 B	464 B	30
31	148 B	\sim	116 B	\sim	2,680	\searrow	1,880	1,200	\searrow	659 B	\triangleright	464 B	31
• A T	, 5,504	3,633	2,910	5,454	30,784	114,150	76,990	42,980	28,572	24,176	19,263	16,182	TO
АL N	178	125	94	182	993	3,810	2,480	1,390	922	780	642	522	ME
א: ריים	1,090	7,210	5,770	10,800	61,100	226,000	153,000	85,300	56,700	48,000	38,200	32,100	AC
r 1	224	147	116	256	2,680	4,260	3,400	1,760	1,170	1,170	704	586	MA
	148	112	80	118	2,080	2,850			776	626	578	464	MI
!.	140	114	00	110	200	2,050	1,880	1,170	//0	020	5/8	404	

Daily Discharge in Cubic Feet per second for 1972

SUMMARY FOR THE YEAR 1972

MEAN DISCHARGE: 1,010 cfs .	TYPE OF GAUGE - Recording	A - MANUAL GAUGE
TOTAL DISCHARGE: 735,000 ac-ft.	LOCATION: LAT. 60 55 00 N	B - ICE CONDITIONS
MAXIMUM DAILY DISCHARGE: 4,260 cfs.	LONG.117 25 00 W	E - ESTIMATED
MINIMUM DAILY DISCHARGE: 80 cfs.	DRAINAGE AREA: 5,770 sq. miles	NATURAL FLOW

STATION NAME Liard River at Fort Liard

STATION NUMBER 10ED001

				Daily	Discharge	In Cabie	reet per s	second for	1372				
Day	January	February	March	April	May	June	July	August	September	October	November	December	Day
. 1	9.050 B	7.040 B	6.450 B	7.050 B	16,000 B	290,000	193,000	145,000	70,100	52,400	32,500 B	17,200 B	11
2	9,000 B	6,950 B	6,420 B	7,100 B	18,000 B	345,000	175,000	135,000	67,800	56,600	30,000 B	17,400 B	2
3	8,950 B	6,910 B	6,410 B	7,200 B	21,500 B	353,000	159,000	135,000	.65,400	63,300		17,600 B	
4	8,900 B	6,820 B	6,400 B	7,250 B	25,000 B	349,000	148,000	133,000	63,100	71,700		17,600 B	
5	8.850 B	6,730 B	<u>6,400 B</u>	7,350 B	27,500 B	313,000	142,000	128,000	61,000	75,000		17,500 B	
6	8,800 B	6,640 B	<u>6,350 B</u>	7,400 B	32,000 B	254,000	140,000	123,000	60,800	73,900		<u>17,400 B</u>	
7	8,750 B	6,590 B	6,300 B	7,500 B	36,000 B	214,000	137,000	121,000	60,000	73,500		17,200 B	
8	8,650 B	6,550 B	6,300 B	7,600 B	42,000 B	196,000	134,000	122,000	61,000	74,700		17,000 B	
0	8,550 B	6,500 B	6,270 B	<u>7,790 B</u>	48,000 B		130,000	119,000	63,100	74,200		<u>16,800 B</u>	~
10	<u>8,450 B</u>	<u>6,460 B</u>	6,250 B	7,900 B	53,000 B	190,000	127,000	114,000	63,400	74,600			_
11	8,400 B	6,410 <u>B</u>	6,260 B	8,000 B	60,000 B	195,000	124,000	111,000	62,400	70,800		16,400 B	-1 1
12	8,350 B	6,380 B	6,270 B	8,100 B	69,000 B	219,000	125,000	109,000	61,200	65,200		16,200 B	
13	8,300 B	6,320 B	6,280 B	8,200 B	<u>79,000 B</u>	247,000	123,000	108,000	60,100	61,200		16,000 B	
14	8,250 B	<u>6,280 B</u>	6,290 B	8,300 B	90,000 B	264,000	115,000	109,000	59,600	59,400		15,700 B	-
15	8,150 B	6,240 B	6,300 B	8,400 B	100,000 B	274,000	107,000	107,000	59,500	59,200		15,400 B	
16	8,050 B	6,190 B	6,330 B	8,600 B	112,000 E	277,000	104,000	98,900	59,200	58,500		15,200 B	7 F
17	7,950 B	6,150 B	6,360 B	8,800 B	125,000 E	280,000	102,000	92,700	59,300	57,200		15,000 B	
18	7,850 B	6,100 B	6,390 B	9,000 B	140,000 E	301,000	98,800	88,800	61,600	55,400		14,700 B	-
19	7,750 B	6,080 B	6,400 B	9,200 B	155,000 E	290,000	95,200	88,900	66,300	54,100		14,400 B	
20	7,650 B	6,100 B	<u>6,420 B</u>	9,400 B	170,000 E	262,000	92,500	96,300	68,200	_53,200		14,200 B	
21	7,600 B	6,110 B	6,450 B	9,700 B	190,000 E	236,000	92,700	122,000	66,400	52,100		14,000 B	
22	7,550 B	6,150 B	6,500 B	10,000 B	210,000 E	214,000	93,300	139,000	65,000.	51,000		<u>13,800 B</u>	
23	7,500 B	6,200 B	6,550 B	10,400 B	228,000 E	206,000	109,000	126,000	62,700	49,600		13,600 B	
24	7,450 B	6,250 B	6,600 B	10,800 B	223,000 A	237,000	119,000	110,000	60,400	48,200	1.0	<u>13,300 B</u>	- 1 I
25	7,400 B	6,300 B	6,650 B	11.200 B	212,000	242,000	129,000	99,800	58,200	47,600		13,000 B	
26	7,360 B	6,350 B	6,700 B	11,800 B	178,000	234,000	151,000	92,700	56,000	47,000B		12,800 B	
27	7,270 B	6,400 B	6,800 B	12,400 B	154,000	231,000	183,000	87,300	53,800	45,000B		12,600 B	
28	7,220 B	6,400 B	6,8 <u>50 B</u>	13,000 B	146,000	228,000	195,000	83,100	52,800	42,500B		12,400 B	
29	7,180 B	6,400 B	6,900 B	13,800 B	155,000	222,000	190,000	79,100	51,600	40,000B		12,200 B	
30	7,130 B	$\geq \leq$	6,950 B	14,600 B	186,000	212,000	175,000	75,500	50,900	<u>37,500B</u>	17,000 B	11,900 B	1 1
31	7,090 B	> <	7,000 B	>	235,000	\rightarrow	161,000	72,400	\geq	35,000B	$\geq \leq$	11,700 B	31

Daily Discharge in Cubic Feet per second for 1972

TOTAL

MEAN

AC-FT.

MAX.

MIN.

SUMMARY FOR THE YEAR 1972

66,200 cfs. MEAN DISCHARGE: TOTAL DISCHARGE: 48,000,000 ac-ft. MAXIMUM DAILY DISCHARGE: MINIMUM DAILY DISCHARGE:

TYPE OF GAUGE - Recording LOCATION: LAT. 60 14 35 N LONG, 123 28 45 W DRAINAGE AREA: 85,700 square miles A - MANUAL GAUGE B - ICE CONDITIONS E - ESTIMATED NATURAL FLOW

1 62 Т

TOTAL

MEAN

AC-FT.

MAX.

MIN.

STATION NAME Liard River near the Mouth

STATION NUMBER 10ED002

ay Jo	onuary	February	March	April	May	June	یاںلے	August	September	October	November	December	Doy	
1		_				312	270	253	92.4	61.9	38.5 B	25.1 B		
2						396	245	223	88.8	61.5	37.0 B	25.4 B	2	
3						473	223	198	86.1	63.0	35.5 B	25.8 B	3	
4						482	213	184	83.2	66.5	34.0 B	25.9 B	4	
5						456	201	184	80.8	72.6	31.0 B	26.0 B	5	
6						408	185	178	79.4	79.2	28.0 B	25.9 B	6	
7						348	176	166	77.3	81.4	25.0 B	25.8 B	7	
8						318 A	169	158	75.8	80.8	23.0 B	25.5 B	8	
۹						313 E	168	158	75.4	80.4	22.0 B	25.1 B	9	
0						309 E	, 177	158	75.6	80,4	21.2 B	24.8 B	10	
1						305 E	168	151	76.7	80.0	21.0 B	24.5 B	11	
2						301 E	158	145	76.5	78.2	20.5 B	24.0 B	12	
3						296 A	153	141	75.2	74.6	20.4 B	23.7 B	13	
4						308	150	137	73.9	70.6	20.2 B	23.3 B	14	
5						327	146	135	72.8	67.5	20,0 B	23.0 B	15	
6						340	139	133	72.2	66.5	20.0 B	23.6 B	16	
7						342	135	128	72.6	66.3	20.2 B	22.0 B	17	
8						337	137	121	73.1	65.6	20.4 B	21.7 B	18	
9						348	133	116	73.1	64.6	20.5 B	21.2 B	19	
20						360	127	114 .	75.2	62.7	20.8 B	21.0 B	20	
21						336	122	120	77.7	61.7	21.0 B	20.6 B	21	
2						. 313	123	134	78.6	61.0	21.3 B	20.4 B	22	
23						286	182	153	77.1	60.0	21.8 B	20.2 B	23	
24						259	254	153	75.4	58.9	22.2 B	20.0 B	24	
5						259	253	· 139	73.1	56.0 B	22.8 B	19.9 B	25	
26						279	244	126	70.4	54.0 B	23.2 B	19.8 B	26	
7					217 A	284	288	118	68.1	49.0 B	23.5 B	19.7 B	27	
8					206	308	357	111	66.3	45.0 B	24.0 B	19.5 B	28	
9		1			197	312	347	105	64.4	43.0 B	24.5 B	19.4 B	29	
0	1	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$			213	293	298	100	63.0	41.0 B	25.0 B	19.2 B	30	
1		$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		\geq	257	\square	276	96.4	\geq	40.0 B	\triangleright	19.0 B	31	
						10008000	6217000	4536400	2270200	1993900	228500	701000	TOI	
AL						334000	201000	146000	75700	64300	24300	22600	MEA	
N							12300000	9000000	4500000	3950000	1440000	1390000	AC-	
FT.						482000	357000	253000	92400	81400	38500	26000	MA)	
						259000	122000	96400	63000	40,000	20000	19000	MIN	
Ι.						100000	10000	20100	00000	10,000	20000	10000	THE P	
MARY I	FOR THE	YEAR 197	2											
EAN DISCHARGE:						TYPE OF CAUGE - Descriter				A – MANUAL GAUGE				
TAL DISCHARGE:					1	IYPE OF GAUGE - Recording LOCATION: LAT.								
IAL DISCHARGE: XIMUM DAILY DISCHARGE:					<u>لا</u>	UCATION:	1471.			B - ICE CONDITIONS E - ESTIMATED				

Daily Discharge in Cubic Feet per second for 1972

MAXIMUM DAILY DISCHARGE: MINIMUM DAILY DISCHARGE:

LONG. DRAINAGE AREA:

ιL ĽЭ NATURAL FLOW

DAILY GAUGE HEIGHTS

Station Name <u>Mackenzie River below Blackwater River</u> Daily Elevations or Gauge Heights in Feet for the Year 19<u>72</u>

.

