
Multi-reasoner Inference
Software Interface Design Description

Guillaume Morin-Brassard, Vincent Giroux

The scientific or technical validity of this ontract eport is entirely the responsibility of the ontractor and the contents do
not necessarily have the approval or endorsement of the Department of National Defence of Canada.

Defence Research and Development Canada – Valcartier
Contract Report

DRDC Valcartier CR 2012-003
January 2012

Multi-reasoner Inference
Software Interface Design Description

Guillaume Morin-Brassard, Vincent Giroux

Prepared by:
Fujitsu Consulting (Canada) Inc.
2000 Boulevard Lebourgneuf,
Bureau 300, Québec (Québec) G2K 0E8

Contractor's document number: MRI-242-0449
Contract project manager: Gilles Clairoux, 514-393-8822 x318
PWGSC contract number: W7701-10-4064
CSA: Étienne Martineau, Defense scientist, 418-844-4000 x4501

The scientific or technical validity of this ontract eport is entirely the responsibility of the ontractor and the contents do
not necessarily have the approval or endorsement of the Department of National Defence of Canada.

Defence Research and Development Canada – Valcartier
Contract Report
DRDC Valcartier CR 2012-003
January 2012

IMPORTANT INFORMATIVE STATEMENTS

The scientific or technical validity of this contract report is entirely the responsibility of the contractor and
the contents do not necessarily have the approval or endorsement of the Department of National Defence of
Canada.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2012.

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2012.

DRDC Valcartier CR 2012-003 i

Abstract ……..

To support its research activities in the intelligence domain, the Intelligence and Information (I&I)
Section at DRDC Valcartier is developing the Intelligence Science & Technology Platform (ISTIP)
as a major component of its R&D infrastructures. To improve the reasoning capabilities of the
platform, the mandate of this contract is to produce a Multi-Reasoner Inference (MRI) capability
based on the Multi-Intelligence Tool Suite (MITS) and the ISTIP software components previously
developed by the I&I Section. Five main different services have been developed containing four
individual reasoners and one multi-reasoner orchestrator. The reasoners that have been created are
a Case-Based Reasoner (CBR), a Rule-Based Reasoner (RBR), a Descriptive-Logic Reasoner
(DLR) and a KInematics and Geospatial Analysis Reasoner (KIGAR) which is based on the
KIGAM module of the Inference of Situational Facts through Automated Reasoning (ISFAR) tool.
Through the use of a common reasoning framework, these reasoners can now leverage their
reasoning capabilities by sharing their strength to other reasoners and achieve an amazing synergy.
This document describes the Software Interface Design Description of the MRI.

Résumé ….....

Afin de supporter ces activités de recherche dans le domaine du renseignement, la Section du
Renseignement et Information de RDDC Valcartier développe la Plate-forme de Science et
Technologie du Renseignement (ISTIP) comme un composant majeur de ses infrastructures de
R&D. Afin d’améliorer les aptitudes de raisonnement de la plate-forme, le mandat de ce contrat est
de créer un outil d’inférence Multi-Raisonneur (MRI) basé sur la « Multi-Intelligence Tool Suite »
(MITS) et sur les composants logiciels déjà implémentés par la section I&I. Cinq différents services
ont été développés comprenant quatre raisonneurs individuels et un orchestrateur multi-raisonneur.
Les raisonneurs qui ont été créés sont un raisonneur par cas (CBR), un raisonneur par règles (RBR),
un raisonneur ontologique (DLR) et un raisonneur d’analyse cinématique et géo-spatiale (KIGAR)
basé sur le module KIGAM de l’outil d’Inférence Automatisée de Faits Situationnels (ISFAR).
Grâce à l'utilisation d'un cadre de raisonnement commun, ces raisonneurs peuvent désormais
exploiter leurs capacités de raisonnement en partageant leurs forces à d'autres raisonneurs et
parvenir à une synergie épatante. Ce document décrit l’Architecture Logicielle des Interfaces du
MRI.

ii DRDC Valcartier CR 2012-003

This page intentionally left blank.

DRDC Valcartier CR 2012-003 iii

Executive summary

Multi-reasoner Inference: Software Interface Design Description
Guillaume Morin-Brassard; Vincent Giroux; DRDC Valcartier CR 2012-003;
Defence Research and Development Canada – Valcartier; January 201 .

Introduction or background: To support its research activities in the intelligence domain, the
Intelligence and Information (I&I) Section at DRDC Valcartier is developing the Intelligence
Science & Technology Platform (ISTIP) as a major component of its R&D infrastructures. To
improve the reasoning capabilities of the platform, the mandate of this contract is to produce a
Multi-Reasoner Inference (MRI) capability based on the Multi-Intelligence Tool Suite (MITS) and
the ISTIP software components previously developed by the I&I Section.

This document presents the Software Interface Design Description (SIDD) for the Multi-Reasoner
Inference service and related reasoners services, according to the IEEE 12207.

Its purpose is to identify and describe interfaces to other systems, subsystems and applications. The
interfaces identified and described should also be reflected in the Software Architecture
Description. The Software Interface Design Description is the basis for detailed data and process
design for interfaces. Describing the interfaces exposed by the Multi-Reasoners Inference services
(including each individual reasoner and the MRI orchestrator), the call workflow and the necessary
objects used to communicate with the services.

This document does not include the internal interfaces used within the MRI orchestrator or within
the different reasoner services and the other sub-components.

Results: Five main different services have been developed containing four individual reasoners
and one multi-reasoner orchestrator. The reasoners that have been created are a Case-Based
Reasoner

(CBR), a Rule-Based Reasoner (RBR), a Descriptive-Logic Reasoner (DLR) and a KInematics and
Geospatial Analysis Reasoner (KIGAR) which is based on the KIGAM module of the Inference of
Situational Facts Through Automated Reasoning (ISFAR) tool.

iv DRDC Valcartier CR 2012-003

Sommaire

Multi-reasoner Inference: Software Interface Design Description
Guillaume Morin-Brassard; Vincent Giroux ; DRDC Valcartier CR 2012-003 ;
Recherche et développement pour la défense Canada – Valcartier ; janvier
201 .

Introduction ou contexte : Afin de supporter ces activités de recherche dans le domaine du
renseignement, la Section du Renseignement et Information de RDDC Valcartier développe la
Plate-forme de Science et Technologie du Renseignement (ISTIP) comme un composant majeur de
ses infrastructures de R&D. Lors du contrat MRI, un besoin de convertir des entités spatiales sous
le format de faits situationnels a été observé car il fallait pouvoir passer ces entités spatiales à
certains services requérant des faits situationnels à l’entrée. Un convertisseur d’entités spatiales
vers des faits situationnels a été conçu et développé afin de supporter ce besoin. Il est exposé comme
un service web SOAP sur la plateforme ISTIP.

Ce document présente la Description du Design des Interfaces Logicielles du Raisonneur Multi-
Inférence et ses services, en respectant la norme IEEE 12207.

Son but est d’identifier et décrire les interfaces exposées aux autres systèmes, sous-sytèmes et
applications. Les interfaces identifiées et décrites devraient aussi être réflétées dans le document de
description d’architecture logicielle. La description du design des interfaces logicielles est la base
pour le design détaillé des processus et données des interfaces. Le document doit aussi décrire les
interfaces exposées par les services du Raisonneur Multi-Inférence (incluant chaque raisonneur
individuel), les flux de travail des appels aux services ainsi que les objets nécessaires à la
communication inter-services.

Ce document ne décrit aucune interface interne utilise par le MRI ou à l’intérieur des services de
raisonnement avec les autres sous-composants.

Résultats : Cinq différents services ont été développés comprenant quatre raisonneurs individuels
et un orchestrateur multi-raisonneur. Les raisonneurs qui ont été créés sont un raisonneur par cas
(CBR), un raisonneur par règles (RBR), un raisonneur ontologique (DLR) et un raisonneur
d’analyse cinématique et géo-spatiale (KIGAR) basé sur le module KIGAM de l’outil d’Inférence
Automatisée de Faits Situationnels (ISFAR).

DRDC Valcartier CR 2012-003 v

Table of contents

Abstract …….. ... i
Résumé …..... ... i
Executive summary ... iii
Sommaire iv
Table of contents .. v
List of figures ... vii
List of tables .. viii
1 General dependencies ... 1

1.1 Specific dependencies ... 1
1.1.1 KIGAR ... 1

2 External Interfaces .. 2
2.1 General interface usage ... 2
2.2 Common Interface Identification ... 3

2.2.1 Methods ... 3
2.2.2 Service Data ... 5

2.2.2.1 FactDTO and FactDefinitionDTO ... 5
2.2.2.2 ReasoningResults ... 5

2.3 KIGAR Interface Identification ... 5
2.3.1 Methods ... 6
2.3.2 Service data .. 6

2.3.2.1 FactDTO and FactDefinitionDTO ... 6
2.3.2.2 KIGARKnowHow ... 6
2.3.2.3 KIGARParameters ... 8

2.3.3 Service endpoints ... 10
2.3.4 Security .. 10

2.4 Rule-Based Reasoner (RBR) Interface Identification ... 11
2.4.1 Methods ... 11
2.4.2 Service data .. 11

2.4.2.1 FactDTO and FactDefinitionDTO ... 11
2.4.2.2 RuleBasedReasonerParameters .. 11
2.4.2.3 RuleBasedReasonerKnowHow .. 12

2.4.3 Service endpoints ... 17
2.4.4 Security .. 18

2.5 Case-Based Reasoner (CBR) Interface Identification ... 18
2.5.1 Methods ... 18
2.5.2 Service data .. 19

2.5.2.1 FactDTO and FactDefinitionDTO ... 19

vi DRDC Valcartier CR 2012-003

2.5.2.2 CaseBasedReasonerParameters ... 19
2.5.2.3 CaseBasedReasonerKnowHow .. 20

2.5.3 Service endpoints ... 27
2.5.4 Security .. 28

2.6 Descriptive Logic Reasoner... 28
2.6.1 Methods ... 28
2.6.2 Service data .. 29

2.6.2.1 FactDTO and FactDefinitionDTO ... 29
2.6.2.2 DescriptiveLogicReasonerParameters ... 29

DescriptiveLogicReasonerKnowHow .. 29
2.6.3 Service endpoints ... 31
2.6.4 Security .. 32

2.7 MRI Orchestrator ... 32
2.7.1 Methods ... 32
2.7.2 Service data .. 33

2.7.2.1 FactDTO and FactDefinitionDTO ... 33
2.7.2.2 MRIOrchestratorParameters .. 33
2.7.2.3 MRIOrchestratorKnowHow... 33

2.7.3 Service endpoints ... 35
2.7.4 Security .. 36

3 Visualization Services... 37
3.1 Multi-Reasoners Inference Graphical Visualisation Services (MRIV) 37

3.1.1 Solution description ... 37
3.1.1.1 MultiReasonerInferenceGWT project .. 38
3.1.1.2 Services .. 38
3.1.1.3 Widgets and Windows ... 39
3.1.1.4 Data Modules ... 43

3.1.2 Bug report .. 43
3.1.3 Installation guide ... 43
3.1.4 Testing procedure and test results .. 44

References 45
Annex A KIGAR Analyses ... 47
List of symbols/abbreviations/acronyms/initialisms .. 53

DRDC Valcartier CR 2012-003 vii

List of figures

Figure 1: General reasoner usage workflow .. 2

Figure 2: Reasoning results class diagram .. 5

Figure 3: KIGAR KnowHow Class Diagram .. 7

Figure 4: KIGAR parameters class diagram .. 8

Figure 5: RBR parameters class diagram .. 12

Figure 6: RBR knowhow class diagram .. 13

Figure 7: Premise expression ... 14

Figure 8: Parenthesis expression ... 14

Figure 9: Negate expression .. 15

Figure 10: CBR parameters class diagram .. 19

Figure 11: CBR knowhow class diagram .. 21

Figure 12: CBR join restriction constraint .. 22

Figure 13: Template argument reference example .. 23

Figure 14: DLR parameters class diagram .. 29

Figure 15: DLR knowhow class diagram .. 30

Figure 16: MRI Orchestrator parameters class diagram .. 33

Figure 17: MRI Orchestrator knowhow class diagram .. 34

Figure 18: Multi-Reasoner Inference GWT Voiila Workspace .. 37

Figure 19: Inference Process Dashboard ... 40

Figure 20: Context Editor Window ... 41

Figure 21: Reasoning Results Window ... 42

Figure 22: Reasoning Results Window 2 .. 42

Figure 23: Multi Reasoner Inference Workspace Tool Strip ... 43

viii DRDC Valcartier CR 2012-003

List of tables

Table 1: KIGAR Service Endpoint .. 10

Table 2: KIGAR Service JNDI Names .. 10

Table 3: Rule-Based Reasoner Service Endpoint .. 17

Table 4: Rule-Based Reasoner Service JNDI Names .. 18

Table 5: Case-Based Reasoner Service Endpoint .. 27

Table 6: Case-Based Reasoner Service JNDI Names ... 27

Table 7: Descriptive Logic reasoner Service Endpoint ... 31

Table 8: Descriptive Logic Reasoner Service JNDI Names .. 31

Table 9: MRI Orchestrator Service Endpoint .. 35

Table 10: MRI Orchestrator Service JNDI Names .. 36

Table 11: KIGAR Analyses ... 47

DRDC Valcartier CR 2012-003 1

1 General dependencies

The Multi-Reasoners Inference (MRI) services depend on the following services and
therefore, to successfully deploy the MRI EAR file, the following services must be
deployed alongside:

Parameter service :
o Description: The parameter service bean is used to fetch parameters for a

given application. Every application onto the computing platform should
use the preference service for updatable system wide settings.

o Expected service mapped name :
Cptb/Core/Configuration/ParametersServiceBean

o Packaged in the ParametersEJB.ear

1.1 Specific dependencies

file.

