
 

 

Defence Research and Development Canada 
Reference Document  
DRDC-RDDC-2019-D160 
November 2019 

 
CAN UNCLASSIFIED 

 

CAN UNCLASSIFIED 

Deeply Submerged Hydrodynamic, Control, 
Propulsion, and Dynamic Change Models for 
Underwater Vehicle Simulation  

George D. Watt 
DRDC – Atlantic Research Centre  
 
  
 



CAN UNCLASSIFIED 

Template in use: EO Publishing App for SR-RD-EC Eng 2018-12-19_v1 (new disclaimer).dotm 
 
© Her Majesty the Queen in Right of Canada (Department of National Defence), 2019 
© Sa Majesté la Reine en droit du Canada (Ministère de la Défense nationale), 2019 
 
 

CAN UNCLASSIFIED 

IMPORTANT INFORMATIVE STATEMENTS  
 

This document was reviewed for Controlled Goods by Defence Research and Development Canada (DRDC) using the Schedule to 
the Defence Production Act. 

Disclaimer: This publication was prepared by Defence Research and Development Canada an agency of the Department of 
National Defence. The information contained in this publication has been derived and determined through best practice and 
adherence to the highest standards of responsible conduct of scientific research. This information is intended for the use of the 
Department of National Defence, the Canadian Armed Forces (“Canada”) and Public Safety partners and, as permitted, may be 
shared with academia, industry, Canada’s allies, and the public (“Third Parties”).  Any use by, or any reliance on or decisions made 
based on this publication by Third Parties, are done at their own risk and responsibility. Canada does not assume any liability for 
any damages or losses which may arise from any use of, or reliance on, the publication.    

Endorsement statement: This publication has been published by the Editorial Office of Defence Research and Development 
Canada, an agency of the Department of National Defence of Canada. Inquiries can be sent to:  
Publications.DRDC-RDDC@drdc-rddc.gc.ca. 

 
 



Abstract

In 2011, a DRDC Technology Investment Fund project was initiated to develop a concept for
reliably docking unmanned underwater vehicles with a slowly moving submerged submarine. A
contractor, Dynamic Systems Analysis Ltd. (DSA), began developing a simulation to evaluate
the concept using their own and additional algorithms from DRDC and other contractors.
This report documents the deeply submerged hydrodynamic, control, propulsion, and dynamic
change models DRDC provided DSA. The report has evolved over a multi-year period to
incorporate feedback from DSA.

Résumé

En 2011, on a lancé un projet du Fonds d’investissement technologique de RDDC en vue de
concevoir un moyen d’amarrer avec fiabilité des véhicules sous-marins sans équipage (VSSE)
à un sous-marin immergé se déplaant lentement. Un entrepreneur, à savoir Dynamic Systems
Analysis Ltée (DSA), a entrepris l’élaboration d’une simulation visant à évaluer ce moyen à
l’aide de ses propres algorithmes ainsi que d’algorithmes additionnels provenant de RDDC et
d’autres entrepreneurs. Le présent rapport documente les modèles relatifs à l’hydrodynamique
en immersion profonde, au contrôle, à la propulsion et aux changements dynamiques que RDDC
a fournis à DSA. À noter qu’il a été modifié au cours des ans afin d’y intégrer la rétroaction de
DSA.
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Nomenclature

z, w, Z

y, v, Y

x,X
u

−v w

r,N q,M

p,K

U α

β

B = ρgV Vehicle buoyancy.

CB,CG Centers of buoyancy and gravity.

d Maximum hull diameter.

D Propeller diameter.

ED Depth error (a distance), the signal to feed to the depth autopilot.

BG = zG − zB Height of the CB above the CG.

g Gravitational constant.

Iij , I Moments and products of inertia in body axes:

I =





Ix −Ixy −Ixz
−Ixy Iy −Iyz
−Ixz −Iyz Iz





i, j, k Body axis unit vectors.

J = VA/(nD) Propeller advance ratio.

Js, Jsn Advance ratio at the actual and nominal self-propulsion point.

K,M,N,M M = K i+M j+N k are the body axis moments on the vehicle.

K ′,M ′, N ′ Body axis moments nondimensionalized by ρU2ℓ3/2.

KT = T
/ (

ρn2D4
)

Propeller thrust coefficient.

KQ = Q
/ (

ρn2D5
)

Propeller torque coefficient.

ℓ Vehicle length.

m,m′ = m
/ (

1
2ρℓ

3
)

Vehicle mass and dimensionless mass.

m′
t = m/(ρV ) =W/B Vehicle trimmed dimensionless mass.

n Propeller revolutions per second, rps.

p, q, r,Ω Ω = pi+ q j+ rk are body axis angular velocities.

t Time.

tD Thrust deduction fraction.

T,Q Propeller thrust and torque.

u, v, w,U U = ui+ v j+ wk are the body fixed velocities.

U =
√

u2 + v2 + w2 Overall speed of body.
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V Volume within the hydrodynamic envelope.

VA Propeller speed of advance.

wT Effective (Taylor) wake fraction for the propeller.

W = mg Vehicle weight; everything (including floodwater) within the hydrody-
namic envelope.

x, y, z,R R = xi+ y j+ zk are coordinates in body fixed axes.

x0, y0, z0 Inertial (earth-fixed) coordinates locating the body axis origin.

xB, yB , zB ,RB RB = xB i+ yB j+ zBk locates the CB in body axes.

xG, yG, zG,RG RG = xG i+ yG j+ zGk locates the CG in body axes.

xP , yP , zP xP i+ yP j+ zP k locates the propeller axis at the blades in body axes.

xδ, x
′
δ = xδ/ℓ Axial location in body axes of a control surface center of pressure.

X,Y,Z,F F = X i+ Y j+ Zk are the body axis forces on the vehicle.

X ′, Y ′, Z ′ Body axis forces nondimensionalized by ρU2ℓ2/2.

α = tan−1(w/u) Angle of attack.

β = tan−1(−v/u) Angle of drift.

δi Deflection of control surface i; sense from the right hand rule with
thumb pointing radially outwards.

δb, δr , δs, δφ Foreplane, rudder, sternplane, and roll control virtual deflections;
sense from the right hand rule using body axes.

δD Virtual depth control deflection (an angle).

ηo Propeller open-water efficiency.

ν Kinematic viscosity.

ν Crossflow velocity magnitude:
√
v2 + w2.

ρ Sea water density.

ψ, θ, φ Yaw, pitch, and roll Euler angles giving body axes orientation relative
to the inertial axes.

ψP , θP Yaw and pitch angles of the propeller axis relative to the body fixed
x axis.
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1 Introduction

In 2011, a Defence Research and Development Canada (DRDC) Technology Investment Fund
(TIF) project was initiated to develop a concept for reliably docking unmanned underwater
vehicles (UUVs) with a slowly moving submerged submarine in littoral waters in the presence
of environmental disturbance [1,2]. The concept was to be proven through simulation which
required that hydrodynamic and system models for a submarine and UUV be provided to
the contractor developing the simulator. This report describes many of those models for a
deeply submerged vehicle. Early drafts of this report were used by preliminary versions of
the simulator [3]. The simulator continues to evolve based on the final version of this report
and other ongoing work. From a hydrodynamics point of view, the contractor’s challenge is to
merge the deeply submerged hydrodynamic models described herein with free surface effects
under waves as modelled by ShipMo3D [4].

The equations of motion used to model the six degrees-of-freedom (6 DOF) motion of the
vehicles, and the hydrodynamic force models embedded in those equations, are first described.
Then vehicle propulsion, control, and dynamic change models are described. Finally, the generic
submarine and UUV hydrodynamic model parameters used in the docking simulation are pro-
vided in Appendices A and B.

The dynamic change model described in Section 8 is an extensive revision of that presented
by Watt [5]. It is the basis for a new dynamic change algorithm listed in Appendix D.

2 Equations of Motion of a Submerged Rigid Body

The equations of motion are extended versions of Euler’s equations for rigid body dynamics.
By formulating the equations in body axes, the moments of inertia for the body do not vary
in time which greatly simplifies using the equations. In addition, fluid forces acting on the
body and control sensors fixed to the body are usually easier to model in body axes. Fossen [6]

presents a complete derivation of the extended form of the equations we require (but misnames
some body-axes acceleration terms as Coriolis accelerations). The equations are also presented
by Gertler and Hagen [7], Feldman [8], and Watt [9].

The equations describe the evolution in time of 12 states that completely define the 6 DOF
motion of a rigid body:

y = u, v, w, p, q, r, x0 , y0, z0, φ, θ, ψ (1)

The first 6 of these are translational velocities u, v, w along, and rotational velocities p, q, r
about, the vehicle x, y, z body fixed axes. The Euler angles φ, θ, ψ describe the roll, pitch, and
yaw orientations of the vehicle relative to the x0, y0, z0 inertial axes.

The order in which the Euler angle rotations are applied, when transforming between
inertial and body axes, is an integral part of the angle definitions since finite rotations of the
angles in different orders give different final orientations. If the body axes are initially aligned
with the inertial axes (however much the origins are displaced), an arbitrary reorientation
relative to the inertial axes is obtained by

1) yawing about the z axis through an angle ψ ,

2) pitching about the relocated y axis through an angle θ, and

3) rolling about the twice relocated x axis through an angle φ.
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All rotations are in the positive sense as defined by the Right Hand Rule. Thus, the matrix A

transforming a vector description using x0, y0, z0 axes to one using body axes is:

A ≡ AφAθAψ ≡





1 0 0
0 cosφ sinφ
0 − sinφ cosφ









cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ









cosψ sinψ 0
− sinψ cosψ 0

0 0 1





=





cos θ cosψ cos θ sinψ − sin θ
− sinψ cosφ+ sinφ sin θ cosψ cosφ cosψ + sinφ sin θ sinψ sinφ cos θ
sinφ sinψ + cosφ cosψ sin θ − sinφ cosψ + cosφ sin θ sinψ cosφ cos θ



. (2)

Therefore, if v and v0 are the vectors specifying the velocity of the vehicle using body axes
and inertial axes coordinate systems, respectively:

v ≡





u
v
w



 , v0 ≡





ẋ0
ẏ0
ż0



 (3)

then:
v = Av0 and v0 = A−1 v . (4)

Since A is an orthogonal matrix, A−1 = AT (where AT is the transpose of A).

Because of their definitions, ψ̇, θ̇, φ̇ are not independent orthogonal components of a vector
as are p, q, r. The relationship between the two sets of angular velocities is obtained by sum-
ming the contributions of the separately transformed Euler angular velocities to a body axes
representation:





p
q
r



 = AφAθAψ





0
0
ψ̇



+AφAθ





0
θ̇
0



+Aφ





φ̇
0
0



 (5)

giving:
p = − sin θ ψ̇ + φ̇

q = sinφ cos θ ψ̇ + cosφ θ̇

r = cosφ cos θ ψ̇ − sinφ θ̇ .

(6)

These equations result in the following 6 nonlinear ordinary differential equations (ODEs)
describing the kinematic relationships between body fixed and inertial velocities:

ẋ0 = u cos θ cosψ + v(sinφ sin θ cosψ − cosφ sinψ) + w(sin φ sinψ + cosφ sin θ cosψ) (7a)

ẏ0 = u cos θ sinψ + v(cosφ cosψ + sinφ sin θ sinψ) + w(cos φ sin θ sinψ − sinφ cosψ) (7b)

ż0 = −u sin θ + v cos θ sinφ+ w cos θ cosφ (7c)

φ̇ = p+ (r cosφ+ q sinφ) tan θ (7d)

θ̇ = q cosφ− r sinφ (7e)

ψ̇ =
r cosφ+ q sinφ

cos θ
(7f)
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Feldman [8] refers to these as ‘auxiliary equations’ to the dynamics equations of motion derived
next. Note that (7d) and (7f) make the equations singular at pitch angles of ±90 degrees.
This singularity can be avoided through the use of quaternions [6] but generally this is not
necessary for submarines and other streamlined underwater vehicles which try to avoid large
pitch angles.

The overall force F and moment M on a vehicle with fixed mass (dm/dt ≡ 0) and mass
distribution (dI/dt ≡ 0) translating and rotating as a rigid body are:

F =
d

dt
(momentum) = m

[

dU

dt
+Ω × U+

dΩ

dt
× RG +Ω × (Ω × RG)

]

(8)

M =
d

dt
(angular momentum) = I · dΩ

dt
+Ω × (I ·Ω) +mRG ×

(

dU

dt
+Ω × U

)

These equations reduce to the much simpler Euler equations if the body axes are chosen to be
the principle axes (so the cross products of inertia are zero) with RG = 0 (so half the terms
in (8) are zero). Although possible to do, this is not practical for real world applications where
the CG location is rarely known before a vehicle is put to use, and often changes throughout
its life or even throughout a mission if ballast tanks are blown and flooded. Since the equations
are often used during the design and evaluation phases, before the vehicle is even built, a
convenient location for the body axes origin needs to be chosen early. Common locations are
on the hull centerline opposite the hull CB or at the hull midpoint. Putting the origin close to
the boat CB results in consistently small RG values so that RG can usually be neglected during
linearized analyses of the equations of motion, such as for stability analyses. Also, keeping the
origin close to the CB, a physical hydrodynamic center, probably makes comparisons between
hydrodynamic coefficients from different boats more meaningful.

The mass m and moment of inertia I terms in (8) refer to all the mass enclosed by the
hydrodynamic envelope, including any water in ballast tanks or free flooding spaces, because this
mass moves with the vehicle. The space that ballast/floodwater occupies is usually subdivided
so that any relative movement between vehicle and water is localized enough to not impact
stability. Therefore, all such floodwater is assumed to move with the vehicle as a single rigid
body.

The equations neglect the dm/dt and dI/dt contributions to momentum change when a
vehicle blows or floods its ballast tanks. The justification for this is that the overall mass
change is small (less than 10%) and takes place slowly. By allowing mass and the moments of
inertia to vary with time in (8), a quasi-steady model of the change can still be implemented.
This would not be appropriate for vehicles like rockets which depend on rapid mass change for
propulsion.

Switching the right and left hand sides of (8) and separating them into components gives
the six equations of motion for a submerged vehicle (9), shown on the next page. These are first
order ODEs in the body axes velocities but, implicitly, are second order in position and angular
variables. Integrating these equations once gives u, v, w, p, q, r from (1). Integrating them twice
gives body axis position and angular coordinates such as

∫

u dt and
∫

p dt which are not much
use. What are useful are the inertial position coordinates and Euler angels x0, y0, z0, φ, θ, ψ
from (1). These are easily obtained by integrating (7) in parallel with (9).
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Axial Force

m
[

u̇− vr + wq − xG(q
2 + r2) + yG(pq − ṙ) + zG(pr + q̇)

]

= X (9a)

Lateral Force

m
[

v̇ − wp+ ur − yG(r
2 + p2) + zG(qr − ṗ) + xG(qp+ ṙ)

]

= Y (9b)

Normal Force

m
[

ẇ − uq + vp− zG(p
2 + q2) + xG(rp− q̇) + yG(rq + ṗ)

]

= Z (9c)

Rolling Moment

Ixṗ+ (Iz − Iy)qr − (ṙ + pq)Ixz + (r2 − q2)Iyz + (pr − q̇)Ixy

+m
[

yG(ẇ − uq + vp)− zG(v̇ − wp + ur)
]

= K (9d)

Pitching Moment

Iy q̇ + (Ix − Iz)rp− (ṗ+ qr)Ixy + (p2 − r2)Ixz + (qp− ṙ)Iyz

+m
[

zG(u̇− vr + wq)− xG(ẇ − uq + vp)
]

=M (9e)

Yawing Moment

Iz ṙ + (Iy − Ix)pq − (q̇ + rp)Iyz + (q2 − p2)Ixy + (rq − ṗ)Ixz

+m
[

xG(v̇ − wp + ur)− yG(u̇− vr + wq)
]

= N (9f)

Equations (7) and (9) define 12 nonlinear, coupled, first order ordinary differential equa-
tions in the 12 states (1). The simplest way to integrate the equations numerically is to put
them in the form:

ẏ = f(t,y) (10)

Equations (7) are already in this form. To put (9) into the desired form, the terms:

m [Ω × U+Ω × (Ω × RG)] and [Ω × (I ·Ω) +mRG × (Ω × U)] (11)

from (8) need to be transferred to the right hand sides of (9), and any acceleration dependent
hydrodynamic force terms (such as the added mass terms) transferred from the right hand to
the left hand sides of (9). This is done in the next section where, in addition, those terms
requiring special treatment when merging potential flow derived wave forces with the deeply
submerged hydrodynamic forces on the vehicle are identified.
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3 Components of the Equations of Motion

It is convenient to rewrite (9) in matrix form and begin identifying the various contributions to
the forces and moments acting on the vehicle:

M · dV
dt

+W ·M · V = FH + FG + FP (12)

where:

M =



















m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0

0 −mzG myG Ix −Ixy −Ixz
mzG 0 −mxG −Ixy Iy −Iyz

−myG mxG 0 −Ixz −Iyz Iz



















,
dV
dt

=



















u̇

v̇

ẇ

ṗ

q̇

ṙ



















,

(13)

W =



















0 −r q 0 0 0

r 0 −p 0 0 0

−q p 0 0 0 0

0 −w v 0 −r q

w 0 −u r 0 −p
−v u 0 −q p 0



















, V =



















u

v

w

p

q

r



















, FH =



















XH

YH
ZH
KH

MH

NH



















and:

W ·M·V =























m
[

wq − vr − (q2 + r2)xG + pqyG + przG
]

m
[

ur − wp− (r2 + p2)yG + qrzG + qpxG
]

m
[

vp − uq − (p2 + q2)zG + rpxG + rqyG
]

m
[

(vp − uq)yG + (wp − ur)zG
]

+ qr(Iz − Iy)− pqIxz + (r2 − q2)Iyz + prIxy

m
[

(wq − vr)zG + (uq − vp)xG
]

+ rp(Ix − Iz)− qrIxy + (p2 − r2)Ixz + qpIyz

m
[

(ur − wp)xG + (vr − wq)yG
]

+ pq(Iy − Ix)− rpIyz + (q2 − p2)Ixy + rqIxz























.

(14)
FH represents the hydrodynamic forces. The gravitational forces FG account for vehicle weight
W and buoyancy B and are derived by Imlay [11] and Fossen [6]:

FG =



















XG

YG
ZG
KG

MG

NG



















=























−(W −B) sin θ

(W −B) cos θ sinφ

(W −B) cos θ cosφ

(yGW − yBB) cos θ cosφ− (zGW − zBB) cos θ sinφ

−(xGW − xBB) cos θ cosφ− (zGW − zBB) sin θ

(xGW − xBB) cos θ sinφ+ (yGW − yBB) sin θ























(15)

Although the propulsion forces FP are also hydrodynamic forces, it is convenient to sepa-
rate and give them special attention. Following Mackay [12], local propeller axes, x′, y′, z′ say,
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are defined with their origin located on the propeller axis opposite the blades, at xP i+yP j+zP k
in vehicle body axes, and with the x′ axis coincident with the propeller axis. If the x and x′

axes are not parallel, then the usual Euler yaw and pitch angle transformations, using (ψP , θP ),
are used to describe the local propeller axes orientation relative to vehicle body axes. If XP ,KP

are the propeller net-thrust and torque in local propeller axes, and if crossflow forces on the
propeller can be ignored, then:

FP =























XP cosψP cos θP

XP sinψP cos θP

−XP sin θP

KP cosψP cos θP −XP (zP sinψP cos θP + yP sin θP )

KP sinψP cos θP +XP (zP cosψP cos θP + xP sin θP )

−KP sin θP −XP (yP cosψP − xP sinψP ) cos θP























, lim
ψP ,θP→0

FP =



















XP

0

0

KP

zPXP

−yPXP



















(16)
In many cases, ψP , θP = 0 which greatly simplifies (16). Propeller thrust and torque models
are discussed in a later section.

The remaining hydrodynamic forces can be thought of as having inviscid and viscous
contributions:

FH = Finviscid +Fviscous (17)

For the UUV docking simulation, the viscous forces are the steady or quasi-steady forces on
the vehicle which are resolvable in captive model experiments with the propeller absent. They
can be a function of any non-acceleration vehicle state (ie, the dV/dt states are excluded)
or associated system states, or the time history of those states. Although this forces the
instantaneous generation of circulation (a viscous phenomenon) on the vehicle as incidence
angles change, it still allows for the convection along the hull of sail generated circulation to be
modelled in a quasi-steady manner using slender body or strip theory, as done by Feldman [8]

and also by Mackay [12]. As a result, the only significant hydrodynamic forces with a direct
dependence on the acceleration states are inertial in nature, and these are fairly well predicted
using potential flow theory.

Lamb [13] and Watt [10] derive the complete steady and unsteady forces on a deeply
submerged body moving with 6 DOF through an inviscid incompressible fluid. Imlay [14] and
Fossen [6] also present the results. These forces have the form:

Fpotflow = A · dV
dt

+W · A · V (18)

where:

A =























Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ























(19)

is the added mass matrix. The added mass matrix coefficients are a function of geometry
only and are constant for a given deeply submerged vehicle, neglecting insignificant geometry

6



changes such as control surface deflections. A has special properties: it is always symmetric
and, when the vehicle has a vertical plane of symmetry, half the coefficients are zero:

Vertical plane of symmetry: A → AS =























Xu̇ 0 Xẇ 0 Xq̇ 0

0 Yv̇ 0 Yṗ 0 Yṙ

Zu̇ 0 Zẇ 0 Zq̇ 0

0 Kv̇ 0 Kṗ 0 Kṙ

Mu̇ 0 Mẇ 0 Mq̇ 0

0 Nv̇ 0 Nṗ 0 Nṙ























. (20)

Imlay [14], Watt [10], and Fossen [6] discuss ways of estimating the added mass coefficients for
a deeply submerged vehicle based on exact results for ellipsoids.

The unsteady inviscid term A·dV/dt from (18) agrees well with real flow v̇, ẇ, q̇, ṙ accelera-
tion experiments that measure most of the large added mass coefficients. That is, potential flow
predictions of important inertia effects absent from the steady and quasi-steady viscous models
are adequate where they can be validated. This term can be combined with the steady/quasi-
steady viscous hydrodynamic force models without fear of duplication.

The same cannot be said of the W · A · V term from (18), shown here in its entirety but
with the terms that are zero when there is a vertical plane of symmetry shown in blue:

W · A · V =



















































































−Yv̇vr − Yṗpr − Yṙr
2 + Zu̇uq + Zẇwq + Zq̇q

2

− Yu̇ur − Yẇwr − Yq̇qr + Zv̇vq + Zṗpq + Zṙqr

Xu̇ur +Xẇwr +Xq̇qr − Zu̇up− Zẇwp − Zq̇pq

+Xv̇vr +Xṗpr +Xṙr
2 − Zv̇vp− Zṗp

2 − Zṙpr

−Xu̇uq −Xẇwq −Xq̇q
2 + Yv̇vp + Yṗp

2 + Yṙpr

−Xv̇vq −Xṗpq −Xṙqr + Yu̇up+ Yẇwp + Yq̇pq

−Yv̇vw − Yṗwp− Yṙwr + Zu̇uv + Zẇvw + Zq̇vq

− Yu̇uw − Yẇw
2 − Yq̇wq + Zv̇v

2 + Zṗvp+ Zṙvr

−Mu̇ur −Mẇwr −Mq̇qr +Nv̇vq +Nṗpq +Nṙqr

−Mv̇vr −Mṗpr −Mṙr
2 +Nu̇uq +Nẇwq +Nq̇q

2

Xu̇uw +Xẇw
2 +Xq̇wq − Zu̇u

2 − Zẇuw − Zq̇uq

+Xv̇vw +Xṗwp +Xṙwr − Zv̇uv − Zṗup− Zṙur

+Kv̇vr +Kṗpr +Kṙr
2 −Nv̇vp −Nṗp

2 −Nṙpr

+Ku̇ur +Kẇwr +Kq̇qr −Nu̇up−Nẇwp −Nq̇pq

−Xu̇uv −Xẇvw −Xq̇vq + Yv̇uv + Yṗup+ Yṙur

−Xv̇v
2 −Xṗvp −Xṙvr + Yu̇u

2 + Yẇuw + Yq̇uq

−Kv̇vq −Kṗpq −Kṙqr +Mu̇up+Mẇwp+Mq̇pq

−Ku̇uq −Kẇwq −Kq̇q
2 +Mv̇vp+Mṗp

2 +Mṙpr



















































































. (21)

These steady state inviscid force predictions contain both rotational loads analogous to those
in (11) that result from the rotating frame of reference and steady translational forces such as
the historic ‘Munk moments’ (the pitching moment term (Xu̇ − Zẇ)uw and yawing moment
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term (Yv̇ − Xu̇)uv). However, these predictions do not agree well with experiments where
measurements can be made. Consider, for example, an ellipsoid translating at constant speed
and incidence in the vertical plane, so that dV/dt = 0 and v, p, q, r = 0. From (21), the body
forces on the ellipsoid are zero drag, zero normal force, and (Xu̇ − Zẇ)uw for the pitching
moment (Xẇ = Zu̇ = 0 for an ellipsoid). In reality, drag is nonzero, the normal force is
measurable, nonlinear, and important to vehicle dynamics, and the Munk moment substantially
overpredicts the real moment.

These discrepancies occur because the inviscid predictions do not account for flow shear,
circulation, or separation effects that substantially impact steady viscous flows. These effects
take time to develop and so do not impact acceleration forces to the same degree. Therefore, it
is preferable to use experimental measurements and/or semi-empirical estimation methods to
predict these steady forces whenever possible, and the W ·A ·V terms as supplements when no
other information is available.

The inviscid force used in (17) is therefore:

Finviscid = A · dV
dt

+WAVmod (22)

where WAVmod contains the physics from W · A · V not modelled by Fviscous. The equations
of motion can now be put in the form (10):

(M−A)
dV
dt

= −W ·M · V + Fviscous +WAVmod + FG + FP . (23)

The A coefficients and Fviscous +WAVmod model are discussed in §4.

Free Surface Effects

The incorporation of free surface effects into the deeply submerged hydrodynamic model for
the submarine is discussed in detail in [3] but is briefly summarized here. The worst case UUV
docking scenario is when the submarine is travelling at a Froude number below 0.1 with its
centerline approximately two hull diameters below the free surface. The steady state inviscid
forces resulting from standing waves generated by the forward speed of the boat in calm water
are not modelled because their influence can be neutralized with adjustments to propeller RPM
and control surface deflections. However, the unsteady forces on the submarine resulting from
interaction with surface waves must be modelled. We assume incident wave amplitudes are
small relative to their wave lengths and that wave lengths are the same order as the subma-
rine length. A linearized unsteady inviscid analysis shows that the unsteady forces are wave
frequency dependent added mass, radiation (damping), and incident and diffraction wave exci-
tation forces [15]. These forces can be predicted by a frequency domain potential flow analysis
by a program like ShipMo3D [4] and stored in a database as a function of wave frequency
and heading and vehicle speed and depth. The radiation and incident and diffraction wave
excitation data are converted to time domain forces using the Cummins equation [16] extended
to a body-fixed frame [3]. They are zero at zero and infinite wave frequencies and at infinite
depth, and can be superposed on the deeply submerged quasi-steady hydrodynamic forces. The
ShipMo3D added mass coefficients, on the other hand, reduce to the deeply submerged added
mass coefficients (19) at infinite depth, so they must replace the deeply submerged added mass
coefficients in (23).
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The unsteady forces added in this manner are purely inviscid in nature and do not account
for the unsteady viscous interaction between the wave induced flow and the lifting components
on the vehicle. This interaction alters the circulation and therefore the lift on an appendage.
It is not accounted for in the current version of the UUV docking simulation [3]. However, it
is possible to do so by applying Morison’s method (see next paragraph) on a localized basis
to individual vehicle control surfaces, and to superpose these unsteady effects on the current
quasi-steady viscous force models. This should work smoothly providing the submarine is fast
enough that flow reversal does not occur.