_____Station No <u>10HC002</u>

1

Day	January	February	March	April	May	June	July	August	September	October	November	December	Do
1						76.97E	77.87E	77.32E	68.94				_
2						77.50E	77.38E	76.27E	68,71				
з[78.82E	76.73E	76,08	68.60				_
4						80.40E	76.12E	75.30	68.38				
5						81.69E	74.73E	74,52	68,11				
6						81.30E	74.00E	73.81	67.89				
7	•					80.50E	73.25E	73.35	67,69				
8 Г						79.45A	72.85E	72.98	67.42				
۹ [78.50E	72.64E	72.52	67.34				
0						77.00E	72.55E	72.19	67.27				_
1						76.74E	72,49E	72,00	67.23				
2						76,44E	72.38E	71.89	67.22				
зΓ						76.15E	72.05E	71.66	67.23				
4 [76.32E	71.80E	71.34	67.20				
5						76.70E	71.60E	. 71.11	67.15				4
6						77.35E	71.42E	70.90	67.08				
7						77.70E	71.25A	70.74	67.02				
8						77.82E	71.09	70.58	66.98				
9						77.96E	70.93	70.42	67.02				
0						78.20E	70.83	70.36	67.03				_
1						79,29E	70.76	70.48	67.04				
2						79.49E	71.19	70,21	67.13				
зГ						78.50E	76.24	70.13	67.25				
4						77.22E	79.40	70.45	67.35				_
5						75.55E	78,30	70.98					
16						75,55E	77.93	71.11					
7	_					76.10E	77.82	70,73					
8						77.21E	78.15	70.18					
9						77.52E	78.26	69.70					_
0 T		\sim				77.83E	78.88	69.46					_
		\sim		\searrow		\sim	78.39E	69.21	\geq		\triangleright		
	Summary	Summary Maximum daily gauge height, Not Determined _{ft at} on						ted by	Checked by	1			
	For the Peri- (June 1 to Sept.2	1 Minimum daily elevation, 66.98 frat on Sept. 18/					it.	∘⊓ Sep	ot. 18/72	Do	te	Date	

64 -

1

DAILY GAUGE HEIGHTS

Station Name <u>Mackenzie River at Camsell Bend</u>

_Station No _10GB002

Daily Elevatians or Gauge Heights in Feet far the Year 19_72_

Day	January	February	March	April	May	June	yluL	August	September	Octaber	November	December	D∘y
1							81.72	81,53	75.40	73.23	72.66		1
2							81.23	80.84	75.30	73.15	72.45		2
3							80,52	80.17	75.11	73.11	72.39A		3
4							/79.90	79.59	74.93	73.10			4
5							79.51	79.07	74.76	73.08			5
6						83.77A	79.20	78.81	74.58	73.16			6
7						83.27	78.76	78.56	74.46	73.29			7
8						82.34	78.43	78.20	74.38	73.47			8
9						81.62	78.31	77.92	74.35	73.50			9
10						81.11	78.29	77.79	74.32	73.49			10
11						80.94	78.37	77.75	74.33	73.49			11
12						80.82	78.21	77.60	74.34	73.45			12
13						80.72	77.96	77.38	74.32	73.41			13
14						81.01	77.73	77.23	74.27	73.24			14
15						81.35	77.62	77.08	74.22	73.10			15
16						81.73	77.50	76.97	74.16	72.96	ſ		16
17						82.04	77.32	76.87	74.17	72.86			17
18						82.10	77.17	76.75	74.20	72.85			18
19						82.04	77.12	76.64	74.19	72.84			19
20		T				82.27	77.02	76.70	74.21	72.81			20
21						83.13	76.90	76.51	74.30	72.73			21
22						82.49	78.72	76.50	74.39	72.64			22
23						81.74	81.94	76.79	74.45	72.59			23
24					······································	81.06	81.71	77.26	74.42	72,58			24
25						80.41	81.98	77.38	74.30	72.56			25
26						80.38	82.02	77.01	74.16	72.42		· · · · · ·	26
27						80.99	82.42	76.57	73.91	72.37			27
28						81.48	82.59	76.22	73.70	72.59			28
29						81.65	83.42	75.96	73.52	72.69			29
30		\sim		-		81.84	83.35	75.73	73.36	72.71			30
31		\sim		\sim		\sim	82,40	75.55	\sim	72.70	\sim		31
	Summary For the Yea For the Peri		imum daily	neous elevation, gauge hei	ght,	83.85 ft a	+ 1845 MST	' on Ju	ne 6	Compu Da		Checked by Date	,
	(to) ^{Mini}	instantan mum daily	ieous elevatian, gauge hei	ght,	72.29 ft a	+ 1025 MST	' an NO	vember 3				

R43 (Dec 72)

A - Partial Day Record

L

DAILY GAUGE HEIGHTS

Station Name _____Mackenzie River at Fort Good Hope

Station No. <u>10LD001</u>

1 l'

Day	January	February	March	April	May	June	July	August	September	October	November	December	D
1							20.99	22,14	9.50	5.45			
2							21.18	21,41	9.17	5.14			
3 L							21.01	20.32	8.80	4.85			
4 L							20.53	19.32	8.75	4.52			
5							19,62	18.29	8.46	4.52			
6							18,44	17.25	8.23	4,26			
7							17.11	16.20	7.92	4.17			
8							16.23	15.22	7.57	4.15			
٩							15.55	14.44	7.31	4.14			
0							14.83	14.00	7.07	4.17B			
۱L							14.18	13.62	6.91	4.23B			
2			- 01				13.61	13.12	6.75	4.37B			
з [_			13.25	12.75	6.66	4.40B			
4							12.95	12.40	6.66	4.42B			
5							12.68	12.11	6,70	4.37B			
۶L						19.38A	12.40	11.74	6.69	4.55B			
7 L						19.34	12.24	11.42	6.72	4.22B			7
8						19.16	12.05	11.14	6.74	4,18B			
۹ [19.12	11.88	10.99	6.72	4.42B			
0						19.43	11.65	10.88	6.56	4.55B			
ī						19.66	11.37	10.84	6.45	4,75B			
2 L						20.35	11.38	10.95	6,39	4,90B			
3						21.66	11.90	10.91	6.28				
۹L						21.34	14.29	10.61	6.20				
5						20.32	18.82	10.29	6.18				
5 L						19.20	21.57	10.26	6.31				
7						18.54	21,55	10.49	6.25				
8 [18.34	20.67	10.71	6.15				1:
9 F						19.43	20.82	10.66	6.02				1:
οT		$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$				20.62	21.46	10.29	5.78				
۱ſ		\sim	:	\searrow		\rightarrow	22.10	9.83	\geq		$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$		
	Summary For the Period		num instantar	neous gauge heig	ht,	22.28 ft a	1 22:30	on Jul	ly 31/72	Comput		Checked by Date	, ,
	(June 16 to Oct. 22	Minim	ium daily	gauge heig	ht,	4.14 ft a	1	on Oct	. 9/72		-	Date	

Daily Elevations or Gauge Heights in Feet for the Year 19_72_

Т

STATION NAME Mackenzie River near Fort Providence

STATION NUMBER 10FB001

.