1.1.1 KIGAR
The Kinematic and Geospatial Analysis Reasoner (KIGAR) service can optionally use
the following services if deployed alongside and available to the KIGAR service:

Situational Facts Management (SFM) Service:
o Description: The SFM service allows managing facts and their related

atom definitions. In the MRI context, if the SFM is available, it will be
used to fetch any atom definitions referenced in the input facts to be able
to interpret them if not provided by the client invoker.

o Expected service mapped name:
SituationalFactsManagementEJB/SituationalFactsServiceBean/remote

o Packages in the SituationalFactsManagementEJB.ear file.
All libraries required by KIGAR are packaged within the MRI EAR file.

IMPORTANT: Due to weak classloader isolation in JBoss 5.1, KIGAR service is
conflicting with ISFAR web service. Although it is not a real issue since the MRI
reasoners are intent to replace ISFAR, please make sure to undeploy ISFAR prior to
deploying KIGAR.

2 DRDC Valcartier CR 2012-003

2 External Interfaces

This section identifies and describes interfaces to and from external systems, subsystems,
and databases. The data content for each interface, as well as the relevant physical
characteristics of sending and receiving systems and referenced databases, are included.
The following sections are repeated for each interface.

Each reasoner of the MRI, as well as the MRI orchestrator, are exposed as Java EJB 3
stateless session bean services locally and remotely (through RMI) for using with other
Java applications. They are also exposed as standard EJB 3 SOAP Web services,
allowing any system (even non-Java based ones) to easily invoke them.

2.1 General interface usage

The following diagram depicts, using simplified method's names described in the
following sections, the user activity flow that explains how to consume any MRI
reasoning service:

Figure 1: General reasoner usage workflow

At first, a reasoning context must be created. It basically instructs how the reasoner will handle
input facts for a given domain/situation through the provided knowhow and parameters. It also
isolates the requests from one another. The initial context can also include input facts. Once the
reasoning context has been created, a context handle will be returned. This context handle will be
used to perform any other action on this context.

After the context creation, the client can add new input facts at any moment. Once the context is
to the satisfaction of the client, the execute method can be invoked to launch an asynchronous

DRDC Valcartier CR 2012-003 3

reasoning process. The execution of this process is then tracked through the get context execution
status method. This method can return one of the following statuses:

NEW: This means that the reasoning context has just been instantiated and it is
about to be added to the reasoning queue to be processed. This is also the default
status when creating a context.
PENDING: This means that the process is queue and is waiting to be processed.
Therefore, the context will keep this status until the execute method is invoked
and the reasoner dequeue the request from the processing queue;
RUNNING: This means that the reasoner is currently executing the context and
trying to infer new facts;
ERROR: This means that an unexpected error occurred during the reasoning
execution. In this case, an error message may be available in the reasoning results
to get more information on what went wrong;
COMPLETED: This means that the reasoning context execution has successfully
completed;

Once completed, the reasoning results can be acquired through the get reasoning results method.
This method will return inferred facts and any feedback messages to inform the client about what
happened during the reasoning (conversion warnings, general information, non-fatal errors, etc.).
Afterward, the client can decide to add new input facts to the context and execute another
inference loop.

Finally, when the reasoning is obsolete, the delete context method allows deleting the context and
cleaning any resources associated with it.

Please refer to the Multi-Reasoners Inference Software Architecture Description for more
information on the internal workflow and logic of each action described above.

2.2 Common Interface Identification
All MRI services adopt the same base interface. This interface allows the caller to send a query
and retrieve tasks progression and results. Due to the nature of the service, the caller cannot wait
for the process to complete in a single method call, as the web service call would timeout and the
information would be lost.

To this end, the service's interface provides methods to both launch reasoning and consume
results. Upon new reasoning context creation, the service returns a context handle (identifier) to
the caller, which will be needed when launching a reasoning execution or for any other operations
on this context (get current processing status, add input facts, fetch results, etc.).

2.2.1 Methods
This section describes the interface methods that are common to every reasoner of the MRI, as
well as the MRI orchestrator. Indeed, only the createContext method differs from one reasoner to
another due to different knowhow and parameters.

4 DRDC Valcartier CR 2012-003

void addFacts(UUID1 contextHandle,
Collection<FactDTO> facts,
Collection<FactDefinitionDTO> factDefinitions)

This method allows adding input facts to an existing context at any moment.
However, like for the createContext method, this method doesn’t launch the
reasoning execution. The client must explicitly invoke the executeAsync method
afterward to do so.

This method may throw an InvalidHandleException if the specified context handle
does not exist or if a ReasonerException fatal error occurs.

void executeAsync(UUID1 contextHandle, String jndiToReasonerICallback)2

This method allows adding a reasoning context to the processing queue to be
executed by the reasoner afterward. The jndiToReasonerICallback parameter allows
specifying a JNDI string of a service implementing the ICallback interface. If set, this
service will be invoked after the execution of the context. However, please note that
the service JNDI must be available by the reasoner (either be located within the same
JBoss instance or properly registered in the JBoss instance otherwise).
If the jndi callback parameter is not provided, the client must follow the execution
and retrieve the results asynchronously using the getStatus and getReasoningResults
methods explained below since the context will not be executed within the scope of
this method invocation.

void execute(String contextHandle)3

This method allows adding a reasoning context to the processing queue to be
executed by the reasoner afterward. The client must then follow the execution and
retrieve the results asynchronously using the getStatus and getReasoningResults
methods explained below since the context will not be executed within the scope of
this method invocation.

ReasonerContextStatus getStatus(UUID1
This method allows querying the current execution status of a reasoning context
based on the provided context handle. The context status can be one of the following
values:

contextHandle)

NEW: This is the default status when the context is created or facts are
added to the context. This means that the context has never been
executed (the executeAsync or execute method has never been invoked
yet).
PENDING: This means that the executeAsync (or execute) method has
been invoked and the context is currently in the processing queue waiting
to be executed.

1 Please note that in the case of the Web Service interface, UUID objects are replaced by Strings, which can
be easily transferred using SOAP standard.
2 This method is only available through the Java local or remote interface (through RMI). Please refer to the
execute method for the Web Service interface equivalent method.
3 This method is only available through the Web Service interface. Please refer to the executeAsync method
for the remote or local Java interface.

DRDC Valcartier CR 2012-003 5

RUNNING: The reasoner is currently executing this reasoning context.
COMPLETED: The reasoner has successfully executed the reasoning
context and new inferred facts may be available.
ERROR: An error occurred during the context execution. The
getReasoningResults method can be invoked to retrieve error messages if
any.

ReasoningResults getReasoningResults(UUID1
This method allows fetching inferred facts as well as any messages created by the
reasoner. The messages can either be informative, warnings about some information
missing for instance, or even error messages.

contextHandle)

void deleteContext(UUID1
Since the reasoning contexts are managed asynchronously, they are persisted and
retrieved from an invocation to another. Therefore, the reasoning contexts are always
available and occupying physical hard drive space on the server. This method allows
to permanently delete a reasoning context once it is deprecated.

contextHandle)

2.2.2 Service Data

2.2.2.1 FactDTO and FactDefinitionDTO
These objects are imported directly from the SFM service API containing the fact model. Please
refer to the section 3.7 of the document JCDS-CTB-TA69-310-0426-DR-v0.7.doc for more
information about these objects.

2.2.2.2 ReasoningResults
The following diagram depicts the class structure of the ReasoningResults class:

class Reasoners

Serializable
ReasoningResults

- facts: Collection<FactDTO>
- messages: List<MessageDTO>
- serialVersionUID: long = -629758910998787022L {readOnly}

Serializable
MessageDTO

- id: String
- level: Level
- message: String
- serialVersionUID: long = 303117618664650847L {readOnly}
- timestamp: Date

«enumeratio...
Lev el

DEBUG
INFO
WARNING
ERROR

-level+messages

0..*

Figure 2: Reasoning results class diagram

The ReasoningResults contains basically a list of inferred facts and a list of messages from the
reasoner.

Each MessageDTO contains a timestamp, a message level and the text message.

2.3 KIGAR Interface Identification
The Kinematic and Geospatial Analysis Reasoner (KIGAR) service interface definition is an
input and output interface which allows the caller to send a query and retrieve tasks progression

6 DRDC Valcartier CR 2012-003

and results. Due to the nature of the service, the caller cannot wait for the process to complete in a
single method call, as the web service call would timeout and the information would be lost.

To this end, the service's interface provides methods to both launch reasoning and consume
results. Upon new reasoning context creation, the service returns a context handle (identifier) to
the caller, which will be needed when launching a reasoning execution or for any other operations
on this context (get current processing status, add input facts, fetch results, etc.).

2.3.1 Methods
UUID4 createContext(Collection<FactDTO> facts,

Collection<FactDefinitionDTO> factDefinitions,
KIGARKnowHow knowHow,

2.3.2 Service data

KIGARParameters parameters)
This method allows creating a reasoning context. It is the first step for performing
automatic reasoning. It initializes a specific "working context" with the provided
facts, atom definitions, knowhow and parameters, and then return the initialized
context identifier. This identifier will then be used to perform any other actions on
this context.

Please note that this method doesn’t launch the reasoning execution. The client must
explicitly invoke the executeAsync method (or execute method for the WS) afterward
to do so.

This method may throw a ReasonerException if anything goes wrong during the
context creation.

2.3.2.1 FactDTO and FactDefinitionDTO
These objects are imported directly from the SFM service API containing the fact model. Please
refer to the section 3.7 of the document JCDS-CTB-TA69-310-0426-DR-v0.7.doc for more
information about these objects.

2.3.2.2 KIGARKnowHow
The following diagram depicts the class structure of the KIGARKnowHow class:

4 Please note that in the case of the Web Service interface, UUID objects are replaced by Strings, which can
be easily transferred using SOAP standard.

DRDC Valcartier CR 2012-003 7

class KIGAR

Knowhow

KIGARKnowHow

«interface»
Reasoners::KnowHow

Figure 3: KIGAR KnowHow Class Diagram

KIGAR doesn’t require any specific knowhow since the knowledge is implemented directly in the
different geospatial analyses. However, in order to fulfill the common reasoning interface, an
empty class has been implemented. This also leaves the opportunity to add any knowhow to the
reasoner in future improvements of the service.