For the UUV, free surface effects are modelled using Morison’s formula [15], a quasi-steady
approach that superposes wave field velocities on the actual UUV velocities in (23) to model
incident wave excitation. This is acceptable because UUVs are small compared with incident
surface wave lengths, so the wave induced velocity they experience is approximately uniform at
any given time. Also, being many hull diameters below the free surface, UUVs are effectively
deeply submerged; that is, added mass coefficients retain their constant deeply submerged
values and radiation and diffraction effects are negligible.

4 The Deeply Submerged Hydrodynamic Coefficient Model

The viscous hydrodynamic models for the UUV docking vehicles are based on coefficients ob-
tained from the DRDC Submarine Simulation Program (DSSP) [12]. DSSP also incorporates
capabilities from the Estimate Submarine Added Masses (ESAM) program [10] that let it pre-
dict deeply submerged added mass coefficients. However, DSSP does not make use of ESAM’s
ability to model hull interference effects on appendages nor does it provide the contributions
of individual vehicle components to the added mass totals. These advantages are obtained by
using ESAM directly. Component contributions to the added masses are needed if a simplified
ShipMo3D model (see §3.1) is used that neglects small appendages. For example, tailplanes
and bowplanes add complexity and computation time to ShipMo3D predictions but have min-
imal impact on near surface added mass frequency dependence; however, these control sur-
faces do impact the constant deeply submerged added mass magnitudes. Therefore, simplified
ShipMo3D added mass predictions can be made complete by adding the missing component
constant contributions from ESAM.

DSSP runs in several modes. It simulates static towing tank tests, captive model dynamic
tests, or free swimming maneuvers. It can generate maneuvering limitation diagrams (MLDs) or
a conventional Gertler and Hagen [7] type coefficient based hydrodynamic model for use by itself
or other simulators. Normally DSSP uses a nonlinear component based hydrodynamic model
for forces that is more sophisticated than a coefficient based model; it also models the convection
in time of sail generated vorticity along the submarine afterbody (as per Feldman [8]) during
dynamic simulations, which is not done by conventional coefficient based models. This level of
sophistication is likely overkill in our UUV docking simulations so we avoid its complexity by
using DSSP’s version of the conventional Gertler and Hagen model, as described next.

The Fviscous components for (23) are based on the Gertler and Hagen [7] type hydrody-
namic coefficients generated by DSSP51 (DSSP version 5.1) in coefficient generation mode.
These empirically determined functions (24) are shown on the next page. They are not readily
represented as products of matrices and vectors, as was possible in the last section. They do
not attempt to reproduce the W ·A · V physics but, as discussed next, do duplicate some of it.
Table 1 lists all the coefficients used in these equations.
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Viscous Axial Force

Xviscous =
(

Xuu +Xuuδbδb
δ2b +Xuuδrδr0

δ2r +Xuuδsδs0
δ2s
)

u2

+Xvv0v
2 +Xvrvr +Xww0w

2 +Xwqwq +Xprpr +Xqqq
2 +Xrrr

2 (24a)

Viscous Lateral Force

Yviscous =
(

Yuu + Yuuδbδb + Yuuδr0δr + Yuuδsδs
)

u2 +
(

Yuv0v + Yupp+ Yur0r + Yu|r|δr |r|δr
)

u

+ Yvwvw + Yvqvq + Ywpwp + Ywrwr + Ypqpq + Yp|p|p|p|

+ Yqrqr + Yr|r|r|r|+
(

Yvν0v + Yvν|r|v| sign(r, v)
)

√

v2 + w2 (24b)

Viscous Normal Force

Zviscous =
(

Zuu + Zuuδbδb + Zuuδs0δs
)

u2 +
(

Zuw0w + Zuq0q + Zu|w||w|+ Zu|q|δs |q|δs
)

u

+ Zvvv
2 + Zvpvp+ Zvrvr + Zppp

2 + Zprpr + Zq|q|q|q|

+ Zrrr
2 +

(

Zwν0w + Z|wν||w|+ Zwν|q|w| sign(q, w)
)
√

v2 + w2 (24c)

Viscous Rolling Moment

Kviscous =
(

Kuu0 +Kuuδb
δb +Kuuδr0

δr +Kuuδs0
δs
)

u2 +
(

Kuvv +Kupp+Kurr
)

u

+Kvwvw +Kvqvq +Kwpwp +Kwrwr

+Kpqpq +Kp|p|p|p|+Kqrqr +Kvνv
√

v2 + w2 (24d)

Viscous Pitching Moment

Mviscous =
(

Muu +Muuδb
δb +Muuδrδr0

δ2r +Muuδs0
δs
)

u2

+
(

Muw0w +Muq0q +Mu|w||w|+Mu|q|δs
|q|δs

)

u+Mvvv
2 +Mvpvp+Mvrvr

+Mppp
2 +Mprpr +Mq|q|q|q|+Mrrr

2

+
(

Mwν0w +M|wν||w| +Mqνq
)

√

v2 + w2 (24e)

Viscous Yawing Moment

Nviscous =
(

Nuu +Nuuδbδbδ
2
b +Nuuδr0δr +Nuuδsδs0δ

2
s

)

u2

+
(

Nuv0v +Nupp+Nur0r +Nu|r|δr |r|δr
)

u+Nvwvw +Nvqvq

+Nwpwp+Nwrwr +Npqpq +Nqrqr

+Nr|r|r|r|+ (Nvν0v +Nrνr)
√

v2 + w2 (24f)

NOTE: sign(x, y) = y |x/y| gives the magnitude |x| the sign of y.
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Axial Lateral Normal Rolling Pitching Yawing
Force Force Force Moment Moment Moment

Xuu Yuu Zuu Kuu0 Muu Nuu
Xuuδbδb

Yuuδb Zuuδb Kuuδb
Muuδb

Nuuδbδb
Xuuδrδr0

Yuuδr0 Zuuδs0 Kuuδr0
Muuδrδr0

Nuuδr0
Xuuδsδs0

Yuuδs Zuw0 Kuuδs0
Muuδs0

Nuuδsδs0
Xvv0 Yuv0 Zuq0 Kuv Muw0 Nuv0
Xvr Yup Zu|w| Kup Muq0 Nup
Xww0 Yur0 Zu|q|δs Kur Mu|w| Nur0
Xwq Yu|r|δr Zvv Kvw Mu|q|δs

Nu|r|δr
Xpr Yvw Zvp Kvq Mvv Nvw
Xqq Yvq Zvr Kvν Mvp Nvq
Xrr Yvν0 Zwν0 Kwp Mvr Nvν0

Yvν|r|v| Zwν|q|w| Kwr Mwν0 Nwp
Ywp Zpp Kpq Mpp Nwr
Ywr Zpr Kp|p| Mpr Npq
Ypq Zq|q| Kqr Mqν Nqr
Yp|p| Zrr Mq|q| Nrν
Yqr Z|wν| Mrr Nr|r|
Yr|r| M|wν|

Table 1 The 96 DSSP51 viscous coefficients (ν =
√
v2 + w2). DSSP anticipates a future

propulsive state dependency in some coefficients by adding ‘0’ to their subscripts to indicate
propulsive state is neglected (this gets dropped in some places in this report).

The WAVmod vector for (23) is obtained with the following reasoning. All W ·A ·V terms
are retained that do not duplicate the physics already contained in DSSP empirical models.
DSSP modelling that does account for an inviscid W·A·V term must be based on an experiment
that reproduced the coupled motions described by the W·A·V term. For example, the W·A·V
lateral force term Xq̇qr is retained because the DSSP term Yqrqr is not based on a model test in
which q and r motions are modelled simultaneously. DSSP generates its Yqr coefficient based
on viscous effects (primarily due to circulation) anticipated by a rational model of the local flow
interacting with local geometry, effects that are nonexistent in a potential flow. In this case,
the best that can be done is to superpose the potential and viscous terms. Thus:

• W ·A·V terms modelling pure translation (ie, terms second order in u, v, or w) are deleted
since DSSP force and moment models are based on coupled translation experiments.

• W · A · V lateral force terms Xu̇ur + Xṙr
2 and yawing moment term Yṙur (there is no

yawing moment r2 term) are deleted because DSSP empirically models in-plane forces from
coupled u and r motions. The DSSP models do not account for simultaneous rotation and
in-plane incidence (vr effects).

• W ·A·V normal force terms −Xu̇uq−Xq̇q
2 and pitching moment term −Zq̇uq are deleted

for identical reasons.

All other W ·A·V terms are retained. Unlike the current DSSP rotation models, many rotation
experiment databases do include in-plane incidence effects as well as measurements for all forces
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and moments, so this WAVmod vector is particular to the current version of DSSP (DSSP51):

WAVmod =





































































−Yv̇vr − Yṗpr − Yṙr
2 + Zu̇uq + Zẇwq + Zq̇q

2

− Yu̇ur − Yẇwr − Yq̇qr + Zv̇vq + Zṗpq + Zṙqr

Xẇwr +Xq̇qr − Zu̇up− Zẇwp − Zq̇pq

+Xv̇vr +Xṗpr − Zv̇vp − Zṗp
2 − Zṙpr

−Xẇwq + Yv̇vp+ Yṗp
2 + Yṙpr

−Xv̇vq −Xṗpq −Xṙqr + Yu̇up+ Yẇwp + Yq̇pq

−Yṗwp − Yṙwr + Zq̇vq − Yq̇wq + Zṗvp+ Zṙvr

−Mu̇ur −Mẇwr −Mq̇qr +Nv̇vq +Nṗpq +Nṙqr

−Mv̇vr −Mṗpr −Mṙr
2 +Nu̇uq +Nẇwq +Nq̇q

2

Xq̇wq +Xṗwp+Xṙwr − Zṗup− Zṙur

+Kv̇vr +Kṗpr +Kṙr
2 −Nv̇vp −Nṗp

2 −Nṙpr

+Ku̇ur +Kẇwr +Kq̇qr −Nu̇up−Nẇwp −Nq̇pq

−Xq̇vq + Yṗup−Xṗvp−Xṙvr + Yq̇uq

−Kv̇vq −Kṗpq −Kṙqr +Mu̇up+Mẇwp +Mq̇pq

−Ku̇uq −Kẇwq −Kq̇q
2 +Mv̇vp+Mṗp

2 +Mṙpr





































































. (25)

As with (21), the terms in blue are zero when the vehicle has a vertical plane of symmetry. The
W · A · V terms accounted for by DSSP are therefore:

W · A · V −WAVmod =























0

Xu̇ur +Xṙr
2

−Xu̇uq −Xq̇q
2

−Yv̇vw + Zu̇uv + Zẇvw − Yu̇uw − Yẇw
2 + Zv̇v

2

Xu̇uw +Xẇw
2 − Zu̇u

2 − Zẇuw − Zq̇uq +Xv̇vw − Zv̇uv

−Xu̇uv −Xẇvw + Yv̇uv + Yṙur −Xv̇v
2 + Yu̇u

2 + Yẇuw























(26)

Table 2 compares the coefficients from common W · A · V and DSSP terms for a generic
submarine geometry. Many W ·A ·V coefficients are too small to matter and could be ignored.
Others are potentially significant and deserve additional study to determine their accuracy,
perhaps using computational fluid dynamics.

Appendices A and B list the coefficient values for all the viscous and added mass coefficients
for the vehicles used in the UUV docking simulation. These values depend only on vehicle
geometry and the form of the above equations. As previously discussed, this coefficient model
is not perfect but is adequate for the UUV docking simulation.
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Fij · i · j
W · A · V Coefficient

× 1000
DSSP Coefficient

× 1000

W · A · V Coeff.

DSSP Coeff.

Xvrvr −Y ′

v̇ = 27.7768 X′

vr = −6.8886 −4.03
Xwqwq Z′

ẇ = −22.6347 X′

wq = 9.8280 −2.30

Xprpr −Y ′

ṗ = 0.3735 X′

pr = 0.1952 1.91

Xqqq
2 Z′

q̇ = −0.3666 X′

qq = 2.7437 −0.13

Xrrr
2

−Y ′

ṙ = −0.0681 X′

rr = 2.1967 −0.03

Yupup −Z′

u̇ = 0.0039 Y ′

up = −5.2360 −0.00

Ywpwp −Z′

ẇ = 22.6347 Y ′

wp = −11.5692 −1.96

Ywrwr X′

ẇ = −0.0039 Y ′

wr = −7.7509 0.00
Ypqpq −Z′

q̇ = 0.3666 Y ′

pq = −1.4961 −0.25

Yqrqr X′

q̇ = 0.0135 Y ′

qr = −1.1151 −0.01
∗Yurur X′

u̇ = −1.0439 Y ′

ur0 = 6.7718 −0.15

Zvpvp Y ′

v̇ = −27.7768 Z′

vp = 12.9317 −2.15

Zppp
2 Y ′

ṗ = −0.3735 Z′

pp = 0.0000 −∞

Zprpr Y ′

ṙ = 0.0681 Z′

pr = −1.8625 −0.04
∗Zuquq −X′

u̇ = 1.0439 Z′

uq0 = −9.1553 −0.11

Kurur −M ′

u̇ = −0.0135 K′

ur = 0.0211 −0.64
Kvqvq N ′

v̇ + Z′

q̇ = −0.2986 K′

vq = 0.2669 −1.12

Kwpwp −Y ′

ṗ = 0.3735 K′

wp = 0.0000 ∞

Kwrwr −M ′

ẇ − Y ′

ṙ = 0.2986 K′

wr = 0.0610 4.90
Kpqpq N ′

ṗ = −0.0144 K′

pq = 0.0296 −0.49

Kqrqr −M ′

q̇ +N ′

ṙ = −0.1204 K′

qr = 0.0108 −11.15
∗Kuvuv Z′

u̇ = −0.0039 K′

uv = −3.4554 0.00
∗Kvwvw −Y ′

v̇ + Z′

ẇ = 5.1421 K′

vw = 0.0000 ∞

Mvpvp −N ′

v̇ = −0.0681 M ′

vp = 1.9672 −0.03

Mvrvr K′

v̇ = −0.3735 M ′

vr = −3.7042 0.10
Mppp

2
−N ′

ṗ = 0.0144 M ′

pp = −0.0024 −6.06

Mprpr K′

ṗ −N ′

ṙ = 1.2754 M ′

pr = −0.5339 −2.39

Mrrr
2 K′

ṙ = −0.0144 M ′

rr = −0.4081 0.04
∗Muuu

2
−Z′

u̇ = 0.0039 M ′

uu = 0.0101 0.39
∗Muwuw X′

u̇ − Z′

ẇ = 21.5909 M ′

uw0
= 7.4104 2.91

∗Muquq −Z′

q̇ = 0.3666 M ′

uq0 = −6.6453 −0.06

Nupup M ′

u̇ + Y ′

ṗ = −0.3600 N ′

up = −0.4685 0.77

Nvqvq −K′

v̇ −X′

q̇ = 0.3600 N ′

vq = 5.6816 0.06

Nwpwp M ′

ẇ = −0.3666 N ′

wp = 1.8715 −0.20

Npqpq −K′

ṗ +M ′

q̇ = −1.1550 N ′

pq = 0.5563 −2.08

Nqrqr −K′

ṙ = 0.0144 N ′

qr = 0.4321 0.03
∗Nuvuv −X′

u̇ + Y ′

v̇ = −26.7329 N ′

uv0 = −15.8623 1.69
∗Nurur Y ′

ṙ = 0.0681 N ′

ur0 = −5.3654 −0.01
∗Nvwvw −X′

ẇ = 0.0039 N ′

vw = 19.4393 0.00

∗Excluded from WAV
mod

Table 2 Common W ·A · V and DSSP terms and their dimensionless coefficient values for the
BB3 submarine (Appendix A).
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5 Heading, Roll, Depth, and Plane Reversal Control

Simulators like DSSP can provide different modes of hydrodynamic control by deflecting in-
dividual appendages independently. They can be deflected in pairs, which is appropriate for
the top and bottom rudders for heading control, the fore and sternplanes can be coupled and
deflected simultaneously for depth control, or all the tailplanes can be coupled for roll control
(which is unusual but sometimes is used in UUVs).

For unconventional ‘X’ or ‘

Y

’ tailplane configurations, the equivalent of sternplane and
rudder control can still be provided using δr, δs derivatives by associating appropriate combi-
nations of appendage deflections with the required control mode. For example, an X rudder
provides depth control by deflecting all its planes either up or down, and heading control by
deflecting them all to the same side. Simultaneous depth and heading control is achieved by
superposing the individual appendage deflection requirements.

For the UUV docking simulation, we define rudder, sternplane, foreplane, and roll control
deflections, δr, δs, δb, and δφ, as virtual deflections that are created from combinations of control
surface deflections δi, i = 1 to Nc, where the vehicle has Nc available control surfaces to deflect.
This is done by assigning weights kji for each mode j to each control surface i as follows:

δi = δti + kri δr + ksiδs + kbiδb + kφi δφ. (27)

The δti offset is a trim term that may be used to establish equilibrium at the beginning of a
simulation (see §7). The limits on plane deflections are control surface specific, not deflection
mode specific, so each δi needs to be monitored separately to ensure its limit is not exceeded.
Also, the δi are defined as positive when the deflection is clockwise looking radially outward (the
right hand rule with your thumb pointing outward). As a result, ksi for a starboard sternplane
in a ‘+’ tail configuration will have a sign opposite to that for the port sternplane, as shown in
Table 3. This is consistent with how control surface deflections and limits are implemented in
DSSP and it provides the flexibility necessary for handling unusual control requirements (such
as roll control) as well as unusual tailplane configurations.

Control Surface i kri ksi kbi kφi
δi Limits (degs.)

Bottom Rudder 1 1.0 0.0 0.0 −1.0 −30.0 to 30.0
Top Rudder 2 −1.0 0.0 0.0 −1.0 −30.0 to 30.0

Starboard Sternplane 3 0.0 1.0 0.0 −1.0 −30.0 to 30.0
Port Sternplane 4 0.0 −1.0 0.0 −1.0 −30.0 to 30.0

Starboard Bowplane 5 0.0 0.0 1.0 0.0 −25.0 to 25.0
Port Bowplane 6 0.0 0.0 −1.0 0.0 −25.0 to 25.0

Table 3 Control surface indexing and modal weights for a vehicle with a + tail configuration
using roll control.

Heading and roll can be controlled by giving explicit δr and δφ virtual deflection com-
mands. However, depth control is quite different as it is implemented through two sets of
planes (foreplanes and sternplanes) and must contend with plane reversal and possibly a pitch
limitation. Explicit δs and δb commands can always be given but it is also convenient to use
a higher level virtual depth deflection command δD that determines the fore and sternplane
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deflections as follows:
δb = kDbCprb(u) δD

δs = kDsCprs(u) δD .
(28)

For submarines with bowplanes, these weights are kDs = 1 and kDb = −1, so a positive
δD pitches the nose down allowing the submarine to increase depth by driving forward. The
Cprs(u) function provides plane reversal compensation as a function of speed and is discussed
below. Bowplanes are sometimes disabled at high speed, which can be implemented through
the Cprb(u) function. Retracting the bowplanes cannot be modelled without changing vehicle
geometry.

If a virtual deflection request becomes arbitrarily high, the associated control surfaces are
simply deflected until they hit their stops, which may occur at different times for different
control surfaces.

Plane Reversal

Plane reversal is a phenomenon that effects vertical plane control surfaces located aft of the
pitch neutral point xnp , the center of pressure of the hydrodynamic normal force. A linearized
analysis, good for small incidence angles, gives:

xnp
ℓ

=
−M ′

uw

Z ′
uw

(29)

This puts xnp from 10 to 30% of the hull length aft of the nose. A nonlinear analysis shows
that xnp moves towards the midhull region as incidence increases.

Underwater vehicles require tailplanes for stability. These are usually the largest control
surfaces so it makes sense to use them for depth control. However, they are aft of the neutral
point so to change depth they must generate a normal force in a direction opposite to that of
the desired depth change. This pitches the vehicle so the nose is pointing in the direction of
the desired depth change, and the propeller drives the vehicle forward in that direction.

The force that pitches the vehicle is the net effect of deflected tailplanes and hull hydrody-
namic loading, and varies as u2 . This is opposed by static stability, the static pitch restoring
moment (vehicle weight × BG × θ) which does not change with speed. So as speed increases
for a given pitch angle (ie, constant pitch restoring moment), the required tailplane deflection
angle must decrease to keep the hydrodynamic force causing the pitch angle constant as well.

The net vertical velocity of the vehicle (ż0 , (7c)) results from two opposing components:
the vertical component of the vehicle’s axial velocity −u sin θ ∼ −uθ driven by the propeller
and the vertical component of the normal velocity w cos θ ∼ w driven by tailplane loading. As
speed u increases for a given θ, w/u will decrease because the tailplane deflection is decreasing
to keep tailplane loading constant. Similarly, as speed decreases, w/u will increase for a given θ
and eventually w will exceed uθ resulting in the vehicle changing depth in the direction of w
even though the nose is pitched the opposite way—see Figure 1. Thus, when α ∼ w/u > θ,
the planes need to reverse themselves to effect a depth change in the desired sense.

The linearized vertical plane equations of motion for a perfectly trimmed boat in equilib-
rium with an arbitrary normal force Za applied at x = xa are:

0 = Zuwuw + Za (30a)

0 =Muwuw − Zaxa −mgBGθ. (30b)

15



α

u
w

θ

U

a) High speed. b) Low speed.

α

u

w

θ

U

Figure 1 Vehicle trajectories during depth changes at high and low speed.

Solving for Za from the first equation and substituting into the second gives an expression for
the balance of moments in terms of incidence w/u and pitch angle θ:

(xnp
ℓ

− xa
ℓ

) w

u
+

m′

Z ′
uw

gBGθ

u2
= 0. (31)

As expected, θ is proportional to the moment arm xnp − xa and the applied force which, by
(30a), is proportional to w. Since Z ′

uw < 0 and if xnp > xa , w and θ will have the same sign.

Tailplane reversal should be triggered when the vehicle passes through that ‘critical’ state
where it is neither ascending nor descending; ie, when ż0 = 0 ⇒ θ ∼ w/u. Substituting this
into (31) gives, for a given speed u, the critical point xcp on the hull at which an applied force
of any magnitude will not change depth:

xcp
ℓ

=
xnp
ℓ

+
m′

Z ′
uw

gBG

u2
. (32)

Alternatively, at a given point xa , the critical velocity uc at which an applied force will not
change depth is:

uc =

√

√

√

√
gBG

−m′

Z ′
uw

(xnp
ℓ

− xa
ℓ

) . (33)

The applied force does change the pitch angle but it does so in concert with w so that the
pitch and incidence angles are always equal. Equations (30) apply regardless of whether Za is a
hydrodynamic force varying with u2, as assumed here, or a constant buoyancy force as assumed
in §7.

For submarines, (33) puts uc around 5 m/s for sailplanes and from 1 to 2 m/s for stern-

planes. For UUVs, uc reduces as
√
BG and is generally below 0.5 m/s or so for tailplanes. UUVs

generally don’t bother with plane reversal because they usually maintain a small amount of re-
serve buoyancy which causes them to loose control at velocities higher than uc , as discussed
in §7.

Since underwater vehicles loose depth control around the critical speed, submarines and
some UUVs add foreplanes to compensate. Foreplanes are close to or forward of the neutral
point, have little impact on moment, and always generate a force in the direction of the desired
depth change.
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Figure 2 Using the Cpr(u) function and (27) to implement sternplane reversal and to disable
bowplanes at high speed. Bowplanes are not disabled in the UUV Docking simulation.

DSSP implements plane reversal using the Cpr(u) function:

Cpr(u) =



















































g0, for u < u0
g0u1 − g1u0 + (g1 − g0)u

u1 − u0
, for u < u1

g1u2 − g2u1 + (g2 − g1)u

u2 − u1
, for u < u2

g2u3 − g3u2 + (g3 − g2)u

u3 − u2
, for u < u3

g3, otherwise

(34)

where uc ≈ (u1+u2)/2 and the ui, gi coordinates must be supplied. An example of this function
is plotted in Figure 2 for submarine sternplanes; the sternplanes are zeroed for a small region
around uc and reversed for speeds clearly below uc . Also shown in Figure 2 is an example of
how this function can be used for disabling the bowplanes at high speeds; note that disabling
is not retracting—the undeflected bowplane remains part of the vehicle geometry.

Autopilots

Autopilots are used to provide automatic heading, roll, and depth control when necessary.
Autopilots take as input an error signal and use it to calculate and output a correction to δr ,
δφ , or δD . Heading and roll autopilots can use the difference between the desired and current
heading and roll angle as their error signal. However, depth changes are generally made using
pitch changes and some vehicles (eg, submarines) have pitch limits that the autopilot must
accommodate. Therefore, DSSP defines depth error, ED , as:

ED = ℓz sin θ +
(

z0c − z0

)ℓz sin θL

−ℓz sin θL
(35)

where z0c is commanded depth, ℓz ≈ ℓ, and θL > 0 is the pitch limit. The first term in (35)
is an offset that puts zero error at a point ℓz forward of the body axes origin on the body
x axis; ℓz can be thought of as a ‘look ahead’ distance. The second term is the depth error
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truncated by the indicated limits so that the requested ED is consistent with the pitch limit;
this implements a ‘soft’ pitch limit, one that may be temporarily exceeded by an under damped
autopilot. DSSP uses ℓz = ℓ/2 as its default but values as large as ℓ have been used.

The first term in (35) assumes the vehicle is proceeding in the direction it is pointing,
which is only approximately correct at speeds over the critical speed. As shown in Figure (1a),
the planes that induce the pitch angle also induce a normal velocity w and hence an angle of
attack α. Since the vehicle is proceeding in the direction of U , the first term in (35) should
really be ℓz sin (θ − α). However, α is not readily known on a real vehicle and it is small relative
to θ at high speeds, so DSSP ignores it.

At speeds below the critical speed and when sternplanes are reversed (Figure 1b), the first
term in (35) actually corrects in the wrong direction. Therefore, when sternplanes are reversed,
when speeds are so low that both θ and α are small, it is probably better to ignore the first
term in (35) and not even bother with the pitch limit, as in:

ED =

{

Equation (35) u > uc
z0c − z0 otherwise.

(36)

Alternatively, (35) could be improved by estimating the dependence of α and θ on δD .
Assume the vehicle is trimmed such that the bow and sternplane deflections are fully responsible
for α and θ. Then steady state linearized estimates (identified by subscript e) of these quantities
can be made using the normal force and pitching moment equations of motion:

αe = w/u = −
Z ′
uuδb

δb + Z ′
uuδs

δs
Z ′
uw

(37a)

θe =
M ′
uuδb

δb +M ′
uuδs

δs +M ′
uwαe

m′gBG
u2. (37b)

Using (28), a steady state linearized relation between δD and θe can then be obtained:

m′gBGθe
u2

=
[

(

x′np − x′δb
)

Z ′
uuδb

kDbCprb +
(

x′np − x′δs
)

Z ′
uuδs

kDsCprs

]

δD (38)

where x′δ = −M ′
uuδ/Z

′
uuδ is the effective axial location of the force generated by δ . By replacing

θe in (38) with ±θL , we have simple estimates for the limits the autopilot can apply to the δD
signal it outputs. With the pitch limit accounted for in this manner, the depth error signal fed
to the autopilot can simply be:

ED = ℓz sin(θ − αe) + z0c − z0. (39)

The combination of (38) and (39) applies to all speeds and should be better than (35). Hopefully
it will avoid chatter at low speed.

Note that the coefficient of δD in (38) will be zero for some u close to uc (when θL imposes
no limit on δD ), so it is best to evaluate and test it before moving it to the denominator on
LHS of the equation when calculating the δD limits. Also, θ in (39) is not θe ; it is the true
pitch angle measured by the vehicle.