78.600 B 66,900 B 59,600 B 56,100 B 65,900 B 189,000 A 225,000 C 121,000 191,000 132,000 B 95,000 B 77.800 B 66,200 B 59,200 B 56,000 B 66,00 B 193,000 229,000 221,000 215,000 155,000 122,000 187,000 128,000 125,000 125,000 122,000 193,000 155,000 172,000 110,000 B 95,000 155,000 112,000 B 95,000 B 95,000 155,000 112,000 B 95,000 155,000 112,000 B 95,000 155,000 112,000 B 95,000 B 95,000 155,000 B 95,000 155,000 B 95,000 155,000 112,000 B 95,000 116,000 B 95,000 B 95,000 112,000 B 95,000 116,000 B 95,000 B 95,000 155,000 B 95,000 155,000 B 95,000 B 95,000 155,000 B 95,000 B 96,000 B 95,000 B 96,000 B 96,000 B<					Daily	Discharge	in Cubic	Feet per s	econd for	1972				
2 78.200 8.66.200 8 99.000 122,000 229,000 229,000 122,000 102,000 122,000 102,000 122,000 122,000 102,000 122,000 102,000 122,000 102,000 122,000 102,000 102,000 102,000 102,000 102,000 102,000 102,000 102,000 102,000 102,000 <th>Day</th> <th>January</th> <th>February</th> <th>March</th> <th>April</th> <th>May</th> <th>June</th> <th>July .</th> <th>August</th> <th>September</th> <th>October</th> <th>November</th> <th>December</th> <th>Do,</th>	Day	January	February	March	April	May	June	July .	August	September	October	November	December	Do,
2 78.200 8.66,200 8 59,400 125,400 122,400 125,400 122,400 12,400 183,500 12,400	1	78,600 B	66,900 B	59,600 B	56,100 B	63.900 B	189.000A	226.000 E	225 000	213 000	191 000	132 0000	95.000 B	
3 77.800 8.66,200 8 59,200 8.56,200 8.6,200 8.56,200 8.72,300 222,000 222,000 198,000 155,000 112,000 82,000 82,000 82,000 82,000 82,000 82,000 82,000 82,000 122,000 122,000 122,000 112,000 112,000 82,500 <t< td=""><td>2</td><td>78,200 B</td><td>66,600 B</td><td>59,400 B</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2	78,200 B	66,600 B	59,400 B										
4 77,300 B (65,000 B (50,000 B (70,300 B (95,000 228,000 225,000 125,000 112,000 85,000 B (5,800 B (5,900 B (7,200 112,000 85,500 B (7,200 112,000 85,500 B (7,200 112,000 85,500 B (7,200 112,000 85,200 B (7,200 112,000 112,000 85,500 B (7,200 112,000	3	77,800 B	66.200 B	59,200 B	56,000 B	8 66.900 B	189,000							13
5 76,800 Bi65,800 B 56,000 B 274,000 222,000 222,000 207,000 172,000 112,0008 85,500 B 75,800 Bi65,600 B 56,000 B 56,000 B 74,500 B 209,000 222,000 207,000 175,000 112,0008 85,000 B 75,400 Bi65,000 B 56,200 B 80,600 B 212,000 234,000 218,000 207,000 175,000 108,0008 B 100,008 B 74,600 B 44,000 234,000 218,000 202,000 171,000 100,008 77,000 117,000 100,008 77,000 100,008 77,000 B 74,400 B 64,800 B 57,400 B 210,000 234,000 221,000 201,000 171,000 100,008 77,000 B 74,000 B 74,000 B 74,000 B 74,000 B 74,000 B 74,000 B <td>4</td> <td>77,300 B</td> <td>66,000 B</td> <td>59,000 B</td> <td>56,000 B</td> <td>70,300 B</td> <td>195,000</td> <td>228,000</td> <td>223,000</td> <td>198,000</td> <td></td> <td>119.000B</td> <td>89,000 B</td> <td>4</td>	4	77,300 B	66,000 B	59,000 B	56,000 B	70,300 B	195,000	228,000	223,000	198,000		119.000B	89,000 B	4
6 76,200 B (5,200 B (5	5	76.800 B	65.800 B	58.800 B	56.000 B	72.600 B	204,000	229,000						5
7 75,800 B (55,200 B (55,500 B (25,500 221,000 221,000 201,000 172,000 192,000 174,000 B (55,500 B (55,500 B (20,500 231,000 222,000 201,000 172,000 192,000 172,000 192,000 172,000 192,000 172,00	6	76,200 B	65,600 B	58,600 B	56,000 B	3 74,500 B	210,000	231.000	224,000	207,000				6
B 75,400 B 65,200 B 80,600 B 212,000 231,000 222,000 207,000 178,001 108,000 B 100,000 B 100,000 210,000 218,000 205,000 178,001 105,000 B 105,000 B 105,000 B 105,000 B 105,000 105,000 B 100,000 218,000 205,000 128,000 202,000 179,000 105,000 77,000 B 1 74,200 B 57,600 B 56,500 B 90,800 231,000 221,000 201,000 170,000 99,000 74,000 B 73,400 B 53,400 B 57,100 B 56,900 B 100,000 231,000 221,000 201,000 172,000 95,000B 70,000 100,000 172,000 95,000B 70,000 100,000 172,000 100,000 172,000 100,000 172,000 100,000 172,000 100,000 172,000 10	7	75,800 B	65,200 B	58,400 B	56,100 B	3 77,700 B	209,000	232,000						77
⁹ 75,000 B 64,800 B 55,000 B 56,300 B 83,700 B 210,000 235,000 218,000 202,000 175,000 105,000 B 77,000 B 107,000 B 77,000 B 107,000 B 57,600 B 56,500 B 90,800 B 208,000 233,000 221,000 201,000 170,000 99,000B 74,000 B 73,000 B 73,000 B 73,000 B 57,000 B 57,200 B 56,500 B 102,000 B 215,000 232,000 221,000 201,000 170,000 99,000B 74,000 B 73,000 B 73,000 B 57,200 B 57,200 B 56,700 B 102,000 B 215,000 232,000 221,000 201,000 170,000 99,000B 74,000 B 73,000 B 73,000 B 57,200 B 57,200 B 56,200 B 110,000B 215,000 232,000 221,000 213,000 172,000 95,000B 70,000 B 73,000 B 72,600 B 63,600 B 57,200 B 56,200 B 110,000B 215,000 232,000 221,000 213,000 172,000 95,000B 70,000 B 73,000 B 72,000 B 56,900 R 57,100 B 145,000B 217,000 231,000 216,000 204,000 177,000 94,000B 69,800 B 17,200 B 63,000 B 56,900 R 57,100 B 145,000B 219,000 232,000 216,000 204,000 177,000 94,000B 69,800 B 17,1800 B 62,800 B 56,900 R 57,200 R 165,000 R 220,000 219,000 219,000 208,000 156,000 93,500B 69,500 R 17,1800 B 62,400 B 56,800 R 57,200 R 165,000 R 220,000 219,000 219,000 208,000 169,000 93,500B 69,800 R 17,1800 B 62,400 B 56,800 R 57,200 R 154,000 R 220,000 219,000 219,000 208,000 169,000 93,500B 69,800 R 17,1800 B 61,800 B 56,700 R 57,500 R 124,000 R 216,000 230,000 219,000 208,000 156,000 93,500B 70,500 R 20,000 R 14,000 R 56,600 R 57,500 R 124,000 R 216,000 232,000 219,000 208,000 173,000 95,000R 71,500 R 20,000 R 14,000 R 56,600 R 57,500 R 124,000 R 216,000 232,000 219,000 208,000 173,000 96,000R 71,500 R 20,000 R 14,000 R 56,600 R 57,500 R 124,000 R 216,000 232,000 219,000 213,000 176,000 R 96,000 R 7,500 R 22,000 213,000 173,000 96,000 R 7,500 R 20,000 R 14,000 R 56,600 R 57,500 R 124,000 R 222,000 213,000 213,000 176,000 R 56,000 R 7,500 R 22,000 213,000 213,000 176,000 R 56,000 R 7,000 R 124,000 R 222,000 233,000 213,000 173,000 96,000 R 7,000 R 124,000 R 56,500 R 57,500 R 124,000 R 222,000 232,000 213,000 173,000 96,000 R 7,000 R 20,000 R 140,000 R 56,500 R 57,500 R 124,000 R 224,000 213,000 173,000 96,000 R 7,000 R 124,000 R 56,50	8	75,400 B	65,000 B	58,200 B	56,200 B	80,600 B	212,000	231,000	222,000	207.000			,	8
0. 74,600 B 64,500 B 57,800 B 56,400 B 7,300 B 208,000 233,000 221,000 100,000 171,000 100,000 76,000 B 1 74,200 B 64,000 B 57,400 B 56,500 B 90,800 B 208,000 233,000 221,000 201,000 171,000 99,000 76,000 B 2 73,800 B 63,800 B 57,400 B 56,700 B 102,000B 215,000 232,000 222,000 201,000 171,000 99,000B 74,000 B 4 73,000 B 63,400 B 57,100 B 56,700 B 110,000B 219,000 231,000 219,000 213,000 172,000 95,000B 70,000 B 5 72,600 B 63,200 B 57,100 B 57,000 B 121,000B 213,000 216,000 204,000 177,000 93,500B 69,500B B 7 72,000 B 62,400 B 56,700 B 157,000B 220,000 216,000 204,000 177,000 93,500B 69,500 B 7 72,000 B 62,400 B 57,500	9	75,000 B	64,800 B	58,000 B	56,300 B	8 83,700 B	210,000	234,000		205,000		105,000B	79.000 B	9
1 74,200 B 64,000 B 57,500 B 90,800 B 208,000 233,000 221,000 201,000 171,000 100,000 76,000 B 2 73.800 B 63,800 B 57,400 B 56,600 B 93,500 B 206,000 231,000 222,000 201,000 170,000 99,000B 74,000 B 4 73.800 B 63,600 B 57,200 B 56,700 B 102,000B 212,000 232,000 221,000 205,000 171,000 96,000B 71,000 B 72,200 B 63,000 B 55,700 B 121,000B 212,000 217,000 203,000 177,000 93,500B 69,500B B 71,800 B 62,800 B 57,200 B 124,000B 222,000 219,000 205,000 173,000 93,500B 69,500B B 71,800 B 5,600 B 57,500	10	74,600 B	64,500 B	57,800 B	56,400 B	87,300 B	206,000	235.000	218,000					10
2 73.800 8 57.400 8 56.600 8 93.500 221.000 221.000 221.000 201.000 170.000 99.0008 74.000 B 3 73.400 8 63.600 8 57.200 8 56.700 B 102.0008 215.000 232.000 222.000 201.000 168.000 97.0008 73.000 B 5 72.600 8 63.200 8 57.100 8 56.900 B 116.0008 217.000 231.000 213.000 172.000 95.0008 70.0008 8 6 72.200 B 63.000 B 56.900 B 57.000 B 121.0008 214.000 231.000 217.000 203.000 176.000 94.0008 69.800 B 7 72.000 B 62.800 B 57.200 B 165.0008 217.000 229.000 217.000 205.000 173.000 93.5008 69.500 B 1 <td< td=""><td>1</td><td>74,200 B</td><td>64,000 B</td><td>57,600 B</td><td></td><td></td><td></td><td>233,000</td><td></td><td>201,000</td><td></td><td></td><td></td><td>11</td></td<>	1	74,200 B	64,000 B	57,600 B				233,000		201,000				11
4 73,000 B 63,400 B 57,100 B 56,800 B 110,000 B 219,000 231,000 219,000 213,000 171,000 96,000 B 71,000 B 57,200 B 63,200 B 55,900 B 156,900 B 110,000 B 217,000 231,000 219,000 213,000 172,000 95,000 B 70,000 B 56,900 B 57,000 B 156,900 B 57,100 B 145,000 B 216,000 231,000 172,000 93,500 B 95,000 B 94,000 B 69,800 B 57,100 B 145,000 B 229,000 217,000 205,000 173,000 93,000 B 69,800 B 57,100 B 145,000 B 220,000 230,000 217,000 205,000 173,000 93,000 B 69,800 B 57,200 B 215,000 B 219,000 205,000 173,000 93,000 B 69,800 B 57,200 B 214,000 B 216,000 229,000 219,000 208,000 176,000 95,500 B 70,000 B 25,000 B 71,000 B 56,500 B 57,500 B 224,000 B 216,000 232,000 213,000 176,000 95,500 B 72,000 B 55,500 B 72,000 B 25,500 B 72,000 B 56,500	2								222,000	201,000	170,000	99.000B	74,000 B	12
5 72,600 B 63,200 B 57,000 B 56,900 B 116,000 B 217,000 231,000 213,000 172,000 95,000 B 70,000 B 172,000 95,000 B 170,000 B 231,000 171,000 203,000 176,000 93,500 B 69,500 B 171,000 93,500 B 69,500 B 171,000 172,000 93,500 B 69,500 B 171,000 172,000 93,500 B 69,500 B 171,000 B 172,000 93,500 B 69,500 B 171,000 B 172,000 93,500 B 69,500 B 171,000 B 172,000 B 93,500 B 69,500 B 171,000 B 172,000 B 93,500 B 69,500 B 171,000 B 172,000 B 93,500 B 171,000 B 172,000 B 172,000 B 93,500 B 171,000 B 172,000 B	3	<u>73,400 B</u>	63,600 B						222,000	201,000	168,000	97.000B	73,000 B	13
6 72,200 B 63,000 B 56,900 B 57,000 B 121,000 231,000 231,000 203,000 176,000 94,000 69,800 B 7 72,000 B 62,800 B 56,900 B 57,100 B 145,000 232,000 216,000 204,000 177,000 93,500 69,500 B 8 71,800 B 62,400 B 56,800 B 77,000 B 229,000 219,000 205,000 173,000 93,500 69,500 B 9 71,000 B 62,400 B 56,700 B 57,500 B 124,000 230,000 219,000 208,000 172,000 95,000 B 1,500 B 2 70,000 B 61,400 B 56,500 B 57,700 B 214,000 232,000 218,000 213,000 173,000 96,000 73,000 B 24,000 232,000 218,000 173,000 96,000 73,000 B 60,600 B 56,500 <td>4</td> <td>73,000 B</td> <td>63,400 B</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>205,000</td> <td></td> <td>96.000B</td> <td>71.000 B</td> <td>14</td>	4	73,000 B	63,400 B							205,000		96.000B	71.000 B	14
7 7 72,000 B 56,900 B 57,100 B 145,000 219,000 232,000 216,000 204,000 177,000 93,500 69,500 B 171,800 B 62,400 B 56,800 B 57,200 B 165,000 220,000 220,000 217,000 205,000 173,000 93,5008 69,800 B 170,000 B 62,000 B 56,800 B 57,300 B 155,000 220,000 219,000 208,000 169,000 93,5008 70,000 B 0 70,800 B 56,700 B 57,400 B 214,0008 216,000 230,000 219,000 208,000 172,000 95,0008 71,500 B 270,000 B 61,400 B 56,600 B 57,700 B 214,0008 216,000 232,000 218,000 173,000 173,000 96,0008 73,000 B 20,000 232,000 218,000 173,000 173,000 96,0008 74,000 B 26,600 B 60,600 B 66,000 </td <td>5</td> <td>72,600 B</td> <td>63,200 B</td> <td>57,000 B</td> <td></td> <td></td> <td></td> <td>231,000</td> <td></td> <td>213,000</td> <td></td> <td>95,000B</td> <td>70,000 B</td> <td>15</td>	5	72,600 B	63,200 B	57,000 B				231,000		213,000		95,000B	70,000 B	15
8 71,800 B 62,400 B 56,800 B 57,200 B 165,000 B 220,000 229,000 217,000 205,000 173,000 93,000 B 69,800 B 171,000 B 62,000 B 56,800 B 57,200 B 195,000 B 220,000 230,000 219,000 208,000 169,000 93,000 B 109,000 B 169,000 93,500 B 70,000 B 109,000 207,000 168,000 94,000 B 70,000 B 172,000 B 169,000 94,000 B 70,000 B 172,000 B 169,000 94,000 B 70,000 B 172,000 B <t< td=""><td>6</td><td></td><td></td><td></td><td></td><td>121,000B</td><td>216,000</td><td></td><td>217,000</td><td>203,000</td><td></td><td>94,000B</td><td>69,800 B</td><td>16</td></t<>	6					121,000B	216,000		217,000	203,000		94,000B	69,800 B	16
9 71,000 B 62,000 B 56,800 B 57,300 B 195,000 B 220,000 230,000 219,000 208,000 169,000 93,500 B 70,000 B 1 0 70,400 B 61,800 B 56,700 B 57,500 B 218,000 B 219,000 207,000 168,000 94,000 B 70,500 B 2 1 70,400 B 61,600 B 56,700 B 57,500 B 224,000 B 216,000 232,000 219,000 208,000 172,000 95,000 B 71,500 B 2 2 70,000 B 61,400 B 56,600 B 57,700 B 214,000 B 216,000 232,000 218,000 213,000 176,000 95,500 B 73,000 B 206,000 B 219,000 232,000 216,000 208,000 173,000 96,000 B 73,000 B 206,000 B 209,000 215,000 191,000 173,000 96,000 B 74,000 B 22 22,000 234,000 215,000 184,000 172,000 96,500 B 74,000 B 22 200 234,000 215,000 184,000 160,000 B 56,500 B 58,00 B 190,000 E 22,000	7						219,000			204,000		93,500B	69,500 B	17
0 70,800 B 61,800 B 56,700 B 57,400 B 218,000 B 229,000 219,000 207,000 B 168,000 94,000 B 70,500 B 2 1 70,400 B 61,600 B 56,700 B 57,500 B 224,000 B 216,000 230,000 219,000 208,000 172,000 95,000 B 71,500 B 2 2 70,000 B 61,400 B 56,600 B 57,700 B 214,000 B 216,000 232,000 218,000 213,000 172,000 95,500 B 72,000 B 69,600 B 61,400 B 56,600 B 57,900 B 206,000 B 219,000 232,000 216,000 208,000 173,000 96,000 B 74,000 B 69,600 B 60,800 B 56,500 B 58,100 B 199,000 B 220,000 232,000 215,000 191,000 173,000 96,000 B 74,000 B 26,000 B 60,600 B 56,500 B 58,100 B 194,000 B 222,000 235,000 215,000 184,000 160,000 B 96,500 B 74,000 B 26,000 B 60,000 B 66,000 B 56,200 B 58,500 B 190,000 E 222,000 235,000 204,000	8						220,000			205,000				18
1 70,400 61,600 56,700 57,500 224,000 216,000 230,000 219,000 208,000 172,000 95,0008 71,500 8 2 2 70,000 61,400 B 56,600 B 57,700 B 214,0008 216,000 232,000 218,000 213,000 176,000 95,5008 72,000 R 2 3 69,800 B 61,000 B 56,600 B 57,900 B 206,0008 219,000 232,000 216,000 208,000 173,000 96,0008 73,000 R 2 4 69,600 B 60,600 B 56,500 B 58,100 B 199,000 222,000 234,000 215,000 191,000 173,000 96,0008 74,000 R 5 69,200 B 60,600 B 56,400 B 58,500 B 190,000E 222,000 235,000 209,000 184,000 160,000 96,500B 76,000 R 76,800 860,400 B 56,400 B 59,5	19											93,500B	70,000 B	19
2 70,000 B 61,400 B 56,600 B 57,700 B 214,000 B 216,000 232,000 218,000 213,000 176,000 95,500 B 72,000 B 2 3 69,800 B 61,000 B 56,600 B 57,900 B 206,000 B 219,000 232,000 216,000 208,000 173,000 96,000 B 73,000 B 2 96,000 B 69,600 B 60,600 B 56,500 B 58,100 B 199,000 B 220,000 232,000 215,000 191,000 173,000 96,000 B 74,000 B 2 5 69,200 B 60,600 B 56,500 B 58,100 B 199,000 B 222,000 234,000 215,000 184,000 172,000 96,500 B 76,000 B 2 6 68,800 B 60,400 B 56,400 B 58,500 B 190,000 E 222,000 235,000 209,000 184,000 160,000 B 96,500 B 7,000 B 2 2 000 233,000 204,000 182,000 154,000 B 97,000 B 2 000 B 2 000 B 2 000 B 06,000 B 96,000 B 9,000 B 2 000	20									207,000		94,000B	70,500 B	20
3 69.800 B 61.000 B 56.600 B 57.900 B 206.000 B 219.000 232.000 216.000 208.000 173.000 96.000 B 73.000 B 24.000 B 69.600 B 60.800 B 56.500 B 58.100 B 199.000 B 220.000 232.000 215.000 191.000 173.000 96.000 B 74.000 B 25 69.200 B 60.600 B 56.500 B 58.300 B 194.000 B 222.000 234.000 215.000 184.000 172.000 96.000 B 76.000 B 26 6 68.800 B 60.400 B 56.400 B 58.500 B 190.000E 222.000 235.000 209.000 184.000 160.000 B 96.500 B 77.000 B 27 6 68.000 B 60.000 B 56.400 B 59.000 B 188.000E 222.000 235.000 204.000 182.000 150.000 B 97.000 B 79.000 B 29 67.800 B 59.800 B 56.300 B 61.000 B 188.000E 222.000 224.000 210.000 183.000 146.000 B 96.500 B 80.000 B 200.00 B 224.000 B 224.000 B 244.000 189.000	21											95,000B	71,500 B	21
4 69,600 60,800 8 56,500 8 100 8 199,000 220,000 232,000 215,000 191,000 173,000 96,000 74,000 8 2 5 69,200 8 60,600 8 56,500 8 58,300 8 194,000 222,000 234,000 215,000 184,000 172,000 96,5008 76,000 8 2 6 68,800 8 60,400 8 56,400 8 59,000 215,000 209,000 184,000 160,000 96,5008 76,000 8 2 7 68,400 8 60,200 8 56,400 8 59,500 8 188,000 222,000 233,000 204,000 182,000 154,000 97,000 78,000 8 9 67,800 859,800 8 56,200 8 60,000 223,000 210,000 183,000 146,000 96,500 80,000 82,000 82,000 82,000 82,000 82,000 82,000 82,000 82,000 82,000 82,000 82,0	2											95,500B	72,000 B	22
5 69,200 B 60,600 B 56,500 B 58,300 B 194,000 222,000 234,000 215,000 184,000 172,000 96,500B 76,000 B 2 6 68,800 B 60,400 B 56,400 B 58,500 B 190,000E 222,000 235,000 209,000 184,000 160,000B 96,500B 76,000 B 7 68,400 B 60,200 B 56,400 B 59,000 B 188,000E 221,000 233,000 204,000 182,000 154,000B 97,000B 78,000 B 80,000 B 68,000 B 60,000 B 56,300 B 188,000E 222,000 228,000 206,000 178,000 150,000B 97,000B 79,000 B 80,000 B 67,600 B 56,200 B 188,000E 223,000 214,000 189,000 141,000B 96,000B 81,000 B 82,000 B 82,000 B 82,000 B 82,000 B 82,000 B <td>23</td> <td></td> <td>96,000B</td> <td>73,000 B</td> <td>23</td>	23											96,000B	73,000 B	23
6 68,800 B 60,400 B 56,400 B 58,500 B 190,000 E 222,000 235,000 209,000 184,000 160,000 B 96,500 B 77,000 B 2 7 68,400 B 60,200 B 56,400 B 59,000 B 188,000 E 221,000 233,000 204,000 182,000 154,000 B 97,000 B 78,000 B 2 6 68,000 B 60,000 B 56,300 B 59,500 B 188,000 E 222,000 228,000 206,000 178,000 150,000 B 97,000 B 79,000 B 2 9 67,800 B 59,800 B 56,200 B 61,000 B 188,000 E 220,000 A 223,000 210,000 183,000 146,000 B 96,000 B 96,000 B 2 000 B 183,000 B 141,000 B 96,000 B 180,000 B 3 000 B 3 3 000 B 3 <t< td=""><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>96,000B</td><td>74,000 B</td><td>24</td></t<>	4											96,000B	74,000 B	24
7 68,400 B 60,200 B 56,400 B 59,000 B 188,000E 221,000 233,000 204,000 182,000 154,000B 97,000B 78,000 B 2 0 2 2 2 0 2 2 0 2 2 2 0 2 2 2 0 2 2 0 0 1 1 0 0 9 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 <t< td=""><td>?5</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>25</td></t<>	?5					1								25
68 68,000 60,000 B 56,300 B 59,500 B 188,000E 222,000 228,000 206,000 178,000 150,000B 97,000B 79,000 B 29,000 20,000 120,000 183,000 146,000B 96,500B 80,000 B 20,000 183,000 146,000B 96,500B 80,000 B 20,000 133,000 141,000B 96,000B 81,000 B 224,000 214,000 189,000 141,000B 96,000B 81,000 B 30,000 138,000B 82,000 B 32,000 138,000B 82,000 B 32,000 138,000B 82,000 B 32,000 B 32,000 138,000B 82,000 B 32,000 B 32,000 <td< td=""><td>26</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>26</td></td<>	26													26
9 67,800 B 59,800 B 56,300 B 61,000 B 186,000E 220,000A 223,000 210,000 183,000 146,000B 96,500B 80,000 B 2 0 67,600 B 56,200 B 56,200 B 62,300 B 188,000E 223,000E 229,000 214,000 189,000 141,000B 96,000B 81,000 B 3 1 67,400 B 56,200 B 56,200 B 189,000E 224,000 216,000 138,000B 96,000B 81,000 B 3 1 67,400 B 56,200 B 189,000E 224,000 216,000 138,000B 82,000 B 3 1 2247500 1832400 1778100 1720500 4265400 6376000 7145007 6761000 6016000 5215000 307200 2418100 T 1 2247500 1832400 1778100 1720500 4265400 6376000 7145007 6761000 6016000 5215000 3072000 2418100 T 1 2247500 1832400 1778100 1720500 4265400 6376000 230000 218000	7						,					97,000B	78,000 B	27
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8													28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29						220,000A	223,000						29
AL 2247500 1832400 1778100 1720500 4265400 6376000 7145000 6761000 6016000 5215000 3072000 2418100 T X 72500 63200 57400 57400 138000 213000 230000 218000 201000 168000 102000 78000 T 4460000 3630000 3530000 3410000 8460000 12600000 13400000 11000000 6090000 6090000 4800000 A 78600 66900 59600 62300 224000 223000 235000 213000 191000 132000 95000	30				62,300 B		223,000E	229,000		189,000				30
x 72500 63200 57400 57400 138000 213000 230000 218000 201000 168000 102000 78000 No x 72500 63200 57400 57400 138000 213000 230000 218000 201000 168000 102000 78000 No x 7.4460000 3630000 3530000 3410000 8460000 12600000 13400000 11000000 10300000 6090000 4800000 A 78600 66900 59600 62300 223000 235000 228000 213000 191000 132000 95000	31	<u>67,400 B</u>		56,200 B	\geq	189,000E	\geq	224,000	216,000	\geq	138,000B	\sim	82,000 B	31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AL.	2247500	1832400	1778100	1720500	4265400	6376000	7145000	6761000	6016000	5215000	3072000	2418100	ΤO
$_{ m T}$ 4460000 3630000 3530000 3410000 8460000 12600000 14200000 13400000 11000000 10300000 6090000 4800000 A 78600 66900 59600 62300 224000 223000 235000 228000 213000 191000 132000 95000 4800000 A 78600 66900 59600 59600 62300 224000 223000 235000 235000 228000 213000 191000 132000 95000 A 78600 66900 596000 596000 59600 59600 596000 59600 59600 596000 596000 59600 59600 59600 596000 59600 59600 596000 596000 596000 596000 596000 596000 59600 59600 59600 59600 59600 596000 596000 596000 596000 5960000 596000000 5960000000000	N													ME
$78600 \qquad 66900 \qquad 59600 \qquad 62300 \qquad 224000 \qquad 223000 \qquad 235000 \qquad 228000 \qquad 213000 \qquad 191000 \qquad 132000 \qquad 95000$														AC
	•••													MA
		67400	59800	56200	56000	63900		223000	204000	178000	138000	93000	69500	ΜI