8 DRDC Valcartier CR 2012-003

2.3.2.3 KIGARParameters
The following diagram depicts the class structure of the KIGARParameters class:

class KIGAR

Parameters

Serializable
AnalysisFilter

- objectAttributeFilters: List<AttributeFilter>
parameters: List<AnalysisParameter>
- subjectAttributeFilters: List<AttributeFilter>

Serializable
AnalysisParameter

- name: String
- value: String

Serializable
AnalysisParameterDef

- _defaultValue: Object {readOnly}
- _description: String {readOnly}
- _paramName: String {readOnly}
- _valueType: Class<?> {readOnly}

«enumeration»
AnalysisType

PROXIMITY
INSIDE
OUTSIDE
MANEUVER
CHANGEOFHEADING
CHANGEOFSPEED
RENDEZVOUS
STOP_EMITTING
APPARENT_DESTINATION
COURSE_PROXIMITY
GEOFEASIBLE
HEADING_TOWARDS
HEADING_AWAY
TOO_SLOW
TOO_FAST
APPROACHING
MOVING_AWAY
CROSSING
FOLLOWING
DEVIATING
LOITERING
INBOUND
OUTBOUND
GOING_AROUND
GEOFEASIBLE_DESTINATION
ENTERING
LEAVING
PASSING_THROUGH
CIRCLE
STOPPED_AT_DESTINATION

Attributes
_analysisName: String
subjectClassFilterUris: Set<String>
objectClassFilterUris: Set<String>
conclusionAtomDefinitionId: String
_parameters: AnalysisParameterDef ([])

AttributeBetweenFilter

- lowerValue: Object
- upperValue: Object

AttributeCompareFilter

- operator: ComparisonOperator
- value: Object

Serializable
AttributeFilter

- attributeURI: String

«enumeration»
ComparisonOperator

Equals
GreaterThan
LowerThan
GreaterOrEquals
LowerOrEquals
NotEquals

Serializable
KIGARAnalysis

- analysisType: AnalysisType
- defaultParameters: List<AnalysisParameter>
- fi lters: List<AnalysisFilter>
- performRestOfAnalysis: Boolean

KIGARParameters

- analyses: List<KIGARAnalysis> = new ArrayList<K...

«interface»
Reasoners::ReasonerParameters

+_paramName

+name

#_parameters

+analyses 1..*

-operator

-analysisType

+subjectAttributeFilters

0..*

+objectAttributeFilters

0..*

+parameters

0..*

+defaultParameters

0..*

+filters 0..*

Figure 4: KIGAR parameters class diagram

Here is a brief description of classes presented this diagram:

o KIGARParameters: This class only contains a list of KIGARAnalysis objects
stating which analyses to perform;

DRDC Valcartier CR 2012-003 9

o KIGARAnalysis: This class defines a specific analysis to execute and optionally
allows performing the analysis on specific subjects/objects based on a set of
filters.

The analysisType field defines the analysis to execute. The value must be
one of the AnalysisType enumeration value. Please refer to the Multi-
Reasoners Inference Software Architecture Description for the full list of
analyses.
The defaultParameters field allows overriding default analysis
parameters. They are simply defined by a list of key-value pairs. Please
also refer to the Multi-Reasoners Inference Software Architecture
Description about which parameter is available per analysis.
The filters field allows defining groups of subjects/objects that will be
evaluated with different parameters. They are selected in a similar way
than a search query – by defining a set of attributes that must be matched
against subjects/objects and a set of parameter values to apply to them.
The performRestOfAnalysis flag allows indicating whether
subjects/objects that have not been matched by filters should be
evaluated or not. If set to true, they will be evaluated with the overridden
defaultParameters or the analysis default values.
Please note that analyses can be simply configured by providing no
filters and setting performRestOfAnalysis flag to true. In this case, every
subjects/objects found in the input facts will be evaluated with the same
parameter values.

o AnalysisFilter: This class defines a set of subjects/objects attributes restrictions
used to select a subset of the subjects/objects found in the input facts and a set of
parameter values to apply to them when performing the analysis.

The subjectAttributeFilters field is a list of attributes criteria that is
applied to subjects found in the input facts. Each filter is a conjunction
with other filters (filter1 AND filter2 AND filter3).
The objectAttributeFilters field is a list of attributes criteria that is
applied to objects found in the input facts. Each filter is a conjunction
with other filters (filter1 AND filter2 AND filter3).
The parameters field allow overriding parameter values. The precedence
order is the following: when searching for a parameter value, the
parameter key will be searched for in the parameters. If not found, the
parameter will then be searched in the defaultParameters field of the
parent KIGARAnalysis object. If still not found, the analysis will use a
default system value.
Please refer to the MRI-Software Architecture Description for the
complete list of parameters available for each analysis.

o AttributeCompareFilter: This kind of filter must define an attribute URI, an
attribute value and an operator used to compare the subject/object attribute value
with the defined value.

o AttributeBetweenFilter: This kind of filter must define an attribute URI, an
attribute value lower and upper bound. The restriction is inclusive (value must be

10 DRDC Valcartier CR 2012-003

greater than or equals to the lower bound and lower than or equals to the upper
bound).

2.3.3 Service endpoints
The Web Service interface endpoint has the following scheme:

http://host:port/istip/mri-kigar/KIGARWS

where the port is usually 8080 in the case of JBoss

Moreover, the WSDL is available by simply adding “?wsdl” at the end of the previous address
scheme when deployed in JBoss.

The Web Service interface endpoint has also been registered to the ISTIP UDDI:

Table 1: KIGAR Service Endpoint

Service Name Value

KIGAR Service http://10.9.1.200:8080/istip/mri-kigar/KIGARWS

KIGAR service is also available through Java remote and local interfaces through JBoss using the
following JNDI names:

Table 2: KIGAR Service JNDI Names

JNDI Name Interface Type

MRI/KIGAReasonerBean/local ca.gc.rddc.kigar.KIGAReasonerLocal Local

MRI/KIGARWSBean/remote-
ca.gc.rddc.kigar.KIGAReasonerRemote

ca.gc.rddc.kigar.KIGAReasonerRemote Remote

2.3.4 Security
KIGAR service can be secured through OpenSSO authentication if deployed with ant using the
following parameter value:

apply-security = true

Actually, the service is only configured to allow access to any authenticated user when deployed
with the above parameter value.

Please refer to the document Contract Number: W7701-5-3182, Task Authorization 69,
SOFTWARE INSTALLATION GUIDE (SIG) – SSO for more information on how to configure
OpenSSO with JBoss.

Please also refer to the document User Single Sign-on – Development Report – Group C
Deliverable 1 – JCDS-CTB-TA69-310-0432-DR for more information about the service security
configuration.

DRDC Valcartier CR 2012-003 11

2.4 Rule-Based Reasoner (RBR) Interface Identification

2.4.1 Methods
UUID5 createContext(Collection<FactDTO> facts,

Collection<FactDefinitionDTO> factDefinitions,
RuleBasedReasonerKnowHow knowHow,

2.4.2 Service data

RuleBasedReasonerParameters parameters)
This method allows creating a reasoning context. It is the first step for performing
automatic reasoning. It initializes a specific "working context" with the provided
facts, atom definitions, knowhow and parameters, and then return the initialized
context identifier. This identifier will then be used to perform any other actions on
this context.

Please note that this method doesn’t launch the reasoning execution. The client must
explicitly invoke the executeAsync method (or execute method for the WS) afterward
to do so.

This method may throw a ReasonerException if anything goes wrong during the
context creation (for example if there is an invalid rule in the knowhow).

2.4.2.1 FactDTO and FactDefinitionDTO
These objects are imported directly from the SFM service API containing the fact model. Please
refer to the section 3.7 of the document JCDS-CTB-TA69-310-0426-DR-v0.7.doc for more
information about these objects.

2.4.2.2 RuleBasedReasonerParameters
The following diagram depicts the class structure of the RuleBasedReasonerParameters class:

5 Please note that in the case of the Web Service interface, UUID objects are replaced by Strings, which can
be easily transferred using SOAP standard.

12 DRDC Valcartier CR 2012-003

class RBR

Parameters

«interface»
Reasoners::ReasonerParameters

RuleBasedReasonerParameters

Figure 5: RBR parameters class diagram

RBR doesn’t require any specific execution parameter. However, in order to fulfill the common
reasoning interface, an empty class has been implemented. This also leaves the opportunity to add
any parameters to the reasoner in future improvements of the service.

2.4.2.3 RuleBasedReasonerKnowHow
The following diagram depicts the class structure of the RuleBasedReasonerKnowHow class:

DRDC Valcartier CR 2012-003 13

class RBR

Knowhow

«interface»
Reasoners::KnowHow

Serializable
Argument

argumentId: String
argumentIndex: int
relationalOperatorType: ArgumentComparisonOperator = ArgumentCompari...

«enumeration»
ArgumentComparisonOperator

Equal
NotEqual
GreaterThan
LessThan
EqualGreaterThan
EqualLessThan

Attributes
- symbol: String

ArgumentReference

referencedArgumentId: String

Serializable
ConclusionElement

- arguments: List<Argument> = new ArrayList<A...
- elementId: String
- factDefinitionId: String

Serializable
InferenceRule

- conclusionElements: List<ConclusionElement> = new ArrayList<C...
- premiseElements: List<PremiseElement> = new ArrayList<P...
- ruleId: String

LiteralArgument

- dateValue: Date
- distanceMeasureType: DistanceMeasureType
- distanceValue: Double
- doubleValue: Double
- endDate: Date
- geoValue: String
- isOntologyInstance: Boolean
- numberValue: Long
- ontologyEntityUri: String
- startDate: Date
- textValue: String

PremiseAtomElement

- arguments: List<Argument> = new ArrayList<A...
- factDefinitionId: String

Serializable
PremiseElement

elementId: String

«enumeration»
PremiseOperator

AND
OR
NOT
OPENING_PARENTHESIS
CLOSING_PARENTHESIS

PremiseOperatorElement

- premiseOperatorType: PremiseOperator

RuleBasedReasonerKnowHow

- rules: Set<InferenceRule> = new HashSet<Inf...

-premiseOperatorType

#relationalOperatorType

+rules 1..*

+conclusionElements 1..*

+premiseElements
1..*

+arguments 1..*+arguments 1..*

Figure 6: RBR knowhow class diagram

14 DRDC Valcartier CR 2012-003

Here is a brief description of classes presented this diagram:

o RuleBasedReasonerKnowHow: This class simply contains a list of inference
rules

o InferenceRule: This class defines an inference rule by using three fields:
The ruleId field is used to identify rules within the same context.
Therefore, the ruleId should be unique among the inference rules of the
same context.
The premiseElements field contains the rule premise expression
composed of atom (fact) restrictions and operators. When this expression
is matched among the facts in the context, the conclusion is generated.
The conclusionElements field basically define which facts will be created
when the premise expression is matched among facts in the context and
how their arguments are valued (either predefined values or values based
on the facts that have been matched with the rule premises).

o PremiseElement: Abstract class. A premise element can either be a
PremiseAtomElement – an atom restriction, or a PremiseOperatorElement – an
operator to build complex expressions of AND, OR, NOT, etc. with atom
restrictions. However, please note that the premise elements sequence is very
important and must respect the following syntax:

Figure 7: Premise expression

Figure 8: Parenthesis expression

DRDC Valcartier CR 2012-003 15

Figure 9: Negate expression

o PremiseAtomElement: This class defines restriction on a fact that must be
found within the context facts.

The factDefinitionId field first identify which “kind” of fact that must be
matched based on its fact definition identifier. This property is
mandatory.
The arguments field defines a set of restrictions on the fact arguments

o Argument: This base class can only be used in the rule premises. It allows
defining a fact argument in the premises without defining any restriction on it. It
is meant to be referenced by another ArgumentReference since the “binding” is
performed using the argumentId field.

The argumentId field must uniquely identify the argument restriction
among all arguments constituting the inference rule. It is mainly used to
be referred to by other argument restrictions in the premises or
conclusions (through ArgumentReference)
The argumentIndex field is used to identify the argument within the fact
arguments (mainly since arguments without restrictions can be omitted in
the premises);

o LiteralArgument: This class defines a restriction on a fact argument value when
used in the rule premises or as a predetermined argument value when used in the
rule conclusion.