Equations (36), (38) and (39) have yet to be tested.
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6 Propulsion Loads

Propulsion is modelled in the same manner as in DSSP but independently of it. The propeller
is assumed to belong to the Wageningen B 4-70 family of propellers, as presented by van
Lammeren et al [17]. These are four-bladed propellers with a blade area ratio AE/A0 = 0.7.
The pitch to diameter ratio P/D can vary from 0.5 to 1.4. The B 4-70 propellers are useful
because good four quadrant open water thrust and torque data are available for them, although
we only use two of these quadrants because our vehicles are always moving forward. This family
of propellers is used to reproduce reasonable propulsion characteristics for most vehicles. This
approach is not intended to accurately model a specific propeller and, for this reason, Reynolds
number corrections are not made to propeller thrust and torque. A specific propeller for which
two quadrant thrust and torque characteristics were known could easily be modelled if that was
desirable.

The B 4-70 series open water thrust and torque data are available as the cubic spline surface
shown in Figure 3. This surface has been least-squares fitted to digitized data from the first two
quadrants of Figure 36 from van Lammeren et al [17]. These data are nondimensionalized in
such a way that, unlike the conventional thrust and torque coefficients KT and KQ , singularities
are avoided as propeller RPM goes through zero:

CT =
T

ρπD2

8

[

V 2
A + (0.7πnD)2

]

CQ =
Q

ρπD3

8

[

V 2
A + (0.7πnD)2

]

.

(40)

These coefficients are plotted as a function of the geometric pitch to diameter ratio P/D of the
propeller and the hydrodynamic pitch angle:

β = tan−1 VA
0.7πnD

(41)

which avoids the singularity inherent in the conventional advance ratio J at zero RPM:

J =
VA
nD

= 0.7π tan β. (42)

The CT and CQ surfaces are provided by the Fortran 90 routine listed in Appendix C. The
DSSP51 propulsion model used a less smooth and more limited version of the same CT , CQ
surfaces, but DSSP52 uses this new representation.

We use the same estimates as DSSP for wake fraction wT and thrust deduction tD which
determine the behind-the-boat performance of the propellers. These empirical corrections are
dependent on propeller diameter. The wake fraction wT is a measure of the wake deficit the
propeller sees and is used to relate the speed of advance VA of the propeller through the local
fluid to the forward speed u of the boat:

VA = (1− wT )u (43)
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Figure 3 The 2D cubic spline fit to the Wageningen B 4-70 screw series two quadrant thrust
and torque data CT (β, P/D) and CQ(β, P/D).

The thrust deduction factor tD accounts for the reduction in pressure on the hull afterbody
caused by the propeller. The net thrust and torque on the vehicle are:

XP (u, n) = (1− tD)T

KP (u, n) = sKQ
(44)

where:

sK =

{

−1, for a righthanded propeller (clockwise rotation looking forward)
1, for a lefthanded propeller.

(45)

Propeller open water efficiency ηo and behind-the-boat efficiency ηB are [18]:

ηo =
TVA
2πnQo

, ηB =
TVA
2πnQ

=
J

2π

KT

KQ

=
J

2π

CT
CQ

(46)

where Qo is the torque required in open water and Q is the torque required behind the boat.
The difference between the two is small and not readily predicted so we just use ηo in what
follows, and drop the ‘o’ subscript on Q.
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Figure 4 The openwater efficiency of the Wageningen B 4-70 series propellers, based on the
CT , CQ surface splines of Figure 3.

The B 4-70 open-water efficiencies are shown in Figure 4 as a function of advance ratio,
as is conventional. These result from measurements in open water with a homogeneous inflow.
Behind the boat the inhomogeneous inflow is roughly modelled by the wake fraction.

Propellers are designed for a particular operating point, usually the one where efficiency
needs to be maximized. For our vehicles, this is the self-propulsion point, that J value (Js say)
at which the propeller operates when the properly trimmed vehicle is in steady state straight
and level flight. Js may or may not depend on forward speed, depending on how the vehicle is
trimmed to achieve equilibrium during straight and level flight (the subject of the next section).
For submarines, Js can be constant for a properly trimmed boat. For UUVs which retain a
minimal level of buoyancy, Js is approximately constant only from moderate to high speeds.

In general, the larger the propeller diameter, the slower its rotational speed for a given
thrust and the more efficient it is. However, diameter is usually constrained by practical con-
siderations, such as weight, space, or, for the BB3 submarine, the propeller diameter was
determined by that used in a scale model test of its BB2 predecessor [19]. Since our simulation
propellers have to be from the B 4-70 series, all that remains to finalize their designs is to
choose a P/D ratio, which is done by optimizing ηo at the self-propulsion point.

We define the nominal self-propulsion state for an underwater vehicle to be when it is
travelling at constant speed in straight and level flight at zero incidence such that:

ż0, ẏ0, u̇, v, w, p, q, r, φ, θ, ψ, δb , δs, δr = 0. (47)

Combining (47) with the axial force component of (23) gives:

0 = Xuuu
2 +XP

= Xuuu
2 + (1− tD)

ρπD2

8

[

V 2
A + (0.7πnD)2

]

CT (β, P/D)

= Xuuu
2 + (1− tD)

ρπD2

8
(1− wT )

2u2

[

1 +

(

0.7π

J

)2
]

CT

(

tan−1 J

0.7π
, P/D

)

(48)
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Figure 5 Propeller open water efficiency as a function of pitch to diameter ratio and advance ra-
tio for the BB3 submarine (Appendix A) and UUV of Appendix B. The nominal self-propulsion
points are shown for optimal and actual design choices.

using (40) through (44). Dividing by u2, and identifying J with the nominal self-propulsion
point Jsn , gives an expression for Jsn as a function of P/D which is independent of speed. The
efficiency (46) as a function of P/D for this ideal self-propulsion state is then obtained and is
plotted in Figure 5.

The optimum P/D and Jsn ratios in Figure 5 correspond to 10 m/s at 115 RPM for the
submarine and 3.5 m/s at 958 RPM for the UUV, the top speeds for each vehicle. Normally
adjustments have to be made in propeller geometry to match the available engine and drive
train to the power and speed requirements. In that spirit, we have chosen to adjust RPM up
in each case so the submarine achieves nominal self-propulsion at 10 m/s at 125 RPM and the
UUV does so at 3.5 m/s at 1000 RPM. The effects of these choices are seen in Figure 5.

The self-propulsion advance ratio is only nominal because (48) does not account for any
measures needed to trim the boat to achieve equilibrium. These are discussed in the next section.
It is usually adequate to use the nominal self-propulsion state to design the propeller— trimming
a well designed vehicle should have minimal impact on its hydrodynamic efficiency.

Of course, propeller design is much more complicated than shown here. Propeller diameter,
numbers of blades, blade area ratio, vibration, strength of materials, cavitation, and more play
a role. What this section does is show how the simulation interacts with the propulsion model
and, within that context, that the propulsion parameters are reasonable.
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7 Simulation Initialization

It is convenient to begin each simulation with the vehicle in perfect equilibrium so that subse-
quent motion continues as is until new commands are issued. This avoids long simulation runs
to achieve equilibrium prior to beginning the maneuver of interest, and it ensures that any de-
viation from the equilibrium state following the beginning of a maneuver is wholly attributable
to that maneuver.

Vehicle simulations are initialized with the vehicle in a true self-propulsive state at the
specified speed. That is, the vehicle is in steady state flight along a straight and level flight
path with:

ẏ0, ż0, p, q, r,
dV
dt

= 0 (49)

This is achieved by zeroing 8 equations: the ẏ0, ż0 equations from (7) and the righthand sides
of the 6 equations of motion in (23). With u given, there are 12 parameters available for
achieving the desired equilibrium. These are listed in Table 4 along with the equations they
predominantly influence. With more parameters than equations, there are options for achieving
equilibrium; however, a constraint on this is that, for each degree-of-freedom, there must be
as many parameters available as equations that need to be zeroed. Thus, RPM must be used
to zero the X equation, either yG or φ can be used to zero the K equation while the other
can be set arbitrarily, and v, ψ and δr are all needed to zero the horizontal plane equations.
There are several options for the vertical plane equations but the common ones are based on
either gravitational (m,xG, θ) or planes (δb, δs, θ) control. Of course, the equations in Table 4
are coupled so that, in some cases (always when φ 6= 0), a simultaneous numerical solution of
these nonlinear equations is required to obtain solutions for the trim parameters.

Degree of Dominant Dominant
Freedom Equations Parameters

Longitudinal X RPM

Roll K yG, φ

Vertical Plane Z,M, ż
0

m,xG, w, θ, δb, δs
Horizontal Plane Y,N, ẏ

0
v, ψ, δr

Table 4 The 8 equations that must be zeroed to establish a steady state self-propulsive state
and the 12 trim parameters available to achieve this.

The v,w parameters in Table 4 are hard to work with operationally because the vehicle
cannot measure them directly. By measuring pressure (depth) and pitch angle θ, w can be
estimated. However, there is no general way for the vehicle to measure v with onboard sensors.
Nevertheless, it is desirable that the simulation, at least, be initialized with the values of these
parameters known and fixed.

The trim method used depends on a vehicle’s capabilities and operational requirements.
We consider two generic methods, one for submarines which have mass and mass distribution
control capabilities, and one for UUVs which do not. UUV trimming is complicated when there
is some minimal level of reserve buoyancy because this severely limits low speed controllability.
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Submarine Trim

Submarines generally achieve equilibrium while underway by trimming their mass and mass
distribution to minimize pitch, roll, and plane deflection angles. This minimizes drag and is
based on easily measured quantities. However, it uses gravitational forces, which are constant,
to compensate for hydrodynamic force asymmetries (as would be generated by the sail and
deck) which vary with u2, so this trim method is speed dependent. Gravity cannot be used
to trim in the horizontal plane which, fortunately, is not usually required for a submarine that
has a vertical plane of symmetry, as most do. When horizontal plane trimming is required,
hydrodynamic forces must be used and these must be some combination of rudder deflection
and sideslip.

We assume a submarine trims by setting φ, θ, δb, δs = 0 and that the remaining parameters
from Table 4 are used to zero the necessary 8 equations. With φ and θ both zero, (7c)
requires that w = 0 as well. For the submarine of Appendix A, which has a vertical plane
of symmetry (Yuu, Nuu = 0) containing an axially aligned propeller (yP , ψP , θP = 0), the
Y,N and ẏ0 equations give v, δr , ψ = 0. This means that the assumptions in (47) are correct
for this submarine and, from (48), that Js = Jsn ; that is, the self-propulsion point for this
submarine properly trimmed is the same as its nominal self-propulsion point and is speed
invariant. Therefore, from (42):

RPM =
60(1 − wT )u

JsnD
. (50)

The Z equation for this submarine determines the trimmed dimensionless mass m′
t :

0 = (m′
t − 1)ρgV + Zuuu

2. (51)

This requires that m′
t = 1 since DSSP estimates that Zuu = 0. Similarly, the M equation

gives:

xG = xB +
Muuu

2 + zPXP

ρgV
(52)

though zP is usually zero. The K equation is used to find that yG value that counteracts
propeller torque:

yG = yB − KP

ρgV

= yB − sK
πD3

8gV

[

V 2
A + (0.7πnD)2

]

CQ(β, P/D)

= yB − sK
πD3

8gV
(1−wT )

2u2

[

1 +

(

0.7π

Js

)2
]

CQ

(

tan−1 Js
0.7π

, P/D

)

(53)

Thus, xG and yG vary quadratically with speed. Instead of using yG , some submarines negate
propeller torque by building preswirl into their tailplanes, which is equivalent to a δφ trim
value.
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UUV Trim

UUVs generally do not have fine control over mass or mass distribution while underway. They
are usually trimmed manually while sitting in the water just at the surface. Their CG is
adjusted to zero the roll and pitch angles and their mass is usually adjusted so they are slightly
buoyant, all at zero speed. In addition, many UUVs do not have foreplanes, as is the case for
the UUV described in Appendix B. Therefore, the following trim analysis assumes:

m = m′
tρV, xG = xB, yG = yB , and δb ≡ 0 (54)

where m′
t is specified. To simplify the presentation of the expressions below, we take advantage

of the following characteristics of the Appendix B UUV:

Kuu0,Kuv ,Kvw,Kvν ,Kuuδs0
,Kuuδr0

,Muu,Muuδrδr0
,Mu|w|,Mvv ,M|wν|,

Nuu, Nuuδsδs0, Nvw, Yuu, Yuuδs , Yvw, Zuu, Zu|w|, Zvv , Z|wν|, yP , zP , θP , ψP = 0. (55)

The 6 equations of motion become:

0 = (1−m′
t)ρgV sin θ +

(

Xuu +Xuuδsδs0
δ2s +Xuuδrδr0

δ2r
)

u2 +Xvv0v
2 +Xww0w

2

+XP (56a)

0 = (m′
t − 1)ρgV sinφ cos θ + Yuuδr0δru

2 + Yuv0uv + Yvν0v
√

v2 + w2 (56b)

0 = (m′
t − 1)ρgV cosφ cos θ + Zuuδsδsu

2 + Zuw0uw + Zwν0w
√

v2 +w2 (56c)

0 = [(zB −m′
tzG) sinφ− yB(1−m′

t) cosφ] ρgV cos θ +KP (56d)

0 = ((zB −m′
tzG) sin θ + xB(1−m′

t) cosφ cos θ) ρgV +Muuδs0
δsu

2 +Muw0uw

+Mwν0w
√

v2 + w2 (56e)

0 = (m′
t − 1) (xB sinφ cos θ + yB sin θ) ρgV +Nuuδr0δru

2 +Nuv0uv

+Nvν0v
√

v2 + w2. (56f)

In these equations, XP and KP are replaced with:

XP = (1− tD)
ρπD2

8

[

(1− wT )
2u2 + (0.7πnD)

2
]

CT

(

tan−1 (1− wT )u

0.7πnD
,P/D

)

(57a)

KP = sK
ρπD3

8

[

(1− wT )
2u2 + (0.7πnD)

2
]

CQ

(

tan−1 (1− wT )u

0.7πnD
,P/D

)

(57b)

so that the 8 equations (56) and (7b& c) are expressed in terms of 8 unknowns v , w, φ, θ, ψ ,
δs , δr , and n. However, explicit expressions for δs , δr , and ψ can be obtained from (56b& c)
and (7b). These are substituted into the remaining equations leaving 5 nonlinear coupled
equations to be solved numerically for the unknowns v , w, φ, θ, and n. The solutions are then
substituted back into the explicit expressions for δs , δr , and ψ .

The resulting trim levels are plotted in Figure 6 and tabulated in Appendix B. They show
that low levels of reserve buoyancy cause the UUV to loose control at speeds below about
0.7 m/s where the sternplanes approach their limits; lower speeds are possible for lower reserve
buoyancies. These trim levels are accurate within the context of the current model. But, when
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Figure 6 The accurate self-propulsion states for the UUV of Appendix B as a function of speed
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assessing how realistic they are, keep in mind that the large sternplane angles predicted at low
speed do not account for the hydrodynamic limits on sternplane effectiveness caused by stall
nor, in (56) at least, do they account for the changing inflow to the sternplanes due to increasing
incidence w/u.

The Figure 6a behavior is complex. Equations (56) contain the full nonlinear model that
accounts for the dependence of the critical point (32) on incidence as well as speed. At high
speed, the critical point is well forward of the CB. Therefore the upwards force from the reserve
buoyancy pitches the nose down which helps the UUV to maintain depth. However, the net
pitch down moment is too large and must be moderated with a slightly negative sternplane
deflection which also helps to negate the buoyancy. As the hydrodynamic forces decrease with
decreasing speed, the reserve buoyancy and pitch restoring moment remain constant, so increas-
ingly large incidence and sternplane deflection angles are needed. But, as incidence increases
and speed continues to decrease, the critical point moves aft and crosses the CB, at u ≈ 0.9
m/s. The impact of the reserve buoyancy on the moment balance reverses causing the moment
compensation provided by the sternplanes to reverse as well. At still lower speeds, the critical
point continues to move aft increasing the now unfavorable moment from the reserve buoy-
ancy, decreasing the sternplanes moment arm, and now augmenting the reserve buoyancy with
the ever increasing sternplane normal force, the total of which must be negated by incidence.
The incidence and sternplane deflection angles increase quickly and become nonsensical as the
sternplane critical velocity is approached. Equilibrium cannot be maintained.

Similar but much reduced effects are seen on v/u and δr reflecting the extent to which
gravitational force and moment components impact these states at these small roll angles.
The heading ψ deviates from zero to keep the vehicle net velocity on a zero degree heading;
since ψ is a purely horizontal plane measurement, it must account for both v and w crossflow
contributions when the vehicle is rolled.

Finally, as the hull incidence increases and the planes deflect, drag increases shifting the
propeller operating point to lower less efficient advance ratios.
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8 Dynamic Change Model

Underwater vehicles are controlled by physically adjusting mechanical devices such as control
surfaces and propellers. Changes to these mechanisms are implemented through actuators and
controllers of varying complexity and do not happen instantaneously. Following Campbell and
Graham [20] and Watt [5], these changes are modelled using a generic linear, second order,
ordinary differential equation (ODE):

δ̈ + 2ζωδ̇ + ω2δ = ω2δc (58)

where δ(t) is the physical quantity being changed with time, δc is the ‘commanded’ value to
which δ is being changed, ζ is the system damping (0 < ζ < 1), and ω is the system response
frequency (ω > 0). The general solution to (58) and its time derivatives are:

δ(t) = δc − α e−ζω(t−t0) sin
(

√

1− ζ2 ω(t− t0) + β
)

(59a)

δ̇(t) = ωαe−ζω(t−t0) sin
(

√

1− ζ2 ω(t− t0) + β − cos−1 ζ
)

(59b)

δ̈(t) = −ω2α e−ζω(t−t0) sin
(

√

1− ζ2 ω(t− t0) + β − 2 cos−1 ζ
)

. (59c)

where t0 is the time at which the new command δc is issued, and α and β are the constants of in-

tegration. The time derivatives in (59) are obtained using the fact that
√

1− ζ2 = sin(cos−1 ζ).

The following initial conditions determine α and β and ensure C1 continuity in δ(t) when-
ever a new command is issued:

δ0 ≡ δ(t0) = δc − α sin β ⇒ α1 =
δc − δ0
sinβ

δ̇0 ≡ δ̇(t0) = ωα sin(β − cos−1 ζ) ⇒ α2 =
δ̇0

ω sin(β − cos−1 ζ)

(60)

The phase shift β is found by setting α1 = α2 . The problem is that these α expressions are

indeterminant when δc = δ0 ⇒ β = 0, π or δ̇0 = 0 ⇒ β = cos−1 ζ . Therefore, the solution
is formulated two different ways depending on the initial condition values. To help with this
define:

g ≡ 2ζδ̇0
ω(δc − δ0)

and h ≡ 1

g
(61)

and set:

α =

{

α1 for −1 ≤ g ≤ 1

α2 otherwise (ie, for −1 < h < 1).
(62)

Replacing the ratio δ̇0/(δc − δ0) in the equation α1 = α2 with either g or h, and choosing a

solution branch in which β is the principle value of cos−1 ζ when δ̇0 = 0, results in:

β = cos−1

(

2ζ2 − g
√

g2 + 4ζ2(1− g)

)

= cos−1

(

sign(h)(2ζ2h− 1)
√

1 + 4ζ2h(h− 1)

)

. (63)

These expressions are plotted in Figure 7 and give rise to Figure 8 which shows that:

0 ≤ β ≤ π. (64)
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Figure 8 The phase β of the solution δ(t) and its variation with ζ .

From (60) and (56), g = 2ζ sin(β − cos−1 ζ)/ sin β which expands to:

(

2ζ2 − g
)

sin β = 2ζ
√

1− ζ2 cos β. (65)

The coefficients here are the sides of a right-triangle with an hypotenuse that is the denominator
of cos β(g) from (63):

√

g2 + 4ζ2(1− g) =

√

(2ζ2 − g)2 +
(

2ζ
√

1− ζ2
)2

.

That is, g2 + 4ζ2(1− g) > 0 because it is the sum of squares over the range of its parameters.
The same holds for the denominator of cos β(h).
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Figure 9 A δ(t) solution with ζ = 0.5 and with initial conditions somewhere between β = 0
and π . The rate δ̇ has extrema at the inflection points δ̈ = 0, shown as solid circles, but their
magnitudes decrease with time because of damping. Therefore, there is a region in time prior
to each inflection point where the rate magnitude is greater than at the inflection point itself.
As shown in the text, this occurs if t0 precedes the point ‘+’ in the figure or is located in the

region h > 0, in which case the maximum rate is just δ̇0 .

Limiting the Rate

Most dynamical systems have a rate limit. This means most systems have three characteristic
parameters:

ζ System damping, assumed sub-critical: 0 < ζ < 1. The lower the damping the
faster the system achieves δc, but at the expense of overshoot. A good default value
is ζ = 0.9.

ω The natural response frequency, the frequency at which the system responds.

δ̇RL The rate limit δ̇RL > 0, the magnitude of the maximum rate at which the system
can respond.

Of course, δ̇RL does not appear in (58) so the ODE needs to be modified in some way to
accommodate the rate limit.

In [5], Watt implements the rate limit by first using ω as is and checking to see if the
maximum rate, δ̇max say, has a magnitude below the rate limit. If true, the solution is imple-

mented as is. If false, a ‘rate limited’ solution is devised by reducing ω until |δ̇max| = δ̇RL .
This provides a response that is perfectly (C∞) continuous between command changes, but it
also slows the response unnaturally.

DSSP uses (58) for its dynamic change model but implements the rate limit differently
because it integrates the ODE numerically in order to implement continuous command changes
from the autopilots. DSSP always uses the same ω but numerically caps the rate when the
limit is exceeded. In what follows, we devise an improved analytic method to do the same.

Consider Figure 9 which displays a lightly damped δ(t) response to better illustrate over-
shoot. The maximum rate in this response is either the initial condition itself δ̇0 or it is the

rate at the first inflection point where δ̈ = 0. This suggests there are limits on when a response
may need to be rate limited, and knowing these limits simplifies the rate limiting process.
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Denote inflection point times as t = ti and set (59c) to zero get the ti :
√

1− ζ2ω(ti − t0) = 2 cos−1 ζ − β + nπ, n = 0, 1, 2, . . . (66)

Since ti > t0 , then n ≥ 0. Using (65) this gives:

sin
(

√

1− ζ2ω(ti − t0)
)

= (−1)n(1− g) sin β (67a)

sin
(

√

1− ζ2ω(ti − t0) + β
)

= (−1)n2ζ
√

1− ζ2 (67b)

sin
(

√

1− ζ2ω(ti − t0) + β − cos−1 ζ
)

= (−1)n
√

1− ζ2 (67c)

The first inflection point occurs in the first half period of the response when each side of (67a)
must be positive. It is selected with n = 0 when g ≤ 1 and n = 1 when g > 1, so when g = 1
the first inflection point is ti = t0 .

The rate will not need to be limited if |δ̇0| ≥ |δ̇(ti)| because the initial condition δ̇0 should
itself be rate limited. From (59b) and (67c) this condition becomes:

|δ̇0| ≥
∣

∣

∣

∣

ω
δc − δ0
sin β

√

1− ζ2
∣

∣

∣

∣

e−ζω(ti−t0). (68)

Squaring both sides and using (63) and (65) gives:

g2 ≥
(

g2 + 4ζ2(1− g)
)

e

−2ζ√
1−ζ2

cos−1

(

2ζ2(1−g)+g√
g2+4ζ2(1−g)

)

. (69)

Since the exponential term here is positive and less than or equal to one, it is also true that the
response will not need to be rate limited if:

g2 ≥ g2 + 4ζ2(1− g) ⇒ g ≥ 1. (70)

Therefore all responses that might need to be rate limited fall within the n = 0 branch of (66).
Furthermore, when g = 1 the exponential term in (69) is exactly one. That is, g = 1 is precisely
the upper limit for a possible rate limited response and it occurs when t0 is an inflection point

and δ̇0 and δc− δ0 have the same sign. If g = 1 and |δ̇0| = δ̇RL , then the analytic solution (59)
applies and is perfectly continuous. A response only needs to be ‘rate limited’ when g < 1.

Figure 9 shows that there should be a lower limit as well, when g, h < 0. Finding this limit
requires a numerical solution of (69). This is shown as the lower g limit in Figure 10, which
also shows the upper limit and the region containing all rate-limited solutions. The lower limit
lacks the simplicity of the upper limit; it is lowest when ζ → 1 where g = −0.771867.

In summary, in a rate limited environment, a necessary but insufficient condition for the
maximum rate of the linear model (59) to exceed the rate limit is:

−0.772 < g < 1, 0 < ζ ≤ 1. (71)

Over this range, n = 0 in (66) locates the first inflection point in the response and the rate
there:

δ̇max = δ̇(ti) =
ω(δc − δ0)

2ζ

√

g2 + 4ζ2(1− g) e

−ζ√
1−ζ2

cos−1

(

2ζ2(1−g)+g√
g2+4ζ2(1−g)

)

(72a)

=
ω(δc − δ0)

√

1− ζ2

sin β
e

−ζ√
1−ζ2

(2 cos−1 ζ−β)
(72b)
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can be compared with δ̇RL to see if it needs to be limited. These expressions show that this
rate will always have the same sign as δc − δ0 .

If |δ̇max| > δ̇RL , then the rate needs to be limited. This is done, as it is done numerically

by DSSP, by limiting the rate magnitude to δ̇RL until (58) can complete the response normally.
This takes two steps. First, the normal response of (58) must be stopped prior to t = ti , at

t = t1 say, such that δ̇1 ≡ δ̇(t1) = sign(δc − δ0)δ̇RL , after which δ̇(t) = δ̇1 = constant and

δ̈ = 0. This maintains only C1 continuity at t = t1 which can be a problem for high order
ODE integrators (it isn’t a problem at t = t0 because the integrator must stop there anyway
to implement the new command δc).

The second step is determining when to terminate the constant δ̇ ramp and switch back
to (58). This happens when the magnitude of δ̈(t), which is being driven by δc − δ(t) in (58),
reduces to zero. If this happens at t = t2 say, then (58) gives:

δ2 ≡ δ(t2) = δc −
2ζ

ω
sign(δc − δ0)δ̇RL (73)

which, of course, corresponds to g = 1 for the final leg of the response. Knowing δ2 , t2 is easily
found from the constant rate between t1 and t2 :

t2 = t1 +
δ2 − δ1
δ̇1

. (74)

Because δ , δ̇ , and δ̈ are all matched at t = t2 , the response is C2 continuous there:

δ(t) = δc −
δc − δ2

2ζ
√

1− ζ2
e−ζω(t−t2) sin

(

√

1− ζ2ω(t− t2) + 2 cos−1 ζ
)

for t ≥ t2 . (75)

The only difficulty in all this is finding t1 which requires a trial and error solution. However,
this can be done efficiently and reliably using a pure Newton method which finds the zero in
f(t) by following the local slope:

0 = f(tj) +
df

dt
(tj)(tj+1 − tj) ⇒ ∆t ≡ tj+1 − tj =

−f(tj)
df/dt(tj)

(76)
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Figure 11 The response δ(t) and its rate δ̇(t) for a system with ζ = 0.9 and ω = 1 with initial
conditions δ(0) = −4 and δ̇(0) = −1. The rate limit is δ̇RL = 2. The new rate limited method
applies the method discussed herein. The old method avoids discontinuities by reducing the
frequency (to ω = 0.55 in this case) which slows the response.