SUMMARY FOR THE YEAR 1972

MEAN DISCHARGE: 133,000 cfs TOTAL DISCHARGE: 96,800,000 ac-ft.	TYPE OF GAUGE ~ Recording LOCATION: LAT. 61 15 04 N	A - MANUAL GAUGE B - ICE CONDITIONS
MAXIMUM DAILY DISCHARGE: 235,000 on July 10 & 26	LONG.117 29 48 W	E - ESTIMATED
MINIMUM DAILY DISCHARGE: 56,000 cfs on Apr. 3-6	DRAINAGE AREA: 375,000 sq. miles	NATURAL FLOW

1 5 Т

STATION NAME Mackenzie River at Fort Simpson

STATION NUMBER 10GC001

1

1

				Daily	Discharge	in Cubic H	eet per s	econd for	• 1972				
Day	January	February	March	April	May	June	July	August	September	October	November	December	Day
1 I	<u>87,300 B</u>	74,300 B	65,900 B	65,300 E	67,000 H	512,000	513,000	485,000	304,000	243,000	190,000B	125,000B	1
2		73,800 B			68,000 H		493,000	462,000	299,000	242,000		124,000B	
3	<u>85,800 B</u>	73,500 B	65,600 B	<u>65,500 E</u>	69,000 F	619,000	472,000	436,000	293,000	242,000		123,000B	
4			65,500 B				462,000	418,000	288,000	240,000		122,000B	4
5			65,400 B				454,000	414,000	284,000	243,000		121,000B	5
6			65,300 B				440,000	411,000	280,000	248,000	145,000B	120,000B	6
7	<u>83,900 B</u>	72,300 B	65,200 B	65,900 B	88,000 H	560,000	431,000	401,000	278,000	252,000	130,000B	119,000B	7
8		71,900 B			96,000 H		425,000	392,000	277,000	254,000	124,000B	117,000B	8
Ŷ	<u>83,300 B</u>	71,500 B	65,000 B	66,100 E	108,000 H	510,000	422,000	388,000	276,000	254,000	120,000B	115,000B	9
10	82 <u>,900 B</u>	71,200 B	64,900 B	66.200 B	120,000 1	502,000	429,000	387,000	276,000	253,000	118.000B	112.000B	10
11	82,400 B	70,900 B	64,800 B	66,300 B	130,000 H	500,000	<u>426,000</u>	383,000	277,000	253,000	114,000B	110,000B	11
12	<u>81,900 B</u>	70,600 B	64,700 B	66,400 B	144,000 H	499,000	417,000	374,000	277,000	252,000		108,000B	
13	<u>81,600 B</u>	70,300 B	64,600 B	66,500 B	158,000 H	510,000	410,000	370,000	275,000	247,000	110,000B	106,000B	13
14	<u>81,300 B</u>	70,000 B			180,000 H		406,000	366,000	273,000	241,000	108,000B	103,000B	14
15		<u>69,700 B</u>			200,000 H		403,000	362,000	272,000	237,000		101,000B	
16	80,400 B	69,400 B	64,300 B	66,800 B	230,000 F	552,000	395,000	359,000	273,000	234,000	106,000B	99,000B	16
17	79,800 B	69,100 B	64,200 B	<u>66,900 B</u>	280,000 F	557,000	<u>388,000</u>	355,000	273,000	233,000		97,500B	
18	79,400 B	68,800 B	64,100 B				387,000	348,000_	274,000	234,000		94,500B	
19			64,000 B		350,000 E		386,000	342,000	274,000	234,000	105,000B	<u>93,000B</u>	19
20			64,100 B				379,000	336,000	276,000	230,000	106,000B	91,700B	.20
21			64,200 B				373,000	338,000	279,000	228,000	107,000B	<u>91,000B</u>	21
22			64,300 B				372,000	348,000	288,000	228,000		<u>91,000B</u>	
23			64,400 B				399,000	367,000	283,000	226,000	<u>110,000B</u>		
24	76,900 B	67,400 B	64,500 B	66,000 B	445,000 E	499,000	469,000	374,000	279,000	226,000	112,000B	92,000B	24
25	76,600 B	67,200 B	64,600 B	66,000 B	450,000 E	490,000	489,000	362,000	275,000	225,000	<u>115,000B</u>		
26			64,700 B				478,000	346,000	267,000		<u>117,000B</u>		4 1
27	75,900 B	66,500 B	64,800 B	66,200 B	440,000 F	513,000	497,000	333,000	261,000		120,000B		
28			64,900 B				548,000	325,000	254,000		122,000B		
29	75,300 B	66,100 B	65,000 B	<u>67,000 B</u>	439,000 A	540,000	563,000	318,000	249,000		124,000B		
30	74,900 B	\geq	65,100 B	67,000 B	444,000	530,000	528,000	311,000	246,000		125,000B	99,000B	30
31	74,600 B	\supset	65,200 B	$\langle \rangle$	471,000	\geq	502,000	307,000	\geq	<u>195,000 E</u>	$\geq \leq$	<u>100,000B</u>	31
 ז \י\ר\ר	2491600	2026900	2009000	1986800	8054000	16,244000	13756000	11518000	8280000	7239000	3747000	3239700	TOTAL
MEAN	80400	69900	2009000 64800	66200	260000	541000	444000	372000	276000	234000	125000	105000	MEAN
	.4940000	4020000	3980000	3940000	16000000		27300000			14400000	7430000	6430000	AC-FT
AC-FI MAX.		74300	65900	67000	471000	632000		485000	304000	254000	190000	125000	MAX.
	87300								246000	195000	104000	91000	MIN.
MIN.	74600	66100	64000	65300	67000	490000	372000	307000	240000	192000	104000	21000	