The argumentId field must uniquely identify the argument restriction
among all arguments constituting the inference rule. It is mainly used to
be referred to by other argument restrictions in the premises or
conclusions (through ArgumentReference)
The argumentIndex field is used to identify the argument within the fact
arguments (mainly since arguments without restrictions can be omitted in
the premises);
The relationalOperatorType field allows selecting the comparison
method when used in the premises. If the argument is in the conclusion
section, this field is simply ignored.

Equal: the fact argument value must match exactly the value
restriction set in the premise literal argument

16 DRDC Valcartier CR 2012-003

NotEqual: the fact argument value must not match the value
restriction set in the premise literal argument
GreaterThan: the fact argument value must be exclusively
greater than the value restriction set in the premise literal
argument
LessThan: the fact argument value must be exclusively less than
the value restriction set in the premise literal argument
EqualGreaterThan: the fact argument value must be either
exactly equal to or greater than the value restriction set in the
premise literal argument
EqualLessThan: the fact argument value must be either exactly
equal to or less than the value restriction set in the premise literal
argument

The other fields (dateValue, doubleValue, etc.) are used to specify the
argument value based on the argument value type. Please refer to the fact
argument for more information about these fields.

o ArgumentReference: This class defines either a restriction on a fact argument
value by comparing it with another argument value when used in the rule
premises, or an argument value that will be copied from a fact matched in the
premises when used in the rule conclusion.

The argumentId field must uniquely identify the argument restriction
among all arguments constituting the inference rule. It is mainly used to
be referred to by other argument restrictions in the premises or
conclusions (through ArgumentReference)
The argumentIndex field is used to identify the argument within the fact
arguments (mainly since arguments without restrictions can be omitted in
the premises);
The relationalOperatorType field allows selecting the comparison
method when used in the premises. If the argument is in the conclusion
section, this field is simply ignored.

Equal: the fact argument value must match exactly the value
found in the referenced argument
NotEqual: the fact argument value must not match the value
found in the referenced argument
GreaterThan: the fact argument value must be exclusively
greater than the value found in the referenced argument
LessThan: the fact argument value must be exclusively less than
the value found in the referenced argument
EqualGreaterThan: the fact argument value must be either
exactly equal to or greater than the value found in the referenced
argument
EqualLessThan: the fact argument value must be either exactly
equal to or less than the value found in the referenced argument

DRDC Valcartier CR 2012-003 17

The referencedArgumentId field is used to determine which argument is
referenced by this restriction by providing its corresponding argumentId
identifier. When used in the rule premises, the value found in the
referenced argument will be used for the comparison restriction.When
used in the rule conclusion, it must refer to an argument defined in the
rule premises and will copy the value matched at runtime by this premise
restriction in the conclusion fact argument.

o PremiseOperatorElement: This class allows defining complex premises
conditions by adding operators between premise atom restrictions.

The premiseOperatorType field is used to select the operator to use:
AND: Both expressions surrounding the operator must be
matched
OR: Only one of the two expressions surrounding the operator
needs to be matched
NOT: The expression immediately following the operator must
not be matched
OPENING_PARENTHESIS: opening parenthesis “(“ used to
explicit operator precedence
CLOSING_PARENTHESIS: closing parenthesis “)” used to close
a group of expressions starting by an opening parenthesis

o ConclusionElement: This class allows defining which facts will be created as
inferred facts if the rule premise expression is matched against the context facts,
and how their arguments will be valued.

The factDefinitionId field first identify which “kind” of fact that will be
generated as inferred facts using its fact definition identifier.
The arguments field is used to determine how each argument of the
inferred facts will be valued using LiteralArgument objects for
predefined values or ArgumentReference objects for values based on
arguments matching the premise expression.

2.4.3 Service endpoints
The Web Service interface endpoint has the following scheme:

http://host:port/istip/mri-rbr/RuleBasedReasonerWS

where the port is usually 8080 in the case of JBoss

Moreover, the WSDL is available by simply adding “?wsdl” at the end of the previous address
scheme when deployed in JBoss.

The Web Service interface endpoint has also been registered to the ISTIP UDDI:

Table 3: Rule-Based Reasoner Service Endpoint

Service Name Value

Rule Based Reasoner Service http://10.9.1.200:8080/istip/mri-rbr/RuleBasedReasonerWS

18 DRDC Valcartier CR 2012-003

The RBR service is also available through Java remote and local interfaces through JBoss using
the following JNDI names:

Table 4: Rule-Based Reasoner Service JNDI Names

JNDI Name Interface Type

MRI/RuleBasedReasonerBean/loc
al

ca.gc.rddc.rulebasedreasoner.RuleBasedReasonerL
ocal

Local

MRI/RuleBasedReasonerBean/remo
e-
ca.gc.rddc.rulebasedreasoner.RuleB
sedReasonerRemote

ca.gc.rddc.rulebasedreasoner.RuleBasedReasonerR
emote

Remot
e

2.4.4 Security
The RBR service can be secured through OpenSSO authentication if deployed with ant using the
following parameter value:

apply-security = true

Actually, the service is only configured to allow access to any authenticated user when deployed
with the above parameter value.

Please refer to the document Contract Number: W7701-5-3182, Task Authorization 69,
SOFTWARE INSTALLATION GUIDE (SIG) – SSO for more information on how to configure
OpenSSO with JBoss.

Please also refer to the document User Single Sign-on – Development Report – Group C
Deliverable 1 – JCDS-CTB-TA69-310-0432-DR for more information about the service security
configuration.

2.5 Case-Based Reasoner (CBR) Interface Identification

2.5.1 Methods
UUID6 createContext(Collection<FactDTO> facts,

Collection<FactDefinitionDTO> atomDefinitions,
CaseBasedReasonerKnowHow knowHow,

6 Please note that in the case of the Web Service interface, UUID objects are replaced by Strings, which can
be easily transferred using SOAP standard.

CaseBasedReasonerParameters parameters)

DRDC Valcartier CR 2012-003 19

This method allows creating a reasoning context. It is the first step for performing
automatic reasoning. It initializes a specific "working context" with the provided
facts, atom definitions, knowhow and parameters, and then return the initialized
context identifier. This identifier will then be used to perform any other actions on
this context.

Please note that this method doesn’t launch the reasoning execution. The client must
explicitly invoke the executeAsync method (or execute method for the WS) afterward
to do so.

This method may throw a ReasonerException if anything goes wrong during the
context creation (for example if there is an invalid template in the knowhow).

2.5.2 Service data

2.5.2.1 FactDTO and FactDefinitionDTO
These objects are imported directly from the SFM service API containing the fact model. Please
refer to the section 3.7 of the document JCDS-CTB-TA69-310-0426-DR-v0.7.doc for more
information about these objects.

2.5.2.2 CaseBasedReasonerParameters
The following diagram depicts the class structure of the CaseBasedReasonerParameters class:

class CBR

Parameters

CaseBasedReasonerParameters

- autoConfirmSimilarityThreshold: Double = 0.8
- topKSimilarCases: Integer = 5

«interface»
Reasoners::ReasonerParameters

Figure 10: CBR parameters class diagram

Here is a brief description of the classes presented in this diagram:

o CaseBasedReasonerParameters: This class defines the general parameters for
the case-based reasoner. It only contains two (2) parameters:

The topKSimilarCases field defines the maximal number of cases to keep
for a given situation (subset of input facts) matching a given situation

20 DRDC Valcartier CR 2012-003

template. If set to null, all similar cases will be assigned to the inferred
facts;
The autoConfirmSimilarityThreshold field defines the minimal similarity
value required to automatically consider a given situation (subset of input
facts) as similar to a given case, and therefore generate the appropriate
inferred facts based on the situation template. The value should be
between 0 and 1 (as case similarity factors are normalized within this
value range).
Both parameters are applied to the cases comparison set. Therefore, if
both parameters are set, only the top K cases matching the given situation
description with a similarity factor higher (or equal) than the threshold
will be retained.

2.5.2.3 CaseBasedReasonerKnowHow
The following diagram depicts the class structure of the CaseBasedReasonerKnowHow class:

DRDC Valcartier CR 2012-003 21

class CBR

Knowhow

Serializable
TemplateArgumentReference

- argumentIndex: int
- atomDefinitionIndex: int

Serializable
Template

- atomDefinitionIds: List<String> = new ArrayList<S...
- conclusions: List<Conclusion> = new ArrayList<C...
- globalSimilarityMeasureType: GlobalSimilarityMeasureType
- joinConditions: List<TemplateArgumentReference> = new ArrayList<T...
- similarityConfig: List<SimilarityConfig> = new ArrayList<S...
- templateCases: Set<Case> = new HashSet<Case>()
- templateId: String

Serializable
SimilarityConfig

- argumentIndex: int
- atomDefinitionIndex: int
- measureType: MeasureType
- weight: double

«enumeration»
GlobalSimilarityMeasureType

Average
Frequency
Euclidean

CaseBasedReasonerKnowHow

- templates: List<Template> = new ArrayList<T...

Serializable
Case

- descriptions: List<FactDTO> = new ArrayList<F...
- id: String

EqualEqualsStringIgnoreCase
InrecaLessIsBetter

~ jump: double
~ maxValue: double

InrecaMoreIsBetter

~ jump: double

Interv al

~ interval: double

MaxString

Serializable
MeasureType

Threshold

~ threshold: double

«interface»
Reasoners::KnowHow

Serializable
Argument

Serializable
Conclusion

- arguments: List<Argument> = new ArrayList<A...
- atomDefinitionId: String

Serializable
ContextInterv al

- interval: double = 50
- templateArgumentReference: TemplateArgumentReference

ContextEqual

- templateArgumentReference: TemplateArgumentReference

Serializable
ContextMoreIsBetter

- jumpSimilarity: double = 0.8
- templateArgumentReference: TemplateArgumentReference

Serializable
ContextLessIsBetter

- jumpSimilarity: double = 0.8
- maxAttributeValue: double = 50
- templateArgumentReference: TemplateArgumentReference

LiteralArgument

- dateValue: Date
- distanceMeasureType: DistanceMeasureType
- distanceValue: Double
- doubleValue: Double
- endDate: Date
- geoValue: String
- isOntologyInstance: Boolean
- numberValue: Long
- ontologyEntityUri: String
- startDate: Date
- textValue: String

-measureType

+templateCases

1..*

+templates 1..*

+joinConditions
0..*

+similarityConfig 1..*

-globalSimilarityMeasureType

-templateArgumentReference

+conclusions

+arguments

Figure 11: CBR knowhow class diagram

Here is a brief description of the classes presented in this diagram:

o CaseBasedReasonerKnowHow: This class basically contains a list of situation
templates.

o Template: This class defines how facts are organized into situations and then
evaluated against other situations.

The templateId field uniquely identify the template;
The atomDefinitionIds field defines the list of facts constituting the
situation. The list is ordered to ease referencing arguments by using the
fact index. When building situations out of input facts, the converter will
try to match the list of fact definitions in the template to build a situation
(with join conditions if any);
The joinConditions field defines a list of TemplateArgumentReference to
enforce situation facts grouping by argument having the same value.

22 DRDC Valcartier CR 2012-003

Here is an example. Based on the list of atomDefinitionIds, situations
with any combination of atom definition 1, 2 and 3 could be made.
However, the joinConditions adds to these facts a join restriction.

Figure 12: CBR join restriction constraint

In the example above, the joinConditions field would contain the
following values: { [fact index: 1, argument index: 1], [fact index 2,
argument index: 2], [fact index: 3, argument index: 2] }. This will make
sure that the argument values of the first fact and first argument will
match the second argument of the second fact, as well as the second
argument of the third fact. Typical cases of join conditions are to ensure
that subjects of each fact are the same.