From (59), set f(tj) = δ̇(tj)− δ̇1 so that:

−f(tj)
df/dt(tj)

=

sin
(

√

1− ζ2ω(tj − t0) + β − cos−1 ζ
)

− δ̇1 sinβ e
ζω(tj−t0)

ω(δc − δ0)

ω sin
(

√

1− ζ2ω(tj − t0) + β − 2 cos−1 ζ
) (77)

A good initial guess for t1 is t0 . As long as the initial guess comes before t1 and after the

extremum in δ̈(t) immediately preceding t0 , the Newton iteration will march monotonically
towards the correct solution, and usually get there with 10 digits of accuracy in under 10
iterations.

This new method of rate limiting the response is compared to the old method [5] in Fig-
ure 11. The new method is recommended as it avoids an unrealistic time lag and it matches
the numerical scheme in use by DSSP. The only disadvantage of the new method is the dis-
continuities it introduces in the response. However, once the response has been calculated, the
locations of the discontinuities are known and can be used to avoid numerical inefficiency in
any higher level numerical integration using the response. The dc3Module algorithm discussed
below returns the times at which discontinuities occur when it processes a change in command.

Limiting the Amplitude

Many systems operate with limits on the amplitude of the response. For example, control
surfaces on submarines all have natural limits to their deflection amplitudes and, in addition,
can have temporary stops put in place to prevent dangerous deflection levels at high speeds.

When applying limits, it helps to know the response extrema. The extrema occur when
δ̇(t) = 0, at t = te say, when (from (59b)):

√

1− ζ2ω(te − t0) = cos−1 ζ − β +mπ, m = 0, 1, 2, . . . (78)

The only extrema of interest are when te > t0 which means m ≥ 0. Set te0 ≡ te when m = 0
and te1 ≡ te when m = 1. Then te0 > t0 only when g, h < 0 (Figure 8) which means the
te0 extremum occurs only if the response has to reverse direction before heading towards δc
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Figure 12 Overshoot in the response as a function of ζ .

(Figure 9). And te1 gives the extremum in the first overshoot of δc regardless of the values
of g, h. Substituting (78) and:

sin
(

√

1− ζ2ω(te − t0) + β
)

= (−1)m
√

1− ζ2 (79)

into (59a) gives the response extrema. If g, h < 0, two extrema need to be checked against the
limits, otherwise only one. All subsequent extrema (m > 1) will be less extreme because of
damping.

The dc3Module algorithm allows the user to apply three kinds of limits: soft limits, hard
limits, and limits that are simultaneously soft and hard.

Soft Limits: DSSP

DSSP uses only soft limits which are easily implemented and introduce no additional discon-
tinuities. A soft limit simply reduces the magnitude of the command δc before applying it so
that the system is not asked to exceed a soft limit. Using our under damped response model,
the limit will still be temporarily exceeded due to overshoot, but the overshoot is usually small
for typical damping levels. Following Campbell and Graham [20], overshoot is defined as:

Oδ ≡
δe1 − δc
δc − δe0

= e−ζπ
/√

1−ζ2 (80)

and is obtained by substituting (78) and (79) into (59b). In other words, overshoot gives the
amount that δc is exceeded as a fraction of the desired change from the previous extremum.
Overshoot is plotted in Figure 12. For ζ > 0.8, it is less than 1.52% of δc − δe0 .

This overshoot estimate is based on the response (59a). If the rate has been limited then
the denominator in (80) is too small and overshoot, measured as a fraction of the change in δ
between the extrema preceding and following the constant rate ramp, will be even smaller than
that given by (80).

Consider, for example, a typical submarine sternplane maximum deflection scenario using
initial conditions δ0, δ̇0 = 0 and system parameters ζ = 0.9, ω = 2 rad/s, δ̇max = 7 deg/s.
Commanding the change δc = 25 degrees results in a rate limited change of 7 deg/s between
δ = 0.3 and 18.7 degrees. The overshoot is 0.0135 degrees, about 0.05% of the commanded
change. This is about the same as the default integration error DSSP uses.
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Hard Limits

Hard limits alone do not limit δc . They can be applied by brute force using:

δ limited = min(upper limit,max(lower limit, δ(t))) (81)

where δ(t) is the response (59a) based on δc . This is probably incorrect physically as undershoot
will follow overshoot if δc ≈ δlimited , and discontinuities occur every time the oscillating response
crosses the limit. A good alternative relies on the physical argument that once the response
has been limited, undershoot will not occur, if δc equals or exceeds the limit, because there is
no impetus for it to do so. In other words, if a response is limited to δ = δℓ at t = tℓ say, and
δc is equal to or exceeds the limit, then the response is simply δ(t) = δℓ for t > tℓ . But if δc
is within the limit, and it was overshoot that caused the limit to be hit, then the subsequent
response should be determined by (58) with new initial conditions δ(tℓ) = δℓ and δ̇(tℓ) = 0.

Equations (78) and (79) can be used to determine if an extremum has exceeded a limit. If
it has, the time tℓ at which the limit is first exceeded must be found. This is easy to do in the

special case that δc = δℓ because then, from (59b), sin
(
√

1− ζ2ω(tℓ− t0) +β
)

= 0. This gives
an analytic solution for tℓ :

tℓ = t0 +
π − β

ω
√

1− ζ2
when δc = δℓ . (82)

Otherwise a pure Newton method can again be used to get a fast and efficient numerical solution
for tℓ . Similar to (76), if F (t) ≡ δ(t) − δℓ , then we solve F (tℓ) = 0 by iterating tj towards tℓ
using:

∆t =
−F (tj)
dF/dt(tj)

=
sin

(

√

1− ζ2ω(tj − t0) + β
)

− δc − δℓ
α

eζω(tj−t0)

ω sin
(

√

1− ζ2ω(tj − t0) + β − cos−1 ζ
) . (83)

A good initial guess for finding a limit preceding te0 is t0 ; for te1 use the inflection point
between te0 and te1 :

ti = te1 −
π − cos−1 ζ

ω
√

1− ζ2
. (84)

These initial guesses guarantee fast monotonic convergence.

Since hard limits alone do not limit δc , finding tℓ can be complicated because the hard
limit can be anywhere between the extrema of the unlimited response. No problem arises if
the response is not rate limited: the initial guess is still the ti between extrema and this works
fine with (83) whether tℓ precedes or follows ti . However, if the response is rate limited, then
(83) is different for each segment of the response; this means the hard limit must be looked
for separately between te0 and t1 (use t1 as the initial guess), t1 and t2 (there is an analytic
solution), and t2 and te1 (use t2 as the initial guess).

The dc3module algorithm allows soft and hard limits to be applied simultaneously. The
next example shows the difference between using just hard and both hard and soft limits.
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Figure 13 Two δ(t) responses each with a hard limit δℓ = 15. The δ1(t) response uses δc = 25

and δ2(t) uses δc = 15. In each case, δ0 = δ̇0 = 0, ζ = 0.9, ω = 2 rad/s, and δ̇RL = 5 δ units/s.
The δ∗2 off-shoot from δ2 shows how a new command δc = 5 issued at t = 3 modifies the
response while maintaining C1 continuity.

An Analytic Dynamic Change Algorithm

The dc3Module algorithm listed in Appendix D implements the above dynamic change model,
accommodating soft and/or hard limits whether rate limited or not. Figure 13 shows two
responses predicted by this algorithm, each with the same hard limit. The soft limit for δ2 has
been set to match the hard limit, but not so for δ1 . The δ2 response is slightly slower because
the δc − δ(t) term driving (58) is smaller, but when the limit is hit the discontinuity is less
severe.

The dc3Module is a procedure that returns a Maple ‘module’. It can be called any number
of times creating as many different dynamically changing systems as are being simultaneously
modelled, and returns separate, independent modules each time. All system parameters are
contained within a module, some of which are exported and can therefore be accessed by the
user. The δ(t), δ̇(t), and δ̈(t) responses are all exported.

For example, after the dc3Module script is read in by Maple, the two systems generating
the responses in Figure 13 are generated with the dcMake(ζ,ω,δ̇RL,options) command:

del1 := dcMake(0.9,2,5,dMaxS=25,dMaxH=15); # Creates module del1

del2 := dcMake(0.9,2,5,dMaxSH=15);

which initializes a response δ(t) = 0 for all time for each system. This is modified with
command(t0,δc):

del1:-command(0,25);

del2:-command(0,25);

Each command call returns the discontinuities in the response after t = t0 . The del2 response
is accessed with del2:-delta(t):

δ2(t) =



















0 t < 0
15− 34.412 e7.2252−1.8t sin(0.87178t + 0.45103) t < 0.099871
5t− 0.23385 t < 2.1468
15− 5.7354 e3.8642−1.8t sin(0.87178t − 0.96946) t < 4.7157
15 otherwise.

(85)

Of course, the discontinuities also show up as the break points in this piecewise function. A
subsequent del2 command:

del2:-command(3,5)
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modifies the del2 response after t = 3 giving the δ∗2 curve in Figure 13:

δ∗2(t) =



































0 t < 0
15− 34.412 e7.2252−1.8t sin(0.87178t + 0.45103) t < 0.099871
5t− 0.23385 t < 2.1468
15− 5.7354 e3.8642−1.8t sin(0.87178t − 0.96946) t < 3
5 + 22.518 e5.4−1.8t sin(0.87178t − 2.2153) t < 3.2647
29.570 − 5t t < 4.0140
5 + 5.7354 e7.2252−1.8t sin(0.87178t − 2.5973) otherwise.

(86)

Any number of additional commands can be given creating a long piecewise response. There is
an option to remember only the new response if the response history is not required.

A Numerical Rate Limited Dynamic Change Algorithm

DSSP simulates underwater vehicles by numerically integrating the nonlinear ordinary differen-
tial equations describing their motion. Several vehicle system models are also based on ODEs,
including the autopilots. It is convenient, then, to integrate all the ODEs in parallel, including
the dynamic change ODE (58). This is handled by converting (58) to two first order ODEs.
Define:

y1(t) ≡ δ(t)

y2(t) ≡ δ̇(t) = y′1(t)

y′2(t) ≡ δ̈(t) = ω2 (δc − y1(t))− 2ζωy2(t)

(87)

A numerical ODE integrator works by repeatedly calling a function like F shown here. The
values t, y1(t), y2(t) are supplied and the derivatives y′1(t), y

′
2(t) are returned:

F(T,Y,YP)

# T is time; Y,YP are vectors of length 2

global δc, ζ, ω, δ̇RL

local a,s

a = ω [ω(δc − Y[1])− 2ζY[2]] # δ̈ when δ is not rate limited

if δ̇RL > |Y[2]| then

# Path A: Not rate limited

YP[1] = Y[2]

YP[2] = a

else

# Path B: Rate limited

s = SIGN(1,Y[2])

YP[1] = s*δ̇RL

if s*a < 0 then

# Path B1: No longer needs to be rate limited

# because a will decrease the rate magnitude

YP[2] = a

else

# Path B2: a is trying to increase the rate magnitude

YP[2] = 0

end if

end if

end F
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This is the best way to numerically implement and exit the rate limited state. It ensures there
is C2 continuity when exiting.

There is no good way to impose hard limits on δ(t) through this function because it is not
permissible for F to change Y. A kludge is to set YP[1] = 0 when the limit is first exceeded
which will limit δ to δℓ within integration error, but it does not allow δ̇ to change. This can be
fixed by assigning YP[2] a temporary large magnitude with a sign that drives Y[2] to zero, but
this adds a second discontinuity when YP[2] is reset when Y[2] reaches zero. The best way to
impose hard limits is to stop and restart the integration when the limit is first exceeded, using
suitable boundary conditions.

9 Concluding Remarks

The above algorithms have been supplied to the contractor Dynamic Systems Analysis Ltd.
(DSA) for use in the UUV Docking simulator they are developing for DRDC. This has been
done using earlier drafts of this report. Feedback from DSA has improved these algorithms
and is incorporated in the final version of this report. The UUV Docking simulator itself was
nearing completion as this report was finalized.
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Appendix A: BB3 Data

This appendix lists the file bb3Data.ini generated for the BB3 submarine [21] used by the
DSA UUV docking simulator [3]. The format was defined by DSA and allows this data to be
read directly into their simulation.

Figure A1 The BB3 geometry with bowplanes, symmetrical sternplanes, and an asymmetrical
rudder, as modelled by DSSP.

// bb3Data.ini written for vehicle "bb3" on 2019-03-19 16:52:40

//////////////////////////

// Miscellaneous Constants

//

// Fluid density, Gravitational constant, SI units

$rho 1028.0

$g 9.81

//

// Conversions for degrees to radians, knots to m/s

$d2r .1745329e-1

$k2mps .5144444

////////////////////////////

// Vehicle Geometry and Mass

//

// Hull length, diameter, volume in m, m, m^3

$ell 70.20000

$dee 9.600000

$vol 4364.328

//

// Body axes origin relative to vehicle nose, m

$xRef -32.34300

$yRef 0.

$zRef 0.

//

// Centers of buoyancy and z-component of gravity in body axes, m

$xB -.84988e-1

$yB 0.

$zB -.582790
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$zG -.182790

//

// Moments of Inertia in body axes, SI units normalized by rho

$Ix 58912.13

$Iy 1153880.

$Iz 1260327.

$Ixy -0.

$Ixz -5785.048

$Iyz -0.

//////////////////////////////////////////

// Initial Equilibrium Trim for Simulation

// - for starting a simulation with the vehicle in perfect trim.

//

// In all cases: u is given; dx_0/dt, dy_0/dt, p, q, r = 0

//

// Need: v, w, phi, theta, psi, mtp, xG, yG, delta_b, delta_s, delta_r, rpm

// where mtp = m/(rho*vol)

//

// There are 3 equilibrium modes, determined by the value of iniMode:

//

// iniMode = 1 ==> Generally a submarine; it can trim mass and

// mass distribution:

// w, phi, theta, delta_b, delta_s = 0;

// rpm is linear in u, as given by propulsion coefficients;

// mtp, xG, yG,, v, delta_r have the form:

// p = p0 + p2*u^2 and p0, p2 are given herein;

// psi = -arctan(v/u).

//

// iniMode = 2 ==> Generally a UUV without foreplanes; it has been

// manually trimmed at zero forward speed:

// mtp = constant (given herein), xG = xB, yG = yB;

// v, w, phi, theta, psi, delta_s, delta_r, rpm

// are tabulated as a function of u.

//

// iniMode = 3 ==> Generally a UUV with foreplanes; it has been

// manually trimmed at zero forward speed:

// w = 0, mtp = constant (given herein), xG = xB, yG = yB;

// v, phi, theta, psi, delta_b, delta_s, delta_r, rpm

// are tabulated as a function of u.

$iniMode 1

// Parameter form: p = p0 + p2*u^2

// psi = -arctan(v/u)

$mtp0 1.

$mtp2 0.

$xG0 -.84988e-1

$xG2 .4093456e-4

$yG0 0.

$yG2 .5505476e-4

$v0 0.
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$v2 0.

$delta_r0 0.

$delta_r2 0.

/////////////////////////////

// Control Surface Parameters

//

// Number of control surfaces, virtual depth control weights

$NCS 6

$kDb -1.000000

$kDs 1.000000

// CS1

$iCS 1

$dsspCmpnt 2

$type SBOWPLANE

$dsspLabel #STBDBOWPLANE

$esamLabel STBD BOWPLN

$deltaMin -20.00000 // degrees

$deltaMax 20.00000 // degrees

$deldotMax 5.000000 // degrees/s

$zeta .900000

$omega 2.500000 // radians/s

$kdb 1.000000

$kdr 0.

$kds 0.

$kdphi 0.

$CprFlag false

// CS2

$iCS 2

$dsspCmpnt 3

$type SBOWPLANE

$dsspLabel #PORTBOWPLANE

$esamLabel PORT BOWPLN

$deltaMin -20.00000 // degrees

$deltaMax 20.00000 // degrees

$deldotMax 5.000000 // degrees/s

$zeta .900000

$omega 2.500000 // radians/s

$kdb -1.000000

$kdr 0.

$kds 0.

$kdphi 0.

$CprFlag false

// CS3

$iCS 3

$dsspCmpnt 4

$type RUDDER

$dsspLabel #TOPRUDDER

$esamLabel TOP RUDDER

$deltaMin -30.00000 // degrees
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$deltaMax 30.00000 // degrees

$deldotMax 6.000000 // degrees/s

$zeta .900000

$omega 2.000000 // radians/s

$kdb 0.

$kdr -1.000000

$kds 0.

$kdphi -0.

$CprFlag false

// CS4

$iCS 4

$dsspCmpnt 5

$type RUDDER

$dsspLabel #BOTRUDDER

$esamLabel BOT RUDDER

$deltaMin -30.00000 // degrees

$deltaMax 30.00000 // degrees

$deldotMax 6.000000 // degrees/s

$zeta .900000

$omega 2.000000 // radians/s

$kdb 0.

$kdr 1.000000

$kds 0.

$kdphi -0.

$CprFlag false

// CS5

$iCS 5

$dsspCmpnt 6

$type STERNPLANE

$dsspLabel #STBDSTERNPLANE

$esamLabel STBD STRNPLN

$deltaMin -25.00000 // degrees

$deltaMax 25.00000 // degrees

$deldotMax 6.000000 // degrees/s

$zeta .900000

$omega 2.000000 // radians/s

$kdb 0.

$kdr 0.

$kds 1.000000

$kdphi -0.

$CprFlag true

$u0 1.460000 // m/s

$u1 1.660000 // m/s

$u2 2.060000 // m/s

$u3 2.260000 // m/s

$g0 -.500000

$g1 0.

$g2 0.

$g3 1.000000

// CS6
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$iCS 6

$dsspCmpnt 7

$type STERNPLANE

$dsspLabel #PORTSTERNPLANE

$esamLabel PORT STRNPLN

$deltaMin -25.00000 // degrees

$deltaMax 25.00000 // degrees

$deldotMax 6.000000 // degrees/s

$zeta .900000

$omega 2.000000 // radians/s

$kdb 0.

$kdr 0.

$kds -1.000000

$kdphi -0.

$CprFlag true

$u0 1.460000 // m/s

$u1 1.660000 // m/s

$u2 2.060000 // m/s

$u3 2.260000 // m/s

$g0 -.500000

$g1 0.

$g2 0.

$g3 1.000000

///////////////////////////////////////////

// Vehicle Total and Component Added Masses

// - SI units normalized by rho

//

// Xudot = Xudot

$XudotHull -161.8639

$XudotSail -14.61194

$XudotCS1 -.9382121e-1

$XudotCS2 -.9382121e-1

$XudotCS3 -1.206910

$XudotCS4 -.5910010

$XudotCS5 -1.159550

$XudotCS6 -1.159550

$Xudot -180.7805

// Xvdot = Yudot

$XvdotHull 0.

$XvdotSail 0.

$XvdotCS1 .2013420e-1

$XvdotCS2 -.2013420e-1

$XvdotCS3 0.

$XvdotCS4 0.

$XvdotCS5 -.3722405

$XvdotCS6 .3722405

$Xvdot 0.

// Xwdot = Zudot

$XwdotHull 0.
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$XwdotSail -.8309681

$XwdotCS1 .2852345e-1

$XwdotCS2 .2852345e-1

$XwdotCS3 .3253299

$XwdotCS4 -.2071885

$XwdotCS5 0.

$XwdotCS6 0.

$Xwdot -.6557625

// Xpdot = Kudot

$XpdotHull 0.

$XpdotSail 0.

$XpdotCS1 .9471376e-1

$XpdotCS2 -.9471376e-1

$XpdotCS3 0.

$XpdotCS4 0.

$XpdotCS5 0.

$XpdotCS6 0.

$Xpdot 0.

// Xqdot = Mudot

$XqdotHull 65.79692

$XqdotSail 93.19834

$XqdotCS1 -.6095680

$XqdotCS2 -.6095680

$XqdotCS3 14.57135

$XqdotCS4 -7.868527

$XqdotCS5 0.

$XqdotCS6 0.

$Xqdot 164.4777

// Xrdot = Nudot

$XrdotHull 0.

$XrdotSail 0.

$XrdotCS1 .6593534

$XrdotCS2 -.6593534

$XrdotCS3 0.

$XrdotCS4 0.

$XrdotCS5 14.96234

$XrdotCS6 -14.96234

$Xrdot 0.

// Yvdot = Yvdot

$YvdotHull -4267.064

$YvdotSail -428.2660

$YvdotCS1 -.2336881e-1

$YvdotCS2 -.2336881e-1

$YvdotCS3 -73.07088

$YvdotCS4 -38.88529

$YvdotCS5 -.6924330

$YvdotCS6 -.6924330

$Yvdot -4808.718

// Ywdot = Zvdot

$YwdotHull 0.
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$YwdotSail 0.

$YwdotCS1 .3310207

$YwdotCS2 -.3310207

$YwdotCS3 0.

$YwdotCS4 0.

$YwdotCS5 0.

$YwdotCS6 0.

$Ywdot 0.

// Ypdot = Kvdot

$YpdotHull -1734.540

$YpdotSail -2638.679

$YpdotCS1 1.111065

$YpdotCS2 1.111065

$YpdotCS3 -273.2516

$YpdotCS4 100.5144

$YpdotCS5 0.

$YpdotCS6 0.

$Ypdot -4543.733

// Yqdot = Mvdot

$YqdotHull 0.

$YqdotSail 0.

$YqdotCS1 -7.223745

$YqdotCS2 7.223745

$YqdotCS3 0.

$YqdotCS4 0.

$YqdotCS5 0.

$YqdotCS6 0.

$Yqdot 0.

// Yrdot = Nvdot

$YrdotHull 237.6538

$YrdotSail -2863.063

$YrdotCS1 -.5573540

$YrdotCS2 -.5573540

$YrdotCS3 2309.116

$YrdotCS4 1219.537

$YrdotCS5 22.99844

$YrdotCS6 22.99844

$Yrdot 948.1272

// Zwdot = Zwdot

$ZwdotHull -3746.704

$ZwdotSail -11.61807

$ZwdotCS1 -8.682959

$ZwdotCS2 -8.682959

$ZwdotCS3 -.5213443

$ZwdotCS4 -.4966089

$ZwdotCS5 -74.75030

$ZwdotCS6 -74.75030

$Zwdot -3926.207

// Zpdot = Kwdot

$ZpdotHull 0.
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$ZpdotSail 0.

$ZpdotCS1 -29.23376

$ZpdotCS2 29.23376

$ZpdotCS3 0.

$ZpdotCS4 0.

$ZpdotCS5 -231.1781

$ZpdotCS6 231.1781

$Zpdot 0.

// Zqdot = Mwdot

$ZqdotHull -208.6726

$ZqdotSail 83.72210

$ZqdotCS1 189.4227

$ZqdotCS2 189.4227

$ZqdotCS3 -17.83290

$ZqdotCS4 -16.27498

$ZqdotCS5 -2336.269

$ZqdotCS6 -2336.269

$Zqdot -4452.751

// Zrdot = Nwdot

$ZrdotHull 0.

$ZrdotSail 0.

$ZrdotCS1 7.093817

$ZrdotCS2 -7.093817

$ZrdotCS3 0.

$ZrdotCS4 0.

$ZrdotCS5 0.

$ZrdotCS6 0.

$Zrdot 0.

// Kpdot = Kpdot

$KpdotHull -911.4968

$KpdotSail -16493.72

$KpdotCS1 -99.22213

$KpdotCS2 -99.22213

$KpdotCS3 -1104.656

$KpdotCS4 -268.3430

$KpdotCS5 -760.1915

$KpdotCS6 -760.1915

$Kpdot -20497.13

// Kqdot = Mpdot

$KqdotHull 0.

$KqdotSail 0.

$KqdotCS1 637.7835

$KqdotCS2 -637.7835

$KqdotCS3 0.

$KqdotCS4 0.

$KqdotCS5 -7227.872

$KqdotCS6 7227.872

$Kqdot 0.

// Krdot = Npdot

$KrdotHull 96.57962
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$KrdotSail -17640.23

$KrdotCS1 23.78262

$KrdotCS2 23.78262

$KrdotCS3 8642.043

$KrdotCS4 -3151.411

$KrdotCS5 0.

$KrdotCS6 0.

$Krdot -12005.37

// Mqdot = Mqdot

$MqdotHull -855259.1

$MqdotSail -1206.521

$MqdotCS1 -4132.721

$MqdotCS2 -4132.721

$MqdotCS3 -622.6103

$MqdotCS4 -535.7484

$MqdotCS5 -73054.77

$MqdotCS6 -73054.77

$Mqdot -1011999.

// Mrdot = Nqdot

$MrdotHull 0.

$MrdotSail 0.

$MrdotCS1 -154.8002

$MrdotCS2 154.8002

$MrdotCS3 0.

$MrdotCS4 0.

$MrdotCS5 0.

$MrdotCS6 0.

$Mrdot 0.

// Nrdot = Nrdot

$NrdotHull -978122.6

$NrdotSail -20190.00

$NrdotCS1 -13.72402

$NrdotCS2 -13.72402

$NrdotCS3 -72999.70

$NrdotCS4 -38263.51

$NrdotCS5 -771.0173

$NrdotCS6 -771.0173

$Nrdot -1111145.

///////////////////////

// Viscous Coefficients

// - SI units normalized by rho

//

// X

$Xuu -2.998094

$Xuudbdb -8.510144

$Xuudrdr0 -3.532005

$Xuudsds0 -30.53768

$Xvv0 63.27067

$Xvr -1118.232
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$Xww0 46.81362

$Xwq 1431.581

$Xpr 2421.114

$Xqq 35525.31

$Xrr 26011.55

// Y

$Yuu -0.

$Yuudb -0.

$Yuudr0 34.06934

$Yuuds -0.

$Yuv0 -174.5281

$Yup -908.7873

$Yur0 1129.912

$Yu1r1dr 643.7188

$Yvw -289.3298

$Yvq -2725.600

$Yvnu0 -299.4753

$Yvnu1r1v1 -1867.867

$Ywp -1998.587

$Ywr -1336.190

$Ypq -18118.38

$Yp1p1 -576.8796

$Yqr -13569.23

$Yr1r1 104735.0

// Z

$Zuu -0.

$Zuudb -12.05286

$Zuuds0 -35.82177

$Zuw0 -110.1265

$Zuq0 -1330.125

$Zu1w1 0.

$Zu1q1ds -368.4676

$Zvv 293.3478

$Zvp 2234.833

$Zvr -1769.272

$Zwnu0 -200.8512

$Zwnu1q1w1 -2539.178

$Zpp 0.

$Zpr -22158.22

$Zq1q1 -91942.86

$Zrr -15553.66

$Z1wnu1 -0.

// K

$Kuu0 0.

$Kuudb -0.

$Kuudr0 57.12006

$Kuuds0 -0.

$Kuv -598.7583

$Kup -6437.645

$Kur 143.9649
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$Kvw 0.

$Kvq 3246.557

$Kvnu -373.0479

$Kwp 0.

$Kwr 990.0016

$Kpq 25278.63

$Kp1p1 -3252.849

$Kqr 3641.554

// M

$Muu 1.752575

$Muudb 283.2878

$Muudrdr0 5.121939

$Muuds0 -1226.617

$Muw0 1516.574

$Muq0 -87623.75

$Mu1w1 0.

$Mu1q1ds -12617.15

$Mvv 3208.703

$Mvp 23864.00

$Mvr -44725.28

$Mwnu0 -2353.824

$Mpp -2018.540

$Mpr -458956.9

$Mqnu -38581.92

$Mq1q1 -2739043.

$Mrr -345206.1

$M1wnu1 -0.

// N

$Nuu 0.

$Nuudbdb 0.

$Nuudr0 -1063.975

$Nuudsds0 -0.

$Nuv0 -2730.439

$Nup -5622.743

$Nur0 -64493.04

$Nu1r1dr -20106.27

$Nvw 3362.495

$Nvq 68954.71

$Nvnu0 2271.919

$Nwp 22492.11

$Nwr 15528.76

$Npq 478233.6

$Nqr 370452.3

$Nrnu -23822.74

$Nr1r1 -2384569.