Daily Discharge in Cubic Feet per second for 1972

SUMMARY FOR THE YEAR 1972

MEAN DISCHARGE: 220,000 cfs.	TYPE OF GAUGE - Recording	A - MANUAL GAUGE
TOTAL DISCHARGE: 159,000,000 ac-ft.	LOCATION: LAT. 61 52 28 N	B - ICE CONDITIONS
MAXIMUM DAILY DISCHARGE: 632,000 cfs.	LONG. 121 20 08 W	E - ESTIMATED
MINIMUM DAILY DISCHARGE: 64,000 cfs.	DRAINAGE AREA: 491,000 sq. miles	NATURAL FLOW

T 89 ł

STATION NUMBER 10KA001

- '			~							
	Daily	Discharge	in	Cubic	Feet	per	second	for	1972	

			J		F						1		<u> </u>
Day	January	February	March	April	May	June	yluL	August	September	October	November	December	Doy
1 . 1	108,000B	95,300B	89,200 B	<u>86,200 B</u>	96,000B	<u>810,000E</u>		816,000	429,000	335,000	247,000B	155,000B	1 ¹
1 - F	107,000B	<u>94,900B</u>	89,100 B	<u>86,100 B</u>		815,000E		760,000	420,000	327,000	240,000B	158,000B	2
1 P	107,000B	94,600B	89,000 B	86,100 B		820,000E		718,000	415,000	326,000	235,000B	159,000B	3
1 P	107,000B	94,300B	<u>88,900 B</u>	<u>86,000 B</u>		830,000E		686,000	407,000	323,000	229,000B	161,000B	4
_	106,000B	<u>93,700B</u>	88,800 B	<u>86,000 B</u>		<u>850,000E</u>		655,000	403,000	317,000	223,000B	157,000B	
1 F	106,000B	93,300B	<u>88,700 B</u>	85,900 B		<u>865,000E</u>		623,000	393,000	316,000	217,000B	<u>154,000B</u>	6
I F	106,000B	<u>93,000B</u>	<u>88,600 B</u>	85,800 B		<u>870,000E</u>		592,000	388,000	315,000	210,000B	151,000B	7
8	105,000B	92,800B	<u>88,500 B</u>	<u>85,700 B</u>	139,000B	<u>860,000E</u>		571,000	383,000	315,000B	204,000B	149,000B	8
9	105,000B	92,600B	<u>88,400 B</u>	85,600 B		830,000E	588,000	562,000	377,000	317,000B	<u>196,000B</u>	<u>147,000B</u>	9
10	105,000B	<u>92,400B</u>	88,300 B	85,500 B	161.000B	790,000E	572,000	546,000	373,000	320.000B	185.000B	145.000B	10
11	104,000B	92,200B	88,200 B	85,400 B	175,000B	755,000E	558,000	533,000	370,000	320,000B	172,000B	141,000B	11
12	104,000B	92,000B	88,100 B	85,300 B	207,000B	_740,000E	550,000	524,000	369,000	319,000B	161,000B	138,000B	12
13	103,000B	91,800B	88,000 B	85,200 B	230,000B	_730,000E	543,000	517,000	369,000	317.000B	152,000B	135.000B	13
14	103,000B	91,600B	87,900 B	85,100 B	249.000B	720,000E	536,000	506,000	370,000	315,000B	147,000B	131,000B	14
15	102.000B	91.400B	87.800 B	85,000 B	272 000B	714,000	524,000	496,000	369,000	312,000B	141.000B	129.000B	15
16	102,000B	91,200B	87,700 B	84,900 B	310,000B	717,000	517,000	489,000	369,000	307,000B	138.000B	128.000B	16
17	101,000B	91,000B	87,600 B	84,800 B	340,000B	715,000	511,000	481.000	368,000		134,000B	126,000B	17
18	101.000B	90,800B	87,500 B	84,700 B		722,000	508,000	476,000	366,000		133,000B	124,000B	18
19	100,000B	90,600B	87,400 B	84,600 B	412,000B	732,000	498,000	468,000	364,000		133,000B	122.000B	
20	100.000B	90,400B	87,300 B	84,500 B	440,000B	742,000	490,000	470,000	363,000		133,000B	120,000B	
21	100,000B	90,200B	87,200 B	84,400 B	520,000B	780,000	486,000	477,000	362,000		134,000B	119.000B	
22	99,800B	90,000B		84,300 B		844,000	497.000	474.000	361.000		135.000B	118,000B	22
23	99,400B	89,900B	87,000 B	84,500 B		813,000	602.000A	465,000	361,000		137.000B	117,000B	1
24	98,900B	89,800B	86,900 B	84,800 B	680,000B	772,000	754.000E	458,000	363,000		138,000B	117,000B	1 1
25	98,400B	89,700B	86,800 B	85,000 B	750,000B	730,000	900.000E	460.000	366,000		139.000B	118.000B	1 1
26	97,900B	89,600B	86,700 B	85,500 B	820,000B	699,000	812.000A	472,000	365,000		141.000B	119,000B	
27	97,400B	89,500B	86,600 B	86,000 B	880,000B	691,000	797,000	479,000	365,000		143,000B	120,000B	
28	96,900B	89,400B	86,500 B	88,000 B	860,000E	755,000	814,000	471,000	358,000		145,000B	121,000B	1 ° 1
29	96,400B	89.300B	86,400 B	90,000 B	845,000E	789,000	823,000	455,000	350,000		148,000B	122,000B	
30	95,900B	\sim	86,300 B	92,000B	830.000E	793,000	843,000	443.000	340,000		151.000B	123,000B	4 (
31	95,600B	\sim	86,200 B	\sim	815,000E	\rightarrow	847,000	436,000	\sim	253,000B	\sim	124,000B	
		2657200		2572000	·	27207000			11254000	9241000	E041000	4148000	TOT.
DTAL		2657300	2718700	2572000	12404000			16579000	11256000		5041000		MEA
EAN	102000	91600	87700	85700	400000	776000	654000	535000	375000	298000	168000	134000	
C-FT	6270000	5270000	5390000	5100000	24600000			32900000		18300000		8230000	AC-
١ Χ.	108000 95600	95300	89200	92000	880000	870000	900000	816000	429000	335000	247000	161000	MAX MIN
IN.		89300	86200	84300	96000	691000	486000	4 3600 0	340000	253000	133000	117000	- WEEN

SUMMARY FOR THE YEAR 1972

MEAN DIS	SCHARGI	310	,000	cfs.	
TOTAL DI	(SCHARC	GE:	225,	000,000	ac-ft.
MAXIMUM	DAILY	DISCHAR	RGE:	920,000	cfs.
MINIMUM	DAILY	DISCHAU	RGE:	84,300	cfs.

TYPE OF GAUGE - Recording	A - MANUAL GAUGE
LOCATION: LAT. 65 16 54 N	B - ICE CONDITIONS
LONG.126 50 58 W	E - ESTIMATED
DRAINAGE AREA: 606,000 sq. miles	NATURAL FLOW

DAILY GAUGE HEIGHTS

Station Name <u>Mackenzie River</u> at McGern Island

_____Station No _____OGB003

- t

(

ay	January	February	March	April	May	June	July	August	September	October	November	December	10
1									74.68	72.60			T
							<u> </u>	- <u> </u>	74.55	72.51			7
								1	74.40	72.47	72.50A		
ı٢							· · · · · ·		74.22	72.45			٦
5 F									74.05	72.40	1		7
5									73.88	72.44			
7			·····						73.76	72.55			Τ
						1			73.67	72.70			
, F			······						73.62	72.76	1		
									73.60	72.76	1		
									73.58	72.74			
									73.59	72.73			_
							· · · · · ·		73.58	72.72			
ı٢									73.55	72.61			
								1	73.50	72.45			
T			····						73.45	72.32			
									73.42	72.22	· · · · · · · · · · · · · · · · · · ·		
				1				<u> </u>	73.43	72.18			
, F									73.44	72.19			
					· · · · · · · · · · · · · · · · · · ·				73.44	72.17			
									73.49	72.11			
									73.58	72.04		1	٦
									73.69	71.99			_
								76.42A	73.67	71.96			-
								76.60	73.59	71.95			
T								76.40	73.47	71.89			٦
								75.93	73.28	72.10			
								75.52	73.07	72.51			
				1				75.25	72.85	72.84			-
t		$>\!\!<\!\!<$		<u> </u>				75.03	72.72	72,90A			
F		\leq		\sim		\sim		74.84	\searrow		\geq		Γ
	Summary		шıç instantar	neous elevation,	76	.63 ft c	t 15:00 [\]	I.S.T.on Aug	. 25/72	Comput		Checked by	,
	For the Period Aug. 24, ^{to} Nov. 3		um instantan	eous elevation,	71	.80 ft a	t 17:00 M	I.S.T.on Oct	. 26/72	Dat	te	Date	

Daily Elevations or Gauge Heights in Feet for the Year 19_72

R43 (Dec 72)

70 -

1

DAILY GAUGE HEIGHTS

Station Name _____Mackenzie River at Old Fort Point

Daily Elevations or Gauge Heights in Feet for the Year 19_72_

Day	January	February	March	April	May	June	July	August	September	Dctober	November	December	Da
1							74.55	74.11	64.77	61,53	60.08B		1
2							74.31	72.88	64.54	.61.33	59.77B		_ 2
3							73.64	72.08	64.35	61.24			_ :
4							_72,71	71.36	64.24	61.10			4
5			1				71.66	70.58	63.99	61.00			
6							70.95E	69.75	63.70	60.94			_
7							70.59E	69.11	63.46	60.96B			:
8						74.48A	70.10E	68.79	63.24	_61.08B			*
0						73.90	69,60E	68.47	_63.07	61.20B			•
10						73.44	69,10E	68.04	62.97	61.26B	l		10
11			1	1		73.50	68.70E	67.76	62,91	61.25B			1 '
12						72.94	68.37E	67.59	62.83	61.29B			1:
13 [72.37	67.96E	67.36	62.85	61.30B			1:
14					T	72.32	67.70E	67.04	62.85	61.30B			_11
15						72.41	67.50E	66.79	62.83	61.22B			1
16						72.45	67.30E	66.59	62.82	61.00B			_ 1
17						72.58	67.11A	66.37	62,76	60.79B			17
18						72.84	66.90	66.20	62.68	60.63B		<u> </u>	18
19						73.06	66.64	66.16	62.63	60.57B			19
20						73.33	66.52	66.40	62.60	60.58B			20
21				1		75.18	66.61	66.45	62.55	60.53B			2
22						75.19	68.16	66.23	62.55	60.51B			2
23						74.35	71.75	65.94	62.61	60.70B			2
24						73.31	75.70	65,92	62.73	60.79B			2
25			<u> </u>			72.46	75.53	66.24	62.75	60.86B			2.
26				- <u> </u>		71.81	74.64	66.54	62.62	60.81B			2
27						72.68	74.72	66.41	62.52	6C.30B			2
28			1		†	74.10	74.94	65.97	62.24	60.70B			2
29			1			74.37	75.21	65.53	62.00	60.78B			2
30		\sim			1	74.50	75.54	65.24	61.73	60.78B			3
31		\leq		\sim	1	\sim	75.33	65.04	\sim	60,64B	\sim		3
	Summary Far the Perio		mum instantar	neous elevation	7	76.17 ft d	17:00		1y 24/72	Compu		Checked by Date	y
	(June 8 ^{to} Nov. 2	. Minir	mum daily	e levation,	,	59.77 ft d	2† 	on No	ov. 2/72		18	2010	