The similarityConfig field defines local similarity measures – which fact
arguments should be used for situation comparison, and which
comparison algorithm to use.
The globalSimilarityMeasureType field selects how each individual
similarity measure will be computed to form a unified global similarity
measure. There are currently three (3) algorithms implemented:

Average: compute the average local similarity of all compared
fields:

Euclidean: compute the Euclidean similarity of all compared
fields:

Frequency: compute the average local similarity by normalizing
them to 0 or 1 if the similarity is greater than 0:

The templateCases field defines one or more case(s) constituting the case
base for this template. Please note that these cases must comply with the
structure defined in the template (atom definition ids, etc.). If no case is

DRDC Valcartier CR 2012-003 23

provided, the template will not be used since the reasoner will have no
case to compare the situation descriptions with.
The conclusions field defines one or more fact(s) that will be generated
when a description matches a case and is respecting the
autoConfirmSimilarityThreshold defined previously. The fact arguments
can be hard coded or can be defined as TemplateArgumentReference
which will copy the value of an argument of the description into the
conclusion fact.

o TemplateArgumentReference: This class allows referencing arguments by their
atom definition (or corresponding fact) index within the template and the
argument index within this fact. The following figure presents how this reference
is achieved:

Figure 13: Template argument reference example

The atomDefinitionIndex field select the atom definition (or fact) within
the situation template by its position in the list (starting at 1). Here, the
position is used since the same atom definition may be used twice in the
template and each may not have the same meaning in the situation.
The argumentIndex field select the argument within the atom definition
(or fact) by its position (starting at 1).

o SimilarityConfig: This class defines a local similarity configuration for
comparing situation descriptions against the template cases. The local similarity
will be evaluated between two corresponding7

The atomDefinitionIndex field select the atom definition (or fact) within
the situation template by its position in the list (starting at 1) exactly like
for the TemplateArgumentReference class.

arguments.

The argumentIndex field select the argument within the atom definition
(or fact) by its position (starting at 1) exactly.

7 The argument of the case is compared with the argument from the situation description having the same
fact index and argument index.

24 DRDC Valcartier CR 2012-003

The measureType field defines how the local similarity will be
computed.
The weight field allows defining different weight to local similarities
(when using a global similarity measure using it). For example, if a the
weight of a local similarity is set to “2” and all other local similarities
weight is set to “1”, the first local similarity will have twice the weight of
each other similarity in the global similarity measure.

o Conclusion: This class defines facts that will be generated if a description is
similar to a case.

The atomDefinitionId field defines the type of atom definition that will
be generated.
The arguments field defines the arguments of the fact that will be
generated which can be hard-coded (LiteralArguments) or can be copied
from the description with TemplateArgumentReference.

o Argument: This class defines an argument which can be used in a template
conclusion. There are two types of arguments: hard-coded (LiteralArguments) or
copied from the description (TemplateArgumentReference).

o Literal Argument: This class defines the content of a hard-coded argument in a
template conclusion.

The dateValue field defines the date value of an argument.
The distanceMeasureType field defines the distance measure type value
of an argument.
The distanceValue field defines the distance value of an argument.
The doubleValue field defines the double value of an argument.
The endDate field defines the end date value of a date range argument.
The geoValue field defines the geometry value as WKT of an argument.
The isOntologyInstance field defines if the ontologyEntityUri field of the
argument represents an individual or a class.
The numberValue field defines the long value of an argument.
The ontologyEntityUri field defines the ontology entity uri value of an
argument.
The startDate field defines the start date value of a date range argument.
The textValue field defines the text value of an argument.

o Equal: This local similarity function class compares two argument values and
return 1 if they are equals and 0 otherwise;

o EqualsStringIgnoreCase: This local similarity function class compares two
argument values and return 1 if they are equals (without comparing case) and 0
otherwise. However, the argument value must be of type String to use this
similarity function.

o InrecaLessIsBetter: This local similarity function class compares two argument
values – which must be numerical – and return the following value:

DRDC Valcartier CR 2012-003 25

where caseValue is the argument value of the evaluated case,
queryValue is the argument value of the evaluated situation
description, and jump and maxValue are the function parameters.

The maxValue field defines the reference maximum value
The jump field defines the factor to use if the situation description value
(queryValue) is less than the case value and the maxValue. This value
should be between 0 and 1 inclusively.

o InrecaMoreIsBetter: This local similarity function class compares two
argument values – which must be numerical – and return the following value:

where caseValue is the argument value of the evaluated case,
queryValue is the argument value of the evaluated situation
description, and jump is the function parameter.

The jump field defines the factor to use if the situation description value
(queryValue) is greater than the case value. This case should be between
0 and 1 inclusively.

o Interval: This local similarity function class compares two argument values –
which must be numerical – and return the following value:

where caseValue is the argument value of the evaluated case,
queryValue is the argument value of the evaluated situation
description, and interval is the function parameter.

The interval field should define the maximal possible difference between
both values.

o MaxString: This local similarity function class compares two arguments – which
should be of text type – and return a value depending on the biggest substring
that belong to both strings.

where caseValue is the argument value of the evaluated case,
queryValue is the argument value of the evaluated situation
description, maxLength is the maximal string length of both
strings and maxSubstringLength is the length of the biggest
substring that belong to both strings.

26 DRDC Valcartier CR 2012-003

o Threshold: This local similarity function class compares two arguments – which
should be numerical – and return the following value:

where caseValue is the argument value of the evaluated case,
queryValue is the argument value of the evaluated situation
description and threshold is the function parameter.

The threshold field defines the maximal acceptable difference between
case value and situation description value.

o ContextEqual: This local similarity function behaves exactly as the Equal
similarity measure defined above except that it its result is contextual to the value
of a predefined argument of the case and description. If the “context” argument
of the case and description are equal, then the Equal similarity measure will be
performed on the current argument otherwise its value will be set automatically
to 0.

The TemplateArgumentReference which defines an argument of the
template that must be equal to the same argument of the description
being compared to be evaluated.

o ContextLessIsBetter: This local similarity function behaves exactly as the
InrecaLessIsBetter similarity measure defined above except that it its result is
contextual to the value of a predefined argument of the case and description. If
the “context” argument of the case and description are equal, then the
InrecaLessIsBetter similarity measure will be performed on the current argument
otherwise its value will be set automatically to 0.

The TemplateArgumentReference which defines an argument of the
template that must be equal to the same argument of the description
being compared to be evaluated.
maxValue : see InrecaLessIsBetter similarity measure description above.
jump: see InrecaLessIsBetter similarity measure description above.

o ContextMoreIsBetter: This local similarity function behaves exactly as the
InrecaMoreIsBetter similarity measure defined above except that it its result is
contextual to the value of a predefined argument of the case and description. If
the “context” argument of the case and description are equal, then the
InrecaMoreIsBetter similarity measure will be performed on the current
argument otherwise its value will be set automatically to 0.

The TemplateArgumentReference which defines an argument of the
template that must be equal to the same argument of the description
being compared to be evaluated.
jump see InrecaMoreIsBetter similarity measure description above.

o ContextInterval: This local similarity function behaves exactly as the Interval
similarity measure defined above except that it its result is contextual to the value
of a predefined argument of the case and description. If the “context” argument
of the case and description are equal, then the Interval similarity measure will be

DRDC Valcartier CR 2012-003 27

performed on the current argument otherwise its value will be set automatically
to 0.

The TemplateArgumentReference which defines an argument of the
template that must be equal to the same argument of the description
being compared to be evaluated.
Interval: see Interval similarity measure description above.

o Case: This class defines a template for a given situation template. Cases from the
case base will be compared against a situation description to automatically
deduce new facts if both are similar.

The id field uniquely identify the case among all cases of all templates of
the context. This id will be set in the inferred fact justification to identify
which case was found similar to the input situation.
The description field is the case description – a list of facts describing a
known situation description matching the template.

2.5.3 Service endpoints
The Web Service interface endpoint has the following scheme:

http://host:port/istip/mri-cbr/CaseBasedReasonerWS

where the port is usually 8080 in the case of JBoss

Moreover, the WSDL is available by simply adding “?wsdl” at the end of the previous address
scheme when deployed in JBoss.

The Web Service interface endpoint has also been registered to the ISTIP UDDI:

Table 5: Case-Based Reasoner Service Endpoint

Service Name Value

Case Based Reasoner Service http://10.9.1.200:8080/istip/mri-cbr/CaseBasedReasonerWS

The CBR service is also available through Java remote and local interfaces through JBoss using
the following JNDI names:

Table 6: Case-Based Reasoner Service JNDI Names

JNDI Name Interface Type

MRI/CaseBasedReasonerBean/loca
l

ca.gc.rddc.casebasedreasoner.CaseBasedReasonerL
ocal

Local

MRI/CaseBasedReasonerBean/rem
ote-
ca.gc.rddc.casebasedreasoner.Case
BasedReasonerRemote

ca.gc.rddc.casebasedreasoner.CaseBasedReasonerR
emote

Remot
e

28 DRDC Valcartier CR 2012-003

2.5.4 Security
The CBR service can be secured through OpenSSO authentication if deployed with ant using the
following parameter value:

apply-security = true

Actually, the service is only configured to allow access to any authenticated user when deployed
with the above parameter value.

Please refer to the document Contract Number: W7701-5-3182, Task Authorization 69,
SOFTWARE INSTALLATION GUIDE (SIG) – SSO for more information on how to configure
OpenSSO with JBoss.

Please also refer to the document User Single Sign-on – Development Report – Group C
Deliverable 1 – JCDS-CTB-TA69-310-0432-DR for more information about the service security
configuration.

2.6 Descriptive Logic Reasoner

2.6.1 Methods
UUID8 createContext(Collection<FactDTO> facts,

Collection<FactDefinitionDTO> atomDefinitions,
DescriptiveLogicReasonerKnowHow knowHow,

8 Please note that in the case of the Web Service interface, UUID objects are replaced by Strings, which can
be easily transferred using SOAP standard.

DescriptiveLogicReasonerParameters parameters)
This method allows creating a reasoning context. It is the first step for performing
automatic reasoning. It initializes a specific "working context" with the provided
facts, atom definitions, knowhow and parameters, and then return the initialized
context identifier. This identifier will then be used to perform any other actions on
this context.

Please note that this method doesn’t launch the reasoning execution. The client must
explicitly invoke the executeAsync method (or execute method for the WS) afterward
to do so.

This method may throw a ReasonerException if anything goes wrong during the
context creation (for example if there is an invalid template in the knowhow).

DRDC Valcartier CR 2012-003 29

2.6.2 Service data

2.6.2.1 FactDTO and FactDefinitionDTO
These objects are imported directly from the SFM service API containing the fact model. Please
refer to the section 3.7 of the document JCDS-CTB-TA69-310-0426-DR-v0.7.doc for more
information about these objects.

2.6.2.2 DescriptiveLogicReasonerParameters
The following diagram depicts the class structure of the DescriptiveLogicReasonerParameters
class:

Figure 14: DLR parameters class diagram

Here is a brief description of the classes presented in this diagram:

o DescriptiveLogicReasonerParameters: This class defines the general
parameters for the descriptive logic reasoner. It only contains one (1) parameter:

The convertURIsBack field defines if inferred facts URIs will be
converted back to the system URIs;
The extractInferredObjectProperties field defines if objet properties
inferred will be extracted as facts;
The justification field defines if the pellet reasoning justifications must
be extracted and attached to the generated facts. Be aware that this is a
heavy operation that is resource and time consuming;

DescriptiveLogicReasonerKnowHow
The following diagram depicts the class structure of the DescriptiveLogicReasonerKnowHow
class:

30 DRDC Valcartier CR 2012-003

class DLR

Serializable
OntologyReference

- ontologyURI: String

Serializable
DLReasoningTemplate

- id: String
- ontologyReference: OntologyReference
- uriMappings: Set<URIMapping> = new HashSet<URI...

Descriptiv eLogicReasonerKnowHow

- dlrTemplates: List<DLReasoningTemplate> = new ArrayList<D...

OntologyByteArray

- ontologyBytes: byte ([])

OntologyURL

- ontologyURL: String

Serializable
URIMapping

- sourceURI: String
- targetURI: String

Knowhow

+uriMappings

+dlrTemplates

-ontologyReference

Figure 15: DLR knowhow class diagram

Here is a brief description of the classes presented in this diagram:

o DescriptiveLogicReasonerKnowHow: This class basically contains a list of
descriptive logic reasoning templates.

o DLReasoningTemplate: This class contains an ontology from which new facts
will be inferred and a list of URI mapping which can be used to transform triplets
into new triplets matching the ontology content.