////////////////////////

// Propulsion Parameters

//

// Geometry m, degrees
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$DP 5.000000

$PoD .83

$xP -36.51300

$yP 0.

$zP 0.

$psiP 0.

$thetaP 0.

// wake fraction, thrust deduction, K sign from prop handedness

$wT .313423

$tD .77199e-1

$sK -1

// Control: max rpm, max drpm/dt, damping, response frequency (rad/s)

$rpmMax 125.

$rpmdotMax 10.

$zetaP .900000

$omegaP .8000000

// rpm = [r1mps*u | r1kts*U], u in m/s, U in knots, nominally

// Jsn = J at nominal self-propulsion

// - These formulas are exact only if iniMode = 1 and the vehicle is in

// perfect equilibrium as defined in "Initial Equilibrium" above.

// - If iniMode = 2,3, these formulae are approximately correct at

// moderate to high speeds; see tabulated rpm vs u data above for a

// more accurate relationship.

$r1mps 12.55247

$r1kts 6.457548

$Jsn .6563585

////////////////////////

// AutoDepth and AutoHeading parameters

// - see Section 11 of DSSP50 documentation, Part 2, Input Reference

//

// AutoDepth

$thetaL 10.00000

$ellz 60.00000

$DCC .100000

$DCE 25.00000

$Dk1 .500000

$Dk2 1.000000

$DKP 1.000000

$DKI 0.

$DKD 1.000000

// AutoHeading

$HCC .50000e-1

$HCE 30.00000

$Hk1 .500000

$Hk2 .100000

$HKP 1.000000

$HKI 0.

$HKD 1.000000
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Appendix B: UUV Data

This appendix lists the file uuvData.ini generated for the DSA UUV docking simulator [3].
The format was defined by DSA and allows this data to be read directly into their simulation.

Figure B1 The UUV geometry consisting of a hull and symmetrical tail, as modelled by DSSP.

// uuvData.ini written for vehicle "uuv" on 2019-03-20 09:32:57

//////////////////////////

// Miscellaneous Constants

//

// Fluid density, Gravitational constant, SI units

$rho 1028.0

$g 9.81

//

// Conversions for degrees to radians, knots to m/s

$d2r .1745329e-1

$k2mps .5144444

////////////////////////////

// Vehicle Geometry and Mass

//

// Hull length, diameter, volume in m, m, m^3

$ell 3.200000

$dee .320000

$vol .2168123

//

// Body axes origin relative to vehicle nose, m

$xRef -1.501000

$yRef 0.

$zRef 0.

//

// Centers of buoyancy and z-component of gravity in body axes, m

$xB -.5333e-2

$yB 0.

$zB 0.

$zG .15000e-1

//

// Moments of Inertia in body axes, SI units normalized by rho

$Ix .2602067e-2

$Iy .1384583

$Iz .1384583

$Ixy -0.

$Ixz -0.

$Iyz -0.

//////////////////////////////////////////

// Initial Equilibrium Trim for Simulation

// - for starting a simulation with the vehicle in perfect trim.

//

// In all cases: u is given; dx_0/dt, dy_0/dt, p, q, r = 0

//
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// Need: v, w, phi, theta, psi, mtp, xG, yG, delta_b, delta_s, delta_r, rpm

// where mtp = m/(rho*vol)

//

// There are 3 equilibrium modes, determined by the value of iniMode:

//

// iniMode = 1 ==> Generally a submarine; it can trim mass and

// mass distribution:

// w, phi, theta, delta_b, delta_s = 0;

// rpm is linear in u, as given by propulsion coefficients;

// mtp, xG, yG,, v, delta_r have the form:

// p = p0 + p2*u^2 and p0, p2 are given herein;

// psi = -arctan(v/u).

//

// iniMode = 2 ==> Generally a UUV without foreplanes; it has been

// manually trimmed at zero forward speed:

// mtp = constant (given herein), xG = xB, yG = yB;

// v, w, phi, theta, psi, delta_s, delta_r, rpm

// are tabulated as a function of u.

//

// iniMode = 3 ==> Generally a UUV with foreplanes; it has been

// manually trimmed at zero forward speed:

// w = 0, mtp = constant (given herein), xG = xB, yG = yB;

// v, phi, theta, psi, delta_b, delta_s, delta_r, rpm

// are tabulated as a function of u.

$iniMode 2

$mtp .99

// Tabulated states as a function of u:

// u(m/s) rpm v(m/s) w(m/s) phi(rad) theta(rad) psi(rad) delta_s(rad) delta_r(rad)

.60 237.8728 .1683744e-2 -.2399276 -.9939949e-2 -.3804094 .1085072e-2 .5818385 -.1803713e-3

.65 240.5814 .1554728e-2 -.2263248 -.9360203e-2 -.3350696 .8190815e-3 .3831701 -.5172143e-3

.70 245.6828 .1473315e-2 -.2137353 -.9084892e-2 -.2963510 .6400836e-3 .2465686 -.7203089e-3

.75 252.5960 .1425430e-2 -.2021517 -.9030388e-2 -.2632846 .5150975e-3 .1519244 -.8504777e-3

.80 260.9013 .1401932e-2 -.1915283 -.9144506e-2 -.2349931 .4249091e-3 .8596421e-1 -.9393840e-3

.85 270.2901 .1396659e-2 -.1817991 -.9393393e-2 -.2107124 .3578913e-3 .3982028e-1 -.1004123e-2

.90 280.5317 .1405308e-2 -.1728892 -.9754258e-2 -.1897930 .3067659e-3 .7500308e-2 -.1054204e-2

.95 291.4512 .1424787e-2 -.1647226 -.1021123e-1 -.1716913 .2668377e-3 -.1508942e-1 -.1095045e-2

1.00 302.9141 .1452811e-2 -.1572265 -.1075291e-1 -.1559562 .2349947e-3 -.3077534e-1 -.1129799e-2

1.05 314.8160 .1487659e-2 -.1503331 -.1137087e-1 -.1422146 .2091229e-3 -.4152889e-1 -.1160339e-2

1.10 327.0751 .1528008e-2 -.1439809 -.1205875e-1 -.1301589 .1877535e-3 -.4873848e-1 -.1187796e-2

1.15 339.6268 .1572830e-2 -.1381146 -.1281164e-1 -.1195347 .1698445e-3 -.5339084e-1 -.1212872e-2

1.20 352.4196 .1621314e-2 -.1326849 -.1362567e-1 -.1101315 .1546420e-3 -.5619310e-1 -.1236013e-2

1.25 365.4124 .1672814e-2 -.1276482 -.1449776e-1 -.1017744 .1415906e-3 -.5765591e-1 -.1257516e-2

1.30 378.5720 .1726814e-2 -.1229657 -.1542542e-1 -.9431754e-1 .1302743e-3 -.5815052e-1 -.1277584e-2

1.35 391.8712 .1782894e-2 -.1186031 -.1640661e-1 -.8763893e-1 .1203763e-3 -.5794844e-1 -.1296367e-2

1.40 405.2882 .1840713e-2 -.1145302 -.1743967e-1 -.8163594e-1 .1116516e-3 -.5724922e-1 -.1313978e-2

1.45 418.8049 .1899991e-2 -.1107201 -.1852317e-1 -.7622193e-1 .1039085e-3 -.5620014e-1 -.1330512e-2

1.50 432.4065 .1960499e-2 -.1071491 -.1965596e-1 -.7132343e-1 .9699459e-4 -.5491016e-1 -.1346046e-2

1.55 446.0805 .2022046e-2 -.1037959 -.2083704e-1 -.6687787e-1 .9078753e-4 -.5346008e-1 -.1360651e-2

1.60 459.8167 .2084474e-2 -.1006418 -.2206556e-1 -.6283173e-1 .8518793e-4 -.5190980e-1 -.1374389e-2

1.65 473.6065 .2147652e-2 -.9766987e-1 -.2334081e-1 -.5913908e-1 .8011421e-4 -.5030367e-1 -.1387318e-2

1.70 487.4427 .2211468e-2 -.9486516e-1 -.2466217e-1 -.5576028e-1 .7549878e-4 -.4867443e-1 -.1399490e-2

1.75 501.3191 .2275830e-2 -.9221418e-1 -.2602910e-1 -.5266108e-1 .7128514e-4 -.4704608e-1 -.1410955e-2

1.80 515.2306 .2340659e-2 -.8970482e-1 -.2744115e-1 -.4981169e-1 .6742571e-4 -.4543607e-1 -.1421759e-2

1.85 529.1729 .2405888e-2 -.8732619e-1 -.2889791e-1 -.4718616e-1 .6388008e-4 -.4385690e-1 -.1431946e-2

1.90 543.1420 .2471462e-2 -.8506845e-1 -.3039904e-1 -.4476180e-1 .6061374e-4 -.4231734e-1 -.1441555e-2

1.95 557.1348 .2537331e-2 -.8292273e-1 -.3194423e-1 -.4251870e-1 .5759701e-4 -.4082334e-1 -.1450625e-2

2.00 571.1486 .2603456e-2 -.8088095e-1 -.3353322e-1 -.4043932e-1 .5480422e-4 -.3937873e-1 -.1459190e-2

2.05 585.1808 .2669800e-2 -.7893580e-1 -.3516577e-1 -.3850820e-1 .5221306e-4 -.3798573e-1 -.1467283e-2

2.10 599.2295 .2736334e-2 -.7708062e-1 -.3684167e-1 -.3671164e-1 .4980402e-4 -.3664536e-1 -.1474935e-2

2.15 613.2928 .2803032e-2 -.7530935e-1 -.3856075e-1 -.3503748e-1 .4756001e-4 -.3535779e-1 -.1482175e-2

2.20 627.3692 .2869872e-2 -.7361643e-1 -.4032285e-1 -.3347489e-1 .4546593e-4 -.3412249e-1 -.1489028e-2

2.25 641.4572 .2936833e-2 -.7199679e-1 -.4212783e-1 -.3201421e-1 .4350845e-4 -.3293847e-1 -.1495521e-2

2.30 655.5557 .3003899e-2 -.7044578e-1 -.4397556e-1 -.3064681e-1 .4167571e-4 -.3180441e-1 -.1501675e-2

2.35 669.6637 .3071057e-2 -.6895913e-1 -.4586595e-1 -.2936493e-1 .3995717e-4 -.3071875e-1 -.1507512e-2
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2.40 683.7800 .3138292e-2 -.6753291e-1 -.4779889e-1 -.2816160e-1 .3834338e-4 -.2967978e-1 -.1513052e-2

2.45 697.9041 .3205595e-2 -.6616349e-1 -.4977430e-1 -.2703057e-1 .3682589e-4 -.2868570e-1 -.1518314e-2

2.50 712.0350 .3272956e-2 -.6484753e-1 -.5179212e-1 -.2596617e-1 .3539708e-4 -.2773465e-1 -.1523314e-2

2.55 726.1722 .3340366e-2 -.6358196e-1 -.5385228e-1 -.2496328e-1 .3405012e-4 -.2682477e-1 -.1528069e-2

2.60 740.3151 .3407818e-2 -.6236390e-1 -.5595473e-1 -.2401726e-1 .3277880e-4 -.2595423e-1 -.1532594e-2

2.65 754.4631 .3475307e-2 -.6119071e-1 -.5809943e-1 -.2312390e-1 .3157751e-4 -.2512120e-1 -.1536902e-2

2.70 768.6159 .3542825e-2 -.6005993e-1 -.6028634e-1 -.2227938e-1 .3044117e-4 -.2432391e-1 -.1541006e-2

2.75 782.7729 .3610369e-2 -.5896928e-1 -.6251543e-1 -.2148020e-1 .2936514e-4 -.2356066e-1 -.1544919e-2

2.80 796.9339 .3677934e-2 -.5791663e-1 -.6478667e-1 -.2072319e-1 .2834521e-4 -.2282980e-1 -.1548652e-2

2.85 811.0985 .3745517e-2 -.5690001e-1 -.6710006e-1 -.2000543e-1 .2737752e-4 -.2212974e-1 -.1552214e-2

2.90 825.2663 .3813114e-2 -.5591755e-1 -.6945558e-1 -.1932427e-1 .2645855e-4 -.2145898e-1 -.1555616e-2

2.95 839.4372 .3880722e-2 -.5496755e-1 -.7185322e-1 -.1867726e-1 .2558507e-4 -.2081606e-1 -.1558867e-2

3.00 853.6109 .3948339e-2 -.5404838e-1 -.7429298e-1 -.1806215e-1 .2475411e-4 -.2019961e-1 -.1561976e-2

3.05 867.7871 .4015963e-2 -.5315853e-1 -.7677486e-1 -.1747690e-1 .2396295e-4 -.1960833e-1 -.1564950e-2

3.10 881.9657 .4083591e-2 -.5229660e-1 -.7929888e-1 -.1691959e-1 .2320908e-4 -.1904097e-1 -.1567796e-2

3.15 896.1464 .4151223e-2 -.5146125e-1 -.8186505e-1 -.1638849e-1 .2249020e-4 -.1849635e-1 -.1570522e-2

3.20 910.3292 .4218856e-2 -.5065124e-1 -.8447338e-1 -.1588197e-1 .2180415e-4 -.1797336e-1 -.1573134e-2

3.25 924.5138 .4286489e-2 -.4986540e-1 -.8712389e-1 -.1539855e-1 .2114898e-4 -.1747093e-1 -.1575638e-2

3.30 938.7002 .4354122e-2 -.4910263e-1 -.8981660e-1 -.1493684e-1 .2052285e-4 -.1698807e-1 -.1578040e-2

3.35 952.8881 .4421752e-2 -.4836189e-1 -.9255156e-1 -.1449557e-1 .1992407e-4 -.1652383e-1 -.1580345e-2

3.40 967.0776 .4489380e-2 -.4764220e-1 -.9532878e-1 -.1407354e-1 .1935107e-4 -.1607732e-1 -.1582558e-2

3.45 981.2684 .4557005e-2 -.4694265e-1 -.9814831e-1 -.1366966e-1 .1880238e-4 -.1564767e-1 -.1584684e-2

3.50 995.4605 .4624625e-2 -.4626236e-1 -.1010102 -.1328290e-1 .1827666e-4 -.1523410e-1 -.1586727e-2

/////////////////////////////

// Control Surface Parameters

//

// Number of control surfaces, virtual depth control weights

$NCS 4

$kDb 0.

$kDs 1.000000

// CS1

$iCS 1

$dsspCmpnt 1

$type RUDDER

$dsspLabel #TOPRUDDER

$esamLabel TOP RUDDER

$deltaMin -30.00000 // degrees

$deltaMax 30.00000 // degrees

$deldotMax 100.0000 // degrees/s

$zeta .800000

$omega 8.000000 // radians/s

$kdb 0.

$kdr -1.000000

$kds 0.

$kdphi -1.000000

$CprFlag false

// CS2

$iCS 2

$dsspCmpnt 2

$type RUDDER

$dsspLabel #BOTRUDDER

$esamLabel BOT RUDDER

$deltaMin -30.00000 // degrees

$deltaMax 30.00000 // degrees

$deldotMax 100.0000 // degrees/s

$zeta .800000

$omega 8.000000 // radians/s

$kdb 0.

$kdr 1.000000

$kds 0.

$kdphi -1.000000

$CprFlag false

// CS3
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$iCS 3

$dsspCmpnt 3

$type STERNPLANE

$dsspLabel #STBDSTERNPLANE

$esamLabel STBD STRNPLN

$deltaMin -30.00000 // degrees

$deltaMax 30.00000 // degrees

$deldotMax 100.0000 // degrees/s

$zeta .800000

$omega 8.000000 // radians/s

$kdb 0.

$kdr 0.

$kds 1.000000

$kdphi -1.000000

$CprFlag false

// CS4

$iCS 4

$dsspCmpnt 4

$type STERNPLANE

$dsspLabel #PORTSTERNPLANE

$esamLabel PORT STRNPLN

$deltaMin -30.00000 // degrees

$deltaMax 30.00000 // degrees

$deldotMax 100.0000 // degrees/s

$zeta .800000

$omega 8.000000 // radians/s

$kdb 0.

$kdr 0.

$kds -1.000000

$kdphi -1.000000

$CprFlag false

///////////////////////////////////////////

// Vehicle Total and Component Added Masses

// - SI units normalized by rho

//

// Xudot = Xudot

$XudotHull -.4220917e-2

$XudotCS1 -.2598339e-4

$XudotCS2 -.2598339e-4

$XudotCS3 -.2598339e-4

$XudotCS4 -.2598339e-4

$Xudot -.4324852e-2

// Xvdot = Yudot

$XvdotHull 0.

$XvdotCS1 0.

$XvdotCS2 0.

$XvdotCS3 -.5434573e-5

$XvdotCS4 .5434573e-5

$Xvdot 0.

// Xwdot = Zudot

$XwdotHull 0.

$XwdotCS1 .5434573e-5

$XwdotCS2 -.5434573e-5

$XwdotCS3 0.

$XwdotCS4 0.

$Xwdot 0.

// Xpdot = Kudot

$XpdotHull 0.

$XpdotCS1 0.

$XpdotCS2 0.

$XpdotCS3 0.

$XpdotCS4 0.

$Xpdot 0.
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// Xqdot = Mudot

$XqdotHull 0.

$XqdotCS1 .1034945e-4

$XqdotCS2 -.1034945e-4

$XqdotCS3 0.

$XqdotCS4 0.

$Xqdot 0.

// Xrdot = Nudot

$XrdotHull 0.

$XrdotCS1 0.

$XrdotCS2 0.

$XrdotCS3 .1034945e-4

$XrdotCS4 -.1034945e-4

$Xrdot 0.

// Yvdot = Yvdot

$YvdotHull -.2076851

$YvdotCS1 -.1799342e-2

$YvdotCS2 -.1799342e-2

$YvdotCS3 -.9399501e-5

$YvdotCS4 -.9399501e-5

$Yvdot -.2113026

// Ywdot = Zvdot

$YwdotHull 0.

$YwdotCS1 0.

$YwdotCS2 0.

$YwdotCS3 0.

$YwdotCS4 0.

$Ywdot 0.

// Ypdot = Kvdot

$YpdotHull 0.

$YpdotCS1 -.1904896e-3

$YpdotCS2 .1904896e-3

$YpdotCS3 0.

$YpdotCS4 0.

$Ypdot 0.

// Yqdot = Mvdot

$YqdotHull 0.

$YqdotCS1 0.

$YqdotCS2 0.

$YqdotCS3 0.

$YqdotCS4 0.

$Yqdot 0.

// Yrdot = Nvdot

$YrdotHull -.7988052e-4

$YrdotCS1 .2601564e-2

$YrdotCS2 .2601564e-2

$YrdotCS3 .1421345e-4

$YrdotCS4 .1421345e-4

$Yrdot .5151675e-2

// Zwdot = Zwdot

$ZwdotHull -.2076851

$ZwdotCS1 -.9399501e-5

$ZwdotCS2 -.9399501e-5

$ZwdotCS3 -.1799342e-2

$ZwdotCS4 -.1799342e-2

$Zwdot -.2113026

// Zpdot = Kwdot

$ZpdotHull 0.

$ZpdotCS1 0.

$ZpdotCS2 0.

$ZpdotCS3 -.1904896e-3

$ZpdotCS4 .1904896e-3

$Zpdot 0.

// Zqdot = Mwdot
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$ZqdotHull .7988052e-4

$ZqdotCS1 -.1421345e-4

$ZqdotCS2 -.1421345e-4

$ZqdotCS3 -.2601564e-2

$ZqdotCS4 -.2601564e-2

$Zqdot -.5151675e-2

// Zrdot = Nwdot

$ZrdotHull 0.

$ZrdotCS1 0.

$ZrdotCS2 0.

$ZrdotCS3 0.

$ZrdotCS4 0.

$Zrdot 0.

// Kpdot = Kpdot

$KpdotHull 0.

$KpdotCS1 -.2105541e-4

$KpdotCS2 -.2105541e-4

$KpdotCS3 -.2105541e-4

$KpdotCS4 -.2105541e-4

$Kpdot -.8418807e-4

// Kqdot = Mpdot

$KqdotHull 0.

$KqdotCS1 0.

$KqdotCS2 0.

$KqdotCS3 -.2754819e-3

$KqdotCS4 .2754819e-3

$Kqdot 0.

// Krdot = Npdot

$KrdotHull 0.

$KrdotCS1 .2754819e-3

$KrdotCS2 -.2754819e-3

$KrdotCS3 0.

$KrdotCS4 0.

$Krdot 0.

// Mqdot = Mqdot

$MqdotHull -.1213535

$MqdotCS1 -.2169294e-4

$MqdotCS2 -.2169294e-4

$MqdotCS3 -.3762005e-2

$MqdotCS4 -.3762005e-2

$Mqdot -.1289209

// Mrdot = Nqdot

$MrdotHull 0.

$MrdotCS1 0.

$MrdotCS2 0.

$MrdotCS3 0.

$MrdotCS4 0.

$Mrdot 0.

// Nrdot = Nrdot

$NrdotHull -.1213535

$NrdotCS1 -.3762005e-2

$NrdotCS2 -.3762005e-2

$NrdotCS3 -.2169294e-4

$NrdotCS4 -.2169294e-4

$Nrdot -.1289209

///////////////////////

// Viscous Coefficients

// - SI units normalized by rho

//

// X

$Xuu -.7030554e-2

$Xuudbdb 0.

$Xuudrdr0 -.3659249e-2
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$Xuudsds0 -.3659249e-2

$Xvv0 .4243074e-1

$Xvr -.7522974e-1

$Xww0 .4243074e-1

$Xwq .7522974e-1

$Xpr 0.

$Xqq .6075261e-1

$Xrr .6075261e-1

// Y

$Yuu 0.

$Yuudb 0.

$Yuudr0 .3760183e-1

$Yuuds -0.

$Yuv0 -.8374700e-1

$Yup 0.

$Yur0 .9332220e-1

$Yu1r1dr .2031534e-2

$Yvw 0.

$Yvq 0.

$Yvnu0 -.2704349

$Yvnu1r1v1 -.2014511e-1

$Ywp 0.

$Ywr 0.

$Ypq .6806307e-3

$Yp1p1 0.

$Yqr -0.

$Yr1r1 .1263848

// Z

$Zuu 0.

$Zuudb 0.

$Zuuds0 -.3760183e-1

$Zuw0 -.8374700e-1

$Zuq0 -.9332220e-1

$Zu1w1 0.

$Zu1q1ds -.2031534e-2

$Zvv -0.

$Zvp 0.

$Zvr -0.

$Zwnu0 -.2704349

$Zwnu1q1w1 -.2014511e-1

$Zpp 0.

$Zpr .6806307e-3

$Zq1q1 -.1263848

$Zrr 0.

$Z1wnu1 -0.

// K

$Kuu0 0.

$Kuudb 0.

$Kuudr0 0.

$Kuuds0 0.

$Kuv 0.

$Kup -.1650563e-2

$Kur -0.

$Kvw 0.

$Kvq .4188537e-3

$Kvnu -0.

$Kwp 0.

$Kwr .4188537e-3

$Kpq 0.

$Kp1p1 -.1677722e-6

$Kqr 0.

// M

$Muu -0.

$Muudb 0.
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$Muudrdr0 0.

$Muuds0 -.5382057e-1

$Muw0 .6603778e-1

$Muq0 -.1496527

$Mu1w1 -0.

$Mu1q1ds -.2907806e-2

$Mvv 0.

$Mvp -.4415029e-3

$Mvr -0.

$Mwnu0 -.1590808

$Mpp 0.

$Mpr .1578736e-2

$Mqnu -.8963322e-1

$Mq1q1 -.1667665

$Mrr -0.

$M1wnu1 0.

// N

$Nuu 0.

$Nuudbdb 0.

$Nuudr0 -.5382057e-1

$Nuudsds0 0.

$Nuv0 -.6603778e-1

$Nup -0.

$Nur0 -.1496527

$Nu1r1dr -.2907806e-2

$Nvw -0.

$Nvq 0.

$Nvnu0 .1590808

$Nwp -.4415029e-3

$Nwr -0.

$Npq -.1578736e-2

$Nqr -0.

$Nrnu -.8963322e-1

$Nr1r1 -.1667665

////////////////////////

// Propulsion Parameters

//

// Geometry m, degrees

$DP .220000

$PoD .96

$xP -1.649000

$yP 0.

$zP 0.

$psiP 0.

$thetaP 0.

// wake fraction, thrust deduction, K sign from prop handedness

$wT .221417

$tD .36919e-1

$sK -1

// Control: max rpm, max drpm/dt, damping, response frequency (rad/s)

$rpmMax 1000.

$rpmdotMax 250.0000

$zetaP .800000

$omegaP 2.500000

// rpm = [r1mps*u | r1kts*U], u in m/s, U in knots, nominally

// Jsn = J at nominal self-propulsion

// - These formulas are exact only if iniMode = 1 and the vehicle is in

// perfect equilibrium as defined in "Initial Equilibrium" above.

// - If iniMode = 2,3, these formulae are approximately correct at

// moderate to high speeds; see tabulated rpm vs u data above for a

// more accurate relationship.

$r1mps 284.4173

$r1kts 146.3169
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$Jsn .7465820

////////////////////////

// AutoDepth and AutoHeading parameters

// - see Section 11 of DSSP50 documentation, Part 2, Input Reference

//

// AutoDepth

$thetaL 20.00000

$ellz 2.000000

$DCC 3.000000

$DCE 30.00000

$Dk1 .150000

$Dk2 1.000000

$DKP .300000

$DKI 0.

$DKD .500000

// AutoHeading

$HCC .100000

$HCE 30.00000

$Hk1 .100000

$Hk2 1.000000

$HKP .500000

$HKI 0.

$HKD .500000
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Appendix C: Wageningen B4-70 Family Propeller Loads

This appendix lists file ctcqB470.f90, Fortran 90 code for predicting the 2 quadrant perfor-
mance (positive vehicle forward speed only) of the Wageningen B-Screw Series B4-70 family of
propellers, as discussed van Lammeren et al [17].

! ctcqB470.f90

! Subroutines for predicting the 2 quadrant performance (positive vehicle forward speed only)

! of the Wageningen B-Screw Series B4-70 family of propellers, as discussed by:

! "The Wageningen B-Screw Series," van Lammeren et al, SNAME Transactions, vol 77, pp 269-317, 1969.

! The thrust and torque coefficients C_T and C_Q presented there have been digitized and least squares fitted

! with 2-D cubic spline. The splines are managed using software adapted from:

! "A Practical Guide to Splines", de Boor, Springer Verlag, New York, 1978.

!

! This code can be compiled as a Linux library using: gfortran -shared -fpic -o ctcqB470.so ctcqB470.f90

! or the same command works with "gfortran" replaced with "ifort", the intel compiler. This produces

! the library ctcqB470.so which can be linked into other code or run from Maple.

!

! (c) 2015, George D. Watt, Defence Research and Development Canada - Atlantic

!

PROGRAM ctcqB470

! Test program

IMPLICIT NONE

REAL(8) :: beta,pod,ct,cq

INTEGER :: i,j,flagtx,flagty,flagqx,flagqy

DO j=0,2,1

pod = 0.5_8 + j*0.45_8

DO i=0,3,1

beta = 0.0_8 + i*1.0_8

CALL ctB470(beta,pod,ct,flagtx,flagty)

CALL cqB470(beta,pod,cq,flagqx,flagqy)

WRITE(*,*) beta,pod,ct,cq,flagtx,flagty,flagqx,flagqy

ENDDO

ENDDO

END PROGRAM ctcqB470

SUBROUTINE indexSearch(id,x,vec,n,iLo,flag)

!

! Return the index iLo giving the beginning of the interval in vec which contains the value x.