1

DAILY GAUGE HEIGHTS

Mackenzie River above the Ramparts

_____Station No _10KD002

Ł

Daily Elevations or Gauge Heights in Feet for the Year 19_72_

Day	January	February	March	April	May	June	July	August	September	October	November	Oecember	Day
۱L									9.11				1
2									8.69				_ 2
3		ļ	ļ.				1		8.62				3
4		L							8,43		_		4
5			_						8.11				5
6									7.83E				6
7									7.60E				7
8			L						7.35E				7 8
٩	<u>, </u>								7.14E				<u>ج</u>
0									6.95E				10
									6.78E				11
2							,		6.62E				12
3									6.50E				1 13
4									6.35E				14
5									6.20E				715
6									6.09A			1	16
7									1			1	117
8								1					18
9													7 19
0													7 20
1						1							21
2 [1					22
3													23
4								10.41					24
5								10.02					25
6								10.05					26
27								10.33					27
8								10.56					28
29	<u></u>							10.30					29
10		\geq						9.79					30
nΓ		\leq		\searrow		\geq		9,38	\geq		\geq		31
	Summary		instantor	neaus elevation,			· <u></u> _	<u></u>		Compu	ted by	Checked by	_
		Maxir	num daily	gauge hei	ght.	ft a		on					
	For the Perio	bd			- /	Not I	Determined	1		Da	te	Date	
	For the Perio (Aug. 24 to Sept.1	A Minin	instantar num daily	neous elevation, gauge heig	-h+	ft a		٥n					
	TO Sept.1	<u>م</u>	aany	guuge ner	9					1			

1

R43 (Dec 72)

Station Name

DAILY GAUGE HEIGHTS

Station Name <u>Mackenzie River at Sans Sault Rapids</u>

_____Station No <u>10KD001</u>

Daily Elevations or Gauge Heights in Feet for the Year 19<u>72</u>

D∎y	January	February	March	April	May	June	July	August	September	October	November	December	Day
1		ļ					23.85	24.40	15,93	13.47E			1
2							23,85	23.57	15.68	13 34F			_ 2
3							23.59	22.80	15.62	13.20E			3
4							23.03	22,08	15,49	13.10A			4
5		<u> </u>					22.22	21.35	15.29E	12,97			5
6							21,28	20.65	15.15E	12.84			6
7		ļ				_	20.48	19.95	15.05E	12.79			7
8							20,19	19.37	14.97E	12.75			- 8
9							19.67	19.01	14.85E	12.81B			9
10							19.22	18.83	14.80E	12.85B			10
11		<u> </u>					18.86	18.51	14.70E	12.93B			11
12							18.58	18.20	14.61E	12.97B			12
13							18.37	17.97	14.50E	12.98B			13
14							18.21	17.80	14.45E	12.99B			14
15							18.06	17.58	14.38E	13.00B			15
16		ļ				22.40	17,92	17.35	14.30A	13.03B			16
17		ļ				22.33	17.81	17.20	14.28	12.79B			17
18						22,25	17.67	17.04	14.25	12.67B			18
19						22,36	17.55	16.98	14.20	12.55B			19
20		<u> </u>				22.70	17.35	16.91	14.15	12.45B			20
21		ļ				22.83	17.24	16.97	14.09	12.25B			21
22						23.91	17.38	17.04	14.06	12.00B			22
23						24,30	18.12	16.93	14.02	11.89B			23
24		ļ				23,57	20.84	16.68	14.00	11.59B			24
25						22,78	23.99	16.55	14.04	11.76B			25
26						22.07	24.65	16.65	14.14	11.97B			26
27						21,82	23.81	16.86	14.00E	12.10B			27
28						22,13	23.54	16.94	13.87E	12.09B			28
29		_				23.32	23.93	16.73	13.74E	12.58B			29
30		\geq	5			23.65	24.47	16.36	13.61E	12.85B			30
31		\geq	\leq			\searrow	24.75	16.11	\searrow	12,62B	\geq		31
	Summary For the Perio	1	aximum instanta	neous gauge hei	ght,	24.81 ft c	15:10	∘⊓ Ju	ly 31/72	Comput		Checked by	,
	(June 16 ^{to} Oct. 31		nimum daily	gauge hei	ght,]	11.59 ft a	·†	^{an} Oct	t. 24/72	Dat	e	Date	

1

DAILY GAUGE HEIGHTS

Station Name ____Mackenzie River near Wrigley

_____ Station No <u>10HC001</u>

1

Daily Elevations or Gauge Heights in Feet for the Year 19_72_

Day	January	February	March	April	May	June	July	August	September	October	November	December	Day
1						31,73	32.86		23.05	20.50			_ 1
2						32,49	32.64		23.26	20.37			_ 2
3						33,91	31.72	30.43A	23.31	_20.33A	17.934		- 3
4						35.77	30,59	29.84	23.05				_ '
5						36.64	29.66	29.00	22.77				
6						36.40	29.08	28.35	22.53				(
7						35.59	28.55	27.91	22.30				
8						34.31	27.93	27.47	22.18				
9						33.12	27.52	26.96	22.08				'
10						32,19	27.38	26.59	22.00				10
1						31.61	27.37	26.44	21.98				1`
12						31.34	27.35	26.31	21.96				1:
13						31.03	27.04	26.02	21.96			-	1:
14						31.03	26.66	25.73	21.89				1
5						31:45	26.41	25 47	21.84	20.87			1
6						31.93	26.23	25.25	21.78	20.56A			1
17						32.40	25.99	25.09	21.71				1
18						32.68	25.76	24.92	21.72				_ 18
19 [32.81	25.58	24.72	21.73				1
20						32.82	25.53	24.73	21.74	20.28			2
21					1	33.88	25.37	24.76	21.79	20.19			2
22						34,34	25.98	24,47	21.90	20.12			_ 2
23						33.11	32.88	24.52	22.04	20.01A			_ 2
24						32.08	34.78	24.96	22.13				_ 2
15						31.07	33.96	25.54	22.05				2
26						30.35		25.53	21.84				2
27						30.61	-	25.00	21.61				_ 2
28					32.54A	31.89		24.40	21.33				2
29	1				32.15	32.23	35.03A	23.96	21.01				2
30		\sim			31.99	32.59	35.35A	23.61	20.71				3
31		\sim	>	\sim	32.05	\sim		23.30	\geq		\geq		3
	Summary		imum instante	meous gouge hei		6.72 ft	⊲t 17:00 M	I.S.T.ºn Ju	ne 5	Compu		Checked by Date	1
(May 28 Nov. 3	. Min	instanta mum daily	neous elevation gauge hei		termined	at	on	N 1912	Da	Te		

1

STATION NAME <u>Martin River near the Mouth</u>

STATION NUMBER 10GC003

Day January	February	March	April	May	June	July	August	September	October	November	December	Day		
1							453 A		50.0 E	28.0 B	13.8 B			
2									49.0 E	26.0 B	13.7 B			
3						92.5 A		· · ·	40.0 E	24.0 B	13.7 B			
4									47.8 A	23.0 B	<u>13.7 B</u>			
5								<u> </u>	47.0	22.0 B	13.6 B			
6									47.0 B	21.0 B	13.6 B			
7									46.5 B	<u>19.0 B</u>	13.6 B			
8									46.0 B		13.5 B			
۹									<u>45.5 B</u>	18.0 B	13.5 B			
10							<u></u>		44.0 B	17.5 B	<u>13.4</u> B			
1									43.0 B	17.0 B	13.4 B			
12								81.6 A	43.0 B	16.5 B	13.3 B			
3									42.5 B	16.5 B	13.2 B			
4								84,4 A	42.5 B	16.0 B	<u>13.1</u> B			
5		<u> </u>			378 A		134 A		42.0 B	16.0 B	13.0 B			
6									42.0 B	15.5 B	12.5 B			
7							134 A		42.0 B	15.0 B	12.0 B			
8									42.0 B	15.0 B	11.5 B			
9									42.0 B	15.0 B	11.0 B			
20						54.4 A			42.0 B	14.5 B	10.5 B			
21					010.1	44.2 A			41.5 B	14.5 B	10.2 B			
2					219 A				41.5 B	<u>14.0 B</u>	9.8 B			
23									41.5 B	14.0 B	<u>9.4</u> B			
24									41.0 B	14.0 B	9.0 B			
25									39.0 B	14.0 B	8.5 B			
		·····							38.0 B	13.9 B	8.0 E			
27		· · · · · · · · · · · · · · · · · · ·							36.0 B	13.9 B	7.8 B	27		
.8						611 A	118 A	145 A	34.0 B	13.9 B	7.6 B			
29									33.0 B	13.8 B	<u>7.4 B</u>			
30	\sim		<u> </u>		\sim				31.0 B	13.8 B	7.2 B			
31				1,670 A	\sim				29.0 B	24	7.0 E	31		
AL									1,299.3	514.3	351.5	TO		
N									41.9	17.1	11.3	ME		
FT.										,020	697	AC		
									50.0	28.0	13.8	MA		
I.									29.0	13.8	7.0	MI		
MARY FOR T	THE YEAR 197	4												
N DISCHARO	SE:			T	PE OF, GAU	GE - Reco	rding			MANUAL GA				
AL DISCHAR			LOCATION: LAT.						B - ICE CONDITIONS					
	DISCHARGE:		LONG.						E – ESTIMATED					
	DISCHARGE:			DI	RAINAGE AR				እተለ ጣ፣	IDAT ETON				
									NATI	JRAL FLOW				