The id field uniquely identify the template;

DRDC Valcartier CR 2012-003 31

The ontologyReference field specifies which ontology will be used to
infer new facts. Its reference can be a byte array, an URL or an URI as
described in the OntologyReference class below;
The uriMappings field defines a set of URIMapping which defines the
source URIs to convert to target URIs.

o URIMapping: This class defines a source URI and a target URI. During the
inference, all triplets matching the source URI will be converted to the target URI
before being inserted into the ontology.

The sourceURI field defines the URI to be translated
The targetURI field defines the URI the sourceURI will be translated to

o OntologyReference: This class is used to define an ontology that will be
imported from the ontology repository to be processed by the DLR.

The ontologyURI field is used to import the ontology from the ontology
repository

o OntologyByteArray: This class is used to define an ontology passed as a byte
array to be processed by the DLR.

The ontologyBytes field contains the ontology content as a byte array.
o OntologyURL: This class is used to define an ontology that will be imported

from an URL to be processed by the DLR.
The ontologyURL field defines the URL from which the ontology will be
imported.

2.6.3 Service endpoints
The Web Service interface endpoint has the following scheme:

http://host:port/istip/mri-dlr/DescriptiveLogicReasonerWS

where the port is usually 8080 in the case of JBoss

Moreover, the WSDL is available by simply adding “?wsdl” at the end of the previous address
scheme when deployed in JBoss.

The Web Service interface endpoint has also been registered to the ISTIP UDDI:

Table 7: Descriptive Logic reasoner Service Endpoint

Service Name Value

Descriptive Logic Reasoner
Service

http://10.9.1.200:8080/istip/mri-
dlr/DescriptiveLogicReasonerWS

The DLR service is also available through Java remote and local interfaces through JBoss using
the following JNDI names:

Table 8: Descriptive Logic Reasoner Service JNDI Names

32 DRDC Valcartier CR 2012-003

JNDI Name Interface Type

MRI/DescriptiveLogicReasone
rBean/local

ca.gc.rddc.descriptivelogicreasoner.DescriptiveLogicRe
asonerLocal

Local

MRI/DescriptiveLogicReasone
rBean/remote-
ca.gc.rddc.descriptivelogicreas
oner.DescriptiveLogicReasone
rRemote

ca.gc.rddc.descriptivelogicreasoner.DescriptiveLogicRe
asonerRemote

Remot
e

2.6.4 Security
The DLR service can be secured through OpenSSO authentication if deployed with ant using the
following parameter value:

apply-security = true

Actually, the service is only configured to allow access to any authenticated user when deployed
with the above parameter value.

Please refer to the document Contract Number: W7701-5-3182, Task Authorization 69,
SOFTWARE INSTALLATION GUIDE (SIG) – SSO for more information on how to configure
OpenSSO with JBoss.

Please also refer to the document User Single Sign-on – Development Report – Group C
Deliverable 1 – JCDS-CTB-TA69-310-0432-DR for more information about the service security
configuration.

2.7 MRI Orchestrator

2.7.1 Methods
UUID9 createContext(Collection<FactDTO> facts,

Collection<FactDefinitionDTO> atomDefinitions,
MRIOrchestratorKnowHow knowHow,

9 Please note that in the case of the Web Service interface, UUID objects are replaced by Strings, which can
be easily transferred using SOAP standard.

MRIOrchestratorParameters parameters)
This method allows creating a reasoning context. It is the first step for performing
automatic reasoning. It initializes a specific "working context" with the provided
facts, atom definitions, knowhow and parameters, and then return the initialized
context identifier. This identifier will then be used to perform any other actions on
this context.

Please note that this method doesn’t launch the reasoning execution. The client must
explicitly invoke the executeAsync method (or execute method for the WS) afterward
to do so.

DRDC Valcartier CR 2012-003 33

This method may throw a ReasonerException if anything goes wrong during the
context creation (for example if there is an invalid template in the knowhow).

2.7.2 Service data

2.7.2.1 FactDTO and FactDefinitionDTO
These objects are imported directly from the SFM service API containing the fact model. Please
refer to the section 3.7 of the document JCDS-CTB-TA69-310-0426-DR-v0.7.doc for more
information about these objects.

2.7.2.2 MRIOrchestratorParameters
The following diagram depicts the class structure of the MRIOrchestratorParameters class:

class MRI

MRIOrchestratorParameters

Parameters

«interface»
Reasoners::ReasonerParameters

Figure 16: MRI Orchestrator parameters class diagram

Here is a brief description of the classes presented in this diagram:

o MRIOrchestratorParameters: This class defines the general parameters for the
MRI orchestrator. At the moment it contains no parameters but it has been
created to be the placeholder of future parameters.

2.7.2.3 MRIOrchestratorKnowHow
The following diagram depicts the class structure of the MRIOrchestratorKnowHow class:

34 DRDC Valcartier CR 2012-003

class MRI

Serializable
KIGARSettings

- id: String
- kigarKnowHow: KIGARKnowHow
- kigarParameters: KIGARParameters

Serializable
CBRSettings

- caseBasedReasonerKnowHow: CaseBasedReasonerKnow...
- caseBasedReasonerParameters: CaseBasedReasonerPar...
- id: String

Serializable
DLRSettings

- descriptiveLogicReasonerKnowHow: DescriptiveLogicRea...
- descriptiveLogicReasonerParameters: DescriptiveLogicRe...
- id: String

MRIOrchestratorKnowHow

- cbrSettings: Collection<CBRSettings>
- dlrSettings: Collection<DLRSettings>
- kigarSettings: Collection<KIGARSettings>
- rbrSettings: Collection<RBRSettings>

Serializable
RBRSettings

- id: String
- ruleBasedReasonerKnowHow: RuleBasedReasonerKnow...
- ruleBasedReasonerParameters: RuleBasedReasonerPara...

Knowhow

«interface»
Reasoners::KnowHow

+cbrSettings +kigarSettings

+dlrSettings +rbrSettings

Figure 17: MRI Orchestrator knowhow class diagram

Here is a brief description of the classes presented in this diagram:

o MRIOrchestratorKnowHow: This class basically contains reasoners knowhow
and parameter for every reasoner that can be called by the MRI. The client must
fill only the fields of the reasoners he want to infer with. The fields are:

The cbrSettings field contains a collection of settings for CBR instances
(knowhow + parameters, see CBR section above for more information);
The rbrSettings field contains a collection of settings for RBR instances
(knowhow + parameters, see RBR section above for more information);
The dlrSettings field contains a collection of settings for DLR instances
(knowhow + parameters, see DLR section above for more information);
The kigarSettings field contains a collection of settings for KIGAR
instances (knowhow + parameters, see KIGAR section above for more
information);

o CBRSettings: This class basically contains one instance of the Case Based
Reasoner knowhow and and one instance of its parameters. For each
CBRSettings created, an independent instance of the reasoner will be created.
The more instance of the settings you create, the more reasoners will try to run in

DRDC Valcartier CR 2012-003 35

parallel (Up to the maximum amount defined in the application deployment
descriptors10

o RBRSettings: This class basically contains one instance of the Rule Based
Reasoner knowhow and and one instance of its parameters. For each
RBRSettings created, an independent instance of the reasoner will be created.
The more instance of the settings you create, the more reasoners will try to run in
parallel (Up to the maximum amount defined in the application deployment
descriptors

).

11

o DLRSettings: This class basically contains one instance of the Descriptive Logic
Reasoner knowhow and and one instance of its parameters. For each
DLRSettings created, an independent instance of the reasoner will be created.
The more instance of the settings you create, the more reasoners will try to run in
parallel (Up to the maximum amount defined in the application deployment
descriptors

).

12

o KIGARSettings: This class basically contains one instance of the KIGAR
knowhow and and one instance of its parameters. For each KIGARSettings
created, an independent instance of the reasoner will be created. The more
instance of the settings you create, the more reasoners will try to run in parallel
(Up to the maximum amount defined in the application deployment
descriptors

).

13

2.7.3 Service endpoints

).

The Web Service interface endpoint has the following scheme:

http://host:port/istip/mri-orchestrator/MRIOrchestratorWS

where the port is usually 8080 in the case of JBoss

Moreover, the WSDL is available by simply adding “?wsdl” at the end of the previous address
scheme when deployed in JBoss.

The Web Service interface endpoint has also been registered to the ISTIP UDDI:

Table 9: MRI Orchestrator Service Endpoint

Service Name Value

MRI Orchestrator Service http://10.9.1.200:8080/istip/mri-
orchestrator/MRIOrchestratorWS

The DLR service is also available through Java remote and local interfaces through JBoss using
the following JNDI names:

10 See the ejb-jar.xml file in the of the “src/META-INF” folder of each project to modify those properties
11 See the ejb-jar.xml file in the of the “src/META-INF” folder of each project to modify those properties
12 See the ejb-jar.xml file in the of the “src/META-INF” folder of each project to modify those properties
13 See the ejb-jar.xml file in the of the “src/META-INF” folder of each project to modify those properties

36 DRDC Valcartier CR 2012-003

Table 10: MRI Orchestrator Service JNDI Names

JNDI Name Interface Type

MRI/MRIOrchestratorBean/local ca.gc.rddc.mriorchestrator.MRIOrchestratorLocal Local

MRI/MRIOrchestratorBean/remot
e-
ca.gc.rddc.mriorchestrator.MRIOr
chestratorRemote

ca.gc.rddc.mriorchestrator.MRIOrchestratorRemote Remot
e

2.7.4 Security
The DLR service can be secured through OpenSSO authentication if deployed with ant using the
following parameter value:

apply-security = true

Actually, the service is only configured to allow access to any authenticated user when deployed
with the above parameter value.

Please refer to the document Contract Number: W7701-5-3182, Task Authorization 69,
SOFTWARE INSTALLATION GUIDE (SIG) – SSO for more information on how to configure
OpenSSO with JBoss.

Please also refer to the document User Single Sign-on – Development Report – Group C
Deliverable 1 – JCDS-CTB-TA69-310-0432-DR for more information about the service security
configuration.

DRDC Valcartier CR 2012-003 37

3 Visualization Services

3.1 Multi-Reasoners Inference Graphical Visualisation
Services (MRIV)

3.1.1 Solution description
The MRIV goal is to add a UI layer on top of various ISTIP services such as the Situational Fact
Management service and the Multi-Reasoners Orchestrator service. The first is consumed to
perform CRUD operation on situational facts and fact containers, the second is used to interact
with the MRI services.

The major goals of the MRIV are to facilitate the user interaction with the Multi-Reasoners
Inference service and be able to create or modify a reasoning context, to run a Multi-Reasoners
inference process, and to consult the reasoning results.

Finally, the Google Web Toolkit is the platform for remote procedure calls between the client
(javascript in web browser) and the server (Java servlets).

Here are links to each’ documentation page:

• SmartGWT: http://code.google.com/p/smartgwt/

• GWT: http://code.google.com/webtoolkit/

• GWT-openlayers: http://code.google.com/p/gwtopenlayers/

Figure 18: Multi-Reasoner Inference GWT Voiila Workspace

38 DRDC Valcartier CR 2012-003

3.1.1.1 MultiReasonerInferenceGWT project
Mutli-Reasoner Inference widgets and services have been developed in
MultiReasonerInferenceGWT project. To use these, applications must add the built .jar to their
classpath or add a reference to the project itself. Application also have to add an inherit tag in the
GWT application module.

<inherits name='ca.gc.rddc.was.mri.MultiReasonerInference'/>

Application must also add the framework module and all data module required in the application.
<inherits name='ca.gc.rddc.was.Was'/>

Moreover since it is depending on the SituationalFactsManagementGWT project, it also
requires the importation of the SituationalFactsManagementGWT project:
<inherits name='ca.gc.rddc.was.sfm.SituationalFactsManagement'/>

3.1.1.2 Services

3.1.1.2.1 MRIOrchestratorService
MRIOrchestratorService, MRIOrchestratorServiceAsync interfaces and
MRIOrchestratorServiceImpl define a GWT remote service that interacts with the
MRIOrchestratorService EJB service. It requires the deployment of the
MRIOrchestratorService EJB service on the server.