! The search starts at the interval indentified in the last call with this id, so sequential calls are efficient.

! A binary search based on SUBROUTINE INTERV from de Boor "A Practical Guide to Splines", Springer Verlag, New York, 1978.

!

! id = integer identifying source of Call; 1 <= id <= numIds; speeds sequential call searching based on source (id).

! x = value to bracket with vec breakpoints.

! vec = vector of continuously increasing x breakpoints.

! n = number of entries in vec; n > 1.

! iLo = returned index such that vec(iLo) <= x <= vec(iLo+1).

! flag = -1,0,1 signaling that x < vec(1), vec(1) <= x <= vec(n), x > vec(n), respectively.

!

! The numIDs parameter allows any number of saves for calls from independent sources. This should be at least 2

! to accomodate spline surfaces with two independent dimensions. An additional 2 per additional spline surface

! is generally warranted, but not in the case of two surfaces with the same breakpoints and which are always

! called in tandem, such as thrust and torque for a single propeller operating point.

!

IMPLICIT NONE

INTEGER, INTENT(IN) :: id,n

REAL(8), INTENT(IN) :: x,vec(n)

INTEGER, INTENT(OUT) :: iLo,flag

REAL(8), PARAMETER :: eps100 = 100*EPSILON(1.0_8)

INTEGER, PARAMETER :: numIds = 4

INTEGER, SAVE :: iLoSave(numIds) = 2

INTEGER :: iHi,di,iNew

REAL(8) :: dx

!

! Use id to initialize iLo to the value returned with the last call with this id.

IF (id < 1 .OR. id > numIds) THEN

WRITE(*,"(’indexSearch ERROR: require 1 <= id <=’,I2,’ but got id =’,I3)") numIds,id

STOP

ENDIF

IF (n < 2) THEN

WRITE(*,"(’indexSearch ERROR: require n > 1 but got n =’,I5)") n

STOP

ENDIF

!

! Check x is within range of vec limits. If not, return with flag = +/- 1. If yes, find interval.

flag = 0
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IF (x <= vec(2)) THEN

dx = MAX(ABS(vec(1)),ABS(vec(n)))*eps100 ! dx > round-off error in x.

IF (x < vec(1) - dx) flag = -1

iLo = 1

ELSEIF (x >= vec(n-1)) THEN

dx = MAX(ABS(vec(1)),ABS(vec(n)))*eps100 ! dx > round-off error in x.

IF (x > vec(n) + dx) flag = 1

iLo = n - 1

ELSE

iLo = iLoSave(id)

iHi = iLo + 1

di = 1

! Binary expansion to bracket x

IF (x <= vec(iHi)) THEN

DO

IF (x >= vec(iLo)) EXIT

iHi = iLo

iLo = MAX(2,iLo - di)

di = 2*di

ENDDO

ELSE

DO

iLo = iHi

iHi = MIN(n-1,iHi + di)

IF (x <= vec(iHi)) EXIT

di = 2*di

ENDDO

ENDIF

! Now vec(iLo) <= x <= vec(iHi).

!

! Binary contraction to find interval

DO

iNew = (iLo + iHi)/2

IF (iNew == iLo) EXIT

IF (x < vec(iNew)) THEN

iHi = iNew

ELSE

iLo = iNew

ENDIF

ENDDO

ENDIF

iLoSave(id) = iLo

END SUBROUTINE indexSearch

REAL(8) FUNCTION cubicPatch(X,Y,K)

!

! Calculate and return the value of the cubic spline patch surface of interest.

!

! X = x - x_vec(iLo), the local patch x coordinate.

! Y = y - y_vec(iLo), the local patch y coordinate.

! K = reference to first element of a 16 element array containing the patch coefficients in sequential order.

!

IMPLICIT NONE

REAL(8), INTENT(IN) :: X,Y,K(16)

cubicPatch = X*(X*(X*(Y*(Y*(Y*K(16) + K(15)) + K(14)) + K(13)) &

+ Y*(Y*(Y*K(12) + K(11)) + K(10)) + K( 9)) &

+ Y*(Y*(Y*K( 8) + K( 7)) + K( 6)) + K( 5)) &

+ Y*(Y*(Y*K( 4) + K( 3)) + K( 2)) + K( 1)

END FUNCTION cubicPatch

SUBROUTINE ctB470(beta,pod,ct,flagx,flagy)

!

! Open water two quadrant thrust coefficient C_T as a function of beta and P/D for MARIN B 4-70 propeller series.

! A cubic spline surface least-squares fitted to digitized data from Figure 36 from

! "The Wageningen B-Screw Series," van Lammeren et al, SNAME Transactions, vol 77, pp 269-317, 1969.

! Rn = (c_0.75r*sqrt(V_A^2 + (0.75*pi*n*D)^2))/nu = 1*10^6, corrected from data acquired at Rn = 0.35*10^6.

!

! beta = hydrodynamic pitch angle; tan(beta) = V_A/(0.7*pi*n*D); 0 <= beta <= pi.

! pod = P/D, the pitch to diameter ratio; 0.5 <= pod <= 1.4.

! ct = C_T, unconventional thrust coefficient used for four quadrant data.

! flagx = -1,0,1 signalling whether beta < 0, 0 <= beta <= pi, beta > pi respectively.

! flagy = -1,0,1 signalling whether pod < 0.5, 0.5 <= pod <= 1.4, pod > 1.4 respectively.

!

! The flags must be 0 for the spline to be valid.

!

IMPLICIT NONE

REAL(8), INTENT(IN) :: beta,pod

REAL(8), INTENT(OUT) :: ct

INTEGER, INTENT(OUT) :: flagx,flagy

! Let x,y represent beta,P/D respectively.
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INTEGER, PARAMETER :: nx = 22, ny = 3 ! no. patches in x,y directions

REAL(8), PARAMETER :: bx(nx+1) = & ! x breakpoints

(/0._8,.174532925199433_8,.349065850398866_8,.523598775598299_8,.698131700797732_8,.872664625997165_8,1.04719755119660_8,&

1.17809724509617_8,1.30899693899575_8,1.43989663289532_8,1.57079632679490_8,1.70169602069447_8,1.83259571459405_8,&

1.96349540849362_8,2.09439510239320_8,2.22529479629277_8,2.35619449019235_8,2.48709418409192_8,2.61799387799150_8,&

2.74889357189107_8,2.87979326579064_8,3.01069295969022_8,3.14159265358979_8/)

REAL(8), PARAMETER :: by(ny+1) = & ! y breakpoints

(/.5_8,.8_8,1.1_8,1.4_8/)

REAL(8), PARAMETER :: K(0:3,0:3,ny,nx) = RESHAPE(& ! spline coefficients

(/.100485064886274_8,.277830755667736_8,0._8,-.07369566410565_8,-.308547392788365_8,-.21933993402587_8,0._8,.586826624591656_8,&

0._8,0._8,0._8,0._8,-1.52285437829239_8,1.4433448778629_8,0._8,-5.70481224149363_8,.181844508655737_8,.257932926358942_8,&

-.06632609769516_8,.03346924463994_8,-.358505054132156_8,-.06089674538572_8,.528143962132726_8,-1.21174869543475_8,0._8,0._8,&

0._8,0._8,-1.24388084545368_8,-.0969544273386_8,-5.13433101734486_8,16.486090074454_8,.254158707376216_8,.22717396379496_8,&

-.03620377751913_8,.04022641946572_8,-.361958335932802_8,-.07118251587402_8,-.562429863758858_8,.624922070843053_8,0._8,0._8,&

0._8,0._8,-1.28993253320641_8,1.2736912823559_8,9.70315004966421_8,-10.7812778329589_8,.0385370133984755_8,.247222369454902_8,&

0._8,-.00160516990787_8,-.447713784216258_8,-.087439536258854_8,0._8,.065491068980226_8,-.797364687888335_8,.75573361081501_8,&

0._8,-2.98703270466427_8,.65524946865931_8,-1.7613892927072_8,0._8,13.8850723158686_8,.11266038464743_8,.24678897357959_8,&

-.00144465291712_8,-.09037123355577_8,-.472177386231428_8,-.069756947633621_8,.0589419620823852_8,.294836370820704_8,&

-.6512944876697_8,-.0507652194435_8,-2.68832943419814_8,8.63209657738746_8,.50172963337542_8,1.9875802325759_8,&

12.4965650842828_8,-40.2923893164705_8,.184127034652816_8,.221521948769488_8,-.08277876311728_8,.09197640346365_8,&

-.479839111922104_8,.045214049736754_8,.324294695820758_8,-.360327439800846_8,-.67540709499134_8,.6669031959316_8,&

5.08055748545083_8,-5.64506387272245_8,1.13480004918906_8,-1.3934258323004_8,-23.7665853005404_8,26.4073170005978_8,&

-.060409216187028_8,.245617691985066_8,0._8,-.00734398639129_8,-.666166446334092_8,.015396300800029_8,0._8,.29171042848072_8,&

-.45427686838683_8,-.16652766619842_8,0._8,4.28317415901825_8,.38817858327501_8,-2.74910048367461_8,0._8,-2.45899174667438_8,&

.013077803775927_8,.24363481565935_8,-.00660958775217_8,.009818531710014_8,-.653671374525078_8,.09415811649058_8,&

.262539385632819_8,-.374122597855606_8,-.388589465952902_8,.98992935673661_8,3.85485674311666_8,-12.4649491346464_8,&

-.5029443389873_8,-3.4130282552755_8,-2.21309257200542_8,24.5584875172203_8,.085838485932228_8,.242320066569854_8,&

.00222709078684_8,-.0024745453187_8,-.61189670501326_8,.150668646448505_8,-.0741709524373603_8,.0824121693748295_8,&

-.0812271786870289_8,-.0626928637479574_8,-7.36359747806471_8,8.1817749756267_8,-1.06295198408615_8,1.88990783116718_8,&

19.8895461934857_8,-22.0994957705372_8,-.188451478184928_8,.228616326379588_8,0._8,.160968615282615_8,-.789265200177612_8,&

-.29395998943805_8,0._8,1.56210474236006_8,-.251027037470331_8,-1.60595331344709_8,0._8,2.99564909125304_8,.4847621309967_8,&

2.4350401185092_8,0._8,-13.4548663260357_8,-.115520427658417_8,.272077852505971_8,.14487175375439_8,-.30461515572078_8,&

-.835276368965295_8,.127808291000088_8,1.40589426812443_8,-2.48092773731165_8,-.651930506040662_8,-.79712805880789_8,&

2.69608418212877_8,.393844859916041_8,.851992775746264_8,-1.19777378952102_8,-12.1093796934364_8,20.9139750810422_8,&

-.029083223273214_8,.276754812713944_8,-.129281886394365_8,.143646540438181_8,-.737388446441794_8,.301494362799496_8,&

-.826940695456711_8,.918822994951833_8,-.63778753607439_8,.926860562644663_8,3.05054455604986_8,-3.3894939511661_8,&

-.03250620633003_8,-2.81662833369562_8,6.71319787951909_8,-7.4591087550236_8,-.33127368801099_8,.141336572195341_8,0._8,&

.45332618314923_8,-.832590069620032_8,-.632016757104036_8,0._8,1.37820754075188_8,.002793820775805_8,-.330969288863302_8,0._8,&

-4.04930244289729_8,-.507182918287585_8,1.32862048763013_8,0._8,2.77495792726689_8,-.276632909407348_8,.263734641645895_8,&

.40799356483442_8,-.61443077290138_8,-.9849834931509_8,-.259900721099869_8,1.24038678667703_8,-.432221608358368_8,&

-.205828131841462_8,-1.42428094844506_8,-3.64437219860902_8,11.3443766052433_8,-.03367290796256_8,2.07785912799211_8,&

2.49746213454861_8,-18.2038969121533_8,-.1773827269469_8,.342634471862905_8,-.144994130777_8,.16110458975221_8,&

-.962988882105967_8,.367631516648366_8,.851387339154258_8,-.945985932393732_8,-.654807745908326_8,-.547922584193605_8,&

6.56556674611567_8,-7.29507416235146_8,.3229512059145_8,-1.33871575756828_8,-13.8860450864166_8,15.4289389849117_8,&

-.479199440710873_8,.028010650761592_8,0._8,.58527324786891_8,-.877963867772581_8,-.626130549931136_8,0._8,.218324497147142_8,&

-.262766534244309_8,.36469477169519_8,0._8,-2.59633786984355_8,-.30309969122226_8,7.25478019661176_8,0._8,-20.9831495381748_8,&

-.45499386778992_8,.186034427686676_8,.52674592308219_8,-.4410806199207_8,-1.0599082713289_8,-.567182935700083_8,&

.196492047433037_8,1.86414562635863_8,-.223459225221578_8,-.336316453162072_8,-2.33670408285626_8,1.81283847092147_8,&

1.30678933023215_8,1.58932982130356_8,-18.8848345843764_8,35.4691628181502_8,-.363685583144523_8,.382990214156911_8,&

.12977336515337_8,-.14419262794822_8,-1.16204693585871_8,.0540316118750295_8,1.87422311115508_8,-2.0824701235056_8,&

-.485710889913307_8,-1.24887251573022_8,-.705149459035332_8,.783499398929558_8,1.04162056012152_8,-.164896968407433_8,&

13.0374119520014_8,-14.4860132800087_8,-.642048821966636_8,-.031589910582345_8,0._8,.43273055787637_8,-.997385525276304_8,&

.164151668070051_8,0._8,-2.60551825070932_8,-.42146916145515_8,4.16328879987571_8,0._8,-13.5830892762276_8,3.0673072050197_8,&

-17.9752922028984_8,0._8,85.1387351608899_8,-.639842070078658_8,.085247340044991_8,.389457502089_8,.1280709199105_8,&

-1.01848901762442_8,-.539338259620077_8,-2.3449664256384_8,5.73830308675712_8,.460774068049601_8,.49585469529422_8,&

-12.2247803486115_8,20.3844486940053_8,-.02653460650571_8,5.01216629053751_8,76.6248616448332_8,-164.480795148284_8,&

-.575758778039786_8,.353500989673448_8,.5047213300081_8,-.5608014777868_8,-1.2364032904758_8,-.396976281580028_8,&

2.81950635244321_8,-3.13278483604815_8,.05968036000187_8,-1.33521236648703_8,6.12122347600715_8,-6.80135941778805_8,&

3.93237135968343_8,6.57726858737965_8,-71.4078539887062_8,79.3420599874623_8,-.772948284059378_8,.020916983235931_8,0._8,&

.0498867503342_8,-.950053452594835_8,.33009279879179_8,0._8,-1.78507502406815_8,.7830595612553_8,-2.8955919414688_8,0._8,&

19.8508138384431_8,4.04762814382164_8,9.34120088926294_8,0._8,-60.2777726388454_8,-.765326246829549_8,.034386405827051_8,&

.044898075301_8,.8595760023193_8,-.899222638607074_8,-.151877457705467_8,-1.60656752166146_8,2.61993729788718_8,&

.45035395245249_8,2.46412779490906_8,17.8657324546048_8,-44.2070085178098_8,5.22248854935203_8,-6.93379772322396_8,&

-54.2499953749737_8,115.053202898708_8,-.727760946241982_8,.293410771632935_8,.8185164773881_8,-.9094627526535_8,&

-1.01863864582563_8,-.408434900274092_8,.751376046436644_8,-.834862273818663_8,1.60391898185827_8,1.24767496785925_8,&

-21.9205752114424_8,24.3561946793823_8,1.36628612690702_8,-8.41943016552789_8,49.2978872339543_8,-54.7754302599601_8,&

-.87481392593505_8,.0354625119087_8,0._8,.0211604302968_8,-.536983894390061_8,.0522054627019731_8,0._8,.313325833415787_8,&

2.3725594163896_8,.77268906970875_8,0._8,-3.82021212368015_8,7.50969937312845_8,-15.2438524153813_8,0._8,64.2803914787578_8,&

-.863603840744396_8,.041175828089845_8,.0190443872674_8,.7031062268987_8,-.51286245807724_8,.136803437724995_8,&

.281993250075011_8,-3.03921381383479_8,2.50122040996264_8,-.258768203686052_8,-3.43819091131119_8,.974278607023231_8,&

4.67211421844044_8,2.11185328386453_8,57.8523523308548_8,-48.8262197183633_8,-.830553229337415_8,.242441141711832_8,&

.6518399914758_8,-.7242666571954_8,-.528500807226768_8,-.51458834196626_8,-2.45329918237675_8,2.72588798041847_8,&

2.14045828922969_8,-2.05862752656914_8,-2.56134016497244_8,2.84593351663437_8,9.1940739809824_8,23.6401853584155_8,&

13.9087545842589_8,-15.454171760281_8,-.887608051925642_8,.02134510194589_8,0._8,.1408928591574_8,.470180718696282_8,&

-.52910289151669_8,0._8,2.61747806860127_8,5.32161146404313_8,-5.21355777536281_8,0._8,21.4226385812677_8,-22.8365941968045_8,&

20.1503345520079_8,0._8,-99.9580972765264_8,-.877400414144596_8,.059386173919433_8,.126803573242_8,.2124542330626_8,&

.382121759093478_8,.177616187005112_8,2.35573026174078_8,-5.29402052631284_8,4.33595537312853_8,.570554641570653_8,&

19.2803747231312_8,-18.199733039207_8,-19.4903624576678_8,-6.83835171261565_8,-89.962287548817_8,109.340684069687_8,&

-.8424359760846_8,.192830960790436_8,.318012382998_8,-.3533470922201_8,.504483784541429_8,.161668801945951_8,&

-2.40888821194014_8,2.67654245771099_8,5.75096269862379_8,7.22485155486917_8,2.9006149878354_8,-3.22290554203849_8,&

-26.6862753809736_8,-31.293739543126_8,8.44432811391672_8,-9.3825867932537_8,-.78609806754159_8,-.092051400807677_8,0._8,&

.6263919576715_8,.689478724417576_8,-.858197507772487_8,0._8,3.08764675087503_8,-3.6462981061632_8,2.69946009913248_8,0._8,&
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-17.8308144275782_8,7.02176875869892_8,-1.10867658717825_8,0._8,31.8438299198803_8,-.796800904926739_8,.077074427764538_8,&

.5637527619046_8,-.5471353442518_8,.515385934359463_8,-.0245328850370921_8,2.77888207578748_8,-4.43813024038856_8,&

-3.31789206596816_8,-2.11485979630723_8,-16.0477329848078_8,24.7382531872725_8,7.54894919037975_8,7.48915749117497_8,&

28.6594469278357_8,-45.1359471576866_8,-.737713482321036_8,.26759954195834_8,.0713309520776_8,-.0792566134197_8,&

.638295939178871_8,.444501195530954_8,-1.21543514056324_8,1.35048348951409_8,-4.72871313743822_8,-5.06417122663689_8,&

6.21669488373368_8,-6.90743875970768_8,11.1563760879859_8,12.498119915333_8,-11.9629055140416_8,13.2921172378742_8,&

-.742574504535045_8,-.160621357274498_8,0._8,.7964612936913_8,.095828444996301_8,-.208471127910165_8,0._8,.0564567202220725_8,&

-.88885596272004_8,2.26408382144834_8,0._8,-5.3257716602741_8,3.64030035272954_8,-7.64192149238367_8,0._8,-10.8185254343874_8,&

-.769256456787705_8,.054423192023026_8,.7168151643225_8,-.8054387588729_8,.034811438069225_8,-.193227813450166_8,&

.0508110482001666_8,-.281847485714067_8,-.353426651113122_8,.826125473174848_8,-4.79319449425681_8,7.01340818685043_8,&

1.05562371828583_8,-10.5629233596678_8,-9.73667289089902_8,42.646263711495_8,-.71016298088161_8,.267043825719855_8,&

-.0080797186636_8,.0089774651816_8,-.026193793742108_8,-.23884000567303_8,-.202851688942459_8,.225390765492595_8,&

-.347614492598228_8,-.156171012925793_8,1.51887287392055_8,-1.68763652656244_8,-1.83810472958785_8,-4.89043589212293_8,&

28.6449644493894_8,-31.8277382772037_8,-.737095955100778_8,-.166256001242443_8,0._8,.6883305974491_8,.0502531875995548_8,&

-.0085621507482204_8,0._8,-1.89394457252551_8,.540686642890062_8,-.736891731027152_8,0._8,-9.57419666368484_8,&

.53640417590731_8,13.1366113096916_8,0._8,-4.18980797075006_8,-.768387829342361_8,.019593260069703_8,.6194975377045_8,&

-.6265070313801_8,-.003451961083096_8,-.519927185329891_8,-1.7045501152727_8,3.74645510912903_8,.06111581366328_8,&

-3.32192483022123_8,-8.61677699730665_8,23.7605567842335_8,4.36426275360466_8,12.0053631575824_8,-3.77082717371935_8,&

-57.1094979155756_8,-.723670762775581_8,.222134884218788_8,.055641209462_8,-.0618235660689_8,-.211685339110166_8,&

-.531114375028846_8,1.66725948294362_8,-1.85251053660423_8,-1.06943653198729_8,-2.07664069686611_8,12.7677241084928_8,&

-14.1863601205726_8,6.08454081152662_8,-5.6766975838438_8,-55.1693752976944_8,61.2993058864612_8,-.720050191160361_8,&

-.15053871355304_8,0._8,.2669651094191_8,.219378041648061_8,.473796903513823_8,0._8,-4.61583708098712_8,.75133207020167_8,&

4.42184346692361_8,0._8,-11.2195304062937_8,1.02959983274_8,-29.929520438105_8,0._8,146.169670278011_8,-.758003747271931_8,&

-.078458134008967_8,.2402685984776_8,.1429408602783_8,.236889511515557_8,-.772479108352619_8,-4.15425337288792_8,&

7.03128687079046_8,1.77495778930862_8,1.39257025722251_8,-10.0975773656723_8,1.33370939650901_8,-4.00267520118474_8,&

9.5362905369552_8,131.552703250222_8,-237.595243991453_8,-.756057610384406_8,.104297057351681_8,.3689153727276_8,&

-.4099059696975_8,-.17889227903887_8,-1.36658367697257_8,2.17390481082313_8,-2.41544978980333_8,1.31995705727086_8,&

-4.30587462512288_8,-8.89723890880812_8,9.8858210098143_8,4.2828836646541_8,24.3171966094217_8,-82.283016342096_8,&

91.425573713306_8,-.676150479323908_8,-.079881596646984_8,0._8,-.2016417050243_8,.469002062693884_8,.092930073194849_8,0._8,&

-.039369829633968_8,1.15565497903308_8,-7.33145172480387_8,0._8,46.1811648840831_8,-1.1422114299351_8,28.5778078876296_8,0._8,&

-191.860252542545_8,-.705559284353636_8,-.134324857002657_8,-.1814775345215_8,.5532771965616_8,.49581809925218_8,&

.0823002191931331_8,-.0354328466713857_8,-4.83293979330249_8,.20311091346224_8,5.13746279389584_8,41.563048395673_8,&

-91.969724734911_8,2.2509041177076_8,-23.2244602988471_8,-172.674227288269_8,453.373828356187_8,-.747251235254483_8,&

-.093826534644994_8,.3164719423835_8,-.3516354915372_8,.3868298343907_8,-1.24385323300058_8,-4.38507866064303_8,&

4.87230962293713_8,3.00184153940015_8,5.2434661528835_8,-41.2097038657458_8,45.7885598508034_8,-8.01602106228056_8,&

-4.4180630156796_8,235.362218232302_8,-261.513575813555_8,-.597518318303642_8,-.129241475123125_8,0._8,.15417729359747_8,&

.712837375776605_8,-.357420445354716_8,0._8,2.18841006860645_8,.70710959939779_8,3.8910271896311_8,0._8,-29.1621801038525_8,&

-1.91130413657775_8,-15.0158554073587_8,0._8,98.1139004729479_8,-.63212797391343_8,-.087613605851018_8,.138759564238_8,&

-.6383433657244_8,.664698314022555_8,.233450273168247_8,1.96956906174554_8,-5.60524319751208_8,1.08703889348353_8,&

-3.98276143840797_8,-26.2459620934611_8,86.0697613267822_8,-3.76698544601842_8,11.4748977203296_8,88.3025104256221_8,&

-295.312924288335_8,-.663158965762115_8,-.176710576054694_8,-.4357494649143_8,.4841660721269_8,.760653045197612_8,&

-.0982239531114145_8,-3.07514981601433_8,3.41683312890446_8,-.14604257062756_8,3.5084968637404_8,51.2168231006448_8,&

-56.9075812229193_8,-.3507391473962_8,-15.2780855821243_8,-177.479121433904_8,197.199023815366_8,-.496378915137434_8,&

-.143035528223779_8,0._8,.16101612192325_8,.799709195852101_8,-.110629787394084_8,0._8,-.402765288245033_8,-.04345777988784_8,&

-2.0056854397615_8,0._8,9.3670585137565_8,.17989034759_8,3.9845844736444_8,0._8,-25.7423896292569_8,-.534942138312619_8,&

-.099561175303813_8,.1449145097312_8,-.5596523561233_8,.755645596851249_8,-.219376415221153_8,-.362488759420855_8,&

1.74744607769514_8,-.392252831945396_8,.523420358950673_8,8.43035266237431_8,-29.8993528550171_8,.68022116969442_8,&

-2.9658607262442_8,-23.1681506663032_8,97.5066005476117_8,-.56687879864349_8,-.163718605619159_8,-.35877261078_8,.3986362342_8,&

.704389728035078_8,.03494077010488_8,1.21021271050506_8,-1.34468078944959_8,-.28377751173163_8,-2.4911933144763_8,&

-18.4790649071479_8,20.5322943412631_8,.3380076066381_8,9.4600310218153_8,64.5877898265753_8,-71.7642109183702_8,&

-.392038381894832_8,-.182946664114283_8,0._8,.21105788523533_8,.79757909326186_8,-.430892671886239_8,0._8,.726258219119779_8,&

.02718499441151_8,-.4409427760092_8,0._8,-.7419542543831_8,-.9998019303195_8,1.0268489533556_8,0._8,-13.6939041830573_8,&

-.441223818227748_8,-.125961035100187_8,.18995209671198_8,-.624528966951_8,.687920263612182_8,-.234802952724827_8,&

.653632397207164_8,-1.06793841452972_8,-.125130603259706_8,-.641270424690782_8,-.667758828940526_8,8.39139963958729_8,&

-1.06148265725683_8,-2.67050517607362_8,-12.3245137647658_8,24.5803280262932_8,-.478778722161572_8,-.180612598150411_8,&

-.37212397354417_8,.4134710817157_8,.647471956351342_8,-.130966886322589_8,-.307512175869681_8,.341680195410392_8,&

-.15104223500319_8,1.22375218063132_8,6.88450084669219_8,-7.64944538520762_8,-2.30817159219648_8,-3.42852486782571_8,&

9.7977814588943_8,-10.8864238432355_8,-.289412201836696_8,-.244602667083781_8,0._8,.26269719734255_8,.753302100128742_8,&

-.493546882459255_8,0._8,-.171908997253456_8,-.36543630550075_8,-.03770013498288_8,0._8,-6.11953785194061_8,1.13209207627285_8,&

14.3224961825115_8,0._8,48.9476744299631_8,-.35570017763357_8,-.173674423800831_8,.23642747760844_8,-.5654054354147_8,&

.600596492465096_8,-.539962311718293_8,-.154718097528312_8,2.3924567158316_8,-.541973867998183_8,-1.68997535500653_8,&

-5.5075840667479_8,18.0440718833714_8,6.7504281406347_8,27.5383682785898_8,44.052906986969_8,-177.400672899527_8,&

-.401789978545397_8,-.184477404798275_8,-.27243741426499_8,.30270823807218_8,.489279501499719_8,.0131701430400206_8,&

1.99849294672095_8,-2.2205477185786_8,-1.05745909965637_8,-.122626386544228_8,10.7320806282891_8,-11.9245340314339_8,&

14.1868820847544_8,6.07193078790568_8,-115.607698622623_8,128.452998469585_8,-.194527635602071_8,-.277729415383345_8,0._8,&

.24512398541813_8,.715825374748854_8,.232819554405809_8,0._8,.742115275864555_8,.0791352132459_8,5.58673096352191_8,0._8,&

13.1021689479915_8,-1.299409887141_8,-26.7112627402722_8,0._8,-107.125936890381_8,-.271228112610777_8,-.211545939320087_8,&

.22061158687642_8,-.34095073617819_8,.805708353518926_8,.43319067888816_8,.667903748277688_8,-2.00275413471665_8,&

2.10891306389829_8,9.12431657947582_8,11.7919520531922_8,-51.6210094570008_8,-12.2051890052615_8,-55.6352657006486_8,&

-96.4133432013386_8,344.153097929054_8,-.324042521464845_8,-.171235685962757_8,-.08624407568404_8,.09582675076003_8,&

.941702532893337_8,.293189311482572_8,-1.13457497296679_8,1.26063885885205_8,4.51371646719027_8,2.26181525800391_8,&

-34.666956458114_8,38.5188405090161_8,-28.280835959497_8,-20.5619351806315_8,213.32444493483_8,-237.027161038705_8,&

-.102384839237016_8,-.211437797518362_8,0._8,.32649269999255_8,.669747812963324_8,.322351486402698_8,0._8,-1.33446688456906_8,&

-.43114185618549_8,-4.90275738559884_8,0._8,-28.9660880949668_8,-9.2868441244788_8,12.7874824873326_8,0._8,144.327272011847_8,&

-.157000875592721_8,-.123284768520163_8,.29384342999335_8,-.71571107600696_8,.730422653000753_8,-.037954572431746_8,&

-1.20102019611242_8,2.17380828556202_8,-2.68405345042898_8,-12.7236011712337_8,-26.0694792854685_8,83.5275960634855_8,&

-1.5537630339611_8,51.7558459305191_8,129.894544810659_8,-375.702517456478_8,-.18686459650162_8,-.140220701046277_8,&

-.35029653841298_8,.38921837601442_8,.669637287331539_8,-.171638452996643_8,.75540726089354_8,-.839341400992789_8,&

-6.59214184377893_8,-5.81283780538075_8,49.1053571716706_8,-54.5615079685238_8,15.5195318068326_8,28.2528931036811_8,&

-208.237720900181_8,231.375245444648_8,-.042932304363427_8,-.224568070476193_8,0._8,-.02079860416277_8,.079492442906042_8,&

-.303857221493471_8,0._8,-1.49874456138466_8,-4.07807701574579_8,.11887524441784_8,0._8,27.7110990881654_8,18.9105401433164_8,&

3.49013481454473_8,0._8,-97.816095117067_8,-.110864287818676_8,-.230183693599957_8,-.01871874374645_8,.15738777444739_8,&
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-.052130826699375_8,-.708518253067127_8,-1.34887010524616_8,4.72859836283924_8,-3.29421476704023_8,7.600871998224_8,&

24.9399891793494_8,-64.0104375335662_8,17.3165460195202_8,-22.9202108670746_8,-88.0344856053648_8,198.763707778338_8,&

-.177354612925819_8,-.198920240747256_8,.12293025325616_8,-.13658917028463_8,-.25841245629508_8,-.241118758248506_8,&

2.90686842130916_8,-3.2298538014547_8,-.4976359548386_8,5.28204737176907_8,-32.6694046008636_8,36.2993384454043_8,&

7.883999164933_8,-22.0747011301303_8,90.8528513951545_8,-100.947612661284_8/),&

(/4,4,ny,nx/))

INTEGER, PARAMETER :: idctx = 1,idcty = 2 ! These may be the same as torque, if spline breakpoints the same.