Daily Discharge in Cubic Feet per second for 1972

STATION NAME Peel River above Fort McPherson

STATION NUMBER 10MC002

			Daily	Discharge	in Cubic	Feet per s	econd for	1972		<u>, ,</u>		
Des	January February	Morch	April	May	June	July	August	September	October	November	Decombor	Doy
	3,160 B 2,640 B	2.320 B	1.850 B	3,300 B		100,000	22,800	31,900	18,100	5,720 B	3.300 B	1
2	3,130 B 2,630 B		1.840 B	3.550 B		76,200	23,700	33,800	17,800	5,480 B		2
3	3,100 B 2,610 B	2,300 B		3.800 B		61,000	25,200	33,600	17,100B	5,360 B	3,230 B	3
4	3,070 B 2,600 B	2,290 B		4.080 B		51,300	36,500	39,900	16,500 B	5,210 B	3,200 B	4
5	3,040 B 2,590 B	2,280 B		4,400 B		43,000	39,800	47,000	15,900B	5,080 B	<u>3,190 B</u>	5
6	3,020 B 2,580 B	2,270 B	1.770 B	4.730 B		37,200	34,600	44,300	15,400B	<u>4,960 B</u>		6
7	3,000 B 2,570 B	2,250 B	1,750 B	5,100 B		32,400	29,700	40,500	14,800B	4,830 B		7
8	2,980 B 2,560 B	2,240 B	1,740 B	5.490 B		28,800	26,100	36,600	14,200B	4,720 B	<u>3,110 B</u>	8
9	2,970 B 2,550 B	2,230 B	1,720 B	5,940 B	154,000	26,400	24,400	33,400	<u>13,700B</u>	4,610 B	<u>3,090 B</u>	9
10	2,950 B 2,540 B	2,220 B	1,700 B	6,400 B		24,800	25,200	31,700	13,200B	4,510 B	<u>3,070 B</u>	10
11	2,920 B 2,530 B	2,200 B	1,690 B	6,920 B	150,000	23,000	28,000	30,900	12,700B	4,410 B	<u>3,050 B</u>	111
12	2,900 B 2,520 B	2,190 B		7,550 B	152,000	21,300	29,400	30,100	12,200B	4,320 B	3,030 B	12
13	2,880 B 2,510 B	2,170 B	1,650 B	8,210 B	153,000	19,700	28,100	29,700	11,800B	<u>4,230 B</u>	3,020 B	13
14	2,860 B 2,490 B	2,150 B	1,630 B	9,000 B	132,000	18,400	26,000	29,900	<u>11,400B</u>	<u>4,190 B</u>	3,020 B	14
15	2,840 B 2,480 B	2,140 B	1.520 B	9,960 B	120,000	17,800	24,500	32,800	11,000B	4,090 B	<u>3,000 B</u>	15
16	2,830 B 2,470 B	2,120 B	1,630 B	11,000 B	113,000	17,500	24,300	41,800	10,600B	4,010 B	3,000 B	16
17	2,810 B 2,460 B	2,100 B		12,200 B	101,000	17,500	24,300	54,600	10,200B	3,980 B	2,990 B	17
18	2,800 B 2,450 B	2,090 B	1,700 B	13,600 B	89,400	17,800	24,700	61,000	9,800B	3,890 B	2,980 B	18
19	2,790 B 2,440 B	2,070 B	1,740 B	13,600 B	75,700	18,600	26,100	56,700	9,450B	3,810 B	2,980 B	19
20	2,780 B 2,430 B	2,050 B	1,790 B	13,600 B	65,000	21,000	31,300	· 48,200	9,030B	3,780 B	2,970 B	20
21	2,760 B 2,420 B	2,040 B	1,830 B	13,800 B	58,600	22,300	39,300	41,100	8,780B	3,710 B	2,960 B	21
22	2,740 B 2,410 B	2,020 B	1,920 B		49,200	22,300	37,800	35,700	<u>8,420B</u>	<u>3,650 B</u>	<u>2,950 B</u>	22
23	2,730 B 2,400 B	2,000 B	2.010 B		40,400	27,000	33,300	31,200	<u>8,130B</u>	3,600 B	<u>2,950 B</u>	23
24	2,720 B 2,390 B	1,990 B	2,120 B		35,200	31,500	30,300	27,600	7,800B	3,580 B	<u>2,950 B</u>	24
25	2,710 B 2,370 B	1.970 B	2.240 B		36,600	29,500	28,700	24,900	7,530B	3,520 B	2,940 B	25
26	2,700 B 2,360 B	1,950 B	2,390 B		45 100	26,500	29,300	23,100	7,280B	3,480 B	2,940 B	26
27	2,690 B 2,350 B	1,940 B	2,540 B		70,700	24,200	29,900	22,000	<u>7,000B</u>	3,420 B	2,940 B	27
28	2,680 B 2,340 B	1,920 B	2,700 B		120,000	22,200	31,900	20,700	<u>6,700B</u>	3,390 B	2,930 B	28
29	2,670 B 2,330 B	1,900 B	2,880 B		138,000	21,200	32,400	19,600	6,460B	3,380 B	2,930 B	29
30	2,660 B	1,890 B	3,090 B		125,000	21,200	32,800	19,000	6,200B	3,330 B	2,930 B	30
31	2,650 B	1,870 B	\square			21,900	33,100	\square	5,980B		2,920 B	31
						047 500	017 500	1 057 700	745 160	126,250	94,170	тот
'OTA			58,290			943,500		1,053,300		4,210	3,040	MEA
EAN	2,860 2,480	2,110	1,940			30,400	29,500		11,100	250,000	187,000	AC-
			116,000					2,090,000	18,100	5,720	3,300	MAX
AX.	3,160 2,640	2,320	3,090			100,000	39,800			3,720	2,920	MIN
IN.	2,650 2,330	1,870	1,620			17,500	22,800	19,000	5,980	3,330	2,520	
UMM	ARY FOR THE YEAR 197	2										
EAN	DISCHARGE:			T	YPE OF GAU	GE - Reco	ording			MANUAL GA		
'OTA	L DISCHARGE:			L	OCATION:	LAT. 67 1	L3 15 N		-	ICE CONDI		
AXT	UNI DAILY DISCHARGE:					LONG.134 5	56 45 W		E -	ESTIMATED)	

MINIMUM DAILY DISCHARGE:

DRAINAGE AREA: 27,300 sq. miles NATURAL FLOW X

76 1

1

STATION NAME <u>South Nahanni River above Clausen Creek</u>

STATION NUMBER 10EC001

				Daily I	Discharge	in Cubic I	eet per	second for	1972				
Day J	anuary	February	March	April	May	June	July	August	September	October	November	December	Doy
1 1,	,870 B	1,790 B	1.690 B	1.530 B		69,500		60,700	16,200	9,180	4,600 B	2.950 B	
2 1,	,860 B	1,790 B	1,690 B	1,590 B		70,900		50,400	15,900	9.150	4.500 B	2,950 B	2
3 1,		1,790 B	1,680 B	1,620 B		60,200		45,900	15,400	9,070	4,400 B	2,900 B	3
4 1,	,850 B	1,790 B	1,670 B	1,680 B		46,900		46,800	15,500	9,000	4,200 B	2 900 B	4
5 1,	,850 B	1,790 B	1,650 B	1,720 B		36,700		43,000	15,900	8,610	4.000 B	2,850 B	5
6 1,	,850 B	1,780 B	1,640 B	1,800 B		34,400		37,400	15,100	8,440	3,900 B	2.850 B	6
7 1,	,840 B	1,780 B	1,630 B	1,840 B		48,600		35,000	14,700	8,470	3.800 B	2.800 B	7
8 1,	,840 B	1,780 B	1,620 B			51,000		36,900	14,400	8,300	3.600 B	2,800 B	8
° 1,	,840 B	1,780 B	1,610 B			55,000		36,700	13,700	7,990	3.500 B	2,800 B	9
10 1,	,840 B	1,780 B	1,600 B			56,100		33,400	13,200	6.740	3.450 B	2.750 B	10
11 1,	,840 B	1,770 B	1,590 B			63,400		31,800	12,900	5,090	3,400 B	2.750 B	11
12 1,	,830 B	1,770 B	1,580 B			64,800		30,100	12,600	5,800	3.350 B	2.750 B	12
13 1,	,830 B	1,770 B	1,570 B			58,400		28,200	12,200	6.220	3.300 B	2,700 B	13
14 1,	,830 B	1,770 B	1,560 B			55,200		26,300	12,000	6,680	3,300 B	2.700 B	14
15 1,	,830 B	1,770 B	1,550 B			55,500		25,100	12,100	7,070	3.250 B	2,650 B	15
16 1,	,830 B	1,760 B	1.540 B			52,700		24,100	13,600	7,190	3.250 B	2,600 B	16
17 1.	820 B	1,760 B	1,530 B		-	47 300		23,300	14,000	7.040	3.200 B	2,550 B	17
		1,760 B	1.520 B			46,200		23,300	13,500	6.800	3.150 B	2,500 B	18
		1,760 B	1.510 B			47,900		25,000	12,900	6,700	3,150 B	2,400 B	19
20 1.	,820 B	1,760 B	1,500 B			50 100		30,600	12,300	7,070	3,100 B	2,300 B	20
		1,750 B	1.490 B			55,400		28,900	11,800	7,160	3,100 B	2,250 B	21
		1.750 B	1,480 B			55,000		26,200	11,400	6,950	3,050 B	2,200 B	22
		1,740 B	1.470 B			47,300		24,600	11,000	6,600	3,050 B	2,150 B	23
		1,740 B	1.460 B			43,100		23,100	10,400	5,830	3,050 B	2.100 B	24
		1,730 B	1,450 B			41,600		22,100	9,980	5,500	3,000 B	2,050 B	25
		1,720 B	1,440 B			45,500		21,200	9,750	5,200 B	3.000 B	2,000 B	26
		1,710 B	1.430 B			68,200	· · · · · · · · · · · · · · · · · · ·	20,000	9,520	5,100 B	3,000 B	1,980 B	27
		1,700 B	1,460 B			68 500		18,700	9,370	5,000 B	3,000 B	1.920 B	28
		1,700 B	1.480 B			60 900 A		17,900	9,070	4,900 B	2,950 B	1.900 B	29
	800 B	\sim	1.500 B		70,300A	60,900 E		17,700	9,220	4,800 B	2,950 B	1.880 B	30
31	<u> </u>	\leq		\searrow	<u>~</u> , ,	\sim	71,100A	17,000	\sim	4,700 B	\geq	1.820 B	31
						1 (17 000		0.71 400	770 (10	212,420	102,550	76,700	TOT
	6,640	51,040	48,100			1,617,200		931,400	379,610		3,420	2,470	MEA
	1,830	1,760	1,550			53,900		30,000	12,700	6,850	203,000		AC-
	2,000	101,000	95,400			3,210,000		1,850,000	753,000	421,000	4,600	152,000 2,950	MAX
	1,870	1,790	1,690			70,900		60,700	16,200	9,180		1,820	MIN
1.	1,800	1,700	1,430			34,400		17,000	9,070	4,700	2,950	1,020	MIN
MARY	FOR THE	E YEAR 197	2										
			<u> </u>		τ ι	YPE OF GAU	CE - Rea	rding		Λ -	MANUAL GA	WGE	
	SCHARGE:					OCATION:		15 10 N			· ICE COND		
	ISCHARGE				L		LAI. 61 LONG. 124				· ESTIMATE		
		ISCHARGE:			n.			900 sq. mil	65			-	
NIMUM	DAILY I	DISCHARGE:			D	RAINAGE AR	DA: 12,	ooo sq. miri	63	NAT	TURAL FLOW		

Daily Discharge in Cubic Feet new second for 1972

1 77 T.

STATION NAME _______ Trout River at Fort Simpson Highway ______ STATION NUMBER _______ 10FA002

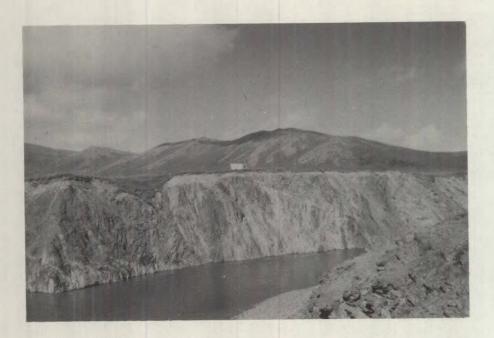
.

1

					Discharge		Feet per s	ccond for	1972		111002		
D∘y	January	February	March	April	May	June	July	August	September	October	November	December	Day
	4.3 B	2.5 B	0.30 B	0	80 B	5.310	2,880	1,370	666	318	130 B	19.0 B	1
2	4.3 B	2.4 B	0.30 B	0	160 B	6 920	2.850	1,400	645	314	128 B	18.0 B	2
3	4.3 B	2.3 B	0.20 B	0	300 B	7 180	2,770	1,300	604	330	124 B	17.0 B	3
4	4.2 B	2.2 B	0.10 B	0	800 B	7,350	2,680	1,210	514	544	112 B	16.0_B	4
5	4.2 B	2.2 B	0.10 B	0	1,100 B	7,030	2,630	1,240	532	378	100 B	15.5 B	5
6	4.2 B	2.1 B	0	0	2,000 B	6,890	2,530	1.330	490	274	86.0B	<u>15.0</u> B	5
7	4.1 B	2.0 B	0	0	3,000 B	7,560	2,490	1,220	490	390	72.0B	14.5 B	7
9	4.1 B	2.0 B	0	0	4,000 B	7,800	2,390	1,150	532	322 A	62.0B	14.0 B	. 8
¢	4.1 B	1.9 B	0	0	5,000 B	7,740	2,210	1,110	526	288 B	58.0B	13.5 B	. 9
10	4.0 B	1.8 B	0	0	7.000 E	7.410	2,200	1,010	485	244 B	50.0B	<u>13.0</u> B	10
11	4.₀0 B	1.7 B	0	0	8,000 E	7,150	2,150	954	430	220 B	48.0B	12.8 B	11
12	3.9 B	1.7 B	0	0	9,000 E	6,640	2,100	978	470	208 B	46.0B	12.6 B	12
13	3.9 B	1.6 B	0	0	9,300 E	6,180	2,010	970	420	200 B	44.0B	12.4 B	13
13	3.8 B	1.5 B	0	0	9,300 E	6,010	1.890	954	480	192 B	42.0B	12.2 B	14
15	3.7 B	1.4 B	0	0	9,000 F	5,830	1,910	922	465	186 B	41.0B	<u>12.0</u> B	15
16	3.6 B	1.4 B	0	0	8,800 E		1,890	930	440	180 B	40.0B	11.6 B	16
17	3.6 B	1.3 B	0	0	8,500 E		1,780 A	869	374	174 B	38.0B	<u>11.2</u> B	17
18	3.5 B	1.2 B	0	0	8,290 A	5,000	1,520 A	827	378	168 B	37.0B	10.8 B	18
19	3.4 B	1.2 B	0	0	7,920	4,890	1,510	778	386	164 B	36.0B	10.4 B	19
20	3.3 B	1.1 B	0	00	7,560	4,630	1,450	778	366	160 B	34.0B	<u>10.0</u> B	20
21	3.3 B	<u>1.0 B</u>	0	0	7,230	4,350	1,400	827	354	158 B	32.0B	<u>9.8 B</u>	
22	<u> </u>	0.90B	0	0	6,920	4,170	1,400	834	374	<u>156 B</u>	31.0B	9.6 B	
23	3.1 B	0.90B	0	0	6,780	3,990	1,330	820	314 A	<u>152 B</u>	<u>30.0B</u>	<u>9.4</u> B	
24	3.1 B	0.80B	0	0	6,670	3,910	1,320	799	<u>294 A</u>	150 B	28.0B	<u>9.2</u> B	21
25	3.0 B	0.70B	0	0	6,580	3,720	1,260	764	415	<u>148 B</u>	27.0B	<u>9.0</u> B	
26	2.9 B	0.60B	0	<u> 1 B</u>	6,390	3,670	1,350	827	350	144 B	26.0B	8.8 B	26
27	2.8 B	0.60B	0	<u>2</u> B	6.120	3,650	1,410	806	302	142 B	24.0B	8.6 B	27
28	2.8 B	0.50B	0	<u>4</u> B	5,880	3,430	1,410	736	470	140 B	23.0B	<u>8.4</u> B	1
29	2.7 B	0.40B	0	10 B	5,750	3,330	1,470	680	310 A	138 B	21.0B		20
30	2.6 B	\geq	0	50 B	5,580	3,070	1,350	638	366	136 B	20.0B	<u>8.1</u> B	30
31	2.5 B	\geq	0	\geq	5,450	\geq	1,390	645	\geq	132 B		<u>8.0 B</u>	31
FOTAL	110.5	41.90	1.00	67.0	178,460	165,590	58,930	29,676	13,242	6,850	1,590.0	368.6	TOTA
4EAN	3.6	1.44	0.03	2.2	5,760	5,520	1,900	957	441	221	53.0		MEAN
AC-FT		83.1	1.98	33.8	354,000	328,000	117,000	58,900	26,300	13,600	3,150	730	AC-F
AX.	. 4.3	2.5	0.30	50	9,300	7,800	2,880	1,400	666	544	130	19.0	MAX.
4IN.	2.5	0.40	0	0	80	3,070	1,260	638	294	132	20.0	8.0	MIN.