Application's web.xml file must contain the proper servlet definition.

<servlet>
<servlet-name>mriOrchestratorServiceImpl</servlet-name>
<servlet-class>

ca.gc.rddc.was.mri.server.MRIOrchestratorServiceImpl
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>mriOrchestratorServiceImpl</servlet-name>
<url-pattern>/wasprototype/mriOrchestratorService</url-pattern>

</servlet-mapping>

MRIOrchestratorService is used in the different reasoning widgets for operations on the
MRI Orchestrator processed by the UI layer.

3.1.1.2.2 PredefinedMRIContextService
PredefinedMRIContextService, PredefinedMRIContextServiceAsync interfaces and
PredefinedMRIContextServiceImpl define a GWT remote service.

DRDC Valcartier CR 2012-003 39

Application's web.xml file must contain the proper servlet definition.

<servlet>
<servlet-name>predefinedMRIContextsServiceImpl</servlet-name>
<servlet-class>

ca.gc.rddc.was.mri.server.PredefinedMRIContextsServiceImpl
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>predefinedMRIContextsServiceImpl</servlet-name>
<url-pattern>/wasprototype/predefinedMRIContextsService</url-

pattern>
</servlet-mapping>

The PredefinedMRIContextService is used to extracts the predefined MRI contexts
stored on the server in the configuration folder so that these predefined contexts can be
used in a Multi-Reasoners inference process.

3.1.1.3 Widgets and Windows

3.1.1.3.1 Inference Process Dashboard
Description

The Inference Process Dashboard is a list grid used to display the created multi-reasoner
inference processes. It displays, the process status icon, the process status, the process id and the
action that can be accomplished for each of these processes.

These actions are:

Add facts to an existing process context ()
Consult inference results ()
Delete the process inference context ()

To execute these actions click on the corresponding button.

Related Classes

ReasoningResultsWindow

ContextEditorWindow

ReasoningResults

Screenshot

40 DRDC Valcartier CR 2012-003

Figure 19: Inference Process Dashboard

3.1.1.3.2 Context Editor Window
Description

This window contains all the necessary components used to create an inference process context. It
contains a fact creation component, a “parameters and knowhow” selection component and a
situational fact container selector.

In the Input facts section, the user can select an atom definition and fill its arguments to create a
fact that will be injected in the inference process context when the user will click the create
context button.

In the Parameters and Knowhow section, the user must select a single context file containing the
set of parameters and knowhow to pass to the inference process.

In the Additional situational facts section, the user can select one or more fact container to add
situational facts to the reasoning context.

Finally to create the context, the user must press the Create context button or the Cancel button to
cancel the inference process context creation.

Related Class

Atom Definition

Parameters

KnowHow

FactContainer

Fact

Screenshot

DRDC Valcartier CR 2012-003 41

Figure 20: Context Editor Window

3.1.1.3.3 Reasoning Results Window
Description

The reasoning results window is used to display inferred facts to the user. It contains a list of
inferred facts with their pedigree.

Available columns are:

Fact Id
Fact
Fact Pedigree
Fact Validity
Fact Confidence
Fact Classification

When double clicking on the fact, the used can navigate through the fact attributes through the
use of the SFM FactAttributesWidget.

The Messages tab of this window displays messages returned by the system.

Related Classes

FactAttributesWidget

Attribute

Fact

42 DRDC Valcartier CR 2012-003

Screenshot

Figure 21: Reasoning Results Window

Figure 22: Reasoning Results Window 2

3.1.1.3.4 Multi Reasoner Inference Workspace Tool Strip
Description

This widget displays button representing the different actions that can be executed anytime in the
multi-reasoner inference workspace.

DRDC Valcartier CR 2012-003 43

The actions are:

Create a new inference process ()
Import a an existing inference process id to monitor it ()
Refresh the inference process dashboard statuses ()

Related Classes

InferenceProcessDashboard

ReasoningResults

Screenshot

Figure 23: Multi Reasoner Inference Workspace Tool Strip

3.1.1.4 Data Modules
The MultiReasonerInferenceGWT project defines modules to make the data transfer objects of
the ReasonersCommon, CaseBasedReasonerAPI, RuleBasedReasonerAPI,
DescriptiveLogicReasonerAPI, KIGARAPI and MRIOrchestratorAPI available in GWT
applications. Thus, a *.gwt.xml file has been created in the packages corresponding to these
projects namespaces to include sources of objects from these projects. To make it work, the main
module (MultiReasonerInference.gwt.xml) has six "inherits" tags to include these data modules:
<inherits name='ca.gc.rddc.mriorchestrator.MRIOrchestrator'/>
<inherits name='ca.gc.rddc.reasonerscommon.ReasonersCommon'/>
<inherits name='ca.gc.rddc.kigar.KIGAR'/>
<inherits name='ca.gc.rddc.descriptivelogicreasoner.DLR'/>
<inherits name='ca.gc.rddc.rulebasedreasoner.RBR'/>
<inherits name='ca.gc.rddc.casebasedreasoner.CBR'/>

3.1.2 Bug report
No formal QA has been applied on the project. Bugs were found and fixed during the
development process so no reports are available.

3.1.3 Installation guide
To build the WAS Prototype:

ant -f build.xml build.wasprototype.all

To install WAS Prototype:

ant -f build-install.xml deploy.was.prototype.service

44 DRDC Valcartier CR 2012-003

3.1.4 Testing procedure and test results
No functional testing has been performed other than human testing. Creation of functional UI test
are possible but have not been created in the scope of this project.

DRDC Valcartier CR 2012-003 45

References

[1] Vincent Giroux, Guillaume Morin-Brassard – Fujitsu Consulting Canada Inc. Multi-
Reasoners Inference Software Architecture Description. Quebec (for DRDC Valcartier), 2011

[2] Fujitsu Consulting Canada Inc. Development Report – Group A Deliverable 3 – JCDS-
CTB-TA69-310-0426-DR. Quebec (for DRDC Valcartier), 2011

[3] Yannick Allard - OODA Technologies Inc. Kinematic and Geospatial Analysis Module
(KIGAM) Analysis Fact Sheets. Montreal (for DRDC Valcartier), 2011

[4] Walsh David; Bouchard Kevin; Roy, Jean (Scientific Authority). Contract Number:
W7701-5-3182, Task Authorization 69, SOFTWARE INSTALLATION GUIDE (SIG) -
SSO. Quebec : DMR Conseil, 2011

[5] Kevin Bouchard – Fujitsu Consulting Canada. User Single Sign-on – Development Report
– Group C Deliverable 1 – JCDS-CTB-TA69-310-0432-DR. Quebec (for DRDC Valcartier),
2011

46 DRDC Valcartier CR 2012-003

This page intentionally left blank.

DRDC Valcartier CR 2012-003 47

Annex A KIGAR Analyses

The following table lists the different analyses available within KIGAR, their parameters,
required subjects and objects, as well as the conclusion facts they generate. Please refer to
sections 5 and 6 of the Kinematic and Geospatial Analysis Module (KIGAM) Analysis Fact Sheets
document for more information. The analysis descriptions have been imported from this
document.

Table 11: KIGAR Analyses

Analysis Parameters Subject
type14

Object
type15

Conclusion

PROXIMITY
This analysis will verify if a track is within a
certain distance of a spatial feature. The last
contact of the track will be used as the reference
point for the analysis.

proximityThreshold (default: 5000.0)

The distance threshold to consider that two spatial
features are in proximity (in meters)

1 2 inProximity(subjectUri,
subjectTrajectoryId,
objectUri)

INSIDE
This analysis will verify if a track is contained
inside a Spatial Feature. The last contact of the
track will be used as the reference point for the
analysis.

None 1 2 isInside(subjectUri,
subjectTrajectoryId,
subjectLastContactId,
objectUri)

OUTSIDE
This analysis will verify if a track is not contained
inside a Spatial Feature. The last contact of the
track will be used as the reference point for the
analysis.

None 1 2 isOutside(subjectUri,
subjectTrajectoryId,
subjectLastContactId,
objectUri)

MANEUVER
This analysis will verify if there is a significant
change of heading or change of speed inside the
track. Each segment from the track model will be
used to compare with the threshold.

maneuverCourseChangeLimit (default: 20.0)

The change of heading threshold (in degrees) before
identifying significant maneuver change contacts
maneuverSpeedChangeLimit (default: 5.0)

The change of speed theshold (in meters/sec) before
identifying significant maneuver change contacts

1 N/A maneuverContact(subjectU
ri, subjectTrajectoryId,
subjectContactId)

CHANGEOFHEADING
This analysis will verify if there is a significant
change of heading inside the track. Each segment
from the track model will be used to compare with
the threshold.

cohCourseChangeLimit (default: 20.0)

The change of heading threshold (in degrees) before
identifying major change of heading contacts

1 N/A changeOfHeadingContact(
subjectUri,
subjectTrajectoryId,
subjectContactId)

CHANGEOFSPEED
This analysis will verify if there is a significant
change of speed inside the track. Each segment
from the track model will be used to compare with
the threshold.

cosSpeedChangeLimit (default: 5.0)

The maximum allowed speed (in meters/sec) change
between two contacts before adding a potential anomaly
indication

1 N/A changeOfSpeedContact(
subjectUri,
subjectTrajectoryId,
subjectContactId)

14 The numbers in this column determine which kinds of subjects are supported by each analysis. Indeed,
subjects will be filtered first by making sure a “is-a” triplet associating the subject with the type URI is
present within the input facts triplets. The list of subjects/objects types is available below this table.
15 The numbers in this column determine which kinds of objects are supported by each analysis. Objects
will be filtered first by making sure a “is-a” triplet associating the object with the type URI is present
within the input facts triplets. The list of subjects/objects types is available below this table.

48 DRDC Valcartier CR 2012-003

RENDEZVOUS
This analysis will verify if there is a significant
chance that two tracks might have been at the
same position at the same time based on the
modeled trajectories.

rvTimeTolerence (default: 3600.0)

The time threshold (in seconds) separating the two
spatio-temporal features
rvGeographicScore (default: 0.5)

The geospatial feasability score threshold

1 3 hasRendezVous(subjectUri,
subjectTrajectoryId,
objectUri,
objectTrajectoryId)

STOP_EMITTING
This analysis will verify if there is a track that has
stop emitting, i.e. reporting its position.

seProximityThreshold (default: 5000.0)

The distance threshold to consider that two spatial
features are in proximity (in meters)
seTimeThreshold (default: 3600)

The time threshold (in seconds) between the reference
time and the subject's last contact time
seReferenceTime (default: current time)

The reference time to compare with the subject's last
contact time (in milliseconds since January 1, 1970,
00:00:00 GMT). If not set, the current date is used

1 4 stoppedEmitting(subjectUri
, subjectTrajectoryId)

APPARENT_DESTINATION
This analysis will derive the possible destinations
of a track based on the estimated time of arrival
(ETA)

adCourseDeviation (default: 15.0)

The maximum allowed course deviation (in degrees)

1 2
hasApparentDestination(su
bjectUri,
subjectTrajectoryId,
destinationUri)

COURSE_PROXIMITY
This analysis will determine if tracks have course
proximity based on the specified proximity
threshold. Note that the computed distance will be
the smallest along the entire trajectory of the
tracks, which is internally represented as a curve
object and not only between inflection points of
those curves.

cpTargetProximityThreshold (default: 5000.0)

The distance threshold to consider that two spatial
features are in proximity (in meters)

1 3 hasCourseProximity(subjec
tUri, subjectTrajectoryId,
objectUri,
objectTrajectoryId)

GEOFEASIBLE
This analysis will derive the possible geofeasible
objects for a track based on its current speed

gfExtrapolationDeltaTime (default: 0.0)

The extrapolation time (in milliseconds since January 1,
1970, 00:00:00 GMT) used to analyse if a subject is
heading toward an object

1 2 isGeofeasible(subjectUri,
subjectTrajectoryId,object
Uri)