INTEGER :: i,j

REAL(8) :: cubicPatch

!

! Find the patch (i,j coordinates) for this x value.

CALL indexSearch(idctx,beta,bx,nx+1,i,flagx)

CALL indexSearch(idcty, pod,by,ny+1,j,flagy)

!

! Calculate CT

ct = cubicPatch(beta-bx(i),pod-by(j),K(0,0,j,i))

END SUBROUTINE ctB470

SUBROUTINE cqB470(beta,pod,cq,flagx,flagy)

!

! Open water two quadrant torque coefficient C_Q as a function of beta and P/D for MARIN B 4-70 propeller series.

! A cubic spline surface least-squares fitted to digitized data from Figure 36 from

! "The Wageningen B-Screw Series," van Lammeren et al, SNAME Transactions, vol 77, pp 269-317, 1969.

! Rn = (c_0.75r*sqrt(V_A^2 + (0.75*pi*n*D)^2))/nu = 1*10^6, corrected from data acquired at Rn = 0.35*10^6.

!

! beta = hydrodynamic pitch angle; tan(beta) = V_A/(0.7*pi*n*D); 0 <= beta <= pi.

! pod = P/D, the pitch to diameter ratio; 0.5 <= pod <= 1.4.

! cq = C_Q, unconventional torque coefficient used for four quadrant data.

! flagx = -1,0,1 signalling whether beta < 0, 0 <= beta <= pi, beta > pi respectively.

! flagy = -1,0,1 signalling whether pod < 0.5, 0.5 <= pod <= 1.4, pod > 1.4 respectively.

!

! The flags must be 0 for the spline to be valid.

!

IMPLICIT NONE

REAL(8), INTENT(IN) :: beta,pod

REAL(8), INTENT(OUT) :: cq

INTEGER, INTENT(OUT) :: flagx,flagy

! Let x,y represent beta,P/D respectively.

INTEGER, PARAMETER :: nx = 22, ny = 3 ! no. patches in x,y directions

REAL(8), PARAMETER :: bx(nx+1) = & ! x breakpoints

(/0._8,.174532925199433_8,.349065850398866_8,.523598775598299_8,.698131700797732_8,.872664625997165_8,1.04719755119660_8,&

1.17809724509617_8,1.30899693899575_8,1.43989663289532_8,1.57079632679490_8,1.70169602069447_8,1.83259571459405_8,&

1.96349540849362_8,2.09439510239320_8,2.22529479629277_8,2.35619449019235_8,2.48709418409192_8,2.61799387799150_8,&

2.74889357189107_8,2.87979326579064_8,3.01069295969022_8,3.14159265358979_8/)

REAL(8), PARAMETER :: by(ny+1) = & ! y breakpoints

(/.5_8,.8_8,1.1_8,1.4_8/)

REAL(8), PARAMETER :: K(0:3,0:3,ny,nx) = RESHAPE(& ! spline coefficients

(/.0091609031507366_8,.0393396217833733_8,0._8,.055385973880935_8,-.0229849143317415_8,-.0799430498966495_8,0._8,&

.103322794718126_8,0._8,0._8,0._8,0._8,-.120287955272734_8,.229979671981379_8,0._8,-1.86962759411516_8,.0224582109805333_8,&

.0542938347311834_8,.049847376492833_8,-.020619497660513_8,-.0441781138433462_8,-.0520458953226924_8,.0929905152463328_8,&

-.159852988684676_8,0._8,0._8,0._8,0._8,-.101773998719425_8,-.274819778429512_8,-1.68266483470361_8,3.2078890401618_8,&

.0426758988474224_8,.0786349962586002_8,.031289828598382_8,-.034766476220423_8,-.055738766762488_8,-.0394118931198268_8,&

-.0508771745698721_8,.0565301939665275_8,0._8,0._8,0._8,0._8,-.249046763287328_8,-.418288638408375_8,1.20443530144159_8,&

-1.33826144604629_8,.00450975864849347_8,.0266096320549396_8,0._8,.063479184540439_8,-.0339774563017212_8,-.0589263056119471_8,&

0._8,-.0675335453863081_8,-.062982626100026_8,.120417074661928_8,0._8,-.978934719103545_8,.076935372859342_8,&

-.712393803335052_8,0._8,4.26708816787092_8,.0142065862475668_8,.043749011880828_8,.05713126608639_8,-.031464118499099_8,&

-.0534787537107351_8,-.0771603628661688_8,-.0607801908476544_8,.133300676028177_8,-.0532887411172577_8,-.143895299495935_8,&

-.881041247193166_8,1.67964677368392_8,-.021571387608655_8,.439720001989991_8,3.8403793510839_8,-7.52006310785042_8,&

.0316235725601239_8,.0695324595379463_8,.02881355943721_8,-.032015066041343_8,-.0784979614941395_8,-.0776372948472605_8,&

.0591904175776693_8,-.0657671306418583_8,-.130400580323957_8,-.219015418917353_8,.630640849122162_8,-.700712054580222_8,&

.252937050674114_8,.713530573521191_8,-2.92767744598074_8,3.2529749399787_8,-.0029299538673112_8,.0162056689605864_8,0._8,&

.044558603017322_8,-.0489317838104538_8,-.0819950857157062_8,0._8,-.0192974092854081_8,-.022699359070665_8,-.252591448508091_8,&

0._8,1.25530742096367_8,-.013740622368511_8,.228639771144373_8,0._8,-2.47663338989415_8,.0031348291023324_8,&

.0282364917752502_8,.0401027427155892_8,.00298521099144_8,-.0740513395758693_8,-.0872053862226569_8,-.0173676683568359_8,&

.0323853392899148_8,-.0645834932570697_8,.0863415551521429_8,1.12977667886734_8,-2.2578490620085_8,-.012017792552387_8,&

-.44005124412701_8,-2.2289700509049_8,5.84598218526494_8,.0152956241760833_8,.0531041443723116_8,.042789432607886_8,&

-.047543814008762_8,-.100901641433986_8,-.0888819456286146_8,.0117791370040491_8,-.0130879300045054_8,.002036949712383_8,&

.154588315730277_8,-.902287476940119_8,1.00254164104463_8,-.186798951369786_8,-.199018084648684_8,3.03241391583272_8,&

-3.36934879536989_8,-.0122346763260151_8,-.00458396779831959_8,0._8,.0662622085320869_8,-.0581110447675906_8,&

-.149271837348654_8,0._8,.192559841229089_8,-.02989393211878_8,-.132875944283807_8,0._8,-.0414547895907484_8,&

-.0038511878149051_8,.0333458570404648_8,0._8,-.654366120078404_8,-.0118207870351442_8,.0133068285053515_8,.059635987678883_8,&

-.029059882518443_8,-.0976934802589988_8,-.0972806802166697_8,.173303857106205_8,-.221516260794082_8,-.0708759947228664_8,&

-.144068737473238_8,-.0373093106317282_8,.803100052365616_8,-.011515315944828_8,-.143332995380468_8,-.58892950806963_8,&

.779606884046521_8,-.0032461164204395_8,.041242252832697_8,.0334820934122802_8,-.0372023260136452_8,-.117261276225919_8,&

-.0531077563674966_8,-.0260607776085096_8,.0289564195650036_8,-.0957707525078672_8,.0503826902863053_8,.685480736497107_8,&

-.761645262774596_8,-.086469484416055_8,-.28619684153002_8,.112716687572471_8,-.125240763969341_8,-.0233080633389402_8,&

-.0345071651362348_8,0._8,.09512846797293_8,-.0688979372730667_8,-.192606973158111_8,0._8,.118289994119378_8,&

-.0319104093432716_8,-.115416094366219_8,0._8,-.384080088856739_8,-.017160801771511_8,.56897540006063_8,0._8,&

-1.60603477679599_8,-.0310917442445406_8,-.0088224787835102_8,.085615621175649_8,-.03911309693838_8,-.123486199379274_8,&

-.160668674745706_8,.106460994707517_8,.130063093180336_8,-.0769054000522535_8,-.219117718357358_8,-.345672079970712_8,&

1.21130126230044_8,.110168879273088_8,.13534601032568_8,-1.44543129911777_8,.729134716584325_8,-.0270891355911317_8,&
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.0319863577484802_8,.05041383393109_8,-.056015371034547_8,-.158593608763496_8,-.061675042762729_8,.223517778569721_8,&

-.248353087299703_8,-.141046068674771_8,-.0994696255189516_8,.744499056099601_8,-.827221173444007_8,.040370502798134_8,&

-.53504639566635_8,-.78921005419044_8,.876900060211995_8,-.0363963052501274_8,-.0686141973739873_8,0._8,.095535610652667_8,&

-.0816050151940752_8,-.18089884480098_8,0._8,-.162547099657008_8,-.0408957841391555_8,.182498728451073_8,0._8,&

-1.22499793155528_8,-.0721533120707_8,.216953055905463_8,0._8,2.73668195201693_8,-.0544011029746998_8,-.0428195824976986_8,&

.08598204958743_8,.0243620425016_8,-.140263440325099_8,-.224786561708139_8,-.146292389691222_8,.619519139206719_8,&

-.0192211097557875_8,-.148250713068671_8,-1.10249813840005_8,1.59307530715008_8,.066823017405418_8,.955857182948953_8,&

2.46301375681589_8,-7.378120125273_8,-.0588508181136185_8,.0153473987301115_8,.10790788783884_8,-.11989765315427_8,&

-.204138707151239_8,-.145291827937309_8,.411274835594821_8,-.456972039549783_8,-.119908122839356_8,-.379619263178064_8,&

.331269638035626_8,-.368077375594956_8,.376042167021172_8,.441573003213879_8,-4.17729435593316_8,4.64143817325804_8,&

-.0522684327220478_8,-.093474325131976_8,0._8,.04439999909368_8,-.102474083588608_8,-.0973684669272202_8,0._8,&

-.340059745872199_8,-.078675169994951_8,.296095082885124_8,0._8,.207925387722672_8,1.18086147753364_8,-4.3706280290309_8,0._8,&

10.8056259519682_8,-.0791119302861084_8,-.081486325376574_8,.03995999918435_8,.14179003576771_8,-.14086623680532_8,&

-.18918459831252_8,-.306053771284945_8,.501356151417439_8,.015767340339087_8,.352234937569843_8,.187132848950418_8,&

-2.27009935665918_8,.16142496952739_8,-1.4531090219983_8,9.72506335676943_8,-.598182738998419_8,-.0961330970067933_8,&

-.0192270162088062_8,.16757103137526_8,-.1861900348614_8,-.211629839626516_8,-.237450700201059_8,.145166764990671_8,&

-.161296405545202_8,.076987095385739_8,-.14841217935821_8,-1.85595657204388_8,2.06217396893739_8,.58459703108484_8,&

4.22041965253667_8,9.18669889167563_8,-10.2074432129702_8,-.0643817459915045_8,-.110949335022093_8,0._8,.02768530007968_8,&

-.0623699676562861_8,-.244519547319959_8,0._8,.269829438402975_8,.385048047846735_8,-1.42024653056021_8,0._8,&

4.45128477623965_8,-.20018561357377_8,8.72818207853094_8,0._8,-26.9590205879417_8,-.0969190433959783_8,-.10347430400045_8,&

.02491677007175_8,.16717818073853_8,-.128440437015396_8,-.171665598951006_8,.242846494562611_8,-.123703569329536_8,&

.07915877763719_8,-.218399640975398_8,4.00615629861492_8,-2.50500516895404_8,1.6903754541113_8,1.44924651978521_8,&

-24.263118529142_8,14.1635099032887_8,-.121205014409756_8,-.0433861331581567_8,.17537713273638_8,-.1948634808182_8,&

-.161423928562013_8,-.0593576659326325_8,.131513282165921_8,-.146125869073191_8,.30655781265822_8,1.50894274257672_8,&

1.75165164655709_8,-1.94627960728492_8,.3238835098131_8,-9.28447692381177_8,-11.5159596161822_8,12.7955106846414_8,&

-.0663972638796057_8,-.147715700325679_8,0._8,.07881023300368_8,.028144996307455_8,-.16767409321741_8,0._8,.0493664623073129_8,&

.306435341226777_8,2.00730255657795_8,0._8,-6.13549785214247_8,-1.22552424017403_8,-6.22439366122159_8,0._8,36.5625049971488_8,&

-.108584097686207_8,-.126436937414538_8,.07092920970334_8,.13983060843563_8,-.02082433717546_8,-.154345148394334_8,&

.0444298160765865_8,-.0514486406723305_8,.742967666192379_8,.350718136499023_8,-5.52194806692688_8,3.05699216370041_8,&

-2.10565470361809_8,3.64748268800658_8,32.9062544974273_8,-43.1024662762113_8,-.136356123609551_8,-.0461251473150888_8,&

.19677675729536_8,-.21864084143928_8,-.0645183115450305_8,-.141578391729918_8,-.00187396052839369_8,.0020821783648845_8,&

.43374656953881_8,-2.13706281945715_8,-2.77065511959551_8,3.0785056884383_8,.7863864180947_8,11.753569491884_8,&

-5.8859651511694_8,6.53996127908024_8,-.0602111718654437_8,-.14923048558224_8,0._8,.06214936156146_8,.0453725006549062_8,&

.0378765753882813_8,0._8,.322562819494153_8,-.17482690248949_8,-.437011118316553_8,0._8,8.22256428484305_8,.1166283156743_8,&

3.92579000766329_8,0._8,-46.4002861020675_8,-.103302284777953_8,-.132450157960497_8,.05593442540535_8,.0888008788144_8,&

.0654446693977315_8,.124968536651592_8,.290306537544735_8,-1.46677731193024_8,-.08392100229388_8,1.78308123858987_8,&

7.40030785635742_8,-13.8693067619173_8,.04155759321818_8,-8.60228723988889_8,-41.7602574918538_8,98.568601142765_8,&

-.135605610151675_8,-.0749132654375649_8,.13585521633828_8,-.15095024037587_8,.089459831350144_8,-.0968774150426241_8,&

-1.02979304319247_8,1.14421449243593_8,.74255979378354_8,2.4785531266867_8,-5.08206822936975_8,5.64674247707762_8,&

-3.63619952216132_8,-7.04491942645557_8,46.9514835366402_8,-52.1683150407097_8,-.057005947913039_8,-.142955245225887_8,0._8,&

.14119151850477_8,.0055981086617741_8,.125269385990265_8,0._8,.0900560116329225_8,-.129027070023838_8,1.10464301263577_8,0._8,&

-9.99878545799766_8,.34208567575901_8,-7.31720568452605_8,0._8,49.7135377045979_8,-.0960803504811738_8,-.104833535229471_8,&

.12707236665432_8,-.11976408639571_8,.0456104367729372_8,.14958450913105_8,.0810504104696052_8,-.0309142707348329_8,&

-.0676013735989_8,-1.59502906102237_8,-8.99890691219675_8,24.8384923911754_8,-.51081051157508_8,6.10544949571162_8,&

44.7421839341332_8,-127.651704316518_8,-.11932752838385_8,-.0609264185638741_8,.01928468889814_8,-.02142743210906_8,&

.096945641144702_8,.189867902314479_8,.053227566808153_8,-.0591417408979726_8,-.685372419441703_8,-.287980262723397_8,&

13.3557362398616_8,-14.8397069331788_8,1.90102487466466_8,-1.51520030926749_8,-70.1443499507321_8,77.9381666119229_8,&

-.0577167266621389_8,-.124041748016982_8,0._8,.09315736465483_8,-.010596462348631_8,.0383292221628294_8,0._8,&

.0278642173038367_8,.005309660709306_8,-1.76881694027761_8,0._8,9.52367514659114_8,.20031573681496_8,7.36910346769365_8,0._8,&

-47.0030295835069_8,-.0924140022215501_8,-.0988892595600515_8,.08384162818938_8,.01547615105479_8,.0016546381674239_8,&

.0458525608348766_8,.0250777955734869_8,-.0900445789179228_8,-.268196192416123_8,.802575349301637_8,8.57130763193142_8,&

-25.2902146711949_8,1.14196497836855_8,-5.32171451985167_8,-42.3027266251528_8,118.389300062363_8,-.11411717747408_8,&

-.0444057218617774_8,.09777016413865_8,-.10863351570962_8,.0152362043887224_8,.0365872018711737_8,-.0559623254525178_8,&

.0621803616140089_8,.061158303125888_8,-.882998032762065_8,-14.1898855721429_8,15.7665395246035_8,-1.06528367216726_8,&

1.26176052189237_8,64.2476434309649_8,-71.3862704788532_8,-.0585635263833423_8,-.132804275187574_8,0._8,.15456583594113_8,&

.0010906716866987_8,-.0459431781772574_8,0._8,.105003896305595_8,.083973466605198_8,1.1250232244262_8,0._8,-8.9343714079094_8,&

-.115722791279544_8,-1.90171294188001_8,0._8,16.1815586705403_8,-.0942315313692011_8,-.0910714994833429_8,.13910925234705_8,&

-.16411263469024_8,-.0098571765662283_8,-.0175921261747361_8,.0945035066750601_8,-.625301271420327_8,.18025240591961_8,&

-1.28725705570891_8,-8.04093426711771_8,21.2011547462514_8,-.24933458973919_8,2.46730789916538_8,14.5634028034829_8,&

-44.0116376073447_8,-.113464189639644_8,-.0519163594416218_8,-.00859211887419_8,.0095467987491_8,-.023512633146253_8,&

-.129721365453224_8,-.468267637603244_8,.520297375114695_8,-.35717761668495_8,-.387505834492428_8,11.0401050045063_8,&

-12.2667833383416_8,.613249816925786_8,-.677792572726076_8,-25.0470710431173_8,27.8300789368026_8,-.0572414533510338_8,&

-.123806664816417_8,0._8,.0515168911132_8,.0171262375321876_8,.150831200627509_8,0._8,-1.40220915890008_8,.038529232739176_8,&

.378222298497593_8,0._8,-2.5798881775341_8,.10217818919954_8,-3.10045232099066_8,0._8,33.3662417529189_8,-.0929924967358995_8,&

-.109897104215721_8,.04636520200192_8,.0185966179551_8,.024515950430137_8,-.227765272275441_8,-1.26198824301003_8,&

2.66276549807996_8,.082338941495054_8,-.31834750943642_8,-2.32189935978147_8,3.91782507378814_8,.0729310202317_8,&

5.90843295229472_8,30.0296175776283_8,-73.4439270926531_8,-.121286651135695_8,-.0770568961668481_8,.06310215816147_8,&

-.07011350906831_8,-.085497904675249_8,-.266011533599988_8,1.13450070526186_8,-1.26055633917989_8,-.116354976723907_8,&

-.653674355382368_8,1.20414320662974_8,-1.33793689625433_8,2.5651404564053_8,4.09634318385801_8,-36.0699168057662_8,&

40.0776853397366_8,-.0541102674881317_8,-.104536270206895_8,0._8,-.10139937112076_8,.0324655540875386_8,.0904733279117735_8,&

0._8,-.362457687435632_8,.078654513807381_8,-.839322480806462_8,0._8,10.5230043185738_8,-.02009977682789_8,4.58776563701052_8,&

0._8,-37.25643091975_8,-.0882089315704578_8,-.131914100409363_8,-.09125943400865_8,.26955302780788_8,.0498211949003058_8,&

-.00739024769588394_8,-.326211918692164_8,-.0868758485280045_8,.11097888616706_8,2.00188868520759_8,9.47070388671635_8,&

-24.9235376518426_8,.35030627944164_8,-5.4714707113198_8,-33.5307878277722_8,94.9612124345271_8,-.128718579003273_8,&

-.113890443306588_8,.15133829101841_8,-.16815365668713_8,.015899399999003_8,-.226573878013686_8,-.404400182367307_8,&

.449333535963683_8,.890973324934163_8,.954955851241068_8,-12.960479999943_8,14.4005333332693_8,-1.74495310272172_8,&

.0495839493354434_8,51.9343033633041_8,-57.7047815147802_8,-.0485578949597201_8,-.096784861971818_8,0._8,-.05209973502544_8,&

.0520240449079305_8,.106569590858467_8,0._8,.477321762567295_8,.070761349905163_8,.96228887189732_8,0._8,-4.10756189098209_8,&

.05815333520697_8,-4.79975427712333_8,0._8,13.5396882061938_8,-.0790000463969498_8,-.110851790428565_8,-.04688976152287_8,&

.04411435804474_8,.0968826097547865_8,.235446466751475_8,.429589586310588_8,-1.73043857998851_8,.248543840417809_8,&

-.146752838667902_8,-3.69680570188287_8,12.3676432681894_8,-1.01620136636259_8,-1.14403846145085_8,12.1857193855662_8,&

-30.147905012146_8,-.115284574395406_8,-.127074770670352_8,-.00718683928264_8,.0079853769807_8,.159457770888524_8,&
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.025981801941076_8,-1.12780513567918_8,1.25311681742128_8,.205731843889127_8,.974427422613105_8,7.43407323948751_8,&

-8.26008137720797_8,-1.07669159542479_8,-1.97254118338706_8,-14.9473951253595_8,16.6082168059547_8,-.040405052878053_8,&

-.077111892431161_8,0._8,-.02963184083622_8,.0735386480648621_8,.111768749571657_8,0._8,.0979612736934459_8,.093598111238228_8,&

-.922570225109415_8,0._8,1.20946123407677_8,-.5448139798167_8,3.53090471065699_8,0._8,-9.45081689634891_8,-.064338680309977_8,&

-.0851124894568409_8,-.02666865675257_8,-.03810296349077_8,.109714227326081_8,.13821829346871_8,.0881651463239706_8,&

-.0423257688152605_8,-.150517502974597_8,-.596015691908802_8,1.08851511066691_8,.528588654780121_8,.259285377179014_8,&

.979184148644123_8,-8.50573520670114_8,8.10520459108335_8,-.0933013862690418_8,-.111401483651015_8,-.0609613238943_8,&

.06773480432699_8,.157971782777897_8,.179689423683202_8,.0500719543904051_8,-.0556355048781948_8,-.217083956907914_8,&

.19981231128316_8,1.56424489997113_8,-1.73804988885667_8,.00636497712721_8,-1.93585173579057_8,-1.21105107473779_8,&

1.3456123052642_8,-.030397068111893_8,-.070369813652241_8,0._8,-.01728247776158_8,.0700368551806491_8,.0517437246134023_8,0._8,&

-.0712140991642157_8,-.120349838332883_8,.464012812330489_8,0._8,-2.50186588242192_8,.1309120789658_8,-2.14638706913634_8,0._8,&

12.1123519632201_8,-.0519746391071266_8,-.0750360826477896_8,-.01555422998542_8,-.01640675608425_8,.0836371918872328_8,&

.0325159178389398_8,-.0640926892478426_8,.512699890856419_8,-.048696373459087_8,-.211490975922959_8,-2.25167929417691_8,&

3.71149505467803_8,-.185970538768122_8,1.12394796093211_8,10.9011167668866_8,-26.7480919479832_8,-.0763283270144494_8,&

-.0887984447818797_8,-.03032031046125_8,.03368923384583_8,.101466522259775_8,.132489274821639_8,.397337212523055_8,&

-.441485791692217_8,-.214584436235745_8,-.560394887667481_8,1.08866625503085_8,-1.2096291722564_8,.410115875936282_8,&

.442633195113291_8,-13.1721659862902_8,14.6357399847655_8,-.0229978004303076_8,-.060460039616603_8,0._8,-.042306009174271_8,&

.0452587705065596_8,.0628887069708187_8,0._8,-.103575418857983_8,-.06894078513937_8,-.378871418688695_8,0._8,&

2.25464361074669_8,.350264090508_8,3.7528603337751_8,0._8,-7.85463145848531_8,-.0422780745629926_8,-.0718826620935888_8,&

-.038075408256826_8,.05430684605241_8,.0613288462886404_8,.0349233438791077_8,-.0932178769720916_8,.109403034357821_8,&

-.121726833255817_8,.229882356212969_8,2.0291792496703_8,-6.79245609048888_8,1.26404714126138_8,1.63210983998203_8,&

-7.06916831263113_8,24.3749000871024_8,-.0658033750907889_8,-.0800650586136165_8,.01080075319033_8,-.01200083687814_8,&

.0663701224525594_8,.00853143697249156_8,.0052448539498443_8,-.00582761549979439_8,-.0535323083648_8,-.386573238416497_8,&

-4.08403123176894_8,4.53781247974289_8,1.77557724747156_8,3.97183187592212_8,14.8682417657595_8,-16.5202686286214_8,&

-.0174691048051731_8,-.0503023801530372_8,0._8,-.034848686150972_8,.0452151568734806_8,.156613145592343_8,0._8,&

.0829279334913579_8,.068607601554934_8,1.09487338812769_8,0._8,-.829862950082191_8,-.14981824119754_8,-6.97733457282278_8,0._8,&

1.76027101864264_8,-.0335007333771594_8,-.0597115254137432_8,-.031363817535862_8,.00691198599081_8,.0944381547554488_8,&

.179003687634864_8,.0746351401421493_8,-.415885826490273_8,.374663318340991_8,.870810391604719_8,-.74687665507347_8,&

2.77954479021506_8,-2.19549129554088_8,-6.50206139778466_8,1.58424391677708_8,-8.05189253623654_8,-.0540503109577752_8,&

-.0766635797178122_8,-.02514303014415_8,.02793670016017_8,.143627506343509_8,.111495598567958_8,-.299662103699083_8,&

.332957892998937_8,.643735246201794_8,1.17316149191949_8,1.7547136561202_8,-1.9496818401338_8,-4.22092886084586_8,&

-7.72552603250724_8,-5.66245936583563_8,6.2916215175969_8,-.0107109138530332_8,-.0266910868659074_8,0._8,-.034264756263884_8,&

.0554752996865216_8,.0845860991177138_8,0._8,-.043844373626309_8,.009774115814797_8,-1.64511949132469_8,0._8,&

-.138606137521004_8,-1.05426117446478_8,4.89704610634206_8,0._8,-.203796047503158_8,-.0196433883319297_8,-.0359425710571216_8,&

-.030838280637487_8,-.017960430797557_8,.0796673313339233_8,.0727481182385021_8,-.0394599362636957_8,-.10210371253853_8,&

-.487504097295662_8,-1.68254314845432_8,-.124745523768968_8,-.382426014702398_8,.40935016415527_8,4.84202117351431_8,&

-.18341644275198_8,9.9083154639932_8,-.0336865365379846_8,-.0592948557549989_8,-.047002668355301_8,.052225187061443_8,&

.0951835723032361_8,.0215041540950102_8,-.131353277548318_8,.145948086164779_8,-1.01381964136841_8,-1.86064548668652_8,&

-.468928937000939_8,.521032152223698_8,2.11297355389022_8,7.4072164831433_8,8.73406747483996_8,-9.70451941649041_8,&

-.0056463722295071_8,-.0328237344576762_8,0._8,-.042836050525131_8,.0038407159353497_8,-.0943764900851141_8,0._8,&

-.0906073462316808_8,-.40423327926796_8,.277946017672671_8,0._8,-.218636658228935_8,1.9104608621802_8,.900561958586765_8,0._8,&

.63401363905321_8,-.016650065930988_8,-.0443894680994282_8,-.038552445472611_8,-.015654875107172_8,-.0269186294384398_8,&

-.11884047356761_8,-.0815466116085073_8,.307106317556393_8,-.326752663738356_8,.218914119951081_8,-.196772992405802_8,&

3.50856036918926_8,2.19774781801046_8,1.07174564112883_8,.57061227514656_8,-19.2071075089341_8,-.0338593080812551_8,&

-.0717477516619743_8,-.052641833069072_8,.058490925632301_8,-.0616180959794816_8,-.0848497347925581_8,.194849074192258_8,&

-.216498971324721_8,-.18405686710149_8,1.04816162418836_8,2.96093133986401_8,-3.28992371096024_8,2.05203471237198_8,&

-3.7718060211926_8,-16.7157844828923_8,18.5730938698811_8/),&

(/4,4,ny,nx/))

INTEGER, PARAMETER :: idcqx = 1,idcqy = 2 ! These may be the same as thrust, if spline breakpoints the same.