SUMMARY FOR THE YEAR 1972

MEAN DISCHARGE: TOTAL DISCHARGE:		TYPE OF GAUGE - Recording LOCATION: LAT. 61 08 00 N	A - MANUAL GAUGE B - ICE CONDITIONS
MAXIMUM DAILY DISCHARGE:	9,300 cfs.	LONG.119 49 30 W	E – ESTIMATED
MINIMUM DAILY DISCHARGE:	0 cfs.	DRAINAGE AREA: 3,510 sq. miles	NATURAL FLOW


.

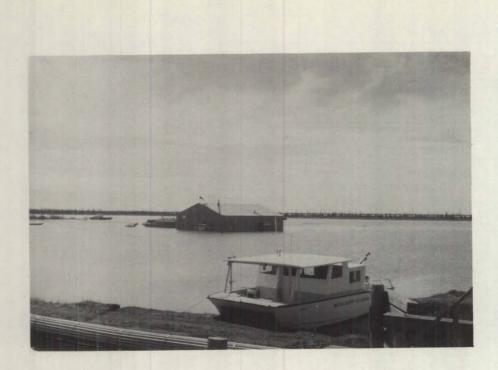
STATION NAME Willowlake River near the Mouth

STATION NUMBER 10GB001

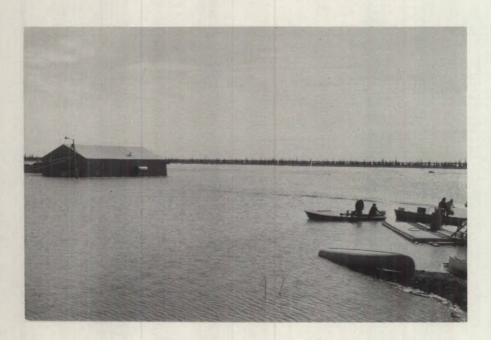
- .

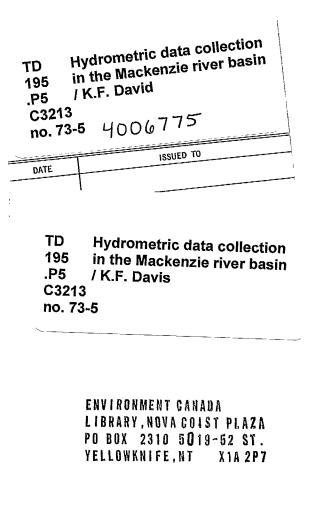
Day	January	February	March	April	Discharge	June	July	August	September	October	November	December	Doy
1	163 B	156 B	143 B	129 B	160 B	15,900	6.120	2,730	755	734	495 B	314 B	1,
2	163 B	156 B	143 B 143 B	123 B	180 B	14,700	6,570	2,560	932	702	485 B	310 B	2
3	163 B	156 B	143 B	128 B	200 B	13,500	6,460	2,560	1,400	696	479 B	306 B	3
4 F	163 B	156 B	142 B	120 B	200 B	12,600	5,870	2,500	1.320	690	465 B	301 B	4
5	163 B	155 B	142 B	127 B	250 B	11,600	5,230	2,370	1,230	672	460 B	299 B	5
6	163 B	155 B	141 B	127 B	300 B	10,700	4,630	2,280	1,150	678	453 B	295 B	6
7	162 B	154 B	141 B	126 B	350 B	9,940	4,140	2,220	1,060	650	445 B	290 B	7
ŝ	162 B	154 B	140 B	125 B	400 B	9,200	3,870	2,070	1.000	530	440 B	290 B 287 B	- 8
÷	162 B	154 B	140 B	125 B	460 B	8,540	3,620	1,950	972	420 A	430 B	287 B	9
ic F	162 B	153 B	139 B	125 B	560 B	8,000	3,350	1,900	932	405 B	425 B	279 B	10
1	161 B	153 B	139 B	125 B	700 B	7,430	3,090	1,880	900	395 B	418 B	273 B	11
2	161 B	152 B	133 B	125 B	900 B	7,000	2,890	1,880	860	- 390 B	410 B	274 B 272 B	12
3	161 B	152 B 151 B	138 B	125 B	1,200 B	6.570	2,670	1,870	846	390 B	402 B	269 B	13
4	161 B	151 B	130 B 137 B	125 B	1,200 B	6,170	2,450	1,780	818	390 B	399 B	265 B	
5	161 B	151 B	137 B	125 B	2,000 B	5,770	2,270	1,650	818	395 B	392 B	263 B	15
6	160 B	150 B	137 B	125 B	3.000 B	5,410	2,150	1,520	818	400 B	388 B	260 B	16
7	160 B	149 B	136 B	125 B	4,000 B	5,410	2,010	1,320	839	405 B	381 B	257 B	117
8	160 B	149 B 149 B	130 B 135 B	125 B	5.000 B	4,800	1.900	1,330	908	415 B	378 B	254 B	18
9	159 B	149 B 148 B	135 B	125 B	6,000 B	4,800	1,760	1,200	956	420 B	370 B	254 B	
ίŀ	<u>159</u> В 159В	148 B	133 B	125 B	7,000 B	4,300	1,760	1,170	956	440 B	<u>367</u> B	250 B	20
1	<u>159 B</u> 159 B	148 B	134 B	125 B	9,000 B	4,230	1.610	1.120	964	445 B	360 B	248 B	21
2	159 B	14 <u>8 B</u> 147 B	134 B 133 B	125 B	12,000 B	3,830	2,010	1,060	972	460 B	<u>356 B</u>	240 B	-
3	159 B	147 B	133 B	125 B	15,000 B	3,630	3,220	1,020	972	475 B	350 B	245 B 241 B	23
4	158 B	147 B	133 B	125 B	18,000 E	3,460	4,500	964	948	490 B	346 B	238 B	21
15	158 B	146 B	133 B 132 B	125 B	20,000 E	3.320	4,890	892	916	500 B	340 B	235 B	25
26	158 B	140 B	132 B	130 B	20,500 E	3,210	4,370	832	892	510 B	336 B	233 B	26
27	<u>158 B</u> 157 B	145 B	131 B	135 B	20,300 E	3,290	4,020	790	839	512 B	331 B	230 B	27
8	<u>157 B</u> 157 B	144 B	131 B 131 B	140 B	20,000 E	3,440	3,840	769	818	515 B	328 B	2.00 B	28
9	<u>157</u> B	144 B	130 B	145 B	19,400 A	3,450	3,750	748	783	512 B	322 B	223 B	29
n	157 B	\sim	130 B	150 B	18,300	4,650	3,510	741	748	510 B	319 B	220 B	30
31	156 B	\leq	129 B	\sim	17,100	\sim	3,080	734	\sim	500 B	\sim	218 B	31
			·····					· · · · · · · · · · · · · · · · · · ·					
AL	4,961	4,360	4,224	3,841	224,680	208,000	111,610	48,450	28,322	15,646	11,870	8,136	TO ME
N	160	150	136	128	7,250	6,930	3,600	1,560	944	505	396	262	AC
FT	· 9,840	8,650	8,380	7,620	446,000	413,000	221,000	96,100	56,200	31,000	23,500	16,100	MA
ζ.	163	156	143	150	21,000	15,900	6,570	2,730	1,400	734	495	314	MI.
	156	144	129	125	160	3,210	1,610	734	748	390	319	218	911)
r I.)	RY FOR TH	E YEAR 197	12				,						
						VDE OF CM		mdin-		۸ _	MANUAL G	NUGE	
	DISCHARGE						JGE - Reco						
	DISCHARG			~	LOCATION: LAT. 62 39 10 N					B – ICE CONDITIONS E – ESTIMATED			
		DISCHARGE:	,		LONG.122 54 50 W DRAINAGE AREA: 8,330 sq/ miles					E - ESTIWIED			
IM	JM DAILY I	DISCHARGE:	125 (cts.	1).	RAINAGE A		U SQ/ MII	65	NAT	URAL FLOW		

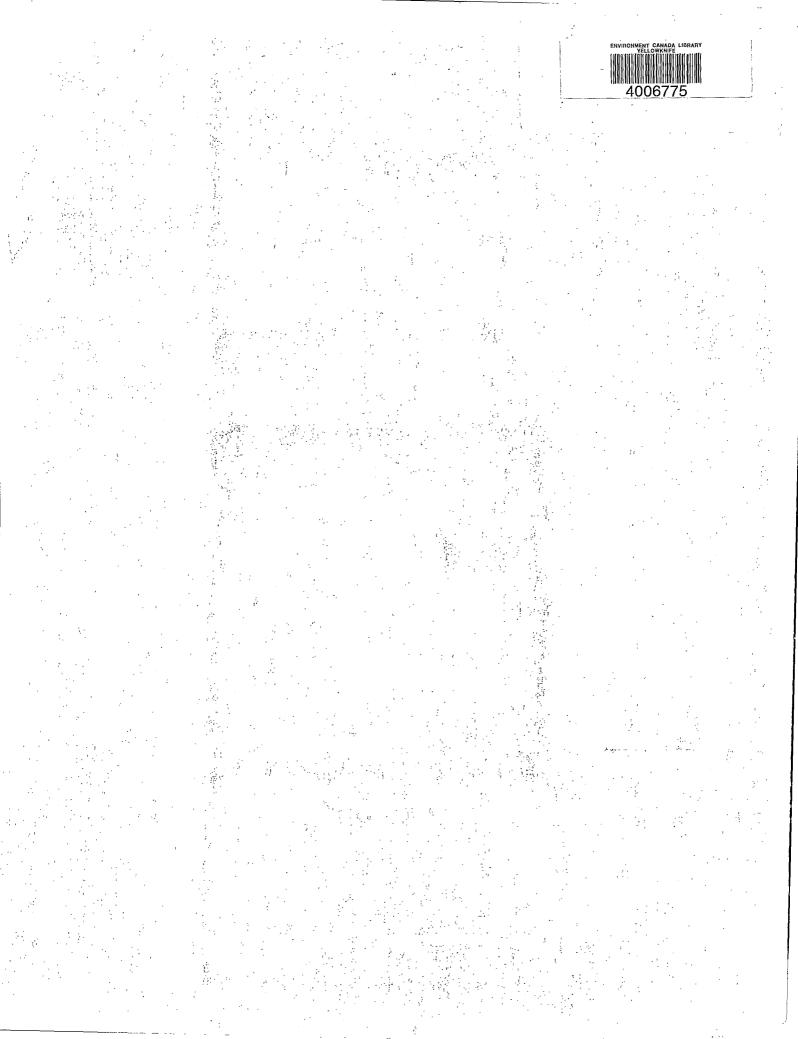
Firth River at Gauging Site, Lat. 69°25', Long. 139°30'



Sediment Pumping Sampler in Portable Shelter - Firth River




Water Survey of Canada Catamarans Niska and Nanook at Inuvik, Fall 1972


Preparing for Winter Storage

Mackenzie River East Channel at Inuvik Flooding in Spring of 1972 due to Ice Jam Downstream