HEADING_TOWARDS
This analysis will determine if a track is heading
towards a spatial feature within a given amount
of time. It generates a pie slice, based on track's
speed and possible course deviation, to determine
an area of possible positions. A track is
considered to be heading towards all spatial
features within this pie slice.

headingCourseDeviation (default: 15.0)

The maximum tolerated course deviation (in degrees) to
consider that a subject is heading toward an object
headingExtrapolationDeltaTime (default:
0.0)

The extrapolation time (in milliseconds) used to analyse
if a subject is heading toward an object

1 2 isHeadingTowards(subject
Uri, subjectTrajectoryId,
objectUri)

HEADING_AWAY
This analysis will determine if a track is heading
away from spatial feature. It generates a pie slice,
based on track's speed and possible course
deviation, to determine an area of possible
positions. A track is considered to be heading
away from all spatial features not contained in
this pie slice.

headingCourseDeviation (default: 15.0)

The maximum tolerated course deviation (in degrees) to
consider that a subject is heading away from an object
headingExtrapolationDeltaTime (default:
0.0)

The extrapolation time (in milliseconds) used to analyse
if a subject is heading away from an object

1 2 isHeadingAwayFrom(subje
ctUri, subjectTrajectoryId,
objectUri)

TOO_SLOW
This analysis will determine if a track is going too
slow in a particular Zone.

zoneMinimumSpeed (default: null The zone
specific minimum speed)

The subject's minimum speed (in meters/sec). If not
defined, the object's (zone) minimum speed will be used

1 5
isTooSlowInZone(subjectU
ri, subjectTrajectoryId,
zoneUri)

TOO_FAST
This analysis will determine if a track is going too

zoneMaximumSpeed (default: null The zone
specific maximum speed)

1 5
isTooFastInZone(subjectUr
i, subjectTrajectoryId,

DRDC Valcartier CR 2012-003 49

fast in a particular Zone. The subject's maximum speed (in meters/sec). If not
defined, the object's (zone) maximum speed will be used

zoneUri)

APPROACHING
This analysis will determine if a track is
approaching from a spatial feature given that it is
within a certain distance of it.

distanceThreshold (default: 500000.0)

The minimum distance (in meters) between the subject
and the object before considering if the subject is
approaching the object
traveledDistanceMultiplicator (default: 600.0)

The time range (in seconds) used to estimate the future
subject location based on its current heading and speed.

1 2 isApproaching(subjectUri,
subjectTrajectoryId,
objectUri)

MOVING_AWAY
This analysis will determine if a track is moving
away from a spatial feature given that it is within
a certain distance of it.

distanceThreshold (default: 500000.0)

The minimum distance (in meters) between the subject
and the object before considering if the subject is moving
away from the object
traveledDistanceMultiplicator (default: 600.0)

The time range (in seconds) used to estimate the future
subject location based on its current heading and speed.

1 2 isMovingAwayFrom(subjec
tUri, subjectTrajectoryId,
objectUri)

CROSSING
This analysis will determine if a track is crossing
a spatial feature of type LINEAR FEATURE (e.g.
boundary)

None 1 6 isCrossing(subjectUri,
subjectTrajectoryId,
objectUri)

FOLLOWING
This analysis determines is a track is following a
spatial feature of type ROUTE.

frTimeBackward (default: 7200.0)

The time range (in seconds) since the last subject contact
that will be considered by the analysis
frNumberOfPoints (default: 10.0)

Number of point on the specified time range that will be
generated for the analysis, should be high enough to
enable precise computation.

1 7 isFollowing(subjectUri,
subjectTrajectoryId,
objectUri)

DEVIATING
This analysis determines is a track is deviating
from a spatial feature of type ROUTE.

dfrTimeBackward (default: 7200.0)

The time range (in seconds) since the last subject contact
that will be considered by the analysis
dfrNumberOfPoints (default: 10.0)

Number of point on the specified time range that will be
generated for the analysis, should be high enough to
enable precise computation.

1 7 isDeviatingFrom(subjectUr
i, subjectTrajectoryId,
objectUri

LOITERING
This analysis will determine if a track is loitering
based on the supplied minimal speed and its
destination. If a track has no destination, the
analysis will not be applied.

loiteringKnotsPerSeconds (default: 2.0)

The speed (in knots/sec) at which we can consider that
the subject is loitering
loiteringProximityThreshold (default: 1000.0)

The minimum distance from which a track must be from
its destination to be considered loitering

1 4 isLoitering (subjectUri,
subjectTrajectoryId,
destinationUri, true/false)

INBOUND
This analysis determines if a ship is heading
inbound a zone or a country of interest.

inboundCourseDifferenceThreshold
(default: 20.0)

The maximum course difference in degree between the
heading and the heading to reach feature centroid
inboundProximityThreshold (default: 5000.0)

The distance threshold to consider that two spatial
features are in proximity (in meters)
inboundTraveledDistanceMultiplicator
(default: 600.0)
The time range (in seconds) used to estimate the future

1 5 or 8 isInbound(subjectUri,
subjectTrajectoryId,
objectUri)

50 DRDC Valcartier CR 2012-003

subject location based on its current heading and speed.
OUTBOUND
This analysis determines if a ship is heading
outbound a zone or a country of interest.

inboundCourseDifferenceThreshold
(default: 20.0)

The maximum course difference in degree between the
heading and the heading to reach feature centroid
inboundProximityThreshold (default: 5000.0)

The distance threshold to consider that two spatial
features are in proximity (in meters)
inboundTraveledDistanceMultiplicator
(default: 600.0)

The time range (in seconds) used to estimate the future
subject location based on its current heading and speed.

1 5 or 8 isOutbound(subjectUri,
subjectTrajectoryId,
objectUri)

GOING_AROUND
This analysis will determine if a track is going
around a particular zone.

gaCourseChangeLimit (default: 20.0)

The course change threshold (in degrees) for considering
that the subject is actually avoiding the object
gaProximityThreshold (default: 5000.0)

The minimum distance (in meters) between the subject
and the object for considering that the change of heading
is due to the object proximity

1 5 isGoingAround(subjectUri,
subjectTrajectoryId,
objectUri)

GEOFEASIBLE_DESTINATION
This analysis determines if the destination of a
track is geofeasible based on its Estimated Time
of Arrival (ETA).

None 1 4 isDestinationGeofeasible(
subjectUri,
subjectTrajectoryId,
destinationUri, true/false)

ENTERING
This analysis determines if a track is entering a
zone.

None 1 5 isEnteringZone(subjectUri,
subjectTrajectoryId,
zoneUri)

LEAVING
This analysis determines if a track is leaving a
zone.

None 1 5 isLeavingZone(subjectUri,
subjectTrajectoryId,
zoneUri)

PASSING_THROUGH
This analysis will determine is a track is passing
through a zone.

None 1 5 isPassingThroughZone(
subjectUri,
subjectTrajectoryId,
zoneUri)

CIRCLE
This analysis determines if a track has a circular
motion pattern.

circleCourseChangeLimit (default: 20.0)

The change of heading threshold (in degrees) for
selecting the main significant contacts for the analysis
circleBias (default: 900.0)

The time range buffer (in seconds) allowed to determine,
when added to the actual course time, if the course was
performing a feasible circle

1 N/A isCircling(subjectUri,
subjectTrajectoryId)

STOPPED_AT_DESTINATION
This analysis determines if a track is stopped at
its destination

stoppedAtDestinationProximityThreshold
(default: 2000.0)

The maximum distance in meters to consider the track is
at destination
stoppedAtDestinationKnotsPerSecondThr
eshold (default: 2.0)

The maximum speed in nautical miles to consider the
track is stopped.

1 N/A isStoppedAtDestination(sub
jectUri,
subjectTrajectoryId,destina
tionUri,
true/false)

DRDC Valcartier CR 2012-003 51

*Subjects/Objects types:

1. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#Track
2. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#StaticSpatialFeature
3. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#SpatioTemporalFeat

ure
4. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#Destination
5. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#Zone
6. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#LinearFeature
7. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#Route
8. http://localhost:8080/ISFAR/ontologies/SpatialFeatures.owl#Country

52 DRDC Valcartier CR 2012-003

This page intentionally left blank.

DRDC Valcartier CR 2012-003 53

List of symbols/abbreviations/acronyms/initialisms

CBR Case-based reasoner

DLR Descriptive Logic Reasoner – A reasoner based on ontological reasoning.

DTO Data Transport Object

KIGAM KInematic and Geospatial Analysis Module

KIGAR KInematic and Geospatial Analysis Reasoner

MRI Multi-Reasoner Inference

RBR Rule-Based Reasoner

URI Uniform Resource Identifier

WS Web Service

WSDL Web Service Definition Language

54 DRDC Valcartier CR 2012-003

This page intentionally left blank.

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

Fujitsu Consulting (Canada) Inc.
2000 Boulevard Lebourgneuf,
Bureau 300, Québec (Québec) G2K 0E8

2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC APRIL 2011

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

Multi-reasoner Inference : Software Interface Design Description

4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Morin-Brassard, G.; Giroux, V.

5. DATE OF PUBLICATION
(Month and year of publication of document.)

January 2012

6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

6b. NO. OF REFS
(Total cited in document.)

5

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Report

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

W7701-10-4064

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

MRI-242-0449

10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

DRDC Valcartier CR 2012-003

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

To support its research activities in the intelligence domain, the Intelligence and Information
(I&I) Section at DRDC Valcartier is developing the Intelligence Science & Technology
Platform (ISTIP) as a major component of its R&D infrastructures. To improve the reasoning
capabilities of the platform, the mandate of this contract is to produce a Multi-Reasoner
Inference (MRI) capability based on the Multi-Intelligence Tool Suite (MITS) and the ISTIP
software components previously developed by the I&I Section. Five main different services
have been developed containing four individual reasoners and one multi-reasoner orchestrator.
The reasoners that have been created are a Case-Based Reasoner (CBR), a Rule-Based Reasoner
(RBR), a Descriptive-Logic Reasoner (DLR) and a KInematics and Geospatial Analysis
Reasoner (KIGAR) which is based on the KIGAM module of the Inference of Situational Facts
through Automated Reasoning (ISFAR) tool. Through the use of a common reasoning
framework, these reasoners can now leverage their reasoning capabilities by sharing their
strength to other reasoners and achieve an amazing synergy. This document describes the
Software Interface Design Description of the MRI.

Afin de supporter ces activités de recherche dans le domaine du renseignement, la Section du
Renseignement et Information de RDDC Valcartier développe la Plate-forme de Science et
Technologie du Renseignement (ISTIP) comme un composant majeur de ses infrastructures de
R&D. Afin d’améliorer les aptitudes de raisonnement de la plate-forme, le mandat de ce contrat
est de créer un outil d’inférence Multi-Raisonneur (MRI) basé sur la « Multi-Intelligence Tool
Suite » (MITS) et sur les composants logiciels déjà implémentés par la section I&I. Cinq
différents services ont été développés comprenant quatre raisonneurs individuels et un
orchestrateur multi-raisonneur. Les raisonneurs qui ont été créés sont un raisonneur par cas
(CBR), un raisonneur par règles (RBR), un raisonneur ontologique (DLR) et un raisonneur
d’analyse cinématique et géo-spatiale (KIGAR) basé sur le module KIGAM de l’outil
d’Inférence Automatisée de Faits Situationnels (ISFAR). Grâce à l'utilisation d'un cadre de
raisonnement commun, ces raisonneurs peuvent désormais exploiter leurs capacités de
raisonnement en partageant leurs forces à d'autres raisonneurs et parvenir à une synergie
épatante. Ce document décrit l’Architecture Logicielle des Interfaces du MRI.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

reasoner; inference; Intelligence and Information (I&I) Section; R&D infrastructure; Multi-
Reasoner Inference (MRI); Case-Based Reasoner (CBR); Rule-Based Reasoner (RBR);
Descriptive-Logic Reasoner (DLR); KInematics and Geospatial Analysis Reasoner (KIGAR);
KIGAM module; Inference of Situational Facts through Automated Reasoning (ISFAR); software
interface design description

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