INTEGER :: i,j

REAL(8) :: cubicPatch

!

! Find the patch (i,j coordinates) for this x value.

CALL indexSearch(idcqx,beta,bx,nx+1,i,flagx)

CALL indexSearch(idcqy,pod,by,ny+1,j,flagy)

!

! Calculate CQ

cq = cubicPatch(beta-bx(i),pod-by(j),K(0,0,j,i))

END SUBROUTINE cqB470
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Appendix D: Dynamic Change Module

This appendix lists dc3Module.mpl, Maple code for creating a module for modelling dynamic
change in a system. Read this script into Maple, call dcMake to instantiate a dynamic change
model, and call command to issue system change commands. Many different systems can be
instantiated simultaneously and independently. See the file header for a detailed explanation.

# Dynamic Change Module, version 3.01

# OBJECTIVE: Analytically model control system dynamic change with limits

#

# George Watt

# DRDC Atlantic

# (c) 2019 Defence Research and Development Canada

# September 2019

#

# Instantiate a dynamic change module for state d by calling procedure dcMake

# with characteristic parameters. Do this for as many different control

# systems as necessary, creating an independent module for each. Once

# created, analytical solutions for responses d(t) to any number of commanded

# changes are generated using the command(t,dc) procedure, which automatically

# matches d and d’ values for the new response to the old at time t.

#

# The dynamic response is governed by the second order ordinary differential

# equation:

# d’’(t) + 2 zeta omega d’(t) = omega^2(dc - d(t)).

# This ODE governs the response unless there are nonlinear effects which limit

# the rate d’, or if hard stops are encountered.

#

# The dcMake procedure call is:

#

# dcMake(ZETA,OMEGA,DDRL,{dIni,dIniD,dRange,dHistory,Verbose,

# dMinS,dMinSH,dMinH,dMaxS,dMaxSH,dMaxH})

#

# The first three parameters must always be present and entered in the correct

# order.

# ZETA, dimensionless damping 0 < zeta < 1.

# OMEGA, rad/s, response frequency, omega > 0.

# DDRL, d unit/s, the rate limit; ie, maximum allowable |d’|, DDRL > 0.

#

# The remaining keyword parameters in dcMake (in the {}’s) have default

# values and don’t need to be specified. They can be changed using the syntax

# keyword=value, as in dMinS = 20, and given in any order after the first

# three required parameters (do not enclose with {}’s).

#

# dIni, d unit, initial value for d (default = 0).

# dIniD, d/s, initial value for d’(t) (default = 0).

# dRange, d unit, nominal range (> 0) of d for estimating error

# (default = 100).

# dHistory, boolean, remember response time history (default = true).

# Verbose, boolean, write out useful info and numbers (default = false).
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# dMinS, d unit, soft minimum d limit (default = no limit).

# dMinSH, d unit, soft & hard minimum d limit (default = no limit).

# dMinH, d unit, hard minimum d limit (default = no limit).

# dMaxS, d unit, soft maximum d limit (default = no limit).

# dMaxSH, d unit, soft & hard maximum d limit (default = no limit).

# dMaxH, d unit, hard maximum d limit (default = no limit).

#

# dIni and dIniD specify the initial conditions when procedure command() is

# first called. On subsequent command() calls, the current response provides

# these initial conditions.

#

# dRange gives an order of magnitude estimate of the range of d and is only

# used to convert relative d error (specified internally) to absolute error.

#

# If dHistory is true, the response d(t) is a piecewise function containing

# the entire response history. If dHistory is false, d(t) is still a

# piecewise function but contains only the latest response and its initial

# conditions. If this module is being used in a numerical integration where

# command() calls are frequent, it is better to set dHistory false.

#

# if Verbose is true, useful information and numbers are written out when

# dcMake and command are called, making it possible to follow what has

# happened.

#

# If the rate limit is not exceeded and if hard stops are not encountered, the

# response is determined completely by the above ODE, is C^1 continuous at the

# time a new command is issued, and is C^infinity continuous otherwise.

#

# Soft limits only cap the commanded change (dc in the call command(t,dc)) but

# allow the response to temporarily overshoot the limits thereby avoiding

# discontinuities. Hard limits are rigidly enforced producing a discontinuity

# in d’ when the limit is encountered (there is C^0 continuity at the hard

# limit). Following a hard limit, a new solution is generated with dIniD=0.

#

# If the rate is limited, d’ will be continuous when this occurs but not d’’

# (C^1 continuity). While the rate is limited, d’ is constant with |d’| =

# DDRL and with d’’ = 0. As soon as the ODE predicts d’’ = 0, rate limiting

# stops which creates a second discontinuity but with both d’ and d’’

# continuous (C^2 continuity). The rate can be limited only once for each

# command() call.

#

# The times at which discontinuities occur in the latest response are listed

# in chronological order in the parameter tDiscs. These are both the rate and

# hard limit discontinuities. tDiscs is returned by command() and it can be

# accessed directly since it is exported by the module. It is an empty list

# if there are no discontinuites.

#

# The call "m := dcMake(...)" (where m is any name) instantiates and returns a

# new module named m in which d = dIni and d’ = dIniD are constant for all

# time. A command is issued to m at t = t0 using m:-command(t0,dc). The

69



# response to this command matches d and d’ to dIni and dIniD at t = t0 and

# can be obtained for any t by calling procedures:

# m:-delta(t) for d

# m:-deltaD(t) for d’

# m:-deltaDD(t) for d’’.

# Any number of subsequent calls to command can be made "m:-command(ti,dc_i);"

# with no restriction on ti. If dHistory = true, the m:-delta* procedures

# provide a complete history of all the merged responses.

#

# Module parameters and procedures that have been "exported" are available

# using the prefix "m:-" as in, for example, m:-tDiscs. However, these

# parameters are associated only with the response to the latest command().

#

# All calculations use 15 significant figures. Numerical error is controlled

# using a relative error Err = 1e-10. This number is hardwired into the code

# and it is inadvisable to change it. In most cases, numerical relative error

# will be O(Err). The exception is when zeta > 1 - sqrt(Err).

#

# Maple does numerical computation several different ways and it takes time

# for it to figure out how to handle each computation. This delay is avoided

# and speed maximized by specifying a priori (using option hfloat) that all

# computations using numeric quantities are to be done using hardware floating

# point (HFloat) numbers.

#

dcMake := proc(ZETA::And(positive,numeric),

OMEGA::And(positive,numeric),

DDRL::And(positive,numeric),

{dIni::numeric:=HFloat(0.),

dIniD::numeric:=HFloat(0.),

dRange::And(positive,numeric):=HFloat(100.),

dHistory::truefalse := true,

Verbose::truefalse := false,

dMinS::numeric:=HFloat(-1.e99),

dMinSH::numeric:=HFloat(-1.e99),

dMinH::numeric:=HFloat(-1.e99),

dMaxS::numeric:=HFloat( 1.e99),

dMaxSH::numeric:=HFloat( 1.e99),

dMaxH::numeric:=HFloat( 1.e99)})

option hfloat;

# Err is acceptable relative error -- change at own risk.

local Err := 1.e-10,

pi := evalhf(Pi);

# Ensure ‘option hfloat’ takes precedence over sFloats with more than

# evalhf(Digits) sig figs.

UseHardwareFloats := true;

# Warn if hardware floats have less than 15 significant figures.

if evalhf(Digits) < 15 then

WARNING("Module was tested with hardware floats having 15 sig figs;\n"
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"HFloats on this machine only have %1 sig figs",evalhf(Digits));

end if;

return module()

option hfloat; # fast -- all floating point calcs use hardware floats

# t is always a variable and never given an explicit value.

local t,z2,rtz,oz,ortz,acz,odc0,z2dd0,fdf,FdF,dErr,tErr,ddErr,iniDel,

beta,alpha,T0,Te0,Te1,Ti,T1,T2,Ts,dc,dc0,d1,d2,dd0,dd1,noHardLimits,

rateLimChk,gRegion,g,h,response,deltaUp,hardCapit,applyLimits,nLims;

export delta,deltaD,deltaDD,dsMin,dhMin,dsMax,dhMax,command,newton,tDiscs,

softLimited,hardLimited,rateLimited;

# Allow limits to be changed using these exported variables

dsMin := max(dMinS,dMinSH);

dhMin := max(dMinH,dMinSH);

dsMax := min(dMaxS,dMaxSH);

dhMax := min(dMaxH,dMaxSH);

if OMEGA < Err then

error "require omega > %1 ",Err

end if;

# Absolute error based on change over a half period

dErr := dRange*Err; # max acceptable d error

tErr := pi*Err/OMEGA; # max acceptable time error

ddErr := dErr*OMEGA/pi; # max acceptable d’ error

if DDRL < ddErr then

error "DDRL < %1 is too small.",ddErr

end if;

if dIni < max(dsMin,dhMin) then

error "Initial delta < greatest minimum"

end if;

if dIni > min(dsMax,dhMax) then

error "Initial delta > smallest maximum"

end if;

if abs(dIniD) > DDRL then

error "Initial rate magnitude > rate limit"

end if;

z2 := ZETA + ZETA;

rtz := sqrt((1.0 - ZETA)*(1.0 + ZETA)); # maintain sig figs for zeta ~ 1

oz := OMEGA*ZETA;

ortz := OMEGA*rtz;

acz := arccos(ZETA);

########################################################

# Initialize response prior to calling command()
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iniDel := proc(D1::numeric,DD1::numeric,DDD1::numeric)

option hfloat;

delta := unapply(piecewise(t<infinity,D1,0.0),t);

deltaD := unapply(piecewise(t<infinity,DD1,0.0),t);

deltaDD := unapply(piecewise(t<infinity,DDD1,0.0),t);

end proc;

# Initialize response based on initial conditions

iniDel(dIni,dIniD,0.0);

# Newton zero finding function to find ts (t_\ell in report)

# FdF is (d - ds)/d’; dcs = dc - ds, ts0 = ts - t0

FdF := (dcs,alpha,ts0,beta)

-> (dcs*exp(oz*ts0)/alpha - sin(ortz*ts0 + beta))

/(OMEGA*sin(ortz*ts0 + beta - acz));

# Newton zero finding function to find t1

# fdf is (d’ - d_1’)/d’’; dd1 = signum(dc - d0)*DDRL, t1t0 = t1 - t0

fdf := (dd1,alpha,t1t0,beta)

-> (dd1*exp(oz*t1t0)/(OMEGA*alpha) - sin(ortz*t1t0 + beta - acz))

/(OMEGA*sin(ortz*t1t0 + beta - acz - acz));

if Verbose then

printf("\nzeta,omega,ddrl = %g,%g,%g\n",ZETA,OMEGA,DDRL);

printf("dIni,dIniD = %g,%g\n",dIni,dIniD);

printf("Err,dRange = %g,%g\n",Err,dRange);

printf("tErr,dErr,ddErr = %g,%g,%g\n",tErr,dErr,ddErr);

printf("dsMin,dsMax = %g,%g\n",dsMin,dsMax);

printf("dhMin,dhMax = %g,%g\n",dhMin,dhMax);

printf("dHistory = %a\n",dHistory);

end if;

##########################################################################

# command(TNOT,DC) an exported procedure to set the new command

# to DC at t = T0. The exported response is:

# delta(t) = new response

# deltaD(t) = new delta’(t)

# deltaDD(t) = new delta’’(t)

#

# Input parameters are:

# TNOT = time (s) at which commanded change is initiated

# (new delta matches old delta and delta’ at t = T0).

# DC = commanded delta (d units) to change to.

#

command := proc(TNOT::numeric,DC::numeric)

option hfloat;

#

# Apply soft limits to DC.

if DC < dsMin then
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dc := dsMin;

softLimited := true;

elif DC > dsMax then

dc := dsMax;

softLimited := true;

else

dc := DC;

softLimited := false;

end if;

# Initialize these parameters for the new response

rateLimited := false;

hardLimited := false;

noHardLimits := evalb(dhMin = -1.0e99 and dhMax = 1.0e99);

tDiscs := [];

if not dHistory then

# Forget previous response except initial conditions for new response.

iniDel(delta(TNOT),deltaD(TNOT),deltaDD(TNOT));

end if;

#

# New response, ignoring any limitations

response(TNOT,delta(TNOT),deltaD(TNOT));

#

# Check for limits being exceeded and apply if necessary

nLims := 0;

applyLimits();

if Verbose then

print(’softLimited’ = softLimited,’dc’=dc);

print(’hardLimited’ = hardLimited);

print(’rateLimited’ = rateLimited);

print(’delta’(t) = delta(t));

end if;

# Return list of discontinuities in the new reponse

tDiscs;

end proc:

####################################################################

# response(Tnot,D0,DD0) calculate new response using dc and the

# given initial conditions.

# Tnot = time new response begins

# D0 = d(Tnot) for new response

# DD0 = d’(Tnot) for new response

#

response := proc(Tnot,D0,DD0)

option hfloat;

local a,b,bdenom;

#
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T0 := Tnot;

dc0 := dc - D0;

odc0 := OMEGA*dc0;

z2dd0 := z2*DD0;

dd1 := signum(dc0)*DDRL; # only needed if dc0 <> 0

#

# Default values

rateLimChk,gRegion,g,h := false$4; # make unused g,h non-numeric

#

if abs(z2dd0) < ddErr and abs(odc0) < ddErr then

# Trivial solution: d = dc

h,beta,alpha := 0.0,0.0,0.0;

elif abs(z2dd0) < abs(odc0)*(1.0 + Err) then

# |g| < 1 + Err

gRegion := true;

g := z2dd0/odc0;

if abs(g) < Err then

# g = 0, possibly ratelimited

rateLimChk := true;

g := 0.0;

beta := acz;

alpha := dc0/rtz;

Te0 := T0;

Te1 := Te0 + pi/ortz;

Ti := T0 + acz/ortz;

elif g > 1.0 - Err then

# exactly rate limited -- no limit needed

g := 1.0;

beta := acz + acz;

alpha := dc0/(z2*rtz);

Te0 := T0 - acz/ortz;

Te1 := Te0 + pi/ortz;

Ti := T0;

else

# general case

rateLimChk := evalb(g > -0.772);

bdenom := sqrt(g*g + z2*z2*(1.0 - g));

beta := arccos((z2*ZETA - g)/bdenom);

#alpha := dc0/sin(beta);

alpha := dc0*bdenom/(z2*rtz);

Te0 := T0 + (acz - beta)/ortz;

Te1 := Te0 + pi/ortz;

Ti := T0 + (acz + acz - beta)/ortz;

end if;

else

# |h| < 1, cannot be rate limited

h := odc0/z2dd0;

if abs(h) < Err then

# h = 0

h,beta := 0.0,0.0;
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alpha := -DD0/ortz;

Te0 := T0 + acz/ortz;

Te1 := Te0 + pi/ortz;

Ti := T0 + 2.0*acz/ortz;

else

# general case

bdenom := sqrt(z2*z2*h*(h - 1.0) + 1.0);

if h > 0 then

a := pi;

else

a := 0.0;

bdenom := -bdenom; # give bdenom the sign of h

end if;

beta := arccos((z2*ZETA*h - 1.0)/bdenom);

#alpha := DD0/(omega*sin(beta - acz));

alpha := DD0*bdenom/ortz;

Te0 := T0 + (acz - beta)/ortz;

Te1 := Te0 + pi/ortz;

Ti := T0 + (acz + acz - beta + a)/ortz;

end if;

end if;

# Update Deltas with new, unlimited response

a := ortz*(t - T0) + beta;

b := alpha*exp(-oz*(t - T0));

deltaUp(T0, dc - b*sin(a),

OMEGA*b*sin(a - acz),

-OMEGA^2*b*sin(a - acz - acz));

if Verbose then

printf("\nresponse(T0,D0,DD0) (%g,%g,%g) called with dc = %g\n",

Tnot,D0,DD0,dc);

if gRegion then

printf(" g,Te0,Ti,Te1 = %g, %g, %g, %g\n",g,Te0,Ti,Te1);

else

printf(" h,Te0,Ti,Te1 = %g, %g, %g, %g\n",h,Te0,Ti,Te1);

end if;

end if;

end proc:

####################################################################

# deltaUp(T,D,DD,DDD) update delta(t), deltaD(t), deltaDD(t) at

# time T with new response D, DD, and DDD.

#

# T = time following which new response applies.

# D = new response d

# DD = new response d’

# DDD = new response d’’

#
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# Return: true if T precedes a previous time break,

# false if T follows all previous time breaks.

#

deltaUp := proc(T,D,DD,DDD)

option hfloat;

local d,dd,ddd,n,i;

#

# Break old response into components

d,dd,ddd := [op(delta(t))],[op(deltaD(t))],[op(deltaDD(t))];

n := nops(d);

# The d[i] are the break points in the old response.

for i from 1 to n-2 by 2 do

if T < rhs(d[i]) + tErr then break end if;

end do;

# After i the old response is discarded.

if i = 1 then

# the first call to command uses this branch -- it should return false

delta := unapply(piecewise(t<T, d[2], D),t);

deltaD := unapply(piecewise(t<T, dd[2], DD),t);

deltaDD := unapply(piecewise(t<T,ddd[2],DDD),t);

if rhs(d[i]) = infinity then false else true end if;

elif i < n then

delta := unapply(piecewise( d[1..i-1][],t<T, d[i+1], D),t);

deltaD := unapply(piecewise( dd[1..i-1][],t<T, dd[i+1], DD),t);

deltaDD := unapply(piecewise(ddd[1..i-1][],t<T,ddd[i+1],DDD),t);

true;

else

delta := unapply(piecewise( d[1..-2][],t<T, d[-1], D),t);

deltaD := unapply(piecewise( dd[1..-2][],t<T, dd[-1], DD),t);

deltaDD := unapply(piecewise(ddd[1..-2][],t<T,ddd[-1],DDD),t);

false;

end if;

end proc:

####################################################################

# applyLimits() check to see if the rate or delta limits are

# exceeded; if so, break and restart the response.

#

# Return: true if response gets changed (discontinuities added),

# false if response is not changed.

#

applyLimits := proc()

option hfloat;

local a,b;

#

if Verbose then

nLims := nLims + 1;

printf("\napplyLimits[%d]\n",nLims);

end if;
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#

if Te0 > T0 + tErr then

# First extremum that might need to be capped precedes Ti

if hardCapit(Te0,T0) then

thisproc();

return true;

end if;

end if;

if rateLimChk and abs(deltaD(Ti)) > DDRL + ddErr then

# The rate limit is being exceeded.

# Response is a straight line between (T1,d1) and (T2,d2).

if Verbose then

printf(" rate limited = true, T1 iteration:\n")

end if;

a := unapply(fdf(dd1,alpha,t - T0,beta),t);

T1 := newton(a,T0,ERR=tErr,verbose=Verbose);

d1 := delta(T1);

if hardCapit(T1,T1) then

# hard limit precedes T1

return true;

end if;

d2 := dc - z2*dd1/OMEGA;

T2 := T1 + (d2 - d1)/dd1;

if Verbose then

printf(" constant rate ramp T1,d1, T2,d2 = %g,%g, %g,%g\n",

T1,d1,T2,d2);

end if;

# Check if hard limit occurs during constant deltaD ramp

if d2 < dhMin or d2 > dhMax then

if dd1 < 0 then a := dhMin else a := dhMax end if;

Ts := T1 + (a - d1)/dd1;

if Ts > T1 + tErr then

# the constant deltaD ramp

deltaUp(T1,d1 + dd1*(t-T1),dd1,0.0);

tDiscs := [tDiscs[],T1];

rateLimited := true;

end if;

deltaUp(Ts,a,0.0,0.0);

hardLimited := true:

tDiscs := [tDiscs[],Ts];

if Verbose then

printf(" hard capped on ramp at Ts,ds = %g,%g\n",Ts,a);

end if;

return true;

end if;

deltaUp(T1,d1 + dd1*(t-T1),dd1,0.0);

response(T2,d2,dd1); # resets T0 to T2

rateLimited := true;

tDiscs := [tDiscs[],T1,T2];

thisproc();
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return true;

elif Verbose then

printf(" rate limited = false\n");

end if;

# Test the overshoot extremum and cap if necessary

hardCapit(Te1,Ti);

end proc:

####################################################################

# hardCapit(T,Tj) check to see if the current response needs to be

# capped. If so, cap it and restart the response.

# T = time at wich to check if delta exceeds the cap (eg, Te).

# Tj = initial guess for newton solution for cap time (eg, T0,Ti).

#

# Return: true if the response gets capped,

# false if the response is not capped.

#

hardCapit := proc(T,Tj)

option hfloat;

local a,b,c,cc;

#

if noHardLimits then

return false;

elif deltaD(Tj) < 0 then

# response is decreasing

a := dhMin;

b := delta(T) < dhMin - dErr; # is cap exceeded?

c := dc < dhMin + dErr; # does dc exceed cap?

cc := c and dc > dhMin - dErr; # does dc equal cap?

else

# response is increasing

a := dhMax;

b := delta(T) > dhMax + dErr;

c := dc > dhMax - dErr;

cc := c and dc < dhMax + dErr;

end if;

if b then

# cap is being exceeded

if Verbose then printf(" hardCapit(%g,%g) = true\n",T,Tj) end if;

if cc then

# analytical solution for Ts

Ts := T0 + (pi - beta)/ortz;

if Verbose then

printf(" analytical hard cap: Ts,ds = %g,%g\n",Ts,a);

end if;

else

# numerical solution

b := unapply(FdF(dc - a,alpha,t - T0,beta),t);

Ts := newton(b,Tj,ERR=tErr,verbose=Verbose);
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if Verbose then

printf(" numerical hard cap: Ts,ds = %g,%g\n",Ts,a);

end if;

end if;

if c then

# just stay at cap

deltaUp(Ts,a,0.0,0.0);

else

# need new response

response(Ts,a,0.0); # new T0 = Ts begins post-cap response

end if;

hardLimited := true:

tDiscs := [tDiscs[],Ts];

true;

else

if Verbose then printf(" hardCapit(%g,%g) = false\n",T,Tj) end if;

false;

end if;

end proc:

########################################################################

# Newton’s method. Solve F(x) = 0 using Newton’s method.

#

# newton(FDF,X0,{ERR=Err,verbose=false,count=100})

#

# FDF = a procedure in one variable, x, returning F(x)/(dF(x)/dx).

# X0 = initial guess for x.

#

# Options

#

# ERR = desired level of error in x (default = Err). Will be

# increased to sqrt(ERR) with WARNING if converge is poor.

# verbose = true/false (default false), print count,dx,x each iteration.

# count = <posint> (default 100), max # of iterations allowed.

#

# Return x, the solution to F(x) = 0.

#

# - A pure Newton method. Requires user to know F well enough to know

# that the initial guess X0 will converge. True for the usage herein, but

# in extreme cases round-off error may prevent convergence.

#

newton := proc(FDF::procedure,X0::numeric,

{ERR::And(positive,numeric) := Err,

verbose::truefalse := false,

count::posint := 100})

option hfloat;

local x,dx,c,fmt;

x := X0;

dx := ERR + ERR;
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c := 0; # counter

if verbose then

fmt := " %5d %9.2g %19.15f\n";

printf(cat(" iteration dx x\n",fmt),c,0,x)

end if;

while abs(dx) > ERR do

if c = count then

if abs(dx) > sqrt(ERR) then

error "from newton(FDF,%1)\n %2 iterations "

"without convergence: |dx| = %3\n",X0,c,abs(dx);

else

WARNING("from newton(FDF,%1)\n "

"%2 iterations with reduced convergence: |dx| = %3\n",

X0,c,abs(dx));

return x;

end if;

end if;

dx := -FDF(x);

x := x + dx;

c := c + 1;

if verbose then printf(fmt,c,dx,x) end if;

end do;

x;

end proc:

end module;

end proc:
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